src/share/vm/runtime/sharedRuntime.cpp

Sun, 01 Jan 2012 11:17:59 -0500

author
phh
date
Sun, 01 Jan 2012 11:17:59 -0500
changeset 3378
7ab5f6318694
parent 3240
2ec638646e86
child 3434
15d394228cfa
permissions
-rw-r--r--

7125934: Add a fast unordered timestamp capability to Hotspot on x86/x64
Summary: Add rdtsc detection and inline generation.
Reviewed-by: kamg, dholmes
Contributed-by: karen.kinnear@oracle.com

duke@435 1 /*
never@2462 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
bobv@2508 71 #ifdef TARGET_ARCH_arm
bobv@2508 72 # include "nativeInst_arm.hpp"
bobv@2508 73 # include "vmreg_arm.inline.hpp"
bobv@2508 74 #endif
bobv@2508 75 #ifdef TARGET_ARCH_ppc
bobv@2508 76 # include "nativeInst_ppc.hpp"
bobv@2508 77 # include "vmreg_ppc.inline.hpp"
bobv@2508 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82
never@2950 83 // Shared stub locations
never@2950 84 RuntimeStub* SharedRuntime::_wrong_method_blob;
never@2950 85 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 88 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 89
never@2950 90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
never@2950 91 RicochetBlob* SharedRuntime::_ricochet_blob;
never@2950 92
never@2950 93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 95
never@2950 96 #ifdef COMPILER2
never@2950 97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 98 #endif // COMPILER2
never@2950 99
never@2950 100
never@2950 101 //----------------------------generate_stubs-----------------------------------
never@2950 102 void SharedRuntime::generate_stubs() {
never@2950 103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
never@2950 104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
never@2950 105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
never@2950 106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
never@2950 107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 108
never@2950 109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
never@2950 110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
never@2950 111
never@2950 112 generate_ricochet_blob();
never@2950 113 generate_deopt_blob();
never@2950 114
never@2950 115 #ifdef COMPILER2
never@2950 116 generate_uncommon_trap_blob();
never@2950 117 #endif // COMPILER2
never@2950 118 }
never@2950 119
never@2950 120 //----------------------------generate_ricochet_blob---------------------------
never@2950 121 void SharedRuntime::generate_ricochet_blob() {
never@2950 122 if (!EnableInvokeDynamic) return; // leave it as a null
never@2950 123
never@2950 124 #ifndef TARGET_ARCH_NYI_6939861
never@2950 125 // allocate space for the code
never@2950 126 ResourceMark rm;
never@2950 127 // setup code generation tools
never@2950 128 CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512
never@2950 129 MacroAssembler* masm = new MacroAssembler(&buffer);
never@2950 130
never@2950 131 int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
never@2950 132 MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
never@2950 133
never@2950 134 // -------------
never@2950 135 // make sure all code is generated
never@2950 136 masm->flush();
never@2950 137
never@2950 138 // failed to generate?
never@2950 139 if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
never@2950 140 assert(false, "bad ricochet blob");
never@2950 141 return;
never@2950 142 }
never@2950 143
never@2950 144 _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
never@2950 145 #endif
never@2950 146 }
never@2950 147
never@2950 148
duke@435 149 #include <math.h>
duke@435 150
dcubed@3202 151 #ifndef USDT2
duke@435 152 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 153 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 154 char*, int, char*, int, char*, int);
duke@435 155 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 156 char*, int, char*, int, char*, int);
dcubed@3202 157 #endif /* !USDT2 */
duke@435 158
duke@435 159 // Implementation of SharedRuntime
duke@435 160
duke@435 161 #ifndef PRODUCT
duke@435 162 // For statistics
duke@435 163 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 164 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 165 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 166 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 167 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 168 int SharedRuntime::_implicit_null_throws = 0;
duke@435 169 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 170 int SharedRuntime::_throw_null_ctr = 0;
duke@435 171
duke@435 172 int SharedRuntime::_nof_normal_calls = 0;
duke@435 173 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 174 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 175 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 176 int SharedRuntime::_nof_static_calls = 0;
duke@435 177 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 178 int SharedRuntime::_nof_interface_calls = 0;
duke@435 179 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 180 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 181 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 182 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 183
duke@435 184 int SharedRuntime::_new_instance_ctr=0;
duke@435 185 int SharedRuntime::_new_array_ctr=0;
duke@435 186 int SharedRuntime::_multi1_ctr=0;
duke@435 187 int SharedRuntime::_multi2_ctr=0;
duke@435 188 int SharedRuntime::_multi3_ctr=0;
duke@435 189 int SharedRuntime::_multi4_ctr=0;
duke@435 190 int SharedRuntime::_multi5_ctr=0;
duke@435 191 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 192 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 193 int SharedRuntime::_mon_enter_ctr=0;
duke@435 194 int SharedRuntime::_mon_exit_ctr=0;
duke@435 195 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 196 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 197 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 198 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 199 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 200 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 201 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 202 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 203 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 204 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 205 int SharedRuntime::_find_handler_ctr=0;
duke@435 206 int SharedRuntime::_rethrow_ctr=0;
duke@435 207
duke@435 208 int SharedRuntime::_ICmiss_index = 0;
duke@435 209 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 210 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 211
never@2950 212
duke@435 213 void SharedRuntime::trace_ic_miss(address at) {
duke@435 214 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 215 if (_ICmiss_at[i] == at) {
duke@435 216 _ICmiss_count[i]++;
duke@435 217 return;
duke@435 218 }
duke@435 219 }
duke@435 220 int index = _ICmiss_index++;
duke@435 221 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 222 _ICmiss_at[index] = at;
duke@435 223 _ICmiss_count[index] = 1;
duke@435 224 }
duke@435 225
duke@435 226 void SharedRuntime::print_ic_miss_histogram() {
duke@435 227 if (ICMissHistogram) {
duke@435 228 tty->print_cr ("IC Miss Histogram:");
duke@435 229 int tot_misses = 0;
duke@435 230 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 231 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 232 tot_misses += _ICmiss_count[i];
duke@435 233 }
duke@435 234 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 235 }
duke@435 236 }
duke@435 237 #endif // PRODUCT
duke@435 238
ysr@777 239 #ifndef SERIALGC
ysr@777 240
ysr@777 241 // G1 write-barrier pre: executed before a pointer store.
ysr@777 242 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 243 if (orig == NULL) {
ysr@777 244 assert(false, "should be optimized out");
ysr@777 245 return;
ysr@777 246 }
ysr@1280 247 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 248 // store the original value that was in the field reference
ysr@777 249 thread->satb_mark_queue().enqueue(orig);
ysr@777 250 JRT_END
ysr@777 251
ysr@777 252 // G1 write-barrier post: executed after a pointer store.
ysr@777 253 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 254 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 255 JRT_END
ysr@777 256
ysr@777 257 #endif // !SERIALGC
ysr@777 258
duke@435 259
duke@435 260 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 261 return x * y;
duke@435 262 JRT_END
duke@435 263
duke@435 264
duke@435 265 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 266 if (x == min_jlong && y == CONST64(-1)) {
duke@435 267 return x;
duke@435 268 } else {
duke@435 269 return x / y;
duke@435 270 }
duke@435 271 JRT_END
duke@435 272
duke@435 273
duke@435 274 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 275 if (x == min_jlong && y == CONST64(-1)) {
duke@435 276 return 0;
duke@435 277 } else {
duke@435 278 return x % y;
duke@435 279 }
duke@435 280 JRT_END
duke@435 281
duke@435 282
duke@435 283 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 284 const juint float_infinity = 0x7F800000;
duke@435 285 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 286 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 287
duke@435 288 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 289 #ifdef _WIN64
duke@435 290 // 64-bit Windows on amd64 returns the wrong values for
duke@435 291 // infinity operands.
duke@435 292 union { jfloat f; juint i; } xbits, ybits;
duke@435 293 xbits.f = x;
duke@435 294 ybits.f = y;
duke@435 295 // x Mod Infinity == x unless x is infinity
duke@435 296 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 297 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 298 return x;
duke@435 299 }
duke@435 300 #endif
duke@435 301 return ((jfloat)fmod((double)x,(double)y));
duke@435 302 JRT_END
duke@435 303
duke@435 304
duke@435 305 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 306 #ifdef _WIN64
duke@435 307 union { jdouble d; julong l; } xbits, ybits;
duke@435 308 xbits.d = x;
duke@435 309 ybits.d = y;
duke@435 310 // x Mod Infinity == x unless x is infinity
duke@435 311 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 312 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 313 return x;
duke@435 314 }
duke@435 315 #endif
duke@435 316 return ((jdouble)fmod((double)x,(double)y));
duke@435 317 JRT_END
duke@435 318
bobv@2036 319 #ifdef __SOFTFP__
bobv@2036 320 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 321 return x + y;
bobv@2036 322 JRT_END
bobv@2036 323
bobv@2036 324 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 325 return x - y;
bobv@2036 326 JRT_END
bobv@2036 327
bobv@2036 328 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 329 return x * y;
bobv@2036 330 JRT_END
bobv@2036 331
bobv@2036 332 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 333 return x / y;
bobv@2036 334 JRT_END
bobv@2036 335
bobv@2036 336 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 337 return x + y;
bobv@2036 338 JRT_END
bobv@2036 339
bobv@2036 340 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 341 return x - y;
bobv@2036 342 JRT_END
bobv@2036 343
bobv@2036 344 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 345 return x * y;
bobv@2036 346 JRT_END
bobv@2036 347
bobv@2036 348 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 349 return x / y;
bobv@2036 350 JRT_END
bobv@2036 351
bobv@2036 352 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 353 return (jfloat)x;
bobv@2036 354 JRT_END
bobv@2036 355
bobv@2036 356 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 357 return (jdouble)x;
bobv@2036 358 JRT_END
bobv@2036 359
bobv@2036 360 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 361 return (jdouble)x;
bobv@2036 362 JRT_END
bobv@2036 363
bobv@2036 364 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 365 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 366 JRT_END
bobv@2036 367
bobv@2036 368 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 369 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 370 JRT_END
bobv@2036 371
bobv@2036 372 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 373 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 374 JRT_END
bobv@2036 375
bobv@2036 376 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 377 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 378 JRT_END
bobv@2036 379
bobv@2036 380 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 381 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 382 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 383 JRT_END
bobv@2036 384
bobv@2036 385 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 386 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 387 JRT_END
bobv@2036 388
bobv@2036 389 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 390 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 391 JRT_END
bobv@2036 392
bobv@2036 393 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 394 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 395 JRT_END
bobv@2036 396
bobv@2036 397 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 398 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 399 JRT_END
bobv@2036 400
bobv@2036 401 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 402 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 403 JRT_END
bobv@2036 404
bobv@2036 405 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 406 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 407 JRT_END
bobv@2036 408
bobv@2036 409 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 410 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 411 JRT_END
bobv@2036 412
bobv@2036 413 // Intrinsics make gcc generate code for these.
bobv@2036 414 float SharedRuntime::fneg(float f) {
bobv@2036 415 return -f;
bobv@2036 416 }
bobv@2036 417
bobv@2036 418 double SharedRuntime::dneg(double f) {
bobv@2036 419 return -f;
bobv@2036 420 }
bobv@2036 421
bobv@2036 422 #endif // __SOFTFP__
bobv@2036 423
bobv@2036 424 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 425 // Intrinsics make gcc generate code for these.
bobv@2036 426 double SharedRuntime::dabs(double f) {
bobv@2036 427 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 428 }
bobv@2036 429
bobv@2223 430 #endif
bobv@2223 431
bobv@2223 432 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 433 double SharedRuntime::dsqrt(double f) {
bobv@2036 434 return sqrt(f);
bobv@2036 435 }
bobv@2036 436 #endif
duke@435 437
duke@435 438 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 439 if (g_isnan(x))
kvn@943 440 return 0;
kvn@943 441 if (x >= (jfloat) max_jint)
kvn@943 442 return max_jint;
kvn@943 443 if (x <= (jfloat) min_jint)
kvn@943 444 return min_jint;
kvn@943 445 return (jint) x;
duke@435 446 JRT_END
duke@435 447
duke@435 448
duke@435 449 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 450 if (g_isnan(x))
kvn@943 451 return 0;
kvn@943 452 if (x >= (jfloat) max_jlong)
kvn@943 453 return max_jlong;
kvn@943 454 if (x <= (jfloat) min_jlong)
kvn@943 455 return min_jlong;
kvn@943 456 return (jlong) x;
duke@435 457 JRT_END
duke@435 458
duke@435 459
duke@435 460 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 461 if (g_isnan(x))
kvn@943 462 return 0;
kvn@943 463 if (x >= (jdouble) max_jint)
kvn@943 464 return max_jint;
kvn@943 465 if (x <= (jdouble) min_jint)
kvn@943 466 return min_jint;
kvn@943 467 return (jint) x;
duke@435 468 JRT_END
duke@435 469
duke@435 470
duke@435 471 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 472 if (g_isnan(x))
kvn@943 473 return 0;
kvn@943 474 if (x >= (jdouble) max_jlong)
kvn@943 475 return max_jlong;
kvn@943 476 if (x <= (jdouble) min_jlong)
kvn@943 477 return min_jlong;
kvn@943 478 return (jlong) x;
duke@435 479 JRT_END
duke@435 480
duke@435 481
duke@435 482 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 483 return (jfloat)x;
duke@435 484 JRT_END
duke@435 485
duke@435 486
duke@435 487 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 488 return (jfloat)x;
duke@435 489 JRT_END
duke@435 490
duke@435 491
duke@435 492 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 493 return (jdouble)x;
duke@435 494 JRT_END
duke@435 495
duke@435 496 // Exception handling accross interpreter/compiler boundaries
duke@435 497 //
duke@435 498 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 499 // The continuation address is the entry point of the exception handler of the
duke@435 500 // previous frame depending on the return address.
duke@435 501
twisti@1730 502 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 503 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 504
twisti@2603 505 // Reset method handle flag.
twisti@1803 506 thread->set_is_method_handle_return(false);
twisti@1803 507
twisti@2603 508 // The fastest case first
duke@435 509 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 510 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 511 if (nm != NULL) {
twisti@2603 512 // Set flag if return address is a method handle call site.
twisti@2603 513 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 514 // native nmethods don't have exception handlers
twisti@2603 515 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 516 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 517 if (nm->is_deopt_pc(return_address)) {
duke@435 518 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 519 } else {
twisti@2603 520 return nm->exception_begin();
duke@435 521 }
duke@435 522 }
duke@435 523
duke@435 524 // Entry code
duke@435 525 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 526 return StubRoutines::catch_exception_entry();
duke@435 527 }
duke@435 528 // Interpreted code
duke@435 529 if (Interpreter::contains(return_address)) {
duke@435 530 return Interpreter::rethrow_exception_entry();
duke@435 531 }
never@2895 532 // Ricochet frame unwind code
never@2895 533 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
never@2895 534 return SharedRuntime::ricochet_blob()->exception_addr();
never@2895 535 }
duke@435 536
twisti@2603 537 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 538 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 539
duke@435 540 #ifndef PRODUCT
duke@435 541 { ResourceMark rm;
duke@435 542 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 543 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 544 tty->print_cr("b) other problem");
duke@435 545 }
duke@435 546 #endif // PRODUCT
twisti@2603 547
duke@435 548 ShouldNotReachHere();
duke@435 549 return NULL;
duke@435 550 }
duke@435 551
duke@435 552
twisti@1730 553 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 554 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 555 JRT_END
duke@435 556
twisti@1730 557
duke@435 558 address SharedRuntime::get_poll_stub(address pc) {
duke@435 559 address stub;
duke@435 560 // Look up the code blob
duke@435 561 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 562
duke@435 563 // Should be an nmethod
duke@435 564 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 565
duke@435 566 // Look up the relocation information
duke@435 567 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 568 "safepoint polling: type must be poll" );
duke@435 569
duke@435 570 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 571 "Only polling locations are used for safepoint");
duke@435 572
duke@435 573 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 574 if (at_poll_return) {
duke@435 575 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 576 "polling page return stub not created yet");
twisti@2103 577 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
duke@435 578 } else {
duke@435 579 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 580 "polling page safepoint stub not created yet");
twisti@2103 581 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 582 }
duke@435 583 #ifndef PRODUCT
duke@435 584 if( TraceSafepoint ) {
duke@435 585 char buf[256];
duke@435 586 jio_snprintf(buf, sizeof(buf),
duke@435 587 "... found polling page %s exception at pc = "
duke@435 588 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 589 at_poll_return ? "return" : "loop",
duke@435 590 (intptr_t)pc, (intptr_t)stub);
duke@435 591 tty->print_raw_cr(buf);
duke@435 592 }
duke@435 593 #endif // PRODUCT
duke@435 594 return stub;
duke@435 595 }
duke@435 596
duke@435 597
coleenp@2497 598 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 599 assert(caller.is_interpreted_frame(), "");
duke@435 600 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 601 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 602 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 603 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 604 return result;
duke@435 605 }
duke@435 606
duke@435 607
duke@435 608 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 609 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 610 vframeStream vfst(thread, true);
duke@435 611 methodHandle method = methodHandle(thread, vfst.method());
duke@435 612 address bcp = method()->bcp_from(vfst.bci());
duke@435 613 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 614 }
duke@435 615 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 616 }
duke@435 617
coleenp@2497 618 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 619 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 620 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 621 }
duke@435 622
dcubed@1045 623 // The interpreter code to call this tracing function is only
dcubed@1045 624 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 625 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 626 // to modify the compilers to generate calls to this function.
dcubed@1045 627 //
dcubed@1045 628 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 629 JavaThread* thread, methodOopDesc* method))
dcubed@1045 630 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 631
dcubed@1045 632 if (method->is_obsolete()) {
dcubed@1045 633 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 634 // an error. Our method could have been redefined just after we
dcubed@1045 635 // fetched the methodOop from the constant pool.
dcubed@1045 636
dcubed@1045 637 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 638 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 639 ("calling obsolete method '%s'",
dcubed@1045 640 method->name_and_sig_as_C_string()));
dcubed@1045 641 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 642 // this option is provided to debug calls to obsolete methods
dcubed@1045 643 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 644 }
dcubed@1045 645 }
dcubed@1045 646 return 0;
dcubed@1045 647 JRT_END
dcubed@1045 648
duke@435 649 // ret_pc points into caller; we are returning caller's exception handler
duke@435 650 // for given exception
duke@435 651 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 652 bool force_unwind, bool top_frame_only) {
duke@435 653 assert(nm != NULL, "must exist");
duke@435 654 ResourceMark rm;
duke@435 655
duke@435 656 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 657 // determine handler bci, if any
duke@435 658 EXCEPTION_MARK;
duke@435 659
duke@435 660 int handler_bci = -1;
duke@435 661 int scope_depth = 0;
duke@435 662 if (!force_unwind) {
duke@435 663 int bci = sd->bci();
kvn@3194 664 bool recursive_exception = false;
duke@435 665 do {
duke@435 666 bool skip_scope_increment = false;
duke@435 667 // exception handler lookup
duke@435 668 KlassHandle ek (THREAD, exception->klass());
duke@435 669 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 670 if (HAS_PENDING_EXCEPTION) {
kvn@3194 671 recursive_exception = true;
duke@435 672 // We threw an exception while trying to find the exception handler.
duke@435 673 // Transfer the new exception to the exception handle which will
duke@435 674 // be set into thread local storage, and do another lookup for an
duke@435 675 // exception handler for this exception, this time starting at the
duke@435 676 // BCI of the exception handler which caused the exception to be
duke@435 677 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 678 // argument to ensure that the correct exception is thrown (4870175).
duke@435 679 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 680 CLEAR_PENDING_EXCEPTION;
duke@435 681 if (handler_bci >= 0) {
duke@435 682 bci = handler_bci;
duke@435 683 handler_bci = -1;
duke@435 684 skip_scope_increment = true;
duke@435 685 }
duke@435 686 }
kvn@3194 687 else {
kvn@3194 688 recursive_exception = false;
kvn@3194 689 }
duke@435 690 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 691 sd = sd->sender();
duke@435 692 if (sd != NULL) {
duke@435 693 bci = sd->bci();
duke@435 694 }
duke@435 695 ++scope_depth;
duke@435 696 }
kvn@3194 697 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
duke@435 698 }
duke@435 699
duke@435 700 // found handling method => lookup exception handler
twisti@2103 701 int catch_pco = ret_pc - nm->code_begin();
duke@435 702
duke@435 703 ExceptionHandlerTable table(nm);
duke@435 704 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 705 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 706 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 707 // to materialize its exceptions without committing to the exact
duke@435 708 // routing of exceptions. In particular this is needed for adding
duke@435 709 // a synthethic handler to unlock monitors when inlining
duke@435 710 // synchonized methods since the unlock path isn't represented in
duke@435 711 // the bytecodes.
duke@435 712 t = table.entry_for(catch_pco, -1, 0);
duke@435 713 }
duke@435 714
never@1813 715 #ifdef COMPILER1
never@1813 716 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 717 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 718 return nm->unwind_handler_begin();
never@1813 719 }
never@1813 720 #endif
never@1813 721
duke@435 722 if (t == NULL) {
duke@435 723 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 724 tty->print_cr(" Exception:");
duke@435 725 exception->print();
duke@435 726 tty->cr();
duke@435 727 tty->print_cr(" Compiled exception table :");
duke@435 728 table.print();
duke@435 729 nm->print_code();
duke@435 730 guarantee(false, "missing exception handler");
duke@435 731 return NULL;
duke@435 732 }
duke@435 733
twisti@2103 734 return nm->code_begin() + t->pco();
duke@435 735 }
duke@435 736
duke@435 737 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 738 // These errors occur only at call sites
duke@435 739 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 740 JRT_END
duke@435 741
dcubed@451 742 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 743 // These errors occur only at call sites
dcubed@451 744 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 745 JRT_END
dcubed@451 746
duke@435 747 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 748 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 749 JRT_END
duke@435 750
duke@435 751 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 752 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 753 JRT_END
duke@435 754
duke@435 755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 756 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 757 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 758 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 759 JRT_END
duke@435 760
duke@435 761 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 762 // We avoid using the normal exception construction in this case because
duke@435 763 // it performs an upcall to Java, and we're already out of stack space.
duke@435 764 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 765 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 766 Handle exception (thread, exception_oop);
duke@435 767 if (StackTraceInThrowable) {
duke@435 768 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 769 }
duke@435 770 throw_and_post_jvmti_exception(thread, exception);
duke@435 771 JRT_END
duke@435 772
never@2978 773 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
never@2978 774 assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
never@2978 775 ResourceMark rm;
never@2978 776 char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
never@2978 777 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
never@2978 778 JRT_END
never@2978 779
duke@435 780 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 781 address pc,
duke@435 782 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 783 {
duke@435 784 address target_pc = NULL;
duke@435 785
duke@435 786 if (Interpreter::contains(pc)) {
duke@435 787 #ifdef CC_INTERP
duke@435 788 // C++ interpreter doesn't throw implicit exceptions
duke@435 789 ShouldNotReachHere();
duke@435 790 #else
duke@435 791 switch (exception_kind) {
duke@435 792 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 793 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 794 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 795 default: ShouldNotReachHere();
duke@435 796 }
duke@435 797 #endif // !CC_INTERP
duke@435 798 } else {
duke@435 799 switch (exception_kind) {
duke@435 800 case STACK_OVERFLOW: {
duke@435 801 // Stack overflow only occurs upon frame setup; the callee is
duke@435 802 // going to be unwound. Dispatch to a shared runtime stub
duke@435 803 // which will cause the StackOverflowError to be fabricated
duke@435 804 // and processed.
duke@435 805 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 806 if (thread->deopt_mark() != NULL) {
duke@435 807 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 808 }
duke@435 809 return StubRoutines::throw_StackOverflowError_entry();
duke@435 810 }
duke@435 811
duke@435 812 case IMPLICIT_NULL: {
duke@435 813 if (VtableStubs::contains(pc)) {
duke@435 814 // We haven't yet entered the callee frame. Fabricate an
duke@435 815 // exception and begin dispatching it in the caller. Since
duke@435 816 // the caller was at a call site, it's safe to destroy all
duke@435 817 // caller-saved registers, as these entry points do.
duke@435 818 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 819
poonam@900 820 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 821 if (vt_stub == NULL) return NULL;
poonam@900 822
duke@435 823 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 824 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 825 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 826 } else {
duke@435 827 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 828 }
duke@435 829 } else {
duke@435 830 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 831
poonam@900 832 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 833 if (cb == NULL) return NULL;
duke@435 834
duke@435 835 // Exception happened in CodeCache. Must be either:
duke@435 836 // 1. Inline-cache check in C2I handler blob,
duke@435 837 // 2. Inline-cache check in nmethod, or
duke@435 838 // 3. Implict null exception in nmethod
duke@435 839
duke@435 840 if (!cb->is_nmethod()) {
twisti@1734 841 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 842 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 843 // There is no handler here, so we will simply unwind.
duke@435 844 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 845 }
duke@435 846
duke@435 847 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 848 nmethod* nm = (nmethod*)cb;
duke@435 849 if (nm->inlinecache_check_contains(pc)) {
duke@435 850 // exception happened inside inline-cache check code
duke@435 851 // => the nmethod is not yet active (i.e., the frame
duke@435 852 // is not set up yet) => use return address pushed by
duke@435 853 // caller => don't push another return address
duke@435 854 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 855 }
duke@435 856
duke@435 857 #ifndef PRODUCT
duke@435 858 _implicit_null_throws++;
duke@435 859 #endif
duke@435 860 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 861 // If there's an unexpected fault, target_pc might be NULL,
never@1685 862 // in which case we want to fall through into the normal
never@1685 863 // error handling code.
duke@435 864 }
duke@435 865
duke@435 866 break; // fall through
duke@435 867 }
duke@435 868
duke@435 869
duke@435 870 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 871 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 872 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 873 #ifndef PRODUCT
duke@435 874 _implicit_div0_throws++;
duke@435 875 #endif
duke@435 876 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 877 // If there's an unexpected fault, target_pc might be NULL,
never@1685 878 // in which case we want to fall through into the normal
never@1685 879 // error handling code.
duke@435 880 break; // fall through
duke@435 881 }
duke@435 882
duke@435 883 default: ShouldNotReachHere();
duke@435 884 }
duke@435 885
duke@435 886 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 887
duke@435 888 // for AbortVMOnException flag
duke@435 889 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 890 if (exception_kind == IMPLICIT_NULL) {
duke@435 891 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 892 } else {
duke@435 893 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 894 }
duke@435 895 return target_pc;
duke@435 896 }
duke@435 897
duke@435 898 ShouldNotReachHere();
duke@435 899 return NULL;
duke@435 900 }
duke@435 901
duke@435 902
duke@435 903 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 904 {
duke@435 905 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 906 }
duke@435 907 JNI_END
duke@435 908
duke@435 909
duke@435 910 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 911 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 912 }
duke@435 913
duke@435 914
duke@435 915 #ifndef PRODUCT
duke@435 916 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 917 const frame f = thread->last_frame();
duke@435 918 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 919 #ifndef PRODUCT
duke@435 920 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 921 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 922 #endif // !PRODUCT
duke@435 923 return preserve_this_value;
duke@435 924 JRT_END
duke@435 925 #endif // !PRODUCT
duke@435 926
duke@435 927
duke@435 928 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 929 os::yield_all(attempts);
duke@435 930 JRT_END
duke@435 931
duke@435 932
duke@435 933 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 934 assert(obj->is_oop(), "must be a valid oop");
duke@435 935 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 936 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 937 JRT_END
duke@435 938
duke@435 939
duke@435 940 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 941 if (thread != NULL) {
duke@435 942 if (thread->is_Java_thread()) {
duke@435 943 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 944 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 945 }
duke@435 946 }
duke@435 947 return 0;
duke@435 948 }
duke@435 949
duke@435 950 /**
duke@435 951 * This function ought to be a void function, but cannot be because
duke@435 952 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 953 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 954 */
duke@435 955 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 956 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 957 }
duke@435 958
duke@435 959 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 960 assert(DTraceAllocProbes, "wrong call");
duke@435 961 Klass* klass = o->blueprint();
duke@435 962 int size = o->size();
coleenp@2497 963 Symbol* name = klass->name();
dcubed@3202 964 #ifndef USDT2
duke@435 965 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 966 name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 967 #else /* USDT2 */
dcubed@3202 968 HOTSPOT_OBJECT_ALLOC(
dcubed@3202 969 get_java_tid(thread),
dcubed@3202 970 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 971 #endif /* USDT2 */
duke@435 972 return 0;
duke@435 973 }
duke@435 974
duke@435 975 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 976 JavaThread* thread, methodOopDesc* method))
duke@435 977 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 978 Symbol* kname = method->klass_name();
coleenp@2497 979 Symbol* name = method->name();
coleenp@2497 980 Symbol* sig = method->signature();
dcubed@3202 981 #ifndef USDT2
duke@435 982 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 983 kname->bytes(), kname->utf8_length(),
duke@435 984 name->bytes(), name->utf8_length(),
duke@435 985 sig->bytes(), sig->utf8_length());
dcubed@3202 986 #else /* USDT2 */
dcubed@3202 987 HOTSPOT_METHOD_ENTRY(
dcubed@3202 988 get_java_tid(thread),
dcubed@3202 989 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 990 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 991 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 992 #endif /* USDT2 */
duke@435 993 return 0;
duke@435 994 JRT_END
duke@435 995
duke@435 996 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 997 JavaThread* thread, methodOopDesc* method))
duke@435 998 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 999 Symbol* kname = method->klass_name();
coleenp@2497 1000 Symbol* name = method->name();
coleenp@2497 1001 Symbol* sig = method->signature();
dcubed@3202 1002 #ifndef USDT2
duke@435 1003 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 1004 kname->bytes(), kname->utf8_length(),
duke@435 1005 name->bytes(), name->utf8_length(),
duke@435 1006 sig->bytes(), sig->utf8_length());
dcubed@3202 1007 #else /* USDT2 */
dcubed@3202 1008 HOTSPOT_METHOD_RETURN(
dcubed@3202 1009 get_java_tid(thread),
dcubed@3202 1010 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 1011 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 1012 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 1013 #endif /* USDT2 */
duke@435 1014 return 0;
duke@435 1015 JRT_END
duke@435 1016
duke@435 1017
duke@435 1018 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 1019 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1020 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 1021 // vtable updates, etc. Caller frame must be compiled.
duke@435 1022 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 1023 ResourceMark rm(THREAD);
duke@435 1024
duke@435 1025 // last java frame on stack (which includes native call frames)
duke@435 1026 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 1027
duke@435 1028 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 1029 }
duke@435 1030
duke@435 1031
duke@435 1032 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 1033 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1034 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 1035 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1036 vframeStream& vfst,
duke@435 1037 Bytecodes::Code& bc,
duke@435 1038 CallInfo& callinfo, TRAPS) {
duke@435 1039 Handle receiver;
duke@435 1040 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1041
duke@435 1042 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1043
duke@435 1044 // Find caller and bci from vframe
duke@435 1045 methodHandle caller (THREAD, vfst.method());
duke@435 1046 int bci = vfst.bci();
duke@435 1047
duke@435 1048 // Find bytecode
never@2462 1049 Bytecode_invoke bytecode(caller, bci);
never@2462 1050 bc = bytecode.java_code();
never@2462 1051 int bytecode_index = bytecode.index();
duke@435 1052
duke@435 1053 // Find receiver for non-static call
duke@435 1054 if (bc != Bytecodes::_invokestatic) {
duke@435 1055 // This register map must be update since we need to find the receiver for
duke@435 1056 // compiled frames. The receiver might be in a register.
duke@435 1057 RegisterMap reg_map2(thread);
duke@435 1058 frame stubFrame = thread->last_frame();
duke@435 1059 // Caller-frame is a compiled frame
duke@435 1060 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1061
never@2462 1062 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1063 if (callee.is_null()) {
duke@435 1064 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1065 }
duke@435 1066 // Retrieve from a compiled argument list
duke@435 1067 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1068
duke@435 1069 if (receiver.is_null()) {
duke@435 1070 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1071 }
duke@435 1072 }
duke@435 1073
duke@435 1074 // Resolve method. This is parameterized by bytecode.
duke@435 1075 constantPoolHandle constants (THREAD, caller->constants());
duke@435 1076 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1077 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1078
duke@435 1079 #ifdef ASSERT
duke@435 1080 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 1081 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 1082 assert(receiver.not_null(), "should have thrown exception");
duke@435 1083 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 1084 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1085 // klass is already loaded
duke@435 1086 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 1087 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 1088 if (receiver_klass->oop_is_instance()) {
duke@435 1089 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1090 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 1091 receiver_klass.print();
duke@435 1092 }
duke@435 1093 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1094 }
duke@435 1095 }
duke@435 1096 #endif
duke@435 1097
duke@435 1098 return receiver;
duke@435 1099 }
duke@435 1100
duke@435 1101 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1102 ResourceMark rm(THREAD);
duke@435 1103 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1104 // exist on the stack since last JavaCall. If not, we need
duke@435 1105 // to get the target method from the JavaCall wrapper.
duke@435 1106 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1107 methodHandle callee_method;
duke@435 1108 if (vfst.at_end()) {
duke@435 1109 // No Java frames were found on stack since we did the JavaCall.
duke@435 1110 // Hence the stack can only contain an entry_frame. We need to
duke@435 1111 // find the target method from the stub frame.
duke@435 1112 RegisterMap reg_map(thread, false);
duke@435 1113 frame fr = thread->last_frame();
duke@435 1114 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1115 fr = fr.sender(&reg_map);
duke@435 1116 assert(fr.is_entry_frame(), "must be");
duke@435 1117 // fr is now pointing to the entry frame.
duke@435 1118 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1119 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1120 } else {
duke@435 1121 Bytecodes::Code bc;
duke@435 1122 CallInfo callinfo;
duke@435 1123 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1124 callee_method = callinfo.selected_method();
duke@435 1125 }
duke@435 1126 assert(callee_method()->is_method(), "must be");
duke@435 1127 return callee_method;
duke@435 1128 }
duke@435 1129
duke@435 1130 // Resolves a call.
duke@435 1131 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1132 bool is_virtual,
duke@435 1133 bool is_optimized, TRAPS) {
duke@435 1134 methodHandle callee_method;
duke@435 1135 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1136 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1137 int retry_count = 0;
duke@435 1138 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1139 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1140 // If has a pending exception then there is no need to re-try to
duke@435 1141 // resolve this method.
duke@435 1142 // If the method has been redefined, we need to try again.
duke@435 1143 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1144 // require that java.lang.Object has been updated.
duke@435 1145
duke@435 1146 // It is very unlikely that method is redefined more than 100 times
duke@435 1147 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1148 // means then there could be a bug here.
duke@435 1149 guarantee((retry_count++ < 100),
duke@435 1150 "Could not resolve to latest version of redefined method");
duke@435 1151 // method is redefined in the middle of resolve so re-try.
duke@435 1152 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1153 }
duke@435 1154 }
duke@435 1155 return callee_method;
duke@435 1156 }
duke@435 1157
duke@435 1158 // Resolves a call. The compilers generate code for calls that go here
duke@435 1159 // and are patched with the real destination of the call.
duke@435 1160 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1161 bool is_virtual,
duke@435 1162 bool is_optimized, TRAPS) {
duke@435 1163
duke@435 1164 ResourceMark rm(thread);
duke@435 1165 RegisterMap cbl_map(thread, false);
duke@435 1166 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1167
twisti@1730 1168 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1169 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1170 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1171 // make sure caller is not getting deoptimized
duke@435 1172 // and removed before we are done with it.
duke@435 1173 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1174 nmethodLocker caller_lock(caller_nm);
duke@435 1175
duke@435 1176
duke@435 1177 // determine call info & receiver
duke@435 1178 // note: a) receiver is NULL for static calls
duke@435 1179 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1180 CallInfo call_info;
duke@435 1181 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1182 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1183 call_info, CHECK_(methodHandle()));
duke@435 1184 methodHandle callee_method = call_info.selected_method();
duke@435 1185
duke@435 1186 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 1187 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 1188
duke@435 1189 #ifndef PRODUCT
duke@435 1190 // tracing/debugging/statistics
duke@435 1191 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1192 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1193 (&_resolve_static_ctr);
duke@435 1194 Atomic::inc(addr);
duke@435 1195
duke@435 1196 if (TraceCallFixup) {
duke@435 1197 ResourceMark rm(thread);
duke@435 1198 tty->print("resolving %s%s (%s) call to",
duke@435 1199 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1200 Bytecodes::name(invoke_code));
duke@435 1201 callee_method->print_short_name(tty);
duke@435 1202 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1203 }
duke@435 1204 #endif
duke@435 1205
twisti@1730 1206 // JSR 292
twisti@1730 1207 // If the resolved method is a MethodHandle invoke target the call
twisti@1730 1208 // site must be a MethodHandle call site.
twisti@1730 1209 if (callee_method->is_method_handle_invoke()) {
twisti@1730 1210 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1211 }
twisti@1730 1212
duke@435 1213 // Compute entry points. This might require generation of C2I converter
duke@435 1214 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1215 // computation of the entry points is independent of patching the call. We
duke@435 1216 // always return the entry-point, but we only patch the stub if the call has
duke@435 1217 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1218 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1219 // virtual this is just a destination address.
duke@435 1220
duke@435 1221 StaticCallInfo static_call_info;
duke@435 1222 CompiledICInfo virtual_call_info;
duke@435 1223
duke@435 1224 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1225 // we are done patching the code.
twisti@1730 1226 nmethod* callee_nm = callee_method->code();
twisti@1730 1227 nmethodLocker nl_callee(callee_nm);
duke@435 1228 #ifdef ASSERT
twisti@1730 1229 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1230 #endif
duke@435 1231
duke@435 1232 if (is_virtual) {
duke@435 1233 assert(receiver.not_null(), "sanity check");
duke@435 1234 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1235 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1236 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1237 is_optimized, static_bound, virtual_call_info,
duke@435 1238 CHECK_(methodHandle()));
duke@435 1239 } else {
duke@435 1240 // static call
duke@435 1241 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1242 }
duke@435 1243
duke@435 1244 // grab lock, check for deoptimization and potentially patch caller
duke@435 1245 {
duke@435 1246 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1247
duke@435 1248 // Now that we are ready to patch if the methodOop was redefined then
duke@435 1249 // don't update call site and let the caller retry.
duke@435 1250
duke@435 1251 if (!callee_method->is_old()) {
duke@435 1252 #ifdef ASSERT
duke@435 1253 // We must not try to patch to jump to an already unloaded method.
duke@435 1254 if (dest_entry_point != 0) {
duke@435 1255 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1256 "should not unload nmethod while locked");
duke@435 1257 }
duke@435 1258 #endif
duke@435 1259 if (is_virtual) {
duke@435 1260 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1261 if (inline_cache->is_clean()) {
duke@435 1262 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1263 }
duke@435 1264 } else {
duke@435 1265 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1266 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1267 }
duke@435 1268 }
duke@435 1269
duke@435 1270 } // unlock CompiledIC_lock
duke@435 1271
duke@435 1272 return callee_method;
duke@435 1273 }
duke@435 1274
duke@435 1275
duke@435 1276 // Inline caches exist only in compiled code
duke@435 1277 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1278 #ifdef ASSERT
duke@435 1279 RegisterMap reg_map(thread, false);
duke@435 1280 frame stub_frame = thread->last_frame();
duke@435 1281 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1282 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1283 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
never@2895 1284 assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
duke@435 1285 #endif /* ASSERT */
duke@435 1286
duke@435 1287 methodHandle callee_method;
duke@435 1288 JRT_BLOCK
duke@435 1289 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1290 // Return methodOop through TLS
duke@435 1291 thread->set_vm_result(callee_method());
duke@435 1292 JRT_BLOCK_END
duke@435 1293 // return compiled code entry point after potential safepoints
duke@435 1294 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1295 return callee_method->verified_code_entry();
duke@435 1296 JRT_END
duke@435 1297
duke@435 1298
duke@435 1299 // Handle call site that has been made non-entrant
duke@435 1300 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1301 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1302 // as we race to call it. We don't want to take a safepoint if
duke@435 1303 // the caller was interpreted because the caller frame will look
duke@435 1304 // interpreted to the stack walkers and arguments are now
duke@435 1305 // "compiled" so it is much better to make this transition
duke@435 1306 // invisible to the stack walking code. The i2c path will
duke@435 1307 // place the callee method in the callee_target. It is stashed
duke@435 1308 // there because if we try and find the callee by normal means a
duke@435 1309 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1310 RegisterMap reg_map(thread, false);
duke@435 1311 frame stub_frame = thread->last_frame();
duke@435 1312 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1313 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1314
twisti@1570 1315 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1316 // simply redispatch to the callee_target.
twisti@1570 1317 address sender_pc = caller_frame.pc();
twisti@1570 1318 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1319 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1320 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1321 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1322 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1323 // adapter.
twisti@1639 1324 methodOop callee = thread->callee_target();
twisti@1639 1325 if (callee != NULL) {
twisti@1639 1326 assert(callee->is_method(), "sanity");
twisti@1639 1327 is_mh_invoke_via_adapter = true;
twisti@1639 1328 }
twisti@1639 1329 }
twisti@1570 1330
twisti@1570 1331 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1332 caller_frame.is_entry_frame() ||
never@2895 1333 caller_frame.is_ricochet_frame() ||
twisti@1639 1334 is_mh_invoke_via_adapter) {
duke@435 1335 methodOop callee = thread->callee_target();
duke@435 1336 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1337 thread->set_vm_result(callee);
duke@435 1338 thread->set_callee_target(NULL);
duke@435 1339 return callee->get_c2i_entry();
duke@435 1340 }
duke@435 1341
duke@435 1342 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1343 methodHandle callee_method;
duke@435 1344 JRT_BLOCK
duke@435 1345 // Force resolving of caller (if we called from compiled frame)
duke@435 1346 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1347 thread->set_vm_result(callee_method());
duke@435 1348 JRT_BLOCK_END
duke@435 1349 // return compiled code entry point after potential safepoints
duke@435 1350 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1351 return callee_method->verified_code_entry();
duke@435 1352 JRT_END
duke@435 1353
duke@435 1354
duke@435 1355 // resolve a static call and patch code
duke@435 1356 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1357 methodHandle callee_method;
duke@435 1358 JRT_BLOCK
duke@435 1359 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1360 thread->set_vm_result(callee_method());
duke@435 1361 JRT_BLOCK_END
duke@435 1362 // return compiled code entry point after potential safepoints
duke@435 1363 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1364 return callee_method->verified_code_entry();
duke@435 1365 JRT_END
duke@435 1366
duke@435 1367
duke@435 1368 // resolve virtual call and update inline cache to monomorphic
duke@435 1369 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1370 methodHandle callee_method;
duke@435 1371 JRT_BLOCK
duke@435 1372 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1373 thread->set_vm_result(callee_method());
duke@435 1374 JRT_BLOCK_END
duke@435 1375 // return compiled code entry point after potential safepoints
duke@435 1376 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1377 return callee_method->verified_code_entry();
duke@435 1378 JRT_END
duke@435 1379
duke@435 1380
duke@435 1381 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1382 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1383 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1384 methodHandle callee_method;
duke@435 1385 JRT_BLOCK
duke@435 1386 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1387 thread->set_vm_result(callee_method());
duke@435 1388 JRT_BLOCK_END
duke@435 1389 // return compiled code entry point after potential safepoints
duke@435 1390 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1391 return callee_method->verified_code_entry();
duke@435 1392 JRT_END
duke@435 1393
duke@435 1394
duke@435 1395
duke@435 1396
duke@435 1397
duke@435 1398 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1399 ResourceMark rm(thread);
duke@435 1400 CallInfo call_info;
duke@435 1401 Bytecodes::Code bc;
duke@435 1402
duke@435 1403 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1404 // receivers for non-static calls
duke@435 1405 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1406 CHECK_(methodHandle()));
duke@435 1407 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1408 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1409 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1410 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1411 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1412 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1413 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1414 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1415 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1416 //
duke@435 1417 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1418 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1419 if (TraceCallFixup) {
duke@435 1420 RegisterMap reg_map(thread, false);
duke@435 1421 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1422 ResourceMark rm(thread);
duke@435 1423 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1424 callee_method->print_short_name(tty);
duke@435 1425 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1426 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1427 }
duke@435 1428 return callee_method;
duke@435 1429 }
duke@435 1430
duke@435 1431 methodHandle callee_method = call_info.selected_method();
duke@435 1432
duke@435 1433 bool should_be_mono = false;
duke@435 1434
duke@435 1435 #ifndef PRODUCT
duke@435 1436 Atomic::inc(&_ic_miss_ctr);
duke@435 1437
duke@435 1438 // Statistics & Tracing
duke@435 1439 if (TraceCallFixup) {
duke@435 1440 ResourceMark rm(thread);
duke@435 1441 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1442 callee_method->print_short_name(tty);
duke@435 1443 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1444 }
duke@435 1445
duke@435 1446 if (ICMissHistogram) {
duke@435 1447 MutexLocker m(VMStatistic_lock);
duke@435 1448 RegisterMap reg_map(thread, false);
duke@435 1449 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1450 // produce statistics under the lock
duke@435 1451 trace_ic_miss(f.pc());
duke@435 1452 }
duke@435 1453 #endif
duke@435 1454
duke@435 1455 // install an event collector so that when a vtable stub is created the
duke@435 1456 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1457 // event can't be posted when the stub is created as locks are held
duke@435 1458 // - instead the event will be deferred until the event collector goes
duke@435 1459 // out of scope.
duke@435 1460 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1461
duke@435 1462 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1463 // made non-entrant or we are called from interpreted.
duke@435 1464 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1465 RegisterMap reg_map(thread, false);
duke@435 1466 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1467 CodeBlob* cb = caller_frame.cb();
duke@435 1468 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1469 // Not a non-entrant nmethod, so find inline_cache
duke@435 1470 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1471 bool should_be_mono = false;
duke@435 1472 if (inline_cache->is_optimized()) {
duke@435 1473 if (TraceCallFixup) {
duke@435 1474 ResourceMark rm(thread);
duke@435 1475 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1476 callee_method->print_short_name(tty);
duke@435 1477 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1478 }
duke@435 1479 should_be_mono = true;
duke@435 1480 } else {
duke@435 1481 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1482 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1483
duke@435 1484 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1485 // This isn't a real miss. We must have seen that compiled code
duke@435 1486 // is now available and we want the call site converted to a
duke@435 1487 // monomorphic compiled call site.
duke@435 1488 // We can't assert for callee_method->code() != NULL because it
duke@435 1489 // could have been deoptimized in the meantime
duke@435 1490 if (TraceCallFixup) {
duke@435 1491 ResourceMark rm(thread);
duke@435 1492 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1493 callee_method->print_short_name(tty);
duke@435 1494 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1495 }
duke@435 1496 should_be_mono = true;
duke@435 1497 }
duke@435 1498 }
duke@435 1499 }
duke@435 1500
duke@435 1501 if (should_be_mono) {
duke@435 1502
duke@435 1503 // We have a path that was monomorphic but was going interpreted
duke@435 1504 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1505 // by using a new icBuffer.
duke@435 1506 CompiledICInfo info;
duke@435 1507 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1508 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1509 receiver_klass,
duke@435 1510 inline_cache->is_optimized(),
duke@435 1511 false,
duke@435 1512 info, CHECK_(methodHandle()));
duke@435 1513 inline_cache->set_to_monomorphic(info);
duke@435 1514 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1515 // Change to megamorphic
duke@435 1516 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1517 } else {
duke@435 1518 // Either clean or megamorphic
duke@435 1519 }
duke@435 1520 }
duke@435 1521 } // Release CompiledIC_lock
duke@435 1522
duke@435 1523 return callee_method;
duke@435 1524 }
duke@435 1525
duke@435 1526 //
duke@435 1527 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1528 // This routines handles both virtual call sites, optimized virtual call
duke@435 1529 // sites, and static call sites. Typically used to change a call sites
duke@435 1530 // destination from compiled to interpreted.
duke@435 1531 //
duke@435 1532 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1533 ResourceMark rm(thread);
duke@435 1534 RegisterMap reg_map(thread, false);
duke@435 1535 frame stub_frame = thread->last_frame();
duke@435 1536 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1537 frame caller = stub_frame.sender(&reg_map);
duke@435 1538
duke@435 1539 // Do nothing if the frame isn't a live compiled frame.
duke@435 1540 // nmethod could be deoptimized by the time we get here
duke@435 1541 // so no update to the caller is needed.
duke@435 1542
duke@435 1543 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1544
duke@435 1545 address pc = caller.pc();
duke@435 1546 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1547
duke@435 1548 // Default call_addr is the location of the "basic" call.
duke@435 1549 // Determine the address of the call we a reresolving. With
duke@435 1550 // Inline Caches we will always find a recognizable call.
duke@435 1551 // With Inline Caches disabled we may or may not find a
duke@435 1552 // recognizable call. We will always find a call for static
duke@435 1553 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1554 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1555 //
duke@435 1556 // With Inline Caches disabled we can get here for a virtual call
duke@435 1557 // for two reasons:
duke@435 1558 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1559 // will run us thru handle_wrong_method and we will eventually
duke@435 1560 // end up in the interpreter to throw the ame.
duke@435 1561 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1562 // call and between the time we fetch the entry address and
duke@435 1563 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1564 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1565 //
duke@435 1566 address call_addr = NULL;
duke@435 1567 {
duke@435 1568 // Get call instruction under lock because another thread may be
duke@435 1569 // busy patching it.
duke@435 1570 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1571 // Location of call instruction
duke@435 1572 if (NativeCall::is_call_before(pc)) {
duke@435 1573 NativeCall *ncall = nativeCall_before(pc);
duke@435 1574 call_addr = ncall->instruction_address();
duke@435 1575 }
duke@435 1576 }
duke@435 1577
duke@435 1578 // Check for static or virtual call
duke@435 1579 bool is_static_call = false;
duke@435 1580 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1581 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1582 // this is done with it.
duke@435 1583 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1584 nmethodLocker nmlock(caller_nm);
duke@435 1585
duke@435 1586 if (call_addr != NULL) {
duke@435 1587 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1588 int ret = iter.next(); // Get item
duke@435 1589 if (ret) {
duke@435 1590 assert(iter.addr() == call_addr, "must find call");
duke@435 1591 if (iter.type() == relocInfo::static_call_type) {
duke@435 1592 is_static_call = true;
duke@435 1593 } else {
duke@435 1594 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1595 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1596 , "unexpected relocInfo. type");
duke@435 1597 }
duke@435 1598 } else {
duke@435 1599 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1600 }
duke@435 1601
duke@435 1602 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1603 // than directly setting it to the new destination, since resolving of calls
duke@435 1604 // is always done through the same code path. (experience shows that it
duke@435 1605 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1606 // to a wrong method). It should not be performance critical, since the
duke@435 1607 // resolve is only done once.
duke@435 1608
duke@435 1609 MutexLocker ml(CompiledIC_lock);
duke@435 1610 //
duke@435 1611 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1612 // as it is a waste of time
duke@435 1613 //
duke@435 1614 if (caller_nm->is_in_use()) {
duke@435 1615 if (is_static_call) {
duke@435 1616 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1617 ssc->set_to_clean();
duke@435 1618 } else {
duke@435 1619 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1620 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1621 inline_cache->set_to_clean();
duke@435 1622 }
duke@435 1623 }
duke@435 1624 }
duke@435 1625
duke@435 1626 }
duke@435 1627
duke@435 1628 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1629
duke@435 1630
duke@435 1631 #ifndef PRODUCT
duke@435 1632 Atomic::inc(&_wrong_method_ctr);
duke@435 1633
duke@435 1634 if (TraceCallFixup) {
duke@435 1635 ResourceMark rm(thread);
duke@435 1636 tty->print("handle_wrong_method reresolving call to");
duke@435 1637 callee_method->print_short_name(tty);
duke@435 1638 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1639 }
duke@435 1640 #endif
duke@435 1641
duke@435 1642 return callee_method;
duke@435 1643 }
duke@435 1644
duke@435 1645 // ---------------------------------------------------------------------------
duke@435 1646 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1647 // we were called by a compiled method. However we could have lost a race
duke@435 1648 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1649 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1650 // so he no longer calls into the interpreter.
duke@435 1651 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1652 methodOop moop(method);
duke@435 1653
duke@435 1654 address entry_point = moop->from_compiled_entry();
duke@435 1655
duke@435 1656 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1657 // been resolved yet, in which case this function will be called from
duke@435 1658 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1659 // request for a fixup.
duke@435 1660 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1661 // is now back to the i2c in that case we don't need to patch and if
duke@435 1662 // we did we'd leap into space because the callsite needs to use
duke@435 1663 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1664 // ask me how I know this...
duke@435 1665
duke@435 1666 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1667 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1668 return;
twisti@1640 1669 }
twisti@1640 1670
twisti@1640 1671 // The check above makes sure this is a nmethod.
twisti@1640 1672 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1673 assert(nm, "must be");
twisti@1640 1674
twisti@3240 1675 // Get the return PC for the passed caller PC.
twisti@3240 1676 address return_pc = caller_pc + frame::pc_return_offset;
twisti@3240 1677
twisti@3240 1678 // Don't fixup method handle call sites as the executed method
twisti@3240 1679 // handle adapters are doing the required MethodHandle chain work.
twisti@3240 1680 if (nm->is_method_handle_return(return_pc)) {
duke@435 1681 return;
duke@435 1682 }
duke@435 1683
duke@435 1684 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1685 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1686 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1687 // call site with the same old data. clear_code will set code() to NULL
duke@435 1688 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1689 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1690 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1691 // and patch the code with the same old data. Asi es la vida.
duke@435 1692
duke@435 1693 if (moop->code() == NULL) return;
duke@435 1694
twisti@1640 1695 if (nm->is_in_use()) {
duke@435 1696
duke@435 1697 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1698 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
twisti@3240 1699 if (NativeCall::is_call_before(return_pc)) {
twisti@3240 1700 NativeCall *call = nativeCall_before(return_pc);
duke@435 1701 //
duke@435 1702 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1703 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1704 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1705 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1706 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1707 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1708 // for the rest of its life! Just another racing bug in the life of
duke@435 1709 // fixup_callers_callsite ...
duke@435 1710 //
twisti@1918 1711 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1712 iter.next();
duke@435 1713 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1714 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1715 if ( typ != relocInfo::static_call_type &&
duke@435 1716 typ != relocInfo::opt_virtual_call_type &&
duke@435 1717 typ != relocInfo::static_stub_type) {
duke@435 1718 return;
duke@435 1719 }
duke@435 1720 address destination = call->destination();
duke@435 1721 if (destination != entry_point) {
duke@435 1722 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1723 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1724 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1725 // static call or optimized virtual
duke@435 1726 if (TraceCallFixup) {
twisti@1639 1727 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1728 moop->print_short_name(tty);
duke@435 1729 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1730 }
duke@435 1731 call->set_destination_mt_safe(entry_point);
duke@435 1732 } else {
duke@435 1733 if (TraceCallFixup) {
duke@435 1734 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1735 moop->print_short_name(tty);
duke@435 1736 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1737 }
duke@435 1738 // assert is too strong could also be resolve destinations.
duke@435 1739 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1740 }
duke@435 1741 } else {
duke@435 1742 if (TraceCallFixup) {
twisti@1639 1743 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1744 moop->print_short_name(tty);
duke@435 1745 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1746 }
duke@435 1747 }
duke@435 1748 }
duke@435 1749 }
duke@435 1750 IRT_END
duke@435 1751
duke@435 1752
duke@435 1753 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1754 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1755 oopDesc* dest, jint dest_pos,
duke@435 1756 jint length,
duke@435 1757 JavaThread* thread)) {
duke@435 1758 #ifndef PRODUCT
duke@435 1759 _slow_array_copy_ctr++;
duke@435 1760 #endif
duke@435 1761 // Check if we have null pointers
duke@435 1762 if (src == NULL || dest == NULL) {
duke@435 1763 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1764 }
duke@435 1765 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1766 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1767 // that src and dest are truly arrays (and are conformable).
duke@435 1768 // The copy_array mechanism is awkward and could be removed, but
duke@435 1769 // the compilers don't call this function except as a last resort,
duke@435 1770 // so it probably doesn't matter.
duke@435 1771 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1772 (arrayOopDesc*)dest, dest_pos,
duke@435 1773 length, thread);
duke@435 1774 }
duke@435 1775 JRT_END
duke@435 1776
duke@435 1777 char* SharedRuntime::generate_class_cast_message(
duke@435 1778 JavaThread* thread, const char* objName) {
duke@435 1779
duke@435 1780 // Get target class name from the checkcast instruction
duke@435 1781 vframeStream vfst(thread, true);
duke@435 1782 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1783 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
duke@435 1784 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
never@2462 1785 cc.index(), thread));
duke@435 1786 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1787 }
duke@435 1788
jrose@1145 1789 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1790 oopDesc* required,
jrose@1145 1791 oopDesc* actual) {
jrose@2148 1792 if (TraceMethodHandles) {
jrose@2148 1793 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
jrose@2148 1794 thread, required, actual);
jrose@2148 1795 }
twisti@2698 1796 assert(EnableInvokeDynamic, "");
jrose@1145 1797 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@2148 1798 char* message = NULL;
jrose@1145 1799 if (singleKlass != NULL) {
jrose@1145 1800 const char* objName = "argument or return value";
jrose@1145 1801 if (actual != NULL) {
jrose@1145 1802 // be flexible about the junk passed in:
jrose@1145 1803 klassOop ak = (actual->is_klass()
jrose@1145 1804 ? (klassOop)actual
jrose@1145 1805 : actual->klass());
jrose@1145 1806 objName = Klass::cast(ak)->external_name();
jrose@1145 1807 }
jrose@1145 1808 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1809 ? (klassOop)required
jrose@1145 1810 : java_lang_Class::as_klassOop(required));
jrose@2148 1811 message = generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1812 } else {
jrose@1145 1813 // %%% need to get the MethodType string, without messing around too much
jrose@2743 1814 const char* desc = NULL;
jrose@1145 1815 // Get a signature from the invoke instruction
jrose@1145 1816 const char* mhName = "method handle";
jrose@1145 1817 const char* targetType = "the required signature";
jrose@2743 1818 int targetArity = -1, mhArity = -1;
jrose@1145 1819 vframeStream vfst(thread, true);
jrose@1145 1820 if (!vfst.at_end()) {
never@2462 1821 Bytecode_invoke call(vfst.method(), vfst.bci());
jrose@1145 1822 methodHandle target;
jrose@1145 1823 {
jrose@1145 1824 EXCEPTION_MARK;
never@2462 1825 target = call.static_target(THREAD);
jrose@1145 1826 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1827 }
jrose@1145 1828 if (target.not_null()
jrose@1145 1829 && target->is_method_handle_invoke()
jrose@1145 1830 && required == target->method_handle_type()) {
jrose@1145 1831 targetType = target->signature()->as_C_string();
jrose@2743 1832 targetArity = ArgumentCount(target->signature()).size();
jrose@1145 1833 }
jrose@1145 1834 }
twisti@2806 1835 KlassHandle kignore; int dmf_flags = 0;
twisti@2806 1836 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
jrose@2743 1837 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
jrose@2743 1838 MethodHandles::_dmf_does_dispatch |
jrose@2743 1839 MethodHandles::_dmf_from_interface)) != 0)
twisti@2806 1840 actual_method = methodHandle(); // MH does extra binds, drops, etc.
jrose@2743 1841 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
twisti@2806 1842 if (actual_method.not_null()) {
jrose@2743 1843 mhName = actual_method->signature()->as_C_string();
jrose@2743 1844 mhArity = ArgumentCount(actual_method->signature()).size();
jrose@2743 1845 if (!actual_method->is_static()) mhArity += 1;
jrose@2743 1846 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
jrose@2743 1847 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
jrose@2743 1848 mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
jrose@2743 1849 stringStream st;
jrose@2743 1850 java_lang_invoke_MethodType::print_signature(mhType, &st);
jrose@2743 1851 mhName = st.as_string();
jrose@2743 1852 }
jrose@2743 1853 if (targetArity != -1 && targetArity != mhArity) {
jrose@2743 1854 if (has_receiver && targetArity == mhArity-1)
jrose@2743 1855 desc = " cannot be called without a receiver argument as ";
jrose@1145 1856 else
jrose@2743 1857 desc = " cannot be called with a different arity as ";
jrose@1145 1858 }
jrose@2148 1859 message = generate_class_cast_message(mhName, targetType,
jrose@2743 1860 desc != NULL ? desc :
jrose@2148 1861 " cannot be called as ");
jrose@1145 1862 }
jrose@2148 1863 if (TraceMethodHandles) {
jrose@2148 1864 tty->print_cr("WrongMethodType => message=%s", message);
jrose@2148 1865 }
jrose@2148 1866 return message;
jrose@1145 1867 }
jrose@1145 1868
jrose@1145 1869 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1870 oopDesc* required) {
jrose@1145 1871 if (required == NULL) return NULL;
never@1577 1872 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1873 return required;
jrose@1145 1874 if (required->is_klass())
jrose@1145 1875 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1876 return NULL;
jrose@1145 1877 }
jrose@1145 1878
jrose@1145 1879
duke@435 1880 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1881 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1882 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1883
kamg@488 1884 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1885 if (NULL == message) {
kamg@488 1886 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1887 message = const_cast<char*>(objName);
duke@435 1888 } else {
duke@435 1889 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1890 }
duke@435 1891 return message;
duke@435 1892 }
duke@435 1893
duke@435 1894 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1895 (void) JavaThread::current()->reguard_stack();
duke@435 1896 JRT_END
duke@435 1897
duke@435 1898
duke@435 1899 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1900 #ifndef PRODUCT
duke@435 1901 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1902 #endif
duke@435 1903 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1904 oop obj(_obj);
duke@435 1905 #ifndef PRODUCT
duke@435 1906 _monitor_enter_ctr++; // monitor enter slow
duke@435 1907 #endif
duke@435 1908 if (PrintBiasedLockingStatistics) {
duke@435 1909 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1910 }
duke@435 1911 Handle h_obj(THREAD, obj);
duke@435 1912 if (UseBiasedLocking) {
duke@435 1913 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1914 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1915 } else {
duke@435 1916 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1917 }
duke@435 1918 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1919 JRT_END
duke@435 1920
duke@435 1921 #ifndef PRODUCT
duke@435 1922 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1923 #endif
duke@435 1924 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1925 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1926 oop obj(_obj);
duke@435 1927 #ifndef PRODUCT
duke@435 1928 _monitor_exit_ctr++; // monitor exit slow
duke@435 1929 #endif
duke@435 1930 Thread* THREAD = JavaThread::current();
duke@435 1931 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1932 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1933 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1934 #undef MIGHT_HAVE_PENDING
duke@435 1935 #ifdef MIGHT_HAVE_PENDING
duke@435 1936 // Save and restore any pending_exception around the exception mark.
duke@435 1937 // While the slow_exit must not throw an exception, we could come into
duke@435 1938 // this routine with one set.
duke@435 1939 oop pending_excep = NULL;
duke@435 1940 const char* pending_file;
duke@435 1941 int pending_line;
duke@435 1942 if (HAS_PENDING_EXCEPTION) {
duke@435 1943 pending_excep = PENDING_EXCEPTION;
duke@435 1944 pending_file = THREAD->exception_file();
duke@435 1945 pending_line = THREAD->exception_line();
duke@435 1946 CLEAR_PENDING_EXCEPTION;
duke@435 1947 }
duke@435 1948 #endif /* MIGHT_HAVE_PENDING */
duke@435 1949
duke@435 1950 {
duke@435 1951 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1952 EXCEPTION_MARK;
duke@435 1953 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1954 }
duke@435 1955
duke@435 1956 #ifdef MIGHT_HAVE_PENDING
duke@435 1957 if (pending_excep != NULL) {
duke@435 1958 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1959 }
duke@435 1960 #endif /* MIGHT_HAVE_PENDING */
duke@435 1961 JRT_END
duke@435 1962
duke@435 1963 #ifndef PRODUCT
duke@435 1964
duke@435 1965 void SharedRuntime::print_statistics() {
duke@435 1966 ttyLocker ttyl;
duke@435 1967 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1968
duke@435 1969 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1970 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1971 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1972
duke@435 1973 SharedRuntime::print_ic_miss_histogram();
duke@435 1974
duke@435 1975 if (CountRemovableExceptions) {
duke@435 1976 if (_nof_removable_exceptions > 0) {
duke@435 1977 Unimplemented(); // this counter is not yet incremented
duke@435 1978 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1979 }
duke@435 1980 }
duke@435 1981
duke@435 1982 // Dump the JRT_ENTRY counters
duke@435 1983 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1984 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1985 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1986 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1987 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1988 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1989 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1990
duke@435 1991 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1992 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1993 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1994 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1995 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1996
duke@435 1997 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1998 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1999 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 2000 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 2001 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 2002 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 2003 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 2004 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 2005 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 2006 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 2007 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 2008 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 2009 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 2010 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 2011 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 2012 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 2013
never@1622 2014 AdapterHandlerLibrary::print_statistics();
never@1622 2015
duke@435 2016 if (xtty != NULL) xtty->tail("statistics");
duke@435 2017 }
duke@435 2018
duke@435 2019 inline double percent(int x, int y) {
duke@435 2020 return 100.0 * x / MAX2(y, 1);
duke@435 2021 }
duke@435 2022
duke@435 2023 class MethodArityHistogram {
duke@435 2024 public:
duke@435 2025 enum { MAX_ARITY = 256 };
duke@435 2026 private:
duke@435 2027 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 2028 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 2029 static int _max_arity; // max. arity seen
duke@435 2030 static int _max_size; // max. arg size seen
duke@435 2031
duke@435 2032 static void add_method_to_histogram(nmethod* nm) {
duke@435 2033 methodOop m = nm->method();
duke@435 2034 ArgumentCount args(m->signature());
duke@435 2035 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 2036 int argsize = m->size_of_parameters();
duke@435 2037 arity = MIN2(arity, MAX_ARITY-1);
duke@435 2038 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 2039 int count = nm->method()->compiled_invocation_count();
duke@435 2040 _arity_histogram[arity] += count;
duke@435 2041 _size_histogram[argsize] += count;
duke@435 2042 _max_arity = MAX2(_max_arity, arity);
duke@435 2043 _max_size = MAX2(_max_size, argsize);
duke@435 2044 }
duke@435 2045
duke@435 2046 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 2047 const int N = MIN2(5, n);
duke@435 2048 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2049 double sum = 0;
duke@435 2050 double weighted_sum = 0;
duke@435 2051 int i;
duke@435 2052 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 2053 double rest = sum;
duke@435 2054 double percent = sum / 100;
duke@435 2055 for (i = 0; i <= N; i++) {
duke@435 2056 rest -= histo[i];
duke@435 2057 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 2058 }
duke@435 2059 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 2060 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 2061 }
duke@435 2062
duke@435 2063 void print_histogram() {
duke@435 2064 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2065 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 2066 tty->print_cr("\nSame for parameter size (in words):");
duke@435 2067 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 2068 tty->cr();
duke@435 2069 }
duke@435 2070
duke@435 2071 public:
duke@435 2072 MethodArityHistogram() {
duke@435 2073 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 2074 _max_arity = _max_size = 0;
duke@435 2075 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 2076 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 2077 print_histogram();
duke@435 2078 }
duke@435 2079 };
duke@435 2080
duke@435 2081 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2082 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2083 int MethodArityHistogram::_max_arity;
duke@435 2084 int MethodArityHistogram::_max_size;
duke@435 2085
duke@435 2086 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2087 tty->print_cr("Calls from compiled code:");
duke@435 2088 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2089 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2090 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2091 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2092 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2093 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2094 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2095 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2096 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2097 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2098 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2099 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2100 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2101 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2102 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2103 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2104 tty->cr();
duke@435 2105 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2106 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2107 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2108 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2109 tty->cr();
duke@435 2110
duke@435 2111 MethodArityHistogram h;
duke@435 2112 }
duke@435 2113 #endif
duke@435 2114
duke@435 2115
never@1622 2116 // A simple wrapper class around the calling convention information
never@1622 2117 // that allows sharing of adapters for the same calling convention.
never@1622 2118 class AdapterFingerPrint : public CHeapObj {
never@1622 2119 private:
never@1622 2120 union {
never@1642 2121 int _compact[3];
never@1642 2122 int* _fingerprint;
never@1622 2123 } _value;
never@1642 2124 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2125 // Otherwise _value._fingerprint is the array.
never@1622 2126
never@1642 2127 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2128 // These are correct for the current system but someday it might be
never@1642 2129 // necessary to make this mapping platform dependent.
never@1642 2130 static BasicType adapter_encoding(BasicType in) {
never@1642 2131 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 2132 switch(in) {
never@1642 2133 case T_BOOLEAN:
never@1642 2134 case T_BYTE:
never@1642 2135 case T_SHORT:
never@1642 2136 case T_CHAR:
never@1642 2137 // There are all promoted to T_INT in the calling convention
never@1642 2138 return T_INT;
never@1642 2139
never@1642 2140 case T_OBJECT:
never@1642 2141 case T_ARRAY:
never@1642 2142 #ifdef _LP64
twisti@1861 2143 return T_LONG;
never@1642 2144 #else
twisti@1861 2145 return T_INT;
never@1642 2146 #endif
never@1642 2147
never@1642 2148 case T_INT:
never@1642 2149 case T_LONG:
never@1642 2150 case T_FLOAT:
never@1642 2151 case T_DOUBLE:
never@1642 2152 case T_VOID:
never@1642 2153 return in;
never@1642 2154
never@1642 2155 default:
never@1642 2156 ShouldNotReachHere();
never@1642 2157 return T_CONFLICT;
never@1622 2158 }
never@1622 2159 }
never@1622 2160
never@1642 2161 public:
never@1642 2162 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2163 // The fingerprint is based on the BasicType signature encoded
never@3039 2164 // into an array of ints with eight entries per int.
never@1642 2165 int* ptr;
never@3039 2166 int len = (total_args_passed + 7) >> 3;
never@1642 2167 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 2168 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2169 // Storing the signature encoded as signed chars hits about 98%
never@1642 2170 // of the time.
never@1642 2171 _length = -len;
never@1642 2172 ptr = _value._compact;
never@1642 2173 } else {
never@1642 2174 _length = len;
never@1642 2175 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 2176 ptr = _value._fingerprint;
never@1642 2177 }
never@1642 2178
never@3039 2179 // Now pack the BasicTypes with 8 per int
never@1642 2180 int sig_index = 0;
never@1642 2181 for (int index = 0; index < len; index++) {
never@1642 2182 int value = 0;
never@3039 2183 for (int byte = 0; byte < 8; byte++) {
never@1642 2184 if (sig_index < total_args_passed) {
never@1642 2185 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 2186 }
never@1642 2187 }
never@1642 2188 ptr[index] = value;
never@1642 2189 }
never@1622 2190 }
never@1622 2191
never@1622 2192 ~AdapterFingerPrint() {
never@1622 2193 if (_length > 0) {
never@1622 2194 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 2195 }
never@1622 2196 }
never@1622 2197
never@1642 2198 int value(int index) {
never@1622 2199 if (_length < 0) {
never@1622 2200 return _value._compact[index];
never@1622 2201 }
never@1622 2202 return _value._fingerprint[index];
never@1622 2203 }
never@1622 2204 int length() {
never@1622 2205 if (_length < 0) return -_length;
never@1622 2206 return _length;
never@1622 2207 }
never@1622 2208
never@1622 2209 bool is_compact() {
never@1622 2210 return _length <= 0;
never@1622 2211 }
never@1622 2212
never@1622 2213 unsigned int compute_hash() {
never@1642 2214 int hash = 0;
never@1622 2215 for (int i = 0; i < length(); i++) {
never@1642 2216 int v = value(i);
never@1622 2217 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2218 }
never@1622 2219 return (unsigned int)hash;
never@1622 2220 }
never@1622 2221
never@1622 2222 const char* as_string() {
never@1622 2223 stringStream st;
never@3039 2224 st.print("0x");
never@1622 2225 for (int i = 0; i < length(); i++) {
never@3039 2226 st.print("%08x", value(i));
never@1622 2227 }
never@1622 2228 return st.as_string();
never@1622 2229 }
never@1622 2230
never@1622 2231 bool equals(AdapterFingerPrint* other) {
never@1622 2232 if (other->_length != _length) {
never@1622 2233 return false;
never@1622 2234 }
never@1622 2235 if (_length < 0) {
never@1642 2236 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2237 _value._compact[1] == other->_value._compact[1] &&
never@1642 2238 _value._compact[2] == other->_value._compact[2];
never@1622 2239 } else {
never@1622 2240 for (int i = 0; i < _length; i++) {
never@1622 2241 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2242 return false;
never@1622 2243 }
never@1622 2244 }
never@1622 2245 }
never@1622 2246 return true;
never@1622 2247 }
never@1622 2248 };
never@1622 2249
never@1622 2250
never@1622 2251 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 2252 class AdapterHandlerTable : public BasicHashtable {
never@1622 2253 friend class AdapterHandlerTableIterator;
never@1622 2254
never@1622 2255 private:
never@1622 2256
kvn@1698 2257 #ifndef PRODUCT
never@1622 2258 static int _lookups; // number of calls to lookup
never@1622 2259 static int _buckets; // number of buckets checked
never@1622 2260 static int _equals; // number of buckets checked with matching hash
never@1622 2261 static int _hits; // number of successful lookups
never@1622 2262 static int _compact; // number of equals calls with compact signature
never@1622 2263 #endif
never@1622 2264
never@1622 2265 AdapterHandlerEntry* bucket(int i) {
never@1622 2266 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 2267 }
never@1622 2268
never@1622 2269 public:
never@1622 2270 AdapterHandlerTable()
never@1622 2271 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2272
never@1622 2273 // Create a new entry suitable for insertion in the table
never@1622 2274 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 2275 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 2276 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2277 return entry;
never@1622 2278 }
never@1622 2279
never@1622 2280 // Insert an entry into the table
never@1622 2281 void add(AdapterHandlerEntry* entry) {
never@1622 2282 int index = hash_to_index(entry->hash());
never@1622 2283 add_entry(index, entry);
never@1622 2284 }
never@1622 2285
never@1642 2286 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2287 entry->deallocate();
never@1642 2288 BasicHashtable::free_entry(entry);
never@1642 2289 }
never@1642 2290
never@1622 2291 // Find a entry with the same fingerprint if it exists
never@1642 2292 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2293 NOT_PRODUCT(_lookups++);
never@1642 2294 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2295 unsigned int hash = fp.compute_hash();
never@1622 2296 int index = hash_to_index(hash);
never@1622 2297 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2298 NOT_PRODUCT(_buckets++);
never@1622 2299 if (e->hash() == hash) {
kvn@1698 2300 NOT_PRODUCT(_equals++);
never@1622 2301 if (fp.equals(e->fingerprint())) {
kvn@1698 2302 #ifndef PRODUCT
never@1622 2303 if (fp.is_compact()) _compact++;
never@1622 2304 _hits++;
never@1622 2305 #endif
never@1622 2306 return e;
never@1622 2307 }
never@1622 2308 }
never@1622 2309 }
never@1622 2310 return NULL;
never@1622 2311 }
never@1622 2312
kvn@1698 2313 #ifndef PRODUCT
never@1622 2314 void print_statistics() {
never@1622 2315 ResourceMark rm;
never@1622 2316 int longest = 0;
never@1622 2317 int empty = 0;
never@1622 2318 int total = 0;
never@1622 2319 int nonempty = 0;
never@1622 2320 for (int index = 0; index < table_size(); index++) {
never@1622 2321 int count = 0;
never@1622 2322 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2323 count++;
never@1622 2324 }
never@1622 2325 if (count != 0) nonempty++;
never@1622 2326 if (count == 0) empty++;
never@1622 2327 if (count > longest) longest = count;
never@1622 2328 total += count;
never@1622 2329 }
never@1622 2330 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2331 empty, longest, total, total / (double)nonempty);
never@1622 2332 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2333 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2334 }
never@1622 2335 #endif
never@1622 2336 };
never@1622 2337
never@1622 2338
kvn@1698 2339 #ifndef PRODUCT
never@1622 2340
never@1622 2341 int AdapterHandlerTable::_lookups;
never@1622 2342 int AdapterHandlerTable::_buckets;
never@1622 2343 int AdapterHandlerTable::_equals;
never@1622 2344 int AdapterHandlerTable::_hits;
never@1622 2345 int AdapterHandlerTable::_compact;
never@1622 2346
bobv@2036 2347 #endif
bobv@2036 2348
never@1622 2349 class AdapterHandlerTableIterator : public StackObj {
never@1622 2350 private:
never@1622 2351 AdapterHandlerTable* _table;
never@1622 2352 int _index;
never@1622 2353 AdapterHandlerEntry* _current;
never@1622 2354
never@1622 2355 void scan() {
never@1622 2356 while (_index < _table->table_size()) {
never@1622 2357 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2358 _index++;
never@1622 2359 if (a != NULL) {
never@1622 2360 _current = a;
never@1622 2361 return;
never@1622 2362 }
never@1622 2363 }
never@1622 2364 }
never@1622 2365
never@1622 2366 public:
never@1622 2367 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2368 scan();
never@1622 2369 }
never@1622 2370 bool has_next() {
never@1622 2371 return _current != NULL;
never@1622 2372 }
never@1622 2373 AdapterHandlerEntry* next() {
never@1622 2374 if (_current != NULL) {
never@1622 2375 AdapterHandlerEntry* result = _current;
never@1622 2376 _current = _current->next();
never@1622 2377 if (_current == NULL) scan();
never@1622 2378 return result;
never@1622 2379 } else {
never@1622 2380 return NULL;
never@1622 2381 }
never@1622 2382 }
never@1622 2383 };
never@1622 2384
never@1622 2385
duke@435 2386 // ---------------------------------------------------------------------------
duke@435 2387 // Implementation of AdapterHandlerLibrary
never@1622 2388 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2389 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2390 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2391 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2392
kvn@1177 2393 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2394 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2395 if (_buffer == NULL) // Initialize lazily
kvn@1177 2396 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2397 return _buffer;
kvn@1177 2398 }
duke@435 2399
duke@435 2400 void AdapterHandlerLibrary::initialize() {
never@1622 2401 if (_adapters != NULL) return;
never@1622 2402 _adapters = new AdapterHandlerTable();
duke@435 2403
duke@435 2404 // Create a special handler for abstract methods. Abstract methods
duke@435 2405 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2406 // fill it in with something appropriate just in case. Pass handle
duke@435 2407 // wrong method for the c2i transitions.
duke@435 2408 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2409 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2410 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2411 wrong_method, wrong_method);
duke@435 2412 }
duke@435 2413
never@1622 2414 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2415 address i2c_entry,
never@1622 2416 address c2i_entry,
never@1622 2417 address c2i_unverified_entry) {
never@1622 2418 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2419 }
never@1622 2420
never@1622 2421 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2422 // Use customized signature handler. Need to lock around updates to
never@1622 2423 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2424 // and a single writer: this could be fixed if it becomes a
never@1622 2425 // problem).
duke@435 2426
duke@435 2427 // Get the address of the ic_miss handlers before we grab the
duke@435 2428 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2429 // was caused by the initialization of the stubs happening
duke@435 2430 // while we held the lock and then notifying jvmti while
duke@435 2431 // holding it. This just forces the initialization to be a little
duke@435 2432 // earlier.
duke@435 2433 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2434 assert(ic_miss != NULL, "must have handler");
duke@435 2435
never@1622 2436 ResourceMark rm;
never@1622 2437
twisti@2103 2438 NOT_PRODUCT(int insts_size);
twisti@1734 2439 AdapterBlob* B = NULL;
kvn@1177 2440 AdapterHandlerEntry* entry = NULL;
never@1622 2441 AdapterFingerPrint* fingerprint = NULL;
duke@435 2442 {
duke@435 2443 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2444 // make sure data structure is initialized
duke@435 2445 initialize();
duke@435 2446
duke@435 2447 if (method->is_abstract()) {
never@1622 2448 return _abstract_method_handler;
duke@435 2449 }
duke@435 2450
never@1622 2451 // Fill in the signature array, for the calling-convention call.
never@1622 2452 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2453
never@1622 2454 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2455 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2456 int i = 0;
never@1622 2457 if (!method->is_static()) // Pass in receiver first
never@1622 2458 sig_bt[i++] = T_OBJECT;
never@1622 2459 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2460 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2461 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2462 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2463 }
never@1622 2464 assert(i == total_args_passed, "");
never@1622 2465
never@1642 2466 // Lookup method signature's fingerprint
never@1642 2467 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2468
never@1642 2469 #ifdef ASSERT
never@1642 2470 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2471 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2472 shared_entry = entry;
never@1642 2473 entry = NULL;
never@1642 2474 }
never@1642 2475 #endif
never@1642 2476
never@1622 2477 if (entry != NULL) {
never@1622 2478 return entry;
duke@435 2479 }
duke@435 2480
never@1642 2481 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2482 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2483
never@1622 2484 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2485 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2486
duke@435 2487 // Create I2C & C2I handlers
duke@435 2488
twisti@1734 2489 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2490 if (buf != NULL) {
twisti@2103 2491 CodeBuffer buffer(buf);
kvn@1177 2492 short buffer_locs[20];
kvn@1177 2493 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2494 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2495 MacroAssembler _masm(&buffer);
duke@435 2496
kvn@1177 2497 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2498 total_args_passed,
kvn@1177 2499 comp_args_on_stack,
kvn@1177 2500 sig_bt,
never@1622 2501 regs,
never@1622 2502 fingerprint);
kvn@1177 2503
never@1642 2504 #ifdef ASSERT
never@1642 2505 if (VerifyAdapterSharing) {
never@1642 2506 if (shared_entry != NULL) {
twisti@2103 2507 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2508 "code must match");
never@1642 2509 // Release the one just created and return the original
never@1642 2510 _adapters->free_entry(entry);
never@1642 2511 return shared_entry;
never@1642 2512 } else {
twisti@2103 2513 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2514 }
never@1642 2515 }
never@1642 2516 #endif
never@1642 2517
twisti@1734 2518 B = AdapterBlob::create(&buffer);
twisti@2103 2519 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2520 }
kvn@463 2521 if (B == NULL) {
kvn@463 2522 // CodeCache is full, disable compilation
kvn@463 2523 // Ought to log this but compile log is only per compile thread
kvn@463 2524 // and we're some non descript Java thread.
kvn@1637 2525 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2526 CompileBroker::handle_full_code_cache();
never@1622 2527 return NULL; // Out of CodeCache space
kvn@463 2528 }
twisti@2103 2529 entry->relocate(B->content_begin());
duke@435 2530 #ifndef PRODUCT
duke@435 2531 // debugging suppport
duke@435 2532 if (PrintAdapterHandlers) {
duke@435 2533 tty->cr();
never@1622 2534 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2535 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@2103 2536 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
duke@435 2537 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@2103 2538 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
duke@435 2539 }
duke@435 2540 #endif
duke@435 2541
never@1622 2542 _adapters->add(entry);
duke@435 2543 }
duke@435 2544 // Outside of the lock
duke@435 2545 if (B != NULL) {
duke@435 2546 char blob_id[256];
duke@435 2547 jio_snprintf(blob_id,
duke@435 2548 sizeof(blob_id),
never@1622 2549 "%s(%s)@" PTR_FORMAT,
twisti@1734 2550 B->name(),
never@1622 2551 fingerprint->as_string(),
twisti@2103 2552 B->content_begin());
twisti@2103 2553 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2554
duke@435 2555 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2556 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2557 }
duke@435 2558 }
never@1622 2559 return entry;
duke@435 2560 }
duke@435 2561
duke@435 2562 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2563 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2564 _i2c_entry += delta;
duke@435 2565 _c2i_entry += delta;
duke@435 2566 _c2i_unverified_entry += delta;
duke@435 2567 }
duke@435 2568
never@1642 2569
never@1642 2570 void AdapterHandlerEntry::deallocate() {
never@1642 2571 delete _fingerprint;
never@1642 2572 #ifdef ASSERT
never@1642 2573 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2574 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2575 #endif
never@1642 2576 }
never@1642 2577
never@1642 2578
never@1642 2579 #ifdef ASSERT
never@1642 2580 // Capture the code before relocation so that it can be compared
never@1642 2581 // against other versions. If the code is captured after relocation
never@1642 2582 // then relative instructions won't be equivalent.
never@1642 2583 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2584 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2585 _code_length = length;
never@1642 2586 memcpy(_saved_code, buffer, length);
never@1642 2587 _total_args_passed = total_args_passed;
never@1642 2588 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2589 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2590 }
never@1642 2591
never@1642 2592
never@1642 2593 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2594 if (length != _code_length) {
never@1642 2595 return false;
never@1642 2596 }
never@1642 2597 for (int i = 0; i < length; i++) {
never@1642 2598 if (buffer[i] != _saved_code[i]) {
never@1642 2599 return false;
never@1642 2600 }
never@1642 2601 }
never@1642 2602 return true;
never@1642 2603 }
never@1642 2604 #endif
never@1642 2605
never@1642 2606
duke@435 2607 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2608 // java compiled calling convention to the native convention, handlizes
duke@435 2609 // arguments, and transitions to native. On return from the native we transition
duke@435 2610 // back to java blocking if a safepoint is in progress.
twisti@2687 2611 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2612 ResourceMark rm;
duke@435 2613 nmethod* nm = NULL;
duke@435 2614
duke@435 2615 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2616
duke@435 2617 {
duke@435 2618 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2619 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2620 // See if somebody beat us to it
duke@435 2621 nm = method->code();
duke@435 2622 if (nm) {
duke@435 2623 return nm;
duke@435 2624 }
duke@435 2625
kvn@1177 2626 ResourceMark rm;
duke@435 2627
kvn@1177 2628 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2629 if (buf != NULL) {
twisti@2103 2630 CodeBuffer buffer(buf);
kvn@1177 2631 double locs_buf[20];
kvn@1177 2632 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2633 MacroAssembler _masm(&buffer);
duke@435 2634
kvn@1177 2635 // Fill in the signature array, for the calling-convention call.
kvn@1177 2636 int total_args_passed = method->size_of_parameters();
kvn@1177 2637
kvn@1177 2638 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2639 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2640 int i=0;
kvn@1177 2641 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2642 sig_bt[i++] = T_OBJECT;
kvn@1177 2643 SignatureStream ss(method->signature());
kvn@1177 2644 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2645 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2646 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2647 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2648 }
kvn@1177 2649 assert( i==total_args_passed, "" );
kvn@1177 2650 BasicType ret_type = ss.type();
kvn@1177 2651
kvn@1177 2652 // Now get the compiled-Java layout as input arguments
kvn@1177 2653 int comp_args_on_stack;
kvn@1177 2654 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2655
kvn@1177 2656 // Generate the compiled-to-native wrapper code
kvn@1177 2657 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2658 method,
twisti@2687 2659 compile_id,
kvn@1177 2660 total_args_passed,
kvn@1177 2661 comp_args_on_stack,
kvn@1177 2662 sig_bt,regs,
kvn@1177 2663 ret_type);
duke@435 2664 }
duke@435 2665 }
duke@435 2666
duke@435 2667 // Must unlock before calling set_code
never@2083 2668
duke@435 2669 // Install the generated code.
duke@435 2670 if (nm != NULL) {
twisti@2687 2671 if (PrintCompilation) {
twisti@2687 2672 ttyLocker ttyl;
twisti@2687 2673 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2674 }
duke@435 2675 method->set_code(method, nm);
duke@435 2676 nm->post_compiled_method_load_event();
duke@435 2677 } else {
duke@435 2678 // CodeCache is full, disable compilation
kvn@1637 2679 CompileBroker::handle_full_code_cache();
duke@435 2680 }
duke@435 2681 return nm;
duke@435 2682 }
duke@435 2683
kamg@551 2684 #ifdef HAVE_DTRACE_H
kamg@551 2685 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2686 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2687 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2688 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2689 // leaf no thread transition is needed.
kamg@551 2690
kamg@551 2691 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2692 ResourceMark rm;
kamg@551 2693 nmethod* nm = NULL;
kamg@551 2694
kamg@551 2695 if (PrintCompilation) {
kamg@551 2696 ttyLocker ttyl;
kamg@551 2697 tty->print("--- n%s ");
kamg@551 2698 method->print_short_name(tty);
kamg@551 2699 if (method->is_static()) {
kamg@551 2700 tty->print(" (static)");
kamg@551 2701 }
kamg@551 2702 tty->cr();
kamg@551 2703 }
kamg@551 2704
kamg@551 2705 {
kamg@551 2706 // perform the work while holding the lock, but perform any printing
kamg@551 2707 // outside the lock
kamg@551 2708 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2709 // See if somebody beat us to it
kamg@551 2710 nm = method->code();
kamg@551 2711 if (nm) {
kamg@551 2712 return nm;
kamg@551 2713 }
kamg@551 2714
kvn@1177 2715 ResourceMark rm;
kvn@1177 2716
kvn@1177 2717 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2718 if (buf != NULL) {
twisti@2103 2719 CodeBuffer buffer(buf);
kvn@1177 2720 // Need a few relocation entries
kvn@1177 2721 double locs_buf[20];
kvn@1177 2722 buffer.insts()->initialize_shared_locs(
kamg@551 2723 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2724 MacroAssembler _masm(&buffer);
kamg@551 2725
kvn@1177 2726 // Generate the compiled-to-native wrapper code
kvn@1177 2727 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2728 }
kamg@551 2729 }
kamg@551 2730 return nm;
kamg@551 2731 }
kamg@551 2732
kamg@551 2733 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2734 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2735 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2736 int jlsOffset = java_lang_String::offset(src);
kamg@551 2737 int jlsLen = java_lang_String::length(src);
kamg@551 2738 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2739 jlsValue->char_at_addr(jlsOffset);
bobv@2508 2740 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2741 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2742 }
kamg@551 2743 #endif // ndef HAVE_DTRACE_H
kamg@551 2744
duke@435 2745 // -------------------------------------------------------------------------
duke@435 2746 // Java-Java calling convention
duke@435 2747 // (what you use when Java calls Java)
duke@435 2748
duke@435 2749 //------------------------------name_for_receiver----------------------------------
duke@435 2750 // For a given signature, return the VMReg for parameter 0.
duke@435 2751 VMReg SharedRuntime::name_for_receiver() {
duke@435 2752 VMRegPair regs;
duke@435 2753 BasicType sig_bt = T_OBJECT;
duke@435 2754 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2755 // Return argument 0 register. In the LP64 build pointers
duke@435 2756 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2757 return regs.first();
duke@435 2758 }
duke@435 2759
coleenp@2497 2760 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2761 // This method is returning a data structure allocating as a
duke@435 2762 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2763 char *s = sig->as_C_string();
duke@435 2764 int len = (int)strlen(s);
duke@435 2765 *s++; len--; // Skip opening paren
duke@435 2766 char *t = s+len;
duke@435 2767 while( *(--t) != ')' ) ; // Find close paren
duke@435 2768
duke@435 2769 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2770 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2771 int cnt = 0;
twisti@1573 2772 if (has_receiver) {
duke@435 2773 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2774 }
duke@435 2775
duke@435 2776 while( s < t ) {
duke@435 2777 switch( *s++ ) { // Switch on signature character
duke@435 2778 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2779 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2780 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2781 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2782 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2783 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2784 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2785 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2786 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2787 case 'L': // Oop
duke@435 2788 while( *s++ != ';' ) ; // Skip signature
duke@435 2789 sig_bt[cnt++] = T_OBJECT;
duke@435 2790 break;
duke@435 2791 case '[': { // Array
duke@435 2792 do { // Skip optional size
duke@435 2793 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2794 } while( *s++ == '[' ); // Nested arrays?
duke@435 2795 // Skip element type
duke@435 2796 if( s[-1] == 'L' )
duke@435 2797 while( *s++ != ';' ) ; // Skip signature
duke@435 2798 sig_bt[cnt++] = T_ARRAY;
duke@435 2799 break;
duke@435 2800 }
duke@435 2801 default : ShouldNotReachHere();
duke@435 2802 }
duke@435 2803 }
duke@435 2804 assert( cnt < 256, "grow table size" );
duke@435 2805
duke@435 2806 int comp_args_on_stack;
duke@435 2807 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2808
duke@435 2809 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2810 // we must add that in to get "true" stack offsets.
duke@435 2811
duke@435 2812 if (comp_args_on_stack) {
duke@435 2813 for (int i = 0; i < cnt; i++) {
duke@435 2814 VMReg reg1 = regs[i].first();
duke@435 2815 if( reg1->is_stack()) {
duke@435 2816 // Yuck
duke@435 2817 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2818 }
duke@435 2819 VMReg reg2 = regs[i].second();
duke@435 2820 if( reg2->is_stack()) {
duke@435 2821 // Yuck
duke@435 2822 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2823 }
duke@435 2824 regs[i].set_pair(reg2, reg1);
duke@435 2825 }
duke@435 2826 }
duke@435 2827
duke@435 2828 // results
duke@435 2829 *arg_size = cnt;
duke@435 2830 return regs;
duke@435 2831 }
duke@435 2832
duke@435 2833 // OSR Migration Code
duke@435 2834 //
duke@435 2835 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2836 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2837 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2838 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2839 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2840 // back to the compiled code. The compiled code then pops the current
duke@435 2841 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2842 // copies the interpreter locals and displaced headers where it wants.
duke@435 2843 // Finally it calls back to free the temp buffer.
duke@435 2844 //
duke@435 2845 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2846
duke@435 2847 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2848
duke@435 2849 #ifdef IA64
duke@435 2850 ShouldNotReachHere(); // NYI
duke@435 2851 #endif /* IA64 */
duke@435 2852
duke@435 2853 //
duke@435 2854 // This code is dependent on the memory layout of the interpreter local
duke@435 2855 // array and the monitors. On all of our platforms the layout is identical
duke@435 2856 // so this code is shared. If some platform lays the their arrays out
duke@435 2857 // differently then this code could move to platform specific code or
duke@435 2858 // the code here could be modified to copy items one at a time using
duke@435 2859 // frame accessor methods and be platform independent.
duke@435 2860
duke@435 2861 frame fr = thread->last_frame();
duke@435 2862 assert( fr.is_interpreted_frame(), "" );
duke@435 2863 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2864
duke@435 2865 // Figure out how many monitors are active.
duke@435 2866 int active_monitor_count = 0;
duke@435 2867 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2868 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2869 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2870 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2871 }
duke@435 2872
duke@435 2873 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2874 // could double check it.
duke@435 2875
duke@435 2876 methodOop moop = fr.interpreter_frame_method();
duke@435 2877 int max_locals = moop->max_locals();
duke@435 2878 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2879 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2880 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2881
duke@435 2882 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2883 // Since there's no GC I can copy the oops blindly.
duke@435 2884 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2885 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2886 (HeapWord*)&buf[0],
duke@435 2887 max_locals);
duke@435 2888
duke@435 2889 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2890 int i = max_locals;
duke@435 2891 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2892 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2893 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2894 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2895 BasicLock *lock = kptr2->lock();
duke@435 2896 // Inflate so the displaced header becomes position-independent
duke@435 2897 if (lock->displaced_header()->is_unlocked())
duke@435 2898 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2899 // Now the displaced header is free to move
duke@435 2900 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2901 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2902 }
duke@435 2903 }
duke@435 2904 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2905
duke@435 2906 return buf;
duke@435 2907 JRT_END
duke@435 2908
duke@435 2909 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2910 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2911 JRT_END
duke@435 2912
duke@435 2913 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2914 AdapterHandlerTableIterator iter(_adapters);
never@1622 2915 while (iter.has_next()) {
never@1622 2916 AdapterHandlerEntry* a = iter.next();
never@1622 2917 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2918 }
duke@435 2919 return false;
duke@435 2920 }
duke@435 2921
bobv@2036 2922 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2923 AdapterHandlerTableIterator iter(_adapters);
never@1622 2924 while (iter.has_next()) {
never@1622 2925 AdapterHandlerEntry* a = iter.next();
never@1622 2926 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@2036 2927 st->print("Adapter for signature: ");
bobv@2036 2928 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@2036 2929 a->fingerprint()->as_string(),
bobv@2036 2930 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@2036 2931
duke@435 2932 return;
duke@435 2933 }
duke@435 2934 }
duke@435 2935 assert(false, "Should have found handler");
duke@435 2936 }
never@1622 2937
bobv@2036 2938 #ifndef PRODUCT
bobv@2036 2939
never@1622 2940 void AdapterHandlerLibrary::print_statistics() {
never@1622 2941 _adapters->print_statistics();
never@1622 2942 }
never@1622 2943
duke@435 2944 #endif /* PRODUCT */

mercurial