src/share/vm/opto/compile.cpp

Thu, 07 Oct 2010 21:40:55 -0700

author
never
date
Thu, 07 Oct 2010 21:40:55 -0700
changeset 2199
75588558f1bf
parent 2138
d5d065957597
child 2314
f95d63e2154a
permissions
-rw-r--r--

6980792: Crash "exception happened outside interpreter, nmethods and vtable stubs (1)"
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_compile.cpp.incl"
duke@435 27
duke@435 28 /// Support for intrinsics.
duke@435 29
duke@435 30 // Return the index at which m must be inserted (or already exists).
duke@435 31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
duke@435 32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
duke@435 33 #ifdef ASSERT
duke@435 34 for (int i = 1; i < _intrinsics->length(); i++) {
duke@435 35 CallGenerator* cg1 = _intrinsics->at(i-1);
duke@435 36 CallGenerator* cg2 = _intrinsics->at(i);
duke@435 37 assert(cg1->method() != cg2->method()
duke@435 38 ? cg1->method() < cg2->method()
duke@435 39 : cg1->is_virtual() < cg2->is_virtual(),
duke@435 40 "compiler intrinsics list must stay sorted");
duke@435 41 }
duke@435 42 #endif
duke@435 43 // Binary search sorted list, in decreasing intervals [lo, hi].
duke@435 44 int lo = 0, hi = _intrinsics->length()-1;
duke@435 45 while (lo <= hi) {
duke@435 46 int mid = (uint)(hi + lo) / 2;
duke@435 47 ciMethod* mid_m = _intrinsics->at(mid)->method();
duke@435 48 if (m < mid_m) {
duke@435 49 hi = mid-1;
duke@435 50 } else if (m > mid_m) {
duke@435 51 lo = mid+1;
duke@435 52 } else {
duke@435 53 // look at minor sort key
duke@435 54 bool mid_virt = _intrinsics->at(mid)->is_virtual();
duke@435 55 if (is_virtual < mid_virt) {
duke@435 56 hi = mid-1;
duke@435 57 } else if (is_virtual > mid_virt) {
duke@435 58 lo = mid+1;
duke@435 59 } else {
duke@435 60 return mid; // exact match
duke@435 61 }
duke@435 62 }
duke@435 63 }
duke@435 64 return lo; // inexact match
duke@435 65 }
duke@435 66
duke@435 67 void Compile::register_intrinsic(CallGenerator* cg) {
duke@435 68 if (_intrinsics == NULL) {
duke@435 69 _intrinsics = new GrowableArray<CallGenerator*>(60);
duke@435 70 }
duke@435 71 // This code is stolen from ciObjectFactory::insert.
duke@435 72 // Really, GrowableArray should have methods for
duke@435 73 // insert_at, remove_at, and binary_search.
duke@435 74 int len = _intrinsics->length();
duke@435 75 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
duke@435 76 if (index == len) {
duke@435 77 _intrinsics->append(cg);
duke@435 78 } else {
duke@435 79 #ifdef ASSERT
duke@435 80 CallGenerator* oldcg = _intrinsics->at(index);
duke@435 81 assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
duke@435 82 #endif
duke@435 83 _intrinsics->append(_intrinsics->at(len-1));
duke@435 84 int pos;
duke@435 85 for (pos = len-2; pos >= index; pos--) {
duke@435 86 _intrinsics->at_put(pos+1,_intrinsics->at(pos));
duke@435 87 }
duke@435 88 _intrinsics->at_put(index, cg);
duke@435 89 }
duke@435 90 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
duke@435 91 }
duke@435 92
duke@435 93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
duke@435 94 assert(m->is_loaded(), "don't try this on unloaded methods");
duke@435 95 if (_intrinsics != NULL) {
duke@435 96 int index = intrinsic_insertion_index(m, is_virtual);
duke@435 97 if (index < _intrinsics->length()
duke@435 98 && _intrinsics->at(index)->method() == m
duke@435 99 && _intrinsics->at(index)->is_virtual() == is_virtual) {
duke@435 100 return _intrinsics->at(index);
duke@435 101 }
duke@435 102 }
duke@435 103 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
jrose@1291 104 if (m->intrinsic_id() != vmIntrinsics::_none &&
jrose@1291 105 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
duke@435 106 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
duke@435 107 if (cg != NULL) {
duke@435 108 // Save it for next time:
duke@435 109 register_intrinsic(cg);
duke@435 110 return cg;
duke@435 111 } else {
duke@435 112 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
duke@435 113 }
duke@435 114 }
duke@435 115 return NULL;
duke@435 116 }
duke@435 117
duke@435 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
duke@435 119 // in library_call.cpp.
duke@435 120
duke@435 121
duke@435 122 #ifndef PRODUCT
duke@435 123 // statistics gathering...
duke@435 124
duke@435 125 juint Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
duke@435 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
duke@435 127
duke@435 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
duke@435 129 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
duke@435 130 int oflags = _intrinsic_hist_flags[id];
duke@435 131 assert(flags != 0, "what happened?");
duke@435 132 if (is_virtual) {
duke@435 133 flags |= _intrinsic_virtual;
duke@435 134 }
duke@435 135 bool changed = (flags != oflags);
duke@435 136 if ((flags & _intrinsic_worked) != 0) {
duke@435 137 juint count = (_intrinsic_hist_count[id] += 1);
duke@435 138 if (count == 1) {
duke@435 139 changed = true; // first time
duke@435 140 }
duke@435 141 // increment the overall count also:
duke@435 142 _intrinsic_hist_count[vmIntrinsics::_none] += 1;
duke@435 143 }
duke@435 144 if (changed) {
duke@435 145 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
duke@435 146 // Something changed about the intrinsic's virtuality.
duke@435 147 if ((flags & _intrinsic_virtual) != 0) {
duke@435 148 // This is the first use of this intrinsic as a virtual call.
duke@435 149 if (oflags != 0) {
duke@435 150 // We already saw it as a non-virtual, so note both cases.
duke@435 151 flags |= _intrinsic_both;
duke@435 152 }
duke@435 153 } else if ((oflags & _intrinsic_both) == 0) {
duke@435 154 // This is the first use of this intrinsic as a non-virtual
duke@435 155 flags |= _intrinsic_both;
duke@435 156 }
duke@435 157 }
duke@435 158 _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
duke@435 159 }
duke@435 160 // update the overall flags also:
duke@435 161 _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
duke@435 162 return changed;
duke@435 163 }
duke@435 164
duke@435 165 static char* format_flags(int flags, char* buf) {
duke@435 166 buf[0] = 0;
duke@435 167 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
duke@435 168 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
duke@435 169 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
duke@435 170 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
duke@435 171 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
duke@435 172 if (buf[0] == 0) strcat(buf, ",");
duke@435 173 assert(buf[0] == ',', "must be");
duke@435 174 return &buf[1];
duke@435 175 }
duke@435 176
duke@435 177 void Compile::print_intrinsic_statistics() {
duke@435 178 char flagsbuf[100];
duke@435 179 ttyLocker ttyl;
duke@435 180 if (xtty != NULL) xtty->head("statistics type='intrinsic'");
duke@435 181 tty->print_cr("Compiler intrinsic usage:");
duke@435 182 juint total = _intrinsic_hist_count[vmIntrinsics::_none];
duke@435 183 if (total == 0) total = 1; // avoid div0 in case of no successes
duke@435 184 #define PRINT_STAT_LINE(name, c, f) \
duke@435 185 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
duke@435 186 for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
duke@435 187 vmIntrinsics::ID id = (vmIntrinsics::ID) index;
duke@435 188 int flags = _intrinsic_hist_flags[id];
duke@435 189 juint count = _intrinsic_hist_count[id];
duke@435 190 if ((flags | count) != 0) {
duke@435 191 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
duke@435 192 }
duke@435 193 }
duke@435 194 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
duke@435 195 if (xtty != NULL) xtty->tail("statistics");
duke@435 196 }
duke@435 197
duke@435 198 void Compile::print_statistics() {
duke@435 199 { ttyLocker ttyl;
duke@435 200 if (xtty != NULL) xtty->head("statistics type='opto'");
duke@435 201 Parse::print_statistics();
duke@435 202 PhaseCCP::print_statistics();
duke@435 203 PhaseRegAlloc::print_statistics();
duke@435 204 Scheduling::print_statistics();
duke@435 205 PhasePeephole::print_statistics();
duke@435 206 PhaseIdealLoop::print_statistics();
duke@435 207 if (xtty != NULL) xtty->tail("statistics");
duke@435 208 }
duke@435 209 if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
duke@435 210 // put this under its own <statistics> element.
duke@435 211 print_intrinsic_statistics();
duke@435 212 }
duke@435 213 }
duke@435 214 #endif //PRODUCT
duke@435 215
duke@435 216 // Support for bundling info
duke@435 217 Bundle* Compile::node_bundling(const Node *n) {
duke@435 218 assert(valid_bundle_info(n), "oob");
duke@435 219 return &_node_bundling_base[n->_idx];
duke@435 220 }
duke@435 221
duke@435 222 bool Compile::valid_bundle_info(const Node *n) {
duke@435 223 return (_node_bundling_limit > n->_idx);
duke@435 224 }
duke@435 225
duke@435 226
never@1515 227 void Compile::gvn_replace_by(Node* n, Node* nn) {
never@1515 228 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
never@1515 229 Node* use = n->last_out(i);
never@1515 230 bool is_in_table = initial_gvn()->hash_delete(use);
never@1515 231 uint uses_found = 0;
never@1515 232 for (uint j = 0; j < use->len(); j++) {
never@1515 233 if (use->in(j) == n) {
never@1515 234 if (j < use->req())
never@1515 235 use->set_req(j, nn);
never@1515 236 else
never@1515 237 use->set_prec(j, nn);
never@1515 238 uses_found++;
never@1515 239 }
never@1515 240 }
never@1515 241 if (is_in_table) {
never@1515 242 // reinsert into table
never@1515 243 initial_gvn()->hash_find_insert(use);
never@1515 244 }
never@1515 245 record_for_igvn(use);
never@1515 246 i -= uses_found; // we deleted 1 or more copies of this edge
never@1515 247 }
never@1515 248 }
never@1515 249
never@1515 250
never@1515 251
never@1515 252
duke@435 253 // Identify all nodes that are reachable from below, useful.
duke@435 254 // Use breadth-first pass that records state in a Unique_Node_List,
duke@435 255 // recursive traversal is slower.
duke@435 256 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
duke@435 257 int estimated_worklist_size = unique();
duke@435 258 useful.map( estimated_worklist_size, NULL ); // preallocate space
duke@435 259
duke@435 260 // Initialize worklist
duke@435 261 if (root() != NULL) { useful.push(root()); }
duke@435 262 // If 'top' is cached, declare it useful to preserve cached node
duke@435 263 if( cached_top_node() ) { useful.push(cached_top_node()); }
duke@435 264
duke@435 265 // Push all useful nodes onto the list, breadthfirst
duke@435 266 for( uint next = 0; next < useful.size(); ++next ) {
duke@435 267 assert( next < unique(), "Unique useful nodes < total nodes");
duke@435 268 Node *n = useful.at(next);
duke@435 269 uint max = n->len();
duke@435 270 for( uint i = 0; i < max; ++i ) {
duke@435 271 Node *m = n->in(i);
duke@435 272 if( m == NULL ) continue;
duke@435 273 useful.push(m);
duke@435 274 }
duke@435 275 }
duke@435 276 }
duke@435 277
duke@435 278 // Disconnect all useless nodes by disconnecting those at the boundary.
duke@435 279 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
duke@435 280 uint next = 0;
duke@435 281 while( next < useful.size() ) {
duke@435 282 Node *n = useful.at(next++);
duke@435 283 // Use raw traversal of out edges since this code removes out edges
duke@435 284 int max = n->outcnt();
duke@435 285 for (int j = 0; j < max; ++j ) {
duke@435 286 Node* child = n->raw_out(j);
duke@435 287 if( ! useful.member(child) ) {
duke@435 288 assert( !child->is_top() || child != top(),
duke@435 289 "If top is cached in Compile object it is in useful list");
duke@435 290 // Only need to remove this out-edge to the useless node
duke@435 291 n->raw_del_out(j);
duke@435 292 --j;
duke@435 293 --max;
duke@435 294 }
duke@435 295 }
duke@435 296 if (n->outcnt() == 1 && n->has_special_unique_user()) {
duke@435 297 record_for_igvn( n->unique_out() );
duke@435 298 }
duke@435 299 }
duke@435 300 debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
duke@435 301 }
duke@435 302
duke@435 303 //------------------------------frame_size_in_words-----------------------------
duke@435 304 // frame_slots in units of words
duke@435 305 int Compile::frame_size_in_words() const {
duke@435 306 // shift is 0 in LP32 and 1 in LP64
duke@435 307 const int shift = (LogBytesPerWord - LogBytesPerInt);
duke@435 308 int words = _frame_slots >> shift;
duke@435 309 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
duke@435 310 return words;
duke@435 311 }
duke@435 312
duke@435 313 // ============================================================================
duke@435 314 //------------------------------CompileWrapper---------------------------------
duke@435 315 class CompileWrapper : public StackObj {
duke@435 316 Compile *const _compile;
duke@435 317 public:
duke@435 318 CompileWrapper(Compile* compile);
duke@435 319
duke@435 320 ~CompileWrapper();
duke@435 321 };
duke@435 322
duke@435 323 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
duke@435 324 // the Compile* pointer is stored in the current ciEnv:
duke@435 325 ciEnv* env = compile->env();
duke@435 326 assert(env == ciEnv::current(), "must already be a ciEnv active");
duke@435 327 assert(env->compiler_data() == NULL, "compile already active?");
duke@435 328 env->set_compiler_data(compile);
duke@435 329 assert(compile == Compile::current(), "sanity");
duke@435 330
duke@435 331 compile->set_type_dict(NULL);
duke@435 332 compile->set_type_hwm(NULL);
duke@435 333 compile->set_type_last_size(0);
duke@435 334 compile->set_last_tf(NULL, NULL);
duke@435 335 compile->set_indexSet_arena(NULL);
duke@435 336 compile->set_indexSet_free_block_list(NULL);
duke@435 337 compile->init_type_arena();
duke@435 338 Type::Initialize(compile);
duke@435 339 _compile->set_scratch_buffer_blob(NULL);
duke@435 340 _compile->begin_method();
duke@435 341 }
duke@435 342 CompileWrapper::~CompileWrapper() {
duke@435 343 _compile->end_method();
duke@435 344 if (_compile->scratch_buffer_blob() != NULL)
duke@435 345 BufferBlob::free(_compile->scratch_buffer_blob());
duke@435 346 _compile->env()->set_compiler_data(NULL);
duke@435 347 }
duke@435 348
duke@435 349
duke@435 350 //----------------------------print_compile_messages---------------------------
duke@435 351 void Compile::print_compile_messages() {
duke@435 352 #ifndef PRODUCT
duke@435 353 // Check if recompiling
duke@435 354 if (_subsume_loads == false && PrintOpto) {
duke@435 355 // Recompiling without allowing machine instructions to subsume loads
duke@435 356 tty->print_cr("*********************************************************");
duke@435 357 tty->print_cr("** Bailout: Recompile without subsuming loads **");
duke@435 358 tty->print_cr("*********************************************************");
duke@435 359 }
kvn@473 360 if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
kvn@473 361 // Recompiling without escape analysis
kvn@473 362 tty->print_cr("*********************************************************");
kvn@473 363 tty->print_cr("** Bailout: Recompile without escape analysis **");
kvn@473 364 tty->print_cr("*********************************************************");
kvn@473 365 }
duke@435 366 if (env()->break_at_compile()) {
twisti@1040 367 // Open the debugger when compiling this method.
duke@435 368 tty->print("### Breaking when compiling: ");
duke@435 369 method()->print_short_name();
duke@435 370 tty->cr();
duke@435 371 BREAKPOINT;
duke@435 372 }
duke@435 373
duke@435 374 if( PrintOpto ) {
duke@435 375 if (is_osr_compilation()) {
duke@435 376 tty->print("[OSR]%3d", _compile_id);
duke@435 377 } else {
duke@435 378 tty->print("%3d", _compile_id);
duke@435 379 }
duke@435 380 }
duke@435 381 #endif
duke@435 382 }
duke@435 383
duke@435 384
duke@435 385 void Compile::init_scratch_buffer_blob() {
duke@435 386 if( scratch_buffer_blob() != NULL ) return;
duke@435 387
duke@435 388 // Construct a temporary CodeBuffer to have it construct a BufferBlob
duke@435 389 // Cache this BufferBlob for this compile.
duke@435 390 ResourceMark rm;
duke@435 391 int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
duke@435 392 BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
duke@435 393 // Record the buffer blob for next time.
duke@435 394 set_scratch_buffer_blob(blob);
kvn@598 395 // Have we run out of code space?
kvn@598 396 if (scratch_buffer_blob() == NULL) {
kvn@598 397 // Let CompilerBroker disable further compilations.
kvn@598 398 record_failure("Not enough space for scratch buffer in CodeCache");
kvn@598 399 return;
kvn@598 400 }
duke@435 401
duke@435 402 // Initialize the relocation buffers
twisti@2103 403 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
duke@435 404 set_scratch_locs_memory(locs_buf);
duke@435 405 }
duke@435 406
duke@435 407
duke@435 408 //-----------------------scratch_emit_size-------------------------------------
duke@435 409 // Helper function that computes size by emitting code
duke@435 410 uint Compile::scratch_emit_size(const Node* n) {
duke@435 411 // Emit into a trash buffer and count bytes emitted.
duke@435 412 // This is a pretty expensive way to compute a size,
duke@435 413 // but it works well enough if seldom used.
duke@435 414 // All common fixed-size instructions are given a size
duke@435 415 // method by the AD file.
duke@435 416 // Note that the scratch buffer blob and locs memory are
duke@435 417 // allocated at the beginning of the compile task, and
duke@435 418 // may be shared by several calls to scratch_emit_size.
duke@435 419 // The allocation of the scratch buffer blob is particularly
duke@435 420 // expensive, since it has to grab the code cache lock.
duke@435 421 BufferBlob* blob = this->scratch_buffer_blob();
duke@435 422 assert(blob != NULL, "Initialize BufferBlob at start");
duke@435 423 assert(blob->size() > MAX_inst_size, "sanity");
duke@435 424 relocInfo* locs_buf = scratch_locs_memory();
twisti@2103 425 address blob_begin = blob->content_begin();
duke@435 426 address blob_end = (address)locs_buf;
twisti@2103 427 assert(blob->content_contains(blob_end), "sanity");
duke@435 428 CodeBuffer buf(blob_begin, blob_end - blob_begin);
duke@435 429 buf.initialize_consts_size(MAX_const_size);
duke@435 430 buf.initialize_stubs_size(MAX_stubs_size);
duke@435 431 assert(locs_buf != NULL, "sanity");
duke@435 432 int lsize = MAX_locs_size / 2;
duke@435 433 buf.insts()->initialize_shared_locs(&locs_buf[0], lsize);
duke@435 434 buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
duke@435 435 n->emit(buf, this->regalloc());
twisti@2103 436 return buf.insts_size();
duke@435 437 }
duke@435 438
duke@435 439
duke@435 440 // ============================================================================
duke@435 441 //------------------------------Compile standard-------------------------------
duke@435 442 debug_only( int Compile::_debug_idx = 100000; )
duke@435 443
duke@435 444 // Compile a method. entry_bci is -1 for normal compilations and indicates
duke@435 445 // the continuation bci for on stack replacement.
duke@435 446
duke@435 447
kvn@473 448 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
duke@435 449 : Phase(Compiler),
duke@435 450 _env(ci_env),
duke@435 451 _log(ci_env->log()),
duke@435 452 _compile_id(ci_env->compile_id()),
duke@435 453 _save_argument_registers(false),
duke@435 454 _stub_name(NULL),
duke@435 455 _stub_function(NULL),
duke@435 456 _stub_entry_point(NULL),
duke@435 457 _method(target),
duke@435 458 _entry_bci(osr_bci),
duke@435 459 _initial_gvn(NULL),
duke@435 460 _for_igvn(NULL),
duke@435 461 _warm_calls(NULL),
duke@435 462 _subsume_loads(subsume_loads),
kvn@473 463 _do_escape_analysis(do_escape_analysis),
duke@435 464 _failure_reason(NULL),
duke@435 465 _code_buffer("Compile::Fill_buffer"),
duke@435 466 _orig_pc_slot(0),
duke@435 467 _orig_pc_slot_offset_in_bytes(0),
twisti@1700 468 _has_method_handle_invokes(false),
duke@435 469 _node_bundling_limit(0),
duke@435 470 _node_bundling_base(NULL),
kvn@1294 471 _java_calls(0),
kvn@1294 472 _inner_loops(0),
duke@435 473 #ifndef PRODUCT
duke@435 474 _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
duke@435 475 _printer(IdealGraphPrinter::printer()),
duke@435 476 #endif
duke@435 477 _congraph(NULL) {
duke@435 478 C = this;
duke@435 479
duke@435 480 CompileWrapper cw(this);
duke@435 481 #ifndef PRODUCT
duke@435 482 if (TimeCompiler2) {
duke@435 483 tty->print(" ");
duke@435 484 target->holder()->name()->print();
duke@435 485 tty->print(".");
duke@435 486 target->print_short_name();
duke@435 487 tty->print(" ");
duke@435 488 }
duke@435 489 TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
duke@435 490 TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
jrose@535 491 bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
jrose@535 492 if (!print_opto_assembly) {
jrose@535 493 bool print_assembly = (PrintAssembly || _method->should_print_assembly());
jrose@535 494 if (print_assembly && !Disassembler::can_decode()) {
jrose@535 495 tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
jrose@535 496 print_opto_assembly = true;
jrose@535 497 }
jrose@535 498 }
jrose@535 499 set_print_assembly(print_opto_assembly);
never@802 500 set_parsed_irreducible_loop(false);
duke@435 501 #endif
duke@435 502
duke@435 503 if (ProfileTraps) {
duke@435 504 // Make sure the method being compiled gets its own MDO,
duke@435 505 // so we can at least track the decompile_count().
duke@435 506 method()->build_method_data();
duke@435 507 }
duke@435 508
duke@435 509 Init(::AliasLevel);
duke@435 510
duke@435 511
duke@435 512 print_compile_messages();
duke@435 513
duke@435 514 if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
duke@435 515 _ilt = InlineTree::build_inline_tree_root();
duke@435 516 else
duke@435 517 _ilt = NULL;
duke@435 518
duke@435 519 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
duke@435 520 assert(num_alias_types() >= AliasIdxRaw, "");
duke@435 521
duke@435 522 #define MINIMUM_NODE_HASH 1023
duke@435 523 // Node list that Iterative GVN will start with
duke@435 524 Unique_Node_List for_igvn(comp_arena());
duke@435 525 set_for_igvn(&for_igvn);
duke@435 526
duke@435 527 // GVN that will be run immediately on new nodes
duke@435 528 uint estimated_size = method()->code_size()*4+64;
duke@435 529 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
duke@435 530 PhaseGVN gvn(node_arena(), estimated_size);
duke@435 531 set_initial_gvn(&gvn);
duke@435 532
duke@435 533 { // Scope for timing the parser
duke@435 534 TracePhase t3("parse", &_t_parser, true);
duke@435 535
duke@435 536 // Put top into the hash table ASAP.
duke@435 537 initial_gvn()->transform_no_reclaim(top());
duke@435 538
duke@435 539 // Set up tf(), start(), and find a CallGenerator.
duke@435 540 CallGenerator* cg;
duke@435 541 if (is_osr_compilation()) {
duke@435 542 const TypeTuple *domain = StartOSRNode::osr_domain();
duke@435 543 const TypeTuple *range = TypeTuple::make_range(method()->signature());
duke@435 544 init_tf(TypeFunc::make(domain, range));
duke@435 545 StartNode* s = new (this, 2) StartOSRNode(root(), domain);
duke@435 546 initial_gvn()->set_type_bottom(s);
duke@435 547 init_start(s);
duke@435 548 cg = CallGenerator::for_osr(method(), entry_bci());
duke@435 549 } else {
duke@435 550 // Normal case.
duke@435 551 init_tf(TypeFunc::make(method()));
duke@435 552 StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
duke@435 553 initial_gvn()->set_type_bottom(s);
duke@435 554 init_start(s);
duke@435 555 float past_uses = method()->interpreter_invocation_count();
duke@435 556 float expected_uses = past_uses;
duke@435 557 cg = CallGenerator::for_inline(method(), expected_uses);
duke@435 558 }
duke@435 559 if (failing()) return;
duke@435 560 if (cg == NULL) {
duke@435 561 record_method_not_compilable_all_tiers("cannot parse method");
duke@435 562 return;
duke@435 563 }
duke@435 564 JVMState* jvms = build_start_state(start(), tf());
duke@435 565 if ((jvms = cg->generate(jvms)) == NULL) {
duke@435 566 record_method_not_compilable("method parse failed");
duke@435 567 return;
duke@435 568 }
duke@435 569 GraphKit kit(jvms);
duke@435 570
duke@435 571 if (!kit.stopped()) {
duke@435 572 // Accept return values, and transfer control we know not where.
duke@435 573 // This is done by a special, unique ReturnNode bound to root.
duke@435 574 return_values(kit.jvms());
duke@435 575 }
duke@435 576
duke@435 577 if (kit.has_exceptions()) {
duke@435 578 // Any exceptions that escape from this call must be rethrown
duke@435 579 // to whatever caller is dynamically above us on the stack.
duke@435 580 // This is done by a special, unique RethrowNode bound to root.
duke@435 581 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
duke@435 582 }
duke@435 583
never@1515 584 if (!failing() && has_stringbuilder()) {
never@1515 585 {
never@1515 586 // remove useless nodes to make the usage analysis simpler
never@1515 587 ResourceMark rm;
never@1515 588 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
never@1515 589 }
never@1515 590
never@1515 591 {
never@1515 592 ResourceMark rm;
never@1515 593 print_method("Before StringOpts", 3);
never@1515 594 PhaseStringOpts pso(initial_gvn(), &for_igvn);
never@1515 595 print_method("After StringOpts", 3);
never@1515 596 }
never@1515 597
never@1515 598 // now inline anything that we skipped the first time around
never@1515 599 while (_late_inlines.length() > 0) {
never@1515 600 CallGenerator* cg = _late_inlines.pop();
never@1515 601 cg->do_late_inline();
never@1515 602 }
never@1515 603 }
never@1515 604 assert(_late_inlines.length() == 0, "should have been processed");
never@1515 605
never@852 606 print_method("Before RemoveUseless", 3);
never@802 607
duke@435 608 // Remove clutter produced by parsing.
duke@435 609 if (!failing()) {
duke@435 610 ResourceMark rm;
duke@435 611 PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
duke@435 612 }
duke@435 613 }
duke@435 614
duke@435 615 // Note: Large methods are capped off in do_one_bytecode().
duke@435 616 if (failing()) return;
duke@435 617
duke@435 618 // After parsing, node notes are no longer automagic.
duke@435 619 // They must be propagated by register_new_node_with_optimizer(),
duke@435 620 // clone(), or the like.
duke@435 621 set_default_node_notes(NULL);
duke@435 622
duke@435 623 for (;;) {
duke@435 624 int successes = Inline_Warm();
duke@435 625 if (failing()) return;
duke@435 626 if (successes == 0) break;
duke@435 627 }
duke@435 628
duke@435 629 // Drain the list.
duke@435 630 Finish_Warm();
duke@435 631 #ifndef PRODUCT
duke@435 632 if (_printer) {
duke@435 633 _printer->print_inlining(this);
duke@435 634 }
duke@435 635 #endif
duke@435 636
duke@435 637 if (failing()) return;
duke@435 638 NOT_PRODUCT( verify_graph_edges(); )
duke@435 639
duke@435 640 // Now optimize
duke@435 641 Optimize();
duke@435 642 if (failing()) return;
duke@435 643 NOT_PRODUCT( verify_graph_edges(); )
duke@435 644
duke@435 645 #ifndef PRODUCT
duke@435 646 if (PrintIdeal) {
duke@435 647 ttyLocker ttyl; // keep the following output all in one block
duke@435 648 // This output goes directly to the tty, not the compiler log.
duke@435 649 // To enable tools to match it up with the compilation activity,
duke@435 650 // be sure to tag this tty output with the compile ID.
duke@435 651 if (xtty != NULL) {
duke@435 652 xtty->head("ideal compile_id='%d'%s", compile_id(),
duke@435 653 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 654 "");
duke@435 655 }
duke@435 656 root()->dump(9999);
duke@435 657 if (xtty != NULL) {
duke@435 658 xtty->tail("ideal");
duke@435 659 }
duke@435 660 }
duke@435 661 #endif
duke@435 662
duke@435 663 // Now that we know the size of all the monitors we can add a fixed slot
duke@435 664 // for the original deopt pc.
duke@435 665
duke@435 666 _orig_pc_slot = fixed_slots();
duke@435 667 int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
duke@435 668 set_fixed_slots(next_slot);
duke@435 669
duke@435 670 // Now generate code
duke@435 671 Code_Gen();
duke@435 672 if (failing()) return;
duke@435 673
duke@435 674 // Check if we want to skip execution of all compiled code.
duke@435 675 {
duke@435 676 #ifndef PRODUCT
duke@435 677 if (OptoNoExecute) {
duke@435 678 record_method_not_compilable("+OptoNoExecute"); // Flag as failed
duke@435 679 return;
duke@435 680 }
duke@435 681 TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
duke@435 682 #endif
duke@435 683
duke@435 684 if (is_osr_compilation()) {
duke@435 685 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
duke@435 686 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
duke@435 687 } else {
duke@435 688 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
duke@435 689 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
duke@435 690 }
duke@435 691
duke@435 692 env()->register_method(_method, _entry_bci,
duke@435 693 &_code_offsets,
duke@435 694 _orig_pc_slot_offset_in_bytes,
duke@435 695 code_buffer(),
duke@435 696 frame_size_in_words(), _oop_map_set,
duke@435 697 &_handler_table, &_inc_table,
duke@435 698 compiler,
duke@435 699 env()->comp_level(),
duke@435 700 true, /*has_debug_info*/
duke@435 701 has_unsafe_access()
duke@435 702 );
duke@435 703 }
duke@435 704 }
duke@435 705
duke@435 706 //------------------------------Compile----------------------------------------
duke@435 707 // Compile a runtime stub
duke@435 708 Compile::Compile( ciEnv* ci_env,
duke@435 709 TypeFunc_generator generator,
duke@435 710 address stub_function,
duke@435 711 const char *stub_name,
duke@435 712 int is_fancy_jump,
duke@435 713 bool pass_tls,
duke@435 714 bool save_arg_registers,
duke@435 715 bool return_pc )
duke@435 716 : Phase(Compiler),
duke@435 717 _env(ci_env),
duke@435 718 _log(ci_env->log()),
duke@435 719 _compile_id(-1),
duke@435 720 _save_argument_registers(save_arg_registers),
duke@435 721 _method(NULL),
duke@435 722 _stub_name(stub_name),
duke@435 723 _stub_function(stub_function),
duke@435 724 _stub_entry_point(NULL),
duke@435 725 _entry_bci(InvocationEntryBci),
duke@435 726 _initial_gvn(NULL),
duke@435 727 _for_igvn(NULL),
duke@435 728 _warm_calls(NULL),
duke@435 729 _orig_pc_slot(0),
duke@435 730 _orig_pc_slot_offset_in_bytes(0),
duke@435 731 _subsume_loads(true),
kvn@473 732 _do_escape_analysis(false),
duke@435 733 _failure_reason(NULL),
duke@435 734 _code_buffer("Compile::Fill_buffer"),
twisti@1700 735 _has_method_handle_invokes(false),
duke@435 736 _node_bundling_limit(0),
duke@435 737 _node_bundling_base(NULL),
kvn@1294 738 _java_calls(0),
kvn@1294 739 _inner_loops(0),
duke@435 740 #ifndef PRODUCT
duke@435 741 _trace_opto_output(TraceOptoOutput),
duke@435 742 _printer(NULL),
duke@435 743 #endif
duke@435 744 _congraph(NULL) {
duke@435 745 C = this;
duke@435 746
duke@435 747 #ifndef PRODUCT
duke@435 748 TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
duke@435 749 TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
duke@435 750 set_print_assembly(PrintFrameConverterAssembly);
never@802 751 set_parsed_irreducible_loop(false);
duke@435 752 #endif
duke@435 753 CompileWrapper cw(this);
duke@435 754 Init(/*AliasLevel=*/ 0);
duke@435 755 init_tf((*generator)());
duke@435 756
duke@435 757 {
duke@435 758 // The following is a dummy for the sake of GraphKit::gen_stub
duke@435 759 Unique_Node_List for_igvn(comp_arena());
duke@435 760 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this
duke@435 761 PhaseGVN gvn(Thread::current()->resource_area(),255);
duke@435 762 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
duke@435 763 gvn.transform_no_reclaim(top());
duke@435 764
duke@435 765 GraphKit kit;
duke@435 766 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
duke@435 767 }
duke@435 768
duke@435 769 NOT_PRODUCT( verify_graph_edges(); )
duke@435 770 Code_Gen();
duke@435 771 if (failing()) return;
duke@435 772
duke@435 773
duke@435 774 // Entry point will be accessed using compile->stub_entry_point();
duke@435 775 if (code_buffer() == NULL) {
duke@435 776 Matcher::soft_match_failure();
duke@435 777 } else {
duke@435 778 if (PrintAssembly && (WizardMode || Verbose))
duke@435 779 tty->print_cr("### Stub::%s", stub_name);
duke@435 780
duke@435 781 if (!failing()) {
duke@435 782 assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
duke@435 783
duke@435 784 // Make the NMethod
duke@435 785 // For now we mark the frame as never safe for profile stackwalking
duke@435 786 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
duke@435 787 code_buffer(),
duke@435 788 CodeOffsets::frame_never_safe,
duke@435 789 // _code_offsets.value(CodeOffsets::Frame_Complete),
duke@435 790 frame_size_in_words(),
duke@435 791 _oop_map_set,
duke@435 792 save_arg_registers);
duke@435 793 assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
duke@435 794
duke@435 795 _stub_entry_point = rs->entry_point();
duke@435 796 }
duke@435 797 }
duke@435 798 }
duke@435 799
duke@435 800 #ifndef PRODUCT
duke@435 801 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
duke@435 802 if(PrintOpto && Verbose) {
duke@435 803 tty->print("%s ", stub_name); j_sig->print_flattened(); tty->cr();
duke@435 804 }
duke@435 805 }
duke@435 806 #endif
duke@435 807
duke@435 808 void Compile::print_codes() {
duke@435 809 }
duke@435 810
duke@435 811 //------------------------------Init-------------------------------------------
duke@435 812 // Prepare for a single compilation
duke@435 813 void Compile::Init(int aliaslevel) {
duke@435 814 _unique = 0;
duke@435 815 _regalloc = NULL;
duke@435 816
duke@435 817 _tf = NULL; // filled in later
duke@435 818 _top = NULL; // cached later
duke@435 819 _matcher = NULL; // filled in later
duke@435 820 _cfg = NULL; // filled in later
duke@435 821
duke@435 822 set_24_bit_selection_and_mode(Use24BitFP, false);
duke@435 823
duke@435 824 _node_note_array = NULL;
duke@435 825 _default_node_notes = NULL;
duke@435 826
duke@435 827 _immutable_memory = NULL; // filled in at first inquiry
duke@435 828
duke@435 829 // Globally visible Nodes
duke@435 830 // First set TOP to NULL to give safe behavior during creation of RootNode
duke@435 831 set_cached_top_node(NULL);
duke@435 832 set_root(new (this, 3) RootNode());
duke@435 833 // Now that you have a Root to point to, create the real TOP
duke@435 834 set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
duke@435 835 set_recent_alloc(NULL, NULL);
duke@435 836
duke@435 837 // Create Debug Information Recorder to record scopes, oopmaps, etc.
duke@435 838 env()->set_oop_recorder(new OopRecorder(comp_arena()));
duke@435 839 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
duke@435 840 env()->set_dependencies(new Dependencies(env()));
duke@435 841
duke@435 842 _fixed_slots = 0;
duke@435 843 set_has_split_ifs(false);
duke@435 844 set_has_loops(has_method() && method()->has_loops()); // first approximation
never@1515 845 set_has_stringbuilder(false);
duke@435 846 _trap_can_recompile = false; // no traps emitted yet
duke@435 847 _major_progress = true; // start out assuming good things will happen
duke@435 848 set_has_unsafe_access(false);
duke@435 849 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
duke@435 850 set_decompile_count(0);
duke@435 851
rasbold@853 852 set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
iveresov@2138 853 set_num_loop_opts(LoopOptsCount);
iveresov@2138 854 set_do_inlining(Inline);
iveresov@2138 855 set_max_inline_size(MaxInlineSize);
iveresov@2138 856 set_freq_inline_size(FreqInlineSize);
iveresov@2138 857 set_do_scheduling(OptoScheduling);
iveresov@2138 858 set_do_count_invocations(false);
iveresov@2138 859 set_do_method_data_update(false);
duke@435 860
duke@435 861 if (debug_info()->recording_non_safepoints()) {
duke@435 862 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
duke@435 863 (comp_arena(), 8, 0, NULL));
duke@435 864 set_default_node_notes(Node_Notes::make(this));
duke@435 865 }
duke@435 866
duke@435 867 // // -- Initialize types before each compile --
duke@435 868 // // Update cached type information
duke@435 869 // if( _method && _method->constants() )
duke@435 870 // Type::update_loaded_types(_method, _method->constants());
duke@435 871
duke@435 872 // Init alias_type map.
kvn@473 873 if (!_do_escape_analysis && aliaslevel == 3)
duke@435 874 aliaslevel = 2; // No unique types without escape analysis
duke@435 875 _AliasLevel = aliaslevel;
duke@435 876 const int grow_ats = 16;
duke@435 877 _max_alias_types = grow_ats;
duke@435 878 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
duke@435 879 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
duke@435 880 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
duke@435 881 {
duke@435 882 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
duke@435 883 }
duke@435 884 // Initialize the first few types.
duke@435 885 _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
duke@435 886 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
duke@435 887 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
duke@435 888 _num_alias_types = AliasIdxRaw+1;
duke@435 889 // Zero out the alias type cache.
duke@435 890 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
duke@435 891 // A NULL adr_type hits in the cache right away. Preload the right answer.
duke@435 892 probe_alias_cache(NULL)->_index = AliasIdxTop;
duke@435 893
duke@435 894 _intrinsics = NULL;
kvn@2040 895 _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
kvn@2040 896 _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8, 0, NULL);
duke@435 897 register_library_intrinsics();
duke@435 898 }
duke@435 899
duke@435 900 //---------------------------init_start----------------------------------------
duke@435 901 // Install the StartNode on this compile object.
duke@435 902 void Compile::init_start(StartNode* s) {
duke@435 903 if (failing())
duke@435 904 return; // already failing
duke@435 905 assert(s == start(), "");
duke@435 906 }
duke@435 907
duke@435 908 StartNode* Compile::start() const {
duke@435 909 assert(!failing(), "");
duke@435 910 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
duke@435 911 Node* start = root()->fast_out(i);
duke@435 912 if( start->is_Start() )
duke@435 913 return start->as_Start();
duke@435 914 }
duke@435 915 ShouldNotReachHere();
duke@435 916 return NULL;
duke@435 917 }
duke@435 918
duke@435 919 //-------------------------------immutable_memory-------------------------------------
duke@435 920 // Access immutable memory
duke@435 921 Node* Compile::immutable_memory() {
duke@435 922 if (_immutable_memory != NULL) {
duke@435 923 return _immutable_memory;
duke@435 924 }
duke@435 925 StartNode* s = start();
duke@435 926 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
duke@435 927 Node *p = s->fast_out(i);
duke@435 928 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
duke@435 929 _immutable_memory = p;
duke@435 930 return _immutable_memory;
duke@435 931 }
duke@435 932 }
duke@435 933 ShouldNotReachHere();
duke@435 934 return NULL;
duke@435 935 }
duke@435 936
duke@435 937 //----------------------set_cached_top_node------------------------------------
duke@435 938 // Install the cached top node, and make sure Node::is_top works correctly.
duke@435 939 void Compile::set_cached_top_node(Node* tn) {
duke@435 940 if (tn != NULL) verify_top(tn);
duke@435 941 Node* old_top = _top;
duke@435 942 _top = tn;
duke@435 943 // Calling Node::setup_is_top allows the nodes the chance to adjust
duke@435 944 // their _out arrays.
duke@435 945 if (_top != NULL) _top->setup_is_top();
duke@435 946 if (old_top != NULL) old_top->setup_is_top();
duke@435 947 assert(_top == NULL || top()->is_top(), "");
duke@435 948 }
duke@435 949
duke@435 950 #ifndef PRODUCT
duke@435 951 void Compile::verify_top(Node* tn) const {
duke@435 952 if (tn != NULL) {
duke@435 953 assert(tn->is_Con(), "top node must be a constant");
duke@435 954 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
duke@435 955 assert(tn->in(0) != NULL, "must have live top node");
duke@435 956 }
duke@435 957 }
duke@435 958 #endif
duke@435 959
duke@435 960
duke@435 961 ///-------------------Managing Per-Node Debug & Profile Info-------------------
duke@435 962
duke@435 963 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
duke@435 964 guarantee(arr != NULL, "");
duke@435 965 int num_blocks = arr->length();
duke@435 966 if (grow_by < num_blocks) grow_by = num_blocks;
duke@435 967 int num_notes = grow_by * _node_notes_block_size;
duke@435 968 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
duke@435 969 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
duke@435 970 while (num_notes > 0) {
duke@435 971 arr->append(notes);
duke@435 972 notes += _node_notes_block_size;
duke@435 973 num_notes -= _node_notes_block_size;
duke@435 974 }
duke@435 975 assert(num_notes == 0, "exact multiple, please");
duke@435 976 }
duke@435 977
duke@435 978 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
duke@435 979 if (source == NULL || dest == NULL) return false;
duke@435 980
duke@435 981 if (dest->is_Con())
duke@435 982 return false; // Do not push debug info onto constants.
duke@435 983
duke@435 984 #ifdef ASSERT
duke@435 985 // Leave a bread crumb trail pointing to the original node:
duke@435 986 if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
duke@435 987 dest->set_debug_orig(source);
duke@435 988 }
duke@435 989 #endif
duke@435 990
duke@435 991 if (node_note_array() == NULL)
duke@435 992 return false; // Not collecting any notes now.
duke@435 993
duke@435 994 // This is a copy onto a pre-existing node, which may already have notes.
duke@435 995 // If both nodes have notes, do not overwrite any pre-existing notes.
duke@435 996 Node_Notes* source_notes = node_notes_at(source->_idx);
duke@435 997 if (source_notes == NULL || source_notes->is_clear()) return false;
duke@435 998 Node_Notes* dest_notes = node_notes_at(dest->_idx);
duke@435 999 if (dest_notes == NULL || dest_notes->is_clear()) {
duke@435 1000 return set_node_notes_at(dest->_idx, source_notes);
duke@435 1001 }
duke@435 1002
duke@435 1003 Node_Notes merged_notes = (*source_notes);
duke@435 1004 // The order of operations here ensures that dest notes will win...
duke@435 1005 merged_notes.update_from(dest_notes);
duke@435 1006 return set_node_notes_at(dest->_idx, &merged_notes);
duke@435 1007 }
duke@435 1008
duke@435 1009
duke@435 1010 //--------------------------allow_range_check_smearing-------------------------
duke@435 1011 // Gating condition for coalescing similar range checks.
duke@435 1012 // Sometimes we try 'speculatively' replacing a series of a range checks by a
duke@435 1013 // single covering check that is at least as strong as any of them.
duke@435 1014 // If the optimization succeeds, the simplified (strengthened) range check
duke@435 1015 // will always succeed. If it fails, we will deopt, and then give up
duke@435 1016 // on the optimization.
duke@435 1017 bool Compile::allow_range_check_smearing() const {
duke@435 1018 // If this method has already thrown a range-check,
duke@435 1019 // assume it was because we already tried range smearing
duke@435 1020 // and it failed.
duke@435 1021 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
duke@435 1022 return !already_trapped;
duke@435 1023 }
duke@435 1024
duke@435 1025
duke@435 1026 //------------------------------flatten_alias_type-----------------------------
duke@435 1027 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
duke@435 1028 int offset = tj->offset();
duke@435 1029 TypePtr::PTR ptr = tj->ptr();
duke@435 1030
kvn@682 1031 // Known instance (scalarizable allocation) alias only with itself.
kvn@682 1032 bool is_known_inst = tj->isa_oopptr() != NULL &&
kvn@682 1033 tj->is_oopptr()->is_known_instance();
kvn@682 1034
duke@435 1035 // Process weird unsafe references.
duke@435 1036 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
duke@435 1037 assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
kvn@682 1038 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
duke@435 1039 tj = TypeOopPtr::BOTTOM;
duke@435 1040 ptr = tj->ptr();
duke@435 1041 offset = tj->offset();
duke@435 1042 }
duke@435 1043
duke@435 1044 // Array pointers need some flattening
duke@435 1045 const TypeAryPtr *ta = tj->isa_aryptr();
kvn@682 1046 if( ta && is_known_inst ) {
kvn@682 1047 if ( offset != Type::OffsetBot &&
kvn@682 1048 offset > arrayOopDesc::length_offset_in_bytes() ) {
kvn@682 1049 offset = Type::OffsetBot; // Flatten constant access into array body only
kvn@682 1050 tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
kvn@682 1051 }
kvn@682 1052 } else if( ta && _AliasLevel >= 2 ) {
duke@435 1053 // For arrays indexed by constant indices, we flatten the alias
duke@435 1054 // space to include all of the array body. Only the header, klass
duke@435 1055 // and array length can be accessed un-aliased.
duke@435 1056 if( offset != Type::OffsetBot ) {
duke@435 1057 if( ta->const_oop() ) { // methodDataOop or methodOop
duke@435 1058 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1059 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1060 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
duke@435 1061 // range is OK as-is.
duke@435 1062 tj = ta = TypeAryPtr::RANGE;
duke@435 1063 } else if( offset == oopDesc::klass_offset_in_bytes() ) {
duke@435 1064 tj = TypeInstPtr::KLASS; // all klass loads look alike
duke@435 1065 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1066 ptr = TypePtr::BotPTR;
duke@435 1067 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
duke@435 1068 tj = TypeInstPtr::MARK;
duke@435 1069 ta = TypeAryPtr::RANGE; // generic ignored junk
duke@435 1070 ptr = TypePtr::BotPTR;
duke@435 1071 } else { // Random constant offset into array body
duke@435 1072 offset = Type::OffsetBot; // Flatten constant access into array body
kvn@682 1073 tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
duke@435 1074 }
duke@435 1075 }
duke@435 1076 // Arrays of fixed size alias with arrays of unknown size.
duke@435 1077 if (ta->size() != TypeInt::POS) {
duke@435 1078 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
kvn@682 1079 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
duke@435 1080 }
duke@435 1081 // Arrays of known objects become arrays of unknown objects.
coleenp@548 1082 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
coleenp@548 1083 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
kvn@682 1084 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
coleenp@548 1085 }
duke@435 1086 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
duke@435 1087 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
kvn@682 1088 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
duke@435 1089 }
duke@435 1090 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
duke@435 1091 // cannot be distinguished by bytecode alone.
duke@435 1092 if (ta->elem() == TypeInt::BOOL) {
duke@435 1093 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
duke@435 1094 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
kvn@682 1095 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
duke@435 1096 }
duke@435 1097 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1098 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1099 // Also, make sure exact and non-exact variants alias the same.
duke@435 1100 if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
duke@435 1101 if (ta->const_oop()) {
duke@435 1102 tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
duke@435 1103 } else {
duke@435 1104 tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
duke@435 1105 }
duke@435 1106 }
duke@435 1107 }
duke@435 1108
duke@435 1109 // Oop pointers need some flattening
duke@435 1110 const TypeInstPtr *to = tj->isa_instptr();
duke@435 1111 if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
duke@435 1112 if( ptr == TypePtr::Constant ) {
duke@435 1113 // No constant oop pointers (such as Strings); they alias with
duke@435 1114 // unknown strings.
kvn@682 1115 assert(!is_known_inst, "not scalarizable allocation");
duke@435 1116 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
kvn@682 1117 } else if( is_known_inst ) {
kvn@598 1118 tj = to; // Keep NotNull and klass_is_exact for instance type
duke@435 1119 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
duke@435 1120 // During the 2nd round of IterGVN, NotNull castings are removed.
duke@435 1121 // Make sure the Bottom and NotNull variants alias the same.
duke@435 1122 // Also, make sure exact and non-exact variants alias the same.
kvn@682 1123 tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
duke@435 1124 }
duke@435 1125 // Canonicalize the holder of this field
duke@435 1126 ciInstanceKlass *k = to->klass()->as_instance_klass();
coleenp@548 1127 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
duke@435 1128 // First handle header references such as a LoadKlassNode, even if the
duke@435 1129 // object's klass is unloaded at compile time (4965979).
kvn@682 1130 if (!is_known_inst) { // Do it only for non-instance types
kvn@682 1131 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
kvn@682 1132 }
duke@435 1133 } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
duke@435 1134 to = NULL;
duke@435 1135 tj = TypeOopPtr::BOTTOM;
duke@435 1136 offset = tj->offset();
duke@435 1137 } else {
duke@435 1138 ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
duke@435 1139 if (!k->equals(canonical_holder) || tj->offset() != offset) {
kvn@682 1140 if( is_known_inst ) {
kvn@682 1141 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
kvn@682 1142 } else {
kvn@682 1143 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
kvn@682 1144 }
duke@435 1145 }
duke@435 1146 }
duke@435 1147 }
duke@435 1148
duke@435 1149 // Klass pointers to object array klasses need some flattening
duke@435 1150 const TypeKlassPtr *tk = tj->isa_klassptr();
duke@435 1151 if( tk ) {
duke@435 1152 // If we are referencing a field within a Klass, we need
duke@435 1153 // to assume the worst case of an Object. Both exact and
duke@435 1154 // inexact types must flatten to the same alias class.
duke@435 1155 // Since the flattened result for a klass is defined to be
duke@435 1156 // precisely java.lang.Object, use a constant ptr.
duke@435 1157 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
duke@435 1158
duke@435 1159 tj = tk = TypeKlassPtr::make(TypePtr::Constant,
duke@435 1160 TypeKlassPtr::OBJECT->klass(),
duke@435 1161 offset);
duke@435 1162 }
duke@435 1163
duke@435 1164 ciKlass* klass = tk->klass();
duke@435 1165 if( klass->is_obj_array_klass() ) {
duke@435 1166 ciKlass* k = TypeAryPtr::OOPS->klass();
duke@435 1167 if( !k || !k->is_loaded() ) // Only fails for some -Xcomp runs
duke@435 1168 k = TypeInstPtr::BOTTOM->klass();
duke@435 1169 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
duke@435 1170 }
duke@435 1171
duke@435 1172 // Check for precise loads from the primary supertype array and force them
duke@435 1173 // to the supertype cache alias index. Check for generic array loads from
duke@435 1174 // the primary supertype array and also force them to the supertype cache
duke@435 1175 // alias index. Since the same load can reach both, we need to merge
duke@435 1176 // these 2 disparate memories into the same alias class. Since the
duke@435 1177 // primary supertype array is read-only, there's no chance of confusion
duke@435 1178 // where we bypass an array load and an array store.
duke@435 1179 uint off2 = offset - Klass::primary_supers_offset_in_bytes();
duke@435 1180 if( offset == Type::OffsetBot ||
duke@435 1181 off2 < Klass::primary_super_limit()*wordSize ) {
duke@435 1182 offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
duke@435 1183 tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
duke@435 1184 }
duke@435 1185 }
duke@435 1186
duke@435 1187 // Flatten all Raw pointers together.
duke@435 1188 if (tj->base() == Type::RawPtr)
duke@435 1189 tj = TypeRawPtr::BOTTOM;
duke@435 1190
duke@435 1191 if (tj->base() == Type::AnyPtr)
duke@435 1192 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
duke@435 1193
duke@435 1194 // Flatten all to bottom for now
duke@435 1195 switch( _AliasLevel ) {
duke@435 1196 case 0:
duke@435 1197 tj = TypePtr::BOTTOM;
duke@435 1198 break;
duke@435 1199 case 1: // Flatten to: oop, static, field or array
duke@435 1200 switch (tj->base()) {
duke@435 1201 //case Type::AryPtr: tj = TypeAryPtr::RANGE; break;
duke@435 1202 case Type::RawPtr: tj = TypeRawPtr::BOTTOM; break;
duke@435 1203 case Type::AryPtr: // do not distinguish arrays at all
duke@435 1204 case Type::InstPtr: tj = TypeInstPtr::BOTTOM; break;
duke@435 1205 case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
duke@435 1206 case Type::AnyPtr: tj = TypePtr::BOTTOM; break; // caller checks it
duke@435 1207 default: ShouldNotReachHere();
duke@435 1208 }
duke@435 1209 break;
twisti@1040 1210 case 2: // No collapsing at level 2; keep all splits
twisti@1040 1211 case 3: // No collapsing at level 3; keep all splits
duke@435 1212 break;
duke@435 1213 default:
duke@435 1214 Unimplemented();
duke@435 1215 }
duke@435 1216
duke@435 1217 offset = tj->offset();
duke@435 1218 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
duke@435 1219
duke@435 1220 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
duke@435 1221 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
duke@435 1222 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
duke@435 1223 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
duke@435 1224 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1225 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
duke@435 1226 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ,
duke@435 1227 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
duke@435 1228 assert( tj->ptr() != TypePtr::TopPTR &&
duke@435 1229 tj->ptr() != TypePtr::AnyNull &&
duke@435 1230 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
duke@435 1231 // assert( tj->ptr() != TypePtr::Constant ||
duke@435 1232 // tj->base() == Type::RawPtr ||
duke@435 1233 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
duke@435 1234
duke@435 1235 return tj;
duke@435 1236 }
duke@435 1237
duke@435 1238 void Compile::AliasType::Init(int i, const TypePtr* at) {
duke@435 1239 _index = i;
duke@435 1240 _adr_type = at;
duke@435 1241 _field = NULL;
duke@435 1242 _is_rewritable = true; // default
duke@435 1243 const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
kvn@658 1244 if (atoop != NULL && atoop->is_known_instance()) {
kvn@658 1245 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
duke@435 1246 _general_index = Compile::current()->get_alias_index(gt);
duke@435 1247 } else {
duke@435 1248 _general_index = 0;
duke@435 1249 }
duke@435 1250 }
duke@435 1251
duke@435 1252 //---------------------------------print_on------------------------------------
duke@435 1253 #ifndef PRODUCT
duke@435 1254 void Compile::AliasType::print_on(outputStream* st) {
duke@435 1255 if (index() < 10)
duke@435 1256 st->print("@ <%d> ", index());
duke@435 1257 else st->print("@ <%d>", index());
duke@435 1258 st->print(is_rewritable() ? " " : " RO");
duke@435 1259 int offset = adr_type()->offset();
duke@435 1260 if (offset == Type::OffsetBot)
duke@435 1261 st->print(" +any");
duke@435 1262 else st->print(" +%-3d", offset);
duke@435 1263 st->print(" in ");
duke@435 1264 adr_type()->dump_on(st);
duke@435 1265 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
duke@435 1266 if (field() != NULL && tjp) {
duke@435 1267 if (tjp->klass() != field()->holder() ||
duke@435 1268 tjp->offset() != field()->offset_in_bytes()) {
duke@435 1269 st->print(" != ");
duke@435 1270 field()->print();
duke@435 1271 st->print(" ***");
duke@435 1272 }
duke@435 1273 }
duke@435 1274 }
duke@435 1275
duke@435 1276 void print_alias_types() {
duke@435 1277 Compile* C = Compile::current();
duke@435 1278 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
duke@435 1279 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
duke@435 1280 C->alias_type(idx)->print_on(tty);
duke@435 1281 tty->cr();
duke@435 1282 }
duke@435 1283 }
duke@435 1284 #endif
duke@435 1285
duke@435 1286
duke@435 1287 //----------------------------probe_alias_cache--------------------------------
duke@435 1288 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
duke@435 1289 intptr_t key = (intptr_t) adr_type;
duke@435 1290 key ^= key >> logAliasCacheSize;
duke@435 1291 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
duke@435 1292 }
duke@435 1293
duke@435 1294
duke@435 1295 //-----------------------------grow_alias_types--------------------------------
duke@435 1296 void Compile::grow_alias_types() {
duke@435 1297 const int old_ats = _max_alias_types; // how many before?
duke@435 1298 const int new_ats = old_ats; // how many more?
duke@435 1299 const int grow_ats = old_ats+new_ats; // how many now?
duke@435 1300 _max_alias_types = grow_ats;
duke@435 1301 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
duke@435 1302 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
duke@435 1303 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
duke@435 1304 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
duke@435 1305 }
duke@435 1306
duke@435 1307
duke@435 1308 //--------------------------------find_alias_type------------------------------
duke@435 1309 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
duke@435 1310 if (_AliasLevel == 0)
duke@435 1311 return alias_type(AliasIdxBot);
duke@435 1312
duke@435 1313 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1314 if (ace->_adr_type == adr_type) {
duke@435 1315 return alias_type(ace->_index);
duke@435 1316 }
duke@435 1317
duke@435 1318 // Handle special cases.
duke@435 1319 if (adr_type == NULL) return alias_type(AliasIdxTop);
duke@435 1320 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
duke@435 1321
duke@435 1322 // Do it the slow way.
duke@435 1323 const TypePtr* flat = flatten_alias_type(adr_type);
duke@435 1324
duke@435 1325 #ifdef ASSERT
duke@435 1326 assert(flat == flatten_alias_type(flat), "idempotent");
duke@435 1327 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr");
duke@435 1328 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
duke@435 1329 const TypeOopPtr* foop = flat->is_oopptr();
kvn@682 1330 // Scalarizable allocations have exact klass always.
kvn@682 1331 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
kvn@682 1332 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
duke@435 1333 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
duke@435 1334 }
duke@435 1335 assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
duke@435 1336 #endif
duke@435 1337
duke@435 1338 int idx = AliasIdxTop;
duke@435 1339 for (int i = 0; i < num_alias_types(); i++) {
duke@435 1340 if (alias_type(i)->adr_type() == flat) {
duke@435 1341 idx = i;
duke@435 1342 break;
duke@435 1343 }
duke@435 1344 }
duke@435 1345
duke@435 1346 if (idx == AliasIdxTop) {
duke@435 1347 if (no_create) return NULL;
duke@435 1348 // Grow the array if necessary.
duke@435 1349 if (_num_alias_types == _max_alias_types) grow_alias_types();
duke@435 1350 // Add a new alias type.
duke@435 1351 idx = _num_alias_types++;
duke@435 1352 _alias_types[idx]->Init(idx, flat);
duke@435 1353 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
duke@435 1354 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
duke@435 1355 if (flat->isa_instptr()) {
duke@435 1356 if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
duke@435 1357 && flat->is_instptr()->klass() == env()->Class_klass())
duke@435 1358 alias_type(idx)->set_rewritable(false);
duke@435 1359 }
duke@435 1360 if (flat->isa_klassptr()) {
duke@435 1361 if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1362 alias_type(idx)->set_rewritable(false);
duke@435 1363 if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1364 alias_type(idx)->set_rewritable(false);
duke@435 1365 if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1366 alias_type(idx)->set_rewritable(false);
duke@435 1367 if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
duke@435 1368 alias_type(idx)->set_rewritable(false);
duke@435 1369 }
duke@435 1370 // %%% (We would like to finalize JavaThread::threadObj_offset(),
duke@435 1371 // but the base pointer type is not distinctive enough to identify
duke@435 1372 // references into JavaThread.)
duke@435 1373
duke@435 1374 // Check for final instance fields.
duke@435 1375 const TypeInstPtr* tinst = flat->isa_instptr();
coleenp@548 1376 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
duke@435 1377 ciInstanceKlass *k = tinst->klass()->as_instance_klass();
duke@435 1378 ciField* field = k->get_field_by_offset(tinst->offset(), false);
duke@435 1379 // Set field() and is_rewritable() attributes.
duke@435 1380 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1381 }
duke@435 1382 const TypeKlassPtr* tklass = flat->isa_klassptr();
duke@435 1383 // Check for final static fields.
duke@435 1384 if (tklass && tklass->klass()->is_instance_klass()) {
duke@435 1385 ciInstanceKlass *k = tklass->klass()->as_instance_klass();
duke@435 1386 ciField* field = k->get_field_by_offset(tklass->offset(), true);
duke@435 1387 // Set field() and is_rewritable() attributes.
duke@435 1388 if (field != NULL) alias_type(idx)->set_field(field);
duke@435 1389 }
duke@435 1390 }
duke@435 1391
duke@435 1392 // Fill the cache for next time.
duke@435 1393 ace->_adr_type = adr_type;
duke@435 1394 ace->_index = idx;
duke@435 1395 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
duke@435 1396
duke@435 1397 // Might as well try to fill the cache for the flattened version, too.
duke@435 1398 AliasCacheEntry* face = probe_alias_cache(flat);
duke@435 1399 if (face->_adr_type == NULL) {
duke@435 1400 face->_adr_type = flat;
duke@435 1401 face->_index = idx;
duke@435 1402 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
duke@435 1403 }
duke@435 1404
duke@435 1405 return alias_type(idx);
duke@435 1406 }
duke@435 1407
duke@435 1408
duke@435 1409 Compile::AliasType* Compile::alias_type(ciField* field) {
duke@435 1410 const TypeOopPtr* t;
duke@435 1411 if (field->is_static())
duke@435 1412 t = TypeKlassPtr::make(field->holder());
duke@435 1413 else
duke@435 1414 t = TypeOopPtr::make_from_klass_raw(field->holder());
duke@435 1415 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
duke@435 1416 assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
duke@435 1417 return atp;
duke@435 1418 }
duke@435 1419
duke@435 1420
duke@435 1421 //------------------------------have_alias_type--------------------------------
duke@435 1422 bool Compile::have_alias_type(const TypePtr* adr_type) {
duke@435 1423 AliasCacheEntry* ace = probe_alias_cache(adr_type);
duke@435 1424 if (ace->_adr_type == adr_type) {
duke@435 1425 return true;
duke@435 1426 }
duke@435 1427
duke@435 1428 // Handle special cases.
duke@435 1429 if (adr_type == NULL) return true;
duke@435 1430 if (adr_type == TypePtr::BOTTOM) return true;
duke@435 1431
duke@435 1432 return find_alias_type(adr_type, true) != NULL;
duke@435 1433 }
duke@435 1434
duke@435 1435 //-----------------------------must_alias--------------------------------------
duke@435 1436 // True if all values of the given address type are in the given alias category.
duke@435 1437 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1438 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1439 if (adr_type == NULL) return true; // NULL serves as TypePtr::TOP
duke@435 1440 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1441 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
duke@435 1442
duke@435 1443 // the only remaining possible overlap is identity
duke@435 1444 int adr_idx = get_alias_index(adr_type);
duke@435 1445 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1446 assert(adr_idx == alias_idx ||
duke@435 1447 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
duke@435 1448 && adr_type != TypeOopPtr::BOTTOM),
duke@435 1449 "should not be testing for overlap with an unsafe pointer");
duke@435 1450 return adr_idx == alias_idx;
duke@435 1451 }
duke@435 1452
duke@435 1453 //------------------------------can_alias--------------------------------------
duke@435 1454 // True if any values of the given address type are in the given alias category.
duke@435 1455 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
duke@435 1456 if (alias_idx == AliasIdxTop) return false; // the empty category
duke@435 1457 if (adr_type == NULL) return false; // NULL serves as TypePtr::TOP
duke@435 1458 if (alias_idx == AliasIdxBot) return true; // the universal category
duke@435 1459 if (adr_type->base() == Type::AnyPtr) return true; // TypePtr::BOTTOM or its twins
duke@435 1460
duke@435 1461 // the only remaining possible overlap is identity
duke@435 1462 int adr_idx = get_alias_index(adr_type);
duke@435 1463 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
duke@435 1464 return adr_idx == alias_idx;
duke@435 1465 }
duke@435 1466
duke@435 1467
duke@435 1468
duke@435 1469 //---------------------------pop_warm_call-------------------------------------
duke@435 1470 WarmCallInfo* Compile::pop_warm_call() {
duke@435 1471 WarmCallInfo* wci = _warm_calls;
duke@435 1472 if (wci != NULL) _warm_calls = wci->remove_from(wci);
duke@435 1473 return wci;
duke@435 1474 }
duke@435 1475
duke@435 1476 //----------------------------Inline_Warm--------------------------------------
duke@435 1477 int Compile::Inline_Warm() {
duke@435 1478 // If there is room, try to inline some more warm call sites.
duke@435 1479 // %%% Do a graph index compaction pass when we think we're out of space?
duke@435 1480 if (!InlineWarmCalls) return 0;
duke@435 1481
duke@435 1482 int calls_made_hot = 0;
duke@435 1483 int room_to_grow = NodeCountInliningCutoff - unique();
duke@435 1484 int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
duke@435 1485 int amount_grown = 0;
duke@435 1486 WarmCallInfo* call;
duke@435 1487 while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
duke@435 1488 int est_size = (int)call->size();
duke@435 1489 if (est_size > (room_to_grow - amount_grown)) {
duke@435 1490 // This one won't fit anyway. Get rid of it.
duke@435 1491 call->make_cold();
duke@435 1492 continue;
duke@435 1493 }
duke@435 1494 call->make_hot();
duke@435 1495 calls_made_hot++;
duke@435 1496 amount_grown += est_size;
duke@435 1497 amount_to_grow -= est_size;
duke@435 1498 }
duke@435 1499
duke@435 1500 if (calls_made_hot > 0) set_major_progress();
duke@435 1501 return calls_made_hot;
duke@435 1502 }
duke@435 1503
duke@435 1504
duke@435 1505 //----------------------------Finish_Warm--------------------------------------
duke@435 1506 void Compile::Finish_Warm() {
duke@435 1507 if (!InlineWarmCalls) return;
duke@435 1508 if (failing()) return;
duke@435 1509 if (warm_calls() == NULL) return;
duke@435 1510
duke@435 1511 // Clean up loose ends, if we are out of space for inlining.
duke@435 1512 WarmCallInfo* call;
duke@435 1513 while ((call = pop_warm_call()) != NULL) {
duke@435 1514 call->make_cold();
duke@435 1515 }
duke@435 1516 }
duke@435 1517
cfang@1607 1518 //---------------------cleanup_loop_predicates-----------------------
cfang@1607 1519 // Remove the opaque nodes that protect the predicates so that all unused
cfang@1607 1520 // checks and uncommon_traps will be eliminated from the ideal graph
cfang@1607 1521 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
cfang@1607 1522 if (predicate_count()==0) return;
cfang@1607 1523 for (int i = predicate_count(); i > 0; i--) {
cfang@1607 1524 Node * n = predicate_opaque1_node(i-1);
cfang@1607 1525 assert(n->Opcode() == Op_Opaque1, "must be");
cfang@1607 1526 igvn.replace_node(n, n->in(1));
cfang@1607 1527 }
cfang@1607 1528 assert(predicate_count()==0, "should be clean!");
cfang@1607 1529 igvn.optimize();
cfang@1607 1530 }
duke@435 1531
duke@435 1532 //------------------------------Optimize---------------------------------------
duke@435 1533 // Given a graph, optimize it.
duke@435 1534 void Compile::Optimize() {
duke@435 1535 TracePhase t1("optimizer", &_t_optimizer, true);
duke@435 1536
duke@435 1537 #ifndef PRODUCT
duke@435 1538 if (env()->break_at_compile()) {
duke@435 1539 BREAKPOINT;
duke@435 1540 }
duke@435 1541
duke@435 1542 #endif
duke@435 1543
duke@435 1544 ResourceMark rm;
duke@435 1545 int loop_opts_cnt;
duke@435 1546
duke@435 1547 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1548
never@657 1549 print_method("After Parsing");
duke@435 1550
duke@435 1551 {
duke@435 1552 // Iterative Global Value Numbering, including ideal transforms
duke@435 1553 // Initialize IterGVN with types and values from parse-time GVN
duke@435 1554 PhaseIterGVN igvn(initial_gvn());
duke@435 1555 {
duke@435 1556 NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
duke@435 1557 igvn.optimize();
duke@435 1558 }
duke@435 1559
duke@435 1560 print_method("Iter GVN 1", 2);
duke@435 1561
duke@435 1562 if (failing()) return;
duke@435 1563
kvn@1989 1564 // Perform escape analysis
kvn@1989 1565 if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
kvn@1989 1566 TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
kvn@1989 1567 ConnectionGraph::do_analysis(this, &igvn);
kvn@1989 1568
kvn@1989 1569 if (failing()) return;
kvn@1989 1570
kvn@1989 1571 igvn.optimize();
kvn@1989 1572 print_method("Iter GVN 3", 2);
kvn@1989 1573
kvn@1989 1574 if (failing()) return;
kvn@1989 1575
kvn@1989 1576 }
kvn@1989 1577
duke@435 1578 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1579 // peeling, unrolling, etc.
duke@435 1580
duke@435 1581 // Set loop opts counter
duke@435 1582 loop_opts_cnt = num_loop_opts();
duke@435 1583 if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
duke@435 1584 {
duke@435 1585 TracePhase t2("idealLoop", &_t_idealLoop, true);
cfang@1607 1586 PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
duke@435 1587 loop_opts_cnt--;
duke@435 1588 if (major_progress()) print_method("PhaseIdealLoop 1", 2);
duke@435 1589 if (failing()) return;
duke@435 1590 }
duke@435 1591 // Loop opts pass if partial peeling occurred in previous pass
duke@435 1592 if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
duke@435 1593 TracePhase t3("idealLoop", &_t_idealLoop, true);
cfang@1607 1594 PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
duke@435 1595 loop_opts_cnt--;
duke@435 1596 if (major_progress()) print_method("PhaseIdealLoop 2", 2);
duke@435 1597 if (failing()) return;
duke@435 1598 }
duke@435 1599 // Loop opts pass for loop-unrolling before CCP
duke@435 1600 if(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1601 TracePhase t4("idealLoop", &_t_idealLoop, true);
cfang@1607 1602 PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
duke@435 1603 loop_opts_cnt--;
duke@435 1604 if (major_progress()) print_method("PhaseIdealLoop 3", 2);
duke@435 1605 }
never@1356 1606 if (!failing()) {
never@1356 1607 // Verify that last round of loop opts produced a valid graph
never@1356 1608 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1609 PhaseIdealLoop::verify(igvn);
never@1356 1610 }
duke@435 1611 }
duke@435 1612 if (failing()) return;
duke@435 1613
duke@435 1614 // Conditional Constant Propagation;
duke@435 1615 PhaseCCP ccp( &igvn );
duke@435 1616 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
duke@435 1617 {
duke@435 1618 TracePhase t2("ccp", &_t_ccp, true);
duke@435 1619 ccp.do_transform();
duke@435 1620 }
duke@435 1621 print_method("PhaseCPP 1", 2);
duke@435 1622
duke@435 1623 assert( true, "Break here to ccp.dump_old2new_map()");
duke@435 1624
duke@435 1625 // Iterative Global Value Numbering, including ideal transforms
duke@435 1626 {
duke@435 1627 NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
duke@435 1628 igvn = ccp;
duke@435 1629 igvn.optimize();
duke@435 1630 }
duke@435 1631
duke@435 1632 print_method("Iter GVN 2", 2);
duke@435 1633
duke@435 1634 if (failing()) return;
duke@435 1635
duke@435 1636 // Loop transforms on the ideal graph. Range Check Elimination,
duke@435 1637 // peeling, unrolling, etc.
duke@435 1638 if(loop_opts_cnt > 0) {
duke@435 1639 debug_only( int cnt = 0; );
cfang@1607 1640 bool loop_predication = UseLoopPredicate;
duke@435 1641 while(major_progress() && (loop_opts_cnt > 0)) {
duke@435 1642 TracePhase t2("idealLoop", &_t_idealLoop, true);
duke@435 1643 assert( cnt++ < 40, "infinite cycle in loop optimization" );
cfang@1607 1644 PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
duke@435 1645 loop_opts_cnt--;
duke@435 1646 if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
duke@435 1647 if (failing()) return;
cfang@1607 1648 // Perform loop predication optimization during first iteration after CCP.
cfang@1607 1649 // After that switch it off and cleanup unused loop predicates.
cfang@1607 1650 if (loop_predication) {
cfang@1607 1651 loop_predication = false;
cfang@1607 1652 cleanup_loop_predicates(igvn);
cfang@1607 1653 if (failing()) return;
cfang@1607 1654 }
duke@435 1655 }
duke@435 1656 }
never@1356 1657
never@1356 1658 {
never@1356 1659 // Verify that all previous optimizations produced a valid graph
never@1356 1660 // at least to this point, even if no loop optimizations were done.
never@1356 1661 NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
never@1356 1662 PhaseIdealLoop::verify(igvn);
never@1356 1663 }
never@1356 1664
duke@435 1665 {
duke@435 1666 NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
duke@435 1667 PhaseMacroExpand mex(igvn);
duke@435 1668 if (mex.expand_macro_nodes()) {
duke@435 1669 assert(failing(), "must bail out w/ explicit message");
duke@435 1670 return;
duke@435 1671 }
duke@435 1672 }
duke@435 1673
duke@435 1674 } // (End scope of igvn; run destructor if necessary for asserts.)
duke@435 1675
duke@435 1676 // A method with only infinite loops has no edges entering loops from root
duke@435 1677 {
duke@435 1678 NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
duke@435 1679 if (final_graph_reshaping()) {
duke@435 1680 assert(failing(), "must bail out w/ explicit message");
duke@435 1681 return;
duke@435 1682 }
duke@435 1683 }
duke@435 1684
duke@435 1685 print_method("Optimize finished", 2);
duke@435 1686 }
duke@435 1687
duke@435 1688
duke@435 1689 //------------------------------Code_Gen---------------------------------------
duke@435 1690 // Given a graph, generate code for it
duke@435 1691 void Compile::Code_Gen() {
duke@435 1692 if (failing()) return;
duke@435 1693
duke@435 1694 // Perform instruction selection. You might think we could reclaim Matcher
duke@435 1695 // memory PDQ, but actually the Matcher is used in generating spill code.
duke@435 1696 // Internals of the Matcher (including some VectorSets) must remain live
duke@435 1697 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
duke@435 1698 // set a bit in reclaimed memory.
duke@435 1699
duke@435 1700 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1701 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1702 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1703
duke@435 1704 Node_List proj_list;
duke@435 1705 Matcher m(proj_list);
duke@435 1706 _matcher = &m;
duke@435 1707 {
duke@435 1708 TracePhase t2("matcher", &_t_matcher, true);
duke@435 1709 m.match();
duke@435 1710 }
duke@435 1711 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
duke@435 1712 // nodes. Mapping is only valid at the root of each matched subtree.
duke@435 1713 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1714
duke@435 1715 // If you have too many nodes, or if matching has failed, bail out
duke@435 1716 check_node_count(0, "out of nodes matching instructions");
duke@435 1717 if (failing()) return;
duke@435 1718
duke@435 1719 // Build a proper-looking CFG
duke@435 1720 PhaseCFG cfg(node_arena(), root(), m);
duke@435 1721 _cfg = &cfg;
duke@435 1722 {
duke@435 1723 NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
duke@435 1724 cfg.Dominators();
duke@435 1725 if (failing()) return;
duke@435 1726
duke@435 1727 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1728
duke@435 1729 cfg.Estimate_Block_Frequency();
duke@435 1730 cfg.GlobalCodeMotion(m,unique(),proj_list);
duke@435 1731
duke@435 1732 print_method("Global code motion", 2);
duke@435 1733
duke@435 1734 if (failing()) return;
duke@435 1735 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1736
duke@435 1737 debug_only( cfg.verify(); )
duke@435 1738 }
duke@435 1739 NOT_PRODUCT( verify_graph_edges(); )
duke@435 1740
duke@435 1741 PhaseChaitin regalloc(unique(),cfg,m);
duke@435 1742 _regalloc = &regalloc;
duke@435 1743 {
duke@435 1744 TracePhase t2("regalloc", &_t_registerAllocation, true);
duke@435 1745 // Perform any platform dependent preallocation actions. This is used,
duke@435 1746 // for example, to avoid taking an implicit null pointer exception
duke@435 1747 // using the frame pointer on win95.
duke@435 1748 _regalloc->pd_preallocate_hook();
duke@435 1749
duke@435 1750 // Perform register allocation. After Chaitin, use-def chains are
duke@435 1751 // no longer accurate (at spill code) and so must be ignored.
duke@435 1752 // Node->LRG->reg mappings are still accurate.
duke@435 1753 _regalloc->Register_Allocate();
duke@435 1754
duke@435 1755 // Bail out if the allocator builds too many nodes
duke@435 1756 if (failing()) return;
duke@435 1757 }
duke@435 1758
duke@435 1759 // Prior to register allocation we kept empty basic blocks in case the
duke@435 1760 // the allocator needed a place to spill. After register allocation we
duke@435 1761 // are not adding any new instructions. If any basic block is empty, we
duke@435 1762 // can now safely remove it.
duke@435 1763 {
rasbold@853 1764 NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
rasbold@853 1765 cfg.remove_empty();
rasbold@853 1766 if (do_freq_based_layout()) {
rasbold@853 1767 PhaseBlockLayout layout(cfg);
rasbold@853 1768 } else {
rasbold@853 1769 cfg.set_loop_alignment();
rasbold@853 1770 }
rasbold@853 1771 cfg.fixup_flow();
duke@435 1772 }
duke@435 1773
duke@435 1774 // Perform any platform dependent postallocation verifications.
duke@435 1775 debug_only( _regalloc->pd_postallocate_verify_hook(); )
duke@435 1776
duke@435 1777 // Apply peephole optimizations
duke@435 1778 if( OptoPeephole ) {
duke@435 1779 NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
duke@435 1780 PhasePeephole peep( _regalloc, cfg);
duke@435 1781 peep.do_transform();
duke@435 1782 }
duke@435 1783
duke@435 1784 // Convert Nodes to instruction bits in a buffer
duke@435 1785 {
duke@435 1786 // %%%% workspace merge brought two timers together for one job
duke@435 1787 TracePhase t2a("output", &_t_output, true);
duke@435 1788 NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
duke@435 1789 Output();
duke@435 1790 }
duke@435 1791
never@657 1792 print_method("Final Code");
duke@435 1793
duke@435 1794 // He's dead, Jim.
duke@435 1795 _cfg = (PhaseCFG*)0xdeadbeef;
duke@435 1796 _regalloc = (PhaseChaitin*)0xdeadbeef;
duke@435 1797 }
duke@435 1798
duke@435 1799
duke@435 1800 //------------------------------dump_asm---------------------------------------
duke@435 1801 // Dump formatted assembly
duke@435 1802 #ifndef PRODUCT
duke@435 1803 void Compile::dump_asm(int *pcs, uint pc_limit) {
duke@435 1804 bool cut_short = false;
duke@435 1805 tty->print_cr("#");
duke@435 1806 tty->print("# "); _tf->dump(); tty->cr();
duke@435 1807 tty->print_cr("#");
duke@435 1808
duke@435 1809 // For all blocks
duke@435 1810 int pc = 0x0; // Program counter
duke@435 1811 char starts_bundle = ' ';
duke@435 1812 _regalloc->dump_frame();
duke@435 1813
duke@435 1814 Node *n = NULL;
duke@435 1815 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1816 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1817 Block *b = _cfg->_blocks[i];
duke@435 1818 if (b->is_connector() && !Verbose) continue;
duke@435 1819 n = b->_nodes[0];
duke@435 1820 if (pcs && n->_idx < pc_limit)
duke@435 1821 tty->print("%3.3x ", pcs[n->_idx]);
duke@435 1822 else
duke@435 1823 tty->print(" ");
duke@435 1824 b->dump_head( &_cfg->_bbs );
duke@435 1825 if (b->is_connector()) {
duke@435 1826 tty->print_cr(" # Empty connector block");
duke@435 1827 } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
duke@435 1828 tty->print_cr(" # Block is sole successor of call");
duke@435 1829 }
duke@435 1830
duke@435 1831 // For all instructions
duke@435 1832 Node *delay = NULL;
duke@435 1833 for( uint j = 0; j<b->_nodes.size(); j++ ) {
duke@435 1834 if (VMThread::should_terminate()) { cut_short = true; break; }
duke@435 1835 n = b->_nodes[j];
duke@435 1836 if (valid_bundle_info(n)) {
duke@435 1837 Bundle *bundle = node_bundling(n);
duke@435 1838 if (bundle->used_in_unconditional_delay()) {
duke@435 1839 delay = n;
duke@435 1840 continue;
duke@435 1841 }
duke@435 1842 if (bundle->starts_bundle())
duke@435 1843 starts_bundle = '+';
duke@435 1844 }
duke@435 1845
coleenp@548 1846 if (WizardMode) n->dump();
coleenp@548 1847
duke@435 1848 if( !n->is_Region() && // Dont print in the Assembly
duke@435 1849 !n->is_Phi() && // a few noisely useless nodes
duke@435 1850 !n->is_Proj() &&
duke@435 1851 !n->is_MachTemp() &&
kvn@1535 1852 !n->is_SafePointScalarObject() &&
duke@435 1853 !n->is_Catch() && // Would be nice to print exception table targets
duke@435 1854 !n->is_MergeMem() && // Not very interesting
duke@435 1855 !n->is_top() && // Debug info table constants
duke@435 1856 !(n->is_Con() && !n->is_Mach())// Debug info table constants
duke@435 1857 ) {
duke@435 1858 if (pcs && n->_idx < pc_limit)
duke@435 1859 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1860 else
duke@435 1861 tty->print(" ");
duke@435 1862 tty->print(" %c ", starts_bundle);
duke@435 1863 starts_bundle = ' ';
duke@435 1864 tty->print("\t");
duke@435 1865 n->format(_regalloc, tty);
duke@435 1866 tty->cr();
duke@435 1867 }
duke@435 1868
duke@435 1869 // If we have an instruction with a delay slot, and have seen a delay,
duke@435 1870 // then back up and print it
duke@435 1871 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1872 assert(delay != NULL, "no unconditional delay instruction");
coleenp@548 1873 if (WizardMode) delay->dump();
coleenp@548 1874
duke@435 1875 if (node_bundling(delay)->starts_bundle())
duke@435 1876 starts_bundle = '+';
duke@435 1877 if (pcs && n->_idx < pc_limit)
duke@435 1878 tty->print("%3.3x", pcs[n->_idx]);
duke@435 1879 else
duke@435 1880 tty->print(" ");
duke@435 1881 tty->print(" %c ", starts_bundle);
duke@435 1882 starts_bundle = ' ';
duke@435 1883 tty->print("\t");
duke@435 1884 delay->format(_regalloc, tty);
duke@435 1885 tty->print_cr("");
duke@435 1886 delay = NULL;
duke@435 1887 }
duke@435 1888
duke@435 1889 // Dump the exception table as well
duke@435 1890 if( n->is_Catch() && (Verbose || WizardMode) ) {
duke@435 1891 // Print the exception table for this offset
duke@435 1892 _handler_table.print_subtable_for(pc);
duke@435 1893 }
duke@435 1894 }
duke@435 1895
duke@435 1896 if (pcs && n->_idx < pc_limit)
duke@435 1897 tty->print_cr("%3.3x", pcs[n->_idx]);
duke@435 1898 else
duke@435 1899 tty->print_cr("");
duke@435 1900
duke@435 1901 assert(cut_short || delay == NULL, "no unconditional delay branch");
duke@435 1902
duke@435 1903 } // End of per-block dump
duke@435 1904 tty->print_cr("");
duke@435 1905
duke@435 1906 if (cut_short) tty->print_cr("*** disassembly is cut short ***");
duke@435 1907 }
duke@435 1908 #endif
duke@435 1909
duke@435 1910 //------------------------------Final_Reshape_Counts---------------------------
duke@435 1911 // This class defines counters to help identify when a method
duke@435 1912 // may/must be executed using hardware with only 24-bit precision.
duke@435 1913 struct Final_Reshape_Counts : public StackObj {
duke@435 1914 int _call_count; // count non-inlined 'common' calls
duke@435 1915 int _float_count; // count float ops requiring 24-bit precision
duke@435 1916 int _double_count; // count double ops requiring more precision
duke@435 1917 int _java_call_count; // count non-inlined 'java' calls
kvn@1294 1918 int _inner_loop_count; // count loops which need alignment
duke@435 1919 VectorSet _visited; // Visitation flags
duke@435 1920 Node_List _tests; // Set of IfNodes & PCTableNodes
duke@435 1921
duke@435 1922 Final_Reshape_Counts() :
kvn@1294 1923 _call_count(0), _float_count(0), _double_count(0),
kvn@1294 1924 _java_call_count(0), _inner_loop_count(0),
duke@435 1925 _visited( Thread::current()->resource_area() ) { }
duke@435 1926
duke@435 1927 void inc_call_count () { _call_count ++; }
duke@435 1928 void inc_float_count () { _float_count ++; }
duke@435 1929 void inc_double_count() { _double_count++; }
duke@435 1930 void inc_java_call_count() { _java_call_count++; }
kvn@1294 1931 void inc_inner_loop_count() { _inner_loop_count++; }
duke@435 1932
duke@435 1933 int get_call_count () const { return _call_count ; }
duke@435 1934 int get_float_count () const { return _float_count ; }
duke@435 1935 int get_double_count() const { return _double_count; }
duke@435 1936 int get_java_call_count() const { return _java_call_count; }
kvn@1294 1937 int get_inner_loop_count() const { return _inner_loop_count; }
duke@435 1938 };
duke@435 1939
duke@435 1940 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
duke@435 1941 ciInstanceKlass *k = tp->klass()->as_instance_klass();
duke@435 1942 // Make sure the offset goes inside the instance layout.
coleenp@548 1943 return k->contains_field_offset(tp->offset());
duke@435 1944 // Note that OffsetBot and OffsetTop are very negative.
duke@435 1945 }
duke@435 1946
duke@435 1947 //------------------------------final_graph_reshaping_impl----------------------
duke@435 1948 // Implement items 1-5 from final_graph_reshaping below.
kvn@1294 1949 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
duke@435 1950
kvn@603 1951 if ( n->outcnt() == 0 ) return; // dead node
duke@435 1952 uint nop = n->Opcode();
duke@435 1953
duke@435 1954 // Check for 2-input instruction with "last use" on right input.
duke@435 1955 // Swap to left input. Implements item (2).
duke@435 1956 if( n->req() == 3 && // two-input instruction
duke@435 1957 n->in(1)->outcnt() > 1 && // left use is NOT a last use
duke@435 1958 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
duke@435 1959 n->in(2)->outcnt() == 1 &&// right use IS a last use
duke@435 1960 !n->in(2)->is_Con() ) { // right use is not a constant
duke@435 1961 // Check for commutative opcode
duke@435 1962 switch( nop ) {
duke@435 1963 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
duke@435 1964 case Op_MaxI: case Op_MinI:
duke@435 1965 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
duke@435 1966 case Op_AndL: case Op_XorL: case Op_OrL:
duke@435 1967 case Op_AndI: case Op_XorI: case Op_OrI: {
duke@435 1968 // Move "last use" input to left by swapping inputs
duke@435 1969 n->swap_edges(1, 2);
duke@435 1970 break;
duke@435 1971 }
duke@435 1972 default:
duke@435 1973 break;
duke@435 1974 }
duke@435 1975 }
duke@435 1976
kvn@1964 1977 #ifdef ASSERT
kvn@1964 1978 if( n->is_Mem() ) {
kvn@1964 1979 Compile* C = Compile::current();
kvn@1964 1980 int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
kvn@1964 1981 assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
kvn@1964 1982 // oop will be recorded in oop map if load crosses safepoint
kvn@1964 1983 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
kvn@1964 1984 LoadNode::is_immutable_value(n->in(MemNode::Address))),
kvn@1964 1985 "raw memory operations should have control edge");
kvn@1964 1986 }
kvn@1964 1987 #endif
duke@435 1988 // Count FPU ops and common calls, implements item (3)
duke@435 1989 switch( nop ) {
duke@435 1990 // Count all float operations that may use FPU
duke@435 1991 case Op_AddF:
duke@435 1992 case Op_SubF:
duke@435 1993 case Op_MulF:
duke@435 1994 case Op_DivF:
duke@435 1995 case Op_NegF:
duke@435 1996 case Op_ModF:
duke@435 1997 case Op_ConvI2F:
duke@435 1998 case Op_ConF:
duke@435 1999 case Op_CmpF:
duke@435 2000 case Op_CmpF3:
duke@435 2001 // case Op_ConvL2F: // longs are split into 32-bit halves
kvn@1294 2002 frc.inc_float_count();
duke@435 2003 break;
duke@435 2004
duke@435 2005 case Op_ConvF2D:
duke@435 2006 case Op_ConvD2F:
kvn@1294 2007 frc.inc_float_count();
kvn@1294 2008 frc.inc_double_count();
duke@435 2009 break;
duke@435 2010
duke@435 2011 // Count all double operations that may use FPU
duke@435 2012 case Op_AddD:
duke@435 2013 case Op_SubD:
duke@435 2014 case Op_MulD:
duke@435 2015 case Op_DivD:
duke@435 2016 case Op_NegD:
duke@435 2017 case Op_ModD:
duke@435 2018 case Op_ConvI2D:
duke@435 2019 case Op_ConvD2I:
duke@435 2020 // case Op_ConvL2D: // handled by leaf call
duke@435 2021 // case Op_ConvD2L: // handled by leaf call
duke@435 2022 case Op_ConD:
duke@435 2023 case Op_CmpD:
duke@435 2024 case Op_CmpD3:
kvn@1294 2025 frc.inc_double_count();
duke@435 2026 break;
duke@435 2027 case Op_Opaque1: // Remove Opaque Nodes before matching
duke@435 2028 case Op_Opaque2: // Remove Opaque Nodes before matching
kvn@603 2029 n->subsume_by(n->in(1));
duke@435 2030 break;
duke@435 2031 case Op_CallStaticJava:
duke@435 2032 case Op_CallJava:
duke@435 2033 case Op_CallDynamicJava:
kvn@1294 2034 frc.inc_java_call_count(); // Count java call site;
duke@435 2035 case Op_CallRuntime:
duke@435 2036 case Op_CallLeaf:
duke@435 2037 case Op_CallLeafNoFP: {
duke@435 2038 assert( n->is_Call(), "" );
duke@435 2039 CallNode *call = n->as_Call();
duke@435 2040 // Count call sites where the FP mode bit would have to be flipped.
duke@435 2041 // Do not count uncommon runtime calls:
duke@435 2042 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
duke@435 2043 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
duke@435 2044 if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
kvn@1294 2045 frc.inc_call_count(); // Count the call site
duke@435 2046 } else { // See if uncommon argument is shared
duke@435 2047 Node *n = call->in(TypeFunc::Parms);
duke@435 2048 int nop = n->Opcode();
duke@435 2049 // Clone shared simple arguments to uncommon calls, item (1).
duke@435 2050 if( n->outcnt() > 1 &&
duke@435 2051 !n->is_Proj() &&
duke@435 2052 nop != Op_CreateEx &&
duke@435 2053 nop != Op_CheckCastPP &&
kvn@766 2054 nop != Op_DecodeN &&
duke@435 2055 !n->is_Mem() ) {
duke@435 2056 Node *x = n->clone();
duke@435 2057 call->set_req( TypeFunc::Parms, x );
duke@435 2058 }
duke@435 2059 }
duke@435 2060 break;
duke@435 2061 }
duke@435 2062
duke@435 2063 case Op_StoreD:
duke@435 2064 case Op_LoadD:
duke@435 2065 case Op_LoadD_unaligned:
kvn@1294 2066 frc.inc_double_count();
duke@435 2067 goto handle_mem;
duke@435 2068 case Op_StoreF:
duke@435 2069 case Op_LoadF:
kvn@1294 2070 frc.inc_float_count();
duke@435 2071 goto handle_mem;
duke@435 2072
duke@435 2073 case Op_StoreB:
duke@435 2074 case Op_StoreC:
duke@435 2075 case Op_StoreCM:
duke@435 2076 case Op_StorePConditional:
duke@435 2077 case Op_StoreI:
duke@435 2078 case Op_StoreL:
kvn@855 2079 case Op_StoreIConditional:
duke@435 2080 case Op_StoreLConditional:
duke@435 2081 case Op_CompareAndSwapI:
duke@435 2082 case Op_CompareAndSwapL:
duke@435 2083 case Op_CompareAndSwapP:
coleenp@548 2084 case Op_CompareAndSwapN:
duke@435 2085 case Op_StoreP:
coleenp@548 2086 case Op_StoreN:
duke@435 2087 case Op_LoadB:
twisti@1059 2088 case Op_LoadUB:
twisti@993 2089 case Op_LoadUS:
duke@435 2090 case Op_LoadI:
twisti@1059 2091 case Op_LoadUI2L:
duke@435 2092 case Op_LoadKlass:
kvn@599 2093 case Op_LoadNKlass:
duke@435 2094 case Op_LoadL:
duke@435 2095 case Op_LoadL_unaligned:
duke@435 2096 case Op_LoadPLocked:
duke@435 2097 case Op_LoadLLocked:
duke@435 2098 case Op_LoadP:
coleenp@548 2099 case Op_LoadN:
duke@435 2100 case Op_LoadRange:
duke@435 2101 case Op_LoadS: {
duke@435 2102 handle_mem:
duke@435 2103 #ifdef ASSERT
duke@435 2104 if( VerifyOptoOopOffsets ) {
duke@435 2105 assert( n->is_Mem(), "" );
duke@435 2106 MemNode *mem = (MemNode*)n;
duke@435 2107 // Check to see if address types have grounded out somehow.
duke@435 2108 const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
duke@435 2109 assert( !tp || oop_offset_is_sane(tp), "" );
duke@435 2110 }
duke@435 2111 #endif
duke@435 2112 break;
duke@435 2113 }
duke@435 2114
duke@435 2115 case Op_AddP: { // Assert sane base pointers
kvn@617 2116 Node *addp = n->in(AddPNode::Address);
duke@435 2117 assert( !addp->is_AddP() ||
duke@435 2118 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
duke@435 2119 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
duke@435 2120 "Base pointers must match" );
kvn@617 2121 #ifdef _LP64
kvn@617 2122 if (UseCompressedOops &&
kvn@617 2123 addp->Opcode() == Op_ConP &&
kvn@617 2124 addp == n->in(AddPNode::Base) &&
kvn@617 2125 n->in(AddPNode::Offset)->is_Con()) {
kvn@617 2126 // Use addressing with narrow klass to load with offset on x86.
kvn@617 2127 // On sparc loading 32-bits constant and decoding it have less
kvn@617 2128 // instructions (4) then load 64-bits constant (7).
kvn@617 2129 // Do this transformation here since IGVN will convert ConN back to ConP.
kvn@617 2130 const Type* t = addp->bottom_type();
kvn@617 2131 if (t->isa_oopptr()) {
kvn@617 2132 Node* nn = NULL;
kvn@617 2133
kvn@617 2134 // Look for existing ConN node of the same exact type.
kvn@617 2135 Compile* C = Compile::current();
kvn@617 2136 Node* r = C->root();
kvn@617 2137 uint cnt = r->outcnt();
kvn@617 2138 for (uint i = 0; i < cnt; i++) {
kvn@617 2139 Node* m = r->raw_out(i);
kvn@617 2140 if (m!= NULL && m->Opcode() == Op_ConN &&
kvn@656 2141 m->bottom_type()->make_ptr() == t) {
kvn@617 2142 nn = m;
kvn@617 2143 break;
kvn@617 2144 }
kvn@617 2145 }
kvn@617 2146 if (nn != NULL) {
kvn@617 2147 // Decode a narrow oop to match address
kvn@617 2148 // [R12 + narrow_oop_reg<<3 + offset]
kvn@617 2149 nn = new (C, 2) DecodeNNode(nn, t);
kvn@617 2150 n->set_req(AddPNode::Base, nn);
kvn@617 2151 n->set_req(AddPNode::Address, nn);
kvn@617 2152 if (addp->outcnt() == 0) {
kvn@617 2153 addp->disconnect_inputs(NULL);
kvn@617 2154 }
kvn@617 2155 }
kvn@617 2156 }
kvn@617 2157 }
kvn@617 2158 #endif
duke@435 2159 break;
duke@435 2160 }
duke@435 2161
kvn@599 2162 #ifdef _LP64
kvn@803 2163 case Op_CastPP:
kvn@1930 2164 if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
kvn@803 2165 Compile* C = Compile::current();
kvn@803 2166 Node* in1 = n->in(1);
kvn@803 2167 const Type* t = n->bottom_type();
kvn@803 2168 Node* new_in1 = in1->clone();
kvn@803 2169 new_in1->as_DecodeN()->set_type(t);
kvn@803 2170
kvn@1930 2171 if (!Matcher::narrow_oop_use_complex_address()) {
kvn@803 2172 //
kvn@803 2173 // x86, ARM and friends can handle 2 adds in addressing mode
kvn@803 2174 // and Matcher can fold a DecodeN node into address by using
kvn@803 2175 // a narrow oop directly and do implicit NULL check in address:
kvn@803 2176 //
kvn@803 2177 // [R12 + narrow_oop_reg<<3 + offset]
kvn@803 2178 // NullCheck narrow_oop_reg
kvn@803 2179 //
kvn@803 2180 // On other platforms (Sparc) we have to keep new DecodeN node and
kvn@803 2181 // use it to do implicit NULL check in address:
kvn@803 2182 //
kvn@803 2183 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2184 // [base_reg + offset]
kvn@803 2185 // NullCheck base_reg
kvn@803 2186 //
twisti@1040 2187 // Pin the new DecodeN node to non-null path on these platform (Sparc)
kvn@803 2188 // to keep the information to which NULL check the new DecodeN node
kvn@803 2189 // corresponds to use it as value in implicit_null_check().
kvn@803 2190 //
kvn@803 2191 new_in1->set_req(0, n->in(0));
kvn@803 2192 }
kvn@803 2193
kvn@803 2194 n->subsume_by(new_in1);
kvn@803 2195 if (in1->outcnt() == 0) {
kvn@803 2196 in1->disconnect_inputs(NULL);
kvn@803 2197 }
kvn@803 2198 }
kvn@803 2199 break;
kvn@803 2200
kvn@599 2201 case Op_CmpP:
kvn@603 2202 // Do this transformation here to preserve CmpPNode::sub() and
kvn@603 2203 // other TypePtr related Ideal optimizations (for example, ptr nullness).
kvn@766 2204 if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
kvn@766 2205 Node* in1 = n->in(1);
kvn@766 2206 Node* in2 = n->in(2);
kvn@766 2207 if (!in1->is_DecodeN()) {
kvn@766 2208 in2 = in1;
kvn@766 2209 in1 = n->in(2);
kvn@766 2210 }
kvn@766 2211 assert(in1->is_DecodeN(), "sanity");
kvn@766 2212
kvn@599 2213 Compile* C = Compile::current();
kvn@766 2214 Node* new_in2 = NULL;
kvn@766 2215 if (in2->is_DecodeN()) {
kvn@766 2216 new_in2 = in2->in(1);
kvn@766 2217 } else if (in2->Opcode() == Op_ConP) {
kvn@766 2218 const Type* t = in2->bottom_type();
kvn@1930 2219 if (t == TypePtr::NULL_PTR) {
kvn@1930 2220 // Don't convert CmpP null check into CmpN if compressed
kvn@1930 2221 // oops implicit null check is not generated.
kvn@1930 2222 // This will allow to generate normal oop implicit null check.
kvn@1930 2223 if (Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2224 new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
kvn@803 2225 //
kvn@803 2226 // This transformation together with CastPP transformation above
kvn@803 2227 // will generated code for implicit NULL checks for compressed oops.
kvn@803 2228 //
kvn@803 2229 // The original code after Optimize()
kvn@803 2230 //
kvn@803 2231 // LoadN memory, narrow_oop_reg
kvn@803 2232 // decode narrow_oop_reg, base_reg
kvn@803 2233 // CmpP base_reg, NULL
kvn@803 2234 // CastPP base_reg // NotNull
kvn@803 2235 // Load [base_reg + offset], val_reg
kvn@803 2236 //
kvn@803 2237 // after these transformations will be
kvn@803 2238 //
kvn@803 2239 // LoadN memory, narrow_oop_reg
kvn@803 2240 // CmpN narrow_oop_reg, NULL
kvn@803 2241 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2242 // Load [base_reg + offset], val_reg
kvn@803 2243 //
kvn@803 2244 // and the uncommon path (== NULL) will use narrow_oop_reg directly
kvn@803 2245 // since narrow oops can be used in debug info now (see the code in
kvn@803 2246 // final_graph_reshaping_walk()).
kvn@803 2247 //
kvn@803 2248 // At the end the code will be matched to
kvn@803 2249 // on x86:
kvn@803 2250 //
kvn@803 2251 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2252 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
kvn@803 2253 // NullCheck narrow_oop_reg
kvn@803 2254 //
kvn@803 2255 // and on sparc:
kvn@803 2256 //
kvn@803 2257 // Load_narrow_oop memory, narrow_oop_reg
kvn@803 2258 // decode_not_null narrow_oop_reg, base_reg
kvn@803 2259 // Load [base_reg + offset], val_reg
kvn@803 2260 // NullCheck base_reg
kvn@803 2261 //
kvn@599 2262 } else if (t->isa_oopptr()) {
kvn@766 2263 new_in2 = ConNode::make(C, t->make_narrowoop());
kvn@599 2264 }
kvn@599 2265 }
kvn@766 2266 if (new_in2 != NULL) {
kvn@766 2267 Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
kvn@603 2268 n->subsume_by( cmpN );
kvn@766 2269 if (in1->outcnt() == 0) {
kvn@766 2270 in1->disconnect_inputs(NULL);
kvn@766 2271 }
kvn@766 2272 if (in2->outcnt() == 0) {
kvn@766 2273 in2->disconnect_inputs(NULL);
kvn@766 2274 }
kvn@599 2275 }
kvn@599 2276 }
kvn@728 2277 break;
kvn@803 2278
kvn@803 2279 case Op_DecodeN:
kvn@803 2280 assert(!n->in(1)->is_EncodeP(), "should be optimized out");
kvn@1930 2281 // DecodeN could be pinned when it can't be fold into
kvn@927 2282 // an address expression, see the code for Op_CastPP above.
kvn@1930 2283 assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
kvn@803 2284 break;
kvn@803 2285
kvn@803 2286 case Op_EncodeP: {
kvn@803 2287 Node* in1 = n->in(1);
kvn@803 2288 if (in1->is_DecodeN()) {
kvn@803 2289 n->subsume_by(in1->in(1));
kvn@803 2290 } else if (in1->Opcode() == Op_ConP) {
kvn@803 2291 Compile* C = Compile::current();
kvn@803 2292 const Type* t = in1->bottom_type();
kvn@803 2293 if (t == TypePtr::NULL_PTR) {
kvn@803 2294 n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
kvn@803 2295 } else if (t->isa_oopptr()) {
kvn@803 2296 n->subsume_by(ConNode::make(C, t->make_narrowoop()));
kvn@803 2297 }
kvn@803 2298 }
kvn@803 2299 if (in1->outcnt() == 0) {
kvn@803 2300 in1->disconnect_inputs(NULL);
kvn@803 2301 }
kvn@803 2302 break;
kvn@803 2303 }
kvn@803 2304
never@1515 2305 case Op_Proj: {
never@1515 2306 if (OptimizeStringConcat) {
never@1515 2307 ProjNode* p = n->as_Proj();
never@1515 2308 if (p->_is_io_use) {
never@1515 2309 // Separate projections were used for the exception path which
never@1515 2310 // are normally removed by a late inline. If it wasn't inlined
never@1515 2311 // then they will hang around and should just be replaced with
never@1515 2312 // the original one.
never@1515 2313 Node* proj = NULL;
never@1515 2314 // Replace with just one
never@1515 2315 for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
never@1515 2316 Node *use = i.get();
never@1515 2317 if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
never@1515 2318 proj = use;
never@1515 2319 break;
never@1515 2320 }
never@1515 2321 }
never@1515 2322 assert(p != NULL, "must be found");
never@1515 2323 p->subsume_by(proj);
never@1515 2324 }
never@1515 2325 }
never@1515 2326 break;
never@1515 2327 }
never@1515 2328
kvn@803 2329 case Op_Phi:
kvn@803 2330 if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
kvn@803 2331 // The EncodeP optimization may create Phi with the same edges
kvn@803 2332 // for all paths. It is not handled well by Register Allocator.
kvn@803 2333 Node* unique_in = n->in(1);
kvn@803 2334 assert(unique_in != NULL, "");
kvn@803 2335 uint cnt = n->req();
kvn@803 2336 for (uint i = 2; i < cnt; i++) {
kvn@803 2337 Node* m = n->in(i);
kvn@803 2338 assert(m != NULL, "");
kvn@803 2339 if (unique_in != m)
kvn@803 2340 unique_in = NULL;
kvn@803 2341 }
kvn@803 2342 if (unique_in != NULL) {
kvn@803 2343 n->subsume_by(unique_in);
kvn@803 2344 }
kvn@803 2345 }
kvn@803 2346 break;
kvn@803 2347
kvn@599 2348 #endif
kvn@599 2349
duke@435 2350 case Op_ModI:
duke@435 2351 if (UseDivMod) {
duke@435 2352 // Check if a%b and a/b both exist
duke@435 2353 Node* d = n->find_similar(Op_DivI);
duke@435 2354 if (d) {
duke@435 2355 // Replace them with a fused divmod if supported
duke@435 2356 Compile* C = Compile::current();
duke@435 2357 if (Matcher::has_match_rule(Op_DivModI)) {
duke@435 2358 DivModINode* divmod = DivModINode::make(C, n);
kvn@603 2359 d->subsume_by(divmod->div_proj());
kvn@603 2360 n->subsume_by(divmod->mod_proj());
duke@435 2361 } else {
duke@435 2362 // replace a%b with a-((a/b)*b)
duke@435 2363 Node* mult = new (C, 3) MulINode(d, d->in(2));
duke@435 2364 Node* sub = new (C, 3) SubINode(d->in(1), mult);
kvn@603 2365 n->subsume_by( sub );
duke@435 2366 }
duke@435 2367 }
duke@435 2368 }
duke@435 2369 break;
duke@435 2370
duke@435 2371 case Op_ModL:
duke@435 2372 if (UseDivMod) {
duke@435 2373 // Check if a%b and a/b both exist
duke@435 2374 Node* d = n->find_similar(Op_DivL);
duke@435 2375 if (d) {
duke@435 2376 // Replace them with a fused divmod if supported
duke@435 2377 Compile* C = Compile::current();
duke@435 2378 if (Matcher::has_match_rule(Op_DivModL)) {
duke@435 2379 DivModLNode* divmod = DivModLNode::make(C, n);
kvn@603 2380 d->subsume_by(divmod->div_proj());
kvn@603 2381 n->subsume_by(divmod->mod_proj());
duke@435 2382 } else {
duke@435 2383 // replace a%b with a-((a/b)*b)
duke@435 2384 Node* mult = new (C, 3) MulLNode(d, d->in(2));
duke@435 2385 Node* sub = new (C, 3) SubLNode(d->in(1), mult);
kvn@603 2386 n->subsume_by( sub );
duke@435 2387 }
duke@435 2388 }
duke@435 2389 }
duke@435 2390 break;
duke@435 2391
duke@435 2392 case Op_Load16B:
duke@435 2393 case Op_Load8B:
duke@435 2394 case Op_Load4B:
duke@435 2395 case Op_Load8S:
duke@435 2396 case Op_Load4S:
duke@435 2397 case Op_Load2S:
duke@435 2398 case Op_Load8C:
duke@435 2399 case Op_Load4C:
duke@435 2400 case Op_Load2C:
duke@435 2401 case Op_Load4I:
duke@435 2402 case Op_Load2I:
duke@435 2403 case Op_Load2L:
duke@435 2404 case Op_Load4F:
duke@435 2405 case Op_Load2F:
duke@435 2406 case Op_Load2D:
duke@435 2407 case Op_Store16B:
duke@435 2408 case Op_Store8B:
duke@435 2409 case Op_Store4B:
duke@435 2410 case Op_Store8C:
duke@435 2411 case Op_Store4C:
duke@435 2412 case Op_Store2C:
duke@435 2413 case Op_Store4I:
duke@435 2414 case Op_Store2I:
duke@435 2415 case Op_Store2L:
duke@435 2416 case Op_Store4F:
duke@435 2417 case Op_Store2F:
duke@435 2418 case Op_Store2D:
duke@435 2419 break;
duke@435 2420
duke@435 2421 case Op_PackB:
duke@435 2422 case Op_PackS:
duke@435 2423 case Op_PackC:
duke@435 2424 case Op_PackI:
duke@435 2425 case Op_PackF:
duke@435 2426 case Op_PackL:
duke@435 2427 case Op_PackD:
duke@435 2428 if (n->req()-1 > 2) {
duke@435 2429 // Replace many operand PackNodes with a binary tree for matching
duke@435 2430 PackNode* p = (PackNode*) n;
duke@435 2431 Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
kvn@603 2432 n->subsume_by(btp);
duke@435 2433 }
duke@435 2434 break;
kvn@1294 2435 case Op_Loop:
kvn@1294 2436 case Op_CountedLoop:
kvn@1294 2437 if (n->as_Loop()->is_inner_loop()) {
kvn@1294 2438 frc.inc_inner_loop_count();
kvn@1294 2439 }
kvn@1294 2440 break;
duke@435 2441 default:
duke@435 2442 assert( !n->is_Call(), "" );
duke@435 2443 assert( !n->is_Mem(), "" );
duke@435 2444 break;
duke@435 2445 }
never@562 2446
never@562 2447 // Collect CFG split points
never@562 2448 if (n->is_MultiBranch())
kvn@1294 2449 frc._tests.push(n);
duke@435 2450 }
duke@435 2451
duke@435 2452 //------------------------------final_graph_reshaping_walk---------------------
duke@435 2453 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
duke@435 2454 // requires that the walk visits a node's inputs before visiting the node.
kvn@1294 2455 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
kvn@766 2456 ResourceArea *area = Thread::current()->resource_area();
kvn@766 2457 Unique_Node_List sfpt(area);
kvn@766 2458
kvn@1294 2459 frc._visited.set(root->_idx); // first, mark node as visited
duke@435 2460 uint cnt = root->req();
duke@435 2461 Node *n = root;
duke@435 2462 uint i = 0;
duke@435 2463 while (true) {
duke@435 2464 if (i < cnt) {
duke@435 2465 // Place all non-visited non-null inputs onto stack
duke@435 2466 Node* m = n->in(i);
duke@435 2467 ++i;
kvn@1294 2468 if (m != NULL && !frc._visited.test_set(m->_idx)) {
kvn@766 2469 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
kvn@766 2470 sfpt.push(m);
duke@435 2471 cnt = m->req();
duke@435 2472 nstack.push(n, i); // put on stack parent and next input's index
duke@435 2473 n = m;
duke@435 2474 i = 0;
duke@435 2475 }
duke@435 2476 } else {
duke@435 2477 // Now do post-visit work
kvn@1294 2478 final_graph_reshaping_impl( n, frc );
duke@435 2479 if (nstack.is_empty())
duke@435 2480 break; // finished
duke@435 2481 n = nstack.node(); // Get node from stack
duke@435 2482 cnt = n->req();
duke@435 2483 i = nstack.index();
duke@435 2484 nstack.pop(); // Shift to the next node on stack
duke@435 2485 }
duke@435 2486 }
kvn@766 2487
kvn@1930 2488 // Skip next transformation if compressed oops are not used.
kvn@1930 2489 if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
kvn@1930 2490 return;
kvn@1930 2491
kvn@766 2492 // Go over safepoints nodes to skip DecodeN nodes for debug edges.
kvn@766 2493 // It could be done for an uncommon traps or any safepoints/calls
kvn@766 2494 // if the DecodeN node is referenced only in a debug info.
kvn@766 2495 while (sfpt.size() > 0) {
kvn@766 2496 n = sfpt.pop();
kvn@766 2497 JVMState *jvms = n->as_SafePoint()->jvms();
kvn@766 2498 assert(jvms != NULL, "sanity");
kvn@766 2499 int start = jvms->debug_start();
kvn@766 2500 int end = n->req();
kvn@766 2501 bool is_uncommon = (n->is_CallStaticJava() &&
kvn@766 2502 n->as_CallStaticJava()->uncommon_trap_request() != 0);
kvn@766 2503 for (int j = start; j < end; j++) {
kvn@766 2504 Node* in = n->in(j);
kvn@766 2505 if (in->is_DecodeN()) {
kvn@766 2506 bool safe_to_skip = true;
kvn@766 2507 if (!is_uncommon ) {
kvn@766 2508 // Is it safe to skip?
kvn@766 2509 for (uint i = 0; i < in->outcnt(); i++) {
kvn@766 2510 Node* u = in->raw_out(i);
kvn@766 2511 if (!u->is_SafePoint() ||
kvn@766 2512 u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
kvn@766 2513 safe_to_skip = false;
kvn@766 2514 }
kvn@766 2515 }
kvn@766 2516 }
kvn@766 2517 if (safe_to_skip) {
kvn@766 2518 n->set_req(j, in->in(1));
kvn@766 2519 }
kvn@766 2520 if (in->outcnt() == 0) {
kvn@766 2521 in->disconnect_inputs(NULL);
kvn@766 2522 }
kvn@766 2523 }
kvn@766 2524 }
kvn@766 2525 }
duke@435 2526 }
duke@435 2527
duke@435 2528 //------------------------------final_graph_reshaping--------------------------
duke@435 2529 // Final Graph Reshaping.
duke@435 2530 //
duke@435 2531 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
duke@435 2532 // and not commoned up and forced early. Must come after regular
duke@435 2533 // optimizations to avoid GVN undoing the cloning. Clone constant
duke@435 2534 // inputs to Loop Phis; these will be split by the allocator anyways.
duke@435 2535 // Remove Opaque nodes.
duke@435 2536 // (2) Move last-uses by commutative operations to the left input to encourage
duke@435 2537 // Intel update-in-place two-address operations and better register usage
duke@435 2538 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
duke@435 2539 // calls canonicalizing them back.
duke@435 2540 // (3) Count the number of double-precision FP ops, single-precision FP ops
duke@435 2541 // and call sites. On Intel, we can get correct rounding either by
duke@435 2542 // forcing singles to memory (requires extra stores and loads after each
duke@435 2543 // FP bytecode) or we can set a rounding mode bit (requires setting and
duke@435 2544 // clearing the mode bit around call sites). The mode bit is only used
duke@435 2545 // if the relative frequency of single FP ops to calls is low enough.
duke@435 2546 // This is a key transform for SPEC mpeg_audio.
duke@435 2547 // (4) Detect infinite loops; blobs of code reachable from above but not
duke@435 2548 // below. Several of the Code_Gen algorithms fail on such code shapes,
duke@435 2549 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
duke@435 2550 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
duke@435 2551 // Detection is by looking for IfNodes where only 1 projection is
duke@435 2552 // reachable from below or CatchNodes missing some targets.
duke@435 2553 // (5) Assert for insane oop offsets in debug mode.
duke@435 2554
duke@435 2555 bool Compile::final_graph_reshaping() {
duke@435 2556 // an infinite loop may have been eliminated by the optimizer,
duke@435 2557 // in which case the graph will be empty.
duke@435 2558 if (root()->req() == 1) {
duke@435 2559 record_method_not_compilable("trivial infinite loop");
duke@435 2560 return true;
duke@435 2561 }
duke@435 2562
kvn@1294 2563 Final_Reshape_Counts frc;
duke@435 2564
duke@435 2565 // Visit everybody reachable!
duke@435 2566 // Allocate stack of size C->unique()/2 to avoid frequent realloc
duke@435 2567 Node_Stack nstack(unique() >> 1);
kvn@1294 2568 final_graph_reshaping_walk(nstack, root(), frc);
duke@435 2569
duke@435 2570 // Check for unreachable (from below) code (i.e., infinite loops).
kvn@1294 2571 for( uint i = 0; i < frc._tests.size(); i++ ) {
kvn@1294 2572 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
never@562 2573 // Get number of CFG targets.
duke@435 2574 // Note that PCTables include exception targets after calls.
never@562 2575 uint required_outcnt = n->required_outcnt();
never@562 2576 if (n->outcnt() != required_outcnt) {
duke@435 2577 // Check for a few special cases. Rethrow Nodes never take the
duke@435 2578 // 'fall-thru' path, so expected kids is 1 less.
duke@435 2579 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
duke@435 2580 if (n->in(0)->in(0)->is_Call()) {
duke@435 2581 CallNode *call = n->in(0)->in(0)->as_Call();
duke@435 2582 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
never@562 2583 required_outcnt--; // Rethrow always has 1 less kid
duke@435 2584 } else if (call->req() > TypeFunc::Parms &&
duke@435 2585 call->is_CallDynamicJava()) {
duke@435 2586 // Check for null receiver. In such case, the optimizer has
duke@435 2587 // detected that the virtual call will always result in a null
duke@435 2588 // pointer exception. The fall-through projection of this CatchNode
duke@435 2589 // will not be populated.
duke@435 2590 Node *arg0 = call->in(TypeFunc::Parms);
duke@435 2591 if (arg0->is_Type() &&
duke@435 2592 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
never@562 2593 required_outcnt--;
duke@435 2594 }
duke@435 2595 } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
duke@435 2596 call->req() > TypeFunc::Parms+1 &&
duke@435 2597 call->is_CallStaticJava()) {
duke@435 2598 // Check for negative array length. In such case, the optimizer has
duke@435 2599 // detected that the allocation attempt will always result in an
duke@435 2600 // exception. There is no fall-through projection of this CatchNode .
duke@435 2601 Node *arg1 = call->in(TypeFunc::Parms+1);
duke@435 2602 if (arg1->is_Type() &&
duke@435 2603 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
never@562 2604 required_outcnt--;
duke@435 2605 }
duke@435 2606 }
duke@435 2607 }
duke@435 2608 }
never@562 2609 // Recheck with a better notion of 'required_outcnt'
never@562 2610 if (n->outcnt() != required_outcnt) {
duke@435 2611 record_method_not_compilable("malformed control flow");
duke@435 2612 return true; // Not all targets reachable!
duke@435 2613 }
duke@435 2614 }
duke@435 2615 // Check that I actually visited all kids. Unreached kids
duke@435 2616 // must be infinite loops.
duke@435 2617 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
kvn@1294 2618 if (!frc._visited.test(n->fast_out(j)->_idx)) {
duke@435 2619 record_method_not_compilable("infinite loop");
duke@435 2620 return true; // Found unvisited kid; must be unreach
duke@435 2621 }
duke@435 2622 }
duke@435 2623
duke@435 2624 // If original bytecodes contained a mixture of floats and doubles
duke@435 2625 // check if the optimizer has made it homogenous, item (3).
never@1364 2626 if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
kvn@1294 2627 frc.get_float_count() > 32 &&
kvn@1294 2628 frc.get_double_count() == 0 &&
kvn@1294 2629 (10 * frc.get_call_count() < frc.get_float_count()) ) {
duke@435 2630 set_24_bit_selection_and_mode( false, true );
duke@435 2631 }
duke@435 2632
kvn@1294 2633 set_java_calls(frc.get_java_call_count());
kvn@1294 2634 set_inner_loops(frc.get_inner_loop_count());
duke@435 2635
duke@435 2636 // No infinite loops, no reason to bail out.
duke@435 2637 return false;
duke@435 2638 }
duke@435 2639
duke@435 2640 //-----------------------------too_many_traps----------------------------------
duke@435 2641 // Report if there are too many traps at the current method and bci.
duke@435 2642 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
duke@435 2643 bool Compile::too_many_traps(ciMethod* method,
duke@435 2644 int bci,
duke@435 2645 Deoptimization::DeoptReason reason) {
duke@435 2646 ciMethodData* md = method->method_data();
duke@435 2647 if (md->is_empty()) {
duke@435 2648 // Assume the trap has not occurred, or that it occurred only
duke@435 2649 // because of a transient condition during start-up in the interpreter.
duke@435 2650 return false;
duke@435 2651 }
duke@435 2652 if (md->has_trap_at(bci, reason) != 0) {
duke@435 2653 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
duke@435 2654 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2655 // assume the worst.
duke@435 2656 if (log())
duke@435 2657 log()->elem("observe trap='%s' count='%d'",
duke@435 2658 Deoptimization::trap_reason_name(reason),
duke@435 2659 md->trap_count(reason));
duke@435 2660 return true;
duke@435 2661 } else {
duke@435 2662 // Ignore method/bci and see if there have been too many globally.
duke@435 2663 return too_many_traps(reason, md);
duke@435 2664 }
duke@435 2665 }
duke@435 2666
duke@435 2667 // Less-accurate variant which does not require a method and bci.
duke@435 2668 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
duke@435 2669 ciMethodData* logmd) {
duke@435 2670 if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
duke@435 2671 // Too many traps globally.
duke@435 2672 // Note that we use cumulative trap_count, not just md->trap_count.
duke@435 2673 if (log()) {
duke@435 2674 int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
duke@435 2675 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
duke@435 2676 Deoptimization::trap_reason_name(reason),
duke@435 2677 mcount, trap_count(reason));
duke@435 2678 }
duke@435 2679 return true;
duke@435 2680 } else {
duke@435 2681 // The coast is clear.
duke@435 2682 return false;
duke@435 2683 }
duke@435 2684 }
duke@435 2685
duke@435 2686 //--------------------------too_many_recompiles--------------------------------
duke@435 2687 // Report if there are too many recompiles at the current method and bci.
duke@435 2688 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
duke@435 2689 // Is not eager to return true, since this will cause the compiler to use
duke@435 2690 // Action_none for a trap point, to avoid too many recompilations.
duke@435 2691 bool Compile::too_many_recompiles(ciMethod* method,
duke@435 2692 int bci,
duke@435 2693 Deoptimization::DeoptReason reason) {
duke@435 2694 ciMethodData* md = method->method_data();
duke@435 2695 if (md->is_empty()) {
duke@435 2696 // Assume the trap has not occurred, or that it occurred only
duke@435 2697 // because of a transient condition during start-up in the interpreter.
duke@435 2698 return false;
duke@435 2699 }
duke@435 2700 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
duke@435 2701 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
duke@435 2702 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
duke@435 2703 Deoptimization::DeoptReason per_bc_reason
duke@435 2704 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
duke@435 2705 if ((per_bc_reason == Deoptimization::Reason_none
duke@435 2706 || md->has_trap_at(bci, reason) != 0)
duke@435 2707 // The trap frequency measure we care about is the recompile count:
duke@435 2708 && md->trap_recompiled_at(bci)
duke@435 2709 && md->overflow_recompile_count() >= bc_cutoff) {
duke@435 2710 // Do not emit a trap here if it has already caused recompilations.
duke@435 2711 // Also, if there are multiple reasons, or if there is no per-BCI record,
duke@435 2712 // assume the worst.
duke@435 2713 if (log())
duke@435 2714 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
duke@435 2715 Deoptimization::trap_reason_name(reason),
duke@435 2716 md->trap_count(reason),
duke@435 2717 md->overflow_recompile_count());
duke@435 2718 return true;
duke@435 2719 } else if (trap_count(reason) != 0
duke@435 2720 && decompile_count() >= m_cutoff) {
duke@435 2721 // Too many recompiles globally, and we have seen this sort of trap.
duke@435 2722 // Use cumulative decompile_count, not just md->decompile_count.
duke@435 2723 if (log())
duke@435 2724 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
duke@435 2725 Deoptimization::trap_reason_name(reason),
duke@435 2726 md->trap_count(reason), trap_count(reason),
duke@435 2727 md->decompile_count(), decompile_count());
duke@435 2728 return true;
duke@435 2729 } else {
duke@435 2730 // The coast is clear.
duke@435 2731 return false;
duke@435 2732 }
duke@435 2733 }
duke@435 2734
duke@435 2735
duke@435 2736 #ifndef PRODUCT
duke@435 2737 //------------------------------verify_graph_edges---------------------------
duke@435 2738 // Walk the Graph and verify that there is a one-to-one correspondence
duke@435 2739 // between Use-Def edges and Def-Use edges in the graph.
duke@435 2740 void Compile::verify_graph_edges(bool no_dead_code) {
duke@435 2741 if (VerifyGraphEdges) {
duke@435 2742 ResourceArea *area = Thread::current()->resource_area();
duke@435 2743 Unique_Node_List visited(area);
duke@435 2744 // Call recursive graph walk to check edges
duke@435 2745 _root->verify_edges(visited);
duke@435 2746 if (no_dead_code) {
duke@435 2747 // Now make sure that no visited node is used by an unvisited node.
duke@435 2748 bool dead_nodes = 0;
duke@435 2749 Unique_Node_List checked(area);
duke@435 2750 while (visited.size() > 0) {
duke@435 2751 Node* n = visited.pop();
duke@435 2752 checked.push(n);
duke@435 2753 for (uint i = 0; i < n->outcnt(); i++) {
duke@435 2754 Node* use = n->raw_out(i);
duke@435 2755 if (checked.member(use)) continue; // already checked
duke@435 2756 if (visited.member(use)) continue; // already in the graph
duke@435 2757 if (use->is_Con()) continue; // a dead ConNode is OK
duke@435 2758 // At this point, we have found a dead node which is DU-reachable.
duke@435 2759 if (dead_nodes++ == 0)
duke@435 2760 tty->print_cr("*** Dead nodes reachable via DU edges:");
duke@435 2761 use->dump(2);
duke@435 2762 tty->print_cr("---");
duke@435 2763 checked.push(use); // No repeats; pretend it is now checked.
duke@435 2764 }
duke@435 2765 }
duke@435 2766 assert(dead_nodes == 0, "using nodes must be reachable from root");
duke@435 2767 }
duke@435 2768 }
duke@435 2769 }
duke@435 2770 #endif
duke@435 2771
duke@435 2772 // The Compile object keeps track of failure reasons separately from the ciEnv.
duke@435 2773 // This is required because there is not quite a 1-1 relation between the
duke@435 2774 // ciEnv and its compilation task and the Compile object. Note that one
duke@435 2775 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
duke@435 2776 // to backtrack and retry without subsuming loads. Other than this backtracking
duke@435 2777 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
duke@435 2778 // by the logic in C2Compiler.
duke@435 2779 void Compile::record_failure(const char* reason) {
duke@435 2780 if (log() != NULL) {
duke@435 2781 log()->elem("failure reason='%s' phase='compile'", reason);
duke@435 2782 }
duke@435 2783 if (_failure_reason == NULL) {
duke@435 2784 // Record the first failure reason.
duke@435 2785 _failure_reason = reason;
duke@435 2786 }
never@657 2787 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
never@657 2788 C->print_method(_failure_reason);
never@657 2789 }
duke@435 2790 _root = NULL; // flush the graph, too
duke@435 2791 }
duke@435 2792
duke@435 2793 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
duke@435 2794 : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
duke@435 2795 {
duke@435 2796 if (dolog) {
duke@435 2797 C = Compile::current();
duke@435 2798 _log = C->log();
duke@435 2799 } else {
duke@435 2800 C = NULL;
duke@435 2801 _log = NULL;
duke@435 2802 }
duke@435 2803 if (_log != NULL) {
duke@435 2804 _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
duke@435 2805 _log->stamp();
duke@435 2806 _log->end_head();
duke@435 2807 }
duke@435 2808 }
duke@435 2809
duke@435 2810 Compile::TracePhase::~TracePhase() {
duke@435 2811 if (_log != NULL) {
duke@435 2812 _log->done("phase nodes='%d'", C->unique());
duke@435 2813 }
duke@435 2814 }

mercurial