src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp

Thu, 13 Feb 2014 17:44:39 +0100

author
stefank
date
Thu, 13 Feb 2014 17:44:39 +0100
changeset 6971
7426d8d76305
parent 5192
14d3f71f831d
child 6876
710a3c8b516e
permissions
-rw-r--r--

8034761: Remove the do_code_roots parameter from process_strong_roots
Reviewed-by: tschatzl, mgerdin, jmasa

duke@435 1 /*
tamao@5192 2 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 29 #include "runtime/timer.hpp"
stefank@2314 30
duke@435 31 // This class keeps statistical information and computes the
duke@435 32 // size of the heap for the concurrent mark sweep collector.
duke@435 33 //
duke@435 34 // Cost for garbage collector include cost for
duke@435 35 // minor collection
duke@435 36 // concurrent collection
duke@435 37 // stop-the-world component
duke@435 38 // concurrent component
duke@435 39 // major compacting collection
duke@435 40 // uses decaying cost
duke@435 41
duke@435 42 // Forward decls
duke@435 43 class elapsedTimer;
duke@435 44
duke@435 45 class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy {
duke@435 46 friend class CMSGCAdaptivePolicyCounters;
duke@435 47 friend class CMSCollector;
duke@435 48 private:
duke@435 49
duke@435 50 // Total number of processors available
duke@435 51 int _processor_count;
duke@435 52 // Number of processors used by the concurrent phases of GC
duke@435 53 // This number is assumed to be the same for all concurrent
duke@435 54 // phases.
duke@435 55 int _concurrent_processor_count;
duke@435 56
duke@435 57 // Time that the mutators run exclusive of a particular
duke@435 58 // phase. For example, the time the mutators run excluding
duke@435 59 // the time during which the cms collector runs concurrently
duke@435 60 // with the mutators.
duke@435 61 // Between end of most recent cms reset and start of initial mark
duke@435 62 // This may be redundant
duke@435 63 double _latest_cms_reset_end_to_initial_mark_start_secs;
duke@435 64 // Between end of the most recent initial mark and start of remark
duke@435 65 double _latest_cms_initial_mark_end_to_remark_start_secs;
duke@435 66 // Between end of most recent collection and start of
duke@435 67 // a concurrent collection
duke@435 68 double _latest_cms_collection_end_to_collection_start_secs;
duke@435 69 // Times of the concurrent phases of the most recent
duke@435 70 // concurrent collection
duke@435 71 double _latest_cms_concurrent_marking_time_secs;
duke@435 72 double _latest_cms_concurrent_precleaning_time_secs;
duke@435 73 double _latest_cms_concurrent_sweeping_time_secs;
duke@435 74 // Between end of most recent STW MSC and start of next STW MSC
duke@435 75 double _latest_cms_msc_end_to_msc_start_time_secs;
duke@435 76 // Between end of most recent MS and start of next MS
duke@435 77 // This does not include any time spent during a concurrent
duke@435 78 // collection.
duke@435 79 double _latest_cms_ms_end_to_ms_start;
duke@435 80 // Between start and end of the initial mark of the most recent
duke@435 81 // concurrent collection.
duke@435 82 double _latest_cms_initial_mark_start_to_end_time_secs;
duke@435 83 // Between start and end of the remark phase of the most recent
duke@435 84 // concurrent collection
duke@435 85 double _latest_cms_remark_start_to_end_time_secs;
duke@435 86 // Between start and end of the most recent MS STW marking phase
duke@435 87 double _latest_cms_ms_marking_start_to_end_time_secs;
duke@435 88
duke@435 89 // Pause time timers
duke@435 90 static elapsedTimer _STW_timer;
duke@435 91 // Concurrent collection timer. Used for total of all concurrent phases
duke@435 92 // during 1 collection cycle.
duke@435 93 static elapsedTimer _concurrent_timer;
duke@435 94
duke@435 95 // When the size of the generation is changed, the size
duke@435 96 // of the change will rounded up or down (depending on the
duke@435 97 // type of change) by this value.
duke@435 98 size_t _generation_alignment;
duke@435 99
duke@435 100 // If this variable is true, the size of the young generation
duke@435 101 // may be changed in order to reduce the pause(s) of the
duke@435 102 // collection of the tenured generation in order to meet the
duke@435 103 // pause time goal. It is common to change the size of the
duke@435 104 // tenured generation in order to meet the pause time goal
duke@435 105 // for the tenured generation. With the CMS collector for
duke@435 106 // the tenured generation, the size of the young generation
duke@435 107 // can have an significant affect on the pause times for collecting the
duke@435 108 // tenured generation.
duke@435 109 // This is a duplicate of a variable in PSAdaptiveSizePolicy. It
duke@435 110 // is duplicated because it is not clear that it is general enough
duke@435 111 // to go into AdaptiveSizePolicy.
duke@435 112 int _change_young_gen_for_maj_pauses;
duke@435 113
duke@435 114 // Variable that is set to true after a collection.
duke@435 115 bool _first_after_collection;
duke@435 116
duke@435 117 // Fraction of collections that are of each type
duke@435 118 double concurrent_fraction() const;
duke@435 119 double STW_msc_fraction() const;
duke@435 120 double STW_ms_fraction() const;
duke@435 121
duke@435 122 // This call cannot be put into the epilogue as long as some
duke@435 123 // of the counters can be set during concurrent phases.
duke@435 124 virtual void clear_generation_free_space_flags();
duke@435 125
duke@435 126 void set_first_after_collection() { _first_after_collection = true; }
duke@435 127
duke@435 128 protected:
duke@435 129 // Average of the sum of the concurrent times for
duke@435 130 // one collection in seconds.
duke@435 131 AdaptiveWeightedAverage* _avg_concurrent_time;
duke@435 132 // Average time between concurrent collections in seconds.
duke@435 133 AdaptiveWeightedAverage* _avg_concurrent_interval;
duke@435 134 // Average cost of the concurrent part of a collection
duke@435 135 // in seconds.
duke@435 136 AdaptiveWeightedAverage* _avg_concurrent_gc_cost;
duke@435 137
duke@435 138 // Average of the initial pause of a concurrent collection in seconds.
duke@435 139 AdaptivePaddedAverage* _avg_initial_pause;
duke@435 140 // Average of the remark pause of a concurrent collection in seconds.
duke@435 141 AdaptivePaddedAverage* _avg_remark_pause;
duke@435 142
duke@435 143 // Average of the stop-the-world (STW) (initial mark + remark)
duke@435 144 // times in seconds for concurrent collections.
duke@435 145 AdaptiveWeightedAverage* _avg_cms_STW_time;
duke@435 146 // Average of the STW collection cost for concurrent collections.
duke@435 147 AdaptiveWeightedAverage* _avg_cms_STW_gc_cost;
duke@435 148
duke@435 149 // Average of the bytes free at the start of the sweep.
duke@435 150 AdaptiveWeightedAverage* _avg_cms_free_at_sweep;
duke@435 151 // Average of the bytes free at the end of the collection.
duke@435 152 AdaptiveWeightedAverage* _avg_cms_free;
duke@435 153 // Average of the bytes promoted between cms collections.
duke@435 154 AdaptiveWeightedAverage* _avg_cms_promo;
duke@435 155
duke@435 156 // stop-the-world (STW) mark-sweep-compact
duke@435 157 // Average of the pause time in seconds for STW mark-sweep-compact
duke@435 158 // collections.
duke@435 159 AdaptiveWeightedAverage* _avg_msc_pause;
duke@435 160 // Average of the interval in seconds between STW mark-sweep-compact
duke@435 161 // collections.
duke@435 162 AdaptiveWeightedAverage* _avg_msc_interval;
duke@435 163 // Average of the collection costs for STW mark-sweep-compact
duke@435 164 // collections.
duke@435 165 AdaptiveWeightedAverage* _avg_msc_gc_cost;
duke@435 166
duke@435 167 // Averages for mark-sweep collections.
duke@435 168 // The collection may have started as a background collection
duke@435 169 // that completes in a stop-the-world (STW) collection.
duke@435 170 // Average of the pause time in seconds for mark-sweep
duke@435 171 // collections.
duke@435 172 AdaptiveWeightedAverage* _avg_ms_pause;
duke@435 173 // Average of the interval in seconds between mark-sweep
duke@435 174 // collections.
duke@435 175 AdaptiveWeightedAverage* _avg_ms_interval;
duke@435 176 // Average of the collection costs for mark-sweep
duke@435 177 // collections.
duke@435 178 AdaptiveWeightedAverage* _avg_ms_gc_cost;
duke@435 179
duke@435 180 // These variables contain a linear fit of
duke@435 181 // a generation size as the independent variable
duke@435 182 // and a pause time as the dependent variable.
duke@435 183 // For example _remark_pause_old_estimator
duke@435 184 // is a fit of the old generation size as the
duke@435 185 // independent variable and the remark pause
duke@435 186 // as the dependent variable.
duke@435 187 // remark pause time vs. cms gen size
duke@435 188 LinearLeastSquareFit* _remark_pause_old_estimator;
duke@435 189 // initial pause time vs. cms gen size
duke@435 190 LinearLeastSquareFit* _initial_pause_old_estimator;
duke@435 191 // remark pause time vs. young gen size
duke@435 192 LinearLeastSquareFit* _remark_pause_young_estimator;
duke@435 193 // initial pause time vs. young gen size
duke@435 194 LinearLeastSquareFit* _initial_pause_young_estimator;
duke@435 195
duke@435 196 // Accessors
duke@435 197 int processor_count() const { return _processor_count; }
duke@435 198 int concurrent_processor_count() const { return _concurrent_processor_count; }
duke@435 199
duke@435 200 AdaptiveWeightedAverage* avg_concurrent_time() const {
duke@435 201 return _avg_concurrent_time;
duke@435 202 }
duke@435 203
duke@435 204 AdaptiveWeightedAverage* avg_concurrent_interval() const {
duke@435 205 return _avg_concurrent_interval;
duke@435 206 }
duke@435 207
duke@435 208 AdaptiveWeightedAverage* avg_concurrent_gc_cost() const {
duke@435 209 return _avg_concurrent_gc_cost;
duke@435 210 }
duke@435 211
duke@435 212 AdaptiveWeightedAverage* avg_cms_STW_time() const {
duke@435 213 return _avg_cms_STW_time;
duke@435 214 }
duke@435 215
duke@435 216 AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const {
duke@435 217 return _avg_cms_STW_gc_cost;
duke@435 218 }
duke@435 219
duke@435 220 AdaptivePaddedAverage* avg_initial_pause() const {
duke@435 221 return _avg_initial_pause;
duke@435 222 }
duke@435 223
duke@435 224 AdaptivePaddedAverage* avg_remark_pause() const {
duke@435 225 return _avg_remark_pause;
duke@435 226 }
duke@435 227
duke@435 228 AdaptiveWeightedAverage* avg_cms_free() const {
duke@435 229 return _avg_cms_free;
duke@435 230 }
duke@435 231
duke@435 232 AdaptiveWeightedAverage* avg_cms_free_at_sweep() const {
duke@435 233 return _avg_cms_free_at_sweep;
duke@435 234 }
duke@435 235
duke@435 236 AdaptiveWeightedAverage* avg_msc_pause() const {
duke@435 237 return _avg_msc_pause;
duke@435 238 }
duke@435 239
duke@435 240 AdaptiveWeightedAverage* avg_msc_interval() const {
duke@435 241 return _avg_msc_interval;
duke@435 242 }
duke@435 243
duke@435 244 AdaptiveWeightedAverage* avg_msc_gc_cost() const {
duke@435 245 return _avg_msc_gc_cost;
duke@435 246 }
duke@435 247
duke@435 248 AdaptiveWeightedAverage* avg_ms_pause() const {
duke@435 249 return _avg_ms_pause;
duke@435 250 }
duke@435 251
duke@435 252 AdaptiveWeightedAverage* avg_ms_interval() const {
duke@435 253 return _avg_ms_interval;
duke@435 254 }
duke@435 255
duke@435 256 AdaptiveWeightedAverage* avg_ms_gc_cost() const {
duke@435 257 return _avg_ms_gc_cost;
duke@435 258 }
duke@435 259
duke@435 260 LinearLeastSquareFit* remark_pause_old_estimator() {
duke@435 261 return _remark_pause_old_estimator;
duke@435 262 }
duke@435 263 LinearLeastSquareFit* initial_pause_old_estimator() {
duke@435 264 return _initial_pause_old_estimator;
duke@435 265 }
duke@435 266 LinearLeastSquareFit* remark_pause_young_estimator() {
duke@435 267 return _remark_pause_young_estimator;
duke@435 268 }
duke@435 269 LinearLeastSquareFit* initial_pause_young_estimator() {
duke@435 270 return _initial_pause_young_estimator;
duke@435 271 }
duke@435 272
duke@435 273 // These *slope() methods return the slope
duke@435 274 // m for the linear fit of an independent
duke@435 275 // variable vs. a dependent variable. For
duke@435 276 // example
duke@435 277 // remark_pause = m * old_generation_size + c
duke@435 278 // These may be used to determine if an
duke@435 279 // adjustment should be made to achieve a goal.
duke@435 280 // For example, if remark_pause_old_slope() is
duke@435 281 // positive, a reduction of the old generation
duke@435 282 // size has on average resulted in the reduction
duke@435 283 // of the remark pause.
duke@435 284 float remark_pause_old_slope() {
duke@435 285 return _remark_pause_old_estimator->slope();
duke@435 286 }
duke@435 287
duke@435 288 float initial_pause_old_slope() {
duke@435 289 return _initial_pause_old_estimator->slope();
duke@435 290 }
duke@435 291
duke@435 292 float remark_pause_young_slope() {
duke@435 293 return _remark_pause_young_estimator->slope();
duke@435 294 }
duke@435 295
duke@435 296 float initial_pause_young_slope() {
duke@435 297 return _initial_pause_young_estimator->slope();
duke@435 298 }
duke@435 299
duke@435 300 // Update estimators
duke@435 301 void update_minor_pause_old_estimator(double minor_pause_in_ms);
duke@435 302
duke@435 303 // Fraction of processors used by the concurrent phases.
duke@435 304 double concurrent_processor_fraction();
duke@435 305
duke@435 306 // Returns the total times for the concurrent part of the
duke@435 307 // latest collection in seconds.
duke@435 308 double concurrent_collection_time();
duke@435 309
duke@435 310 // Return the total times for the concurrent part of the
duke@435 311 // latest collection in seconds where the times of the various
duke@435 312 // concurrent phases are scaled by the processor fraction used
duke@435 313 // during the phase.
duke@435 314 double scaled_concurrent_collection_time();
duke@435 315
duke@435 316 // Dimensionless concurrent GC cost for all the concurrent phases.
duke@435 317 double concurrent_collection_cost(double interval_in_seconds);
duke@435 318
duke@435 319 // Dimensionless GC cost
duke@435 320 double collection_cost(double pause_in_seconds, double interval_in_seconds);
duke@435 321
duke@435 322 virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; }
duke@435 323
duke@435 324 virtual double time_since_major_gc() const;
duke@435 325
duke@435 326 // This returns the maximum average for the concurrent, ms, and
duke@435 327 // msc collections. This is meant to be used for the calculation
duke@435 328 // of the decayed major gc cost and is not in general the
duke@435 329 // average of all the different types of major collections.
duke@435 330 virtual double major_gc_interval_average_for_decay() const;
duke@435 331
duke@435 332 public:
duke@435 333 CMSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 334 size_t init_promo_size,
duke@435 335 size_t init_survivor_size,
duke@435 336 double max_gc_minor_pause_sec,
duke@435 337 double max_gc_pause_sec,
duke@435 338 uint gc_cost_ratio);
duke@435 339
duke@435 340 // The timers for the stop-the-world phases measure a total
duke@435 341 // stop-the-world time. The timer is started and stopped
duke@435 342 // for each phase but is only reset after the final checkpoint.
duke@435 343 void checkpoint_roots_initial_begin();
duke@435 344 void checkpoint_roots_initial_end(GCCause::Cause gc_cause);
duke@435 345 void checkpoint_roots_final_begin();
duke@435 346 void checkpoint_roots_final_end(GCCause::Cause gc_cause);
duke@435 347
duke@435 348 // Methods for gathering information about the
duke@435 349 // concurrent marking phase of the collection.
duke@435 350 // Records the mutator times and
duke@435 351 // resets the concurrent timer.
duke@435 352 void concurrent_marking_begin();
duke@435 353 // Resets concurrent phase timer in the begin methods and
duke@435 354 // saves the time for a phase in the end methods.
duke@435 355 void concurrent_marking_end();
duke@435 356 void concurrent_sweeping_begin();
duke@435 357 void concurrent_sweeping_end();
duke@435 358 // Similar to the above (e.g., concurrent_marking_end()) and
duke@435 359 // is used for both the precleaning an abortable precleaing
duke@435 360 // phases.
duke@435 361 void concurrent_precleaning_begin();
duke@435 362 void concurrent_precleaning_end();
duke@435 363 // Stops the concurrent phases time. Gathers
duke@435 364 // information and resets the timer.
duke@435 365 void concurrent_phases_end(GCCause::Cause gc_cause,
duke@435 366 size_t cur_eden,
duke@435 367 size_t cur_promo);
duke@435 368
duke@435 369 // Methods for gather information about STW Mark-Sweep-Compact
duke@435 370 void msc_collection_begin();
duke@435 371 void msc_collection_end(GCCause::Cause gc_cause);
duke@435 372
duke@435 373 // Methods for gather information about Mark-Sweep done
duke@435 374 // in the foreground.
duke@435 375 void ms_collection_begin();
duke@435 376 void ms_collection_end(GCCause::Cause gc_cause);
duke@435 377
duke@435 378 // Cost for a mark-sweep tenured gen collection done in the foreground
duke@435 379 double ms_gc_cost() const {
duke@435 380 return MAX2(0.0F, _avg_ms_gc_cost->average());
duke@435 381 }
duke@435 382
duke@435 383 // Cost of collecting the tenured generation. Includes
duke@435 384 // concurrent collection and STW collection costs
duke@435 385 double cms_gc_cost() const;
duke@435 386
duke@435 387 // Cost of STW mark-sweep-compact tenured gen collection.
duke@435 388 double msc_gc_cost() const {
duke@435 389 return MAX2(0.0F, _avg_msc_gc_cost->average());
duke@435 390 }
duke@435 391
duke@435 392 //
duke@435 393 double compacting_gc_cost() const {
duke@435 394 double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost());
duke@435 395 assert(result >= 0.0, "Both minor and major costs are non-negative");
duke@435 396 return result;
duke@435 397 }
duke@435 398
duke@435 399 // Restarts the concurrent phases timer.
duke@435 400 void concurrent_phases_resume();
duke@435 401
twisti@1040 402 // Time beginning and end of the marking phase for
duke@435 403 // a synchronous MS collection. A MS collection
duke@435 404 // that finishes in the foreground can have started
duke@435 405 // in the background. These methods capture the
duke@435 406 // completion of the marking (after the initial
duke@435 407 // marking) that is done in the foreground.
duke@435 408 void ms_collection_marking_begin();
duke@435 409 void ms_collection_marking_end(GCCause::Cause gc_cause);
duke@435 410
duke@435 411 static elapsedTimer* concurrent_timer_ptr() {
duke@435 412 return &_concurrent_timer;
duke@435 413 }
duke@435 414
duke@435 415 AdaptiveWeightedAverage* avg_cms_promo() const {
duke@435 416 return _avg_cms_promo;
duke@435 417 }
duke@435 418
duke@435 419 int change_young_gen_for_maj_pauses() {
duke@435 420 return _change_young_gen_for_maj_pauses;
duke@435 421 }
duke@435 422 void set_change_young_gen_for_maj_pauses(int v) {
duke@435 423 _change_young_gen_for_maj_pauses = v;
duke@435 424 }
duke@435 425
duke@435 426 void clear_internal_time_intervals();
duke@435 427
duke@435 428
duke@435 429 // Either calculated_promo_size_in_bytes() or promo_size()
duke@435 430 // should be deleted.
duke@435 431 size_t promo_size() { return _promo_size; }
duke@435 432 void set_promo_size(size_t v) { _promo_size = v; }
duke@435 433
duke@435 434 // Cost of GC for all types of collections.
duke@435 435 virtual double gc_cost() const;
duke@435 436
duke@435 437 size_t generation_alignment() { return _generation_alignment; }
duke@435 438
tamao@5192 439 virtual void compute_eden_space_size(size_t cur_eden,
tamao@5192 440 size_t max_eden_size);
duke@435 441 // Calculates new survivor space size; returns a new tenuring threshold
duke@435 442 // value. Stores new survivor size in _survivor_size.
jwilhelm@4129 443 virtual uint compute_survivor_space_size_and_threshold(
duke@435 444 bool is_survivor_overflow,
jwilhelm@4129 445 uint tenuring_threshold,
duke@435 446 size_t survivor_limit);
duke@435 447
duke@435 448 virtual void compute_tenured_generation_free_space(size_t cur_tenured_free,
duke@435 449 size_t max_tenured_available,
duke@435 450 size_t cur_eden);
duke@435 451
duke@435 452 size_t eden_decrement_aligned_down(size_t cur_eden);
duke@435 453 size_t eden_increment_aligned_up(size_t cur_eden);
duke@435 454
duke@435 455 size_t adjust_eden_for_pause_time(size_t cur_eden);
duke@435 456 size_t adjust_eden_for_throughput(size_t cur_eden);
duke@435 457 size_t adjust_eden_for_footprint(size_t cur_eden);
duke@435 458
duke@435 459 size_t promo_decrement_aligned_down(size_t cur_promo);
duke@435 460 size_t promo_increment_aligned_up(size_t cur_promo);
duke@435 461
duke@435 462 size_t adjust_promo_for_pause_time(size_t cur_promo);
duke@435 463 size_t adjust_promo_for_throughput(size_t cur_promo);
duke@435 464 size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden);
duke@435 465
duke@435 466 // Scale down the input size by the ratio of the cost to collect the
duke@435 467 // generation to the total GC cost.
duke@435 468 size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost);
duke@435 469
duke@435 470 // Return the value and clear it.
duke@435 471 bool get_and_clear_first_after_collection();
duke@435 472
duke@435 473 // Printing support
duke@435 474 virtual bool print_adaptive_size_policy_on(outputStream* st) const;
duke@435 475 };
stefank@2314 476
stefank@2314 477 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP

mercurial