src/share/vm/opto/callnode.cpp

Fri, 20 Feb 2015 22:12:53 -0500

author
drchase
date
Fri, 20 Feb 2015 22:12:53 -0500
changeset 7605
6e8e0bf87bbe
parent 7166
f8afcfbdbf1c
child 7994
04ff2f6cd0eb
child 8777
09d0d56ca735
permissions
-rw-r--r--

8069412: Locks need better debug-printing support
Summary: Added better debug-printing support and enhanced LogCompilation tool
Reviewed-by: kvn, roland, dholmes

duke@435 1 /*
drchase@7605 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
drchase@7605 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "ci/bcEscapeAnalyzer.hpp"
stefank@2314 28 #include "compiler/oopMap.hpp"
roland@4409 29 #include "opto/callGenerator.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/escape.hpp"
stefank@2314 32 #include "opto/locknode.hpp"
stefank@2314 33 #include "opto/machnode.hpp"
stefank@2314 34 #include "opto/matcher.hpp"
stefank@2314 35 #include "opto/parse.hpp"
stefank@2314 36 #include "opto/regalloc.hpp"
stefank@2314 37 #include "opto/regmask.hpp"
stefank@2314 38 #include "opto/rootnode.hpp"
stefank@2314 39 #include "opto/runtime.hpp"
stefank@2314 40
duke@435 41 // Portions of code courtesy of Clifford Click
duke@435 42
duke@435 43 // Optimization - Graph Style
duke@435 44
duke@435 45 //=============================================================================
duke@435 46 uint StartNode::size_of() const { return sizeof(*this); }
duke@435 47 uint StartNode::cmp( const Node &n ) const
duke@435 48 { return _domain == ((StartNode&)n)._domain; }
duke@435 49 const Type *StartNode::bottom_type() const { return _domain; }
duke@435 50 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
duke@435 51 #ifndef PRODUCT
duke@435 52 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
duke@435 53 #endif
duke@435 54
duke@435 55 //------------------------------Ideal------------------------------------------
duke@435 56 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 57 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 58 }
duke@435 59
duke@435 60 //------------------------------calling_convention-----------------------------
duke@435 61 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
duke@435 62 Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
duke@435 63 }
duke@435 64
duke@435 65 //------------------------------Registers--------------------------------------
duke@435 66 const RegMask &StartNode::in_RegMask(uint) const {
duke@435 67 return RegMask::Empty;
duke@435 68 }
duke@435 69
duke@435 70 //------------------------------match------------------------------------------
duke@435 71 // Construct projections for incoming parameters, and their RegMask info
duke@435 72 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 73 switch (proj->_con) {
duke@435 74 case TypeFunc::Control:
duke@435 75 case TypeFunc::I_O:
duke@435 76 case TypeFunc::Memory:
kvn@4115 77 return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 78 case TypeFunc::FramePtr:
kvn@4115 79 return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
duke@435 80 case TypeFunc::ReturnAdr:
kvn@4115 81 return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
duke@435 82 case TypeFunc::Parms:
duke@435 83 default: {
duke@435 84 uint parm_num = proj->_con - TypeFunc::Parms;
duke@435 85 const Type *t = _domain->field_at(proj->_con);
duke@435 86 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
kvn@4115 87 return new (match->C) ConNode(Type::TOP);
coleenp@4037 88 uint ideal_reg = t->ideal_reg();
duke@435 89 RegMask &rm = match->_calling_convention_mask[parm_num];
kvn@4115 90 return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
duke@435 91 }
duke@435 92 }
duke@435 93 return NULL;
duke@435 94 }
duke@435 95
duke@435 96 //------------------------------StartOSRNode----------------------------------
duke@435 97 // The method start node for an on stack replacement adapter
duke@435 98
duke@435 99 //------------------------------osr_domain-----------------------------
duke@435 100 const TypeTuple *StartOSRNode::osr_domain() {
duke@435 101 const Type **fields = TypeTuple::fields(2);
duke@435 102 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
duke@435 103
duke@435 104 return TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 105 }
duke@435 106
duke@435 107 //=============================================================================
duke@435 108 const char * const ParmNode::names[TypeFunc::Parms+1] = {
duke@435 109 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
duke@435 110 };
duke@435 111
duke@435 112 #ifndef PRODUCT
duke@435 113 void ParmNode::dump_spec(outputStream *st) const {
duke@435 114 if( _con < TypeFunc::Parms ) {
drchase@6680 115 st->print("%s", names[_con]);
duke@435 116 } else {
duke@435 117 st->print("Parm%d: ",_con-TypeFunc::Parms);
duke@435 118 // Verbose and WizardMode dump bottom_type for all nodes
duke@435 119 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
duke@435 120 }
duke@435 121 }
duke@435 122 #endif
duke@435 123
duke@435 124 uint ParmNode::ideal_reg() const {
duke@435 125 switch( _con ) {
duke@435 126 case TypeFunc::Control : // fall through
duke@435 127 case TypeFunc::I_O : // fall through
duke@435 128 case TypeFunc::Memory : return 0;
duke@435 129 case TypeFunc::FramePtr : // fall through
duke@435 130 case TypeFunc::ReturnAdr: return Op_RegP;
duke@435 131 default : assert( _con > TypeFunc::Parms, "" );
duke@435 132 // fall through
duke@435 133 case TypeFunc::Parms : {
duke@435 134 // Type of argument being passed
duke@435 135 const Type *t = in(0)->as_Start()->_domain->field_at(_con);
coleenp@4037 136 return t->ideal_reg();
duke@435 137 }
duke@435 138 }
duke@435 139 ShouldNotReachHere();
duke@435 140 return 0;
duke@435 141 }
duke@435 142
duke@435 143 //=============================================================================
duke@435 144 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
duke@435 145 init_req(TypeFunc::Control,cntrl);
duke@435 146 init_req(TypeFunc::I_O,i_o);
duke@435 147 init_req(TypeFunc::Memory,memory);
duke@435 148 init_req(TypeFunc::FramePtr,frameptr);
duke@435 149 init_req(TypeFunc::ReturnAdr,retadr);
duke@435 150 }
duke@435 151
duke@435 152 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 153 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 154 }
duke@435 155
duke@435 156 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
duke@435 157 return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
duke@435 158 ? Type::TOP
duke@435 159 : Type::BOTTOM;
duke@435 160 }
duke@435 161
duke@435 162 // Do we Match on this edge index or not? No edges on return nodes
duke@435 163 uint ReturnNode::match_edge(uint idx) const {
duke@435 164 return 0;
duke@435 165 }
duke@435 166
duke@435 167
duke@435 168 #ifndef PRODUCT
kvn@4478 169 void ReturnNode::dump_req(outputStream *st) const {
duke@435 170 // Dump the required inputs, enclosed in '(' and ')'
duke@435 171 uint i; // Exit value of loop
kvn@4478 172 for (i = 0; i < req(); i++) { // For all required inputs
kvn@4478 173 if (i == TypeFunc::Parms) st->print("returns");
kvn@4478 174 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
kvn@4478 175 else st->print("_ ");
duke@435 176 }
duke@435 177 }
duke@435 178 #endif
duke@435 179
duke@435 180 //=============================================================================
duke@435 181 RethrowNode::RethrowNode(
duke@435 182 Node* cntrl,
duke@435 183 Node* i_o,
duke@435 184 Node* memory,
duke@435 185 Node* frameptr,
duke@435 186 Node* ret_adr,
duke@435 187 Node* exception
duke@435 188 ) : Node(TypeFunc::Parms + 1) {
duke@435 189 init_req(TypeFunc::Control , cntrl );
duke@435 190 init_req(TypeFunc::I_O , i_o );
duke@435 191 init_req(TypeFunc::Memory , memory );
duke@435 192 init_req(TypeFunc::FramePtr , frameptr );
duke@435 193 init_req(TypeFunc::ReturnAdr, ret_adr);
duke@435 194 init_req(TypeFunc::Parms , exception);
duke@435 195 }
duke@435 196
duke@435 197 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 198 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 199 }
duke@435 200
duke@435 201 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
duke@435 202 return (phase->type(in(TypeFunc::Control)) == Type::TOP)
duke@435 203 ? Type::TOP
duke@435 204 : Type::BOTTOM;
duke@435 205 }
duke@435 206
duke@435 207 uint RethrowNode::match_edge(uint idx) const {
duke@435 208 return 0;
duke@435 209 }
duke@435 210
duke@435 211 #ifndef PRODUCT
kvn@4478 212 void RethrowNode::dump_req(outputStream *st) const {
duke@435 213 // Dump the required inputs, enclosed in '(' and ')'
duke@435 214 uint i; // Exit value of loop
kvn@4478 215 for (i = 0; i < req(); i++) { // For all required inputs
kvn@4478 216 if (i == TypeFunc::Parms) st->print("exception");
kvn@4478 217 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
kvn@4478 218 else st->print("_ ");
duke@435 219 }
duke@435 220 }
duke@435 221 #endif
duke@435 222
duke@435 223 //=============================================================================
duke@435 224 // Do we Match on this edge index or not? Match only target address & method
duke@435 225 uint TailCallNode::match_edge(uint idx) const {
duke@435 226 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
duke@435 227 }
duke@435 228
duke@435 229 //=============================================================================
duke@435 230 // Do we Match on this edge index or not? Match only target address & oop
duke@435 231 uint TailJumpNode::match_edge(uint idx) const {
duke@435 232 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
duke@435 233 }
duke@435 234
duke@435 235 //=============================================================================
twisti@3969 236 JVMState::JVMState(ciMethod* method, JVMState* caller) :
twisti@3969 237 _method(method) {
duke@435 238 assert(method != NULL, "must be valid call site");
cfang@1335 239 _reexecute = Reexecute_Undefined;
duke@435 240 debug_only(_bci = -99); // random garbage value
duke@435 241 debug_only(_map = (SafePointNode*)-1);
duke@435 242 _caller = caller;
duke@435 243 _depth = 1 + (caller == NULL ? 0 : caller->depth());
duke@435 244 _locoff = TypeFunc::Parms;
duke@435 245 _stkoff = _locoff + _method->max_locals();
duke@435 246 _monoff = _stkoff + _method->max_stack();
kvn@498 247 _scloff = _monoff;
duke@435 248 _endoff = _monoff;
duke@435 249 _sp = 0;
duke@435 250 }
twisti@3969 251 JVMState::JVMState(int stack_size) :
twisti@3969 252 _method(NULL) {
duke@435 253 _bci = InvocationEntryBci;
cfang@1335 254 _reexecute = Reexecute_Undefined;
duke@435 255 debug_only(_map = (SafePointNode*)-1);
duke@435 256 _caller = NULL;
duke@435 257 _depth = 1;
duke@435 258 _locoff = TypeFunc::Parms;
duke@435 259 _stkoff = _locoff;
duke@435 260 _monoff = _stkoff + stack_size;
kvn@498 261 _scloff = _monoff;
duke@435 262 _endoff = _monoff;
duke@435 263 _sp = 0;
duke@435 264 }
duke@435 265
duke@435 266 //--------------------------------of_depth-------------------------------------
duke@435 267 JVMState* JVMState::of_depth(int d) const {
duke@435 268 const JVMState* jvmp = this;
duke@435 269 assert(0 < d && (uint)d <= depth(), "oob");
duke@435 270 for (int skip = depth() - d; skip > 0; skip--) {
duke@435 271 jvmp = jvmp->caller();
duke@435 272 }
duke@435 273 assert(jvmp->depth() == (uint)d, "found the right one");
duke@435 274 return (JVMState*)jvmp;
duke@435 275 }
duke@435 276
duke@435 277 //-----------------------------same_calls_as-----------------------------------
duke@435 278 bool JVMState::same_calls_as(const JVMState* that) const {
duke@435 279 if (this == that) return true;
duke@435 280 if (this->depth() != that->depth()) return false;
duke@435 281 const JVMState* p = this;
duke@435 282 const JVMState* q = that;
duke@435 283 for (;;) {
duke@435 284 if (p->_method != q->_method) return false;
duke@435 285 if (p->_method == NULL) return true; // bci is irrelevant
duke@435 286 if (p->_bci != q->_bci) return false;
cfang@1335 287 if (p->_reexecute != q->_reexecute) return false;
duke@435 288 p = p->caller();
duke@435 289 q = q->caller();
duke@435 290 if (p == q) return true;
duke@435 291 assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 //------------------------------debug_start------------------------------------
duke@435 296 uint JVMState::debug_start() const {
duke@435 297 debug_only(JVMState* jvmroot = of_depth(1));
duke@435 298 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
duke@435 299 return of_depth(1)->locoff();
duke@435 300 }
duke@435 301
duke@435 302 //-------------------------------debug_end-------------------------------------
duke@435 303 uint JVMState::debug_end() const {
duke@435 304 debug_only(JVMState* jvmroot = of_depth(1));
duke@435 305 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
duke@435 306 return endoff();
duke@435 307 }
duke@435 308
duke@435 309 //------------------------------debug_depth------------------------------------
duke@435 310 uint JVMState::debug_depth() const {
duke@435 311 uint total = 0;
duke@435 312 for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
duke@435 313 total += jvmp->debug_size();
duke@435 314 }
duke@435 315 return total;
duke@435 316 }
duke@435 317
kvn@498 318 #ifndef PRODUCT
kvn@498 319
duke@435 320 //------------------------------format_helper----------------------------------
duke@435 321 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
duke@435 322 // any defined value or not. If it does, print out the register or constant.
kvn@498 323 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
duke@435 324 if (n == NULL) { st->print(" NULL"); return; }
kvn@498 325 if (n->is_SafePointScalarObject()) {
kvn@498 326 // Scalar replacement.
kvn@498 327 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
kvn@498 328 scobjs->append_if_missing(spobj);
kvn@498 329 int sco_n = scobjs->find(spobj);
kvn@498 330 assert(sco_n >= 0, "");
kvn@498 331 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
kvn@498 332 return;
kvn@498 333 }
kvn@4478 334 if (regalloc->node_regs_max_index() > 0 &&
kvn@4478 335 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
duke@435 336 char buf[50];
duke@435 337 regalloc->dump_register(n,buf);
duke@435 338 st->print(" %s%d]=%s",msg,i,buf);
duke@435 339 } else { // No register, but might be constant
duke@435 340 const Type *t = n->bottom_type();
duke@435 341 switch (t->base()) {
duke@435 342 case Type::Int:
duke@435 343 st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
duke@435 344 break;
duke@435 345 case Type::AnyPtr:
goetz@6488 346 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
duke@435 347 st->print(" %s%d]=#NULL",msg,i);
duke@435 348 break;
duke@435 349 case Type::AryPtr:
duke@435 350 case Type::InstPtr:
drchase@6680 351 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
duke@435 352 break;
coleenp@4037 353 case Type::KlassPtr:
drchase@6680 354 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
coleenp@4037 355 break;
coleenp@4037 356 case Type::MetadataPtr:
drchase@6680 357 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
coleenp@4037 358 break;
kvn@766 359 case Type::NarrowOop:
drchase@6680 360 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
kvn@766 361 break;
duke@435 362 case Type::RawPtr:
drchase@6680 363 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
duke@435 364 break;
duke@435 365 case Type::DoubleCon:
duke@435 366 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
duke@435 367 break;
duke@435 368 case Type::FloatCon:
duke@435 369 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
duke@435 370 break;
duke@435 371 case Type::Long:
drchase@6680 372 st->print(" %s%d]=#"INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
duke@435 373 break;
duke@435 374 case Type::Half:
duke@435 375 case Type::Top:
duke@435 376 st->print(" %s%d]=_",msg,i);
duke@435 377 break;
duke@435 378 default: ShouldNotReachHere();
duke@435 379 }
duke@435 380 }
duke@435 381 }
duke@435 382
duke@435 383 //------------------------------format-----------------------------------------
duke@435 384 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
duke@435 385 st->print(" #");
kvn@4478 386 if (_method) {
duke@435 387 _method->print_short_name(st);
duke@435 388 st->print(" @ bci:%d ",_bci);
duke@435 389 } else {
duke@435 390 st->print_cr(" runtime stub ");
duke@435 391 return;
duke@435 392 }
duke@435 393 if (n->is_MachSafePoint()) {
kvn@498 394 GrowableArray<SafePointScalarObjectNode*> scobjs;
duke@435 395 MachSafePointNode *mcall = n->as_MachSafePoint();
duke@435 396 uint i;
duke@435 397 // Print locals
kvn@4478 398 for (i = 0; i < (uint)loc_size(); i++)
kvn@4478 399 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
duke@435 400 // Print stack
duke@435 401 for (i = 0; i < (uint)stk_size(); i++) {
duke@435 402 if ((uint)(_stkoff + i) >= mcall->len())
duke@435 403 st->print(" oob ");
duke@435 404 else
kvn@4478 405 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
duke@435 406 }
duke@435 407 for (i = 0; (int)i < nof_monitors(); i++) {
duke@435 408 Node *box = mcall->monitor_box(this, i);
duke@435 409 Node *obj = mcall->monitor_obj(this, i);
kvn@4478 410 if (regalloc->node_regs_max_index() > 0 &&
kvn@4478 411 OptoReg::is_valid(regalloc->get_reg_first(box))) {
kvn@3406 412 box = BoxLockNode::box_node(box);
kvn@4478 413 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
duke@435 414 } else {
kvn@3406 415 OptoReg::Name box_reg = BoxLockNode::reg(box);
duke@435 416 st->print(" MON-BOX%d=%s+%d",
duke@435 417 i,
duke@435 418 OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 419 regalloc->reg2offset(box_reg));
duke@435 420 }
kvn@895 421 const char* obj_msg = "MON-OBJ[";
kvn@895 422 if (EliminateLocks) {
kvn@3406 423 if (BoxLockNode::box_node(box)->is_eliminated())
kvn@895 424 obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
kvn@895 425 }
kvn@4478 426 format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
kvn@498 427 }
kvn@498 428
kvn@498 429 for (i = 0; i < (uint)scobjs.length(); i++) {
kvn@498 430 // Scalar replaced objects.
drchase@6680 431 st->cr();
kvn@498 432 st->print(" # ScObj" INT32_FORMAT " ", i);
kvn@498 433 SafePointScalarObjectNode* spobj = scobjs.at(i);
kvn@498 434 ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
kvn@498 435 assert(cik->is_instance_klass() ||
kvn@498 436 cik->is_array_klass(), "Not supported allocation.");
kvn@498 437 ciInstanceKlass *iklass = NULL;
kvn@498 438 if (cik->is_instance_klass()) {
kvn@498 439 cik->print_name_on(st);
kvn@498 440 iklass = cik->as_instance_klass();
kvn@498 441 } else if (cik->is_type_array_klass()) {
kvn@498 442 cik->as_array_klass()->base_element_type()->print_name_on(st);
kvn@1475 443 st->print("[%d]", spobj->n_fields());
kvn@498 444 } else if (cik->is_obj_array_klass()) {
kvn@1475 445 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
kvn@1475 446 if (cie->is_instance_klass()) {
kvn@1475 447 cie->print_name_on(st);
kvn@1475 448 } else if (cie->is_type_array_klass()) {
kvn@1475 449 cie->as_array_klass()->base_element_type()->print_name_on(st);
kvn@1475 450 } else {
kvn@1475 451 ShouldNotReachHere();
kvn@498 452 }
kvn@1475 453 st->print("[%d]", spobj->n_fields());
kvn@1475 454 int ndim = cik->as_array_klass()->dimension() - 1;
kvn@498 455 while (ndim-- > 0) {
kvn@498 456 st->print("[]");
kvn@498 457 }
kvn@498 458 }
kvn@1475 459 st->print("={");
kvn@498 460 uint nf = spobj->n_fields();
kvn@498 461 if (nf > 0) {
kvn@5626 462 uint first_ind = spobj->first_index(mcall->jvms());
kvn@498 463 Node* fld_node = mcall->in(first_ind);
kvn@498 464 ciField* cifield;
kvn@498 465 if (iklass != NULL) {
kvn@498 466 st->print(" [");
kvn@498 467 cifield = iklass->nonstatic_field_at(0);
kvn@498 468 cifield->print_name_on(st);
kvn@4478 469 format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
kvn@498 470 } else {
kvn@4478 471 format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
kvn@498 472 }
kvn@498 473 for (uint j = 1; j < nf; j++) {
kvn@498 474 fld_node = mcall->in(first_ind+j);
kvn@498 475 if (iklass != NULL) {
kvn@498 476 st->print(", [");
kvn@498 477 cifield = iklass->nonstatic_field_at(j);
kvn@498 478 cifield->print_name_on(st);
kvn@4478 479 format_helper(regalloc, st, fld_node, ":", j, &scobjs);
kvn@498 480 } else {
kvn@4478 481 format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
kvn@498 482 }
kvn@498 483 }
kvn@498 484 }
kvn@498 485 st->print(" }");
duke@435 486 }
duke@435 487 }
drchase@6680 488 st->cr();
kvn@4478 489 if (caller() != NULL) caller()->format(regalloc, n, st);
duke@435 490 }
duke@435 491
kvn@498 492
duke@435 493 void JVMState::dump_spec(outputStream *st) const {
duke@435 494 if (_method != NULL) {
duke@435 495 bool printed = false;
duke@435 496 if (!Verbose) {
duke@435 497 // The JVMS dumps make really, really long lines.
duke@435 498 // Take out the most boring parts, which are the package prefixes.
duke@435 499 char buf[500];
duke@435 500 stringStream namest(buf, sizeof(buf));
duke@435 501 _method->print_short_name(&namest);
duke@435 502 if (namest.count() < sizeof(buf)) {
duke@435 503 const char* name = namest.base();
duke@435 504 if (name[0] == ' ') ++name;
duke@435 505 const char* endcn = strchr(name, ':'); // end of class name
duke@435 506 if (endcn == NULL) endcn = strchr(name, '(');
duke@435 507 if (endcn == NULL) endcn = name + strlen(name);
duke@435 508 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
duke@435 509 --endcn;
duke@435 510 st->print(" %s", endcn);
duke@435 511 printed = true;
duke@435 512 }
duke@435 513 }
duke@435 514 if (!printed)
duke@435 515 _method->print_short_name(st);
duke@435 516 st->print(" @ bci:%d",_bci);
cfang@1366 517 if(_reexecute == Reexecute_True)
cfang@1366 518 st->print(" reexecute");
duke@435 519 } else {
duke@435 520 st->print(" runtime stub");
duke@435 521 }
duke@435 522 if (caller() != NULL) caller()->dump_spec(st);
duke@435 523 }
duke@435 524
kvn@498 525
duke@435 526 void JVMState::dump_on(outputStream* st) const {
kvn@5110 527 bool print_map = _map && !((uintptr_t)_map & 1) &&
kvn@5110 528 ((caller() == NULL) || (caller()->map() != _map));
kvn@5110 529 if (print_map) {
duke@435 530 if (_map->len() > _map->req()) { // _map->has_exceptions()
duke@435 531 Node* ex = _map->in(_map->req()); // _map->next_exception()
duke@435 532 // skip the first one; it's already being printed
duke@435 533 while (ex != NULL && ex->len() > ex->req()) {
duke@435 534 ex = ex->in(ex->req()); // ex->next_exception()
duke@435 535 ex->dump(1);
duke@435 536 }
duke@435 537 }
kvn@5110 538 _map->dump(Verbose ? 2 : 1);
kvn@5110 539 }
kvn@5110 540 if (caller() != NULL) {
kvn@5110 541 caller()->dump_on(st);
duke@435 542 }
twisti@3969 543 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
twisti@3969 544 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
duke@435 545 if (_method == NULL) {
duke@435 546 st->print_cr("(none)");
duke@435 547 } else {
duke@435 548 _method->print_name(st);
duke@435 549 st->cr();
duke@435 550 if (bci() >= 0 && bci() < _method->code_size()) {
duke@435 551 st->print(" bc: ");
duke@435 552 _method->print_codes_on(bci(), bci()+1, st);
duke@435 553 }
duke@435 554 }
duke@435 555 }
duke@435 556
duke@435 557 // Extra way to dump a jvms from the debugger,
duke@435 558 // to avoid a bug with C++ member function calls.
duke@435 559 void dump_jvms(JVMState* jvms) {
duke@435 560 jvms->dump();
duke@435 561 }
duke@435 562 #endif
duke@435 563
duke@435 564 //--------------------------clone_shallow--------------------------------------
duke@435 565 JVMState* JVMState::clone_shallow(Compile* C) const {
duke@435 566 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
duke@435 567 n->set_bci(_bci);
cfang@1335 568 n->_reexecute = _reexecute;
duke@435 569 n->set_locoff(_locoff);
duke@435 570 n->set_stkoff(_stkoff);
duke@435 571 n->set_monoff(_monoff);
kvn@498 572 n->set_scloff(_scloff);
duke@435 573 n->set_endoff(_endoff);
duke@435 574 n->set_sp(_sp);
duke@435 575 n->set_map(_map);
duke@435 576 return n;
duke@435 577 }
duke@435 578
duke@435 579 //---------------------------clone_deep----------------------------------------
duke@435 580 JVMState* JVMState::clone_deep(Compile* C) const {
duke@435 581 JVMState* n = clone_shallow(C);
duke@435 582 for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
duke@435 583 p->_caller = p->_caller->clone_shallow(C);
duke@435 584 }
duke@435 585 assert(n->depth() == depth(), "sanity");
duke@435 586 assert(n->debug_depth() == debug_depth(), "sanity");
duke@435 587 return n;
duke@435 588 }
duke@435 589
kvn@5110 590 /**
kvn@5110 591 * Reset map for all callers
kvn@5110 592 */
kvn@5110 593 void JVMState::set_map_deep(SafePointNode* map) {
kvn@5110 594 for (JVMState* p = this; p->_caller != NULL; p = p->_caller) {
kvn@5110 595 p->set_map(map);
kvn@5110 596 }
kvn@5110 597 }
kvn@5110 598
goetz@6499 599 // Adapt offsets in in-array after adding or removing an edge.
goetz@6499 600 // Prerequisite is that the JVMState is used by only one node.
goetz@6499 601 void JVMState::adapt_position(int delta) {
goetz@6499 602 for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
goetz@6499 603 jvms->set_locoff(jvms->locoff() + delta);
goetz@6499 604 jvms->set_stkoff(jvms->stkoff() + delta);
goetz@6499 605 jvms->set_monoff(jvms->monoff() + delta);
goetz@6499 606 jvms->set_scloff(jvms->scloff() + delta);
goetz@6499 607 jvms->set_endoff(jvms->endoff() + delta);
goetz@6499 608 }
goetz@6499 609 }
goetz@6499 610
roland@6723 611 // Mirror the stack size calculation in the deopt code
roland@6723 612 // How much stack space would we need at this point in the program in
roland@6723 613 // case of deoptimization?
roland@6723 614 int JVMState::interpreter_frame_size() const {
roland@6723 615 const JVMState* jvms = this;
roland@6723 616 int size = 0;
roland@6723 617 int callee_parameters = 0;
roland@6723 618 int callee_locals = 0;
roland@6723 619 int extra_args = method()->max_stack() - stk_size();
roland@6723 620
roland@6723 621 while (jvms != NULL) {
roland@6723 622 int locks = jvms->nof_monitors();
roland@6723 623 int temps = jvms->stk_size();
roland@6723 624 bool is_top_frame = (jvms == this);
roland@6723 625 ciMethod* method = jvms->method();
roland@6723 626
roland@6723 627 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
roland@6723 628 temps + callee_parameters,
roland@6723 629 extra_args,
roland@6723 630 locks,
roland@6723 631 callee_parameters,
roland@6723 632 callee_locals,
roland@6723 633 is_top_frame);
roland@6723 634 size += frame_size;
roland@6723 635
roland@6723 636 callee_parameters = method->size_of_parameters();
roland@6723 637 callee_locals = method->max_locals();
roland@6723 638 extra_args = 0;
roland@6723 639 jvms = jvms->caller();
roland@6723 640 }
roland@6723 641 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
roland@6723 642 }
roland@6723 643
duke@435 644 //=============================================================================
duke@435 645 uint CallNode::cmp( const Node &n ) const
duke@435 646 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
duke@435 647 #ifndef PRODUCT
kvn@4478 648 void CallNode::dump_req(outputStream *st) const {
duke@435 649 // Dump the required inputs, enclosed in '(' and ')'
duke@435 650 uint i; // Exit value of loop
kvn@4478 651 for (i = 0; i < req(); i++) { // For all required inputs
kvn@4478 652 if (i == TypeFunc::Parms) st->print("(");
kvn@4478 653 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
kvn@4478 654 else st->print("_ ");
duke@435 655 }
kvn@4478 656 st->print(")");
duke@435 657 }
duke@435 658
duke@435 659 void CallNode::dump_spec(outputStream *st) const {
duke@435 660 st->print(" ");
duke@435 661 tf()->dump_on(st);
duke@435 662 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
duke@435 663 if (jvms() != NULL) jvms()->dump_spec(st);
duke@435 664 }
duke@435 665 #endif
duke@435 666
duke@435 667 const Type *CallNode::bottom_type() const { return tf()->range(); }
duke@435 668 const Type *CallNode::Value(PhaseTransform *phase) const {
duke@435 669 if (phase->type(in(0)) == Type::TOP) return Type::TOP;
duke@435 670 return tf()->range();
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------calling_convention-----------------------------
duke@435 674 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
duke@435 675 // Use the standard compiler calling convention
duke@435 676 Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
duke@435 677 }
duke@435 678
duke@435 679
duke@435 680 //------------------------------match------------------------------------------
duke@435 681 // Construct projections for control, I/O, memory-fields, ..., and
duke@435 682 // return result(s) along with their RegMask info
duke@435 683 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 684 switch (proj->_con) {
duke@435 685 case TypeFunc::Control:
duke@435 686 case TypeFunc::I_O:
duke@435 687 case TypeFunc::Memory:
kvn@4115 688 return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 689
duke@435 690 case TypeFunc::Parms+1: // For LONG & DOUBLE returns
duke@435 691 assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
duke@435 692 // 2nd half of doubles and longs
kvn@4115 693 return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
duke@435 694
duke@435 695 case TypeFunc::Parms: { // Normal returns
coleenp@4037 696 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
duke@435 697 OptoRegPair regs = is_CallRuntime()
duke@435 698 ? match->c_return_value(ideal_reg,true) // Calls into C runtime
duke@435 699 : match-> return_value(ideal_reg,true); // Calls into compiled Java code
duke@435 700 RegMask rm = RegMask(regs.first());
duke@435 701 if( OptoReg::is_valid(regs.second()) )
duke@435 702 rm.Insert( regs.second() );
kvn@4115 703 return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
duke@435 704 }
duke@435 705
duke@435 706 case TypeFunc::ReturnAdr:
duke@435 707 case TypeFunc::FramePtr:
duke@435 708 default:
duke@435 709 ShouldNotReachHere();
duke@435 710 }
duke@435 711 return NULL;
duke@435 712 }
duke@435 713
duke@435 714 // Do we Match on this edge index or not? Match no edges
duke@435 715 uint CallNode::match_edge(uint idx) const {
duke@435 716 return 0;
duke@435 717 }
duke@435 718
kvn@500 719 //
kvn@509 720 // Determine whether the call could modify the field of the specified
kvn@509 721 // instance at the specified offset.
kvn@500 722 //
kvn@5110 723 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
kvn@5110 724 assert((t_oop != NULL), "sanity");
kvn@5110 725 if (t_oop->is_known_instance()) {
kvn@5110 726 // The instance_id is set only for scalar-replaceable allocations which
kvn@5110 727 // are not passed as arguments according to Escape Analysis.
kvn@5110 728 return false;
kvn@500 729 }
kvn@5110 730 if (t_oop->is_ptr_to_boxed_value()) {
kvn@5110 731 ciKlass* boxing_klass = t_oop->klass();
kvn@5110 732 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
kvn@5110 733 // Skip unrelated boxing methods.
kvn@5110 734 Node* proj = proj_out(TypeFunc::Parms);
kvn@5110 735 if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
kvn@5110 736 return false;
kvn@5110 737 }
kvn@5110 738 }
kvn@5110 739 if (is_CallJava() && as_CallJava()->method() != NULL) {
kvn@5110 740 ciMethod* meth = as_CallJava()->method();
kvn@5110 741 if (meth->is_accessor()) {
kvn@5110 742 return false;
kvn@5110 743 }
kvn@5110 744 // May modify (by reflection) if an boxing object is passed
kvn@5110 745 // as argument or returned.
kvn@5110 746 if (returns_pointer() && (proj_out(TypeFunc::Parms) != NULL)) {
kvn@5110 747 Node* proj = proj_out(TypeFunc::Parms);
kvn@5110 748 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
kvn@5110 749 if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
kvn@5110 750 (inst_t->klass() == boxing_klass))) {
kvn@5110 751 return true;
kvn@5110 752 }
kvn@5110 753 }
kvn@5110 754 const TypeTuple* d = tf()->domain();
kvn@5110 755 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@5110 756 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
kvn@5110 757 if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
kvn@5110 758 (inst_t->klass() == boxing_klass))) {
kvn@5110 759 return true;
kvn@5110 760 }
kvn@5110 761 }
kvn@5110 762 return false;
kvn@5110 763 }
kvn@5110 764 }
kvn@5110 765 return true;
kvn@500 766 }
kvn@500 767
kvn@500 768 // Does this call have a direct reference to n other than debug information?
kvn@500 769 bool CallNode::has_non_debug_use(Node *n) {
kvn@500 770 const TypeTuple * d = tf()->domain();
kvn@500 771 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 772 Node *arg = in(i);
kvn@500 773 if (arg == n) {
kvn@500 774 return true;
kvn@500 775 }
kvn@500 776 }
kvn@500 777 return false;
kvn@500 778 }
kvn@500 779
kvn@500 780 // Returns the unique CheckCastPP of a call
roland@7166 781 // or 'this' if there are several CheckCastPP or unexpected uses
kvn@500 782 // or returns NULL if there is no one.
kvn@500 783 Node *CallNode::result_cast() {
kvn@500 784 Node *cast = NULL;
kvn@500 785
kvn@500 786 Node *p = proj_out(TypeFunc::Parms);
kvn@500 787 if (p == NULL)
kvn@500 788 return NULL;
kvn@500 789
kvn@500 790 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
kvn@500 791 Node *use = p->fast_out(i);
kvn@500 792 if (use->is_CheckCastPP()) {
kvn@500 793 if (cast != NULL) {
kvn@500 794 return this; // more than 1 CheckCastPP
kvn@500 795 }
kvn@500 796 cast = use;
roland@7166 797 } else if (!use->is_Initialize() &&
roland@7166 798 !use->is_AddP()) {
roland@7166 799 // Expected uses are restricted to a CheckCastPP, an Initialize
roland@7166 800 // node, and AddP nodes. If we encounter any other use (a Phi
roland@7166 801 // node can be seen in rare cases) return this to prevent
roland@7166 802 // incorrect optimizations.
roland@7166 803 return this;
kvn@500 804 }
kvn@500 805 }
kvn@500 806 return cast;
kvn@500 807 }
kvn@500 808
kvn@500 809
never@1515 810 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
never@1515 811 projs->fallthrough_proj = NULL;
never@1515 812 projs->fallthrough_catchproj = NULL;
never@1515 813 projs->fallthrough_ioproj = NULL;
never@1515 814 projs->catchall_ioproj = NULL;
never@1515 815 projs->catchall_catchproj = NULL;
never@1515 816 projs->fallthrough_memproj = NULL;
never@1515 817 projs->catchall_memproj = NULL;
never@1515 818 projs->resproj = NULL;
never@1515 819 projs->exobj = NULL;
never@1515 820
never@1515 821 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
never@1515 822 ProjNode *pn = fast_out(i)->as_Proj();
never@1515 823 if (pn->outcnt() == 0) continue;
never@1515 824 switch (pn->_con) {
never@1515 825 case TypeFunc::Control:
never@1515 826 {
never@1515 827 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
never@1515 828 projs->fallthrough_proj = pn;
never@1515 829 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
never@1515 830 const Node *cn = pn->fast_out(j);
never@1515 831 if (cn->is_Catch()) {
never@1515 832 ProjNode *cpn = NULL;
never@1515 833 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
never@1515 834 cpn = cn->fast_out(k)->as_Proj();
never@1515 835 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
never@1515 836 if (cpn->_con == CatchProjNode::fall_through_index)
never@1515 837 projs->fallthrough_catchproj = cpn;
never@1515 838 else {
never@1515 839 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
never@1515 840 projs->catchall_catchproj = cpn;
never@1515 841 }
never@1515 842 }
never@1515 843 }
never@1515 844 break;
never@1515 845 }
never@1515 846 case TypeFunc::I_O:
never@1515 847 if (pn->_is_io_use)
never@1515 848 projs->catchall_ioproj = pn;
never@1515 849 else
never@1515 850 projs->fallthrough_ioproj = pn;
never@1515 851 for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
never@1515 852 Node* e = pn->out(j);
roland@4357 853 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
never@1515 854 assert(projs->exobj == NULL, "only one");
never@1515 855 projs->exobj = e;
never@1515 856 }
never@1515 857 }
never@1515 858 break;
never@1515 859 case TypeFunc::Memory:
never@1515 860 if (pn->_is_io_use)
never@1515 861 projs->catchall_memproj = pn;
never@1515 862 else
never@1515 863 projs->fallthrough_memproj = pn;
never@1515 864 break;
never@1515 865 case TypeFunc::Parms:
never@1515 866 projs->resproj = pn;
never@1515 867 break;
never@1515 868 default:
never@1515 869 assert(false, "unexpected projection from allocation node.");
never@1515 870 }
never@1515 871 }
never@1515 872
never@1515 873 // The resproj may not exist because the result couuld be ignored
never@1515 874 // and the exception object may not exist if an exception handler
never@1515 875 // swallows the exception but all the other must exist and be found.
never@1515 876 assert(projs->fallthrough_proj != NULL, "must be found");
roland@4409 877 assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
roland@4409 878 assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj != NULL, "must be found");
roland@4409 879 assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj != NULL, "must be found");
roland@4409 880 assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj != NULL, "must be found");
never@1515 881 if (separate_io_proj) {
roland@4409 882 assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj != NULL, "must be found");
roland@4409 883 assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj != NULL, "must be found");
never@1515 884 }
never@1515 885 }
never@1515 886
roland@4409 887 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
roland@4409 888 CallGenerator* cg = generator();
roland@4409 889 if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
roland@4409 890 // Check whether this MH handle call becomes a candidate for inlining
roland@4409 891 ciMethod* callee = cg->method();
roland@4409 892 vmIntrinsics::ID iid = callee->intrinsic_id();
roland@4409 893 if (iid == vmIntrinsics::_invokeBasic) {
roland@4409 894 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
roland@4409 895 phase->C->prepend_late_inline(cg);
roland@4409 896 set_generator(NULL);
roland@4409 897 }
roland@4409 898 } else {
roland@4409 899 assert(callee->has_member_arg(), "wrong type of call?");
roland@4409 900 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
roland@4409 901 phase->C->prepend_late_inline(cg);
roland@4409 902 set_generator(NULL);
roland@4409 903 }
roland@4409 904 }
roland@4409 905 }
roland@4409 906 return SafePointNode::Ideal(phase, can_reshape);
roland@4409 907 }
roland@4409 908
never@1515 909
duke@435 910 //=============================================================================
duke@435 911 uint CallJavaNode::size_of() const { return sizeof(*this); }
duke@435 912 uint CallJavaNode::cmp( const Node &n ) const {
duke@435 913 CallJavaNode &call = (CallJavaNode&)n;
duke@435 914 return CallNode::cmp(call) && _method == call._method;
duke@435 915 }
duke@435 916 #ifndef PRODUCT
duke@435 917 void CallJavaNode::dump_spec(outputStream *st) const {
duke@435 918 if( _method ) _method->print_short_name(st);
duke@435 919 CallNode::dump_spec(st);
duke@435 920 }
duke@435 921 #endif
duke@435 922
duke@435 923 //=============================================================================
duke@435 924 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
duke@435 925 uint CallStaticJavaNode::cmp( const Node &n ) const {
duke@435 926 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
duke@435 927 return CallJavaNode::cmp(call);
duke@435 928 }
duke@435 929
duke@435 930 //----------------------------uncommon_trap_request----------------------------
duke@435 931 // If this is an uncommon trap, return the request code, else zero.
duke@435 932 int CallStaticJavaNode::uncommon_trap_request() const {
duke@435 933 if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
duke@435 934 return extract_uncommon_trap_request(this);
duke@435 935 }
duke@435 936 return 0;
duke@435 937 }
duke@435 938 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
duke@435 939 #ifndef PRODUCT
duke@435 940 if (!(call->req() > TypeFunc::Parms &&
duke@435 941 call->in(TypeFunc::Parms) != NULL &&
duke@435 942 call->in(TypeFunc::Parms)->is_Con())) {
goetz@6488 943 assert(in_dump() != 0, "OK if dumping");
duke@435 944 tty->print("[bad uncommon trap]");
duke@435 945 return 0;
duke@435 946 }
duke@435 947 #endif
duke@435 948 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
duke@435 949 }
duke@435 950
duke@435 951 #ifndef PRODUCT
duke@435 952 void CallStaticJavaNode::dump_spec(outputStream *st) const {
duke@435 953 st->print("# Static ");
duke@435 954 if (_name != NULL) {
duke@435 955 st->print("%s", _name);
duke@435 956 int trap_req = uncommon_trap_request();
duke@435 957 if (trap_req != 0) {
duke@435 958 char buf[100];
duke@435 959 st->print("(%s)",
duke@435 960 Deoptimization::format_trap_request(buf, sizeof(buf),
duke@435 961 trap_req));
duke@435 962 }
duke@435 963 st->print(" ");
duke@435 964 }
duke@435 965 CallJavaNode::dump_spec(st);
duke@435 966 }
duke@435 967 #endif
duke@435 968
duke@435 969 //=============================================================================
duke@435 970 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
duke@435 971 uint CallDynamicJavaNode::cmp( const Node &n ) const {
duke@435 972 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
duke@435 973 return CallJavaNode::cmp(call);
duke@435 974 }
duke@435 975 #ifndef PRODUCT
duke@435 976 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
duke@435 977 st->print("# Dynamic ");
duke@435 978 CallJavaNode::dump_spec(st);
duke@435 979 }
duke@435 980 #endif
duke@435 981
duke@435 982 //=============================================================================
duke@435 983 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
duke@435 984 uint CallRuntimeNode::cmp( const Node &n ) const {
duke@435 985 CallRuntimeNode &call = (CallRuntimeNode&)n;
duke@435 986 return CallNode::cmp(call) && !strcmp(_name,call._name);
duke@435 987 }
duke@435 988 #ifndef PRODUCT
duke@435 989 void CallRuntimeNode::dump_spec(outputStream *st) const {
duke@435 990 st->print("# ");
drchase@6680 991 st->print("%s", _name);
duke@435 992 CallNode::dump_spec(st);
duke@435 993 }
duke@435 994 #endif
duke@435 995
duke@435 996 //------------------------------calling_convention-----------------------------
duke@435 997 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
duke@435 998 Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
duke@435 999 }
duke@435 1000
duke@435 1001 //=============================================================================
duke@435 1002 //------------------------------calling_convention-----------------------------
duke@435 1003
duke@435 1004
duke@435 1005 //=============================================================================
duke@435 1006 #ifndef PRODUCT
duke@435 1007 void CallLeafNode::dump_spec(outputStream *st) const {
duke@435 1008 st->print("# ");
drchase@6680 1009 st->print("%s", _name);
duke@435 1010 CallNode::dump_spec(st);
duke@435 1011 }
duke@435 1012 #endif
duke@435 1013
duke@435 1014 //=============================================================================
duke@435 1015
duke@435 1016 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
duke@435 1017 assert(verify_jvms(jvms), "jvms must match");
duke@435 1018 int loc = jvms->locoff() + idx;
duke@435 1019 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
duke@435 1020 // If current local idx is top then local idx - 1 could
duke@435 1021 // be a long/double that needs to be killed since top could
duke@435 1022 // represent the 2nd half ofthe long/double.
duke@435 1023 uint ideal = in(loc -1)->ideal_reg();
duke@435 1024 if (ideal == Op_RegD || ideal == Op_RegL) {
duke@435 1025 // set other (low index) half to top
duke@435 1026 set_req(loc - 1, in(loc));
duke@435 1027 }
duke@435 1028 }
duke@435 1029 set_req(loc, c);
duke@435 1030 }
duke@435 1031
duke@435 1032 uint SafePointNode::size_of() const { return sizeof(*this); }
duke@435 1033 uint SafePointNode::cmp( const Node &n ) const {
duke@435 1034 return (&n == this); // Always fail except on self
duke@435 1035 }
duke@435 1036
duke@435 1037 //-------------------------set_next_exception----------------------------------
duke@435 1038 void SafePointNode::set_next_exception(SafePointNode* n) {
duke@435 1039 assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
duke@435 1040 if (len() == req()) {
duke@435 1041 if (n != NULL) add_prec(n);
duke@435 1042 } else {
duke@435 1043 set_prec(req(), n);
duke@435 1044 }
duke@435 1045 }
duke@435 1046
duke@435 1047
duke@435 1048 //----------------------------next_exception-----------------------------------
duke@435 1049 SafePointNode* SafePointNode::next_exception() const {
duke@435 1050 if (len() == req()) {
duke@435 1051 return NULL;
duke@435 1052 } else {
duke@435 1053 Node* n = in(req());
duke@435 1054 assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
duke@435 1055 return (SafePointNode*) n;
duke@435 1056 }
duke@435 1057 }
duke@435 1058
duke@435 1059
duke@435 1060 //------------------------------Ideal------------------------------------------
duke@435 1061 // Skip over any collapsed Regions
duke@435 1062 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@740 1063 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 1064 }
duke@435 1065
duke@435 1066 //------------------------------Identity---------------------------------------
duke@435 1067 // Remove obviously duplicate safepoints
duke@435 1068 Node *SafePointNode::Identity( PhaseTransform *phase ) {
duke@435 1069
duke@435 1070 // If you have back to back safepoints, remove one
duke@435 1071 if( in(TypeFunc::Control)->is_SafePoint() )
duke@435 1072 return in(TypeFunc::Control);
duke@435 1073
duke@435 1074 if( in(0)->is_Proj() ) {
duke@435 1075 Node *n0 = in(0)->in(0);
duke@435 1076 // Check if he is a call projection (except Leaf Call)
duke@435 1077 if( n0->is_Catch() ) {
duke@435 1078 n0 = n0->in(0)->in(0);
duke@435 1079 assert( n0->is_Call(), "expect a call here" );
duke@435 1080 }
duke@435 1081 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
duke@435 1082 // Useless Safepoint, so remove it
duke@435 1083 return in(TypeFunc::Control);
duke@435 1084 }
duke@435 1085 }
duke@435 1086
duke@435 1087 return this;
duke@435 1088 }
duke@435 1089
duke@435 1090 //------------------------------Value------------------------------------------
duke@435 1091 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
duke@435 1092 if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 1093 if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
duke@435 1094 return Type::CONTROL;
duke@435 1095 }
duke@435 1096
duke@435 1097 #ifndef PRODUCT
duke@435 1098 void SafePointNode::dump_spec(outputStream *st) const {
duke@435 1099 st->print(" SafePoint ");
roland@7041 1100 _replaced_nodes.dump(st);
duke@435 1101 }
duke@435 1102 #endif
duke@435 1103
duke@435 1104 const RegMask &SafePointNode::in_RegMask(uint idx) const {
duke@435 1105 if( idx < TypeFunc::Parms ) return RegMask::Empty;
duke@435 1106 // Values outside the domain represent debug info
duke@435 1107 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
duke@435 1108 }
duke@435 1109 const RegMask &SafePointNode::out_RegMask() const {
duke@435 1110 return RegMask::Empty;
duke@435 1111 }
duke@435 1112
duke@435 1113
duke@435 1114 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
duke@435 1115 assert((int)grow_by > 0, "sanity");
duke@435 1116 int monoff = jvms->monoff();
kvn@498 1117 int scloff = jvms->scloff();
duke@435 1118 int endoff = jvms->endoff();
duke@435 1119 assert(endoff == (int)req(), "no other states or debug info after me");
duke@435 1120 Node* top = Compile::current()->top();
duke@435 1121 for (uint i = 0; i < grow_by; i++) {
duke@435 1122 ins_req(monoff, top);
duke@435 1123 }
duke@435 1124 jvms->set_monoff(monoff + grow_by);
kvn@498 1125 jvms->set_scloff(scloff + grow_by);
duke@435 1126 jvms->set_endoff(endoff + grow_by);
duke@435 1127 }
duke@435 1128
duke@435 1129 void SafePointNode::push_monitor(const FastLockNode *lock) {
duke@435 1130 // Add a LockNode, which points to both the original BoxLockNode (the
duke@435 1131 // stack space for the monitor) and the Object being locked.
duke@435 1132 const int MonitorEdges = 2;
duke@435 1133 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
duke@435 1134 assert(req() == jvms()->endoff(), "correct sizing");
kvn@498 1135 int nextmon = jvms()->scloff();
duke@435 1136 if (GenerateSynchronizationCode) {
kvn@5626 1137 ins_req(nextmon, lock->box_node());
kvn@5626 1138 ins_req(nextmon+1, lock->obj_node());
duke@435 1139 } else {
kvn@895 1140 Node* top = Compile::current()->top();
kvn@5626 1141 ins_req(nextmon, top);
kvn@5626 1142 ins_req(nextmon, top);
duke@435 1143 }
kvn@5626 1144 jvms()->set_scloff(nextmon + MonitorEdges);
duke@435 1145 jvms()->set_endoff(req());
duke@435 1146 }
duke@435 1147
duke@435 1148 void SafePointNode::pop_monitor() {
duke@435 1149 // Delete last monitor from debug info
duke@435 1150 debug_only(int num_before_pop = jvms()->nof_monitors());
kvn@5626 1151 const int MonitorEdges = 2;
kvn@5626 1152 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
kvn@498 1153 int scloff = jvms()->scloff();
duke@435 1154 int endoff = jvms()->endoff();
kvn@498 1155 int new_scloff = scloff - MonitorEdges;
duke@435 1156 int new_endoff = endoff - MonitorEdges;
kvn@498 1157 jvms()->set_scloff(new_scloff);
duke@435 1158 jvms()->set_endoff(new_endoff);
kvn@5626 1159 while (scloff > new_scloff) del_req_ordered(--scloff);
duke@435 1160 assert(jvms()->nof_monitors() == num_before_pop-1, "");
duke@435 1161 }
duke@435 1162
duke@435 1163 Node *SafePointNode::peek_monitor_box() const {
duke@435 1164 int mon = jvms()->nof_monitors() - 1;
duke@435 1165 assert(mon >= 0, "most have a monitor");
duke@435 1166 return monitor_box(jvms(), mon);
duke@435 1167 }
duke@435 1168
duke@435 1169 Node *SafePointNode::peek_monitor_obj() const {
duke@435 1170 int mon = jvms()->nof_monitors() - 1;
duke@435 1171 assert(mon >= 0, "most have a monitor");
duke@435 1172 return monitor_obj(jvms(), mon);
duke@435 1173 }
duke@435 1174
duke@435 1175 // Do we Match on this edge index or not? Match no edges
duke@435 1176 uint SafePointNode::match_edge(uint idx) const {
duke@435 1177 if( !needs_polling_address_input() )
duke@435 1178 return 0;
duke@435 1179
duke@435 1180 return (TypeFunc::Parms == idx);
duke@435 1181 }
duke@435 1182
kvn@498 1183 //============== SafePointScalarObjectNode ==============
kvn@498 1184
kvn@498 1185 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 1186 #ifdef ASSERT
kvn@498 1187 AllocateNode* alloc,
kvn@498 1188 #endif
kvn@498 1189 uint first_index,
kvn@498 1190 uint n_fields) :
kvn@498 1191 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
kvn@498 1192 #ifdef ASSERT
kvn@498 1193 _alloc(alloc),
kvn@498 1194 #endif
kvn@498 1195 _first_index(first_index),
kvn@498 1196 _n_fields(n_fields)
kvn@498 1197 {
kvn@498 1198 init_class_id(Class_SafePointScalarObject);
kvn@498 1199 }
kvn@498 1200
kvn@3311 1201 // Do not allow value-numbering for SafePointScalarObject node.
kvn@3311 1202 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
kvn@3311 1203 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
kvn@3311 1204 return (&n == this); // Always fail except on self
kvn@3311 1205 }
kvn@498 1206
kvn@498 1207 uint SafePointScalarObjectNode::ideal_reg() const {
kvn@498 1208 return 0; // No matching to machine instruction
kvn@498 1209 }
kvn@498 1210
kvn@498 1211 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
kvn@498 1212 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
kvn@498 1213 }
kvn@498 1214
kvn@498 1215 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
kvn@498 1216 return RegMask::Empty;
kvn@498 1217 }
kvn@498 1218
kvn@498 1219 uint SafePointScalarObjectNode::match_edge(uint idx) const {
kvn@498 1220 return 0;
kvn@498 1221 }
kvn@498 1222
kvn@498 1223 SafePointScalarObjectNode*
kvn@5626 1224 SafePointScalarObjectNode::clone(Dict* sosn_map) const {
kvn@498 1225 void* cached = (*sosn_map)[(void*)this];
kvn@498 1226 if (cached != NULL) {
kvn@498 1227 return (SafePointScalarObjectNode*)cached;
kvn@498 1228 }
kvn@498 1229 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
kvn@498 1230 sosn_map->Insert((void*)this, (void*)res);
kvn@498 1231 return res;
kvn@498 1232 }
kvn@498 1233
kvn@498 1234
kvn@498 1235 #ifndef PRODUCT
kvn@498 1236 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
kvn@498 1237 st->print(" # fields@[%d..%d]", first_index(),
kvn@498 1238 first_index() + n_fields() - 1);
kvn@498 1239 }
kvn@498 1240
kvn@498 1241 #endif
kvn@498 1242
duke@435 1243 //=============================================================================
duke@435 1244 uint AllocateNode::size_of() const { return sizeof(*this); }
duke@435 1245
duke@435 1246 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
duke@435 1247 Node *ctrl, Node *mem, Node *abio,
duke@435 1248 Node *size, Node *klass_node, Node *initial_test)
duke@435 1249 : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
duke@435 1250 {
duke@435 1251 init_class_id(Class_Allocate);
duke@435 1252 init_flags(Flag_is_macro);
kvn@474 1253 _is_scalar_replaceable = false;
kvn@5110 1254 _is_non_escaping = false;
duke@435 1255 Node *topnode = C->top();
duke@435 1256
duke@435 1257 init_req( TypeFunc::Control , ctrl );
duke@435 1258 init_req( TypeFunc::I_O , abio );
duke@435 1259 init_req( TypeFunc::Memory , mem );
duke@435 1260 init_req( TypeFunc::ReturnAdr, topnode );
duke@435 1261 init_req( TypeFunc::FramePtr , topnode );
duke@435 1262 init_req( AllocSize , size);
duke@435 1263 init_req( KlassNode , klass_node);
duke@435 1264 init_req( InitialTest , initial_test);
duke@435 1265 init_req( ALength , topnode);
duke@435 1266 C->add_macro_node(this);
duke@435 1267 }
duke@435 1268
duke@435 1269 //=============================================================================
kvn@1139 1270 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1139 1271 if (remove_dead_region(phase, can_reshape)) return this;
kvn@3311 1272 // Don't bother trying to transform a dead node
kvn@3311 1273 if (in(0) && in(0)->is_top()) return NULL;
kvn@1139 1274
kvn@1139 1275 const Type* type = phase->type(Ideal_length());
kvn@1139 1276 if (type->isa_int() && type->is_int()->_hi < 0) {
kvn@1139 1277 if (can_reshape) {
kvn@1139 1278 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1139 1279 // Unreachable fall through path (negative array length),
kvn@1139 1280 // the allocation can only throw so disconnect it.
kvn@1139 1281 Node* proj = proj_out(TypeFunc::Control);
kvn@1139 1282 Node* catchproj = NULL;
kvn@1139 1283 if (proj != NULL) {
kvn@1139 1284 for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
kvn@1139 1285 Node *cn = proj->fast_out(i);
kvn@1139 1286 if (cn->is_Catch()) {
kvn@1139 1287 catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
kvn@1139 1288 break;
kvn@1139 1289 }
kvn@1139 1290 }
kvn@1139 1291 }
kvn@1139 1292 if (catchproj != NULL && catchproj->outcnt() > 0 &&
kvn@1139 1293 (catchproj->outcnt() > 1 ||
kvn@1139 1294 catchproj->unique_out()->Opcode() != Op_Halt)) {
kvn@1139 1295 assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
kvn@1139 1296 Node* nproj = catchproj->clone();
kvn@1139 1297 igvn->register_new_node_with_optimizer(nproj);
kvn@1139 1298
kvn@4115 1299 Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
kvn@1139 1300 frame = phase->transform(frame);
kvn@1139 1301 // Halt & Catch Fire
kvn@4115 1302 Node *halt = new (phase->C) HaltNode( nproj, frame );
kvn@1139 1303 phase->C->root()->add_req(halt);
kvn@1139 1304 phase->transform(halt);
kvn@1139 1305
kvn@1139 1306 igvn->replace_node(catchproj, phase->C->top());
kvn@1139 1307 return this;
kvn@1139 1308 }
kvn@1139 1309 } else {
kvn@1139 1310 // Can't correct it during regular GVN so register for IGVN
kvn@1139 1311 phase->C->record_for_igvn(this);
kvn@1139 1312 }
kvn@1139 1313 }
kvn@1139 1314 return NULL;
kvn@1139 1315 }
kvn@1139 1316
rasbold@801 1317 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
rasbold@801 1318 // CastII, if appropriate. If we are not allowed to create new nodes, and
rasbold@801 1319 // a CastII is appropriate, return NULL.
rasbold@801 1320 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
rasbold@801 1321 Node *length = in(AllocateNode::ALength);
rasbold@801 1322 assert(length != NULL, "length is not null");
rasbold@801 1323
rasbold@801 1324 const TypeInt* length_type = phase->find_int_type(length);
rasbold@801 1325 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
rasbold@801 1326
rasbold@801 1327 if (ary_type != NULL && length_type != NULL) {
rasbold@801 1328 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
rasbold@801 1329 if (narrow_length_type != length_type) {
rasbold@801 1330 // Assert one of:
rasbold@801 1331 // - the narrow_length is 0
rasbold@801 1332 // - the narrow_length is not wider than length
rasbold@801 1333 assert(narrow_length_type == TypeInt::ZERO ||
kvn@5110 1334 length_type->is_con() && narrow_length_type->is_con() &&
kvn@5110 1335 (narrow_length_type->_hi <= length_type->_lo) ||
rasbold@801 1336 (narrow_length_type->_hi <= length_type->_hi &&
rasbold@801 1337 narrow_length_type->_lo >= length_type->_lo),
rasbold@801 1338 "narrow type must be narrower than length type");
rasbold@801 1339
rasbold@801 1340 // Return NULL if new nodes are not allowed
rasbold@801 1341 if (!allow_new_nodes) return NULL;
rasbold@801 1342 // Create a cast which is control dependent on the initialization to
rasbold@801 1343 // propagate the fact that the array length must be positive.
kvn@4115 1344 length = new (phase->C) CastIINode(length, narrow_length_type);
rasbold@801 1345 length->set_req(0, initialization()->proj_out(0));
rasbold@801 1346 }
rasbold@801 1347 }
rasbold@801 1348
rasbold@801 1349 return length;
rasbold@801 1350 }
rasbold@801 1351
duke@435 1352 //=============================================================================
duke@435 1353 uint LockNode::size_of() const { return sizeof(*this); }
duke@435 1354
duke@435 1355 // Redundant lock elimination
duke@435 1356 //
duke@435 1357 // There are various patterns of locking where we release and
duke@435 1358 // immediately reacquire a lock in a piece of code where no operations
duke@435 1359 // occur in between that would be observable. In those cases we can
duke@435 1360 // skip releasing and reacquiring the lock without violating any
duke@435 1361 // fairness requirements. Doing this around a loop could cause a lock
duke@435 1362 // to be held for a very long time so we concentrate on non-looping
duke@435 1363 // control flow. We also require that the operations are fully
duke@435 1364 // redundant meaning that we don't introduce new lock operations on
duke@435 1365 // some paths so to be able to eliminate it on others ala PRE. This
duke@435 1366 // would probably require some more extensive graph manipulation to
duke@435 1367 // guarantee that the memory edges were all handled correctly.
duke@435 1368 //
duke@435 1369 // Assuming p is a simple predicate which can't trap in any way and s
duke@435 1370 // is a synchronized method consider this code:
duke@435 1371 //
duke@435 1372 // s();
duke@435 1373 // if (p)
duke@435 1374 // s();
duke@435 1375 // else
duke@435 1376 // s();
duke@435 1377 // s();
duke@435 1378 //
duke@435 1379 // 1. The unlocks of the first call to s can be eliminated if the
duke@435 1380 // locks inside the then and else branches are eliminated.
duke@435 1381 //
duke@435 1382 // 2. The unlocks of the then and else branches can be eliminated if
duke@435 1383 // the lock of the final call to s is eliminated.
duke@435 1384 //
duke@435 1385 // Either of these cases subsumes the simple case of sequential control flow
duke@435 1386 //
duke@435 1387 // Addtionally we can eliminate versions without the else case:
duke@435 1388 //
duke@435 1389 // s();
duke@435 1390 // if (p)
duke@435 1391 // s();
duke@435 1392 // s();
duke@435 1393 //
duke@435 1394 // 3. In this case we eliminate the unlock of the first s, the lock
duke@435 1395 // and unlock in the then case and the lock in the final s.
duke@435 1396 //
duke@435 1397 // Note also that in all these cases the then/else pieces don't have
duke@435 1398 // to be trivial as long as they begin and end with synchronization
duke@435 1399 // operations.
duke@435 1400 //
duke@435 1401 // s();
duke@435 1402 // if (p)
duke@435 1403 // s();
duke@435 1404 // f();
duke@435 1405 // s();
duke@435 1406 // s();
duke@435 1407 //
duke@435 1408 // The code will work properly for this case, leaving in the unlock
duke@435 1409 // before the call to f and the relock after it.
duke@435 1410 //
duke@435 1411 // A potentially interesting case which isn't handled here is when the
duke@435 1412 // locking is partially redundant.
duke@435 1413 //
duke@435 1414 // s();
duke@435 1415 // if (p)
duke@435 1416 // s();
duke@435 1417 //
duke@435 1418 // This could be eliminated putting unlocking on the else case and
duke@435 1419 // eliminating the first unlock and the lock in the then side.
duke@435 1420 // Alternatively the unlock could be moved out of the then side so it
duke@435 1421 // was after the merge and the first unlock and second lock
duke@435 1422 // eliminated. This might require less manipulation of the memory
duke@435 1423 // state to get correct.
duke@435 1424 //
duke@435 1425 // Additionally we might allow work between a unlock and lock before
duke@435 1426 // giving up eliminating the locks. The current code disallows any
duke@435 1427 // conditional control flow between these operations. A formulation
duke@435 1428 // similar to partial redundancy elimination computing the
duke@435 1429 // availability of unlocking and the anticipatability of locking at a
duke@435 1430 // program point would allow detection of fully redundant locking with
duke@435 1431 // some amount of work in between. I'm not sure how often I really
duke@435 1432 // think that would occur though. Most of the cases I've seen
duke@435 1433 // indicate it's likely non-trivial work would occur in between.
duke@435 1434 // There may be other more complicated constructs where we could
duke@435 1435 // eliminate locking but I haven't seen any others appear as hot or
duke@435 1436 // interesting.
duke@435 1437 //
duke@435 1438 // Locking and unlocking have a canonical form in ideal that looks
duke@435 1439 // roughly like this:
duke@435 1440 //
duke@435 1441 // <obj>
duke@435 1442 // | \\------+
duke@435 1443 // | \ \
duke@435 1444 // | BoxLock \
duke@435 1445 // | | | \
duke@435 1446 // | | \ \
duke@435 1447 // | | FastLock
duke@435 1448 // | | /
duke@435 1449 // | | /
duke@435 1450 // | | |
duke@435 1451 //
duke@435 1452 // Lock
duke@435 1453 // |
duke@435 1454 // Proj #0
duke@435 1455 // |
duke@435 1456 // MembarAcquire
duke@435 1457 // |
duke@435 1458 // Proj #0
duke@435 1459 //
duke@435 1460 // MembarRelease
duke@435 1461 // |
duke@435 1462 // Proj #0
duke@435 1463 // |
duke@435 1464 // Unlock
duke@435 1465 // |
duke@435 1466 // Proj #0
duke@435 1467 //
duke@435 1468 //
duke@435 1469 // This code proceeds by processing Lock nodes during PhaseIterGVN
duke@435 1470 // and searching back through its control for the proper code
duke@435 1471 // patterns. Once it finds a set of lock and unlock operations to
duke@435 1472 // eliminate they are marked as eliminatable which causes the
duke@435 1473 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
duke@435 1474 //
duke@435 1475 //=============================================================================
duke@435 1476
duke@435 1477 //
duke@435 1478 // Utility function to skip over uninteresting control nodes. Nodes skipped are:
duke@435 1479 // - copy regions. (These may not have been optimized away yet.)
duke@435 1480 // - eliminated locking nodes
duke@435 1481 //
duke@435 1482 static Node *next_control(Node *ctrl) {
duke@435 1483 if (ctrl == NULL)
duke@435 1484 return NULL;
duke@435 1485 while (1) {
duke@435 1486 if (ctrl->is_Region()) {
duke@435 1487 RegionNode *r = ctrl->as_Region();
duke@435 1488 Node *n = r->is_copy();
duke@435 1489 if (n == NULL)
duke@435 1490 break; // hit a region, return it
duke@435 1491 else
duke@435 1492 ctrl = n;
duke@435 1493 } else if (ctrl->is_Proj()) {
duke@435 1494 Node *in0 = ctrl->in(0);
duke@435 1495 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
duke@435 1496 ctrl = in0->in(0);
duke@435 1497 } else {
duke@435 1498 break;
duke@435 1499 }
duke@435 1500 } else {
duke@435 1501 break; // found an interesting control
duke@435 1502 }
duke@435 1503 }
duke@435 1504 return ctrl;
duke@435 1505 }
duke@435 1506 //
duke@435 1507 // Given a control, see if it's the control projection of an Unlock which
duke@435 1508 // operating on the same object as lock.
duke@435 1509 //
duke@435 1510 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 1511 GrowableArray<AbstractLockNode*> &lock_ops) {
duke@435 1512 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
duke@435 1513 if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
duke@435 1514 Node *n = ctrl_proj->in(0);
duke@435 1515 if (n != NULL && n->is_Unlock()) {
duke@435 1516 UnlockNode *unlock = n->as_Unlock();
kvn@3407 1517 if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
kvn@3406 1518 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
kvn@3406 1519 !unlock->is_eliminated()) {
duke@435 1520 lock_ops.append(unlock);
duke@435 1521 return true;
duke@435 1522 }
duke@435 1523 }
duke@435 1524 }
duke@435 1525 return false;
duke@435 1526 }
duke@435 1527
duke@435 1528 //
duke@435 1529 // Find the lock matching an unlock. Returns null if a safepoint
duke@435 1530 // or complicated control is encountered first.
duke@435 1531 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
duke@435 1532 LockNode *lock_result = NULL;
duke@435 1533 // find the matching lock, or an intervening safepoint
duke@435 1534 Node *ctrl = next_control(unlock->in(0));
duke@435 1535 while (1) {
duke@435 1536 assert(ctrl != NULL, "invalid control graph");
duke@435 1537 assert(!ctrl->is_Start(), "missing lock for unlock");
duke@435 1538 if (ctrl->is_top()) break; // dead control path
duke@435 1539 if (ctrl->is_Proj()) ctrl = ctrl->in(0);
duke@435 1540 if (ctrl->is_SafePoint()) {
duke@435 1541 break; // found a safepoint (may be the lock we are searching for)
duke@435 1542 } else if (ctrl->is_Region()) {
duke@435 1543 // Check for a simple diamond pattern. Punt on anything more complicated
duke@435 1544 if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
duke@435 1545 Node *in1 = next_control(ctrl->in(1));
duke@435 1546 Node *in2 = next_control(ctrl->in(2));
duke@435 1547 if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
duke@435 1548 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
duke@435 1549 ctrl = next_control(in1->in(0)->in(0));
duke@435 1550 } else {
duke@435 1551 break;
duke@435 1552 }
duke@435 1553 } else {
duke@435 1554 break;
duke@435 1555 }
duke@435 1556 } else {
duke@435 1557 ctrl = next_control(ctrl->in(0)); // keep searching
duke@435 1558 }
duke@435 1559 }
duke@435 1560 if (ctrl->is_Lock()) {
duke@435 1561 LockNode *lock = ctrl->as_Lock();
kvn@3407 1562 if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
kvn@3406 1563 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
duke@435 1564 lock_result = lock;
duke@435 1565 }
duke@435 1566 }
duke@435 1567 return lock_result;
duke@435 1568 }
duke@435 1569
duke@435 1570 // This code corresponds to case 3 above.
duke@435 1571
duke@435 1572 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 1573 GrowableArray<AbstractLockNode*> &lock_ops) {
duke@435 1574 Node* if_node = node->in(0);
duke@435 1575 bool if_true = node->is_IfTrue();
duke@435 1576
duke@435 1577 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
duke@435 1578 Node *lock_ctrl = next_control(if_node->in(0));
duke@435 1579 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
duke@435 1580 Node* lock1_node = NULL;
duke@435 1581 ProjNode* proj = if_node->as_If()->proj_out(!if_true);
duke@435 1582 if (if_true) {
duke@435 1583 if (proj->is_IfFalse() && proj->outcnt() == 1) {
duke@435 1584 lock1_node = proj->unique_out();
duke@435 1585 }
duke@435 1586 } else {
duke@435 1587 if (proj->is_IfTrue() && proj->outcnt() == 1) {
duke@435 1588 lock1_node = proj->unique_out();
duke@435 1589 }
duke@435 1590 }
duke@435 1591 if (lock1_node != NULL && lock1_node->is_Lock()) {
duke@435 1592 LockNode *lock1 = lock1_node->as_Lock();
kvn@3407 1593 if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
kvn@3406 1594 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
kvn@3406 1595 !lock1->is_eliminated()) {
duke@435 1596 lock_ops.append(lock1);
duke@435 1597 return true;
duke@435 1598 }
duke@435 1599 }
duke@435 1600 }
duke@435 1601 }
duke@435 1602
duke@435 1603 lock_ops.trunc_to(0);
duke@435 1604 return false;
duke@435 1605 }
duke@435 1606
duke@435 1607 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 1608 GrowableArray<AbstractLockNode*> &lock_ops) {
duke@435 1609 // check each control merging at this point for a matching unlock.
duke@435 1610 // in(0) should be self edge so skip it.
duke@435 1611 for (int i = 1; i < (int)region->req(); i++) {
duke@435 1612 Node *in_node = next_control(region->in(i));
duke@435 1613 if (in_node != NULL) {
duke@435 1614 if (find_matching_unlock(in_node, lock, lock_ops)) {
duke@435 1615 // found a match so keep on checking.
duke@435 1616 continue;
duke@435 1617 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
duke@435 1618 continue;
duke@435 1619 }
duke@435 1620
duke@435 1621 // If we fall through to here then it was some kind of node we
duke@435 1622 // don't understand or there wasn't a matching unlock, so give
duke@435 1623 // up trying to merge locks.
duke@435 1624 lock_ops.trunc_to(0);
duke@435 1625 return false;
duke@435 1626 }
duke@435 1627 }
duke@435 1628 return true;
duke@435 1629
duke@435 1630 }
duke@435 1631
duke@435 1632 #ifndef PRODUCT
duke@435 1633 //
duke@435 1634 // Create a counter which counts the number of times this lock is acquired
duke@435 1635 //
duke@435 1636 void AbstractLockNode::create_lock_counter(JVMState* state) {
duke@435 1637 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
duke@435 1638 }
duke@435 1639
kvn@3406 1640 void AbstractLockNode::set_eliminated_lock_counter() {
duke@435 1641 if (_counter) {
duke@435 1642 // Update the counter to indicate that this lock was eliminated.
duke@435 1643 // The counter update code will stay around even though the
duke@435 1644 // optimizer will eliminate the lock operation itself.
duke@435 1645 _counter->set_tag(NamedCounter::EliminatedLockCounter);
duke@435 1646 }
kvn@3406 1647 }
duke@435 1648 #endif
duke@435 1649
duke@435 1650 //=============================================================================
duke@435 1651 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1652
kvn@501 1653 // perform any generic optimizations first (returns 'this' or NULL)
duke@435 1654 Node *result = SafePointNode::Ideal(phase, can_reshape);
kvn@3311 1655 if (result != NULL) return result;
kvn@3311 1656 // Don't bother trying to transform a dead node
kvn@3311 1657 if (in(0) && in(0)->is_top()) return NULL;
duke@435 1658
duke@435 1659 // Now see if we can optimize away this lock. We don't actually
duke@435 1660 // remove the locking here, we simply set the _eliminate flag which
duke@435 1661 // prevents macro expansion from expanding the lock. Since we don't
duke@435 1662 // modify the graph, the value returned from this function is the
duke@435 1663 // one computed above.
kvn@3406 1664 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
kvn@501 1665 //
kvn@501 1666 // If we are locking an unescaped object, the lock/unlock is unnecessary
kvn@501 1667 //
kvn@895 1668 ConnectionGraph *cgr = phase->C->congraph();
kvn@3651 1669 if (cgr != NULL && cgr->not_global_escape(obj_node())) {
kvn@3406 1670 assert(!is_eliminated() || is_coarsened(), "sanity");
kvn@3406 1671 // The lock could be marked eliminated by lock coarsening
kvn@3406 1672 // code during first IGVN before EA. Replace coarsened flag
kvn@3406 1673 // to eliminate all associated locks/unlocks.
drchase@7605 1674 #ifdef ASSERT
drchase@7605 1675 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
drchase@7605 1676 #endif
kvn@3406 1677 this->set_non_esc_obj();
kvn@501 1678 return result;
kvn@501 1679 }
kvn@501 1680
duke@435 1681 //
duke@435 1682 // Try lock coarsening
duke@435 1683 //
duke@435 1684 PhaseIterGVN* iter = phase->is_IterGVN();
kvn@3311 1685 if (iter != NULL && !is_eliminated()) {
duke@435 1686
duke@435 1687 GrowableArray<AbstractLockNode*> lock_ops;
duke@435 1688
duke@435 1689 Node *ctrl = next_control(in(0));
duke@435 1690
duke@435 1691 // now search back for a matching Unlock
duke@435 1692 if (find_matching_unlock(ctrl, this, lock_ops)) {
duke@435 1693 // found an unlock directly preceding this lock. This is the
duke@435 1694 // case of single unlock directly control dependent on a
duke@435 1695 // single lock which is the trivial version of case 1 or 2.
duke@435 1696 } else if (ctrl->is_Region() ) {
duke@435 1697 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
duke@435 1698 // found lock preceded by multiple unlocks along all paths
duke@435 1699 // joining at this point which is case 3 in description above.
duke@435 1700 }
duke@435 1701 } else {
duke@435 1702 // see if this lock comes from either half of an if and the
duke@435 1703 // predecessors merges unlocks and the other half of the if
duke@435 1704 // performs a lock.
duke@435 1705 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
duke@435 1706 // found unlock splitting to an if with locks on both branches.
duke@435 1707 }
duke@435 1708 }
duke@435 1709
duke@435 1710 if (lock_ops.length() > 0) {
duke@435 1711 // add ourselves to the list of locks to be eliminated.
duke@435 1712 lock_ops.append(this);
duke@435 1713
duke@435 1714 #ifndef PRODUCT
duke@435 1715 if (PrintEliminateLocks) {
duke@435 1716 int locks = 0;
duke@435 1717 int unlocks = 0;
duke@435 1718 for (int i = 0; i < lock_ops.length(); i++) {
duke@435 1719 AbstractLockNode* lock = lock_ops.at(i);
kvn@501 1720 if (lock->Opcode() == Op_Lock)
kvn@501 1721 locks++;
kvn@501 1722 else
kvn@501 1723 unlocks++;
duke@435 1724 if (Verbose) {
duke@435 1725 lock->dump(1);
duke@435 1726 }
duke@435 1727 }
duke@435 1728 tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
duke@435 1729 }
duke@435 1730 #endif
duke@435 1731
duke@435 1732 // for each of the identified locks, mark them
duke@435 1733 // as eliminatable
duke@435 1734 for (int i = 0; i < lock_ops.length(); i++) {
duke@435 1735 AbstractLockNode* lock = lock_ops.at(i);
duke@435 1736
kvn@3406 1737 // Mark it eliminated by coarsening and update any counters
drchase@7605 1738 #ifdef ASSERT
drchase@7605 1739 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
drchase@7605 1740 #endif
kvn@895 1741 lock->set_coarsened();
duke@435 1742 }
kvn@3311 1743 } else if (ctrl->is_Region() &&
duke@435 1744 iter->_worklist.member(ctrl)) {
duke@435 1745 // We weren't able to find any opportunities but the region this
duke@435 1746 // lock is control dependent on hasn't been processed yet so put
duke@435 1747 // this lock back on the worklist so we can check again once any
duke@435 1748 // region simplification has occurred.
duke@435 1749 iter->_worklist.push(this);
duke@435 1750 }
duke@435 1751 }
duke@435 1752 }
duke@435 1753
duke@435 1754 return result;
duke@435 1755 }
duke@435 1756
duke@435 1757 //=============================================================================
kvn@3406 1758 bool LockNode::is_nested_lock_region() {
drchase@7605 1759 return is_nested_lock_region(NULL);
drchase@7605 1760 }
drchase@7605 1761
drchase@7605 1762 // p is used for access to compilation log; no logging if NULL
drchase@7605 1763 bool LockNode::is_nested_lock_region(Compile * c) {
kvn@3419 1764 BoxLockNode* box = box_node()->as_BoxLock();
kvn@3419 1765 int stk_slot = box->stack_slot();
drchase@7605 1766 if (stk_slot <= 0) {
drchase@7605 1767 #ifdef ASSERT
drchase@7605 1768 this->log_lock_optimization(c, "eliminate_lock_INLR_1");
drchase@7605 1769 #endif
kvn@3406 1770 return false; // External lock or it is not Box (Phi node).
drchase@7605 1771 }
kvn@3406 1772
kvn@3406 1773 // Ignore complex cases: merged locks or multiple locks.
kvn@3406 1774 Node* obj = obj_node();
kvn@3406 1775 LockNode* unique_lock = NULL;
drchase@7605 1776 if (!box->is_simple_lock_region(&unique_lock, obj)) {
drchase@7605 1777 #ifdef ASSERT
drchase@7605 1778 this->log_lock_optimization(c, "eliminate_lock_INLR_2a");
drchase@7605 1779 #endif
drchase@7605 1780 return false;
drchase@7605 1781 }
drchase@7605 1782 if (unique_lock != this) {
drchase@7605 1783 #ifdef ASSERT
drchase@7605 1784 this->log_lock_optimization(c, "eliminate_lock_INLR_2b");
drchase@7605 1785 #endif
kvn@3406 1786 return false;
kvn@3406 1787 }
kvn@3406 1788
kvn@3406 1789 // Look for external lock for the same object.
kvn@3406 1790 SafePointNode* sfn = this->as_SafePoint();
kvn@3406 1791 JVMState* youngest_jvms = sfn->jvms();
kvn@3406 1792 int max_depth = youngest_jvms->depth();
kvn@3406 1793 for (int depth = 1; depth <= max_depth; depth++) {
kvn@3406 1794 JVMState* jvms = youngest_jvms->of_depth(depth);
kvn@3406 1795 int num_mon = jvms->nof_monitors();
kvn@3406 1796 // Loop over monitors
kvn@3406 1797 for (int idx = 0; idx < num_mon; idx++) {
kvn@3406 1798 Node* obj_node = sfn->monitor_obj(jvms, idx);
kvn@3419 1799 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
kvn@3407 1800 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
kvn@3406 1801 return true;
kvn@3406 1802 }
kvn@3406 1803 }
kvn@3406 1804 }
drchase@7605 1805 #ifdef ASSERT
drchase@7605 1806 this->log_lock_optimization(c, "eliminate_lock_INLR_3");
drchase@7605 1807 #endif
kvn@3406 1808 return false;
kvn@3406 1809 }
kvn@3406 1810
kvn@3406 1811 //=============================================================================
duke@435 1812 uint UnlockNode::size_of() const { return sizeof(*this); }
duke@435 1813
duke@435 1814 //=============================================================================
duke@435 1815 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1816
kvn@501 1817 // perform any generic optimizations first (returns 'this' or NULL)
kvn@3311 1818 Node *result = SafePointNode::Ideal(phase, can_reshape);
kvn@3311 1819 if (result != NULL) return result;
kvn@3311 1820 // Don't bother trying to transform a dead node
kvn@3311 1821 if (in(0) && in(0)->is_top()) return NULL;
duke@435 1822
duke@435 1823 // Now see if we can optimize away this unlock. We don't actually
duke@435 1824 // remove the unlocking here, we simply set the _eliminate flag which
duke@435 1825 // prevents macro expansion from expanding the unlock. Since we don't
duke@435 1826 // modify the graph, the value returned from this function is the
duke@435 1827 // one computed above.
kvn@501 1828 // Escape state is defined after Parse phase.
kvn@3406 1829 if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
duke@435 1830 //
kvn@501 1831 // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
duke@435 1832 //
kvn@895 1833 ConnectionGraph *cgr = phase->C->congraph();
kvn@3651 1834 if (cgr != NULL && cgr->not_global_escape(obj_node())) {
kvn@3406 1835 assert(!is_eliminated() || is_coarsened(), "sanity");
kvn@3406 1836 // The lock could be marked eliminated by lock coarsening
kvn@3406 1837 // code during first IGVN before EA. Replace coarsened flag
kvn@3406 1838 // to eliminate all associated locks/unlocks.
drchase@7605 1839 #ifdef ASSERT
drchase@7605 1840 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
drchase@7605 1841 #endif
kvn@3406 1842 this->set_non_esc_obj();
duke@435 1843 }
duke@435 1844 }
duke@435 1845 return result;
duke@435 1846 }
drchase@7605 1847
drchase@7605 1848 const char * AbstractLockNode::kind_as_string() const {
drchase@7605 1849 return is_coarsened() ? "coarsened" :
drchase@7605 1850 is_nested() ? "nested" :
drchase@7605 1851 is_non_esc_obj() ? "non_escaping" :
drchase@7605 1852 "?";
drchase@7605 1853 }
drchase@7605 1854
drchase@7605 1855 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag) const {
drchase@7605 1856 if (C == NULL) {
drchase@7605 1857 return;
drchase@7605 1858 }
drchase@7605 1859 CompileLog* log = C->log();
drchase@7605 1860 if (log != NULL) {
drchase@7605 1861 log->begin_head("%s lock='%d' compile_id='%d' class_id='%s' kind='%s'",
drchase@7605 1862 tag, is_Lock(), C->compile_id(),
drchase@7605 1863 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
drchase@7605 1864 kind_as_string());
drchase@7605 1865 log->stamp();
drchase@7605 1866 log->end_head();
drchase@7605 1867 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
drchase@7605 1868 while (p != NULL) {
drchase@7605 1869 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
drchase@7605 1870 p = p->caller();
drchase@7605 1871 }
drchase@7605 1872 log->tail(tag);
drchase@7605 1873 }
drchase@7605 1874 }
drchase@7605 1875

mercurial