src/share/vm/opto/output.cpp

Mon, 01 Feb 2010 17:35:05 -0700

author
dcubed
date
Mon, 01 Feb 2010 17:35:05 -0700
changeset 1648
6deeaebad47a
parent 1572
97125851f396
child 1635
ba263cfb7611
permissions
-rw-r--r--

6902182: 4/4 Starting with jdwp agent should not incur performance penalty
Summary: Rename can_post_exceptions support to can_post_on_exceptions. Add support for should_post_on_exceptions flag to permit per JavaThread optimizations.
Reviewed-by: never, kvn, dcubed
Contributed-by: tom.deneau@amd.com

duke@435 1 /*
xdono@1279 2 * Copyright 1998-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_output.cpp.incl"
duke@435 27
duke@435 28 extern uint size_java_to_interp();
duke@435 29 extern uint reloc_java_to_interp();
duke@435 30 extern uint size_exception_handler();
duke@435 31 extern uint size_deopt_handler();
duke@435 32
duke@435 33 #ifndef PRODUCT
duke@435 34 #define DEBUG_ARG(x) , x
duke@435 35 #else
duke@435 36 #define DEBUG_ARG(x)
duke@435 37 #endif
duke@435 38
duke@435 39 extern int emit_exception_handler(CodeBuffer &cbuf);
duke@435 40 extern int emit_deopt_handler(CodeBuffer &cbuf);
duke@435 41
duke@435 42 //------------------------------Output-----------------------------------------
duke@435 43 // Convert Nodes to instruction bits and pass off to the VM
duke@435 44 void Compile::Output() {
duke@435 45 // RootNode goes
duke@435 46 assert( _cfg->_broot->_nodes.size() == 0, "" );
duke@435 47
duke@435 48 // Initialize the space for the BufferBlob used to find and verify
duke@435 49 // instruction size in MachNode::emit_size()
duke@435 50 init_scratch_buffer_blob();
kvn@598 51 if (failing()) return; // Out of memory
duke@435 52
kvn@1294 53 // The number of new nodes (mostly MachNop) is proportional to
kvn@1294 54 // the number of java calls and inner loops which are aligned.
kvn@1294 55 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
kvn@1294 56 C->inner_loops()*(OptoLoopAlignment-1)),
kvn@1294 57 "out of nodes before code generation" ) ) {
kvn@1294 58 return;
kvn@1294 59 }
duke@435 60 // Make sure I can find the Start Node
duke@435 61 Block_Array& bbs = _cfg->_bbs;
duke@435 62 Block *entry = _cfg->_blocks[1];
duke@435 63 Block *broot = _cfg->_broot;
duke@435 64
duke@435 65 const StartNode *start = entry->_nodes[0]->as_Start();
duke@435 66
duke@435 67 // Replace StartNode with prolog
duke@435 68 MachPrologNode *prolog = new (this) MachPrologNode();
duke@435 69 entry->_nodes.map( 0, prolog );
duke@435 70 bbs.map( prolog->_idx, entry );
duke@435 71 bbs.map( start->_idx, NULL ); // start is no longer in any block
duke@435 72
duke@435 73 // Virtual methods need an unverified entry point
duke@435 74
duke@435 75 if( is_osr_compilation() ) {
duke@435 76 if( PoisonOSREntry ) {
duke@435 77 // TODO: Should use a ShouldNotReachHereNode...
duke@435 78 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
duke@435 79 }
duke@435 80 } else {
duke@435 81 if( _method && !_method->flags().is_static() ) {
duke@435 82 // Insert unvalidated entry point
duke@435 83 _cfg->insert( broot, 0, new (this) MachUEPNode() );
duke@435 84 }
duke@435 85
duke@435 86 }
duke@435 87
duke@435 88
duke@435 89 // Break before main entry point
duke@435 90 if( (_method && _method->break_at_execute())
duke@435 91 #ifndef PRODUCT
duke@435 92 ||(OptoBreakpoint && is_method_compilation())
duke@435 93 ||(OptoBreakpointOSR && is_osr_compilation())
duke@435 94 ||(OptoBreakpointC2R && !_method)
duke@435 95 #endif
duke@435 96 ) {
duke@435 97 // checking for _method means that OptoBreakpoint does not apply to
duke@435 98 // runtime stubs or frame converters
duke@435 99 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
duke@435 100 }
duke@435 101
duke@435 102 // Insert epilogs before every return
duke@435 103 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 104 Block *b = _cfg->_blocks[i];
duke@435 105 if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
duke@435 106 Node *m = b->end();
duke@435 107 if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
duke@435 108 MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
duke@435 109 b->add_inst( epilog );
duke@435 110 bbs.map(epilog->_idx, b);
duke@435 111 //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
duke@435 112 }
duke@435 113 }
duke@435 114 }
duke@435 115
duke@435 116 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 117 if ( ZapDeadCompiledLocals ) Insert_zap_nodes();
duke@435 118 # endif
duke@435 119
duke@435 120 ScheduleAndBundle();
duke@435 121
duke@435 122 #ifndef PRODUCT
duke@435 123 if (trace_opto_output()) {
duke@435 124 tty->print("\n---- After ScheduleAndBundle ----\n");
duke@435 125 for (uint i = 0; i < _cfg->_num_blocks; i++) {
duke@435 126 tty->print("\nBB#%03d:\n", i);
duke@435 127 Block *bb = _cfg->_blocks[i];
duke@435 128 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 129 Node *n = bb->_nodes[j];
duke@435 130 OptoReg::Name reg = _regalloc->get_reg_first(n);
duke@435 131 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
duke@435 132 n->dump();
duke@435 133 }
duke@435 134 }
duke@435 135 }
duke@435 136 #endif
duke@435 137
duke@435 138 if (failing()) return;
duke@435 139
duke@435 140 BuildOopMaps();
duke@435 141
duke@435 142 if (failing()) return;
duke@435 143
duke@435 144 Fill_buffer();
duke@435 145 }
duke@435 146
duke@435 147 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
duke@435 148 // Determine if we need to generate a stack overflow check.
duke@435 149 // Do it if the method is not a stub function and
duke@435 150 // has java calls or has frame size > vm_page_size/8.
duke@435 151 return (stub_function() == NULL &&
duke@435 152 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
duke@435 153 }
duke@435 154
duke@435 155 bool Compile::need_register_stack_bang() const {
duke@435 156 // Determine if we need to generate a register stack overflow check.
duke@435 157 // This is only used on architectures which have split register
duke@435 158 // and memory stacks (ie. IA64).
duke@435 159 // Bang if the method is not a stub function and has java calls
duke@435 160 return (stub_function() == NULL && has_java_calls());
duke@435 161 }
duke@435 162
duke@435 163 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 164
duke@435 165
duke@435 166 // In order to catch compiler oop-map bugs, we have implemented
duke@435 167 // a debugging mode called ZapDeadCompilerLocals.
duke@435 168 // This mode causes the compiler to insert a call to a runtime routine,
duke@435 169 // "zap_dead_locals", right before each place in compiled code
duke@435 170 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
duke@435 171 // The runtime routine checks that locations mapped as oops are really
duke@435 172 // oops, that locations mapped as values do not look like oops,
duke@435 173 // and that locations mapped as dead are not used later
duke@435 174 // (by zapping them to an invalid address).
duke@435 175
duke@435 176 int Compile::_CompiledZap_count = 0;
duke@435 177
duke@435 178 void Compile::Insert_zap_nodes() {
duke@435 179 bool skip = false;
duke@435 180
duke@435 181
duke@435 182 // Dink with static counts because code code without the extra
duke@435 183 // runtime calls is MUCH faster for debugging purposes
duke@435 184
duke@435 185 if ( CompileZapFirst == 0 ) ; // nothing special
duke@435 186 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
duke@435 187 else if ( CompileZapFirst == CompiledZap_count() )
duke@435 188 warning("starting zap compilation after skipping");
duke@435 189
duke@435 190 if ( CompileZapLast == -1 ) ; // nothing special
duke@435 191 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
duke@435 192 else if ( CompileZapLast == CompiledZap_count() )
duke@435 193 warning("about to compile last zap");
duke@435 194
duke@435 195 ++_CompiledZap_count; // counts skipped zaps, too
duke@435 196
duke@435 197 if ( skip ) return;
duke@435 198
duke@435 199
duke@435 200 if ( _method == NULL )
duke@435 201 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
duke@435 202
duke@435 203 // Insert call to zap runtime stub before every node with an oop map
duke@435 204 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 205 Block *b = _cfg->_blocks[i];
duke@435 206 for ( uint j = 0; j < b->_nodes.size(); ++j ) {
duke@435 207 Node *n = b->_nodes[j];
duke@435 208
duke@435 209 // Determining if we should insert a zap-a-lot node in output.
duke@435 210 // We do that for all nodes that has oopmap info, except for calls
duke@435 211 // to allocation. Calls to allocation passes in the old top-of-eden pointer
duke@435 212 // and expect the C code to reset it. Hence, there can be no safepoints between
duke@435 213 // the inlined-allocation and the call to new_Java, etc.
duke@435 214 // We also cannot zap monitor calls, as they must hold the microlock
duke@435 215 // during the call to Zap, which also wants to grab the microlock.
duke@435 216 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
duke@435 217 if ( insert ) { // it is MachSafePoint
duke@435 218 if ( !n->is_MachCall() ) {
duke@435 219 insert = false;
duke@435 220 } else if ( n->is_MachCall() ) {
duke@435 221 MachCallNode* call = n->as_MachCall();
duke@435 222 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
duke@435 223 call->entry_point() == OptoRuntime::new_array_Java() ||
duke@435 224 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
duke@435 225 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
duke@435 226 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
duke@435 227 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
duke@435 228 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
duke@435 229 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
duke@435 230 ) {
duke@435 231 insert = false;
duke@435 232 }
duke@435 233 }
duke@435 234 if (insert) {
duke@435 235 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
duke@435 236 b->_nodes.insert( j, zap );
duke@435 237 _cfg->_bbs.map( zap->_idx, b );
duke@435 238 ++j;
duke@435 239 }
duke@435 240 }
duke@435 241 }
duke@435 242 }
duke@435 243 }
duke@435 244
duke@435 245
duke@435 246 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
duke@435 247 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
duke@435 248 CallStaticJavaNode* ideal_node =
duke@435 249 new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
duke@435 250 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
duke@435 251 "call zap dead locals stub", 0, TypePtr::BOTTOM);
duke@435 252 // We need to copy the OopMap from the site we're zapping at.
duke@435 253 // We have to make a copy, because the zap site might not be
duke@435 254 // a call site, and zap_dead is a call site.
duke@435 255 OopMap* clone = node_to_check->oop_map()->deep_copy();
duke@435 256
duke@435 257 // Add the cloned OopMap to the zap node
duke@435 258 ideal_node->set_oop_map(clone);
duke@435 259 return _matcher->match_sfpt(ideal_node);
duke@435 260 }
duke@435 261
duke@435 262 //------------------------------is_node_getting_a_safepoint--------------------
duke@435 263 bool Compile::is_node_getting_a_safepoint( Node* n) {
duke@435 264 // This code duplicates the logic prior to the call of add_safepoint
duke@435 265 // below in this file.
duke@435 266 if( n->is_MachSafePoint() ) return true;
duke@435 267 return false;
duke@435 268 }
duke@435 269
duke@435 270 # endif // ENABLE_ZAP_DEAD_LOCALS
duke@435 271
duke@435 272 //------------------------------compute_loop_first_inst_sizes------------------
rasbold@853 273 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
duke@435 274 // of a loop. When aligning a loop we need to provide enough instructions
duke@435 275 // in cpu's fetch buffer to feed decoders. The loop alignment could be
duke@435 276 // avoided if we have enough instructions in fetch buffer at the head of a loop.
duke@435 277 // By default, the size is set to 999999 by Block's constructor so that
duke@435 278 // a loop will be aligned if the size is not reset here.
duke@435 279 //
duke@435 280 // Note: Mach instructions could contain several HW instructions
duke@435 281 // so the size is estimated only.
duke@435 282 //
duke@435 283 void Compile::compute_loop_first_inst_sizes() {
duke@435 284 // The next condition is used to gate the loop alignment optimization.
duke@435 285 // Don't aligned a loop if there are enough instructions at the head of a loop
duke@435 286 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
duke@435 287 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
duke@435 288 // equal to 11 bytes which is the largest address NOP instruction.
duke@435 289 if( MaxLoopPad < OptoLoopAlignment-1 ) {
duke@435 290 uint last_block = _cfg->_num_blocks-1;
duke@435 291 for( uint i=1; i <= last_block; i++ ) {
duke@435 292 Block *b = _cfg->_blocks[i];
duke@435 293 // Check the first loop's block which requires an alignment.
rasbold@853 294 if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
duke@435 295 uint sum_size = 0;
duke@435 296 uint inst_cnt = NumberOfLoopInstrToAlign;
rasbold@853 297 inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 298
rasbold@853 299 // Check subsequent fallthrough blocks if the loop's first
rasbold@853 300 // block(s) does not have enough instructions.
rasbold@853 301 Block *nb = b;
rasbold@853 302 while( inst_cnt > 0 &&
rasbold@853 303 i < last_block &&
rasbold@853 304 !_cfg->_blocks[i+1]->has_loop_alignment() &&
rasbold@853 305 !nb->has_successor(b) ) {
rasbold@853 306 i++;
rasbold@853 307 nb = _cfg->_blocks[i];
rasbold@853 308 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 309 } // while( inst_cnt > 0 && i < last_block )
rasbold@853 310
duke@435 311 b->set_first_inst_size(sum_size);
duke@435 312 } // f( b->head()->is_Loop() )
duke@435 313 } // for( i <= last_block )
duke@435 314 } // if( MaxLoopPad < OptoLoopAlignment-1 )
duke@435 315 }
duke@435 316
duke@435 317 //----------------------Shorten_branches---------------------------------------
duke@435 318 // The architecture description provides short branch variants for some long
duke@435 319 // branch instructions. Replace eligible long branches with short branches.
duke@435 320 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
duke@435 321
duke@435 322 // fill in the nop array for bundling computations
duke@435 323 MachNode *_nop_list[Bundle::_nop_count];
duke@435 324 Bundle::initialize_nops(_nop_list, this);
duke@435 325
duke@435 326 // ------------------
duke@435 327 // Compute size of each block, method size, and relocation information size
duke@435 328 uint *jmp_end = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
duke@435 329 uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
duke@435 330 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
never@850 331 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
duke@435 332 blk_starts[0] = 0;
duke@435 333
duke@435 334 // Initialize the sizes to 0
duke@435 335 code_size = 0; // Size in bytes of generated code
duke@435 336 stub_size = 0; // Size in bytes of all stub entries
duke@435 337 // Size in bytes of all relocation entries, including those in local stubs.
duke@435 338 // Start with 2-bytes of reloc info for the unvalidated entry point
duke@435 339 reloc_size = 1; // Number of relocation entries
duke@435 340 const_size = 0; // size of fp constants in words
duke@435 341
duke@435 342 // Make three passes. The first computes pessimistic blk_starts,
duke@435 343 // relative jmp_end, reloc_size and const_size information.
duke@435 344 // The second performs short branch substitution using the pessimistic
duke@435 345 // sizing. The third inserts nops where needed.
duke@435 346
duke@435 347 Node *nj; // tmp
duke@435 348
duke@435 349 // Step one, perform a pessimistic sizing pass.
duke@435 350 uint i;
duke@435 351 uint min_offset_from_last_call = 1; // init to a positive value
duke@435 352 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 353 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 354 Block *b = _cfg->_blocks[i];
duke@435 355
duke@435 356 // Sum all instruction sizes to compute block size
duke@435 357 uint last_inst = b->_nodes.size();
duke@435 358 uint blk_size = 0;
duke@435 359 for( uint j = 0; j<last_inst; j++ ) {
duke@435 360 nj = b->_nodes[j];
duke@435 361 uint inst_size = nj->size(_regalloc);
duke@435 362 blk_size += inst_size;
duke@435 363 // Handle machine instruction nodes
duke@435 364 if( nj->is_Mach() ) {
duke@435 365 MachNode *mach = nj->as_Mach();
duke@435 366 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
duke@435 367 reloc_size += mach->reloc();
duke@435 368 const_size += mach->const_size();
duke@435 369 if( mach->is_MachCall() ) {
duke@435 370 MachCallNode *mcall = mach->as_MachCall();
duke@435 371 // This destination address is NOT PC-relative
duke@435 372
duke@435 373 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 374
duke@435 375 if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
duke@435 376 stub_size += size_java_to_interp();
duke@435 377 reloc_size += reloc_java_to_interp();
duke@435 378 }
duke@435 379 } else if (mach->is_MachSafePoint()) {
duke@435 380 // If call/safepoint are adjacent, account for possible
duke@435 381 // nop to disambiguate the two safepoints.
duke@435 382 if (min_offset_from_last_call == 0) {
duke@435 383 blk_size += nop_size;
duke@435 384 }
duke@435 385 }
duke@435 386 }
duke@435 387 min_offset_from_last_call += inst_size;
duke@435 388 // Remember end of call offset
duke@435 389 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
duke@435 390 min_offset_from_last_call = 0;
duke@435 391 }
duke@435 392 }
duke@435 393
duke@435 394 // During short branch replacement, we store the relative (to blk_starts)
duke@435 395 // end of jump in jmp_end, rather than the absolute end of jump. This
duke@435 396 // is so that we do not need to recompute sizes of all nodes when we compute
duke@435 397 // correct blk_starts in our next sizing pass.
duke@435 398 jmp_end[i] = blk_size;
duke@435 399 DEBUG_ONLY( jmp_target[i] = 0; )
duke@435 400
duke@435 401 // When the next block starts a loop, we may insert pad NOP
duke@435 402 // instructions. Since we cannot know our future alignment,
duke@435 403 // assume the worst.
duke@435 404 if( i<_cfg->_num_blocks-1 ) {
duke@435 405 Block *nb = _cfg->_blocks[i+1];
duke@435 406 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
duke@435 407 if( max_loop_pad > 0 ) {
duke@435 408 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
duke@435 409 blk_size += max_loop_pad;
duke@435 410 }
duke@435 411 }
duke@435 412
duke@435 413 // Save block size; update total method size
duke@435 414 blk_starts[i+1] = blk_starts[i]+blk_size;
duke@435 415 }
duke@435 416
duke@435 417 // Step two, replace eligible long jumps.
duke@435 418
duke@435 419 // Note: this will only get the long branches within short branch
duke@435 420 // range. Another pass might detect more branches that became
duke@435 421 // candidates because the shortening in the first pass exposed
duke@435 422 // more opportunities. Unfortunately, this would require
duke@435 423 // recomputing the starting and ending positions for the blocks
duke@435 424 for( i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 425 Block *b = _cfg->_blocks[i];
duke@435 426
duke@435 427 int j;
duke@435 428 // Find the branch; ignore trailing NOPs.
duke@435 429 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 430 nj = b->_nodes[j];
duke@435 431 if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 432 break;
duke@435 433 }
duke@435 434
duke@435 435 if (j >= 0) {
duke@435 436 if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
duke@435 437 MachNode *mach = nj->as_Mach();
duke@435 438 // This requires the TRUE branch target be in succs[0]
duke@435 439 uint bnum = b->non_connector_successor(0)->_pre_order;
duke@435 440 uintptr_t target = blk_starts[bnum];
duke@435 441 if( mach->is_pc_relative() ) {
duke@435 442 int offset = target-(blk_starts[i] + jmp_end[i]);
never@850 443 if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
duke@435 444 // We've got a winner. Replace this branch.
never@850 445 MachNode* replacement = mach->short_branch_version(this);
duke@435 446 b->_nodes.map(j, replacement);
never@657 447 mach->subsume_by(replacement);
duke@435 448
duke@435 449 // Update the jmp_end size to save time in our
duke@435 450 // next pass.
duke@435 451 jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
duke@435 452 DEBUG_ONLY( jmp_target[i] = bnum; );
never@850 453 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
duke@435 454 }
duke@435 455 } else {
duke@435 456 #ifndef PRODUCT
duke@435 457 mach->dump(3);
duke@435 458 #endif
duke@435 459 Unimplemented();
duke@435 460 }
duke@435 461 }
duke@435 462 }
duke@435 463 }
duke@435 464
duke@435 465 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
duke@435 466 // of a loop. It is used to determine the padding for loop alignment.
duke@435 467 compute_loop_first_inst_sizes();
duke@435 468
duke@435 469 // Step 3, compute the offsets of all the labels
duke@435 470 uint last_call_adr = max_uint;
duke@435 471 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 472 // copy the offset of the beginning to the corresponding label
duke@435 473 assert(labels[i].is_unused(), "cannot patch at this point");
duke@435 474 labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
duke@435 475
duke@435 476 // insert padding for any instructions that need it
duke@435 477 Block *b = _cfg->_blocks[i];
duke@435 478 uint last_inst = b->_nodes.size();
duke@435 479 uint adr = blk_starts[i];
duke@435 480 for( uint j = 0; j<last_inst; j++ ) {
duke@435 481 nj = b->_nodes[j];
duke@435 482 if( nj->is_Mach() ) {
duke@435 483 int padding = nj->as_Mach()->compute_padding(adr);
duke@435 484 // If call/safepoint are adjacent insert a nop (5010568)
duke@435 485 if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
duke@435 486 adr == last_call_adr ) {
duke@435 487 padding = nop_size;
duke@435 488 }
duke@435 489 if(padding > 0) {
duke@435 490 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
duke@435 491 int nops_cnt = padding / nop_size;
duke@435 492 MachNode *nop = new (this) MachNopNode(nops_cnt);
duke@435 493 b->_nodes.insert(j++, nop);
duke@435 494 _cfg->_bbs.map( nop->_idx, b );
duke@435 495 adr += padding;
duke@435 496 last_inst++;
duke@435 497 }
duke@435 498 }
duke@435 499 adr += nj->size(_regalloc);
duke@435 500
duke@435 501 // Remember end of call offset
duke@435 502 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
duke@435 503 last_call_adr = adr;
duke@435 504 }
duke@435 505 }
duke@435 506
duke@435 507 if ( i != _cfg->_num_blocks-1) {
duke@435 508 // Get the size of the block
duke@435 509 uint blk_size = adr - blk_starts[i];
duke@435 510
rasbold@853 511 // When the next block is the top of a loop, we may insert pad NOP
duke@435 512 // instructions.
duke@435 513 Block *nb = _cfg->_blocks[i+1];
duke@435 514 int current_offset = blk_starts[i] + blk_size;
duke@435 515 current_offset += nb->alignment_padding(current_offset);
duke@435 516 // Save block size; update total method size
duke@435 517 blk_starts[i+1] = current_offset;
duke@435 518 }
duke@435 519 }
duke@435 520
duke@435 521 #ifdef ASSERT
duke@435 522 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 523 if( jmp_target[i] != 0 ) {
duke@435 524 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
never@850 525 if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
duke@435 526 tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
duke@435 527 }
never@850 528 assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
duke@435 529 }
duke@435 530 }
duke@435 531 #endif
duke@435 532
duke@435 533 // ------------------
duke@435 534 // Compute size for code buffer
duke@435 535 code_size = blk_starts[i-1] + jmp_end[i-1];
duke@435 536
duke@435 537 // Relocation records
duke@435 538 reloc_size += 1; // Relo entry for exception handler
duke@435 539
duke@435 540 // Adjust reloc_size to number of record of relocation info
duke@435 541 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
duke@435 542 // a relocation index.
duke@435 543 // The CodeBuffer will expand the locs array if this estimate is too low.
duke@435 544 reloc_size *= 10 / sizeof(relocInfo);
duke@435 545
duke@435 546 // Adjust const_size to number of bytes
duke@435 547 const_size *= 2*jintSize; // both float and double take two words per entry
duke@435 548
duke@435 549 }
duke@435 550
duke@435 551 //------------------------------FillLocArray-----------------------------------
duke@435 552 // Create a bit of debug info and append it to the array. The mapping is from
duke@435 553 // Java local or expression stack to constant, register or stack-slot. For
duke@435 554 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
duke@435 555 // entry has been taken care of and caller should skip it).
duke@435 556 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
duke@435 557 // This should never have accepted Bad before
duke@435 558 assert(OptoReg::is_valid(regnum), "location must be valid");
duke@435 559 return (OptoReg::is_reg(regnum))
duke@435 560 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
duke@435 561 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
duke@435 562 }
duke@435 563
kvn@498 564
kvn@498 565 ObjectValue*
kvn@498 566 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
kvn@498 567 for (int i = 0; i < objs->length(); i++) {
kvn@498 568 assert(objs->at(i)->is_object(), "corrupt object cache");
kvn@498 569 ObjectValue* sv = (ObjectValue*) objs->at(i);
kvn@498 570 if (sv->id() == id) {
kvn@498 571 return sv;
kvn@498 572 }
kvn@498 573 }
kvn@498 574 // Otherwise..
kvn@498 575 return NULL;
kvn@498 576 }
kvn@498 577
kvn@498 578 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
kvn@498 579 ObjectValue* sv ) {
kvn@498 580 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
kvn@498 581 objs->append(sv);
kvn@498 582 }
kvn@498 583
kvn@498 584
kvn@498 585 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
kvn@498 586 GrowableArray<ScopeValue*> *array,
kvn@498 587 GrowableArray<ScopeValue*> *objs ) {
duke@435 588 assert( local, "use _top instead of null" );
duke@435 589 if (array->length() != idx) {
duke@435 590 assert(array->length() == idx + 1, "Unexpected array count");
duke@435 591 // Old functionality:
duke@435 592 // return
duke@435 593 // New functionality:
duke@435 594 // Assert if the local is not top. In product mode let the new node
duke@435 595 // override the old entry.
duke@435 596 assert(local == top(), "LocArray collision");
duke@435 597 if (local == top()) {
duke@435 598 return;
duke@435 599 }
duke@435 600 array->pop();
duke@435 601 }
duke@435 602 const Type *t = local->bottom_type();
duke@435 603
kvn@498 604 // Is it a safepoint scalar object node?
kvn@498 605 if (local->is_SafePointScalarObject()) {
kvn@498 606 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
kvn@498 607
kvn@498 608 ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 609 if (sv == NULL) {
kvn@498 610 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 611 assert(cik->is_instance_klass() ||
kvn@498 612 cik->is_array_klass(), "Not supported allocation.");
kvn@498 613 sv = new ObjectValue(spobj->_idx,
jrose@1424 614 new ConstantOopWriteValue(cik->constant_encoding()));
kvn@498 615 Compile::set_sv_for_object_node(objs, sv);
kvn@498 616
kvn@498 617 uint first_ind = spobj->first_index();
kvn@498 618 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 619 Node* fld_node = sfpt->in(first_ind+i);
kvn@498 620 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
kvn@498 621 }
kvn@498 622 }
kvn@498 623 array->append(sv);
kvn@498 624 return;
kvn@498 625 }
kvn@498 626
duke@435 627 // Grab the register number for the local
duke@435 628 OptoReg::Name regnum = _regalloc->get_reg_first(local);
duke@435 629 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
duke@435 630 // Record the double as two float registers.
duke@435 631 // The register mask for such a value always specifies two adjacent
duke@435 632 // float registers, with the lower register number even.
duke@435 633 // Normally, the allocation of high and low words to these registers
duke@435 634 // is irrelevant, because nearly all operations on register pairs
duke@435 635 // (e.g., StoreD) treat them as a single unit.
duke@435 636 // Here, we assume in addition that the words in these two registers
duke@435 637 // stored "naturally" (by operations like StoreD and double stores
duke@435 638 // within the interpreter) such that the lower-numbered register
duke@435 639 // is written to the lower memory address. This may seem like
duke@435 640 // a machine dependency, but it is not--it is a requirement on
duke@435 641 // the author of the <arch>.ad file to ensure that, for every
duke@435 642 // even/odd double-register pair to which a double may be allocated,
duke@435 643 // the word in the even single-register is stored to the first
duke@435 644 // memory word. (Note that register numbers are completely
duke@435 645 // arbitrary, and are not tied to any machine-level encodings.)
duke@435 646 #ifdef _LP64
duke@435 647 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
duke@435 648 array->append(new ConstantIntValue(0));
duke@435 649 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
duke@435 650 } else if ( t->base() == Type::Long ) {
duke@435 651 array->append(new ConstantIntValue(0));
duke@435 652 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 653 } else if ( t->base() == Type::RawPtr ) {
duke@435 654 // jsr/ret return address which must be restored into a the full
duke@435 655 // width 64-bit stack slot.
duke@435 656 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 657 }
duke@435 658 #else //_LP64
duke@435 659 #ifdef SPARC
duke@435 660 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
duke@435 661 // For SPARC we have to swap high and low words for
duke@435 662 // long values stored in a single-register (g0-g7).
duke@435 663 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 664 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 665 } else
duke@435 666 #endif //SPARC
duke@435 667 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
duke@435 668 // Repack the double/long as two jints.
duke@435 669 // The convention the interpreter uses is that the second local
duke@435 670 // holds the first raw word of the native double representation.
duke@435 671 // This is actually reasonable, since locals and stack arrays
duke@435 672 // grow downwards in all implementations.
duke@435 673 // (If, on some machine, the interpreter's Java locals or stack
duke@435 674 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 675 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 676 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 677 }
duke@435 678 #endif //_LP64
duke@435 679 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
duke@435 680 OptoReg::is_reg(regnum) ) {
duke@435 681 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
duke@435 682 ? Location::float_in_dbl : Location::normal ));
duke@435 683 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
duke@435 684 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
duke@435 685 ? Location::int_in_long : Location::normal ));
kvn@766 686 } else if( t->base() == Type::NarrowOop ) {
kvn@766 687 array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
duke@435 688 } else {
duke@435 689 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
duke@435 690 }
duke@435 691 return;
duke@435 692 }
duke@435 693
duke@435 694 // No register. It must be constant data.
duke@435 695 switch (t->base()) {
duke@435 696 case Type::Half: // Second half of a double
duke@435 697 ShouldNotReachHere(); // Caller should skip 2nd halves
duke@435 698 break;
duke@435 699 case Type::AnyPtr:
duke@435 700 array->append(new ConstantOopWriteValue(NULL));
duke@435 701 break;
duke@435 702 case Type::AryPtr:
duke@435 703 case Type::InstPtr:
duke@435 704 case Type::KlassPtr: // fall through
jrose@1424 705 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
duke@435 706 break;
kvn@766 707 case Type::NarrowOop:
kvn@766 708 if (t == TypeNarrowOop::NULL_PTR) {
kvn@766 709 array->append(new ConstantOopWriteValue(NULL));
kvn@766 710 } else {
jrose@1424 711 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
kvn@766 712 }
kvn@766 713 break;
duke@435 714 case Type::Int:
duke@435 715 array->append(new ConstantIntValue(t->is_int()->get_con()));
duke@435 716 break;
duke@435 717 case Type::RawPtr:
duke@435 718 // A return address (T_ADDRESS).
duke@435 719 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
duke@435 720 #ifdef _LP64
duke@435 721 // Must be restored to the full-width 64-bit stack slot.
duke@435 722 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
duke@435 723 #else
duke@435 724 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
duke@435 725 #endif
duke@435 726 break;
duke@435 727 case Type::FloatCon: {
duke@435 728 float f = t->is_float_constant()->getf();
duke@435 729 array->append(new ConstantIntValue(jint_cast(f)));
duke@435 730 break;
duke@435 731 }
duke@435 732 case Type::DoubleCon: {
duke@435 733 jdouble d = t->is_double_constant()->getd();
duke@435 734 #ifdef _LP64
duke@435 735 array->append(new ConstantIntValue(0));
duke@435 736 array->append(new ConstantDoubleValue(d));
duke@435 737 #else
duke@435 738 // Repack the double as two jints.
duke@435 739 // The convention the interpreter uses is that the second local
duke@435 740 // holds the first raw word of the native double representation.
duke@435 741 // This is actually reasonable, since locals and stack arrays
duke@435 742 // grow downwards in all implementations.
duke@435 743 // (If, on some machine, the interpreter's Java locals or stack
duke@435 744 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 745 jint *dp = (jint*)&d;
duke@435 746 array->append(new ConstantIntValue(dp[1]));
duke@435 747 array->append(new ConstantIntValue(dp[0]));
duke@435 748 #endif
duke@435 749 break;
duke@435 750 }
duke@435 751 case Type::Long: {
duke@435 752 jlong d = t->is_long()->get_con();
duke@435 753 #ifdef _LP64
duke@435 754 array->append(new ConstantIntValue(0));
duke@435 755 array->append(new ConstantLongValue(d));
duke@435 756 #else
duke@435 757 // Repack the long as two jints.
duke@435 758 // The convention the interpreter uses is that the second local
duke@435 759 // holds the first raw word of the native double representation.
duke@435 760 // This is actually reasonable, since locals and stack arrays
duke@435 761 // grow downwards in all implementations.
duke@435 762 // (If, on some machine, the interpreter's Java locals or stack
duke@435 763 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 764 jint *dp = (jint*)&d;
duke@435 765 array->append(new ConstantIntValue(dp[1]));
duke@435 766 array->append(new ConstantIntValue(dp[0]));
duke@435 767 #endif
duke@435 768 break;
duke@435 769 }
duke@435 770 case Type::Top: // Add an illegal value here
duke@435 771 array->append(new LocationValue(Location()));
duke@435 772 break;
duke@435 773 default:
duke@435 774 ShouldNotReachHere();
duke@435 775 break;
duke@435 776 }
duke@435 777 }
duke@435 778
duke@435 779 // Determine if this node starts a bundle
duke@435 780 bool Compile::starts_bundle(const Node *n) const {
duke@435 781 return (_node_bundling_limit > n->_idx &&
duke@435 782 _node_bundling_base[n->_idx].starts_bundle());
duke@435 783 }
duke@435 784
duke@435 785 //--------------------------Process_OopMap_Node--------------------------------
duke@435 786 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
duke@435 787
duke@435 788 // Handle special safepoint nodes for synchronization
duke@435 789 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 790 MachCallNode *mcall;
duke@435 791
duke@435 792 #ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 793 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
duke@435 794 #endif
duke@435 795
duke@435 796 int safepoint_pc_offset = current_offset;
twisti@1572 797 bool is_method_handle_invoke = false;
duke@435 798
duke@435 799 // Add the safepoint in the DebugInfoRecorder
duke@435 800 if( !mach->is_MachCall() ) {
duke@435 801 mcall = NULL;
duke@435 802 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
duke@435 803 } else {
duke@435 804 mcall = mach->as_MachCall();
twisti@1572 805
twisti@1572 806 // Is the call a MethodHandle call?
twisti@1572 807 if (mcall->is_MachCallJava())
twisti@1572 808 is_method_handle_invoke = mcall->as_MachCallJava()->_method_handle_invoke;
twisti@1572 809
duke@435 810 safepoint_pc_offset += mcall->ret_addr_offset();
duke@435 811 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
duke@435 812 }
duke@435 813
duke@435 814 // Loop over the JVMState list to add scope information
duke@435 815 // Do not skip safepoints with a NULL method, they need monitor info
duke@435 816 JVMState* youngest_jvms = sfn->jvms();
duke@435 817 int max_depth = youngest_jvms->depth();
duke@435 818
kvn@498 819 // Allocate the object pool for scalar-replaced objects -- the map from
kvn@498 820 // small-integer keys (which can be recorded in the local and ostack
kvn@498 821 // arrays) to descriptions of the object state.
kvn@498 822 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
kvn@498 823
duke@435 824 // Visit scopes from oldest to youngest.
duke@435 825 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 826 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 827 int idx;
duke@435 828 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 829 // Safepoints that do not have method() set only provide oop-map and monitor info
duke@435 830 // to support GC; these do not support deoptimization.
duke@435 831 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
duke@435 832 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
duke@435 833 int num_mon = jvms->nof_monitors();
duke@435 834 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
duke@435 835 "JVMS local count must match that of the method");
duke@435 836
duke@435 837 // Add Local and Expression Stack Information
duke@435 838
duke@435 839 // Insert locals into the locarray
duke@435 840 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
duke@435 841 for( idx = 0; idx < num_locs; idx++ ) {
kvn@498 842 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
duke@435 843 }
duke@435 844
duke@435 845 // Insert expression stack entries into the exparray
duke@435 846 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
duke@435 847 for( idx = 0; idx < num_exps; idx++ ) {
kvn@498 848 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
duke@435 849 }
duke@435 850
duke@435 851 // Add in mappings of the monitors
duke@435 852 assert( !method ||
duke@435 853 !method->is_synchronized() ||
duke@435 854 method->is_native() ||
duke@435 855 num_mon > 0 ||
duke@435 856 !GenerateSynchronizationCode,
duke@435 857 "monitors must always exist for synchronized methods");
duke@435 858
duke@435 859 // Build the growable array of ScopeValues for exp stack
duke@435 860 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
duke@435 861
duke@435 862 // Loop over monitors and insert into array
duke@435 863 for(idx = 0; idx < num_mon; idx++) {
duke@435 864 // Grab the node that defines this monitor
kvn@895 865 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 866 Node* obj_node = sfn->monitor_obj(jvms, idx);
duke@435 867
duke@435 868 // Create ScopeValue for object
duke@435 869 ScopeValue *scval = NULL;
kvn@498 870
kvn@498 871 if( obj_node->is_SafePointScalarObject() ) {
kvn@498 872 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
kvn@498 873 scval = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 874 if (scval == NULL) {
kvn@498 875 const Type *t = obj_node->bottom_type();
kvn@498 876 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 877 assert(cik->is_instance_klass() ||
kvn@498 878 cik->is_array_klass(), "Not supported allocation.");
kvn@498 879 ObjectValue* sv = new ObjectValue(spobj->_idx,
jrose@1424 880 new ConstantOopWriteValue(cik->constant_encoding()));
kvn@498 881 Compile::set_sv_for_object_node(objs, sv);
kvn@498 882
kvn@498 883 uint first_ind = spobj->first_index();
kvn@498 884 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 885 Node* fld_node = sfn->in(first_ind+i);
kvn@498 886 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
kvn@498 887 }
kvn@498 888 scval = sv;
kvn@498 889 }
kvn@498 890 } else if( !obj_node->is_Con() ) {
duke@435 891 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
kvn@766 892 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
kvn@766 893 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
kvn@766 894 } else {
kvn@766 895 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
kvn@766 896 }
duke@435 897 } else {
kvn@766 898 const TypePtr *tp = obj_node->bottom_type()->make_ptr();
jrose@1424 899 scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->constant_encoding());
duke@435 900 }
duke@435 901
duke@435 902 OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
kvn@501 903 Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
kvn@895 904 while( !box_node->is_BoxLock() ) box_node = box_node->in(1);
kvn@501 905 monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
duke@435 906 }
duke@435 907
kvn@498 908 // We dump the object pool first, since deoptimization reads it in first.
kvn@498 909 debug_info()->dump_object_pool(objs);
kvn@498 910
duke@435 911 // Build first class objects to pass to scope
duke@435 912 DebugToken *locvals = debug_info()->create_scope_values(locarray);
duke@435 913 DebugToken *expvals = debug_info()->create_scope_values(exparray);
duke@435 914 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
duke@435 915
duke@435 916 // Make method available for all Safepoints
duke@435 917 ciMethod* scope_method = method ? method : _method;
duke@435 918 // Describe the scope here
duke@435 919 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
twisti@1570 920 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
kvn@498 921 // Now we can describe the scope.
twisti@1570 922 debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, locvals, expvals, monvals);
duke@435 923 } // End jvms loop
duke@435 924
duke@435 925 // Mark the end of the scope set.
duke@435 926 debug_info()->end_safepoint(safepoint_pc_offset);
duke@435 927 }
duke@435 928
duke@435 929
duke@435 930
duke@435 931 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
duke@435 932 class NonSafepointEmitter {
duke@435 933 Compile* C;
duke@435 934 JVMState* _pending_jvms;
duke@435 935 int _pending_offset;
duke@435 936
duke@435 937 void emit_non_safepoint();
duke@435 938
duke@435 939 public:
duke@435 940 NonSafepointEmitter(Compile* compile) {
duke@435 941 this->C = compile;
duke@435 942 _pending_jvms = NULL;
duke@435 943 _pending_offset = 0;
duke@435 944 }
duke@435 945
duke@435 946 void observe_instruction(Node* n, int pc_offset) {
duke@435 947 if (!C->debug_info()->recording_non_safepoints()) return;
duke@435 948
duke@435 949 Node_Notes* nn = C->node_notes_at(n->_idx);
duke@435 950 if (nn == NULL || nn->jvms() == NULL) return;
duke@435 951 if (_pending_jvms != NULL &&
duke@435 952 _pending_jvms->same_calls_as(nn->jvms())) {
duke@435 953 // Repeated JVMS? Stretch it up here.
duke@435 954 _pending_offset = pc_offset;
duke@435 955 } else {
duke@435 956 if (_pending_jvms != NULL &&
duke@435 957 _pending_offset < pc_offset) {
duke@435 958 emit_non_safepoint();
duke@435 959 }
duke@435 960 _pending_jvms = NULL;
duke@435 961 if (pc_offset > C->debug_info()->last_pc_offset()) {
duke@435 962 // This is the only way _pending_jvms can become non-NULL:
duke@435 963 _pending_jvms = nn->jvms();
duke@435 964 _pending_offset = pc_offset;
duke@435 965 }
duke@435 966 }
duke@435 967 }
duke@435 968
duke@435 969 // Stay out of the way of real safepoints:
duke@435 970 void observe_safepoint(JVMState* jvms, int pc_offset) {
duke@435 971 if (_pending_jvms != NULL &&
duke@435 972 !_pending_jvms->same_calls_as(jvms) &&
duke@435 973 _pending_offset < pc_offset) {
duke@435 974 emit_non_safepoint();
duke@435 975 }
duke@435 976 _pending_jvms = NULL;
duke@435 977 }
duke@435 978
duke@435 979 void flush_at_end() {
duke@435 980 if (_pending_jvms != NULL) {
duke@435 981 emit_non_safepoint();
duke@435 982 }
duke@435 983 _pending_jvms = NULL;
duke@435 984 }
duke@435 985 };
duke@435 986
duke@435 987 void NonSafepointEmitter::emit_non_safepoint() {
duke@435 988 JVMState* youngest_jvms = _pending_jvms;
duke@435 989 int pc_offset = _pending_offset;
duke@435 990
duke@435 991 // Clear it now:
duke@435 992 _pending_jvms = NULL;
duke@435 993
duke@435 994 DebugInformationRecorder* debug_info = C->debug_info();
duke@435 995 assert(debug_info->recording_non_safepoints(), "sanity");
duke@435 996
duke@435 997 debug_info->add_non_safepoint(pc_offset);
duke@435 998 int max_depth = youngest_jvms->depth();
duke@435 999
duke@435 1000 // Visit scopes from oldest to youngest.
duke@435 1001 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 1002 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1003 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
cfang@1335 1004 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
cfang@1335 1005 debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
duke@435 1006 }
duke@435 1007
duke@435 1008 // Mark the end of the scope set.
duke@435 1009 debug_info->end_non_safepoint(pc_offset);
duke@435 1010 }
duke@435 1011
duke@435 1012
duke@435 1013
duke@435 1014 // helper for Fill_buffer bailout logic
duke@435 1015 static void turn_off_compiler(Compile* C) {
duke@435 1016 if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
duke@435 1017 // Do not turn off compilation if a single giant method has
duke@435 1018 // blown the code cache size.
duke@435 1019 C->record_failure("excessive request to CodeCache");
duke@435 1020 } else {
kvn@463 1021 // Let CompilerBroker disable further compilations.
duke@435 1022 C->record_failure("CodeCache is full");
duke@435 1023 }
duke@435 1024 }
duke@435 1025
duke@435 1026
duke@435 1027 //------------------------------Fill_buffer------------------------------------
duke@435 1028 void Compile::Fill_buffer() {
duke@435 1029
duke@435 1030 // Set the initially allocated size
duke@435 1031 int code_req = initial_code_capacity;
duke@435 1032 int locs_req = initial_locs_capacity;
duke@435 1033 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
duke@435 1034 int const_req = initial_const_capacity;
duke@435 1035 bool labels_not_set = true;
duke@435 1036
duke@435 1037 int pad_req = NativeCall::instruction_size;
duke@435 1038 // The extra spacing after the code is necessary on some platforms.
duke@435 1039 // Sometimes we need to patch in a jump after the last instruction,
duke@435 1040 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
duke@435 1041
duke@435 1042 uint i;
duke@435 1043 // Compute the byte offset where we can store the deopt pc.
duke@435 1044 if (fixed_slots() != 0) {
duke@435 1045 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
duke@435 1046 }
duke@435 1047
duke@435 1048 // Compute prolog code size
duke@435 1049 _method_size = 0;
duke@435 1050 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
duke@435 1051 #ifdef IA64
duke@435 1052 if (save_argument_registers()) {
duke@435 1053 // 4815101: this is a stub with implicit and unknown precision fp args.
duke@435 1054 // The usual spill mechanism can only generate stfd's in this case, which
duke@435 1055 // doesn't work if the fp reg to spill contains a single-precision denorm.
duke@435 1056 // Instead, we hack around the normal spill mechanism using stfspill's and
duke@435 1057 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
duke@435 1058 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
duke@435 1059 //
duke@435 1060 // If we ever implement 16-byte 'registers' == stack slots, we can
duke@435 1061 // get rid of this hack and have SpillCopy generate stfspill/ldffill
duke@435 1062 // instead of stfd/stfs/ldfd/ldfs.
duke@435 1063 _frame_slots += 8*(16/BytesPerInt);
duke@435 1064 }
duke@435 1065 #endif
duke@435 1066 assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
duke@435 1067
duke@435 1068 // Create an array of unused labels, one for each basic block
duke@435 1069 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
duke@435 1070
duke@435 1071 for( i=0; i <= _cfg->_num_blocks; i++ ) {
duke@435 1072 blk_labels[i].init();
duke@435 1073 }
duke@435 1074
duke@435 1075 // If this machine supports different size branch offsets, then pre-compute
duke@435 1076 // the length of the blocks
never@850 1077 if( _matcher->is_short_branch_offset(-1, 0) ) {
duke@435 1078 Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
duke@435 1079 labels_not_set = false;
duke@435 1080 }
duke@435 1081
duke@435 1082 // nmethod and CodeBuffer count stubs & constants as part of method's code.
duke@435 1083 int exception_handler_req = size_exception_handler();
duke@435 1084 int deopt_handler_req = size_deopt_handler();
duke@435 1085 exception_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1086 deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1087 stub_req += MAX_stubs_size; // ensure per-stub margin
duke@435 1088 code_req += MAX_inst_size; // ensure per-instruction margin
duke@435 1089 if (StressCodeBuffers)
duke@435 1090 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
duke@435 1091 int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
duke@435 1092 CodeBuffer* cb = code_buffer();
duke@435 1093 cb->initialize(total_req, locs_req);
duke@435 1094
duke@435 1095 // Have we run out of code space?
duke@435 1096 if (cb->blob() == NULL) {
duke@435 1097 turn_off_compiler(this);
duke@435 1098 return;
duke@435 1099 }
duke@435 1100 // Configure the code buffer.
duke@435 1101 cb->initialize_consts_size(const_req);
duke@435 1102 cb->initialize_stubs_size(stub_req);
duke@435 1103 cb->initialize_oop_recorder(env()->oop_recorder());
duke@435 1104
duke@435 1105 // fill in the nop array for bundling computations
duke@435 1106 MachNode *_nop_list[Bundle::_nop_count];
duke@435 1107 Bundle::initialize_nops(_nop_list, this);
duke@435 1108
duke@435 1109 // Create oopmap set.
duke@435 1110 _oop_map_set = new OopMapSet();
duke@435 1111
duke@435 1112 // !!!!! This preserves old handling of oopmaps for now
duke@435 1113 debug_info()->set_oopmaps(_oop_map_set);
duke@435 1114
duke@435 1115 // Count and start of implicit null check instructions
duke@435 1116 uint inct_cnt = 0;
duke@435 1117 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
duke@435 1118
duke@435 1119 // Count and start of calls
duke@435 1120 uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
duke@435 1121
duke@435 1122 uint return_offset = 0;
kvn@1294 1123 int nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 1124
duke@435 1125 int previous_offset = 0;
duke@435 1126 int current_offset = 0;
duke@435 1127 int last_call_offset = -1;
duke@435 1128
duke@435 1129 // Create an array of unused labels, one for each basic block, if printing is enabled
duke@435 1130 #ifndef PRODUCT
duke@435 1131 int *node_offsets = NULL;
duke@435 1132 uint node_offset_limit = unique();
duke@435 1133
duke@435 1134
duke@435 1135 if ( print_assembly() )
duke@435 1136 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
duke@435 1137 #endif
duke@435 1138
duke@435 1139 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
duke@435 1140
duke@435 1141 // ------------------
duke@435 1142 // Now fill in the code buffer
duke@435 1143 Node *delay_slot = NULL;
duke@435 1144
duke@435 1145 for( i=0; i < _cfg->_num_blocks; i++ ) {
duke@435 1146 Block *b = _cfg->_blocks[i];
duke@435 1147
duke@435 1148 Node *head = b->head();
duke@435 1149
duke@435 1150 // If this block needs to start aligned (i.e, can be reached other
duke@435 1151 // than by falling-thru from the previous block), then force the
duke@435 1152 // start of a new bundle.
duke@435 1153 if( Pipeline::requires_bundling() && starts_bundle(head) )
duke@435 1154 cb->flush_bundle(true);
duke@435 1155
duke@435 1156 // Define the label at the beginning of the basic block
duke@435 1157 if( labels_not_set )
duke@435 1158 MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
duke@435 1159
duke@435 1160 else
duke@435 1161 assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
duke@435 1162 "label position does not match code offset" );
duke@435 1163
duke@435 1164 uint last_inst = b->_nodes.size();
duke@435 1165
duke@435 1166 // Emit block normally, except for last instruction.
duke@435 1167 // Emit means "dump code bits into code buffer".
duke@435 1168 for( uint j = 0; j<last_inst; j++ ) {
duke@435 1169
duke@435 1170 // Get the node
duke@435 1171 Node* n = b->_nodes[j];
duke@435 1172
duke@435 1173 // See if delay slots are supported
duke@435 1174 if (valid_bundle_info(n) &&
duke@435 1175 node_bundling(n)->used_in_unconditional_delay()) {
duke@435 1176 assert(delay_slot == NULL, "no use of delay slot node");
duke@435 1177 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
duke@435 1178
duke@435 1179 delay_slot = n;
duke@435 1180 continue;
duke@435 1181 }
duke@435 1182
duke@435 1183 // If this starts a new instruction group, then flush the current one
duke@435 1184 // (but allow split bundles)
duke@435 1185 if( Pipeline::requires_bundling() && starts_bundle(n) )
duke@435 1186 cb->flush_bundle(false);
duke@435 1187
duke@435 1188 // The following logic is duplicated in the code ifdeffed for
twisti@1040 1189 // ENABLE_ZAP_DEAD_LOCALS which appears above in this file. It
duke@435 1190 // should be factored out. Or maybe dispersed to the nodes?
duke@435 1191
duke@435 1192 // Special handling for SafePoint/Call Nodes
duke@435 1193 bool is_mcall = false;
duke@435 1194 if( n->is_Mach() ) {
duke@435 1195 MachNode *mach = n->as_Mach();
duke@435 1196 is_mcall = n->is_MachCall();
duke@435 1197 bool is_sfn = n->is_MachSafePoint();
duke@435 1198
duke@435 1199 // If this requires all previous instructions be flushed, then do so
duke@435 1200 if( is_sfn || is_mcall || mach->alignment_required() != 1) {
duke@435 1201 cb->flush_bundle(true);
duke@435 1202 current_offset = cb->code_size();
duke@435 1203 }
duke@435 1204
duke@435 1205 // align the instruction if necessary
duke@435 1206 int padding = mach->compute_padding(current_offset);
duke@435 1207 // Make sure safepoint node for polling is distinct from a call's
duke@435 1208 // return by adding a nop if needed.
duke@435 1209 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
duke@435 1210 padding = nop_size;
duke@435 1211 }
duke@435 1212 assert( labels_not_set || padding == 0, "instruction should already be aligned")
duke@435 1213
duke@435 1214 if(padding > 0) {
duke@435 1215 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
duke@435 1216 int nops_cnt = padding / nop_size;
duke@435 1217 MachNode *nop = new (this) MachNopNode(nops_cnt);
duke@435 1218 b->_nodes.insert(j++, nop);
duke@435 1219 last_inst++;
duke@435 1220 _cfg->_bbs.map( nop->_idx, b );
duke@435 1221 nop->emit(*cb, _regalloc);
duke@435 1222 cb->flush_bundle(true);
duke@435 1223 current_offset = cb->code_size();
duke@435 1224 }
duke@435 1225
duke@435 1226 // Remember the start of the last call in a basic block
duke@435 1227 if (is_mcall) {
duke@435 1228 MachCallNode *mcall = mach->as_MachCall();
duke@435 1229
duke@435 1230 // This destination address is NOT PC-relative
duke@435 1231 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 1232
duke@435 1233 // Save the return address
duke@435 1234 call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
duke@435 1235
duke@435 1236 if (!mcall->is_safepoint_node()) {
duke@435 1237 is_mcall = false;
duke@435 1238 is_sfn = false;
duke@435 1239 }
duke@435 1240 }
duke@435 1241
duke@435 1242 // sfn will be valid whenever mcall is valid now because of inheritance
duke@435 1243 if( is_sfn || is_mcall ) {
duke@435 1244
duke@435 1245 // Handle special safepoint nodes for synchronization
duke@435 1246 if( !is_mcall ) {
duke@435 1247 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 1248 // !!!!! Stubs only need an oopmap right now, so bail out
duke@435 1249 if( sfn->jvms()->method() == NULL) {
duke@435 1250 // Write the oopmap directly to the code blob??!!
duke@435 1251 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1252 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
duke@435 1253 # endif
duke@435 1254 continue;
duke@435 1255 }
duke@435 1256 } // End synchronization
duke@435 1257
duke@435 1258 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1259 current_offset);
duke@435 1260 Process_OopMap_Node(mach, current_offset);
duke@435 1261 } // End if safepoint
duke@435 1262
duke@435 1263 // If this is a null check, then add the start of the previous instruction to the list
duke@435 1264 else if( mach->is_MachNullCheck() ) {
duke@435 1265 inct_starts[inct_cnt++] = previous_offset;
duke@435 1266 }
duke@435 1267
duke@435 1268 // If this is a branch, then fill in the label with the target BB's label
duke@435 1269 else if ( mach->is_Branch() ) {
duke@435 1270
duke@435 1271 if ( mach->ideal_Opcode() == Op_Jump ) {
duke@435 1272 for (uint h = 0; h < b->_num_succs; h++ ) {
duke@435 1273 Block* succs_block = b->_succs[h];
duke@435 1274 for (uint j = 1; j < succs_block->num_preds(); j++) {
duke@435 1275 Node* jpn = succs_block->pred(j);
duke@435 1276 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
duke@435 1277 uint block_num = succs_block->non_connector()->_pre_order;
duke@435 1278 Label *blkLabel = &blk_labels[block_num];
duke@435 1279 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
duke@435 1280 }
duke@435 1281 }
duke@435 1282 }
duke@435 1283 } else {
duke@435 1284 // For Branchs
duke@435 1285 // This requires the TRUE branch target be in succs[0]
duke@435 1286 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1287 mach->label_set( blk_labels[block_num], block_num );
duke@435 1288 }
duke@435 1289 }
duke@435 1290
duke@435 1291 #ifdef ASSERT
twisti@1040 1292 // Check that oop-store precedes the card-mark
duke@435 1293 else if( mach->ideal_Opcode() == Op_StoreCM ) {
duke@435 1294 uint storeCM_idx = j;
duke@435 1295 Node *oop_store = mach->in(mach->_cnt); // First precedence edge
duke@435 1296 assert( oop_store != NULL, "storeCM expects a precedence edge");
duke@435 1297 uint i4;
duke@435 1298 for( i4 = 0; i4 < last_inst; ++i4 ) {
duke@435 1299 if( b->_nodes[i4] == oop_store ) break;
duke@435 1300 }
duke@435 1301 // Note: This test can provide a false failure if other precedence
duke@435 1302 // edges have been added to the storeCMNode.
duke@435 1303 assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
duke@435 1304 }
duke@435 1305 #endif
duke@435 1306
duke@435 1307 else if( !n->is_Proj() ) {
twisti@1040 1308 // Remember the beginning of the previous instruction, in case
duke@435 1309 // it's followed by a flag-kill and a null-check. Happens on
duke@435 1310 // Intel all the time, with add-to-memory kind of opcodes.
duke@435 1311 previous_offset = current_offset;
duke@435 1312 }
duke@435 1313 }
duke@435 1314
duke@435 1315 // Verify that there is sufficient space remaining
duke@435 1316 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
duke@435 1317 if (cb->blob() == NULL) {
duke@435 1318 turn_off_compiler(this);
duke@435 1319 return;
duke@435 1320 }
duke@435 1321
duke@435 1322 // Save the offset for the listing
duke@435 1323 #ifndef PRODUCT
duke@435 1324 if( node_offsets && n->_idx < node_offset_limit )
duke@435 1325 node_offsets[n->_idx] = cb->code_size();
duke@435 1326 #endif
duke@435 1327
duke@435 1328 // "Normal" instruction case
duke@435 1329 n->emit(*cb, _regalloc);
duke@435 1330 current_offset = cb->code_size();
duke@435 1331 non_safepoints.observe_instruction(n, current_offset);
duke@435 1332
duke@435 1333 // mcall is last "call" that can be a safepoint
duke@435 1334 // record it so we can see if a poll will directly follow it
duke@435 1335 // in which case we'll need a pad to make the PcDesc sites unique
duke@435 1336 // see 5010568. This can be slightly inaccurate but conservative
duke@435 1337 // in the case that return address is not actually at current_offset.
duke@435 1338 // This is a small price to pay.
duke@435 1339
duke@435 1340 if (is_mcall) {
duke@435 1341 last_call_offset = current_offset;
duke@435 1342 }
duke@435 1343
duke@435 1344 // See if this instruction has a delay slot
duke@435 1345 if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1346 assert(delay_slot != NULL, "expecting delay slot node");
duke@435 1347
duke@435 1348 // Back up 1 instruction
duke@435 1349 cb->set_code_end(
duke@435 1350 cb->code_end()-Pipeline::instr_unit_size());
duke@435 1351
duke@435 1352 // Save the offset for the listing
duke@435 1353 #ifndef PRODUCT
duke@435 1354 if( node_offsets && delay_slot->_idx < node_offset_limit )
duke@435 1355 node_offsets[delay_slot->_idx] = cb->code_size();
duke@435 1356 #endif
duke@435 1357
duke@435 1358 // Support a SafePoint in the delay slot
duke@435 1359 if( delay_slot->is_MachSafePoint() ) {
duke@435 1360 MachNode *mach = delay_slot->as_Mach();
duke@435 1361 // !!!!! Stubs only need an oopmap right now, so bail out
duke@435 1362 if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
duke@435 1363 // Write the oopmap directly to the code blob??!!
duke@435 1364 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1365 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
duke@435 1366 # endif
duke@435 1367 delay_slot = NULL;
duke@435 1368 continue;
duke@435 1369 }
duke@435 1370
duke@435 1371 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
duke@435 1372 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1373 adjusted_offset);
duke@435 1374 // Generate an OopMap entry
duke@435 1375 Process_OopMap_Node(mach, adjusted_offset);
duke@435 1376 }
duke@435 1377
duke@435 1378 // Insert the delay slot instruction
duke@435 1379 delay_slot->emit(*cb, _regalloc);
duke@435 1380
duke@435 1381 // Don't reuse it
duke@435 1382 delay_slot = NULL;
duke@435 1383 }
duke@435 1384
duke@435 1385 } // End for all instructions in block
duke@435 1386
rasbold@853 1387 // If the next block is the top of a loop, pad this block out to align
rasbold@853 1388 // the loop top a little. Helps prevent pipe stalls at loop back branches.
duke@435 1389 if( i<_cfg->_num_blocks-1 ) {
duke@435 1390 Block *nb = _cfg->_blocks[i+1];
duke@435 1391 uint padding = nb->alignment_padding(current_offset);
duke@435 1392 if( padding > 0 ) {
duke@435 1393 MachNode *nop = new (this) MachNopNode(padding / nop_size);
duke@435 1394 b->_nodes.insert( b->_nodes.size(), nop );
duke@435 1395 _cfg->_bbs.map( nop->_idx, b );
duke@435 1396 nop->emit(*cb, _regalloc);
duke@435 1397 current_offset = cb->code_size();
duke@435 1398 }
duke@435 1399 }
duke@435 1400
duke@435 1401 } // End of for all blocks
duke@435 1402
duke@435 1403 non_safepoints.flush_at_end();
duke@435 1404
duke@435 1405 // Offset too large?
duke@435 1406 if (failing()) return;
duke@435 1407
duke@435 1408 // Define a pseudo-label at the end of the code
duke@435 1409 MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
duke@435 1410
duke@435 1411 // Compute the size of the first block
duke@435 1412 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
duke@435 1413
duke@435 1414 assert(cb->code_size() < 500000, "method is unreasonably large");
duke@435 1415
duke@435 1416 // ------------------
duke@435 1417
duke@435 1418 #ifndef PRODUCT
duke@435 1419 // Information on the size of the method, without the extraneous code
duke@435 1420 Scheduling::increment_method_size(cb->code_size());
duke@435 1421 #endif
duke@435 1422
duke@435 1423 // ------------------
duke@435 1424 // Fill in exception table entries.
duke@435 1425 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
duke@435 1426
duke@435 1427 // Only java methods have exception handlers and deopt handlers
duke@435 1428 if (_method) {
duke@435 1429 // Emit the exception handler code.
duke@435 1430 _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
duke@435 1431 // Emit the deopt handler code.
duke@435 1432 _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
duke@435 1433 }
duke@435 1434
duke@435 1435 // One last check for failed CodeBuffer::expand:
duke@435 1436 if (cb->blob() == NULL) {
duke@435 1437 turn_off_compiler(this);
duke@435 1438 return;
duke@435 1439 }
duke@435 1440
duke@435 1441 #ifndef PRODUCT
duke@435 1442 // Dump the assembly code, including basic-block numbers
duke@435 1443 if (print_assembly()) {
duke@435 1444 ttyLocker ttyl; // keep the following output all in one block
duke@435 1445 if (!VMThread::should_terminate()) { // test this under the tty lock
duke@435 1446 // This output goes directly to the tty, not the compiler log.
duke@435 1447 // To enable tools to match it up with the compilation activity,
duke@435 1448 // be sure to tag this tty output with the compile ID.
duke@435 1449 if (xtty != NULL) {
duke@435 1450 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
duke@435 1451 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 1452 "");
duke@435 1453 }
duke@435 1454 if (method() != NULL) {
duke@435 1455 method()->print_oop();
duke@435 1456 print_codes();
duke@435 1457 }
duke@435 1458 dump_asm(node_offsets, node_offset_limit);
duke@435 1459 if (xtty != NULL) {
duke@435 1460 xtty->tail("opto_assembly");
duke@435 1461 }
duke@435 1462 }
duke@435 1463 }
duke@435 1464 #endif
duke@435 1465
duke@435 1466 }
duke@435 1467
duke@435 1468 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
duke@435 1469 _inc_table.set_size(cnt);
duke@435 1470
duke@435 1471 uint inct_cnt = 0;
duke@435 1472 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1473 Block *b = _cfg->_blocks[i];
duke@435 1474 Node *n = NULL;
duke@435 1475 int j;
duke@435 1476
duke@435 1477 // Find the branch; ignore trailing NOPs.
duke@435 1478 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 1479 n = b->_nodes[j];
duke@435 1480 if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 1481 break;
duke@435 1482 }
duke@435 1483
duke@435 1484 // If we didn't find anything, continue
duke@435 1485 if( j < 0 ) continue;
duke@435 1486
duke@435 1487 // Compute ExceptionHandlerTable subtable entry and add it
duke@435 1488 // (skip empty blocks)
duke@435 1489 if( n->is_Catch() ) {
duke@435 1490
duke@435 1491 // Get the offset of the return from the call
duke@435 1492 uint call_return = call_returns[b->_pre_order];
duke@435 1493 #ifdef ASSERT
duke@435 1494 assert( call_return > 0, "no call seen for this basic block" );
duke@435 1495 while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
duke@435 1496 assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
duke@435 1497 #endif
duke@435 1498 // last instruction is a CatchNode, find it's CatchProjNodes
duke@435 1499 int nof_succs = b->_num_succs;
duke@435 1500 // allocate space
duke@435 1501 GrowableArray<intptr_t> handler_bcis(nof_succs);
duke@435 1502 GrowableArray<intptr_t> handler_pcos(nof_succs);
duke@435 1503 // iterate through all successors
duke@435 1504 for (int j = 0; j < nof_succs; j++) {
duke@435 1505 Block* s = b->_succs[j];
duke@435 1506 bool found_p = false;
duke@435 1507 for( uint k = 1; k < s->num_preds(); k++ ) {
duke@435 1508 Node *pk = s->pred(k);
duke@435 1509 if( pk->is_CatchProj() && pk->in(0) == n ) {
duke@435 1510 const CatchProjNode* p = pk->as_CatchProj();
duke@435 1511 found_p = true;
duke@435 1512 // add the corresponding handler bci & pco information
duke@435 1513 if( p->_con != CatchProjNode::fall_through_index ) {
duke@435 1514 // p leads to an exception handler (and is not fall through)
duke@435 1515 assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
duke@435 1516 // no duplicates, please
duke@435 1517 if( !handler_bcis.contains(p->handler_bci()) ) {
duke@435 1518 uint block_num = s->non_connector()->_pre_order;
duke@435 1519 handler_bcis.append(p->handler_bci());
duke@435 1520 handler_pcos.append(blk_labels[block_num].loc_pos());
duke@435 1521 }
duke@435 1522 }
duke@435 1523 }
duke@435 1524 }
duke@435 1525 assert(found_p, "no matching predecessor found");
duke@435 1526 // Note: Due to empty block removal, one block may have
duke@435 1527 // several CatchProj inputs, from the same Catch.
duke@435 1528 }
duke@435 1529
duke@435 1530 // Set the offset of the return from the call
duke@435 1531 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
duke@435 1532 continue;
duke@435 1533 }
duke@435 1534
duke@435 1535 // Handle implicit null exception table updates
duke@435 1536 if( n->is_MachNullCheck() ) {
duke@435 1537 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1538 _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
duke@435 1539 continue;
duke@435 1540 }
duke@435 1541 } // End of for all blocks fill in exception table entries
duke@435 1542 }
duke@435 1543
duke@435 1544 // Static Variables
duke@435 1545 #ifndef PRODUCT
duke@435 1546 uint Scheduling::_total_nop_size = 0;
duke@435 1547 uint Scheduling::_total_method_size = 0;
duke@435 1548 uint Scheduling::_total_branches = 0;
duke@435 1549 uint Scheduling::_total_unconditional_delays = 0;
duke@435 1550 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
duke@435 1551 #endif
duke@435 1552
duke@435 1553 // Initializer for class Scheduling
duke@435 1554
duke@435 1555 Scheduling::Scheduling(Arena *arena, Compile &compile)
duke@435 1556 : _arena(arena),
duke@435 1557 _cfg(compile.cfg()),
duke@435 1558 _bbs(compile.cfg()->_bbs),
duke@435 1559 _regalloc(compile.regalloc()),
duke@435 1560 _reg_node(arena),
duke@435 1561 _bundle_instr_count(0),
duke@435 1562 _bundle_cycle_number(0),
duke@435 1563 _scheduled(arena),
duke@435 1564 _available(arena),
duke@435 1565 _next_node(NULL),
duke@435 1566 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
duke@435 1567 _pinch_free_list(arena)
duke@435 1568 #ifndef PRODUCT
duke@435 1569 , _branches(0)
duke@435 1570 , _unconditional_delays(0)
duke@435 1571 #endif
duke@435 1572 {
duke@435 1573 // Create a MachNopNode
duke@435 1574 _nop = new (&compile) MachNopNode();
duke@435 1575
duke@435 1576 // Now that the nops are in the array, save the count
duke@435 1577 // (but allow entries for the nops)
duke@435 1578 _node_bundling_limit = compile.unique();
duke@435 1579 uint node_max = _regalloc->node_regs_max_index();
duke@435 1580
duke@435 1581 compile.set_node_bundling_limit(_node_bundling_limit);
duke@435 1582
twisti@1040 1583 // This one is persistent within the Compile class
duke@435 1584 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
duke@435 1585
duke@435 1586 // Allocate space for fixed-size arrays
duke@435 1587 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1588 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
duke@435 1589 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1590
duke@435 1591 // Clear the arrays
duke@435 1592 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
duke@435 1593 memset(_node_latency, 0, node_max * sizeof(unsigned short));
duke@435 1594 memset(_uses, 0, node_max * sizeof(short));
duke@435 1595 memset(_current_latency, 0, node_max * sizeof(unsigned short));
duke@435 1596
duke@435 1597 // Clear the bundling information
duke@435 1598 memcpy(_bundle_use_elements,
duke@435 1599 Pipeline_Use::elaborated_elements,
duke@435 1600 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1601
duke@435 1602 // Get the last node
duke@435 1603 Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
duke@435 1604
duke@435 1605 _next_node = bb->_nodes[bb->_nodes.size()-1];
duke@435 1606 }
duke@435 1607
duke@435 1608 #ifndef PRODUCT
duke@435 1609 // Scheduling destructor
duke@435 1610 Scheduling::~Scheduling() {
duke@435 1611 _total_branches += _branches;
duke@435 1612 _total_unconditional_delays += _unconditional_delays;
duke@435 1613 }
duke@435 1614 #endif
duke@435 1615
duke@435 1616 // Step ahead "i" cycles
duke@435 1617 void Scheduling::step(uint i) {
duke@435 1618
duke@435 1619 Bundle *bundle = node_bundling(_next_node);
duke@435 1620 bundle->set_starts_bundle();
duke@435 1621
duke@435 1622 // Update the bundle record, but leave the flags information alone
duke@435 1623 if (_bundle_instr_count > 0) {
duke@435 1624 bundle->set_instr_count(_bundle_instr_count);
duke@435 1625 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1626 }
duke@435 1627
duke@435 1628 // Update the state information
duke@435 1629 _bundle_instr_count = 0;
duke@435 1630 _bundle_cycle_number += i;
duke@435 1631 _bundle_use.step(i);
duke@435 1632 }
duke@435 1633
duke@435 1634 void Scheduling::step_and_clear() {
duke@435 1635 Bundle *bundle = node_bundling(_next_node);
duke@435 1636 bundle->set_starts_bundle();
duke@435 1637
duke@435 1638 // Update the bundle record
duke@435 1639 if (_bundle_instr_count > 0) {
duke@435 1640 bundle->set_instr_count(_bundle_instr_count);
duke@435 1641 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1642
duke@435 1643 _bundle_cycle_number += 1;
duke@435 1644 }
duke@435 1645
duke@435 1646 // Clear the bundling information
duke@435 1647 _bundle_instr_count = 0;
duke@435 1648 _bundle_use.reset();
duke@435 1649
duke@435 1650 memcpy(_bundle_use_elements,
duke@435 1651 Pipeline_Use::elaborated_elements,
duke@435 1652 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1653 }
duke@435 1654
duke@435 1655 //------------------------------ScheduleAndBundle------------------------------
duke@435 1656 // Perform instruction scheduling and bundling over the sequence of
duke@435 1657 // instructions in backwards order.
duke@435 1658 void Compile::ScheduleAndBundle() {
duke@435 1659
duke@435 1660 // Don't optimize this if it isn't a method
duke@435 1661 if (!_method)
duke@435 1662 return;
duke@435 1663
duke@435 1664 // Don't optimize this if scheduling is disabled
duke@435 1665 if (!do_scheduling())
duke@435 1666 return;
duke@435 1667
duke@435 1668 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
duke@435 1669
duke@435 1670 // Create a data structure for all the scheduling information
duke@435 1671 Scheduling scheduling(Thread::current()->resource_area(), *this);
duke@435 1672
duke@435 1673 // Walk backwards over each basic block, computing the needed alignment
duke@435 1674 // Walk over all the basic blocks
duke@435 1675 scheduling.DoScheduling();
duke@435 1676 }
duke@435 1677
duke@435 1678 //------------------------------ComputeLocalLatenciesForward-------------------
duke@435 1679 // Compute the latency of all the instructions. This is fairly simple,
duke@435 1680 // because we already have a legal ordering. Walk over the instructions
duke@435 1681 // from first to last, and compute the latency of the instruction based
twisti@1040 1682 // on the latency of the preceding instruction(s).
duke@435 1683 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
duke@435 1684 #ifndef PRODUCT
duke@435 1685 if (_cfg->C->trace_opto_output())
duke@435 1686 tty->print("# -> ComputeLocalLatenciesForward\n");
duke@435 1687 #endif
duke@435 1688
duke@435 1689 // Walk over all the schedulable instructions
duke@435 1690 for( uint j=_bb_start; j < _bb_end; j++ ) {
duke@435 1691
duke@435 1692 // This is a kludge, forcing all latency calculations to start at 1.
duke@435 1693 // Used to allow latency 0 to force an instruction to the beginning
duke@435 1694 // of the bb
duke@435 1695 uint latency = 1;
duke@435 1696 Node *use = bb->_nodes[j];
duke@435 1697 uint nlen = use->len();
duke@435 1698
duke@435 1699 // Walk over all the inputs
duke@435 1700 for ( uint k=0; k < nlen; k++ ) {
duke@435 1701 Node *def = use->in(k);
duke@435 1702 if (!def)
duke@435 1703 continue;
duke@435 1704
duke@435 1705 uint l = _node_latency[def->_idx] + use->latency(k);
duke@435 1706 if (latency < l)
duke@435 1707 latency = l;
duke@435 1708 }
duke@435 1709
duke@435 1710 _node_latency[use->_idx] = latency;
duke@435 1711
duke@435 1712 #ifndef PRODUCT
duke@435 1713 if (_cfg->C->trace_opto_output()) {
duke@435 1714 tty->print("# latency %4d: ", latency);
duke@435 1715 use->dump();
duke@435 1716 }
duke@435 1717 #endif
duke@435 1718 }
duke@435 1719
duke@435 1720 #ifndef PRODUCT
duke@435 1721 if (_cfg->C->trace_opto_output())
duke@435 1722 tty->print("# <- ComputeLocalLatenciesForward\n");
duke@435 1723 #endif
duke@435 1724
duke@435 1725 } // end ComputeLocalLatenciesForward
duke@435 1726
duke@435 1727 // See if this node fits into the present instruction bundle
duke@435 1728 bool Scheduling::NodeFitsInBundle(Node *n) {
duke@435 1729 uint n_idx = n->_idx;
duke@435 1730
duke@435 1731 // If this is the unconditional delay instruction, then it fits
duke@435 1732 if (n == _unconditional_delay_slot) {
duke@435 1733 #ifndef PRODUCT
duke@435 1734 if (_cfg->C->trace_opto_output())
duke@435 1735 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
duke@435 1736 #endif
duke@435 1737 return (true);
duke@435 1738 }
duke@435 1739
duke@435 1740 // If the node cannot be scheduled this cycle, skip it
duke@435 1741 if (_current_latency[n_idx] > _bundle_cycle_number) {
duke@435 1742 #ifndef PRODUCT
duke@435 1743 if (_cfg->C->trace_opto_output())
duke@435 1744 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
duke@435 1745 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
duke@435 1746 #endif
duke@435 1747 return (false);
duke@435 1748 }
duke@435 1749
duke@435 1750 const Pipeline *node_pipeline = n->pipeline();
duke@435 1751
duke@435 1752 uint instruction_count = node_pipeline->instructionCount();
duke@435 1753 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 1754 instruction_count = 0;
duke@435 1755 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 1756 instruction_count++;
duke@435 1757
duke@435 1758 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
duke@435 1759 #ifndef PRODUCT
duke@435 1760 if (_cfg->C->trace_opto_output())
duke@435 1761 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
duke@435 1762 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
duke@435 1763 #endif
duke@435 1764 return (false);
duke@435 1765 }
duke@435 1766
duke@435 1767 // Don't allow non-machine nodes to be handled this way
duke@435 1768 if (!n->is_Mach() && instruction_count == 0)
duke@435 1769 return (false);
duke@435 1770
duke@435 1771 // See if there is any overlap
duke@435 1772 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
duke@435 1773
duke@435 1774 if (delay > 0) {
duke@435 1775 #ifndef PRODUCT
duke@435 1776 if (_cfg->C->trace_opto_output())
duke@435 1777 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
duke@435 1778 #endif
duke@435 1779 return false;
duke@435 1780 }
duke@435 1781
duke@435 1782 #ifndef PRODUCT
duke@435 1783 if (_cfg->C->trace_opto_output())
duke@435 1784 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
duke@435 1785 #endif
duke@435 1786
duke@435 1787 return true;
duke@435 1788 }
duke@435 1789
duke@435 1790 Node * Scheduling::ChooseNodeToBundle() {
duke@435 1791 uint siz = _available.size();
duke@435 1792
duke@435 1793 if (siz == 0) {
duke@435 1794
duke@435 1795 #ifndef PRODUCT
duke@435 1796 if (_cfg->C->trace_opto_output())
duke@435 1797 tty->print("# ChooseNodeToBundle: NULL\n");
duke@435 1798 #endif
duke@435 1799 return (NULL);
duke@435 1800 }
duke@435 1801
duke@435 1802 // Fast path, if only 1 instruction in the bundle
duke@435 1803 if (siz == 1) {
duke@435 1804 #ifndef PRODUCT
duke@435 1805 if (_cfg->C->trace_opto_output()) {
duke@435 1806 tty->print("# ChooseNodeToBundle (only 1): ");
duke@435 1807 _available[0]->dump();
duke@435 1808 }
duke@435 1809 #endif
duke@435 1810 return (_available[0]);
duke@435 1811 }
duke@435 1812
duke@435 1813 // Don't bother, if the bundle is already full
duke@435 1814 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
duke@435 1815 for ( uint i = 0; i < siz; i++ ) {
duke@435 1816 Node *n = _available[i];
duke@435 1817
duke@435 1818 // Skip projections, we'll handle them another way
duke@435 1819 if (n->is_Proj())
duke@435 1820 continue;
duke@435 1821
duke@435 1822 // This presupposed that instructions are inserted into the
duke@435 1823 // available list in a legality order; i.e. instructions that
duke@435 1824 // must be inserted first are at the head of the list
duke@435 1825 if (NodeFitsInBundle(n)) {
duke@435 1826 #ifndef PRODUCT
duke@435 1827 if (_cfg->C->trace_opto_output()) {
duke@435 1828 tty->print("# ChooseNodeToBundle: ");
duke@435 1829 n->dump();
duke@435 1830 }
duke@435 1831 #endif
duke@435 1832 return (n);
duke@435 1833 }
duke@435 1834 }
duke@435 1835 }
duke@435 1836
duke@435 1837 // Nothing fits in this bundle, choose the highest priority
duke@435 1838 #ifndef PRODUCT
duke@435 1839 if (_cfg->C->trace_opto_output()) {
duke@435 1840 tty->print("# ChooseNodeToBundle: ");
duke@435 1841 _available[0]->dump();
duke@435 1842 }
duke@435 1843 #endif
duke@435 1844
duke@435 1845 return _available[0];
duke@435 1846 }
duke@435 1847
duke@435 1848 //------------------------------AddNodeToAvailableList-------------------------
duke@435 1849 void Scheduling::AddNodeToAvailableList(Node *n) {
duke@435 1850 assert( !n->is_Proj(), "projections never directly made available" );
duke@435 1851 #ifndef PRODUCT
duke@435 1852 if (_cfg->C->trace_opto_output()) {
duke@435 1853 tty->print("# AddNodeToAvailableList: ");
duke@435 1854 n->dump();
duke@435 1855 }
duke@435 1856 #endif
duke@435 1857
duke@435 1858 int latency = _current_latency[n->_idx];
duke@435 1859
duke@435 1860 // Insert in latency order (insertion sort)
duke@435 1861 uint i;
duke@435 1862 for ( i=0; i < _available.size(); i++ )
duke@435 1863 if (_current_latency[_available[i]->_idx] > latency)
duke@435 1864 break;
duke@435 1865
duke@435 1866 // Special Check for compares following branches
duke@435 1867 if( n->is_Mach() && _scheduled.size() > 0 ) {
duke@435 1868 int op = n->as_Mach()->ideal_Opcode();
duke@435 1869 Node *last = _scheduled[0];
duke@435 1870 if( last->is_MachIf() && last->in(1) == n &&
duke@435 1871 ( op == Op_CmpI ||
duke@435 1872 op == Op_CmpU ||
duke@435 1873 op == Op_CmpP ||
duke@435 1874 op == Op_CmpF ||
duke@435 1875 op == Op_CmpD ||
duke@435 1876 op == Op_CmpL ) ) {
duke@435 1877
duke@435 1878 // Recalculate position, moving to front of same latency
duke@435 1879 for ( i=0 ; i < _available.size(); i++ )
duke@435 1880 if (_current_latency[_available[i]->_idx] >= latency)
duke@435 1881 break;
duke@435 1882 }
duke@435 1883 }
duke@435 1884
duke@435 1885 // Insert the node in the available list
duke@435 1886 _available.insert(i, n);
duke@435 1887
duke@435 1888 #ifndef PRODUCT
duke@435 1889 if (_cfg->C->trace_opto_output())
duke@435 1890 dump_available();
duke@435 1891 #endif
duke@435 1892 }
duke@435 1893
duke@435 1894 //------------------------------DecrementUseCounts-----------------------------
duke@435 1895 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
duke@435 1896 for ( uint i=0; i < n->len(); i++ ) {
duke@435 1897 Node *def = n->in(i);
duke@435 1898 if (!def) continue;
duke@435 1899 if( def->is_Proj() ) // If this is a machine projection, then
duke@435 1900 def = def->in(0); // propagate usage thru to the base instruction
duke@435 1901
duke@435 1902 if( _bbs[def->_idx] != bb ) // Ignore if not block-local
duke@435 1903 continue;
duke@435 1904
duke@435 1905 // Compute the latency
duke@435 1906 uint l = _bundle_cycle_number + n->latency(i);
duke@435 1907 if (_current_latency[def->_idx] < l)
duke@435 1908 _current_latency[def->_idx] = l;
duke@435 1909
duke@435 1910 // If this does not have uses then schedule it
duke@435 1911 if ((--_uses[def->_idx]) == 0)
duke@435 1912 AddNodeToAvailableList(def);
duke@435 1913 }
duke@435 1914 }
duke@435 1915
duke@435 1916 //------------------------------AddNodeToBundle--------------------------------
duke@435 1917 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
duke@435 1918 #ifndef PRODUCT
duke@435 1919 if (_cfg->C->trace_opto_output()) {
duke@435 1920 tty->print("# AddNodeToBundle: ");
duke@435 1921 n->dump();
duke@435 1922 }
duke@435 1923 #endif
duke@435 1924
duke@435 1925 // Remove this from the available list
duke@435 1926 uint i;
duke@435 1927 for (i = 0; i < _available.size(); i++)
duke@435 1928 if (_available[i] == n)
duke@435 1929 break;
duke@435 1930 assert(i < _available.size(), "entry in _available list not found");
duke@435 1931 _available.remove(i);
duke@435 1932
duke@435 1933 // See if this fits in the current bundle
duke@435 1934 const Pipeline *node_pipeline = n->pipeline();
duke@435 1935 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
duke@435 1936
duke@435 1937 // Check for instructions to be placed in the delay slot. We
duke@435 1938 // do this before we actually schedule the current instruction,
duke@435 1939 // because the delay slot follows the current instruction.
duke@435 1940 if (Pipeline::_branch_has_delay_slot &&
duke@435 1941 node_pipeline->hasBranchDelay() &&
duke@435 1942 !_unconditional_delay_slot) {
duke@435 1943
duke@435 1944 uint siz = _available.size();
duke@435 1945
duke@435 1946 // Conditional branches can support an instruction that
twisti@1040 1947 // is unconditionally executed and not dependent by the
duke@435 1948 // branch, OR a conditionally executed instruction if
duke@435 1949 // the branch is taken. In practice, this means that
duke@435 1950 // the first instruction at the branch target is
duke@435 1951 // copied to the delay slot, and the branch goes to
duke@435 1952 // the instruction after that at the branch target
duke@435 1953 if ( n->is_Mach() && n->is_Branch() ) {
duke@435 1954
duke@435 1955 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
duke@435 1956 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
duke@435 1957
duke@435 1958 #ifndef PRODUCT
duke@435 1959 _branches++;
duke@435 1960 #endif
duke@435 1961
duke@435 1962 // At least 1 instruction is on the available list
twisti@1040 1963 // that is not dependent on the branch
duke@435 1964 for (uint i = 0; i < siz; i++) {
duke@435 1965 Node *d = _available[i];
duke@435 1966 const Pipeline *avail_pipeline = d->pipeline();
duke@435 1967
duke@435 1968 // Don't allow safepoints in the branch shadow, that will
duke@435 1969 // cause a number of difficulties
duke@435 1970 if ( avail_pipeline->instructionCount() == 1 &&
duke@435 1971 !avail_pipeline->hasMultipleBundles() &&
duke@435 1972 !avail_pipeline->hasBranchDelay() &&
duke@435 1973 Pipeline::instr_has_unit_size() &&
duke@435 1974 d->size(_regalloc) == Pipeline::instr_unit_size() &&
duke@435 1975 NodeFitsInBundle(d) &&
duke@435 1976 !node_bundling(d)->used_in_delay()) {
duke@435 1977
duke@435 1978 if (d->is_Mach() && !d->is_MachSafePoint()) {
duke@435 1979 // A node that fits in the delay slot was found, so we need to
duke@435 1980 // set the appropriate bits in the bundle pipeline information so
duke@435 1981 // that it correctly indicates resource usage. Later, when we
duke@435 1982 // attempt to add this instruction to the bundle, we will skip
duke@435 1983 // setting the resource usage.
duke@435 1984 _unconditional_delay_slot = d;
duke@435 1985 node_bundling(n)->set_use_unconditional_delay();
duke@435 1986 node_bundling(d)->set_used_in_unconditional_delay();
duke@435 1987 _bundle_use.add_usage(avail_pipeline->resourceUse());
duke@435 1988 _current_latency[d->_idx] = _bundle_cycle_number;
duke@435 1989 _next_node = d;
duke@435 1990 ++_bundle_instr_count;
duke@435 1991 #ifndef PRODUCT
duke@435 1992 _unconditional_delays++;
duke@435 1993 #endif
duke@435 1994 break;
duke@435 1995 }
duke@435 1996 }
duke@435 1997 }
duke@435 1998 }
duke@435 1999
duke@435 2000 // No delay slot, add a nop to the usage
duke@435 2001 if (!_unconditional_delay_slot) {
duke@435 2002 // See if adding an instruction in the delay slot will overflow
duke@435 2003 // the bundle.
duke@435 2004 if (!NodeFitsInBundle(_nop)) {
duke@435 2005 #ifndef PRODUCT
duke@435 2006 if (_cfg->C->trace_opto_output())
duke@435 2007 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
duke@435 2008 #endif
duke@435 2009 step(1);
duke@435 2010 }
duke@435 2011
duke@435 2012 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
duke@435 2013 _next_node = _nop;
duke@435 2014 ++_bundle_instr_count;
duke@435 2015 }
duke@435 2016
duke@435 2017 // See if the instruction in the delay slot requires a
duke@435 2018 // step of the bundles
duke@435 2019 if (!NodeFitsInBundle(n)) {
duke@435 2020 #ifndef PRODUCT
duke@435 2021 if (_cfg->C->trace_opto_output())
duke@435 2022 tty->print("# *** STEP(branch won't fit) ***\n");
duke@435 2023 #endif
duke@435 2024 // Update the state information
duke@435 2025 _bundle_instr_count = 0;
duke@435 2026 _bundle_cycle_number += 1;
duke@435 2027 _bundle_use.step(1);
duke@435 2028 }
duke@435 2029 }
duke@435 2030
duke@435 2031 // Get the number of instructions
duke@435 2032 uint instruction_count = node_pipeline->instructionCount();
duke@435 2033 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 2034 instruction_count = 0;
duke@435 2035
duke@435 2036 // Compute the latency information
duke@435 2037 uint delay = 0;
duke@435 2038
duke@435 2039 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
duke@435 2040 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
duke@435 2041 if (relative_latency < 0)
duke@435 2042 relative_latency = 0;
duke@435 2043
duke@435 2044 delay = _bundle_use.full_latency(relative_latency, node_usage);
duke@435 2045
duke@435 2046 // Does not fit in this bundle, start a new one
duke@435 2047 if (delay > 0) {
duke@435 2048 step(delay);
duke@435 2049
duke@435 2050 #ifndef PRODUCT
duke@435 2051 if (_cfg->C->trace_opto_output())
duke@435 2052 tty->print("# *** STEP(%d) ***\n", delay);
duke@435 2053 #endif
duke@435 2054 }
duke@435 2055 }
duke@435 2056
duke@435 2057 // If this was placed in the delay slot, ignore it
duke@435 2058 if (n != _unconditional_delay_slot) {
duke@435 2059
duke@435 2060 if (delay == 0) {
duke@435 2061 if (node_pipeline->hasMultipleBundles()) {
duke@435 2062 #ifndef PRODUCT
duke@435 2063 if (_cfg->C->trace_opto_output())
duke@435 2064 tty->print("# *** STEP(multiple instructions) ***\n");
duke@435 2065 #endif
duke@435 2066 step(1);
duke@435 2067 }
duke@435 2068
duke@435 2069 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
duke@435 2070 #ifndef PRODUCT
duke@435 2071 if (_cfg->C->trace_opto_output())
duke@435 2072 tty->print("# *** STEP(%d >= %d instructions) ***\n",
duke@435 2073 instruction_count + _bundle_instr_count,
duke@435 2074 Pipeline::_max_instrs_per_cycle);
duke@435 2075 #endif
duke@435 2076 step(1);
duke@435 2077 }
duke@435 2078 }
duke@435 2079
duke@435 2080 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 2081 _bundle_instr_count++;
duke@435 2082
duke@435 2083 // Set the node's latency
duke@435 2084 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2085
duke@435 2086 // Now merge the functional unit information
duke@435 2087 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
duke@435 2088 _bundle_use.add_usage(node_usage);
duke@435 2089
duke@435 2090 // Increment the number of instructions in this bundle
duke@435 2091 _bundle_instr_count += instruction_count;
duke@435 2092
duke@435 2093 // Remember this node for later
duke@435 2094 if (n->is_Mach())
duke@435 2095 _next_node = n;
duke@435 2096 }
duke@435 2097
duke@435 2098 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
duke@435 2099 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
duke@435 2100 // 'Schedule' them (basically ignore in the schedule) but do not insert them
duke@435 2101 // into the block. All other scheduled nodes get put in the schedule here.
duke@435 2102 int op = n->Opcode();
duke@435 2103 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
duke@435 2104 (op != Op_Node && // Not an unused antidepedence node and
duke@435 2105 // not an unallocated boxlock
duke@435 2106 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
duke@435 2107
duke@435 2108 // Push any trailing projections
duke@435 2109 if( bb->_nodes[bb->_nodes.size()-1] != n ) {
duke@435 2110 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2111 Node *foi = n->fast_out(i);
duke@435 2112 if( foi->is_Proj() )
duke@435 2113 _scheduled.push(foi);
duke@435 2114 }
duke@435 2115 }
duke@435 2116
duke@435 2117 // Put the instruction in the schedule list
duke@435 2118 _scheduled.push(n);
duke@435 2119 }
duke@435 2120
duke@435 2121 #ifndef PRODUCT
duke@435 2122 if (_cfg->C->trace_opto_output())
duke@435 2123 dump_available();
duke@435 2124 #endif
duke@435 2125
duke@435 2126 // Walk all the definitions, decrementing use counts, and
duke@435 2127 // if a definition has a 0 use count, place it in the available list.
duke@435 2128 DecrementUseCounts(n,bb);
duke@435 2129 }
duke@435 2130
duke@435 2131 //------------------------------ComputeUseCount--------------------------------
duke@435 2132 // This method sets the use count within a basic block. We will ignore all
duke@435 2133 // uses outside the current basic block. As we are doing a backwards walk,
duke@435 2134 // any node we reach that has a use count of 0 may be scheduled. This also
duke@435 2135 // avoids the problem of cyclic references from phi nodes, as long as phi
duke@435 2136 // nodes are at the front of the basic block. This method also initializes
duke@435 2137 // the available list to the set of instructions that have no uses within this
duke@435 2138 // basic block.
duke@435 2139 void Scheduling::ComputeUseCount(const Block *bb) {
duke@435 2140 #ifndef PRODUCT
duke@435 2141 if (_cfg->C->trace_opto_output())
duke@435 2142 tty->print("# -> ComputeUseCount\n");
duke@435 2143 #endif
duke@435 2144
duke@435 2145 // Clear the list of available and scheduled instructions, just in case
duke@435 2146 _available.clear();
duke@435 2147 _scheduled.clear();
duke@435 2148
duke@435 2149 // No delay slot specified
duke@435 2150 _unconditional_delay_slot = NULL;
duke@435 2151
duke@435 2152 #ifdef ASSERT
duke@435 2153 for( uint i=0; i < bb->_nodes.size(); i++ )
duke@435 2154 assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
duke@435 2155 #endif
duke@435 2156
duke@435 2157 // Force the _uses count to never go to zero for unscheduable pieces
duke@435 2158 // of the block
duke@435 2159 for( uint k = 0; k < _bb_start; k++ )
duke@435 2160 _uses[bb->_nodes[k]->_idx] = 1;
duke@435 2161 for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
duke@435 2162 _uses[bb->_nodes[l]->_idx] = 1;
duke@435 2163
duke@435 2164 // Iterate backwards over the instructions in the block. Don't count the
duke@435 2165 // branch projections at end or the block header instructions.
duke@435 2166 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
duke@435 2167 Node *n = bb->_nodes[j];
duke@435 2168 if( n->is_Proj() ) continue; // Projections handled another way
duke@435 2169
duke@435 2170 // Account for all uses
duke@435 2171 for ( uint k = 0; k < n->len(); k++ ) {
duke@435 2172 Node *inp = n->in(k);
duke@435 2173 if (!inp) continue;
duke@435 2174 assert(inp != n, "no cycles allowed" );
duke@435 2175 if( _bbs[inp->_idx] == bb ) { // Block-local use?
duke@435 2176 if( inp->is_Proj() ) // Skip through Proj's
duke@435 2177 inp = inp->in(0);
duke@435 2178 ++_uses[inp->_idx]; // Count 1 block-local use
duke@435 2179 }
duke@435 2180 }
duke@435 2181
duke@435 2182 // If this instruction has a 0 use count, then it is available
duke@435 2183 if (!_uses[n->_idx]) {
duke@435 2184 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2185 AddNodeToAvailableList(n);
duke@435 2186 }
duke@435 2187
duke@435 2188 #ifndef PRODUCT
duke@435 2189 if (_cfg->C->trace_opto_output()) {
duke@435 2190 tty->print("# uses: %3d: ", _uses[n->_idx]);
duke@435 2191 n->dump();
duke@435 2192 }
duke@435 2193 #endif
duke@435 2194 }
duke@435 2195
duke@435 2196 #ifndef PRODUCT
duke@435 2197 if (_cfg->C->trace_opto_output())
duke@435 2198 tty->print("# <- ComputeUseCount\n");
duke@435 2199 #endif
duke@435 2200 }
duke@435 2201
duke@435 2202 // This routine performs scheduling on each basic block in reverse order,
duke@435 2203 // using instruction latencies and taking into account function unit
duke@435 2204 // availability.
duke@435 2205 void Scheduling::DoScheduling() {
duke@435 2206 #ifndef PRODUCT
duke@435 2207 if (_cfg->C->trace_opto_output())
duke@435 2208 tty->print("# -> DoScheduling\n");
duke@435 2209 #endif
duke@435 2210
duke@435 2211 Block *succ_bb = NULL;
duke@435 2212 Block *bb;
duke@435 2213
duke@435 2214 // Walk over all the basic blocks in reverse order
duke@435 2215 for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
duke@435 2216 bb = _cfg->_blocks[i];
duke@435 2217
duke@435 2218 #ifndef PRODUCT
duke@435 2219 if (_cfg->C->trace_opto_output()) {
duke@435 2220 tty->print("# Schedule BB#%03d (initial)\n", i);
duke@435 2221 for (uint j = 0; j < bb->_nodes.size(); j++)
duke@435 2222 bb->_nodes[j]->dump();
duke@435 2223 }
duke@435 2224 #endif
duke@435 2225
duke@435 2226 // On the head node, skip processing
duke@435 2227 if( bb == _cfg->_broot )
duke@435 2228 continue;
duke@435 2229
duke@435 2230 // Skip empty, connector blocks
duke@435 2231 if (bb->is_connector())
duke@435 2232 continue;
duke@435 2233
duke@435 2234 // If the following block is not the sole successor of
duke@435 2235 // this one, then reset the pipeline information
duke@435 2236 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
duke@435 2237 #ifndef PRODUCT
duke@435 2238 if (_cfg->C->trace_opto_output()) {
duke@435 2239 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
duke@435 2240 _next_node->_idx, _bundle_instr_count);
duke@435 2241 }
duke@435 2242 #endif
duke@435 2243 step_and_clear();
duke@435 2244 }
duke@435 2245
duke@435 2246 // Leave untouched the starting instruction, any Phis, a CreateEx node
duke@435 2247 // or Top. bb->_nodes[_bb_start] is the first schedulable instruction.
duke@435 2248 _bb_end = bb->_nodes.size()-1;
duke@435 2249 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
duke@435 2250 Node *n = bb->_nodes[_bb_start];
duke@435 2251 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
duke@435 2252 // Also, MachIdealNodes do not get scheduled
duke@435 2253 if( !n->is_Mach() ) continue; // Skip non-machine nodes
duke@435 2254 MachNode *mach = n->as_Mach();
duke@435 2255 int iop = mach->ideal_Opcode();
duke@435 2256 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
duke@435 2257 if( iop == Op_Con ) continue; // Do not schedule Top
duke@435 2258 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
duke@435 2259 mach->pipeline() == MachNode::pipeline_class() &&
duke@435 2260 !n->is_SpillCopy() ) // Breakpoints, Prolog, etc
duke@435 2261 continue;
duke@435 2262 break; // Funny loop structure to be sure...
duke@435 2263 }
duke@435 2264 // Compute last "interesting" instruction in block - last instruction we
duke@435 2265 // might schedule. _bb_end points just after last schedulable inst. We
duke@435 2266 // normally schedule conditional branches (despite them being forced last
duke@435 2267 // in the block), because they have delay slots we can fill. Calls all
duke@435 2268 // have their delay slots filled in the template expansions, so we don't
duke@435 2269 // bother scheduling them.
duke@435 2270 Node *last = bb->_nodes[_bb_end];
duke@435 2271 if( last->is_Catch() ||
kvn@1142 2272 // Exclude unreachable path case when Halt node is in a separate block.
kvn@1142 2273 (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
duke@435 2274 // There must be a prior call. Skip it.
duke@435 2275 while( !bb->_nodes[--_bb_end]->is_Call() ) {
duke@435 2276 assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
duke@435 2277 }
duke@435 2278 } else if( last->is_MachNullCheck() ) {
duke@435 2279 // Backup so the last null-checked memory instruction is
duke@435 2280 // outside the schedulable range. Skip over the nullcheck,
duke@435 2281 // projection, and the memory nodes.
duke@435 2282 Node *mem = last->in(1);
duke@435 2283 do {
duke@435 2284 _bb_end--;
duke@435 2285 } while (mem != bb->_nodes[_bb_end]);
duke@435 2286 } else {
duke@435 2287 // Set _bb_end to point after last schedulable inst.
duke@435 2288 _bb_end++;
duke@435 2289 }
duke@435 2290
duke@435 2291 assert( _bb_start <= _bb_end, "inverted block ends" );
duke@435 2292
duke@435 2293 // Compute the register antidependencies for the basic block
duke@435 2294 ComputeRegisterAntidependencies(bb);
duke@435 2295 if (_cfg->C->failing()) return; // too many D-U pinch points
duke@435 2296
duke@435 2297 // Compute intra-bb latencies for the nodes
duke@435 2298 ComputeLocalLatenciesForward(bb);
duke@435 2299
duke@435 2300 // Compute the usage within the block, and set the list of all nodes
duke@435 2301 // in the block that have no uses within the block.
duke@435 2302 ComputeUseCount(bb);
duke@435 2303
duke@435 2304 // Schedule the remaining instructions in the block
duke@435 2305 while ( _available.size() > 0 ) {
duke@435 2306 Node *n = ChooseNodeToBundle();
duke@435 2307 AddNodeToBundle(n,bb);
duke@435 2308 }
duke@435 2309
duke@435 2310 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
duke@435 2311 #ifdef ASSERT
duke@435 2312 for( uint l = _bb_start; l < _bb_end; l++ ) {
duke@435 2313 Node *n = bb->_nodes[l];
duke@435 2314 uint m;
duke@435 2315 for( m = 0; m < _bb_end-_bb_start; m++ )
duke@435 2316 if( _scheduled[m] == n )
duke@435 2317 break;
duke@435 2318 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
duke@435 2319 }
duke@435 2320 #endif
duke@435 2321
duke@435 2322 // Now copy the instructions (in reverse order) back to the block
duke@435 2323 for ( uint k = _bb_start; k < _bb_end; k++ )
duke@435 2324 bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
duke@435 2325
duke@435 2326 #ifndef PRODUCT
duke@435 2327 if (_cfg->C->trace_opto_output()) {
duke@435 2328 tty->print("# Schedule BB#%03d (final)\n", i);
duke@435 2329 uint current = 0;
duke@435 2330 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 2331 Node *n = bb->_nodes[j];
duke@435 2332 if( valid_bundle_info(n) ) {
duke@435 2333 Bundle *bundle = node_bundling(n);
duke@435 2334 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
duke@435 2335 tty->print("*** Bundle: ");
duke@435 2336 bundle->dump();
duke@435 2337 }
duke@435 2338 n->dump();
duke@435 2339 }
duke@435 2340 }
duke@435 2341 }
duke@435 2342 #endif
duke@435 2343 #ifdef ASSERT
duke@435 2344 verify_good_schedule(bb,"after block local scheduling");
duke@435 2345 #endif
duke@435 2346 }
duke@435 2347
duke@435 2348 #ifndef PRODUCT
duke@435 2349 if (_cfg->C->trace_opto_output())
duke@435 2350 tty->print("# <- DoScheduling\n");
duke@435 2351 #endif
duke@435 2352
duke@435 2353 // Record final node-bundling array location
duke@435 2354 _regalloc->C->set_node_bundling_base(_node_bundling_base);
duke@435 2355
duke@435 2356 } // end DoScheduling
duke@435 2357
duke@435 2358 //------------------------------verify_good_schedule---------------------------
duke@435 2359 // Verify that no live-range used in the block is killed in the block by a
duke@435 2360 // wrong DEF. This doesn't verify live-ranges that span blocks.
duke@435 2361
duke@435 2362 // Check for edge existence. Used to avoid adding redundant precedence edges.
duke@435 2363 static bool edge_from_to( Node *from, Node *to ) {
duke@435 2364 for( uint i=0; i<from->len(); i++ )
duke@435 2365 if( from->in(i) == to )
duke@435 2366 return true;
duke@435 2367 return false;
duke@435 2368 }
duke@435 2369
duke@435 2370 #ifdef ASSERT
duke@435 2371 //------------------------------verify_do_def----------------------------------
duke@435 2372 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
duke@435 2373 // Check for bad kills
duke@435 2374 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
duke@435 2375 Node *prior_use = _reg_node[def];
duke@435 2376 if( prior_use && !edge_from_to(prior_use,n) ) {
duke@435 2377 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
duke@435 2378 n->dump();
duke@435 2379 tty->print_cr("...");
duke@435 2380 prior_use->dump();
duke@435 2381 assert_msg(edge_from_to(prior_use,n),msg);
duke@435 2382 }
duke@435 2383 _reg_node.map(def,NULL); // Kill live USEs
duke@435 2384 }
duke@435 2385 }
duke@435 2386
duke@435 2387 //------------------------------verify_good_schedule---------------------------
duke@435 2388 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
duke@435 2389
duke@435 2390 // Zap to something reasonable for the verify code
duke@435 2391 _reg_node.clear();
duke@435 2392
duke@435 2393 // Walk over the block backwards. Check to make sure each DEF doesn't
duke@435 2394 // kill a live value (other than the one it's supposed to). Add each
duke@435 2395 // USE to the live set.
duke@435 2396 for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
duke@435 2397 Node *n = b->_nodes[i];
duke@435 2398 int n_op = n->Opcode();
duke@435 2399 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2400 // Fat-proj kills a slew of registers
duke@435 2401 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2402 while( rm.is_NotEmpty() ) {
duke@435 2403 OptoReg::Name kill = rm.find_first_elem();
duke@435 2404 rm.Remove(kill);
duke@435 2405 verify_do_def( n, kill, msg );
duke@435 2406 }
duke@435 2407 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
duke@435 2408 // Get DEF'd registers the normal way
duke@435 2409 verify_do_def( n, _regalloc->get_reg_first(n), msg );
duke@435 2410 verify_do_def( n, _regalloc->get_reg_second(n), msg );
duke@435 2411 }
duke@435 2412
duke@435 2413 // Now make all USEs live
duke@435 2414 for( uint i=1; i<n->req(); i++ ) {
duke@435 2415 Node *def = n->in(i);
duke@435 2416 assert(def != 0, "input edge required");
duke@435 2417 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
duke@435 2418 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
duke@435 2419 if( OptoReg::is_valid(reg_lo) ) {
duke@435 2420 assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
duke@435 2421 _reg_node.map(reg_lo,n);
duke@435 2422 }
duke@435 2423 if( OptoReg::is_valid(reg_hi) ) {
duke@435 2424 assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
duke@435 2425 _reg_node.map(reg_hi,n);
duke@435 2426 }
duke@435 2427 }
duke@435 2428
duke@435 2429 }
duke@435 2430
duke@435 2431 // Zap to something reasonable for the Antidependence code
duke@435 2432 _reg_node.clear();
duke@435 2433 }
duke@435 2434 #endif
duke@435 2435
duke@435 2436 // Conditionally add precedence edges. Avoid putting edges on Projs.
duke@435 2437 static void add_prec_edge_from_to( Node *from, Node *to ) {
duke@435 2438 if( from->is_Proj() ) { // Put precedence edge on Proj's input
duke@435 2439 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
duke@435 2440 from = from->in(0);
duke@435 2441 }
duke@435 2442 if( from != to && // No cycles (for things like LD L0,[L0+4] )
duke@435 2443 !edge_from_to( from, to ) ) // Avoid duplicate edge
duke@435 2444 from->add_prec(to);
duke@435 2445 }
duke@435 2446
duke@435 2447 //------------------------------anti_do_def------------------------------------
duke@435 2448 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
duke@435 2449 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
duke@435 2450 return;
duke@435 2451
duke@435 2452 Node *pinch = _reg_node[def_reg]; // Get pinch point
duke@435 2453 if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
duke@435 2454 is_def ) { // Check for a true def (not a kill)
duke@435 2455 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
duke@435 2456 return;
duke@435 2457 }
duke@435 2458
duke@435 2459 Node *kill = def; // Rename 'def' to more descriptive 'kill'
duke@435 2460 debug_only( def = (Node*)0xdeadbeef; )
duke@435 2461
duke@435 2462 // After some number of kills there _may_ be a later def
duke@435 2463 Node *later_def = NULL;
duke@435 2464
duke@435 2465 // Finding a kill requires a real pinch-point.
duke@435 2466 // Check for not already having a pinch-point.
duke@435 2467 // Pinch points are Op_Node's.
duke@435 2468 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
duke@435 2469 later_def = pinch; // Must be def/kill as optimistic pinch-point
duke@435 2470 if ( _pinch_free_list.size() > 0) {
duke@435 2471 pinch = _pinch_free_list.pop();
duke@435 2472 } else {
duke@435 2473 pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
duke@435 2474 }
duke@435 2475 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
duke@435 2476 _cfg->C->record_method_not_compilable("too many D-U pinch points");
duke@435 2477 return;
duke@435 2478 }
duke@435 2479 _bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init)
duke@435 2480 _reg_node.map(def_reg,pinch); // Record pinch-point
duke@435 2481 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
duke@435 2482 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
duke@435 2483 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
duke@435 2484 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
duke@435 2485 later_def = NULL; // and no later def
duke@435 2486 }
duke@435 2487 pinch->set_req(0,later_def); // Hook later def so we can find it
duke@435 2488 } else { // Else have valid pinch point
duke@435 2489 if( pinch->in(0) ) // If there is a later-def
duke@435 2490 later_def = pinch->in(0); // Get it
duke@435 2491 }
duke@435 2492
duke@435 2493 // Add output-dependence edge from later def to kill
duke@435 2494 if( later_def ) // If there is some original def
duke@435 2495 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
duke@435 2496
duke@435 2497 // See if current kill is also a use, and so is forced to be the pinch-point.
duke@435 2498 if( pinch->Opcode() == Op_Node ) {
duke@435 2499 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
duke@435 2500 for( uint i=1; i<uses->req(); i++ ) {
duke@435 2501 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
duke@435 2502 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
duke@435 2503 // Yes, found a use/kill pinch-point
duke@435 2504 pinch->set_req(0,NULL); //
duke@435 2505 pinch->replace_by(kill); // Move anti-dep edges up
duke@435 2506 pinch = kill;
duke@435 2507 _reg_node.map(def_reg,pinch);
duke@435 2508 return;
duke@435 2509 }
duke@435 2510 }
duke@435 2511 }
duke@435 2512
duke@435 2513 // Add edge from kill to pinch-point
duke@435 2514 add_prec_edge_from_to(kill,pinch);
duke@435 2515 }
duke@435 2516
duke@435 2517 //------------------------------anti_do_use------------------------------------
duke@435 2518 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
duke@435 2519 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
duke@435 2520 return;
duke@435 2521 Node *pinch = _reg_node[use_reg]; // Get pinch point
duke@435 2522 // Check for no later def_reg/kill in block
duke@435 2523 if( pinch && _bbs[pinch->_idx] == b &&
duke@435 2524 // Use has to be block-local as well
duke@435 2525 _bbs[use->_idx] == b ) {
duke@435 2526 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
duke@435 2527 pinch->req() == 1 ) { // pinch not yet in block?
duke@435 2528 pinch->del_req(0); // yank pointer to later-def, also set flag
duke@435 2529 // Insert the pinch-point in the block just after the last use
duke@435 2530 b->_nodes.insert(b->find_node(use)+1,pinch);
duke@435 2531 _bb_end++; // Increase size scheduled region in block
duke@435 2532 }
duke@435 2533
duke@435 2534 add_prec_edge_from_to(pinch,use);
duke@435 2535 }
duke@435 2536 }
duke@435 2537
duke@435 2538 //------------------------------ComputeRegisterAntidependences-----------------
duke@435 2539 // We insert antidependences between the reads and following write of
duke@435 2540 // allocated registers to prevent illegal code motion. Hopefully, the
duke@435 2541 // number of added references should be fairly small, especially as we
duke@435 2542 // are only adding references within the current basic block.
duke@435 2543 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
duke@435 2544
duke@435 2545 #ifdef ASSERT
duke@435 2546 verify_good_schedule(b,"before block local scheduling");
duke@435 2547 #endif
duke@435 2548
duke@435 2549 // A valid schedule, for each register independently, is an endless cycle
duke@435 2550 // of: a def, then some uses (connected to the def by true dependencies),
duke@435 2551 // then some kills (defs with no uses), finally the cycle repeats with a new
duke@435 2552 // def. The uses are allowed to float relative to each other, as are the
duke@435 2553 // kills. No use is allowed to slide past a kill (or def). This requires
duke@435 2554 // antidependencies between all uses of a single def and all kills that
duke@435 2555 // follow, up to the next def. More edges are redundant, because later defs
duke@435 2556 // & kills are already serialized with true or antidependencies. To keep
duke@435 2557 // the edge count down, we add a 'pinch point' node if there's more than
duke@435 2558 // one use or more than one kill/def.
duke@435 2559
duke@435 2560 // We add dependencies in one bottom-up pass.
duke@435 2561
duke@435 2562 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
duke@435 2563
duke@435 2564 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
duke@435 2565 // register. If not, we record the DEF/KILL in _reg_node, the
duke@435 2566 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
duke@435 2567 // "pinch point", a new Node that's in the graph but not in the block.
duke@435 2568 // We put edges from the prior and current DEF/KILLs to the pinch point.
duke@435 2569 // We put the pinch point in _reg_node. If there's already a pinch point
duke@435 2570 // we merely add an edge from the current DEF/KILL to the pinch point.
duke@435 2571
duke@435 2572 // After doing the DEF/KILLs, we handle USEs. For each used register, we
duke@435 2573 // put an edge from the pinch point to the USE.
duke@435 2574
duke@435 2575 // To be expedient, the _reg_node array is pre-allocated for the whole
duke@435 2576 // compilation. _reg_node is lazily initialized; it either contains a NULL,
duke@435 2577 // or a valid def/kill/pinch-point, or a leftover node from some prior
duke@435 2578 // block. Leftover node from some prior block is treated like a NULL (no
duke@435 2579 // prior def, so no anti-dependence needed). Valid def is distinguished by
duke@435 2580 // it being in the current block.
duke@435 2581 bool fat_proj_seen = false;
duke@435 2582 uint last_safept = _bb_end-1;
duke@435 2583 Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
duke@435 2584 Node* last_safept_node = end_node;
duke@435 2585 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
duke@435 2586 Node *n = b->_nodes[i];
duke@435 2587 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
duke@435 2588 if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2589 // Fat-proj kills a slew of registers
duke@435 2590 // This can add edges to 'n' and obscure whether or not it was a def,
duke@435 2591 // hence the is_def flag.
duke@435 2592 fat_proj_seen = true;
duke@435 2593 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2594 while( rm.is_NotEmpty() ) {
duke@435 2595 OptoReg::Name kill = rm.find_first_elem();
duke@435 2596 rm.Remove(kill);
duke@435 2597 anti_do_def( b, n, kill, is_def );
duke@435 2598 }
duke@435 2599 } else {
duke@435 2600 // Get DEF'd registers the normal way
duke@435 2601 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
duke@435 2602 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
duke@435 2603 }
duke@435 2604
duke@435 2605 // Check each register used by this instruction for a following DEF/KILL
duke@435 2606 // that must occur afterward and requires an anti-dependence edge.
duke@435 2607 for( uint j=0; j<n->req(); j++ ) {
duke@435 2608 Node *def = n->in(j);
duke@435 2609 if( def ) {
duke@435 2610 assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
duke@435 2611 anti_do_use( b, n, _regalloc->get_reg_first(def) );
duke@435 2612 anti_do_use( b, n, _regalloc->get_reg_second(def) );
duke@435 2613 }
duke@435 2614 }
duke@435 2615 // Do not allow defs of new derived values to float above GC
duke@435 2616 // points unless the base is definitely available at the GC point.
duke@435 2617
duke@435 2618 Node *m = b->_nodes[i];
duke@435 2619
duke@435 2620 // Add precedence edge from following safepoint to use of derived pointer
duke@435 2621 if( last_safept_node != end_node &&
duke@435 2622 m != last_safept_node) {
duke@435 2623 for (uint k = 1; k < m->req(); k++) {
duke@435 2624 const Type *t = m->in(k)->bottom_type();
duke@435 2625 if( t->isa_oop_ptr() &&
duke@435 2626 t->is_ptr()->offset() != 0 ) {
duke@435 2627 last_safept_node->add_prec( m );
duke@435 2628 break;
duke@435 2629 }
duke@435 2630 }
duke@435 2631 }
duke@435 2632
duke@435 2633 if( n->jvms() ) { // Precedence edge from derived to safept
duke@435 2634 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
duke@435 2635 if( b->_nodes[last_safept] != last_safept_node ) {
duke@435 2636 last_safept = b->find_node(last_safept_node);
duke@435 2637 }
duke@435 2638 for( uint j=last_safept; j > i; j-- ) {
duke@435 2639 Node *mach = b->_nodes[j];
duke@435 2640 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
duke@435 2641 mach->add_prec( n );
duke@435 2642 }
duke@435 2643 last_safept = i;
duke@435 2644 last_safept_node = m;
duke@435 2645 }
duke@435 2646 }
duke@435 2647
duke@435 2648 if (fat_proj_seen) {
duke@435 2649 // Garbage collect pinch nodes that were not consumed.
duke@435 2650 // They are usually created by a fat kill MachProj for a call.
duke@435 2651 garbage_collect_pinch_nodes();
duke@435 2652 }
duke@435 2653 }
duke@435 2654
duke@435 2655 //------------------------------garbage_collect_pinch_nodes-------------------------------
duke@435 2656
duke@435 2657 // Garbage collect pinch nodes for reuse by other blocks.
duke@435 2658 //
duke@435 2659 // The block scheduler's insertion of anti-dependence
duke@435 2660 // edges creates many pinch nodes when the block contains
duke@435 2661 // 2 or more Calls. A pinch node is used to prevent a
duke@435 2662 // combinatorial explosion of edges. If a set of kills for a
duke@435 2663 // register is anti-dependent on a set of uses (or defs), rather
duke@435 2664 // than adding an edge in the graph between each pair of kill
duke@435 2665 // and use (or def), a pinch is inserted between them:
duke@435 2666 //
duke@435 2667 // use1 use2 use3
duke@435 2668 // \ | /
duke@435 2669 // \ | /
duke@435 2670 // pinch
duke@435 2671 // / | \
duke@435 2672 // / | \
duke@435 2673 // kill1 kill2 kill3
duke@435 2674 //
duke@435 2675 // One pinch node is created per register killed when
duke@435 2676 // the second call is encountered during a backwards pass
duke@435 2677 // over the block. Most of these pinch nodes are never
duke@435 2678 // wired into the graph because the register is never
duke@435 2679 // used or def'ed in the block.
duke@435 2680 //
duke@435 2681 void Scheduling::garbage_collect_pinch_nodes() {
duke@435 2682 #ifndef PRODUCT
duke@435 2683 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
duke@435 2684 #endif
duke@435 2685 int trace_cnt = 0;
duke@435 2686 for (uint k = 0; k < _reg_node.Size(); k++) {
duke@435 2687 Node* pinch = _reg_node[k];
duke@435 2688 if (pinch != NULL && pinch->Opcode() == Op_Node &&
duke@435 2689 // no predecence input edges
duke@435 2690 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
duke@435 2691 cleanup_pinch(pinch);
duke@435 2692 _pinch_free_list.push(pinch);
duke@435 2693 _reg_node.map(k, NULL);
duke@435 2694 #ifndef PRODUCT
duke@435 2695 if (_cfg->C->trace_opto_output()) {
duke@435 2696 trace_cnt++;
duke@435 2697 if (trace_cnt > 40) {
duke@435 2698 tty->print("\n");
duke@435 2699 trace_cnt = 0;
duke@435 2700 }
duke@435 2701 tty->print(" %d", pinch->_idx);
duke@435 2702 }
duke@435 2703 #endif
duke@435 2704 }
duke@435 2705 }
duke@435 2706 #ifndef PRODUCT
duke@435 2707 if (_cfg->C->trace_opto_output()) tty->print("\n");
duke@435 2708 #endif
duke@435 2709 }
duke@435 2710
duke@435 2711 // Clean up a pinch node for reuse.
duke@435 2712 void Scheduling::cleanup_pinch( Node *pinch ) {
duke@435 2713 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
duke@435 2714
duke@435 2715 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
duke@435 2716 Node* use = pinch->last_out(i);
duke@435 2717 uint uses_found = 0;
duke@435 2718 for (uint j = use->req(); j < use->len(); j++) {
duke@435 2719 if (use->in(j) == pinch) {
duke@435 2720 use->rm_prec(j);
duke@435 2721 uses_found++;
duke@435 2722 }
duke@435 2723 }
duke@435 2724 assert(uses_found > 0, "must be a precedence edge");
duke@435 2725 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 2726 }
duke@435 2727 // May have a later_def entry
duke@435 2728 pinch->set_req(0, NULL);
duke@435 2729 }
duke@435 2730
duke@435 2731 //------------------------------print_statistics-------------------------------
duke@435 2732 #ifndef PRODUCT
duke@435 2733
duke@435 2734 void Scheduling::dump_available() const {
duke@435 2735 tty->print("#Availist ");
duke@435 2736 for (uint i = 0; i < _available.size(); i++)
duke@435 2737 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
duke@435 2738 tty->cr();
duke@435 2739 }
duke@435 2740
duke@435 2741 // Print Scheduling Statistics
duke@435 2742 void Scheduling::print_statistics() {
duke@435 2743 // Print the size added by nops for bundling
duke@435 2744 tty->print("Nops added %d bytes to total of %d bytes",
duke@435 2745 _total_nop_size, _total_method_size);
duke@435 2746 if (_total_method_size > 0)
duke@435 2747 tty->print(", for %.2f%%",
duke@435 2748 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
duke@435 2749 tty->print("\n");
duke@435 2750
duke@435 2751 // Print the number of branch shadows filled
duke@435 2752 if (Pipeline::_branch_has_delay_slot) {
duke@435 2753 tty->print("Of %d branches, %d had unconditional delay slots filled",
duke@435 2754 _total_branches, _total_unconditional_delays);
duke@435 2755 if (_total_branches > 0)
duke@435 2756 tty->print(", for %.2f%%",
duke@435 2757 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
duke@435 2758 tty->print("\n");
duke@435 2759 }
duke@435 2760
duke@435 2761 uint total_instructions = 0, total_bundles = 0;
duke@435 2762
duke@435 2763 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
duke@435 2764 uint bundle_count = _total_instructions_per_bundle[i];
duke@435 2765 total_instructions += bundle_count * i;
duke@435 2766 total_bundles += bundle_count;
duke@435 2767 }
duke@435 2768
duke@435 2769 if (total_bundles > 0)
duke@435 2770 tty->print("Average ILP (excluding nops) is %.2f\n",
duke@435 2771 ((double)total_instructions) / ((double)total_bundles));
duke@435 2772 }
duke@435 2773 #endif

mercurial