src/share/vm/runtime/sharedRuntime.cpp

Sat, 09 Apr 2011 21:16:12 -0700

author
jrose
date
Sat, 09 Apr 2011 21:16:12 -0700
changeset 2750
6c97c830fb6f
parent 2743
758ba0bf7bcc
child 2806
2a23b1b5a0a8
permissions
-rw-r--r--

Merge

duke@435 1 /*
never@2462 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
bobv@2508 71 #ifdef TARGET_ARCH_arm
bobv@2508 72 # include "nativeInst_arm.hpp"
bobv@2508 73 # include "vmreg_arm.inline.hpp"
bobv@2508 74 #endif
bobv@2508 75 #ifdef TARGET_ARCH_ppc
bobv@2508 76 # include "nativeInst_ppc.hpp"
bobv@2508 77 # include "vmreg_ppc.inline.hpp"
bobv@2508 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82
duke@435 83 #include <math.h>
duke@435 84
duke@435 85 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 86 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 87 char*, int, char*, int, char*, int);
duke@435 88 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 89 char*, int, char*, int, char*, int);
duke@435 90
duke@435 91 // Implementation of SharedRuntime
duke@435 92
duke@435 93 #ifndef PRODUCT
duke@435 94 // For statistics
duke@435 95 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 96 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 97 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 98 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 99 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 100 int SharedRuntime::_implicit_null_throws = 0;
duke@435 101 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 102 int SharedRuntime::_throw_null_ctr = 0;
duke@435 103
duke@435 104 int SharedRuntime::_nof_normal_calls = 0;
duke@435 105 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 106 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 107 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 108 int SharedRuntime::_nof_static_calls = 0;
duke@435 109 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 110 int SharedRuntime::_nof_interface_calls = 0;
duke@435 111 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 112 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 113 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 114 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 115
duke@435 116 int SharedRuntime::_new_instance_ctr=0;
duke@435 117 int SharedRuntime::_new_array_ctr=0;
duke@435 118 int SharedRuntime::_multi1_ctr=0;
duke@435 119 int SharedRuntime::_multi2_ctr=0;
duke@435 120 int SharedRuntime::_multi3_ctr=0;
duke@435 121 int SharedRuntime::_multi4_ctr=0;
duke@435 122 int SharedRuntime::_multi5_ctr=0;
duke@435 123 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 124 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 125 int SharedRuntime::_mon_enter_ctr=0;
duke@435 126 int SharedRuntime::_mon_exit_ctr=0;
duke@435 127 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 128 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 129 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 130 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 131 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 132 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 133 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 134 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 135 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 136 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 137 int SharedRuntime::_find_handler_ctr=0;
duke@435 138 int SharedRuntime::_rethrow_ctr=0;
duke@435 139
duke@435 140 int SharedRuntime::_ICmiss_index = 0;
duke@435 141 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 142 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 143
duke@435 144 void SharedRuntime::trace_ic_miss(address at) {
duke@435 145 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 146 if (_ICmiss_at[i] == at) {
duke@435 147 _ICmiss_count[i]++;
duke@435 148 return;
duke@435 149 }
duke@435 150 }
duke@435 151 int index = _ICmiss_index++;
duke@435 152 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 153 _ICmiss_at[index] = at;
duke@435 154 _ICmiss_count[index] = 1;
duke@435 155 }
duke@435 156
duke@435 157 void SharedRuntime::print_ic_miss_histogram() {
duke@435 158 if (ICMissHistogram) {
duke@435 159 tty->print_cr ("IC Miss Histogram:");
duke@435 160 int tot_misses = 0;
duke@435 161 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 162 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 163 tot_misses += _ICmiss_count[i];
duke@435 164 }
duke@435 165 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 166 }
duke@435 167 }
duke@435 168 #endif // PRODUCT
duke@435 169
ysr@777 170 #ifndef SERIALGC
ysr@777 171
ysr@777 172 // G1 write-barrier pre: executed before a pointer store.
ysr@777 173 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 174 if (orig == NULL) {
ysr@777 175 assert(false, "should be optimized out");
ysr@777 176 return;
ysr@777 177 }
ysr@1280 178 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 179 // store the original value that was in the field reference
ysr@777 180 thread->satb_mark_queue().enqueue(orig);
ysr@777 181 JRT_END
ysr@777 182
ysr@777 183 // G1 write-barrier post: executed after a pointer store.
ysr@777 184 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 185 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 186 JRT_END
ysr@777 187
ysr@777 188 #endif // !SERIALGC
ysr@777 189
duke@435 190
duke@435 191 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 192 return x * y;
duke@435 193 JRT_END
duke@435 194
duke@435 195
duke@435 196 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 197 if (x == min_jlong && y == CONST64(-1)) {
duke@435 198 return x;
duke@435 199 } else {
duke@435 200 return x / y;
duke@435 201 }
duke@435 202 JRT_END
duke@435 203
duke@435 204
duke@435 205 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 206 if (x == min_jlong && y == CONST64(-1)) {
duke@435 207 return 0;
duke@435 208 } else {
duke@435 209 return x % y;
duke@435 210 }
duke@435 211 JRT_END
duke@435 212
duke@435 213
duke@435 214 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 215 const juint float_infinity = 0x7F800000;
duke@435 216 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 217 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 218
duke@435 219 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 220 #ifdef _WIN64
duke@435 221 // 64-bit Windows on amd64 returns the wrong values for
duke@435 222 // infinity operands.
duke@435 223 union { jfloat f; juint i; } xbits, ybits;
duke@435 224 xbits.f = x;
duke@435 225 ybits.f = y;
duke@435 226 // x Mod Infinity == x unless x is infinity
duke@435 227 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 228 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 229 return x;
duke@435 230 }
duke@435 231 #endif
duke@435 232 return ((jfloat)fmod((double)x,(double)y));
duke@435 233 JRT_END
duke@435 234
duke@435 235
duke@435 236 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 237 #ifdef _WIN64
duke@435 238 union { jdouble d; julong l; } xbits, ybits;
duke@435 239 xbits.d = x;
duke@435 240 ybits.d = y;
duke@435 241 // x Mod Infinity == x unless x is infinity
duke@435 242 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 243 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 244 return x;
duke@435 245 }
duke@435 246 #endif
duke@435 247 return ((jdouble)fmod((double)x,(double)y));
duke@435 248 JRT_END
duke@435 249
bobv@2036 250 #ifdef __SOFTFP__
bobv@2036 251 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 252 return x + y;
bobv@2036 253 JRT_END
bobv@2036 254
bobv@2036 255 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 256 return x - y;
bobv@2036 257 JRT_END
bobv@2036 258
bobv@2036 259 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 260 return x * y;
bobv@2036 261 JRT_END
bobv@2036 262
bobv@2036 263 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 264 return x / y;
bobv@2036 265 JRT_END
bobv@2036 266
bobv@2036 267 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 268 return x + y;
bobv@2036 269 JRT_END
bobv@2036 270
bobv@2036 271 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 272 return x - y;
bobv@2036 273 JRT_END
bobv@2036 274
bobv@2036 275 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 276 return x * y;
bobv@2036 277 JRT_END
bobv@2036 278
bobv@2036 279 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 280 return x / y;
bobv@2036 281 JRT_END
bobv@2036 282
bobv@2036 283 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 284 return (jfloat)x;
bobv@2036 285 JRT_END
bobv@2036 286
bobv@2036 287 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 288 return (jdouble)x;
bobv@2036 289 JRT_END
bobv@2036 290
bobv@2036 291 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 292 return (jdouble)x;
bobv@2036 293 JRT_END
bobv@2036 294
bobv@2036 295 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 296 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 297 JRT_END
bobv@2036 298
bobv@2036 299 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 300 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 301 JRT_END
bobv@2036 302
bobv@2036 303 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 304 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 305 JRT_END
bobv@2036 306
bobv@2036 307 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 308 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 309 JRT_END
bobv@2036 310
bobv@2036 311 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 312 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 313 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 314 JRT_END
bobv@2036 315
bobv@2036 316 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 317 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 318 JRT_END
bobv@2036 319
bobv@2036 320 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 321 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 322 JRT_END
bobv@2036 323
bobv@2036 324 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 325 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 326 JRT_END
bobv@2036 327
bobv@2036 328 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 329 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 330 JRT_END
bobv@2036 331
bobv@2036 332 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 333 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 334 JRT_END
bobv@2036 335
bobv@2036 336 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 337 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 338 JRT_END
bobv@2036 339
bobv@2036 340 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 341 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 342 JRT_END
bobv@2036 343
bobv@2036 344 // Intrinsics make gcc generate code for these.
bobv@2036 345 float SharedRuntime::fneg(float f) {
bobv@2036 346 return -f;
bobv@2036 347 }
bobv@2036 348
bobv@2036 349 double SharedRuntime::dneg(double f) {
bobv@2036 350 return -f;
bobv@2036 351 }
bobv@2036 352
bobv@2036 353 #endif // __SOFTFP__
bobv@2036 354
bobv@2036 355 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 356 // Intrinsics make gcc generate code for these.
bobv@2036 357 double SharedRuntime::dabs(double f) {
bobv@2036 358 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 359 }
bobv@2036 360
bobv@2223 361 #endif
bobv@2223 362
bobv@2223 363 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 364 double SharedRuntime::dsqrt(double f) {
bobv@2036 365 return sqrt(f);
bobv@2036 366 }
bobv@2036 367 #endif
duke@435 368
duke@435 369 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 370 if (g_isnan(x))
kvn@943 371 return 0;
kvn@943 372 if (x >= (jfloat) max_jint)
kvn@943 373 return max_jint;
kvn@943 374 if (x <= (jfloat) min_jint)
kvn@943 375 return min_jint;
kvn@943 376 return (jint) x;
duke@435 377 JRT_END
duke@435 378
duke@435 379
duke@435 380 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 381 if (g_isnan(x))
kvn@943 382 return 0;
kvn@943 383 if (x >= (jfloat) max_jlong)
kvn@943 384 return max_jlong;
kvn@943 385 if (x <= (jfloat) min_jlong)
kvn@943 386 return min_jlong;
kvn@943 387 return (jlong) x;
duke@435 388 JRT_END
duke@435 389
duke@435 390
duke@435 391 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 392 if (g_isnan(x))
kvn@943 393 return 0;
kvn@943 394 if (x >= (jdouble) max_jint)
kvn@943 395 return max_jint;
kvn@943 396 if (x <= (jdouble) min_jint)
kvn@943 397 return min_jint;
kvn@943 398 return (jint) x;
duke@435 399 JRT_END
duke@435 400
duke@435 401
duke@435 402 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 403 if (g_isnan(x))
kvn@943 404 return 0;
kvn@943 405 if (x >= (jdouble) max_jlong)
kvn@943 406 return max_jlong;
kvn@943 407 if (x <= (jdouble) min_jlong)
kvn@943 408 return min_jlong;
kvn@943 409 return (jlong) x;
duke@435 410 JRT_END
duke@435 411
duke@435 412
duke@435 413 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 414 return (jfloat)x;
duke@435 415 JRT_END
duke@435 416
duke@435 417
duke@435 418 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 419 return (jfloat)x;
duke@435 420 JRT_END
duke@435 421
duke@435 422
duke@435 423 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 424 return (jdouble)x;
duke@435 425 JRT_END
duke@435 426
duke@435 427 // Exception handling accross interpreter/compiler boundaries
duke@435 428 //
duke@435 429 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 430 // The continuation address is the entry point of the exception handler of the
duke@435 431 // previous frame depending on the return address.
duke@435 432
twisti@1730 433 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 434 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 435
twisti@2603 436 // Reset method handle flag.
twisti@1803 437 thread->set_is_method_handle_return(false);
twisti@1803 438
twisti@2603 439 // The fastest case first
duke@435 440 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 441 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 442 if (nm != NULL) {
twisti@2603 443 // Set flag if return address is a method handle call site.
twisti@2603 444 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 445 // native nmethods don't have exception handlers
twisti@2603 446 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 447 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 448 if (nm->is_deopt_pc(return_address)) {
duke@435 449 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 450 } else {
twisti@2603 451 return nm->exception_begin();
duke@435 452 }
duke@435 453 }
duke@435 454
duke@435 455 // Entry code
duke@435 456 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 457 return StubRoutines::catch_exception_entry();
duke@435 458 }
duke@435 459 // Interpreted code
duke@435 460 if (Interpreter::contains(return_address)) {
duke@435 461 return Interpreter::rethrow_exception_entry();
duke@435 462 }
duke@435 463
twisti@2603 464 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 465 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 466
duke@435 467 #ifndef PRODUCT
duke@435 468 { ResourceMark rm;
duke@435 469 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 470 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 471 tty->print_cr("b) other problem");
duke@435 472 }
duke@435 473 #endif // PRODUCT
twisti@2603 474
duke@435 475 ShouldNotReachHere();
duke@435 476 return NULL;
duke@435 477 }
duke@435 478
duke@435 479
twisti@1730 480 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 481 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 482 JRT_END
duke@435 483
twisti@1730 484
duke@435 485 address SharedRuntime::get_poll_stub(address pc) {
duke@435 486 address stub;
duke@435 487 // Look up the code blob
duke@435 488 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 489
duke@435 490 // Should be an nmethod
duke@435 491 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 492
duke@435 493 // Look up the relocation information
duke@435 494 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 495 "safepoint polling: type must be poll" );
duke@435 496
duke@435 497 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 498 "Only polling locations are used for safepoint");
duke@435 499
duke@435 500 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 501 if (at_poll_return) {
duke@435 502 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 503 "polling page return stub not created yet");
twisti@2103 504 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
duke@435 505 } else {
duke@435 506 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 507 "polling page safepoint stub not created yet");
twisti@2103 508 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 509 }
duke@435 510 #ifndef PRODUCT
duke@435 511 if( TraceSafepoint ) {
duke@435 512 char buf[256];
duke@435 513 jio_snprintf(buf, sizeof(buf),
duke@435 514 "... found polling page %s exception at pc = "
duke@435 515 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 516 at_poll_return ? "return" : "loop",
duke@435 517 (intptr_t)pc, (intptr_t)stub);
duke@435 518 tty->print_raw_cr(buf);
duke@435 519 }
duke@435 520 #endif // PRODUCT
duke@435 521 return stub;
duke@435 522 }
duke@435 523
duke@435 524
coleenp@2497 525 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 526 assert(caller.is_interpreted_frame(), "");
duke@435 527 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 528 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 529 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 530 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 531 return result;
duke@435 532 }
duke@435 533
duke@435 534
duke@435 535 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 536 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 537 vframeStream vfst(thread, true);
duke@435 538 methodHandle method = methodHandle(thread, vfst.method());
duke@435 539 address bcp = method()->bcp_from(vfst.bci());
duke@435 540 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 541 }
duke@435 542 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 543 }
duke@435 544
coleenp@2497 545 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 546 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 547 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 548 }
duke@435 549
dcubed@1045 550 // The interpreter code to call this tracing function is only
dcubed@1045 551 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 552 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 553 // to modify the compilers to generate calls to this function.
dcubed@1045 554 //
dcubed@1045 555 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 556 JavaThread* thread, methodOopDesc* method))
dcubed@1045 557 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 558
dcubed@1045 559 if (method->is_obsolete()) {
dcubed@1045 560 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 561 // an error. Our method could have been redefined just after we
dcubed@1045 562 // fetched the methodOop from the constant pool.
dcubed@1045 563
dcubed@1045 564 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 565 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 566 ("calling obsolete method '%s'",
dcubed@1045 567 method->name_and_sig_as_C_string()));
dcubed@1045 568 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 569 // this option is provided to debug calls to obsolete methods
dcubed@1045 570 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 571 }
dcubed@1045 572 }
dcubed@1045 573 return 0;
dcubed@1045 574 JRT_END
dcubed@1045 575
duke@435 576 // ret_pc points into caller; we are returning caller's exception handler
duke@435 577 // for given exception
duke@435 578 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 579 bool force_unwind, bool top_frame_only) {
duke@435 580 assert(nm != NULL, "must exist");
duke@435 581 ResourceMark rm;
duke@435 582
duke@435 583 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 584 // determine handler bci, if any
duke@435 585 EXCEPTION_MARK;
duke@435 586
duke@435 587 int handler_bci = -1;
duke@435 588 int scope_depth = 0;
duke@435 589 if (!force_unwind) {
duke@435 590 int bci = sd->bci();
duke@435 591 do {
duke@435 592 bool skip_scope_increment = false;
duke@435 593 // exception handler lookup
duke@435 594 KlassHandle ek (THREAD, exception->klass());
duke@435 595 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 596 if (HAS_PENDING_EXCEPTION) {
duke@435 597 // We threw an exception while trying to find the exception handler.
duke@435 598 // Transfer the new exception to the exception handle which will
duke@435 599 // be set into thread local storage, and do another lookup for an
duke@435 600 // exception handler for this exception, this time starting at the
duke@435 601 // BCI of the exception handler which caused the exception to be
duke@435 602 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 603 // argument to ensure that the correct exception is thrown (4870175).
duke@435 604 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 605 CLEAR_PENDING_EXCEPTION;
duke@435 606 if (handler_bci >= 0) {
duke@435 607 bci = handler_bci;
duke@435 608 handler_bci = -1;
duke@435 609 skip_scope_increment = true;
duke@435 610 }
duke@435 611 }
duke@435 612 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 613 sd = sd->sender();
duke@435 614 if (sd != NULL) {
duke@435 615 bci = sd->bci();
duke@435 616 }
duke@435 617 ++scope_depth;
duke@435 618 }
duke@435 619 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 620 }
duke@435 621
duke@435 622 // found handling method => lookup exception handler
twisti@2103 623 int catch_pco = ret_pc - nm->code_begin();
duke@435 624
duke@435 625 ExceptionHandlerTable table(nm);
duke@435 626 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 627 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 628 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 629 // to materialize its exceptions without committing to the exact
duke@435 630 // routing of exceptions. In particular this is needed for adding
duke@435 631 // a synthethic handler to unlock monitors when inlining
duke@435 632 // synchonized methods since the unlock path isn't represented in
duke@435 633 // the bytecodes.
duke@435 634 t = table.entry_for(catch_pco, -1, 0);
duke@435 635 }
duke@435 636
never@1813 637 #ifdef COMPILER1
never@1813 638 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 639 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 640 return nm->unwind_handler_begin();
never@1813 641 }
never@1813 642 #endif
never@1813 643
duke@435 644 if (t == NULL) {
duke@435 645 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 646 tty->print_cr(" Exception:");
duke@435 647 exception->print();
duke@435 648 tty->cr();
duke@435 649 tty->print_cr(" Compiled exception table :");
duke@435 650 table.print();
duke@435 651 nm->print_code();
duke@435 652 guarantee(false, "missing exception handler");
duke@435 653 return NULL;
duke@435 654 }
duke@435 655
twisti@2103 656 return nm->code_begin() + t->pco();
duke@435 657 }
duke@435 658
duke@435 659 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 660 // These errors occur only at call sites
duke@435 661 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 662 JRT_END
duke@435 663
dcubed@451 664 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 665 // These errors occur only at call sites
dcubed@451 666 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 667 JRT_END
dcubed@451 668
duke@435 669 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 670 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 671 JRT_END
duke@435 672
duke@435 673 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 674 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 675 JRT_END
duke@435 676
duke@435 677 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 678 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 679 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 680 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 681 JRT_END
duke@435 682
duke@435 683 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 684 // We avoid using the normal exception construction in this case because
duke@435 685 // it performs an upcall to Java, and we're already out of stack space.
duke@435 686 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 687 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 688 Handle exception (thread, exception_oop);
duke@435 689 if (StackTraceInThrowable) {
duke@435 690 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 691 }
duke@435 692 throw_and_post_jvmti_exception(thread, exception);
duke@435 693 JRT_END
duke@435 694
duke@435 695 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 696 address pc,
duke@435 697 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 698 {
duke@435 699 address target_pc = NULL;
duke@435 700
duke@435 701 if (Interpreter::contains(pc)) {
duke@435 702 #ifdef CC_INTERP
duke@435 703 // C++ interpreter doesn't throw implicit exceptions
duke@435 704 ShouldNotReachHere();
duke@435 705 #else
duke@435 706 switch (exception_kind) {
duke@435 707 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 708 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 709 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 710 default: ShouldNotReachHere();
duke@435 711 }
duke@435 712 #endif // !CC_INTERP
duke@435 713 } else {
duke@435 714 switch (exception_kind) {
duke@435 715 case STACK_OVERFLOW: {
duke@435 716 // Stack overflow only occurs upon frame setup; the callee is
duke@435 717 // going to be unwound. Dispatch to a shared runtime stub
duke@435 718 // which will cause the StackOverflowError to be fabricated
duke@435 719 // and processed.
duke@435 720 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 721 if (thread->deopt_mark() != NULL) {
duke@435 722 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 723 }
duke@435 724 return StubRoutines::throw_StackOverflowError_entry();
duke@435 725 }
duke@435 726
duke@435 727 case IMPLICIT_NULL: {
duke@435 728 if (VtableStubs::contains(pc)) {
duke@435 729 // We haven't yet entered the callee frame. Fabricate an
duke@435 730 // exception and begin dispatching it in the caller. Since
duke@435 731 // the caller was at a call site, it's safe to destroy all
duke@435 732 // caller-saved registers, as these entry points do.
duke@435 733 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 734
poonam@900 735 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 736 if (vt_stub == NULL) return NULL;
poonam@900 737
duke@435 738 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 739 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 740 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 741 } else {
duke@435 742 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 743 }
duke@435 744 } else {
duke@435 745 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 746
poonam@900 747 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 748 if (cb == NULL) return NULL;
duke@435 749
duke@435 750 // Exception happened in CodeCache. Must be either:
duke@435 751 // 1. Inline-cache check in C2I handler blob,
duke@435 752 // 2. Inline-cache check in nmethod, or
duke@435 753 // 3. Implict null exception in nmethod
duke@435 754
duke@435 755 if (!cb->is_nmethod()) {
twisti@1734 756 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 757 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 758 // There is no handler here, so we will simply unwind.
duke@435 759 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 760 }
duke@435 761
duke@435 762 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 763 nmethod* nm = (nmethod*)cb;
duke@435 764 if (nm->inlinecache_check_contains(pc)) {
duke@435 765 // exception happened inside inline-cache check code
duke@435 766 // => the nmethod is not yet active (i.e., the frame
duke@435 767 // is not set up yet) => use return address pushed by
duke@435 768 // caller => don't push another return address
duke@435 769 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 770 }
duke@435 771
duke@435 772 #ifndef PRODUCT
duke@435 773 _implicit_null_throws++;
duke@435 774 #endif
duke@435 775 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 776 // If there's an unexpected fault, target_pc might be NULL,
never@1685 777 // in which case we want to fall through into the normal
never@1685 778 // error handling code.
duke@435 779 }
duke@435 780
duke@435 781 break; // fall through
duke@435 782 }
duke@435 783
duke@435 784
duke@435 785 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 786 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 787 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 788 #ifndef PRODUCT
duke@435 789 _implicit_div0_throws++;
duke@435 790 #endif
duke@435 791 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 792 // If there's an unexpected fault, target_pc might be NULL,
never@1685 793 // in which case we want to fall through into the normal
never@1685 794 // error handling code.
duke@435 795 break; // fall through
duke@435 796 }
duke@435 797
duke@435 798 default: ShouldNotReachHere();
duke@435 799 }
duke@435 800
duke@435 801 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 802
duke@435 803 // for AbortVMOnException flag
duke@435 804 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 805 if (exception_kind == IMPLICIT_NULL) {
duke@435 806 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 807 } else {
duke@435 808 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 809 }
duke@435 810 return target_pc;
duke@435 811 }
duke@435 812
duke@435 813 ShouldNotReachHere();
duke@435 814 return NULL;
duke@435 815 }
duke@435 816
duke@435 817
duke@435 818 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 819 {
duke@435 820 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 821 }
duke@435 822 JNI_END
duke@435 823
duke@435 824
duke@435 825 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 826 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 827 }
duke@435 828
duke@435 829
duke@435 830 #ifndef PRODUCT
duke@435 831 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 832 const frame f = thread->last_frame();
duke@435 833 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 834 #ifndef PRODUCT
duke@435 835 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 836 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 837 #endif // !PRODUCT
duke@435 838 return preserve_this_value;
duke@435 839 JRT_END
duke@435 840 #endif // !PRODUCT
duke@435 841
duke@435 842
duke@435 843 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 844 os::yield_all(attempts);
duke@435 845 JRT_END
duke@435 846
duke@435 847
duke@435 848 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 849 assert(obj->is_oop(), "must be a valid oop");
duke@435 850 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 851 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 852 JRT_END
duke@435 853
duke@435 854
duke@435 855 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 856 if (thread != NULL) {
duke@435 857 if (thread->is_Java_thread()) {
duke@435 858 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 859 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 860 }
duke@435 861 }
duke@435 862 return 0;
duke@435 863 }
duke@435 864
duke@435 865 /**
duke@435 866 * This function ought to be a void function, but cannot be because
duke@435 867 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 868 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 869 */
duke@435 870 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 871 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 872 }
duke@435 873
duke@435 874 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 875 assert(DTraceAllocProbes, "wrong call");
duke@435 876 Klass* klass = o->blueprint();
duke@435 877 int size = o->size();
coleenp@2497 878 Symbol* name = klass->name();
duke@435 879 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 880 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 881 return 0;
duke@435 882 }
duke@435 883
duke@435 884 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 885 JavaThread* thread, methodOopDesc* method))
duke@435 886 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 887 Symbol* kname = method->klass_name();
coleenp@2497 888 Symbol* name = method->name();
coleenp@2497 889 Symbol* sig = method->signature();
duke@435 890 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 891 kname->bytes(), kname->utf8_length(),
duke@435 892 name->bytes(), name->utf8_length(),
duke@435 893 sig->bytes(), sig->utf8_length());
duke@435 894 return 0;
duke@435 895 JRT_END
duke@435 896
duke@435 897 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 898 JavaThread* thread, methodOopDesc* method))
duke@435 899 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 900 Symbol* kname = method->klass_name();
coleenp@2497 901 Symbol* name = method->name();
coleenp@2497 902 Symbol* sig = method->signature();
duke@435 903 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 904 kname->bytes(), kname->utf8_length(),
duke@435 905 name->bytes(), name->utf8_length(),
duke@435 906 sig->bytes(), sig->utf8_length());
duke@435 907 return 0;
duke@435 908 JRT_END
duke@435 909
duke@435 910
duke@435 911 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 912 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 913 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 914 // vtable updates, etc. Caller frame must be compiled.
duke@435 915 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 916 ResourceMark rm(THREAD);
duke@435 917
duke@435 918 // last java frame on stack (which includes native call frames)
duke@435 919 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 920
duke@435 921 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 922 }
duke@435 923
duke@435 924
duke@435 925 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 926 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 927 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 928 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 929 vframeStream& vfst,
duke@435 930 Bytecodes::Code& bc,
duke@435 931 CallInfo& callinfo, TRAPS) {
duke@435 932 Handle receiver;
duke@435 933 Handle nullHandle; //create a handy null handle for exception returns
duke@435 934
duke@435 935 assert(!vfst.at_end(), "Java frame must exist");
duke@435 936
duke@435 937 // Find caller and bci from vframe
duke@435 938 methodHandle caller (THREAD, vfst.method());
duke@435 939 int bci = vfst.bci();
duke@435 940
duke@435 941 // Find bytecode
never@2462 942 Bytecode_invoke bytecode(caller, bci);
never@2462 943 bc = bytecode.java_code();
never@2462 944 int bytecode_index = bytecode.index();
duke@435 945
duke@435 946 // Find receiver for non-static call
duke@435 947 if (bc != Bytecodes::_invokestatic) {
duke@435 948 // This register map must be update since we need to find the receiver for
duke@435 949 // compiled frames. The receiver might be in a register.
duke@435 950 RegisterMap reg_map2(thread);
duke@435 951 frame stubFrame = thread->last_frame();
duke@435 952 // Caller-frame is a compiled frame
duke@435 953 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 954
never@2462 955 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 956 if (callee.is_null()) {
duke@435 957 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 958 }
duke@435 959 // Retrieve from a compiled argument list
duke@435 960 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 961
duke@435 962 if (receiver.is_null()) {
duke@435 963 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 964 }
duke@435 965 }
duke@435 966
duke@435 967 // Resolve method. This is parameterized by bytecode.
duke@435 968 constantPoolHandle constants (THREAD, caller->constants());
duke@435 969 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 970 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 971
duke@435 972 #ifdef ASSERT
duke@435 973 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 974 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 975 assert(receiver.not_null(), "should have thrown exception");
duke@435 976 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 977 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 978 // klass is already loaded
duke@435 979 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 980 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 981 if (receiver_klass->oop_is_instance()) {
duke@435 982 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 983 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 984 receiver_klass.print();
duke@435 985 }
duke@435 986 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 987 }
duke@435 988 }
duke@435 989 #endif
duke@435 990
duke@435 991 return receiver;
duke@435 992 }
duke@435 993
duke@435 994 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 995 ResourceMark rm(THREAD);
duke@435 996 // We need first to check if any Java activations (compiled, interpreted)
duke@435 997 // exist on the stack since last JavaCall. If not, we need
duke@435 998 // to get the target method from the JavaCall wrapper.
duke@435 999 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1000 methodHandle callee_method;
duke@435 1001 if (vfst.at_end()) {
duke@435 1002 // No Java frames were found on stack since we did the JavaCall.
duke@435 1003 // Hence the stack can only contain an entry_frame. We need to
duke@435 1004 // find the target method from the stub frame.
duke@435 1005 RegisterMap reg_map(thread, false);
duke@435 1006 frame fr = thread->last_frame();
duke@435 1007 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1008 fr = fr.sender(&reg_map);
duke@435 1009 assert(fr.is_entry_frame(), "must be");
duke@435 1010 // fr is now pointing to the entry frame.
duke@435 1011 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1012 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1013 } else {
duke@435 1014 Bytecodes::Code bc;
duke@435 1015 CallInfo callinfo;
duke@435 1016 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1017 callee_method = callinfo.selected_method();
duke@435 1018 }
duke@435 1019 assert(callee_method()->is_method(), "must be");
duke@435 1020 return callee_method;
duke@435 1021 }
duke@435 1022
duke@435 1023 // Resolves a call.
duke@435 1024 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1025 bool is_virtual,
duke@435 1026 bool is_optimized, TRAPS) {
duke@435 1027 methodHandle callee_method;
duke@435 1028 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1029 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1030 int retry_count = 0;
duke@435 1031 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1032 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1033 // If has a pending exception then there is no need to re-try to
duke@435 1034 // resolve this method.
duke@435 1035 // If the method has been redefined, we need to try again.
duke@435 1036 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1037 // require that java.lang.Object has been updated.
duke@435 1038
duke@435 1039 // It is very unlikely that method is redefined more than 100 times
duke@435 1040 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1041 // means then there could be a bug here.
duke@435 1042 guarantee((retry_count++ < 100),
duke@435 1043 "Could not resolve to latest version of redefined method");
duke@435 1044 // method is redefined in the middle of resolve so re-try.
duke@435 1045 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1046 }
duke@435 1047 }
duke@435 1048 return callee_method;
duke@435 1049 }
duke@435 1050
duke@435 1051 // Resolves a call. The compilers generate code for calls that go here
duke@435 1052 // and are patched with the real destination of the call.
duke@435 1053 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1054 bool is_virtual,
duke@435 1055 bool is_optimized, TRAPS) {
duke@435 1056
duke@435 1057 ResourceMark rm(thread);
duke@435 1058 RegisterMap cbl_map(thread, false);
duke@435 1059 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1060
twisti@1730 1061 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1062 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1063 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1064 // make sure caller is not getting deoptimized
duke@435 1065 // and removed before we are done with it.
duke@435 1066 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1067 nmethodLocker caller_lock(caller_nm);
duke@435 1068
duke@435 1069
duke@435 1070 // determine call info & receiver
duke@435 1071 // note: a) receiver is NULL for static calls
duke@435 1072 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1073 CallInfo call_info;
duke@435 1074 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1075 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1076 call_info, CHECK_(methodHandle()));
duke@435 1077 methodHandle callee_method = call_info.selected_method();
duke@435 1078
duke@435 1079 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 1080 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 1081
duke@435 1082 #ifndef PRODUCT
duke@435 1083 // tracing/debugging/statistics
duke@435 1084 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1085 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1086 (&_resolve_static_ctr);
duke@435 1087 Atomic::inc(addr);
duke@435 1088
duke@435 1089 if (TraceCallFixup) {
duke@435 1090 ResourceMark rm(thread);
duke@435 1091 tty->print("resolving %s%s (%s) call to",
duke@435 1092 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1093 Bytecodes::name(invoke_code));
duke@435 1094 callee_method->print_short_name(tty);
duke@435 1095 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1096 }
duke@435 1097 #endif
duke@435 1098
twisti@1730 1099 // JSR 292
twisti@1730 1100 // If the resolved method is a MethodHandle invoke target the call
twisti@1730 1101 // site must be a MethodHandle call site.
twisti@1730 1102 if (callee_method->is_method_handle_invoke()) {
twisti@1730 1103 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1104 }
twisti@1730 1105
duke@435 1106 // Compute entry points. This might require generation of C2I converter
duke@435 1107 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1108 // computation of the entry points is independent of patching the call. We
duke@435 1109 // always return the entry-point, but we only patch the stub if the call has
duke@435 1110 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1111 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1112 // virtual this is just a destination address.
duke@435 1113
duke@435 1114 StaticCallInfo static_call_info;
duke@435 1115 CompiledICInfo virtual_call_info;
duke@435 1116
duke@435 1117 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1118 // we are done patching the code.
twisti@1730 1119 nmethod* callee_nm = callee_method->code();
twisti@1730 1120 nmethodLocker nl_callee(callee_nm);
duke@435 1121 #ifdef ASSERT
twisti@1730 1122 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1123 #endif
duke@435 1124
duke@435 1125 if (is_virtual) {
duke@435 1126 assert(receiver.not_null(), "sanity check");
duke@435 1127 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1128 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1129 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1130 is_optimized, static_bound, virtual_call_info,
duke@435 1131 CHECK_(methodHandle()));
duke@435 1132 } else {
duke@435 1133 // static call
duke@435 1134 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1135 }
duke@435 1136
duke@435 1137 // grab lock, check for deoptimization and potentially patch caller
duke@435 1138 {
duke@435 1139 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1140
duke@435 1141 // Now that we are ready to patch if the methodOop was redefined then
duke@435 1142 // don't update call site and let the caller retry.
duke@435 1143
duke@435 1144 if (!callee_method->is_old()) {
duke@435 1145 #ifdef ASSERT
duke@435 1146 // We must not try to patch to jump to an already unloaded method.
duke@435 1147 if (dest_entry_point != 0) {
duke@435 1148 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1149 "should not unload nmethod while locked");
duke@435 1150 }
duke@435 1151 #endif
duke@435 1152 if (is_virtual) {
duke@435 1153 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1154 if (inline_cache->is_clean()) {
duke@435 1155 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1156 }
duke@435 1157 } else {
duke@435 1158 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1159 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1160 }
duke@435 1161 }
duke@435 1162
duke@435 1163 } // unlock CompiledIC_lock
duke@435 1164
duke@435 1165 return callee_method;
duke@435 1166 }
duke@435 1167
duke@435 1168
duke@435 1169 // Inline caches exist only in compiled code
duke@435 1170 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1171 #ifdef ASSERT
duke@435 1172 RegisterMap reg_map(thread, false);
duke@435 1173 frame stub_frame = thread->last_frame();
duke@435 1174 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1175 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1176 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1177 #endif /* ASSERT */
duke@435 1178
duke@435 1179 methodHandle callee_method;
duke@435 1180 JRT_BLOCK
duke@435 1181 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1182 // Return methodOop through TLS
duke@435 1183 thread->set_vm_result(callee_method());
duke@435 1184 JRT_BLOCK_END
duke@435 1185 // return compiled code entry point after potential safepoints
duke@435 1186 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1187 return callee_method->verified_code_entry();
duke@435 1188 JRT_END
duke@435 1189
duke@435 1190
duke@435 1191 // Handle call site that has been made non-entrant
duke@435 1192 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1193 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1194 // as we race to call it. We don't want to take a safepoint if
duke@435 1195 // the caller was interpreted because the caller frame will look
duke@435 1196 // interpreted to the stack walkers and arguments are now
duke@435 1197 // "compiled" so it is much better to make this transition
duke@435 1198 // invisible to the stack walking code. The i2c path will
duke@435 1199 // place the callee method in the callee_target. It is stashed
duke@435 1200 // there because if we try and find the callee by normal means a
duke@435 1201 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1202 RegisterMap reg_map(thread, false);
duke@435 1203 frame stub_frame = thread->last_frame();
duke@435 1204 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1205 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1206
twisti@1570 1207 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1208 // simply redispatch to the callee_target.
twisti@1570 1209 address sender_pc = caller_frame.pc();
twisti@1570 1210 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1211 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1212 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1213 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1214 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1215 // adapter.
twisti@1639 1216 methodOop callee = thread->callee_target();
twisti@1639 1217 if (callee != NULL) {
twisti@1639 1218 assert(callee->is_method(), "sanity");
twisti@1639 1219 is_mh_invoke_via_adapter = true;
twisti@1639 1220 }
twisti@1639 1221 }
twisti@1570 1222
twisti@1570 1223 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1224 caller_frame.is_entry_frame() ||
twisti@1639 1225 is_mh_invoke_via_adapter) {
duke@435 1226 methodOop callee = thread->callee_target();
duke@435 1227 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1228 thread->set_vm_result(callee);
duke@435 1229 thread->set_callee_target(NULL);
duke@435 1230 return callee->get_c2i_entry();
duke@435 1231 }
duke@435 1232
duke@435 1233 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1234 methodHandle callee_method;
duke@435 1235 JRT_BLOCK
duke@435 1236 // Force resolving of caller (if we called from compiled frame)
duke@435 1237 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1238 thread->set_vm_result(callee_method());
duke@435 1239 JRT_BLOCK_END
duke@435 1240 // return compiled code entry point after potential safepoints
duke@435 1241 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1242 return callee_method->verified_code_entry();
duke@435 1243 JRT_END
duke@435 1244
duke@435 1245
duke@435 1246 // resolve a static call and patch code
duke@435 1247 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1248 methodHandle callee_method;
duke@435 1249 JRT_BLOCK
duke@435 1250 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1251 thread->set_vm_result(callee_method());
duke@435 1252 JRT_BLOCK_END
duke@435 1253 // return compiled code entry point after potential safepoints
duke@435 1254 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1255 return callee_method->verified_code_entry();
duke@435 1256 JRT_END
duke@435 1257
duke@435 1258
duke@435 1259 // resolve virtual call and update inline cache to monomorphic
duke@435 1260 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1261 methodHandle callee_method;
duke@435 1262 JRT_BLOCK
duke@435 1263 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1264 thread->set_vm_result(callee_method());
duke@435 1265 JRT_BLOCK_END
duke@435 1266 // return compiled code entry point after potential safepoints
duke@435 1267 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1268 return callee_method->verified_code_entry();
duke@435 1269 JRT_END
duke@435 1270
duke@435 1271
duke@435 1272 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1273 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1274 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1275 methodHandle callee_method;
duke@435 1276 JRT_BLOCK
duke@435 1277 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1278 thread->set_vm_result(callee_method());
duke@435 1279 JRT_BLOCK_END
duke@435 1280 // return compiled code entry point after potential safepoints
duke@435 1281 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1282 return callee_method->verified_code_entry();
duke@435 1283 JRT_END
duke@435 1284
duke@435 1285
duke@435 1286
duke@435 1287
duke@435 1288
duke@435 1289 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1290 ResourceMark rm(thread);
duke@435 1291 CallInfo call_info;
duke@435 1292 Bytecodes::Code bc;
duke@435 1293
duke@435 1294 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1295 // receivers for non-static calls
duke@435 1296 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1297 CHECK_(methodHandle()));
duke@435 1298 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1299 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1300 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1301 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1302 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1303 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1304 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1305 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1306 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1307 //
duke@435 1308 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1309 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1310 if (TraceCallFixup) {
duke@435 1311 RegisterMap reg_map(thread, false);
duke@435 1312 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1313 ResourceMark rm(thread);
duke@435 1314 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1315 callee_method->print_short_name(tty);
duke@435 1316 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1317 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1318 }
duke@435 1319 return callee_method;
duke@435 1320 }
duke@435 1321
duke@435 1322 methodHandle callee_method = call_info.selected_method();
duke@435 1323
duke@435 1324 bool should_be_mono = false;
duke@435 1325
duke@435 1326 #ifndef PRODUCT
duke@435 1327 Atomic::inc(&_ic_miss_ctr);
duke@435 1328
duke@435 1329 // Statistics & Tracing
duke@435 1330 if (TraceCallFixup) {
duke@435 1331 ResourceMark rm(thread);
duke@435 1332 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1333 callee_method->print_short_name(tty);
duke@435 1334 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1335 }
duke@435 1336
duke@435 1337 if (ICMissHistogram) {
duke@435 1338 MutexLocker m(VMStatistic_lock);
duke@435 1339 RegisterMap reg_map(thread, false);
duke@435 1340 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1341 // produce statistics under the lock
duke@435 1342 trace_ic_miss(f.pc());
duke@435 1343 }
duke@435 1344 #endif
duke@435 1345
duke@435 1346 // install an event collector so that when a vtable stub is created the
duke@435 1347 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1348 // event can't be posted when the stub is created as locks are held
duke@435 1349 // - instead the event will be deferred until the event collector goes
duke@435 1350 // out of scope.
duke@435 1351 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1352
duke@435 1353 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1354 // made non-entrant or we are called from interpreted.
duke@435 1355 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1356 RegisterMap reg_map(thread, false);
duke@435 1357 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1358 CodeBlob* cb = caller_frame.cb();
duke@435 1359 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1360 // Not a non-entrant nmethod, so find inline_cache
duke@435 1361 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1362 bool should_be_mono = false;
duke@435 1363 if (inline_cache->is_optimized()) {
duke@435 1364 if (TraceCallFixup) {
duke@435 1365 ResourceMark rm(thread);
duke@435 1366 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1367 callee_method->print_short_name(tty);
duke@435 1368 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1369 }
duke@435 1370 should_be_mono = true;
duke@435 1371 } else {
duke@435 1372 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1373 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1374
duke@435 1375 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1376 // This isn't a real miss. We must have seen that compiled code
duke@435 1377 // is now available and we want the call site converted to a
duke@435 1378 // monomorphic compiled call site.
duke@435 1379 // We can't assert for callee_method->code() != NULL because it
duke@435 1380 // could have been deoptimized in the meantime
duke@435 1381 if (TraceCallFixup) {
duke@435 1382 ResourceMark rm(thread);
duke@435 1383 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1384 callee_method->print_short_name(tty);
duke@435 1385 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1386 }
duke@435 1387 should_be_mono = true;
duke@435 1388 }
duke@435 1389 }
duke@435 1390 }
duke@435 1391
duke@435 1392 if (should_be_mono) {
duke@435 1393
duke@435 1394 // We have a path that was monomorphic but was going interpreted
duke@435 1395 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1396 // by using a new icBuffer.
duke@435 1397 CompiledICInfo info;
duke@435 1398 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1399 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1400 receiver_klass,
duke@435 1401 inline_cache->is_optimized(),
duke@435 1402 false,
duke@435 1403 info, CHECK_(methodHandle()));
duke@435 1404 inline_cache->set_to_monomorphic(info);
duke@435 1405 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1406 // Change to megamorphic
duke@435 1407 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1408 } else {
duke@435 1409 // Either clean or megamorphic
duke@435 1410 }
duke@435 1411 }
duke@435 1412 } // Release CompiledIC_lock
duke@435 1413
duke@435 1414 return callee_method;
duke@435 1415 }
duke@435 1416
duke@435 1417 //
duke@435 1418 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1419 // This routines handles both virtual call sites, optimized virtual call
duke@435 1420 // sites, and static call sites. Typically used to change a call sites
duke@435 1421 // destination from compiled to interpreted.
duke@435 1422 //
duke@435 1423 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1424 ResourceMark rm(thread);
duke@435 1425 RegisterMap reg_map(thread, false);
duke@435 1426 frame stub_frame = thread->last_frame();
duke@435 1427 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1428 frame caller = stub_frame.sender(&reg_map);
duke@435 1429
duke@435 1430 // Do nothing if the frame isn't a live compiled frame.
duke@435 1431 // nmethod could be deoptimized by the time we get here
duke@435 1432 // so no update to the caller is needed.
duke@435 1433
duke@435 1434 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1435
duke@435 1436 address pc = caller.pc();
duke@435 1437 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1438
duke@435 1439 // Default call_addr is the location of the "basic" call.
duke@435 1440 // Determine the address of the call we a reresolving. With
duke@435 1441 // Inline Caches we will always find a recognizable call.
duke@435 1442 // With Inline Caches disabled we may or may not find a
duke@435 1443 // recognizable call. We will always find a call for static
duke@435 1444 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1445 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1446 //
duke@435 1447 // With Inline Caches disabled we can get here for a virtual call
duke@435 1448 // for two reasons:
duke@435 1449 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1450 // will run us thru handle_wrong_method and we will eventually
duke@435 1451 // end up in the interpreter to throw the ame.
duke@435 1452 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1453 // call and between the time we fetch the entry address and
duke@435 1454 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1455 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1456 //
duke@435 1457 address call_addr = NULL;
duke@435 1458 {
duke@435 1459 // Get call instruction under lock because another thread may be
duke@435 1460 // busy patching it.
duke@435 1461 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1462 // Location of call instruction
duke@435 1463 if (NativeCall::is_call_before(pc)) {
duke@435 1464 NativeCall *ncall = nativeCall_before(pc);
duke@435 1465 call_addr = ncall->instruction_address();
duke@435 1466 }
duke@435 1467 }
duke@435 1468
duke@435 1469 // Check for static or virtual call
duke@435 1470 bool is_static_call = false;
duke@435 1471 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1472 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1473 // this is done with it.
duke@435 1474 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1475 nmethodLocker nmlock(caller_nm);
duke@435 1476
duke@435 1477 if (call_addr != NULL) {
duke@435 1478 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1479 int ret = iter.next(); // Get item
duke@435 1480 if (ret) {
duke@435 1481 assert(iter.addr() == call_addr, "must find call");
duke@435 1482 if (iter.type() == relocInfo::static_call_type) {
duke@435 1483 is_static_call = true;
duke@435 1484 } else {
duke@435 1485 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1486 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1487 , "unexpected relocInfo. type");
duke@435 1488 }
duke@435 1489 } else {
duke@435 1490 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1491 }
duke@435 1492
duke@435 1493 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1494 // than directly setting it to the new destination, since resolving of calls
duke@435 1495 // is always done through the same code path. (experience shows that it
duke@435 1496 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1497 // to a wrong method). It should not be performance critical, since the
duke@435 1498 // resolve is only done once.
duke@435 1499
duke@435 1500 MutexLocker ml(CompiledIC_lock);
duke@435 1501 //
duke@435 1502 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1503 // as it is a waste of time
duke@435 1504 //
duke@435 1505 if (caller_nm->is_in_use()) {
duke@435 1506 if (is_static_call) {
duke@435 1507 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1508 ssc->set_to_clean();
duke@435 1509 } else {
duke@435 1510 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1511 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1512 inline_cache->set_to_clean();
duke@435 1513 }
duke@435 1514 }
duke@435 1515 }
duke@435 1516
duke@435 1517 }
duke@435 1518
duke@435 1519 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1520
duke@435 1521
duke@435 1522 #ifndef PRODUCT
duke@435 1523 Atomic::inc(&_wrong_method_ctr);
duke@435 1524
duke@435 1525 if (TraceCallFixup) {
duke@435 1526 ResourceMark rm(thread);
duke@435 1527 tty->print("handle_wrong_method reresolving call to");
duke@435 1528 callee_method->print_short_name(tty);
duke@435 1529 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1530 }
duke@435 1531 #endif
duke@435 1532
duke@435 1533 return callee_method;
duke@435 1534 }
duke@435 1535
duke@435 1536 // ---------------------------------------------------------------------------
duke@435 1537 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1538 // we were called by a compiled method. However we could have lost a race
duke@435 1539 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1540 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1541 // so he no longer calls into the interpreter.
duke@435 1542 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1543 methodOop moop(method);
duke@435 1544
duke@435 1545 address entry_point = moop->from_compiled_entry();
duke@435 1546
duke@435 1547 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1548 // been resolved yet, in which case this function will be called from
duke@435 1549 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1550 // request for a fixup.
duke@435 1551 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1552 // is now back to the i2c in that case we don't need to patch and if
duke@435 1553 // we did we'd leap into space because the callsite needs to use
duke@435 1554 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1555 // ask me how I know this...
duke@435 1556
duke@435 1557 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1558 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1559 return;
twisti@1640 1560 }
twisti@1640 1561
twisti@1640 1562 // The check above makes sure this is a nmethod.
twisti@1640 1563 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1564 assert(nm, "must be");
twisti@1640 1565
twisti@1640 1566 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1640 1567 // to implement MethodHandle actions.
twisti@1640 1568 if (nm->is_method_handle_return(caller_pc)) {
duke@435 1569 return;
duke@435 1570 }
duke@435 1571
duke@435 1572 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1573 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1574 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1575 // call site with the same old data. clear_code will set code() to NULL
duke@435 1576 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1577 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1578 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1579 // and patch the code with the same old data. Asi es la vida.
duke@435 1580
duke@435 1581 if (moop->code() == NULL) return;
duke@435 1582
twisti@1640 1583 if (nm->is_in_use()) {
duke@435 1584
duke@435 1585 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1586 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1587 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1588 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1589 //
duke@435 1590 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1591 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1592 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1593 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1594 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1595 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1596 // for the rest of its life! Just another racing bug in the life of
duke@435 1597 // fixup_callers_callsite ...
duke@435 1598 //
twisti@1918 1599 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1600 iter.next();
duke@435 1601 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1602 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1603 if ( typ != relocInfo::static_call_type &&
duke@435 1604 typ != relocInfo::opt_virtual_call_type &&
duke@435 1605 typ != relocInfo::static_stub_type) {
duke@435 1606 return;
duke@435 1607 }
duke@435 1608 address destination = call->destination();
duke@435 1609 if (destination != entry_point) {
duke@435 1610 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1611 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1612 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1613 // static call or optimized virtual
duke@435 1614 if (TraceCallFixup) {
twisti@1639 1615 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1616 moop->print_short_name(tty);
duke@435 1617 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1618 }
duke@435 1619 call->set_destination_mt_safe(entry_point);
duke@435 1620 } else {
duke@435 1621 if (TraceCallFixup) {
duke@435 1622 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1623 moop->print_short_name(tty);
duke@435 1624 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1625 }
duke@435 1626 // assert is too strong could also be resolve destinations.
duke@435 1627 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1628 }
duke@435 1629 } else {
duke@435 1630 if (TraceCallFixup) {
twisti@1639 1631 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1632 moop->print_short_name(tty);
duke@435 1633 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1634 }
duke@435 1635 }
duke@435 1636 }
duke@435 1637 }
duke@435 1638
duke@435 1639 IRT_END
duke@435 1640
duke@435 1641
duke@435 1642 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1643 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1644 oopDesc* dest, jint dest_pos,
duke@435 1645 jint length,
duke@435 1646 JavaThread* thread)) {
duke@435 1647 #ifndef PRODUCT
duke@435 1648 _slow_array_copy_ctr++;
duke@435 1649 #endif
duke@435 1650 // Check if we have null pointers
duke@435 1651 if (src == NULL || dest == NULL) {
duke@435 1652 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1653 }
duke@435 1654 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1655 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1656 // that src and dest are truly arrays (and are conformable).
duke@435 1657 // The copy_array mechanism is awkward and could be removed, but
duke@435 1658 // the compilers don't call this function except as a last resort,
duke@435 1659 // so it probably doesn't matter.
duke@435 1660 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1661 (arrayOopDesc*)dest, dest_pos,
duke@435 1662 length, thread);
duke@435 1663 }
duke@435 1664 JRT_END
duke@435 1665
duke@435 1666 char* SharedRuntime::generate_class_cast_message(
duke@435 1667 JavaThread* thread, const char* objName) {
duke@435 1668
duke@435 1669 // Get target class name from the checkcast instruction
duke@435 1670 vframeStream vfst(thread, true);
duke@435 1671 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1672 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
duke@435 1673 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
never@2462 1674 cc.index(), thread));
duke@435 1675 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1676 }
duke@435 1677
jrose@1145 1678 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1679 oopDesc* required,
jrose@1145 1680 oopDesc* actual) {
jrose@2148 1681 if (TraceMethodHandles) {
jrose@2148 1682 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
jrose@2148 1683 thread, required, actual);
jrose@2148 1684 }
twisti@2698 1685 assert(EnableInvokeDynamic, "");
jrose@1145 1686 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@2148 1687 char* message = NULL;
jrose@1145 1688 if (singleKlass != NULL) {
jrose@1145 1689 const char* objName = "argument or return value";
jrose@1145 1690 if (actual != NULL) {
jrose@1145 1691 // be flexible about the junk passed in:
jrose@1145 1692 klassOop ak = (actual->is_klass()
jrose@1145 1693 ? (klassOop)actual
jrose@1145 1694 : actual->klass());
jrose@1145 1695 objName = Klass::cast(ak)->external_name();
jrose@1145 1696 }
jrose@1145 1697 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1698 ? (klassOop)required
jrose@1145 1699 : java_lang_Class::as_klassOop(required));
jrose@2148 1700 message = generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1701 } else {
jrose@1145 1702 // %%% need to get the MethodType string, without messing around too much
jrose@2743 1703 const char* desc = NULL;
jrose@1145 1704 // Get a signature from the invoke instruction
jrose@1145 1705 const char* mhName = "method handle";
jrose@1145 1706 const char* targetType = "the required signature";
jrose@2743 1707 int targetArity = -1, mhArity = -1;
jrose@1145 1708 vframeStream vfst(thread, true);
jrose@1145 1709 if (!vfst.at_end()) {
never@2462 1710 Bytecode_invoke call(vfst.method(), vfst.bci());
jrose@1145 1711 methodHandle target;
jrose@1145 1712 {
jrose@1145 1713 EXCEPTION_MARK;
never@2462 1714 target = call.static_target(THREAD);
jrose@1145 1715 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1716 }
jrose@1145 1717 if (target.not_null()
jrose@1145 1718 && target->is_method_handle_invoke()
jrose@1145 1719 && required == target->method_handle_type()) {
jrose@1145 1720 targetType = target->signature()->as_C_string();
jrose@2743 1721 targetArity = ArgumentCount(target->signature()).size();
jrose@1145 1722 }
jrose@1145 1723 }
jrose@2743 1724 klassOop kignore; int dmf_flags = 0;
jrose@2743 1725 methodOop actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
jrose@2743 1726 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
jrose@2743 1727 MethodHandles::_dmf_does_dispatch |
jrose@2743 1728 MethodHandles::_dmf_from_interface)) != 0)
jrose@2743 1729 actual_method = NULL; // MH does extra binds, drops, etc.
jrose@2743 1730 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
jrose@1145 1731 if (actual_method != NULL) {
jrose@2743 1732 mhName = actual_method->signature()->as_C_string();
jrose@2743 1733 mhArity = ArgumentCount(actual_method->signature()).size();
jrose@2743 1734 if (!actual_method->is_static()) mhArity += 1;
jrose@2743 1735 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
jrose@2743 1736 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
jrose@2743 1737 mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
jrose@2743 1738 stringStream st;
jrose@2743 1739 java_lang_invoke_MethodType::print_signature(mhType, &st);
jrose@2743 1740 mhName = st.as_string();
jrose@2743 1741 }
jrose@2743 1742 if (targetArity != -1 && targetArity != mhArity) {
jrose@2743 1743 if (has_receiver && targetArity == mhArity-1)
jrose@2743 1744 desc = " cannot be called without a receiver argument as ";
jrose@1145 1745 else
jrose@2743 1746 desc = " cannot be called with a different arity as ";
jrose@1145 1747 }
jrose@2148 1748 message = generate_class_cast_message(mhName, targetType,
jrose@2743 1749 desc != NULL ? desc :
jrose@2148 1750 " cannot be called as ");
jrose@1145 1751 }
jrose@2148 1752 if (TraceMethodHandles) {
jrose@2148 1753 tty->print_cr("WrongMethodType => message=%s", message);
jrose@2148 1754 }
jrose@2148 1755 return message;
jrose@1145 1756 }
jrose@1145 1757
jrose@1145 1758 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1759 oopDesc* required) {
jrose@1145 1760 if (required == NULL) return NULL;
never@1577 1761 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1762 return required;
jrose@1145 1763 if (required->is_klass())
jrose@1145 1764 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1765 return NULL;
jrose@1145 1766 }
jrose@1145 1767
jrose@1145 1768
duke@435 1769 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1770 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1771 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1772
kamg@488 1773 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1774 if (NULL == message) {
kamg@488 1775 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1776 message = const_cast<char*>(objName);
duke@435 1777 } else {
duke@435 1778 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1779 }
duke@435 1780 return message;
duke@435 1781 }
duke@435 1782
duke@435 1783 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1784 (void) JavaThread::current()->reguard_stack();
duke@435 1785 JRT_END
duke@435 1786
duke@435 1787
duke@435 1788 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1789 #ifndef PRODUCT
duke@435 1790 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1791 #endif
duke@435 1792 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1793 oop obj(_obj);
duke@435 1794 #ifndef PRODUCT
duke@435 1795 _monitor_enter_ctr++; // monitor enter slow
duke@435 1796 #endif
duke@435 1797 if (PrintBiasedLockingStatistics) {
duke@435 1798 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1799 }
duke@435 1800 Handle h_obj(THREAD, obj);
duke@435 1801 if (UseBiasedLocking) {
duke@435 1802 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1803 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1804 } else {
duke@435 1805 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1806 }
duke@435 1807 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1808 JRT_END
duke@435 1809
duke@435 1810 #ifndef PRODUCT
duke@435 1811 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1812 #endif
duke@435 1813 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1814 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1815 oop obj(_obj);
duke@435 1816 #ifndef PRODUCT
duke@435 1817 _monitor_exit_ctr++; // monitor exit slow
duke@435 1818 #endif
duke@435 1819 Thread* THREAD = JavaThread::current();
duke@435 1820 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1821 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1822 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1823 #undef MIGHT_HAVE_PENDING
duke@435 1824 #ifdef MIGHT_HAVE_PENDING
duke@435 1825 // Save and restore any pending_exception around the exception mark.
duke@435 1826 // While the slow_exit must not throw an exception, we could come into
duke@435 1827 // this routine with one set.
duke@435 1828 oop pending_excep = NULL;
duke@435 1829 const char* pending_file;
duke@435 1830 int pending_line;
duke@435 1831 if (HAS_PENDING_EXCEPTION) {
duke@435 1832 pending_excep = PENDING_EXCEPTION;
duke@435 1833 pending_file = THREAD->exception_file();
duke@435 1834 pending_line = THREAD->exception_line();
duke@435 1835 CLEAR_PENDING_EXCEPTION;
duke@435 1836 }
duke@435 1837 #endif /* MIGHT_HAVE_PENDING */
duke@435 1838
duke@435 1839 {
duke@435 1840 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1841 EXCEPTION_MARK;
duke@435 1842 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1843 }
duke@435 1844
duke@435 1845 #ifdef MIGHT_HAVE_PENDING
duke@435 1846 if (pending_excep != NULL) {
duke@435 1847 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1848 }
duke@435 1849 #endif /* MIGHT_HAVE_PENDING */
duke@435 1850 JRT_END
duke@435 1851
duke@435 1852 #ifndef PRODUCT
duke@435 1853
duke@435 1854 void SharedRuntime::print_statistics() {
duke@435 1855 ttyLocker ttyl;
duke@435 1856 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1857
duke@435 1858 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1859 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1860 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1861
duke@435 1862 SharedRuntime::print_ic_miss_histogram();
duke@435 1863
duke@435 1864 if (CountRemovableExceptions) {
duke@435 1865 if (_nof_removable_exceptions > 0) {
duke@435 1866 Unimplemented(); // this counter is not yet incremented
duke@435 1867 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1868 }
duke@435 1869 }
duke@435 1870
duke@435 1871 // Dump the JRT_ENTRY counters
duke@435 1872 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1873 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1874 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1875 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1876 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1877 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1878 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1879
duke@435 1880 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1881 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1882 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1883 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1884 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1885
duke@435 1886 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1887 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1888 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1889 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1890 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1891 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1892 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1893 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1894 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1895 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1896 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1897 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1898 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1899 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1900 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1901 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1902
never@1622 1903 AdapterHandlerLibrary::print_statistics();
never@1622 1904
duke@435 1905 if (xtty != NULL) xtty->tail("statistics");
duke@435 1906 }
duke@435 1907
duke@435 1908 inline double percent(int x, int y) {
duke@435 1909 return 100.0 * x / MAX2(y, 1);
duke@435 1910 }
duke@435 1911
duke@435 1912 class MethodArityHistogram {
duke@435 1913 public:
duke@435 1914 enum { MAX_ARITY = 256 };
duke@435 1915 private:
duke@435 1916 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1917 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1918 static int _max_arity; // max. arity seen
duke@435 1919 static int _max_size; // max. arg size seen
duke@435 1920
duke@435 1921 static void add_method_to_histogram(nmethod* nm) {
duke@435 1922 methodOop m = nm->method();
duke@435 1923 ArgumentCount args(m->signature());
duke@435 1924 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1925 int argsize = m->size_of_parameters();
duke@435 1926 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1927 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1928 int count = nm->method()->compiled_invocation_count();
duke@435 1929 _arity_histogram[arity] += count;
duke@435 1930 _size_histogram[argsize] += count;
duke@435 1931 _max_arity = MAX2(_max_arity, arity);
duke@435 1932 _max_size = MAX2(_max_size, argsize);
duke@435 1933 }
duke@435 1934
duke@435 1935 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1936 const int N = MIN2(5, n);
duke@435 1937 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1938 double sum = 0;
duke@435 1939 double weighted_sum = 0;
duke@435 1940 int i;
duke@435 1941 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1942 double rest = sum;
duke@435 1943 double percent = sum / 100;
duke@435 1944 for (i = 0; i <= N; i++) {
duke@435 1945 rest -= histo[i];
duke@435 1946 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1947 }
duke@435 1948 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1949 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1950 }
duke@435 1951
duke@435 1952 void print_histogram() {
duke@435 1953 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1954 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1955 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1956 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1957 tty->cr();
duke@435 1958 }
duke@435 1959
duke@435 1960 public:
duke@435 1961 MethodArityHistogram() {
duke@435 1962 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1963 _max_arity = _max_size = 0;
duke@435 1964 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1965 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1966 print_histogram();
duke@435 1967 }
duke@435 1968 };
duke@435 1969
duke@435 1970 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1971 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1972 int MethodArityHistogram::_max_arity;
duke@435 1973 int MethodArityHistogram::_max_size;
duke@435 1974
duke@435 1975 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1976 tty->print_cr("Calls from compiled code:");
duke@435 1977 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1978 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1979 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1980 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1981 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1982 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1983 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1984 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1985 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1986 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1987 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1988 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1989 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1990 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1991 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 1992 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 1993 tty->cr();
duke@435 1994 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 1995 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 1996 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 1997 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 1998 tty->cr();
duke@435 1999
duke@435 2000 MethodArityHistogram h;
duke@435 2001 }
duke@435 2002 #endif
duke@435 2003
duke@435 2004
never@1622 2005 // A simple wrapper class around the calling convention information
never@1622 2006 // that allows sharing of adapters for the same calling convention.
never@1622 2007 class AdapterFingerPrint : public CHeapObj {
never@1622 2008 private:
never@1622 2009 union {
never@1642 2010 int _compact[3];
never@1642 2011 int* _fingerprint;
never@1622 2012 } _value;
never@1642 2013 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2014 // Otherwise _value._fingerprint is the array.
never@1622 2015
never@1642 2016 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2017 // These are correct for the current system but someday it might be
never@1642 2018 // necessary to make this mapping platform dependent.
never@1642 2019 static BasicType adapter_encoding(BasicType in) {
never@1642 2020 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 2021 switch(in) {
never@1642 2022 case T_BOOLEAN:
never@1642 2023 case T_BYTE:
never@1642 2024 case T_SHORT:
never@1642 2025 case T_CHAR:
never@1642 2026 // There are all promoted to T_INT in the calling convention
never@1642 2027 return T_INT;
never@1642 2028
never@1642 2029 case T_OBJECT:
never@1642 2030 case T_ARRAY:
never@1642 2031 #ifdef _LP64
twisti@1861 2032 return T_LONG;
never@1642 2033 #else
twisti@1861 2034 return T_INT;
never@1642 2035 #endif
never@1642 2036
never@1642 2037 case T_INT:
never@1642 2038 case T_LONG:
never@1642 2039 case T_FLOAT:
never@1642 2040 case T_DOUBLE:
never@1642 2041 case T_VOID:
never@1642 2042 return in;
never@1642 2043
never@1642 2044 default:
never@1642 2045 ShouldNotReachHere();
never@1642 2046 return T_CONFLICT;
never@1622 2047 }
never@1622 2048 }
never@1622 2049
never@1642 2050 public:
never@1642 2051 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2052 // The fingerprint is based on the BasicType signature encoded
never@1642 2053 // into an array of ints with four entries per int.
never@1642 2054 int* ptr;
never@1642 2055 int len = (total_args_passed + 3) >> 2;
never@1642 2056 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 2057 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2058 // Storing the signature encoded as signed chars hits about 98%
never@1642 2059 // of the time.
never@1642 2060 _length = -len;
never@1642 2061 ptr = _value._compact;
never@1642 2062 } else {
never@1642 2063 _length = len;
never@1642 2064 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 2065 ptr = _value._fingerprint;
never@1642 2066 }
never@1642 2067
never@1642 2068 // Now pack the BasicTypes with 4 per int
never@1642 2069 int sig_index = 0;
never@1642 2070 for (int index = 0; index < len; index++) {
never@1642 2071 int value = 0;
never@1642 2072 for (int byte = 0; byte < 4; byte++) {
never@1642 2073 if (sig_index < total_args_passed) {
never@1642 2074 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 2075 }
never@1642 2076 }
never@1642 2077 ptr[index] = value;
never@1642 2078 }
never@1622 2079 }
never@1622 2080
never@1622 2081 ~AdapterFingerPrint() {
never@1622 2082 if (_length > 0) {
never@1622 2083 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 2084 }
never@1622 2085 }
never@1622 2086
never@1642 2087 int value(int index) {
never@1622 2088 if (_length < 0) {
never@1622 2089 return _value._compact[index];
never@1622 2090 }
never@1622 2091 return _value._fingerprint[index];
never@1622 2092 }
never@1622 2093 int length() {
never@1622 2094 if (_length < 0) return -_length;
never@1622 2095 return _length;
never@1622 2096 }
never@1622 2097
never@1622 2098 bool is_compact() {
never@1622 2099 return _length <= 0;
never@1622 2100 }
never@1622 2101
never@1622 2102 unsigned int compute_hash() {
never@1642 2103 int hash = 0;
never@1622 2104 for (int i = 0; i < length(); i++) {
never@1642 2105 int v = value(i);
never@1622 2106 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2107 }
never@1622 2108 return (unsigned int)hash;
never@1622 2109 }
never@1622 2110
never@1622 2111 const char* as_string() {
never@1622 2112 stringStream st;
never@1622 2113 for (int i = 0; i < length(); i++) {
never@1622 2114 st.print(PTR_FORMAT, value(i));
never@1622 2115 }
never@1622 2116 return st.as_string();
never@1622 2117 }
never@1622 2118
never@1622 2119 bool equals(AdapterFingerPrint* other) {
never@1622 2120 if (other->_length != _length) {
never@1622 2121 return false;
never@1622 2122 }
never@1622 2123 if (_length < 0) {
never@1642 2124 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2125 _value._compact[1] == other->_value._compact[1] &&
never@1642 2126 _value._compact[2] == other->_value._compact[2];
never@1622 2127 } else {
never@1622 2128 for (int i = 0; i < _length; i++) {
never@1622 2129 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2130 return false;
never@1622 2131 }
never@1622 2132 }
never@1622 2133 }
never@1622 2134 return true;
never@1622 2135 }
never@1622 2136 };
never@1622 2137
never@1622 2138
never@1622 2139 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 2140 class AdapterHandlerTable : public BasicHashtable {
never@1622 2141 friend class AdapterHandlerTableIterator;
never@1622 2142
never@1622 2143 private:
never@1622 2144
kvn@1698 2145 #ifndef PRODUCT
never@1622 2146 static int _lookups; // number of calls to lookup
never@1622 2147 static int _buckets; // number of buckets checked
never@1622 2148 static int _equals; // number of buckets checked with matching hash
never@1622 2149 static int _hits; // number of successful lookups
never@1622 2150 static int _compact; // number of equals calls with compact signature
never@1622 2151 #endif
never@1622 2152
never@1622 2153 AdapterHandlerEntry* bucket(int i) {
never@1622 2154 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 2155 }
never@1622 2156
never@1622 2157 public:
never@1622 2158 AdapterHandlerTable()
never@1622 2159 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2160
never@1622 2161 // Create a new entry suitable for insertion in the table
never@1622 2162 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 2163 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 2164 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2165 return entry;
never@1622 2166 }
never@1622 2167
never@1622 2168 // Insert an entry into the table
never@1622 2169 void add(AdapterHandlerEntry* entry) {
never@1622 2170 int index = hash_to_index(entry->hash());
never@1622 2171 add_entry(index, entry);
never@1622 2172 }
never@1622 2173
never@1642 2174 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2175 entry->deallocate();
never@1642 2176 BasicHashtable::free_entry(entry);
never@1642 2177 }
never@1642 2178
never@1622 2179 // Find a entry with the same fingerprint if it exists
never@1642 2180 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2181 NOT_PRODUCT(_lookups++);
never@1642 2182 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2183 unsigned int hash = fp.compute_hash();
never@1622 2184 int index = hash_to_index(hash);
never@1622 2185 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2186 NOT_PRODUCT(_buckets++);
never@1622 2187 if (e->hash() == hash) {
kvn@1698 2188 NOT_PRODUCT(_equals++);
never@1622 2189 if (fp.equals(e->fingerprint())) {
kvn@1698 2190 #ifndef PRODUCT
never@1622 2191 if (fp.is_compact()) _compact++;
never@1622 2192 _hits++;
never@1622 2193 #endif
never@1622 2194 return e;
never@1622 2195 }
never@1622 2196 }
never@1622 2197 }
never@1622 2198 return NULL;
never@1622 2199 }
never@1622 2200
kvn@1698 2201 #ifndef PRODUCT
never@1622 2202 void print_statistics() {
never@1622 2203 ResourceMark rm;
never@1622 2204 int longest = 0;
never@1622 2205 int empty = 0;
never@1622 2206 int total = 0;
never@1622 2207 int nonempty = 0;
never@1622 2208 for (int index = 0; index < table_size(); index++) {
never@1622 2209 int count = 0;
never@1622 2210 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2211 count++;
never@1622 2212 }
never@1622 2213 if (count != 0) nonempty++;
never@1622 2214 if (count == 0) empty++;
never@1622 2215 if (count > longest) longest = count;
never@1622 2216 total += count;
never@1622 2217 }
never@1622 2218 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2219 empty, longest, total, total / (double)nonempty);
never@1622 2220 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2221 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2222 }
never@1622 2223 #endif
never@1622 2224 };
never@1622 2225
never@1622 2226
kvn@1698 2227 #ifndef PRODUCT
never@1622 2228
never@1622 2229 int AdapterHandlerTable::_lookups;
never@1622 2230 int AdapterHandlerTable::_buckets;
never@1622 2231 int AdapterHandlerTable::_equals;
never@1622 2232 int AdapterHandlerTable::_hits;
never@1622 2233 int AdapterHandlerTable::_compact;
never@1622 2234
bobv@2036 2235 #endif
bobv@2036 2236
never@1622 2237 class AdapterHandlerTableIterator : public StackObj {
never@1622 2238 private:
never@1622 2239 AdapterHandlerTable* _table;
never@1622 2240 int _index;
never@1622 2241 AdapterHandlerEntry* _current;
never@1622 2242
never@1622 2243 void scan() {
never@1622 2244 while (_index < _table->table_size()) {
never@1622 2245 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2246 _index++;
never@1622 2247 if (a != NULL) {
never@1622 2248 _current = a;
never@1622 2249 return;
never@1622 2250 }
never@1622 2251 }
never@1622 2252 }
never@1622 2253
never@1622 2254 public:
never@1622 2255 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2256 scan();
never@1622 2257 }
never@1622 2258 bool has_next() {
never@1622 2259 return _current != NULL;
never@1622 2260 }
never@1622 2261 AdapterHandlerEntry* next() {
never@1622 2262 if (_current != NULL) {
never@1622 2263 AdapterHandlerEntry* result = _current;
never@1622 2264 _current = _current->next();
never@1622 2265 if (_current == NULL) scan();
never@1622 2266 return result;
never@1622 2267 } else {
never@1622 2268 return NULL;
never@1622 2269 }
never@1622 2270 }
never@1622 2271 };
never@1622 2272
never@1622 2273
duke@435 2274 // ---------------------------------------------------------------------------
duke@435 2275 // Implementation of AdapterHandlerLibrary
never@1622 2276 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2277 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2278 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2279 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2280
kvn@1177 2281 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2282 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2283 if (_buffer == NULL) // Initialize lazily
kvn@1177 2284 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2285 return _buffer;
kvn@1177 2286 }
duke@435 2287
duke@435 2288 void AdapterHandlerLibrary::initialize() {
never@1622 2289 if (_adapters != NULL) return;
never@1622 2290 _adapters = new AdapterHandlerTable();
duke@435 2291
duke@435 2292 // Create a special handler for abstract methods. Abstract methods
duke@435 2293 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2294 // fill it in with something appropriate just in case. Pass handle
duke@435 2295 // wrong method for the c2i transitions.
duke@435 2296 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2297 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2298 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2299 wrong_method, wrong_method);
duke@435 2300 }
duke@435 2301
never@1622 2302 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2303 address i2c_entry,
never@1622 2304 address c2i_entry,
never@1622 2305 address c2i_unverified_entry) {
never@1622 2306 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2307 }
never@1622 2308
never@1622 2309 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2310 // Use customized signature handler. Need to lock around updates to
never@1622 2311 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2312 // and a single writer: this could be fixed if it becomes a
never@1622 2313 // problem).
duke@435 2314
duke@435 2315 // Get the address of the ic_miss handlers before we grab the
duke@435 2316 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2317 // was caused by the initialization of the stubs happening
duke@435 2318 // while we held the lock and then notifying jvmti while
duke@435 2319 // holding it. This just forces the initialization to be a little
duke@435 2320 // earlier.
duke@435 2321 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2322 assert(ic_miss != NULL, "must have handler");
duke@435 2323
never@1622 2324 ResourceMark rm;
never@1622 2325
twisti@2103 2326 NOT_PRODUCT(int insts_size);
twisti@1734 2327 AdapterBlob* B = NULL;
kvn@1177 2328 AdapterHandlerEntry* entry = NULL;
never@1622 2329 AdapterFingerPrint* fingerprint = NULL;
duke@435 2330 {
duke@435 2331 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2332 // make sure data structure is initialized
duke@435 2333 initialize();
duke@435 2334
duke@435 2335 if (method->is_abstract()) {
never@1622 2336 return _abstract_method_handler;
duke@435 2337 }
duke@435 2338
never@1622 2339 // Fill in the signature array, for the calling-convention call.
never@1622 2340 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2341
never@1622 2342 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2343 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2344 int i = 0;
never@1622 2345 if (!method->is_static()) // Pass in receiver first
never@1622 2346 sig_bt[i++] = T_OBJECT;
never@1622 2347 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2348 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2349 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2350 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2351 }
never@1622 2352 assert(i == total_args_passed, "");
never@1622 2353
never@1642 2354 // Lookup method signature's fingerprint
never@1642 2355 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2356
never@1642 2357 #ifdef ASSERT
never@1642 2358 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2359 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2360 shared_entry = entry;
never@1642 2361 entry = NULL;
never@1642 2362 }
never@1642 2363 #endif
never@1642 2364
never@1622 2365 if (entry != NULL) {
never@1622 2366 return entry;
duke@435 2367 }
duke@435 2368
never@1642 2369 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2370 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2371
never@1622 2372 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2373 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2374
duke@435 2375 // Create I2C & C2I handlers
duke@435 2376
twisti@1734 2377 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2378 if (buf != NULL) {
twisti@2103 2379 CodeBuffer buffer(buf);
kvn@1177 2380 short buffer_locs[20];
kvn@1177 2381 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2382 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2383 MacroAssembler _masm(&buffer);
duke@435 2384
kvn@1177 2385 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2386 total_args_passed,
kvn@1177 2387 comp_args_on_stack,
kvn@1177 2388 sig_bt,
never@1622 2389 regs,
never@1622 2390 fingerprint);
kvn@1177 2391
never@1642 2392 #ifdef ASSERT
never@1642 2393 if (VerifyAdapterSharing) {
never@1642 2394 if (shared_entry != NULL) {
twisti@2103 2395 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2396 "code must match");
never@1642 2397 // Release the one just created and return the original
never@1642 2398 _adapters->free_entry(entry);
never@1642 2399 return shared_entry;
never@1642 2400 } else {
twisti@2103 2401 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2402 }
never@1642 2403 }
never@1642 2404 #endif
never@1642 2405
twisti@1734 2406 B = AdapterBlob::create(&buffer);
twisti@2103 2407 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2408 }
kvn@463 2409 if (B == NULL) {
kvn@463 2410 // CodeCache is full, disable compilation
kvn@463 2411 // Ought to log this but compile log is only per compile thread
kvn@463 2412 // and we're some non descript Java thread.
kvn@1637 2413 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2414 CompileBroker::handle_full_code_cache();
never@1622 2415 return NULL; // Out of CodeCache space
kvn@463 2416 }
twisti@2103 2417 entry->relocate(B->content_begin());
duke@435 2418 #ifndef PRODUCT
duke@435 2419 // debugging suppport
duke@435 2420 if (PrintAdapterHandlers) {
duke@435 2421 tty->cr();
never@1622 2422 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2423 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@2103 2424 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
duke@435 2425 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@2103 2426 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
duke@435 2427 }
duke@435 2428 #endif
duke@435 2429
never@1622 2430 _adapters->add(entry);
duke@435 2431 }
duke@435 2432 // Outside of the lock
duke@435 2433 if (B != NULL) {
duke@435 2434 char blob_id[256];
duke@435 2435 jio_snprintf(blob_id,
duke@435 2436 sizeof(blob_id),
never@1622 2437 "%s(%s)@" PTR_FORMAT,
twisti@1734 2438 B->name(),
never@1622 2439 fingerprint->as_string(),
twisti@2103 2440 B->content_begin());
twisti@2103 2441 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2442
duke@435 2443 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2444 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2445 }
duke@435 2446 }
never@1622 2447 return entry;
duke@435 2448 }
duke@435 2449
duke@435 2450 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2451 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2452 _i2c_entry += delta;
duke@435 2453 _c2i_entry += delta;
duke@435 2454 _c2i_unverified_entry += delta;
duke@435 2455 }
duke@435 2456
never@1642 2457
never@1642 2458 void AdapterHandlerEntry::deallocate() {
never@1642 2459 delete _fingerprint;
never@1642 2460 #ifdef ASSERT
never@1642 2461 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2462 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2463 #endif
never@1642 2464 }
never@1642 2465
never@1642 2466
never@1642 2467 #ifdef ASSERT
never@1642 2468 // Capture the code before relocation so that it can be compared
never@1642 2469 // against other versions. If the code is captured after relocation
never@1642 2470 // then relative instructions won't be equivalent.
never@1642 2471 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2472 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2473 _code_length = length;
never@1642 2474 memcpy(_saved_code, buffer, length);
never@1642 2475 _total_args_passed = total_args_passed;
never@1642 2476 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2477 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2478 }
never@1642 2479
never@1642 2480
never@1642 2481 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2482 if (length != _code_length) {
never@1642 2483 return false;
never@1642 2484 }
never@1642 2485 for (int i = 0; i < length; i++) {
never@1642 2486 if (buffer[i] != _saved_code[i]) {
never@1642 2487 return false;
never@1642 2488 }
never@1642 2489 }
never@1642 2490 return true;
never@1642 2491 }
never@1642 2492 #endif
never@1642 2493
never@1642 2494
duke@435 2495 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2496 // java compiled calling convention to the native convention, handlizes
duke@435 2497 // arguments, and transitions to native. On return from the native we transition
duke@435 2498 // back to java blocking if a safepoint is in progress.
twisti@2687 2499 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2500 ResourceMark rm;
duke@435 2501 nmethod* nm = NULL;
duke@435 2502
duke@435 2503 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2504
duke@435 2505 {
duke@435 2506 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2507 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2508 // See if somebody beat us to it
duke@435 2509 nm = method->code();
duke@435 2510 if (nm) {
duke@435 2511 return nm;
duke@435 2512 }
duke@435 2513
kvn@1177 2514 ResourceMark rm;
duke@435 2515
kvn@1177 2516 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2517 if (buf != NULL) {
twisti@2103 2518 CodeBuffer buffer(buf);
kvn@1177 2519 double locs_buf[20];
kvn@1177 2520 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2521 MacroAssembler _masm(&buffer);
duke@435 2522
kvn@1177 2523 // Fill in the signature array, for the calling-convention call.
kvn@1177 2524 int total_args_passed = method->size_of_parameters();
kvn@1177 2525
kvn@1177 2526 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2527 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2528 int i=0;
kvn@1177 2529 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2530 sig_bt[i++] = T_OBJECT;
kvn@1177 2531 SignatureStream ss(method->signature());
kvn@1177 2532 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2533 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2534 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2535 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2536 }
kvn@1177 2537 assert( i==total_args_passed, "" );
kvn@1177 2538 BasicType ret_type = ss.type();
kvn@1177 2539
kvn@1177 2540 // Now get the compiled-Java layout as input arguments
kvn@1177 2541 int comp_args_on_stack;
kvn@1177 2542 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2543
kvn@1177 2544 // Generate the compiled-to-native wrapper code
kvn@1177 2545 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2546 method,
twisti@2687 2547 compile_id,
kvn@1177 2548 total_args_passed,
kvn@1177 2549 comp_args_on_stack,
kvn@1177 2550 sig_bt,regs,
kvn@1177 2551 ret_type);
duke@435 2552 }
duke@435 2553 }
duke@435 2554
duke@435 2555 // Must unlock before calling set_code
never@2083 2556
duke@435 2557 // Install the generated code.
duke@435 2558 if (nm != NULL) {
twisti@2687 2559 if (PrintCompilation) {
twisti@2687 2560 ttyLocker ttyl;
twisti@2687 2561 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2562 }
duke@435 2563 method->set_code(method, nm);
duke@435 2564 nm->post_compiled_method_load_event();
duke@435 2565 } else {
duke@435 2566 // CodeCache is full, disable compilation
kvn@1637 2567 CompileBroker::handle_full_code_cache();
duke@435 2568 }
duke@435 2569 return nm;
duke@435 2570 }
duke@435 2571
kamg@551 2572 #ifdef HAVE_DTRACE_H
kamg@551 2573 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2574 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2575 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2576 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2577 // leaf no thread transition is needed.
kamg@551 2578
kamg@551 2579 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2580 ResourceMark rm;
kamg@551 2581 nmethod* nm = NULL;
kamg@551 2582
kamg@551 2583 if (PrintCompilation) {
kamg@551 2584 ttyLocker ttyl;
kamg@551 2585 tty->print("--- n%s ");
kamg@551 2586 method->print_short_name(tty);
kamg@551 2587 if (method->is_static()) {
kamg@551 2588 tty->print(" (static)");
kamg@551 2589 }
kamg@551 2590 tty->cr();
kamg@551 2591 }
kamg@551 2592
kamg@551 2593 {
kamg@551 2594 // perform the work while holding the lock, but perform any printing
kamg@551 2595 // outside the lock
kamg@551 2596 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2597 // See if somebody beat us to it
kamg@551 2598 nm = method->code();
kamg@551 2599 if (nm) {
kamg@551 2600 return nm;
kamg@551 2601 }
kamg@551 2602
kvn@1177 2603 ResourceMark rm;
kvn@1177 2604
kvn@1177 2605 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2606 if (buf != NULL) {
twisti@2103 2607 CodeBuffer buffer(buf);
kvn@1177 2608 // Need a few relocation entries
kvn@1177 2609 double locs_buf[20];
kvn@1177 2610 buffer.insts()->initialize_shared_locs(
kamg@551 2611 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2612 MacroAssembler _masm(&buffer);
kamg@551 2613
kvn@1177 2614 // Generate the compiled-to-native wrapper code
kvn@1177 2615 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2616 }
kamg@551 2617 }
kamg@551 2618 return nm;
kamg@551 2619 }
kamg@551 2620
kamg@551 2621 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2622 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2623 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2624 int jlsOffset = java_lang_String::offset(src);
kamg@551 2625 int jlsLen = java_lang_String::length(src);
kamg@551 2626 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2627 jlsValue->char_at_addr(jlsOffset);
bobv@2508 2628 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2629 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2630 }
kamg@551 2631 #endif // ndef HAVE_DTRACE_H
kamg@551 2632
duke@435 2633 // -------------------------------------------------------------------------
duke@435 2634 // Java-Java calling convention
duke@435 2635 // (what you use when Java calls Java)
duke@435 2636
duke@435 2637 //------------------------------name_for_receiver----------------------------------
duke@435 2638 // For a given signature, return the VMReg for parameter 0.
duke@435 2639 VMReg SharedRuntime::name_for_receiver() {
duke@435 2640 VMRegPair regs;
duke@435 2641 BasicType sig_bt = T_OBJECT;
duke@435 2642 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2643 // Return argument 0 register. In the LP64 build pointers
duke@435 2644 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2645 return regs.first();
duke@435 2646 }
duke@435 2647
coleenp@2497 2648 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2649 // This method is returning a data structure allocating as a
duke@435 2650 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2651 char *s = sig->as_C_string();
duke@435 2652 int len = (int)strlen(s);
duke@435 2653 *s++; len--; // Skip opening paren
duke@435 2654 char *t = s+len;
duke@435 2655 while( *(--t) != ')' ) ; // Find close paren
duke@435 2656
duke@435 2657 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2658 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2659 int cnt = 0;
twisti@1573 2660 if (has_receiver) {
duke@435 2661 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2662 }
duke@435 2663
duke@435 2664 while( s < t ) {
duke@435 2665 switch( *s++ ) { // Switch on signature character
duke@435 2666 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2667 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2668 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2669 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2670 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2671 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2672 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2673 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2674 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2675 case 'L': // Oop
duke@435 2676 while( *s++ != ';' ) ; // Skip signature
duke@435 2677 sig_bt[cnt++] = T_OBJECT;
duke@435 2678 break;
duke@435 2679 case '[': { // Array
duke@435 2680 do { // Skip optional size
duke@435 2681 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2682 } while( *s++ == '[' ); // Nested arrays?
duke@435 2683 // Skip element type
duke@435 2684 if( s[-1] == 'L' )
duke@435 2685 while( *s++ != ';' ) ; // Skip signature
duke@435 2686 sig_bt[cnt++] = T_ARRAY;
duke@435 2687 break;
duke@435 2688 }
duke@435 2689 default : ShouldNotReachHere();
duke@435 2690 }
duke@435 2691 }
duke@435 2692 assert( cnt < 256, "grow table size" );
duke@435 2693
duke@435 2694 int comp_args_on_stack;
duke@435 2695 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2696
duke@435 2697 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2698 // we must add that in to get "true" stack offsets.
duke@435 2699
duke@435 2700 if (comp_args_on_stack) {
duke@435 2701 for (int i = 0; i < cnt; i++) {
duke@435 2702 VMReg reg1 = regs[i].first();
duke@435 2703 if( reg1->is_stack()) {
duke@435 2704 // Yuck
duke@435 2705 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2706 }
duke@435 2707 VMReg reg2 = regs[i].second();
duke@435 2708 if( reg2->is_stack()) {
duke@435 2709 // Yuck
duke@435 2710 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2711 }
duke@435 2712 regs[i].set_pair(reg2, reg1);
duke@435 2713 }
duke@435 2714 }
duke@435 2715
duke@435 2716 // results
duke@435 2717 *arg_size = cnt;
duke@435 2718 return regs;
duke@435 2719 }
duke@435 2720
duke@435 2721 // OSR Migration Code
duke@435 2722 //
duke@435 2723 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2724 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2725 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2726 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2727 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2728 // back to the compiled code. The compiled code then pops the current
duke@435 2729 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2730 // copies the interpreter locals and displaced headers where it wants.
duke@435 2731 // Finally it calls back to free the temp buffer.
duke@435 2732 //
duke@435 2733 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2734
duke@435 2735 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2736
duke@435 2737 #ifdef IA64
duke@435 2738 ShouldNotReachHere(); // NYI
duke@435 2739 #endif /* IA64 */
duke@435 2740
duke@435 2741 //
duke@435 2742 // This code is dependent on the memory layout of the interpreter local
duke@435 2743 // array and the monitors. On all of our platforms the layout is identical
duke@435 2744 // so this code is shared. If some platform lays the their arrays out
duke@435 2745 // differently then this code could move to platform specific code or
duke@435 2746 // the code here could be modified to copy items one at a time using
duke@435 2747 // frame accessor methods and be platform independent.
duke@435 2748
duke@435 2749 frame fr = thread->last_frame();
duke@435 2750 assert( fr.is_interpreted_frame(), "" );
duke@435 2751 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2752
duke@435 2753 // Figure out how many monitors are active.
duke@435 2754 int active_monitor_count = 0;
duke@435 2755 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2756 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2757 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2758 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2759 }
duke@435 2760
duke@435 2761 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2762 // could double check it.
duke@435 2763
duke@435 2764 methodOop moop = fr.interpreter_frame_method();
duke@435 2765 int max_locals = moop->max_locals();
duke@435 2766 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2767 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2768 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2769
duke@435 2770 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2771 // Since there's no GC I can copy the oops blindly.
duke@435 2772 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2773 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2774 (HeapWord*)&buf[0],
duke@435 2775 max_locals);
duke@435 2776
duke@435 2777 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2778 int i = max_locals;
duke@435 2779 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2780 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2781 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2782 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2783 BasicLock *lock = kptr2->lock();
duke@435 2784 // Inflate so the displaced header becomes position-independent
duke@435 2785 if (lock->displaced_header()->is_unlocked())
duke@435 2786 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2787 // Now the displaced header is free to move
duke@435 2788 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2789 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2790 }
duke@435 2791 }
duke@435 2792 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2793
duke@435 2794 return buf;
duke@435 2795 JRT_END
duke@435 2796
duke@435 2797 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2798 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2799 JRT_END
duke@435 2800
duke@435 2801 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2802 AdapterHandlerTableIterator iter(_adapters);
never@1622 2803 while (iter.has_next()) {
never@1622 2804 AdapterHandlerEntry* a = iter.next();
never@1622 2805 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2806 }
duke@435 2807 return false;
duke@435 2808 }
duke@435 2809
bobv@2036 2810 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2811 AdapterHandlerTableIterator iter(_adapters);
never@1622 2812 while (iter.has_next()) {
never@1622 2813 AdapterHandlerEntry* a = iter.next();
never@1622 2814 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@2036 2815 st->print("Adapter for signature: ");
bobv@2036 2816 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@2036 2817 a->fingerprint()->as_string(),
bobv@2036 2818 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@2036 2819
duke@435 2820 return;
duke@435 2821 }
duke@435 2822 }
duke@435 2823 assert(false, "Should have found handler");
duke@435 2824 }
never@1622 2825
bobv@2036 2826 #ifndef PRODUCT
bobv@2036 2827
never@1622 2828 void AdapterHandlerLibrary::print_statistics() {
never@1622 2829 _adapters->print_statistics();
never@1622 2830 }
never@1622 2831
duke@435 2832 #endif /* PRODUCT */

mercurial