src/cpu/x86/vm/stubGenerator_x86_64.cpp

Wed, 09 Feb 2011 15:02:23 -0800

author
never
date
Wed, 09 Feb 2011 15:02:23 -0800
changeset 2569
6bbaedb03534
parent 2348
bbefa3ca1543
child 2595
d89a22843c62
permissions
-rw-r--r--

7016474: string compare intrinsic improvements
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 48 # include "thread_windows.inline.hpp"
stefank@2314 49 #endif
stefank@2314 50 #ifdef COMPILER2
stefank@2314 51 #include "opto/runtime.hpp"
stefank@2314 52 #endif
duke@435 53
duke@435 54 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 55 // For a more detailed description of the stub routine structure
duke@435 56 // see the comment in stubRoutines.hpp
duke@435 57
duke@435 58 #define __ _masm->
coleenp@548 59 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
never@739 60 #define a__ ((Assembler*)_masm)->
duke@435 61
duke@435 62 #ifdef PRODUCT
duke@435 63 #define BLOCK_COMMENT(str) /* nothing */
duke@435 64 #else
duke@435 65 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 66 #endif
duke@435 67
duke@435 68 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 69 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 70
duke@435 71 // Stub Code definitions
duke@435 72
duke@435 73 static address handle_unsafe_access() {
duke@435 74 JavaThread* thread = JavaThread::current();
duke@435 75 address pc = thread->saved_exception_pc();
duke@435 76 // pc is the instruction which we must emulate
duke@435 77 // doing a no-op is fine: return garbage from the load
duke@435 78 // therefore, compute npc
duke@435 79 address npc = Assembler::locate_next_instruction(pc);
duke@435 80
duke@435 81 // request an async exception
duke@435 82 thread->set_pending_unsafe_access_error();
duke@435 83
duke@435 84 // return address of next instruction to execute
duke@435 85 return npc;
duke@435 86 }
duke@435 87
duke@435 88 class StubGenerator: public StubCodeGenerator {
duke@435 89 private:
duke@435 90
duke@435 91 #ifdef PRODUCT
duke@435 92 #define inc_counter_np(counter) (0)
duke@435 93 #else
duke@435 94 void inc_counter_np_(int& counter) {
duke@435 95 __ incrementl(ExternalAddress((address)&counter));
duke@435 96 }
duke@435 97 #define inc_counter_np(counter) \
duke@435 98 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 99 inc_counter_np_(counter);
duke@435 100 #endif
duke@435 101
duke@435 102 // Call stubs are used to call Java from C
duke@435 103 //
duke@435 104 // Linux Arguments:
duke@435 105 // c_rarg0: call wrapper address address
duke@435 106 // c_rarg1: result address
duke@435 107 // c_rarg2: result type BasicType
duke@435 108 // c_rarg3: method methodOop
duke@435 109 // c_rarg4: (interpreter) entry point address
duke@435 110 // c_rarg5: parameters intptr_t*
duke@435 111 // 16(rbp): parameter size (in words) int
duke@435 112 // 24(rbp): thread Thread*
duke@435 113 //
duke@435 114 // [ return_from_Java ] <--- rsp
duke@435 115 // [ argument word n ]
duke@435 116 // ...
duke@435 117 // -12 [ argument word 1 ]
duke@435 118 // -11 [ saved r15 ] <--- rsp_after_call
duke@435 119 // -10 [ saved r14 ]
duke@435 120 // -9 [ saved r13 ]
duke@435 121 // -8 [ saved r12 ]
duke@435 122 // -7 [ saved rbx ]
duke@435 123 // -6 [ call wrapper ]
duke@435 124 // -5 [ result ]
duke@435 125 // -4 [ result type ]
duke@435 126 // -3 [ method ]
duke@435 127 // -2 [ entry point ]
duke@435 128 // -1 [ parameters ]
duke@435 129 // 0 [ saved rbp ] <--- rbp
duke@435 130 // 1 [ return address ]
duke@435 131 // 2 [ parameter size ]
duke@435 132 // 3 [ thread ]
duke@435 133 //
duke@435 134 // Windows Arguments:
duke@435 135 // c_rarg0: call wrapper address address
duke@435 136 // c_rarg1: result address
duke@435 137 // c_rarg2: result type BasicType
duke@435 138 // c_rarg3: method methodOop
duke@435 139 // 48(rbp): (interpreter) entry point address
duke@435 140 // 56(rbp): parameters intptr_t*
duke@435 141 // 64(rbp): parameter size (in words) int
duke@435 142 // 72(rbp): thread Thread*
duke@435 143 //
duke@435 144 // [ return_from_Java ] <--- rsp
duke@435 145 // [ argument word n ]
duke@435 146 // ...
duke@435 147 // -8 [ argument word 1 ]
duke@435 148 // -7 [ saved r15 ] <--- rsp_after_call
duke@435 149 // -6 [ saved r14 ]
duke@435 150 // -5 [ saved r13 ]
duke@435 151 // -4 [ saved r12 ]
duke@435 152 // -3 [ saved rdi ]
duke@435 153 // -2 [ saved rsi ]
duke@435 154 // -1 [ saved rbx ]
duke@435 155 // 0 [ saved rbp ] <--- rbp
duke@435 156 // 1 [ return address ]
duke@435 157 // 2 [ call wrapper ]
duke@435 158 // 3 [ result ]
duke@435 159 // 4 [ result type ]
duke@435 160 // 5 [ method ]
duke@435 161 // 6 [ entry point ]
duke@435 162 // 7 [ parameters ]
duke@435 163 // 8 [ parameter size ]
duke@435 164 // 9 [ thread ]
duke@435 165 //
duke@435 166 // Windows reserves the callers stack space for arguments 1-4.
duke@435 167 // We spill c_rarg0-c_rarg3 to this space.
duke@435 168
duke@435 169 // Call stub stack layout word offsets from rbp
duke@435 170 enum call_stub_layout {
duke@435 171 #ifdef _WIN64
duke@435 172 rsp_after_call_off = -7,
duke@435 173 r15_off = rsp_after_call_off,
duke@435 174 r14_off = -6,
duke@435 175 r13_off = -5,
duke@435 176 r12_off = -4,
duke@435 177 rdi_off = -3,
duke@435 178 rsi_off = -2,
duke@435 179 rbx_off = -1,
duke@435 180 rbp_off = 0,
duke@435 181 retaddr_off = 1,
duke@435 182 call_wrapper_off = 2,
duke@435 183 result_off = 3,
duke@435 184 result_type_off = 4,
duke@435 185 method_off = 5,
duke@435 186 entry_point_off = 6,
duke@435 187 parameters_off = 7,
duke@435 188 parameter_size_off = 8,
duke@435 189 thread_off = 9
duke@435 190 #else
duke@435 191 rsp_after_call_off = -12,
duke@435 192 mxcsr_off = rsp_after_call_off,
duke@435 193 r15_off = -11,
duke@435 194 r14_off = -10,
duke@435 195 r13_off = -9,
duke@435 196 r12_off = -8,
duke@435 197 rbx_off = -7,
duke@435 198 call_wrapper_off = -6,
duke@435 199 result_off = -5,
duke@435 200 result_type_off = -4,
duke@435 201 method_off = -3,
duke@435 202 entry_point_off = -2,
duke@435 203 parameters_off = -1,
duke@435 204 rbp_off = 0,
duke@435 205 retaddr_off = 1,
duke@435 206 parameter_size_off = 2,
duke@435 207 thread_off = 3
duke@435 208 #endif
duke@435 209 };
duke@435 210
duke@435 211 address generate_call_stub(address& return_address) {
duke@435 212 assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
duke@435 213 (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
duke@435 214 "adjust this code");
duke@435 215 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 216 address start = __ pc();
duke@435 217
duke@435 218 // same as in generate_catch_exception()!
duke@435 219 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 220
duke@435 221 const Address call_wrapper (rbp, call_wrapper_off * wordSize);
duke@435 222 const Address result (rbp, result_off * wordSize);
duke@435 223 const Address result_type (rbp, result_type_off * wordSize);
duke@435 224 const Address method (rbp, method_off * wordSize);
duke@435 225 const Address entry_point (rbp, entry_point_off * wordSize);
duke@435 226 const Address parameters (rbp, parameters_off * wordSize);
duke@435 227 const Address parameter_size(rbp, parameter_size_off * wordSize);
duke@435 228
duke@435 229 // same as in generate_catch_exception()!
duke@435 230 const Address thread (rbp, thread_off * wordSize);
duke@435 231
duke@435 232 const Address r15_save(rbp, r15_off * wordSize);
duke@435 233 const Address r14_save(rbp, r14_off * wordSize);
duke@435 234 const Address r13_save(rbp, r13_off * wordSize);
duke@435 235 const Address r12_save(rbp, r12_off * wordSize);
duke@435 236 const Address rbx_save(rbp, rbx_off * wordSize);
duke@435 237
duke@435 238 // stub code
duke@435 239 __ enter();
never@739 240 __ subptr(rsp, -rsp_after_call_off * wordSize);
duke@435 241
duke@435 242 // save register parameters
duke@435 243 #ifndef _WIN64
never@739 244 __ movptr(parameters, c_rarg5); // parameters
never@739 245 __ movptr(entry_point, c_rarg4); // entry_point
duke@435 246 #endif
duke@435 247
never@739 248 __ movptr(method, c_rarg3); // method
never@739 249 __ movl(result_type, c_rarg2); // result type
never@739 250 __ movptr(result, c_rarg1); // result
never@739 251 __ movptr(call_wrapper, c_rarg0); // call wrapper
duke@435 252
duke@435 253 // save regs belonging to calling function
never@739 254 __ movptr(rbx_save, rbx);
never@739 255 __ movptr(r12_save, r12);
never@739 256 __ movptr(r13_save, r13);
never@739 257 __ movptr(r14_save, r14);
never@739 258 __ movptr(r15_save, r15);
duke@435 259
duke@435 260 #ifdef _WIN64
duke@435 261 const Address rdi_save(rbp, rdi_off * wordSize);
duke@435 262 const Address rsi_save(rbp, rsi_off * wordSize);
duke@435 263
never@739 264 __ movptr(rsi_save, rsi);
never@739 265 __ movptr(rdi_save, rdi);
duke@435 266 #else
duke@435 267 const Address mxcsr_save(rbp, mxcsr_off * wordSize);
duke@435 268 {
duke@435 269 Label skip_ldmx;
duke@435 270 __ stmxcsr(mxcsr_save);
duke@435 271 __ movl(rax, mxcsr_save);
duke@435 272 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 273 ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
duke@435 274 __ cmp32(rax, mxcsr_std);
duke@435 275 __ jcc(Assembler::equal, skip_ldmx);
duke@435 276 __ ldmxcsr(mxcsr_std);
duke@435 277 __ bind(skip_ldmx);
duke@435 278 }
duke@435 279 #endif
duke@435 280
duke@435 281 // Load up thread register
never@739 282 __ movptr(r15_thread, thread);
coleenp@548 283 __ reinit_heapbase();
duke@435 284
duke@435 285 #ifdef ASSERT
duke@435 286 // make sure we have no pending exceptions
duke@435 287 {
duke@435 288 Label L;
never@739 289 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 290 __ jcc(Assembler::equal, L);
duke@435 291 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 292 __ bind(L);
duke@435 293 }
duke@435 294 #endif
duke@435 295
duke@435 296 // pass parameters if any
duke@435 297 BLOCK_COMMENT("pass parameters if any");
duke@435 298 Label parameters_done;
duke@435 299 __ movl(c_rarg3, parameter_size);
duke@435 300 __ testl(c_rarg3, c_rarg3);
duke@435 301 __ jcc(Assembler::zero, parameters_done);
duke@435 302
duke@435 303 Label loop;
never@739 304 __ movptr(c_rarg2, parameters); // parameter pointer
never@739 305 __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1
duke@435 306 __ BIND(loop);
never@739 307 __ movptr(rax, Address(c_rarg2, 0));// get parameter
never@739 308 __ addptr(c_rarg2, wordSize); // advance to next parameter
never@739 309 __ decrementl(c_rarg1); // decrement counter
never@739 310 __ push(rax); // pass parameter
duke@435 311 __ jcc(Assembler::notZero, loop);
duke@435 312
duke@435 313 // call Java function
duke@435 314 __ BIND(parameters_done);
never@739 315 __ movptr(rbx, method); // get methodOop
never@739 316 __ movptr(c_rarg1, entry_point); // get entry_point
never@739 317 __ mov(r13, rsp); // set sender sp
duke@435 318 BLOCK_COMMENT("call Java function");
duke@435 319 __ call(c_rarg1);
duke@435 320
duke@435 321 BLOCK_COMMENT("call_stub_return_address:");
duke@435 322 return_address = __ pc();
duke@435 323
duke@435 324 // store result depending on type (everything that is not
duke@435 325 // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 326 __ movptr(c_rarg0, result);
duke@435 327 Label is_long, is_float, is_double, exit;
duke@435 328 __ movl(c_rarg1, result_type);
duke@435 329 __ cmpl(c_rarg1, T_OBJECT);
duke@435 330 __ jcc(Assembler::equal, is_long);
duke@435 331 __ cmpl(c_rarg1, T_LONG);
duke@435 332 __ jcc(Assembler::equal, is_long);
duke@435 333 __ cmpl(c_rarg1, T_FLOAT);
duke@435 334 __ jcc(Assembler::equal, is_float);
duke@435 335 __ cmpl(c_rarg1, T_DOUBLE);
duke@435 336 __ jcc(Assembler::equal, is_double);
duke@435 337
duke@435 338 // handle T_INT case
duke@435 339 __ movl(Address(c_rarg0, 0), rax);
duke@435 340
duke@435 341 __ BIND(exit);
duke@435 342
duke@435 343 // pop parameters
never@739 344 __ lea(rsp, rsp_after_call);
duke@435 345
duke@435 346 #ifdef ASSERT
duke@435 347 // verify that threads correspond
duke@435 348 {
duke@435 349 Label L, S;
never@739 350 __ cmpptr(r15_thread, thread);
duke@435 351 __ jcc(Assembler::notEqual, S);
duke@435 352 __ get_thread(rbx);
never@739 353 __ cmpptr(r15_thread, rbx);
duke@435 354 __ jcc(Assembler::equal, L);
duke@435 355 __ bind(S);
duke@435 356 __ jcc(Assembler::equal, L);
duke@435 357 __ stop("StubRoutines::call_stub: threads must correspond");
duke@435 358 __ bind(L);
duke@435 359 }
duke@435 360 #endif
duke@435 361
duke@435 362 // restore regs belonging to calling function
never@739 363 __ movptr(r15, r15_save);
never@739 364 __ movptr(r14, r14_save);
never@739 365 __ movptr(r13, r13_save);
never@739 366 __ movptr(r12, r12_save);
never@739 367 __ movptr(rbx, rbx_save);
duke@435 368
duke@435 369 #ifdef _WIN64
never@739 370 __ movptr(rdi, rdi_save);
never@739 371 __ movptr(rsi, rsi_save);
duke@435 372 #else
duke@435 373 __ ldmxcsr(mxcsr_save);
duke@435 374 #endif
duke@435 375
duke@435 376 // restore rsp
never@739 377 __ addptr(rsp, -rsp_after_call_off * wordSize);
duke@435 378
duke@435 379 // return
never@739 380 __ pop(rbp);
duke@435 381 __ ret(0);
duke@435 382
duke@435 383 // handle return types different from T_INT
duke@435 384 __ BIND(is_long);
duke@435 385 __ movq(Address(c_rarg0, 0), rax);
duke@435 386 __ jmp(exit);
duke@435 387
duke@435 388 __ BIND(is_float);
duke@435 389 __ movflt(Address(c_rarg0, 0), xmm0);
duke@435 390 __ jmp(exit);
duke@435 391
duke@435 392 __ BIND(is_double);
duke@435 393 __ movdbl(Address(c_rarg0, 0), xmm0);
duke@435 394 __ jmp(exit);
duke@435 395
duke@435 396 return start;
duke@435 397 }
duke@435 398
duke@435 399 // Return point for a Java call if there's an exception thrown in
duke@435 400 // Java code. The exception is caught and transformed into a
duke@435 401 // pending exception stored in JavaThread that can be tested from
duke@435 402 // within the VM.
duke@435 403 //
duke@435 404 // Note: Usually the parameters are removed by the callee. In case
duke@435 405 // of an exception crossing an activation frame boundary, that is
duke@435 406 // not the case if the callee is compiled code => need to setup the
duke@435 407 // rsp.
duke@435 408 //
duke@435 409 // rax: exception oop
duke@435 410
duke@435 411 address generate_catch_exception() {
duke@435 412 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 413 address start = __ pc();
duke@435 414
duke@435 415 // same as in generate_call_stub():
duke@435 416 const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
duke@435 417 const Address thread (rbp, thread_off * wordSize);
duke@435 418
duke@435 419 #ifdef ASSERT
duke@435 420 // verify that threads correspond
duke@435 421 {
duke@435 422 Label L, S;
never@739 423 __ cmpptr(r15_thread, thread);
duke@435 424 __ jcc(Assembler::notEqual, S);
duke@435 425 __ get_thread(rbx);
never@739 426 __ cmpptr(r15_thread, rbx);
duke@435 427 __ jcc(Assembler::equal, L);
duke@435 428 __ bind(S);
duke@435 429 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 430 __ bind(L);
duke@435 431 }
duke@435 432 #endif
duke@435 433
duke@435 434 // set pending exception
duke@435 435 __ verify_oop(rax);
duke@435 436
never@739 437 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
duke@435 438 __ lea(rscratch1, ExternalAddress((address)__FILE__));
never@739 439 __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
duke@435 440 __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__);
duke@435 441
duke@435 442 // complete return to VM
duke@435 443 assert(StubRoutines::_call_stub_return_address != NULL,
duke@435 444 "_call_stub_return_address must have been generated before");
duke@435 445 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 446
duke@435 447 return start;
duke@435 448 }
duke@435 449
duke@435 450 // Continuation point for runtime calls returning with a pending
duke@435 451 // exception. The pending exception check happened in the runtime
duke@435 452 // or native call stub. The pending exception in Thread is
duke@435 453 // converted into a Java-level exception.
duke@435 454 //
duke@435 455 // Contract with Java-level exception handlers:
duke@435 456 // rax: exception
duke@435 457 // rdx: throwing pc
duke@435 458 //
duke@435 459 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 460
duke@435 461 address generate_forward_exception() {
duke@435 462 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 463 address start = __ pc();
duke@435 464
duke@435 465 // Upon entry, the sp points to the return address returning into
duke@435 466 // Java (interpreted or compiled) code; i.e., the return address
duke@435 467 // becomes the throwing pc.
duke@435 468 //
duke@435 469 // Arguments pushed before the runtime call are still on the stack
duke@435 470 // but the exception handler will reset the stack pointer ->
duke@435 471 // ignore them. A potential result in registers can be ignored as
duke@435 472 // well.
duke@435 473
duke@435 474 #ifdef ASSERT
duke@435 475 // make sure this code is only executed if there is a pending exception
duke@435 476 {
duke@435 477 Label L;
never@739 478 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
duke@435 479 __ jcc(Assembler::notEqual, L);
duke@435 480 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 481 __ bind(L);
duke@435 482 }
duke@435 483 #endif
duke@435 484
duke@435 485 // compute exception handler into rbx
never@739 486 __ movptr(c_rarg0, Address(rsp, 0));
duke@435 487 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 488 __ call_VM_leaf(CAST_FROM_FN_PTR(address,
duke@435 489 SharedRuntime::exception_handler_for_return_address),
twisti@1730 490 r15_thread, c_rarg0);
never@739 491 __ mov(rbx, rax);
duke@435 492
duke@435 493 // setup rax & rdx, remove return address & clear pending exception
never@739 494 __ pop(rdx);
never@739 495 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
xlu@947 496 __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 497
duke@435 498 #ifdef ASSERT
duke@435 499 // make sure exception is set
duke@435 500 {
duke@435 501 Label L;
never@739 502 __ testptr(rax, rax);
duke@435 503 __ jcc(Assembler::notEqual, L);
duke@435 504 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 505 __ bind(L);
duke@435 506 }
duke@435 507 #endif
duke@435 508
duke@435 509 // continue at exception handler (return address removed)
duke@435 510 // rax: exception
duke@435 511 // rbx: exception handler
duke@435 512 // rdx: throwing pc
duke@435 513 __ verify_oop(rax);
duke@435 514 __ jmp(rbx);
duke@435 515
duke@435 516 return start;
duke@435 517 }
duke@435 518
duke@435 519 // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 520 //
duke@435 521 // Arguments :
duke@435 522 // c_rarg0: exchange_value
duke@435 523 // c_rarg0: dest
duke@435 524 //
duke@435 525 // Result:
duke@435 526 // *dest <- ex, return (orig *dest)
duke@435 527 address generate_atomic_xchg() {
duke@435 528 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 529 address start = __ pc();
duke@435 530
duke@435 531 __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 532 __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 533 __ ret(0);
duke@435 534
duke@435 535 return start;
duke@435 536 }
duke@435 537
duke@435 538 // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
duke@435 539 //
duke@435 540 // Arguments :
duke@435 541 // c_rarg0: exchange_value
duke@435 542 // c_rarg1: dest
duke@435 543 //
duke@435 544 // Result:
duke@435 545 // *dest <- ex, return (orig *dest)
duke@435 546 address generate_atomic_xchg_ptr() {
duke@435 547 StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
duke@435 548 address start = __ pc();
duke@435 549
never@739 550 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
never@739 551 __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
duke@435 552 __ ret(0);
duke@435 553
duke@435 554 return start;
duke@435 555 }
duke@435 556
duke@435 557 // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
duke@435 558 // jint compare_value)
duke@435 559 //
duke@435 560 // Arguments :
duke@435 561 // c_rarg0: exchange_value
duke@435 562 // c_rarg1: dest
duke@435 563 // c_rarg2: compare_value
duke@435 564 //
duke@435 565 // Result:
duke@435 566 // if ( compare_value == *dest ) {
duke@435 567 // *dest = exchange_value
duke@435 568 // return compare_value;
duke@435 569 // else
duke@435 570 // return *dest;
duke@435 571 address generate_atomic_cmpxchg() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 573 address start = __ pc();
duke@435 574
duke@435 575 __ movl(rax, c_rarg2);
duke@435 576 if ( os::is_MP() ) __ lock();
duke@435 577 __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
duke@435 578 __ ret(0);
duke@435 579
duke@435 580 return start;
duke@435 581 }
duke@435 582
duke@435 583 // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
duke@435 584 // volatile jlong* dest,
duke@435 585 // jlong compare_value)
duke@435 586 // Arguments :
duke@435 587 // c_rarg0: exchange_value
duke@435 588 // c_rarg1: dest
duke@435 589 // c_rarg2: compare_value
duke@435 590 //
duke@435 591 // Result:
duke@435 592 // if ( compare_value == *dest ) {
duke@435 593 // *dest = exchange_value
duke@435 594 // return compare_value;
duke@435 595 // else
duke@435 596 // return *dest;
duke@435 597 address generate_atomic_cmpxchg_long() {
duke@435 598 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 599 address start = __ pc();
duke@435 600
duke@435 601 __ movq(rax, c_rarg2);
duke@435 602 if ( os::is_MP() ) __ lock();
duke@435 603 __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
duke@435 604 __ ret(0);
duke@435 605
duke@435 606 return start;
duke@435 607 }
duke@435 608
duke@435 609 // Support for jint atomic::add(jint add_value, volatile jint* dest)
duke@435 610 //
duke@435 611 // Arguments :
duke@435 612 // c_rarg0: add_value
duke@435 613 // c_rarg1: dest
duke@435 614 //
duke@435 615 // Result:
duke@435 616 // *dest += add_value
duke@435 617 // return *dest;
duke@435 618 address generate_atomic_add() {
duke@435 619 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 620 address start = __ pc();
duke@435 621
duke@435 622 __ movl(rax, c_rarg0);
duke@435 623 if ( os::is_MP() ) __ lock();
duke@435 624 __ xaddl(Address(c_rarg1, 0), c_rarg0);
duke@435 625 __ addl(rax, c_rarg0);
duke@435 626 __ ret(0);
duke@435 627
duke@435 628 return start;
duke@435 629 }
duke@435 630
duke@435 631 // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
duke@435 632 //
duke@435 633 // Arguments :
duke@435 634 // c_rarg0: add_value
duke@435 635 // c_rarg1: dest
duke@435 636 //
duke@435 637 // Result:
duke@435 638 // *dest += add_value
duke@435 639 // return *dest;
duke@435 640 address generate_atomic_add_ptr() {
duke@435 641 StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
duke@435 642 address start = __ pc();
duke@435 643
never@739 644 __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
duke@435 645 if ( os::is_MP() ) __ lock();
never@739 646 __ xaddptr(Address(c_rarg1, 0), c_rarg0);
never@739 647 __ addptr(rax, c_rarg0);
duke@435 648 __ ret(0);
duke@435 649
duke@435 650 return start;
duke@435 651 }
duke@435 652
duke@435 653 // Support for intptr_t OrderAccess::fence()
duke@435 654 //
duke@435 655 // Arguments :
duke@435 656 //
duke@435 657 // Result:
duke@435 658 address generate_orderaccess_fence() {
duke@435 659 StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
duke@435 660 address start = __ pc();
never@1106 661 __ membar(Assembler::StoreLoad);
duke@435 662 __ ret(0);
duke@435 663
duke@435 664 return start;
duke@435 665 }
duke@435 666
duke@435 667 // Support for intptr_t get_previous_fp()
duke@435 668 //
duke@435 669 // This routine is used to find the previous frame pointer for the
duke@435 670 // caller (current_frame_guess). This is used as part of debugging
duke@435 671 // ps() is seemingly lost trying to find frames.
duke@435 672 // This code assumes that caller current_frame_guess) has a frame.
duke@435 673 address generate_get_previous_fp() {
duke@435 674 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
duke@435 675 const Address old_fp(rbp, 0);
duke@435 676 const Address older_fp(rax, 0);
duke@435 677 address start = __ pc();
duke@435 678
duke@435 679 __ enter();
never@739 680 __ movptr(rax, old_fp); // callers fp
never@739 681 __ movptr(rax, older_fp); // the frame for ps()
never@739 682 __ pop(rbp);
duke@435 683 __ ret(0);
duke@435 684
duke@435 685 return start;
duke@435 686 }
duke@435 687
duke@435 688 //----------------------------------------------------------------------------------------------------
duke@435 689 // Support for void verify_mxcsr()
duke@435 690 //
duke@435 691 // This routine is used with -Xcheck:jni to verify that native
duke@435 692 // JNI code does not return to Java code without restoring the
duke@435 693 // MXCSR register to our expected state.
duke@435 694
duke@435 695 address generate_verify_mxcsr() {
duke@435 696 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 697 address start = __ pc();
duke@435 698
duke@435 699 const Address mxcsr_save(rsp, 0);
duke@435 700
duke@435 701 if (CheckJNICalls) {
duke@435 702 Label ok_ret;
never@739 703 __ push(rax);
never@739 704 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 705 __ stmxcsr(mxcsr_save);
duke@435 706 __ movl(rax, mxcsr_save);
duke@435 707 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
never@739 708 __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
duke@435 709 __ jcc(Assembler::equal, ok_ret);
duke@435 710
duke@435 711 __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
duke@435 712
never@739 713 __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
duke@435 714
duke@435 715 __ bind(ok_ret);
never@739 716 __ addptr(rsp, wordSize);
never@739 717 __ pop(rax);
duke@435 718 }
duke@435 719
duke@435 720 __ ret(0);
duke@435 721
duke@435 722 return start;
duke@435 723 }
duke@435 724
duke@435 725 address generate_f2i_fixup() {
duke@435 726 StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
duke@435 727 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 728
duke@435 729 address start = __ pc();
duke@435 730
duke@435 731 Label L;
duke@435 732
never@739 733 __ push(rax);
never@739 734 __ push(c_rarg3);
never@739 735 __ push(c_rarg2);
never@739 736 __ push(c_rarg1);
duke@435 737
duke@435 738 __ movl(rax, 0x7f800000);
duke@435 739 __ xorl(c_rarg3, c_rarg3);
duke@435 740 __ movl(c_rarg2, inout);
duke@435 741 __ movl(c_rarg1, c_rarg2);
duke@435 742 __ andl(c_rarg1, 0x7fffffff);
duke@435 743 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 744 __ jcc(Assembler::negative, L);
duke@435 745 __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
duke@435 746 __ movl(c_rarg3, 0x80000000);
duke@435 747 __ movl(rax, 0x7fffffff);
duke@435 748 __ cmovl(Assembler::positive, c_rarg3, rax);
duke@435 749
duke@435 750 __ bind(L);
never@739 751 __ movptr(inout, c_rarg3);
never@739 752
never@739 753 __ pop(c_rarg1);
never@739 754 __ pop(c_rarg2);
never@739 755 __ pop(c_rarg3);
never@739 756 __ pop(rax);
duke@435 757
duke@435 758 __ ret(0);
duke@435 759
duke@435 760 return start;
duke@435 761 }
duke@435 762
duke@435 763 address generate_f2l_fixup() {
duke@435 764 StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
duke@435 765 Address inout(rsp, 5 * wordSize); // return address + 4 saves
duke@435 766 address start = __ pc();
duke@435 767
duke@435 768 Label L;
duke@435 769
never@739 770 __ push(rax);
never@739 771 __ push(c_rarg3);
never@739 772 __ push(c_rarg2);
never@739 773 __ push(c_rarg1);
duke@435 774
duke@435 775 __ movl(rax, 0x7f800000);
duke@435 776 __ xorl(c_rarg3, c_rarg3);
duke@435 777 __ movl(c_rarg2, inout);
duke@435 778 __ movl(c_rarg1, c_rarg2);
duke@435 779 __ andl(c_rarg1, 0x7fffffff);
duke@435 780 __ cmpl(rax, c_rarg1); // NaN? -> 0
duke@435 781 __ jcc(Assembler::negative, L);
duke@435 782 __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
duke@435 783 __ mov64(c_rarg3, 0x8000000000000000);
duke@435 784 __ mov64(rax, 0x7fffffffffffffff);
never@739 785 __ cmov(Assembler::positive, c_rarg3, rax);
duke@435 786
duke@435 787 __ bind(L);
never@739 788 __ movptr(inout, c_rarg3);
never@739 789
never@739 790 __ pop(c_rarg1);
never@739 791 __ pop(c_rarg2);
never@739 792 __ pop(c_rarg3);
never@739 793 __ pop(rax);
duke@435 794
duke@435 795 __ ret(0);
duke@435 796
duke@435 797 return start;
duke@435 798 }
duke@435 799
duke@435 800 address generate_d2i_fixup() {
duke@435 801 StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
duke@435 802 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 803
duke@435 804 address start = __ pc();
duke@435 805
duke@435 806 Label L;
duke@435 807
never@739 808 __ push(rax);
never@739 809 __ push(c_rarg3);
never@739 810 __ push(c_rarg2);
never@739 811 __ push(c_rarg1);
never@739 812 __ push(c_rarg0);
duke@435 813
duke@435 814 __ movl(rax, 0x7ff00000);
duke@435 815 __ movq(c_rarg2, inout);
duke@435 816 __ movl(c_rarg3, c_rarg2);
never@739 817 __ mov(c_rarg1, c_rarg2);
never@739 818 __ mov(c_rarg0, c_rarg2);
duke@435 819 __ negl(c_rarg3);
never@739 820 __ shrptr(c_rarg1, 0x20);
duke@435 821 __ orl(c_rarg3, c_rarg2);
duke@435 822 __ andl(c_rarg1, 0x7fffffff);
duke@435 823 __ xorl(c_rarg2, c_rarg2);
duke@435 824 __ shrl(c_rarg3, 0x1f);
duke@435 825 __ orl(c_rarg1, c_rarg3);
duke@435 826 __ cmpl(rax, c_rarg1);
duke@435 827 __ jcc(Assembler::negative, L); // NaN -> 0
never@739 828 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
duke@435 829 __ movl(c_rarg2, 0x80000000);
duke@435 830 __ movl(rax, 0x7fffffff);
never@739 831 __ cmov(Assembler::positive, c_rarg2, rax);
duke@435 832
duke@435 833 __ bind(L);
never@739 834 __ movptr(inout, c_rarg2);
never@739 835
never@739 836 __ pop(c_rarg0);
never@739 837 __ pop(c_rarg1);
never@739 838 __ pop(c_rarg2);
never@739 839 __ pop(c_rarg3);
never@739 840 __ pop(rax);
duke@435 841
duke@435 842 __ ret(0);
duke@435 843
duke@435 844 return start;
duke@435 845 }
duke@435 846
duke@435 847 address generate_d2l_fixup() {
duke@435 848 StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
duke@435 849 Address inout(rsp, 6 * wordSize); // return address + 5 saves
duke@435 850
duke@435 851 address start = __ pc();
duke@435 852
duke@435 853 Label L;
duke@435 854
never@739 855 __ push(rax);
never@739 856 __ push(c_rarg3);
never@739 857 __ push(c_rarg2);
never@739 858 __ push(c_rarg1);
never@739 859 __ push(c_rarg0);
duke@435 860
duke@435 861 __ movl(rax, 0x7ff00000);
duke@435 862 __ movq(c_rarg2, inout);
duke@435 863 __ movl(c_rarg3, c_rarg2);
never@739 864 __ mov(c_rarg1, c_rarg2);
never@739 865 __ mov(c_rarg0, c_rarg2);
duke@435 866 __ negl(c_rarg3);
never@739 867 __ shrptr(c_rarg1, 0x20);
duke@435 868 __ orl(c_rarg3, c_rarg2);
duke@435 869 __ andl(c_rarg1, 0x7fffffff);
duke@435 870 __ xorl(c_rarg2, c_rarg2);
duke@435 871 __ shrl(c_rarg3, 0x1f);
duke@435 872 __ orl(c_rarg1, c_rarg3);
duke@435 873 __ cmpl(rax, c_rarg1);
duke@435 874 __ jcc(Assembler::negative, L); // NaN -> 0
duke@435 875 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
duke@435 876 __ mov64(c_rarg2, 0x8000000000000000);
duke@435 877 __ mov64(rax, 0x7fffffffffffffff);
duke@435 878 __ cmovq(Assembler::positive, c_rarg2, rax);
duke@435 879
duke@435 880 __ bind(L);
duke@435 881 __ movq(inout, c_rarg2);
duke@435 882
never@739 883 __ pop(c_rarg0);
never@739 884 __ pop(c_rarg1);
never@739 885 __ pop(c_rarg2);
never@739 886 __ pop(c_rarg3);
never@739 887 __ pop(rax);
duke@435 888
duke@435 889 __ ret(0);
duke@435 890
duke@435 891 return start;
duke@435 892 }
duke@435 893
duke@435 894 address generate_fp_mask(const char *stub_name, int64_t mask) {
kvn@1800 895 __ align(CodeEntryAlignment);
duke@435 896 StubCodeMark mark(this, "StubRoutines", stub_name);
duke@435 897 address start = __ pc();
duke@435 898
duke@435 899 __ emit_data64( mask, relocInfo::none );
duke@435 900 __ emit_data64( mask, relocInfo::none );
duke@435 901
duke@435 902 return start;
duke@435 903 }
duke@435 904
duke@435 905 // The following routine generates a subroutine to throw an
duke@435 906 // asynchronous UnknownError when an unsafe access gets a fault that
duke@435 907 // could not be reasonably prevented by the programmer. (Example:
duke@435 908 // SIGBUS/OBJERR.)
duke@435 909 address generate_handler_for_unsafe_access() {
duke@435 910 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 911 address start = __ pc();
duke@435 912
never@739 913 __ push(0); // hole for return address-to-be
never@739 914 __ pusha(); // push registers
duke@435 915 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 916
never@739 917 __ subptr(rsp, frame::arg_reg_save_area_bytes);
duke@435 918 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 919 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 920 __ addptr(rsp, frame::arg_reg_save_area_bytes);
never@739 921
never@739 922 __ movptr(next_pc, rax); // stuff next address
never@739 923 __ popa();
duke@435 924 __ ret(0); // jump to next address
duke@435 925
duke@435 926 return start;
duke@435 927 }
duke@435 928
duke@435 929 // Non-destructive plausibility checks for oops
duke@435 930 //
duke@435 931 // Arguments:
duke@435 932 // all args on stack!
duke@435 933 //
duke@435 934 // Stack after saving c_rarg3:
duke@435 935 // [tos + 0]: saved c_rarg3
duke@435 936 // [tos + 1]: saved c_rarg2
kvn@559 937 // [tos + 2]: saved r12 (several TemplateTable methods use it)
kvn@559 938 // [tos + 3]: saved flags
kvn@559 939 // [tos + 4]: return address
kvn@559 940 // * [tos + 5]: error message (char*)
kvn@559 941 // * [tos + 6]: object to verify (oop)
kvn@559 942 // * [tos + 7]: saved rax - saved by caller and bashed
kvn@1938 943 // * [tos + 8]: saved r10 (rscratch1) - saved by caller
duke@435 944 // * = popped on exit
duke@435 945 address generate_verify_oop() {
duke@435 946 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 947 address start = __ pc();
duke@435 948
duke@435 949 Label exit, error;
duke@435 950
never@739 951 __ pushf();
duke@435 952 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
duke@435 953
never@739 954 __ push(r12);
kvn@559 955
duke@435 956 // save c_rarg2 and c_rarg3
never@739 957 __ push(c_rarg2);
never@739 958 __ push(c_rarg3);
duke@435 959
kvn@559 960 enum {
kvn@559 961 // After previous pushes.
kvn@559 962 oop_to_verify = 6 * wordSize,
kvn@559 963 saved_rax = 7 * wordSize,
kvn@1938 964 saved_r10 = 8 * wordSize,
kvn@559 965
kvn@559 966 // Before the call to MacroAssembler::debug(), see below.
kvn@559 967 return_addr = 16 * wordSize,
kvn@559 968 error_msg = 17 * wordSize
kvn@559 969 };
kvn@559 970
duke@435 971 // get object
never@739 972 __ movptr(rax, Address(rsp, oop_to_verify));
duke@435 973
duke@435 974 // make sure object is 'reasonable'
never@739 975 __ testptr(rax, rax);
duke@435 976 __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
duke@435 977 // Check if the oop is in the right area of memory
never@739 978 __ movptr(c_rarg2, rax);
xlu@947 979 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
never@739 980 __ andptr(c_rarg2, c_rarg3);
xlu@947 981 __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
never@739 982 __ cmpptr(c_rarg2, c_rarg3);
duke@435 983 __ jcc(Assembler::notZero, error);
duke@435 984
kvn@559 985 // set r12 to heapbase for load_klass()
kvn@559 986 __ reinit_heapbase();
kvn@559 987
duke@435 988 // make sure klass is 'reasonable'
coleenp@548 989 __ load_klass(rax, rax); // get klass
never@739 990 __ testptr(rax, rax);
duke@435 991 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 992 // Check if the klass is in the right area of memory
never@739 993 __ mov(c_rarg2, rax);
xlu@947 994 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 995 __ andptr(c_rarg2, c_rarg3);
xlu@947 996 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 997 __ cmpptr(c_rarg2, c_rarg3);
duke@435 998 __ jcc(Assembler::notZero, error);
duke@435 999
duke@435 1000 // make sure klass' klass is 'reasonable'
coleenp@548 1001 __ load_klass(rax, rax);
never@739 1002 __ testptr(rax, rax);
duke@435 1003 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 1004 // Check if the klass' klass is in the right area of memory
xlu@947 1005 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
never@739 1006 __ andptr(rax, c_rarg3);
xlu@947 1007 __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
never@739 1008 __ cmpptr(rax, c_rarg3);
duke@435 1009 __ jcc(Assembler::notZero, error);
duke@435 1010
duke@435 1011 // return if everything seems ok
duke@435 1012 __ bind(exit);
never@739 1013 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1014 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1015 __ pop(c_rarg3); // restore c_rarg3
never@739 1016 __ pop(c_rarg2); // restore c_rarg2
never@739 1017 __ pop(r12); // restore r12
never@739 1018 __ popf(); // restore flags
kvn@1938 1019 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1020
duke@435 1021 // handle errors
duke@435 1022 __ bind(error);
never@739 1023 __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back
kvn@1938 1024 __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
never@739 1025 __ pop(c_rarg3); // get saved c_rarg3 back
never@739 1026 __ pop(c_rarg2); // get saved c_rarg2 back
never@739 1027 __ pop(r12); // get saved r12 back
never@739 1028 __ popf(); // get saved flags off stack --
duke@435 1029 // will be ignored
duke@435 1030
never@739 1031 __ pusha(); // push registers
duke@435 1032 // (rip is already
duke@435 1033 // already pushed)
kvn@559 1034 // debug(char* msg, int64_t pc, int64_t regs[])
duke@435 1035 // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
duke@435 1036 // pushed all the registers, so now the stack looks like:
duke@435 1037 // [tos + 0] 16 saved registers
duke@435 1038 // [tos + 16] return address
kvn@559 1039 // * [tos + 17] error message (char*)
kvn@559 1040 // * [tos + 18] object to verify (oop)
kvn@559 1041 // * [tos + 19] saved rax - saved by caller and bashed
kvn@1938 1042 // * [tos + 20] saved r10 (rscratch1) - saved by caller
kvn@559 1043 // * = popped on exit
kvn@559 1044
never@739 1045 __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message
never@739 1046 __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address
never@739 1047 __ movq(c_rarg2, rsp); // pass address of regs on stack
never@739 1048 __ mov(r12, rsp); // remember rsp
never@739 1049 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
never@739 1050 __ andptr(rsp, -16); // align stack as required by ABI
duke@435 1051 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 1052 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
never@739 1053 __ mov(rsp, r12); // restore rsp
never@739 1054 __ popa(); // pop registers (includes r12)
kvn@1938 1055 __ ret(4 * wordSize); // pop caller saved stuff
duke@435 1056
duke@435 1057 return start;
duke@435 1058 }
duke@435 1059
duke@435 1060 static address disjoint_byte_copy_entry;
duke@435 1061 static address disjoint_short_copy_entry;
duke@435 1062 static address disjoint_int_copy_entry;
duke@435 1063 static address disjoint_long_copy_entry;
duke@435 1064 static address disjoint_oop_copy_entry;
duke@435 1065
duke@435 1066 static address byte_copy_entry;
duke@435 1067 static address short_copy_entry;
duke@435 1068 static address int_copy_entry;
duke@435 1069 static address long_copy_entry;
duke@435 1070 static address oop_copy_entry;
duke@435 1071
duke@435 1072 static address checkcast_copy_entry;
duke@435 1073
duke@435 1074 //
duke@435 1075 // Verify that a register contains clean 32-bits positive value
duke@435 1076 // (high 32-bits are 0) so it could be used in 64-bits shifts.
duke@435 1077 //
duke@435 1078 // Input:
duke@435 1079 // Rint - 32-bits value
duke@435 1080 // Rtmp - scratch
duke@435 1081 //
duke@435 1082 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 1083 #ifdef ASSERT
duke@435 1084 Label L;
duke@435 1085 assert_different_registers(Rtmp, Rint);
duke@435 1086 __ movslq(Rtmp, Rint);
duke@435 1087 __ cmpq(Rtmp, Rint);
kvn@559 1088 __ jcc(Assembler::equal, L);
duke@435 1089 __ stop("high 32-bits of int value are not 0");
duke@435 1090 __ bind(L);
duke@435 1091 #endif
duke@435 1092 }
duke@435 1093
duke@435 1094 // Generate overlap test for array copy stubs
duke@435 1095 //
duke@435 1096 // Input:
duke@435 1097 // c_rarg0 - from
duke@435 1098 // c_rarg1 - to
duke@435 1099 // c_rarg2 - element count
duke@435 1100 //
duke@435 1101 // Output:
duke@435 1102 // rax - &from[element count - 1]
duke@435 1103 //
duke@435 1104 void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
duke@435 1105 assert(no_overlap_target != NULL, "must be generated");
duke@435 1106 array_overlap_test(no_overlap_target, NULL, sf);
duke@435 1107 }
duke@435 1108 void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
duke@435 1109 array_overlap_test(NULL, &L_no_overlap, sf);
duke@435 1110 }
duke@435 1111 void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
duke@435 1112 const Register from = c_rarg0;
duke@435 1113 const Register to = c_rarg1;
duke@435 1114 const Register count = c_rarg2;
duke@435 1115 const Register end_from = rax;
duke@435 1116
never@739 1117 __ cmpptr(to, from);
never@739 1118 __ lea(end_from, Address(from, count, sf, 0));
duke@435 1119 if (NOLp == NULL) {
duke@435 1120 ExternalAddress no_overlap(no_overlap_target);
duke@435 1121 __ jump_cc(Assembler::belowEqual, no_overlap);
never@739 1122 __ cmpptr(to, end_from);
duke@435 1123 __ jump_cc(Assembler::aboveEqual, no_overlap);
duke@435 1124 } else {
duke@435 1125 __ jcc(Assembler::belowEqual, (*NOLp));
never@739 1126 __ cmpptr(to, end_from);
duke@435 1127 __ jcc(Assembler::aboveEqual, (*NOLp));
duke@435 1128 }
duke@435 1129 }
duke@435 1130
duke@435 1131 // Shuffle first three arg regs on Windows into Linux/Solaris locations.
duke@435 1132 //
duke@435 1133 // Outputs:
duke@435 1134 // rdi - rcx
duke@435 1135 // rsi - rdx
duke@435 1136 // rdx - r8
duke@435 1137 // rcx - r9
duke@435 1138 //
duke@435 1139 // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
duke@435 1140 // are non-volatile. r9 and r10 should not be used by the caller.
duke@435 1141 //
duke@435 1142 void setup_arg_regs(int nargs = 3) {
duke@435 1143 const Register saved_rdi = r9;
duke@435 1144 const Register saved_rsi = r10;
duke@435 1145 assert(nargs == 3 || nargs == 4, "else fix");
duke@435 1146 #ifdef _WIN64
duke@435 1147 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
duke@435 1148 "unexpected argument registers");
duke@435 1149 if (nargs >= 4)
never@739 1150 __ mov(rax, r9); // r9 is also saved_rdi
never@739 1151 __ movptr(saved_rdi, rdi);
never@739 1152 __ movptr(saved_rsi, rsi);
never@739 1153 __ mov(rdi, rcx); // c_rarg0
never@739 1154 __ mov(rsi, rdx); // c_rarg1
never@739 1155 __ mov(rdx, r8); // c_rarg2
duke@435 1156 if (nargs >= 4)
never@739 1157 __ mov(rcx, rax); // c_rarg3 (via rax)
duke@435 1158 #else
duke@435 1159 assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
duke@435 1160 "unexpected argument registers");
duke@435 1161 #endif
duke@435 1162 }
duke@435 1163
duke@435 1164 void restore_arg_regs() {
duke@435 1165 const Register saved_rdi = r9;
duke@435 1166 const Register saved_rsi = r10;
duke@435 1167 #ifdef _WIN64
never@739 1168 __ movptr(rdi, saved_rdi);
never@739 1169 __ movptr(rsi, saved_rsi);
duke@435 1170 #endif
duke@435 1171 }
duke@435 1172
duke@435 1173 // Generate code for an array write pre barrier
duke@435 1174 //
duke@435 1175 // addr - starting address
duke@435 1176 // count - element count
duke@435 1177 //
duke@435 1178 // Destroy no registers!
duke@435 1179 //
duke@435 1180 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1181 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1182 switch (bs->kind()) {
duke@435 1183 case BarrierSet::G1SATBCT:
duke@435 1184 case BarrierSet::G1SATBCTLogging:
duke@435 1185 {
never@739 1186 __ pusha(); // push registers
ysr@777 1187 if (count == c_rarg0) {
ysr@777 1188 if (addr == c_rarg1) {
ysr@777 1189 // exactly backwards!!
apetrusenko@797 1190 __ xchgptr(c_rarg1, c_rarg0);
ysr@777 1191 } else {
apetrusenko@797 1192 __ movptr(c_rarg1, count);
apetrusenko@797 1193 __ movptr(c_rarg0, addr);
ysr@777 1194 }
ysr@777 1195
ysr@777 1196 } else {
apetrusenko@797 1197 __ movptr(c_rarg0, addr);
apetrusenko@797 1198 __ movptr(c_rarg1, count);
ysr@777 1199 }
apetrusenko@1627 1200 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
never@739 1201 __ popa();
duke@435 1202 }
duke@435 1203 break;
duke@435 1204 case BarrierSet::CardTableModRef:
duke@435 1205 case BarrierSet::CardTableExtension:
duke@435 1206 case BarrierSet::ModRef:
duke@435 1207 break;
ysr@777 1208 default:
duke@435 1209 ShouldNotReachHere();
duke@435 1210
duke@435 1211 }
duke@435 1212 }
duke@435 1213
duke@435 1214 //
duke@435 1215 // Generate code for an array write post barrier
duke@435 1216 //
duke@435 1217 // Input:
duke@435 1218 // start - register containing starting address of destination array
duke@435 1219 // end - register containing ending address of destination array
duke@435 1220 // scratch - scratch register
duke@435 1221 //
duke@435 1222 // The input registers are overwritten.
duke@435 1223 // The ending address is inclusive.
duke@435 1224 void gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
duke@435 1225 assert_different_registers(start, end, scratch);
duke@435 1226 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1227 switch (bs->kind()) {
duke@435 1228 case BarrierSet::G1SATBCT:
duke@435 1229 case BarrierSet::G1SATBCTLogging:
duke@435 1230
duke@435 1231 {
never@739 1232 __ pusha(); // push registers (overkill)
duke@435 1233 // must compute element count unless barrier set interface is changed (other platforms supply count)
duke@435 1234 assert_different_registers(start, end, scratch);
ysr@1280 1235 __ lea(scratch, Address(end, BytesPerHeapOop));
ysr@1280 1236 __ subptr(scratch, start); // subtract start to get #bytes
ysr@1280 1237 __ shrptr(scratch, LogBytesPerHeapOop); // convert to element count
never@739 1238 __ mov(c_rarg0, start);
never@739 1239 __ mov(c_rarg1, scratch);
apetrusenko@1627 1240 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
never@739 1241 __ popa();
duke@435 1242 }
duke@435 1243 break;
duke@435 1244 case BarrierSet::CardTableModRef:
duke@435 1245 case BarrierSet::CardTableExtension:
duke@435 1246 {
duke@435 1247 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1248 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1249
duke@435 1250 Label L_loop;
duke@435 1251
never@739 1252 __ shrptr(start, CardTableModRefBS::card_shift);
ysr@1280 1253 __ addptr(end, BytesPerHeapOop);
never@739 1254 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 1255 __ subptr(end, start); // number of bytes to copy
duke@435 1256
never@684 1257 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 1258 if (__ is_simm32(disp)) {
never@684 1259 Address cardtable(noreg, noreg, Address::no_scale, disp);
never@684 1260 __ lea(scratch, cardtable);
never@684 1261 } else {
never@684 1262 ExternalAddress cardtable((address)disp);
never@684 1263 __ lea(scratch, cardtable);
never@684 1264 }
never@684 1265
duke@435 1266 const Register count = end; // 'end' register contains bytes count now
never@739 1267 __ addptr(start, scratch);
duke@435 1268 __ BIND(L_loop);
duke@435 1269 __ movb(Address(start, count, Address::times_1), 0);
never@739 1270 __ decrement(count);
duke@435 1271 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 1272 }
ysr@777 1273 break;
ysr@777 1274 default:
ysr@777 1275 ShouldNotReachHere();
ysr@777 1276
ysr@777 1277 }
ysr@777 1278 }
duke@435 1279
kvn@840 1280
duke@435 1281 // Copy big chunks forward
duke@435 1282 //
duke@435 1283 // Inputs:
duke@435 1284 // end_from - source arrays end address
duke@435 1285 // end_to - destination array end address
duke@435 1286 // qword_count - 64-bits element count, negative
duke@435 1287 // to - scratch
duke@435 1288 // L_copy_32_bytes - entry label
duke@435 1289 // L_copy_8_bytes - exit label
duke@435 1290 //
duke@435 1291 void copy_32_bytes_forward(Register end_from, Register end_to,
duke@435 1292 Register qword_count, Register to,
duke@435 1293 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1294 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1295 Label L_loop;
kvn@1800 1296 __ align(OptoLoopAlignment);
duke@435 1297 __ BIND(L_loop);
kvn@840 1298 if(UseUnalignedLoadStores) {
kvn@840 1299 __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1300 __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
kvn@840 1301 __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1302 __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
kvn@840 1303
kvn@840 1304 } else {
kvn@840 1305 __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
kvn@840 1306 __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
kvn@840 1307 __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
kvn@840 1308 __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
kvn@840 1309 __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
kvn@840 1310 __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
kvn@840 1311 __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
kvn@840 1312 __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
kvn@840 1313 }
duke@435 1314 __ BIND(L_copy_32_bytes);
never@739 1315 __ addptr(qword_count, 4);
duke@435 1316 __ jcc(Assembler::lessEqual, L_loop);
never@739 1317 __ subptr(qword_count, 4);
duke@435 1318 __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
duke@435 1319 }
duke@435 1320
duke@435 1321
duke@435 1322 // Copy big chunks backward
duke@435 1323 //
duke@435 1324 // Inputs:
duke@435 1325 // from - source arrays address
duke@435 1326 // dest - destination array address
duke@435 1327 // qword_count - 64-bits element count
duke@435 1328 // to - scratch
duke@435 1329 // L_copy_32_bytes - entry label
duke@435 1330 // L_copy_8_bytes - exit label
duke@435 1331 //
duke@435 1332 void copy_32_bytes_backward(Register from, Register dest,
duke@435 1333 Register qword_count, Register to,
duke@435 1334 Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
duke@435 1335 DEBUG_ONLY(__ stop("enter at entry label, not here"));
duke@435 1336 Label L_loop;
kvn@1800 1337 __ align(OptoLoopAlignment);
duke@435 1338 __ BIND(L_loop);
kvn@840 1339 if(UseUnalignedLoadStores) {
kvn@840 1340 __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
kvn@840 1341 __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
kvn@840 1342 __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0));
kvn@840 1343 __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1);
kvn@840 1344
kvn@840 1345 } else {
kvn@840 1346 __ movq(to, Address(from, qword_count, Address::times_8, 24));
kvn@840 1347 __ movq(Address(dest, qword_count, Address::times_8, 24), to);
kvn@840 1348 __ movq(to, Address(from, qword_count, Address::times_8, 16));
kvn@840 1349 __ movq(Address(dest, qword_count, Address::times_8, 16), to);
kvn@840 1350 __ movq(to, Address(from, qword_count, Address::times_8, 8));
kvn@840 1351 __ movq(Address(dest, qword_count, Address::times_8, 8), to);
kvn@840 1352 __ movq(to, Address(from, qword_count, Address::times_8, 0));
kvn@840 1353 __ movq(Address(dest, qword_count, Address::times_8, 0), to);
kvn@840 1354 }
duke@435 1355 __ BIND(L_copy_32_bytes);
never@739 1356 __ subptr(qword_count, 4);
duke@435 1357 __ jcc(Assembler::greaterEqual, L_loop);
never@739 1358 __ addptr(qword_count, 4);
duke@435 1359 __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
duke@435 1360 }
duke@435 1361
duke@435 1362
duke@435 1363 // Arguments:
duke@435 1364 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1365 // ignored
duke@435 1366 // name - stub name string
duke@435 1367 //
duke@435 1368 // Inputs:
duke@435 1369 // c_rarg0 - source array address
duke@435 1370 // c_rarg1 - destination array address
duke@435 1371 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1372 //
duke@435 1373 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1374 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1375 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1376 // and stored atomically.
duke@435 1377 //
duke@435 1378 // Side Effects:
duke@435 1379 // disjoint_byte_copy_entry is set to the no-overlap entry point
duke@435 1380 // used by generate_conjoint_byte_copy().
duke@435 1381 //
duke@435 1382 address generate_disjoint_byte_copy(bool aligned, const char *name) {
duke@435 1383 __ align(CodeEntryAlignment);
duke@435 1384 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1385 address start = __ pc();
duke@435 1386
duke@435 1387 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1388 Label L_copy_byte, L_exit;
duke@435 1389 const Register from = rdi; // source array address
duke@435 1390 const Register to = rsi; // destination array address
duke@435 1391 const Register count = rdx; // elements count
duke@435 1392 const Register byte_count = rcx;
duke@435 1393 const Register qword_count = count;
duke@435 1394 const Register end_from = from; // source array end address
duke@435 1395 const Register end_to = to; // destination array end address
duke@435 1396 // End pointers are inclusive, and if count is not zero they point
duke@435 1397 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1398
duke@435 1399 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1400 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1401
duke@435 1402 disjoint_byte_copy_entry = __ pc();
duke@435 1403 BLOCK_COMMENT("Entry:");
duke@435 1404 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1405
duke@435 1406 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1407 // r9 and r10 may be used to save non-volatile registers
duke@435 1408
duke@435 1409 // 'from', 'to' and 'count' are now valid
never@739 1410 __ movptr(byte_count, count);
never@739 1411 __ shrptr(count, 3); // count => qword_count
duke@435 1412
duke@435 1413 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1414 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1415 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1416 __ negptr(qword_count); // make the count negative
duke@435 1417 __ jmp(L_copy_32_bytes);
duke@435 1418
duke@435 1419 // Copy trailing qwords
duke@435 1420 __ BIND(L_copy_8_bytes);
duke@435 1421 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1422 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1423 __ increment(qword_count);
duke@435 1424 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1425
duke@435 1426 // Check for and copy trailing dword
duke@435 1427 __ BIND(L_copy_4_bytes);
never@739 1428 __ testl(byte_count, 4);
duke@435 1429 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1430 __ movl(rax, Address(end_from, 8));
duke@435 1431 __ movl(Address(end_to, 8), rax);
duke@435 1432
never@739 1433 __ addptr(end_from, 4);
never@739 1434 __ addptr(end_to, 4);
duke@435 1435
duke@435 1436 // Check for and copy trailing word
duke@435 1437 __ BIND(L_copy_2_bytes);
never@739 1438 __ testl(byte_count, 2);
duke@435 1439 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1440 __ movw(rax, Address(end_from, 8));
duke@435 1441 __ movw(Address(end_to, 8), rax);
duke@435 1442
never@739 1443 __ addptr(end_from, 2);
never@739 1444 __ addptr(end_to, 2);
duke@435 1445
duke@435 1446 // Check for and copy trailing byte
duke@435 1447 __ BIND(L_copy_byte);
never@739 1448 __ testl(byte_count, 1);
duke@435 1449 __ jccb(Assembler::zero, L_exit);
duke@435 1450 __ movb(rax, Address(end_from, 8));
duke@435 1451 __ movb(Address(end_to, 8), rax);
duke@435 1452
duke@435 1453 __ BIND(L_exit);
duke@435 1454 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1455 restore_arg_regs();
never@739 1456 __ xorptr(rax, rax); // return 0
duke@435 1457 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1458 __ ret(0);
duke@435 1459
duke@435 1460 // Copy in 32-bytes chunks
duke@435 1461 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1462 __ jmp(L_copy_4_bytes);
duke@435 1463
duke@435 1464 return start;
duke@435 1465 }
duke@435 1466
duke@435 1467 // Arguments:
duke@435 1468 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1469 // ignored
duke@435 1470 // name - stub name string
duke@435 1471 //
duke@435 1472 // Inputs:
duke@435 1473 // c_rarg0 - source array address
duke@435 1474 // c_rarg1 - destination array address
duke@435 1475 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1476 //
duke@435 1477 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
duke@435 1478 // we let the hardware handle it. The one to eight bytes within words,
duke@435 1479 // dwords or qwords that span cache line boundaries will still be loaded
duke@435 1480 // and stored atomically.
duke@435 1481 //
duke@435 1482 address generate_conjoint_byte_copy(bool aligned, const char *name) {
duke@435 1483 __ align(CodeEntryAlignment);
duke@435 1484 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1485 address start = __ pc();
duke@435 1486
duke@435 1487 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
duke@435 1488 const Register from = rdi; // source array address
duke@435 1489 const Register to = rsi; // destination array address
duke@435 1490 const Register count = rdx; // elements count
duke@435 1491 const Register byte_count = rcx;
duke@435 1492 const Register qword_count = count;
duke@435 1493
duke@435 1494 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1495 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1496
duke@435 1497 byte_copy_entry = __ pc();
duke@435 1498 BLOCK_COMMENT("Entry:");
duke@435 1499 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1500
duke@435 1501 array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
duke@435 1502 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1503 // r9 and r10 may be used to save non-volatile registers
duke@435 1504
duke@435 1505 // 'from', 'to' and 'count' are now valid
never@739 1506 __ movptr(byte_count, count);
never@739 1507 __ shrptr(count, 3); // count => qword_count
duke@435 1508
duke@435 1509 // Copy from high to low addresses.
duke@435 1510
duke@435 1511 // Check for and copy trailing byte
never@739 1512 __ testl(byte_count, 1);
duke@435 1513 __ jcc(Assembler::zero, L_copy_2_bytes);
duke@435 1514 __ movb(rax, Address(from, byte_count, Address::times_1, -1));
duke@435 1515 __ movb(Address(to, byte_count, Address::times_1, -1), rax);
never@739 1516 __ decrement(byte_count); // Adjust for possible trailing word
duke@435 1517
duke@435 1518 // Check for and copy trailing word
duke@435 1519 __ BIND(L_copy_2_bytes);
never@739 1520 __ testl(byte_count, 2);
duke@435 1521 __ jcc(Assembler::zero, L_copy_4_bytes);
duke@435 1522 __ movw(rax, Address(from, byte_count, Address::times_1, -2));
duke@435 1523 __ movw(Address(to, byte_count, Address::times_1, -2), rax);
duke@435 1524
duke@435 1525 // Check for and copy trailing dword
duke@435 1526 __ BIND(L_copy_4_bytes);
never@739 1527 __ testl(byte_count, 4);
duke@435 1528 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1529 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1530 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1531 __ jmp(L_copy_32_bytes);
duke@435 1532
duke@435 1533 // Copy trailing qwords
duke@435 1534 __ BIND(L_copy_8_bytes);
duke@435 1535 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1536 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1537 __ decrement(qword_count);
duke@435 1538 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1539
duke@435 1540 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1541 restore_arg_regs();
never@739 1542 __ xorptr(rax, rax); // return 0
duke@435 1543 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1544 __ ret(0);
duke@435 1545
duke@435 1546 // Copy in 32-bytes chunks
duke@435 1547 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1548
duke@435 1549 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
duke@435 1550 restore_arg_regs();
never@739 1551 __ xorptr(rax, rax); // return 0
duke@435 1552 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1553 __ ret(0);
duke@435 1554
duke@435 1555 return start;
duke@435 1556 }
duke@435 1557
duke@435 1558 // Arguments:
duke@435 1559 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1560 // ignored
duke@435 1561 // name - stub name string
duke@435 1562 //
duke@435 1563 // Inputs:
duke@435 1564 // c_rarg0 - source array address
duke@435 1565 // c_rarg1 - destination array address
duke@435 1566 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1567 //
duke@435 1568 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1569 // let the hardware handle it. The two or four words within dwords
duke@435 1570 // or qwords that span cache line boundaries will still be loaded
duke@435 1571 // and stored atomically.
duke@435 1572 //
duke@435 1573 // Side Effects:
duke@435 1574 // disjoint_short_copy_entry is set to the no-overlap entry point
duke@435 1575 // used by generate_conjoint_short_copy().
duke@435 1576 //
duke@435 1577 address generate_disjoint_short_copy(bool aligned, const char *name) {
duke@435 1578 __ align(CodeEntryAlignment);
duke@435 1579 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1580 address start = __ pc();
duke@435 1581
duke@435 1582 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
duke@435 1583 const Register from = rdi; // source array address
duke@435 1584 const Register to = rsi; // destination array address
duke@435 1585 const Register count = rdx; // elements count
duke@435 1586 const Register word_count = rcx;
duke@435 1587 const Register qword_count = count;
duke@435 1588 const Register end_from = from; // source array end address
duke@435 1589 const Register end_to = to; // destination array end address
duke@435 1590 // End pointers are inclusive, and if count is not zero they point
duke@435 1591 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1592
duke@435 1593 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1594 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1595
duke@435 1596 disjoint_short_copy_entry = __ pc();
duke@435 1597 BLOCK_COMMENT("Entry:");
duke@435 1598 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1599
duke@435 1600 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1601 // r9 and r10 may be used to save non-volatile registers
duke@435 1602
duke@435 1603 // 'from', 'to' and 'count' are now valid
never@739 1604 __ movptr(word_count, count);
never@739 1605 __ shrptr(count, 2); // count => qword_count
duke@435 1606
duke@435 1607 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1608 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1609 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1610 __ negptr(qword_count);
duke@435 1611 __ jmp(L_copy_32_bytes);
duke@435 1612
duke@435 1613 // Copy trailing qwords
duke@435 1614 __ BIND(L_copy_8_bytes);
duke@435 1615 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1616 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1617 __ increment(qword_count);
duke@435 1618 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1619
duke@435 1620 // Original 'dest' is trashed, so we can't use it as a
duke@435 1621 // base register for a possible trailing word copy
duke@435 1622
duke@435 1623 // Check for and copy trailing dword
duke@435 1624 __ BIND(L_copy_4_bytes);
never@739 1625 __ testl(word_count, 2);
duke@435 1626 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1627 __ movl(rax, Address(end_from, 8));
duke@435 1628 __ movl(Address(end_to, 8), rax);
duke@435 1629
never@739 1630 __ addptr(end_from, 4);
never@739 1631 __ addptr(end_to, 4);
duke@435 1632
duke@435 1633 // Check for and copy trailing word
duke@435 1634 __ BIND(L_copy_2_bytes);
never@739 1635 __ testl(word_count, 1);
duke@435 1636 __ jccb(Assembler::zero, L_exit);
duke@435 1637 __ movw(rax, Address(end_from, 8));
duke@435 1638 __ movw(Address(end_to, 8), rax);
duke@435 1639
duke@435 1640 __ BIND(L_exit);
duke@435 1641 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1642 restore_arg_regs();
never@739 1643 __ xorptr(rax, rax); // return 0
duke@435 1644 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1645 __ ret(0);
duke@435 1646
duke@435 1647 // Copy in 32-bytes chunks
duke@435 1648 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1649 __ jmp(L_copy_4_bytes);
duke@435 1650
duke@435 1651 return start;
duke@435 1652 }
duke@435 1653
never@2118 1654 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1655 __ align(CodeEntryAlignment);
never@2118 1656 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1657 address start = __ pc();
never@2118 1658
never@2118 1659 BLOCK_COMMENT("Entry:");
never@2118 1660
never@2118 1661 const Register to = c_rarg0; // source array address
never@2118 1662 const Register value = c_rarg1; // value
never@2118 1663 const Register count = c_rarg2; // elements count
never@2118 1664
never@2118 1665 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1666
never@2118 1667 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1668
never@2118 1669 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1670 __ ret(0);
never@2118 1671 return start;
never@2118 1672 }
never@2118 1673
duke@435 1674 // Arguments:
duke@435 1675 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1676 // ignored
duke@435 1677 // name - stub name string
duke@435 1678 //
duke@435 1679 // Inputs:
duke@435 1680 // c_rarg0 - source array address
duke@435 1681 // c_rarg1 - destination array address
duke@435 1682 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1683 //
duke@435 1684 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
duke@435 1685 // let the hardware handle it. The two or four words within dwords
duke@435 1686 // or qwords that span cache line boundaries will still be loaded
duke@435 1687 // and stored atomically.
duke@435 1688 //
duke@435 1689 address generate_conjoint_short_copy(bool aligned, const char *name) {
duke@435 1690 __ align(CodeEntryAlignment);
duke@435 1691 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1692 address start = __ pc();
duke@435 1693
duke@435 1694 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
duke@435 1695 const Register from = rdi; // source array address
duke@435 1696 const Register to = rsi; // destination array address
duke@435 1697 const Register count = rdx; // elements count
duke@435 1698 const Register word_count = rcx;
duke@435 1699 const Register qword_count = count;
duke@435 1700
duke@435 1701 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1702 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1703
duke@435 1704 short_copy_entry = __ pc();
duke@435 1705 BLOCK_COMMENT("Entry:");
duke@435 1706 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1707
duke@435 1708 array_overlap_test(disjoint_short_copy_entry, Address::times_2);
duke@435 1709 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1710 // r9 and r10 may be used to save non-volatile registers
duke@435 1711
duke@435 1712 // 'from', 'to' and 'count' are now valid
never@739 1713 __ movptr(word_count, count);
never@739 1714 __ shrptr(count, 2); // count => qword_count
duke@435 1715
duke@435 1716 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1717
duke@435 1718 // Check for and copy trailing word
never@739 1719 __ testl(word_count, 1);
duke@435 1720 __ jccb(Assembler::zero, L_copy_4_bytes);
duke@435 1721 __ movw(rax, Address(from, word_count, Address::times_2, -2));
duke@435 1722 __ movw(Address(to, word_count, Address::times_2, -2), rax);
duke@435 1723
duke@435 1724 // Check for and copy trailing dword
duke@435 1725 __ BIND(L_copy_4_bytes);
never@739 1726 __ testl(word_count, 2);
duke@435 1727 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1728 __ movl(rax, Address(from, qword_count, Address::times_8));
duke@435 1729 __ movl(Address(to, qword_count, Address::times_8), rax);
duke@435 1730 __ jmp(L_copy_32_bytes);
duke@435 1731
duke@435 1732 // Copy trailing qwords
duke@435 1733 __ BIND(L_copy_8_bytes);
duke@435 1734 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1735 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1736 __ decrement(qword_count);
duke@435 1737 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1738
duke@435 1739 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1740 restore_arg_regs();
never@739 1741 __ xorptr(rax, rax); // return 0
duke@435 1742 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1743 __ ret(0);
duke@435 1744
duke@435 1745 // Copy in 32-bytes chunks
duke@435 1746 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1747
duke@435 1748 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
duke@435 1749 restore_arg_regs();
never@739 1750 __ xorptr(rax, rax); // return 0
duke@435 1751 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1752 __ ret(0);
duke@435 1753
duke@435 1754 return start;
duke@435 1755 }
duke@435 1756
duke@435 1757 // Arguments:
duke@435 1758 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1759 // ignored
coleenp@548 1760 // is_oop - true => oop array, so generate store check code
duke@435 1761 // name - stub name string
duke@435 1762 //
duke@435 1763 // Inputs:
duke@435 1764 // c_rarg0 - source array address
duke@435 1765 // c_rarg1 - destination array address
duke@435 1766 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1767 //
duke@435 1768 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1769 // the hardware handle it. The two dwords within qwords that span
duke@435 1770 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1771 //
duke@435 1772 // Side Effects:
duke@435 1773 // disjoint_int_copy_entry is set to the no-overlap entry point
coleenp@548 1774 // used by generate_conjoint_int_oop_copy().
duke@435 1775 //
coleenp@548 1776 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1777 __ align(CodeEntryAlignment);
duke@435 1778 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1779 address start = __ pc();
duke@435 1780
duke@435 1781 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
duke@435 1782 const Register from = rdi; // source array address
duke@435 1783 const Register to = rsi; // destination array address
duke@435 1784 const Register count = rdx; // elements count
duke@435 1785 const Register dword_count = rcx;
duke@435 1786 const Register qword_count = count;
duke@435 1787 const Register end_from = from; // source array end address
duke@435 1788 const Register end_to = to; // destination array end address
coleenp@548 1789 const Register saved_to = r11; // saved destination array address
duke@435 1790 // End pointers are inclusive, and if count is not zero they point
duke@435 1791 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1792
duke@435 1793 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1794 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1795
coleenp@548 1796 (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
coleenp@548 1797
coleenp@548 1798 if (is_oop) {
coleenp@548 1799 // no registers are destroyed by this call
coleenp@548 1800 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1801 }
coleenp@548 1802
duke@435 1803 BLOCK_COMMENT("Entry:");
duke@435 1804 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1805
duke@435 1806 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1807 // r9 and r10 may be used to save non-volatile registers
duke@435 1808
coleenp@548 1809 if (is_oop) {
coleenp@548 1810 __ movq(saved_to, to);
coleenp@548 1811 }
coleenp@548 1812
duke@435 1813 // 'from', 'to' and 'count' are now valid
never@739 1814 __ movptr(dword_count, count);
never@739 1815 __ shrptr(count, 1); // count => qword_count
duke@435 1816
duke@435 1817 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1818 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1819 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1820 __ negptr(qword_count);
duke@435 1821 __ jmp(L_copy_32_bytes);
duke@435 1822
duke@435 1823 // Copy trailing qwords
duke@435 1824 __ BIND(L_copy_8_bytes);
duke@435 1825 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 1826 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 1827 __ increment(qword_count);
duke@435 1828 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1829
duke@435 1830 // Check for and copy trailing dword
duke@435 1831 __ BIND(L_copy_4_bytes);
never@739 1832 __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
duke@435 1833 __ jccb(Assembler::zero, L_exit);
duke@435 1834 __ movl(rax, Address(end_from, 8));
duke@435 1835 __ movl(Address(end_to, 8), rax);
duke@435 1836
duke@435 1837 __ BIND(L_exit);
coleenp@548 1838 if (is_oop) {
coleenp@548 1839 __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
coleenp@548 1840 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
coleenp@548 1841 }
duke@435 1842 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
duke@435 1843 restore_arg_regs();
never@739 1844 __ xorptr(rax, rax); // return 0
duke@435 1845 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1846 __ ret(0);
duke@435 1847
duke@435 1848 // Copy 32-bytes chunks
duke@435 1849 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1850 __ jmp(L_copy_4_bytes);
duke@435 1851
duke@435 1852 return start;
duke@435 1853 }
duke@435 1854
duke@435 1855 // Arguments:
duke@435 1856 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
duke@435 1857 // ignored
coleenp@548 1858 // is_oop - true => oop array, so generate store check code
duke@435 1859 // name - stub name string
duke@435 1860 //
duke@435 1861 // Inputs:
duke@435 1862 // c_rarg0 - source array address
duke@435 1863 // c_rarg1 - destination array address
duke@435 1864 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1865 //
duke@435 1866 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
duke@435 1867 // the hardware handle it. The two dwords within qwords that span
duke@435 1868 // cache line boundaries will still be loaded and stored atomicly.
duke@435 1869 //
coleenp@548 1870 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1871 __ align(CodeEntryAlignment);
duke@435 1872 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1873 address start = __ pc();
duke@435 1874
coleenp@548 1875 Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
duke@435 1876 const Register from = rdi; // source array address
duke@435 1877 const Register to = rsi; // destination array address
duke@435 1878 const Register count = rdx; // elements count
duke@435 1879 const Register dword_count = rcx;
duke@435 1880 const Register qword_count = count;
duke@435 1881
duke@435 1882 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1883 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1884
coleenp@548 1885 if (is_oop) {
coleenp@548 1886 // no registers are destroyed by this call
coleenp@548 1887 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
coleenp@548 1888 }
coleenp@548 1889
coleenp@548 1890 (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
duke@435 1891 BLOCK_COMMENT("Entry:");
duke@435 1892 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1893
coleenp@548 1894 array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
coleenp@548 1895 Address::times_4);
duke@435 1896 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1897 // r9 and r10 may be used to save non-volatile registers
duke@435 1898
coleenp@548 1899 assert_clean_int(count, rax); // Make sure 'count' is clean int.
duke@435 1900 // 'from', 'to' and 'count' are now valid
never@739 1901 __ movptr(dword_count, count);
never@739 1902 __ shrptr(count, 1); // count => qword_count
duke@435 1903
duke@435 1904 // Copy from high to low addresses. Use 'to' as scratch.
duke@435 1905
duke@435 1906 // Check for and copy trailing dword
never@739 1907 __ testl(dword_count, 1);
duke@435 1908 __ jcc(Assembler::zero, L_copy_32_bytes);
duke@435 1909 __ movl(rax, Address(from, dword_count, Address::times_4, -4));
duke@435 1910 __ movl(Address(to, dword_count, Address::times_4, -4), rax);
duke@435 1911 __ jmp(L_copy_32_bytes);
duke@435 1912
duke@435 1913 // Copy trailing qwords
duke@435 1914 __ BIND(L_copy_8_bytes);
duke@435 1915 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 1916 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 1917 __ decrement(qword_count);
duke@435 1918 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 1919
duke@435 1920 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1921 if (is_oop) {
coleenp@548 1922 __ jmp(L_exit);
coleenp@548 1923 }
duke@435 1924 restore_arg_regs();
never@739 1925 __ xorptr(rax, rax); // return 0
duke@435 1926 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1927 __ ret(0);
duke@435 1928
duke@435 1929 // Copy in 32-bytes chunks
duke@435 1930 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 1931
coleenp@548 1932 inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
coleenp@548 1933 __ bind(L_exit);
coleenp@548 1934 if (is_oop) {
coleenp@548 1935 Register end_to = rdx;
coleenp@548 1936 __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
coleenp@548 1937 gen_write_ref_array_post_barrier(to, end_to, rax);
coleenp@548 1938 }
duke@435 1939 restore_arg_regs();
never@739 1940 __ xorptr(rax, rax); // return 0
duke@435 1941 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1942 __ ret(0);
duke@435 1943
duke@435 1944 return start;
duke@435 1945 }
duke@435 1946
duke@435 1947 // Arguments:
duke@435 1948 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 1949 // ignored
duke@435 1950 // is_oop - true => oop array, so generate store check code
duke@435 1951 // name - stub name string
duke@435 1952 //
duke@435 1953 // Inputs:
duke@435 1954 // c_rarg0 - source array address
duke@435 1955 // c_rarg1 - destination array address
duke@435 1956 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 1957 //
coleenp@548 1958 // Side Effects:
duke@435 1959 // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
duke@435 1960 // no-overlap entry point used by generate_conjoint_long_oop_copy().
duke@435 1961 //
duke@435 1962 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 1963 __ align(CodeEntryAlignment);
duke@435 1964 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1965 address start = __ pc();
duke@435 1966
duke@435 1967 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 1968 const Register from = rdi; // source array address
duke@435 1969 const Register to = rsi; // destination array address
duke@435 1970 const Register qword_count = rdx; // elements count
duke@435 1971 const Register end_from = from; // source array end address
duke@435 1972 const Register end_to = rcx; // destination array end address
duke@435 1973 const Register saved_to = to;
duke@435 1974 // End pointers are inclusive, and if count is not zero they point
duke@435 1975 // to the last unit copied: end_to[0] := end_from[0]
duke@435 1976
duke@435 1977 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1978 // Save no-overlap entry point for generate_conjoint_long_oop_copy()
duke@435 1979 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 1980
duke@435 1981 if (is_oop) {
duke@435 1982 disjoint_oop_copy_entry = __ pc();
duke@435 1983 // no registers are destroyed by this call
duke@435 1984 gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
duke@435 1985 } else {
duke@435 1986 disjoint_long_copy_entry = __ pc();
duke@435 1987 }
duke@435 1988 BLOCK_COMMENT("Entry:");
duke@435 1989 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1990
duke@435 1991 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 1992 // r9 and r10 may be used to save non-volatile registers
duke@435 1993
duke@435 1994 // 'from', 'to' and 'qword_count' are now valid
duke@435 1995
duke@435 1996 // Copy from low to high addresses. Use 'to' as scratch.
never@739 1997 __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
never@739 1998 __ lea(end_to, Address(to, qword_count, Address::times_8, -8));
never@739 1999 __ negptr(qword_count);
duke@435 2000 __ jmp(L_copy_32_bytes);
duke@435 2001
duke@435 2002 // Copy trailing qwords
duke@435 2003 __ BIND(L_copy_8_bytes);
duke@435 2004 __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
duke@435 2005 __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
never@739 2006 __ increment(qword_count);
duke@435 2007 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2008
duke@435 2009 if (is_oop) {
duke@435 2010 __ jmp(L_exit);
duke@435 2011 } else {
duke@435 2012 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2013 restore_arg_regs();
never@739 2014 __ xorptr(rax, rax); // return 0
duke@435 2015 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2016 __ ret(0);
duke@435 2017 }
duke@435 2018
duke@435 2019 // Copy 64-byte chunks
duke@435 2020 copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2021
duke@435 2022 if (is_oop) {
duke@435 2023 __ BIND(L_exit);
duke@435 2024 gen_write_ref_array_post_barrier(saved_to, end_to, rax);
duke@435 2025 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2026 } else {
duke@435 2027 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2028 }
duke@435 2029 restore_arg_regs();
never@739 2030 __ xorptr(rax, rax); // return 0
duke@435 2031 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2032 __ ret(0);
duke@435 2033
duke@435 2034 return start;
duke@435 2035 }
duke@435 2036
duke@435 2037 // Arguments:
duke@435 2038 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
duke@435 2039 // ignored
duke@435 2040 // is_oop - true => oop array, so generate store check code
duke@435 2041 // name - stub name string
duke@435 2042 //
duke@435 2043 // Inputs:
duke@435 2044 // c_rarg0 - source array address
duke@435 2045 // c_rarg1 - destination array address
duke@435 2046 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2047 //
duke@435 2048 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
duke@435 2049 __ align(CodeEntryAlignment);
duke@435 2050 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2051 address start = __ pc();
duke@435 2052
duke@435 2053 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
duke@435 2054 const Register from = rdi; // source array address
duke@435 2055 const Register to = rsi; // destination array address
duke@435 2056 const Register qword_count = rdx; // elements count
duke@435 2057 const Register saved_count = rcx;
duke@435 2058
duke@435 2059 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2060 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
duke@435 2061
duke@435 2062 address disjoint_copy_entry = NULL;
duke@435 2063 if (is_oop) {
coleenp@548 2064 assert(!UseCompressedOops, "shouldn't be called for compressed oops");
duke@435 2065 disjoint_copy_entry = disjoint_oop_copy_entry;
duke@435 2066 oop_copy_entry = __ pc();
coleenp@548 2067 array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
duke@435 2068 } else {
duke@435 2069 disjoint_copy_entry = disjoint_long_copy_entry;
duke@435 2070 long_copy_entry = __ pc();
coleenp@548 2071 array_overlap_test(disjoint_long_copy_entry, Address::times_8);
duke@435 2072 }
duke@435 2073 BLOCK_COMMENT("Entry:");
duke@435 2074 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2075
duke@435 2076 array_overlap_test(disjoint_copy_entry, Address::times_8);
duke@435 2077 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
duke@435 2078 // r9 and r10 may be used to save non-volatile registers
duke@435 2079
duke@435 2080 // 'from', 'to' and 'qword_count' are now valid
duke@435 2081
duke@435 2082 if (is_oop) {
duke@435 2083 // Save to and count for store barrier
never@739 2084 __ movptr(saved_count, qword_count);
duke@435 2085 // No registers are destroyed by this call
duke@435 2086 gen_write_ref_array_pre_barrier(to, saved_count);
duke@435 2087 }
duke@435 2088
duke@435 2089 __ jmp(L_copy_32_bytes);
duke@435 2090
duke@435 2091 // Copy trailing qwords
duke@435 2092 __ BIND(L_copy_8_bytes);
duke@435 2093 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
duke@435 2094 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
never@739 2095 __ decrement(qword_count);
duke@435 2096 __ jcc(Assembler::notZero, L_copy_8_bytes);
duke@435 2097
duke@435 2098 if (is_oop) {
duke@435 2099 __ jmp(L_exit);
duke@435 2100 } else {
duke@435 2101 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2102 restore_arg_regs();
never@739 2103 __ xorptr(rax, rax); // return 0
duke@435 2104 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2105 __ ret(0);
duke@435 2106 }
duke@435 2107
duke@435 2108 // Copy in 32-bytes chunks
duke@435 2109 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
duke@435 2110
duke@435 2111 if (is_oop) {
duke@435 2112 __ BIND(L_exit);
never@739 2113 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
duke@435 2114 gen_write_ref_array_post_barrier(to, rcx, rax);
duke@435 2115 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
duke@435 2116 } else {
duke@435 2117 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
duke@435 2118 }
duke@435 2119 restore_arg_regs();
never@739 2120 __ xorptr(rax, rax); // return 0
duke@435 2121 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2122 __ ret(0);
duke@435 2123
duke@435 2124 return start;
duke@435 2125 }
duke@435 2126
duke@435 2127
duke@435 2128 // Helper for generating a dynamic type check.
duke@435 2129 // Smashes no registers.
duke@435 2130 void generate_type_check(Register sub_klass,
duke@435 2131 Register super_check_offset,
duke@435 2132 Register super_klass,
duke@435 2133 Label& L_success) {
duke@435 2134 assert_different_registers(sub_klass, super_check_offset, super_klass);
duke@435 2135
duke@435 2136 BLOCK_COMMENT("type_check:");
duke@435 2137
duke@435 2138 Label L_miss;
duke@435 2139
jrose@1079 2140 __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL,
jrose@1079 2141 super_check_offset);
jrose@1079 2142 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
duke@435 2143
duke@435 2144 // Fall through on failure!
duke@435 2145 __ BIND(L_miss);
duke@435 2146 }
duke@435 2147
duke@435 2148 //
duke@435 2149 // Generate checkcasting array copy stub
duke@435 2150 //
duke@435 2151 // Input:
duke@435 2152 // c_rarg0 - source array address
duke@435 2153 // c_rarg1 - destination array address
duke@435 2154 // c_rarg2 - element count, treated as ssize_t, can be zero
duke@435 2155 // c_rarg3 - size_t ckoff (super_check_offset)
duke@435 2156 // not Win64
duke@435 2157 // c_rarg4 - oop ckval (super_klass)
duke@435 2158 // Win64
duke@435 2159 // rsp+40 - oop ckval (super_klass)
duke@435 2160 //
duke@435 2161 // Output:
duke@435 2162 // rax == 0 - success
duke@435 2163 // rax == -1^K - failure, where K is partial transfer count
duke@435 2164 //
duke@435 2165 address generate_checkcast_copy(const char *name) {
duke@435 2166
duke@435 2167 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 2168
duke@435 2169 // Input registers (after setup_arg_regs)
duke@435 2170 const Register from = rdi; // source array address
duke@435 2171 const Register to = rsi; // destination array address
duke@435 2172 const Register length = rdx; // elements count
duke@435 2173 const Register ckoff = rcx; // super_check_offset
duke@435 2174 const Register ckval = r8; // super_klass
duke@435 2175
duke@435 2176 // Registers used as temps (r13, r14 are save-on-entry)
duke@435 2177 const Register end_from = from; // source array end address
duke@435 2178 const Register end_to = r13; // destination array end address
duke@435 2179 const Register count = rdx; // -(count_remaining)
duke@435 2180 const Register r14_length = r14; // saved copy of length
duke@435 2181 // End pointers are inclusive, and if length is not zero they point
duke@435 2182 // to the last unit copied: end_to[0] := end_from[0]
duke@435 2183
duke@435 2184 const Register rax_oop = rax; // actual oop copied
duke@435 2185 const Register r11_klass = r11; // oop._klass
duke@435 2186
duke@435 2187 //---------------------------------------------------------------
duke@435 2188 // Assembler stub will be used for this call to arraycopy
duke@435 2189 // if the two arrays are subtypes of Object[] but the
duke@435 2190 // destination array type is not equal to or a supertype
duke@435 2191 // of the source type. Each element must be separately
duke@435 2192 // checked.
duke@435 2193
duke@435 2194 __ align(CodeEntryAlignment);
duke@435 2195 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2196 address start = __ pc();
duke@435 2197
duke@435 2198 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2199
duke@435 2200 #ifdef ASSERT
duke@435 2201 // caller guarantees that the arrays really are different
duke@435 2202 // otherwise, we would have to make conjoint checks
duke@435 2203 { Label L;
coleenp@548 2204 array_overlap_test(L, TIMES_OOP);
duke@435 2205 __ stop("checkcast_copy within a single array");
duke@435 2206 __ bind(L);
duke@435 2207 }
duke@435 2208 #endif //ASSERT
duke@435 2209
duke@435 2210 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
duke@435 2211 // ckoff => rcx, ckval => r8
duke@435 2212 // r9 and r10 may be used to save non-volatile registers
duke@435 2213 #ifdef _WIN64
duke@435 2214 // last argument (#4) is on stack on Win64
twisti@2348 2215 __ movptr(ckval, Address(rsp, 6 * wordSize));
duke@435 2216 #endif
duke@435 2217
twisti@2348 2218 // Caller of this entry point must set up the argument registers.
twisti@2348 2219 checkcast_copy_entry = __ pc();
twisti@2348 2220 BLOCK_COMMENT("Entry:");
twisti@2348 2221
twisti@2348 2222 // allocate spill slots for r13, r14
twisti@2348 2223 enum {
twisti@2348 2224 saved_r13_offset,
twisti@2348 2225 saved_r14_offset,
twisti@2348 2226 saved_rbp_offset
twisti@2348 2227 };
twisti@2348 2228 __ subptr(rsp, saved_rbp_offset * wordSize);
twisti@2348 2229 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
twisti@2348 2230 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
twisti@2348 2231
duke@435 2232 // check that int operands are properly extended to size_t
duke@435 2233 assert_clean_int(length, rax);
duke@435 2234 assert_clean_int(ckoff, rax);
duke@435 2235
duke@435 2236 #ifdef ASSERT
duke@435 2237 BLOCK_COMMENT("assert consistent ckoff/ckval");
duke@435 2238 // The ckoff and ckval must be mutually consistent,
duke@435 2239 // even though caller generates both.
duke@435 2240 { Label L;
duke@435 2241 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2242 Klass::super_check_offset_offset_in_bytes());
duke@435 2243 __ cmpl(ckoff, Address(ckval, sco_offset));
duke@435 2244 __ jcc(Assembler::equal, L);
duke@435 2245 __ stop("super_check_offset inconsistent");
duke@435 2246 __ bind(L);
duke@435 2247 }
duke@435 2248 #endif //ASSERT
duke@435 2249
duke@435 2250 // Loop-invariant addresses. They are exclusive end pointers.
coleenp@548 2251 Address end_from_addr(from, length, TIMES_OOP, 0);
coleenp@548 2252 Address end_to_addr(to, length, TIMES_OOP, 0);
duke@435 2253 // Loop-variant addresses. They assume post-incremented count < 0.
coleenp@548 2254 Address from_element_addr(end_from, count, TIMES_OOP, 0);
coleenp@548 2255 Address to_element_addr(end_to, count, TIMES_OOP, 0);
duke@435 2256
duke@435 2257 gen_write_ref_array_pre_barrier(to, count);
duke@435 2258
duke@435 2259 // Copy from low to high addresses, indexed from the end of each array.
never@739 2260 __ lea(end_from, end_from_addr);
never@739 2261 __ lea(end_to, end_to_addr);
never@739 2262 __ movptr(r14_length, length); // save a copy of the length
never@739 2263 assert(length == count, ""); // else fix next line:
never@739 2264 __ negptr(count); // negate and test the length
duke@435 2265 __ jcc(Assembler::notZero, L_load_element);
duke@435 2266
duke@435 2267 // Empty array: Nothing to do.
never@739 2268 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 2269 __ jmp(L_done);
duke@435 2270
duke@435 2271 // ======== begin loop ========
duke@435 2272 // (Loop is rotated; its entry is L_load_element.)
duke@435 2273 // Loop control:
duke@435 2274 // for (count = -count; count != 0; count++)
duke@435 2275 // Base pointers src, dst are biased by 8*(count-1),to last element.
kvn@1800 2276 __ align(OptoLoopAlignment);
duke@435 2277
duke@435 2278 __ BIND(L_store_element);
coleenp@548 2279 __ store_heap_oop(to_element_addr, rax_oop); // store the oop
never@739 2280 __ increment(count); // increment the count toward zero
duke@435 2281 __ jcc(Assembler::zero, L_do_card_marks);
duke@435 2282
duke@435 2283 // ======== loop entry is here ========
duke@435 2284 __ BIND(L_load_element);
coleenp@548 2285 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
never@739 2286 __ testptr(rax_oop, rax_oop);
duke@435 2287 __ jcc(Assembler::zero, L_store_element);
duke@435 2288
coleenp@548 2289 __ load_klass(r11_klass, rax_oop);// query the object klass
duke@435 2290 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
duke@435 2291 // ======== end loop ========
duke@435 2292
duke@435 2293 // It was a real error; we must depend on the caller to finish the job.
duke@435 2294 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
duke@435 2295 // Emit GC store barriers for the oops we have copied (r14 + rdx),
duke@435 2296 // and report their number to the caller.
duke@435 2297 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
never@739 2298 __ lea(end_to, to_element_addr);
ysr@1280 2299 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2300 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2301 __ movptr(rax, r14_length); // original oops
never@739 2302 __ addptr(rax, count); // K = (original - remaining) oops
never@739 2303 __ notptr(rax); // report (-1^K) to caller
duke@435 2304 __ jmp(L_done);
duke@435 2305
duke@435 2306 // Come here on success only.
duke@435 2307 __ BIND(L_do_card_marks);
ysr@1280 2308 __ addptr(end_to, -heapOopSize); // make an inclusive end pointer
apetrusenko@797 2309 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
never@739 2310 __ xorptr(rax, rax); // return 0 on success
duke@435 2311
duke@435 2312 // Common exit point (success or failure).
duke@435 2313 __ BIND(L_done);
never@739 2314 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
never@739 2315 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
duke@435 2316 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 2317 restore_arg_regs();
duke@435 2318 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2319 __ ret(0);
duke@435 2320
duke@435 2321 return start;
duke@435 2322 }
duke@435 2323
duke@435 2324 //
duke@435 2325 // Generate 'unsafe' array copy stub
duke@435 2326 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2327 // size_t argument instead of an element count.
duke@435 2328 //
duke@435 2329 // Input:
duke@435 2330 // c_rarg0 - source array address
duke@435 2331 // c_rarg1 - destination array address
duke@435 2332 // c_rarg2 - byte count, treated as ssize_t, can be zero
duke@435 2333 //
duke@435 2334 // Examines the alignment of the operands and dispatches
duke@435 2335 // to a long, int, short, or byte copy loop.
duke@435 2336 //
duke@435 2337 address generate_unsafe_copy(const char *name) {
duke@435 2338
duke@435 2339 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 2340
duke@435 2341 // Input registers (before setup_arg_regs)
duke@435 2342 const Register from = c_rarg0; // source array address
duke@435 2343 const Register to = c_rarg1; // destination array address
duke@435 2344 const Register size = c_rarg2; // byte count (size_t)
duke@435 2345
duke@435 2346 // Register used as a temp
duke@435 2347 const Register bits = rax; // test copy of low bits
duke@435 2348
duke@435 2349 __ align(CodeEntryAlignment);
duke@435 2350 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2351 address start = __ pc();
duke@435 2352
duke@435 2353 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2354
duke@435 2355 // bump this on entry, not on exit:
duke@435 2356 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 2357
never@739 2358 __ mov(bits, from);
never@739 2359 __ orptr(bits, to);
never@739 2360 __ orptr(bits, size);
duke@435 2361
duke@435 2362 __ testb(bits, BytesPerLong-1);
duke@435 2363 __ jccb(Assembler::zero, L_long_aligned);
duke@435 2364
duke@435 2365 __ testb(bits, BytesPerInt-1);
duke@435 2366 __ jccb(Assembler::zero, L_int_aligned);
duke@435 2367
duke@435 2368 __ testb(bits, BytesPerShort-1);
duke@435 2369 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 2370
duke@435 2371 __ BIND(L_short_aligned);
never@739 2372 __ shrptr(size, LogBytesPerShort); // size => short_count
duke@435 2373 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2374
duke@435 2375 __ BIND(L_int_aligned);
never@739 2376 __ shrptr(size, LogBytesPerInt); // size => int_count
duke@435 2377 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2378
duke@435 2379 __ BIND(L_long_aligned);
never@739 2380 __ shrptr(size, LogBytesPerLong); // size => qword_count
duke@435 2381 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2382
duke@435 2383 return start;
duke@435 2384 }
duke@435 2385
duke@435 2386 // Perform range checks on the proposed arraycopy.
duke@435 2387 // Kills temp, but nothing else.
duke@435 2388 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2389 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
duke@435 2390 Register src_pos, // source position (c_rarg1)
duke@435 2391 Register dst, // destination array oo (c_rarg2)
duke@435 2392 Register dst_pos, // destination position (c_rarg3)
duke@435 2393 Register length,
duke@435 2394 Register temp,
duke@435 2395 Label& L_failed) {
duke@435 2396 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2397
duke@435 2398 // if (src_pos + length > arrayOop(src)->length()) FAIL;
duke@435 2399 __ movl(temp, length);
duke@435 2400 __ addl(temp, src_pos); // src_pos + length
duke@435 2401 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 2402 __ jcc(Assembler::above, L_failed);
duke@435 2403
duke@435 2404 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
duke@435 2405 __ movl(temp, length);
duke@435 2406 __ addl(temp, dst_pos); // dst_pos + length
duke@435 2407 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 2408 __ jcc(Assembler::above, L_failed);
duke@435 2409
duke@435 2410 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2411 // Move with sign extension can be used since they are positive.
duke@435 2412 __ movslq(src_pos, src_pos);
duke@435 2413 __ movslq(dst_pos, dst_pos);
duke@435 2414
duke@435 2415 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2416 }
duke@435 2417
duke@435 2418 //
duke@435 2419 // Generate generic array copy stubs
duke@435 2420 //
duke@435 2421 // Input:
duke@435 2422 // c_rarg0 - src oop
duke@435 2423 // c_rarg1 - src_pos (32-bits)
duke@435 2424 // c_rarg2 - dst oop
duke@435 2425 // c_rarg3 - dst_pos (32-bits)
duke@435 2426 // not Win64
duke@435 2427 // c_rarg4 - element count (32-bits)
duke@435 2428 // Win64
duke@435 2429 // rsp+40 - element count (32-bits)
duke@435 2430 //
duke@435 2431 // Output:
duke@435 2432 // rax == 0 - success
duke@435 2433 // rax == -1^K - failure, where K is partial transfer count
duke@435 2434 //
duke@435 2435 address generate_generic_copy(const char *name) {
duke@435 2436
duke@435 2437 Label L_failed, L_failed_0, L_objArray;
duke@435 2438 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
duke@435 2439
duke@435 2440 // Input registers
duke@435 2441 const Register src = c_rarg0; // source array oop
duke@435 2442 const Register src_pos = c_rarg1; // source position
duke@435 2443 const Register dst = c_rarg2; // destination array oop
duke@435 2444 const Register dst_pos = c_rarg3; // destination position
twisti@2348 2445 #ifndef _WIN64
twisti@2348 2446 const Register length = c_rarg4;
duke@435 2447 #else
twisti@2348 2448 const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64
duke@435 2449 #endif
duke@435 2450
duke@435 2451 { int modulus = CodeEntryAlignment;
duke@435 2452 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 2453 int advance = target - (__ offset() % modulus);
duke@435 2454 if (advance < 0) advance += modulus;
duke@435 2455 if (advance > 0) __ nop(advance);
duke@435 2456 }
duke@435 2457 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2458
duke@435 2459 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 2460 __ BIND(L_failed_0);
duke@435 2461 __ jmp(L_failed);
duke@435 2462 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 2463
duke@435 2464 __ align(CodeEntryAlignment);
duke@435 2465 address start = __ pc();
duke@435 2466
duke@435 2467 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2468
duke@435 2469 // bump this on entry, not on exit:
duke@435 2470 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 2471
duke@435 2472 //-----------------------------------------------------------------------
duke@435 2473 // Assembler stub will be used for this call to arraycopy
duke@435 2474 // if the following conditions are met:
duke@435 2475 //
duke@435 2476 // (1) src and dst must not be null.
duke@435 2477 // (2) src_pos must not be negative.
duke@435 2478 // (3) dst_pos must not be negative.
duke@435 2479 // (4) length must not be negative.
duke@435 2480 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2481 // (6) src and dst should be arrays.
duke@435 2482 // (7) src_pos + length must not exceed length of src.
duke@435 2483 // (8) dst_pos + length must not exceed length of dst.
duke@435 2484 //
duke@435 2485
duke@435 2486 // if (src == NULL) return -1;
never@739 2487 __ testptr(src, src); // src oop
duke@435 2488 size_t j1off = __ offset();
duke@435 2489 __ jccb(Assembler::zero, L_failed_0);
duke@435 2490
duke@435 2491 // if (src_pos < 0) return -1;
duke@435 2492 __ testl(src_pos, src_pos); // src_pos (32-bits)
duke@435 2493 __ jccb(Assembler::negative, L_failed_0);
duke@435 2494
duke@435 2495 // if (dst == NULL) return -1;
never@739 2496 __ testptr(dst, dst); // dst oop
duke@435 2497 __ jccb(Assembler::zero, L_failed_0);
duke@435 2498
duke@435 2499 // if (dst_pos < 0) return -1;
duke@435 2500 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
duke@435 2501 size_t j4off = __ offset();
duke@435 2502 __ jccb(Assembler::negative, L_failed_0);
duke@435 2503
duke@435 2504 // The first four tests are very dense code,
duke@435 2505 // but not quite dense enough to put four
duke@435 2506 // jumps in a 16-byte instruction fetch buffer.
duke@435 2507 // That's good, because some branch predicters
duke@435 2508 // do not like jumps so close together.
duke@435 2509 // Make sure of this.
duke@435 2510 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
duke@435 2511
duke@435 2512 // registers used as temp
duke@435 2513 const Register r11_length = r11; // elements count to copy
duke@435 2514 const Register r10_src_klass = r10; // array klass
duke@435 2515
duke@435 2516 // if (length < 0) return -1;
twisti@2348 2517 __ movl(r11_length, length); // length (elements count, 32-bits value)
duke@435 2518 __ testl(r11_length, r11_length);
duke@435 2519 __ jccb(Assembler::negative, L_failed_0);
duke@435 2520
coleenp@548 2521 __ load_klass(r10_src_klass, src);
duke@435 2522 #ifdef ASSERT
duke@435 2523 // assert(src->klass() != NULL);
twisti@2348 2524 {
twisti@2348 2525 BLOCK_COMMENT("assert klasses not null {");
twisti@2348 2526 Label L1, L2;
never@739 2527 __ testptr(r10_src_klass, r10_src_klass);
duke@435 2528 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 2529 __ bind(L1);
duke@435 2530 __ stop("broken null klass");
duke@435 2531 __ bind(L2);
twisti@2348 2532 __ load_klass(rax, dst);
twisti@2348 2533 __ cmpq(rax, 0);
duke@435 2534 __ jcc(Assembler::equal, L1); // this would be broken also
twisti@2348 2535 BLOCK_COMMENT("} assert klasses not null done");
duke@435 2536 }
duke@435 2537 #endif
duke@435 2538
duke@435 2539 // Load layout helper (32-bits)
duke@435 2540 //
duke@435 2541 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2542 // 32 30 24 16 8 2 0
duke@435 2543 //
duke@435 2544 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2545 //
duke@435 2546
twisti@2348 2547 const int lh_offset = klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2548 Klass::layout_helper_offset_in_bytes();
twisti@2348 2549
twisti@2348 2550 // Handle objArrays completely differently...
twisti@2348 2551 const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
twisti@2348 2552 __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
twisti@2348 2553 __ jcc(Assembler::equal, L_objArray);
twisti@2348 2554
twisti@2348 2555 // if (src->klass() != dst->klass()) return -1;
twisti@2348 2556 __ load_klass(rax, dst);
twisti@2348 2557 __ cmpq(r10_src_klass, rax);
twisti@2348 2558 __ jcc(Assembler::notEqual, L_failed);
duke@435 2559
duke@435 2560 const Register rax_lh = rax; // layout helper
duke@435 2561 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
duke@435 2562
duke@435 2563 // if (!src->is_Array()) return -1;
duke@435 2564 __ cmpl(rax_lh, Klass::_lh_neutral_value);
duke@435 2565 __ jcc(Assembler::greaterEqual, L_failed);
duke@435 2566
duke@435 2567 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2568 #ifdef ASSERT
twisti@2348 2569 {
twisti@2348 2570 BLOCK_COMMENT("assert primitive array {");
twisti@2348 2571 Label L;
duke@435 2572 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 2573 __ jcc(Assembler::greaterEqual, L);
duke@435 2574 __ stop("must be a primitive array");
duke@435 2575 __ bind(L);
twisti@2348 2576 BLOCK_COMMENT("} assert primitive array done");
duke@435 2577 }
duke@435 2578 #endif
duke@435 2579
duke@435 2580 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2581 r10, L_failed);
duke@435 2582
duke@435 2583 // typeArrayKlass
duke@435 2584 //
duke@435 2585 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2586 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2587 //
duke@435 2588
duke@435 2589 const Register r10_offset = r10; // array offset
duke@435 2590 const Register rax_elsize = rax_lh; // element size
duke@435 2591
duke@435 2592 __ movl(r10_offset, rax_lh);
duke@435 2593 __ shrl(r10_offset, Klass::_lh_header_size_shift);
never@739 2594 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
never@739 2595 __ addptr(src, r10_offset); // src array offset
never@739 2596 __ addptr(dst, r10_offset); // dst array offset
duke@435 2597 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2598 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
duke@435 2599
duke@435 2600 // next registers should be set before the jump to corresponding stub
duke@435 2601 const Register from = c_rarg0; // source array address
duke@435 2602 const Register to = c_rarg1; // destination array address
duke@435 2603 const Register count = c_rarg2; // elements count
duke@435 2604
duke@435 2605 // 'from', 'to', 'count' registers should be set in such order
duke@435 2606 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2607
duke@435 2608 __ BIND(L_copy_bytes);
duke@435 2609 __ cmpl(rax_elsize, 0);
duke@435 2610 __ jccb(Assembler::notEqual, L_copy_shorts);
never@739 2611 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
never@739 2612 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
never@739 2613 __ movl2ptr(count, r11_length); // length
duke@435 2614 __ jump(RuntimeAddress(byte_copy_entry));
duke@435 2615
duke@435 2616 __ BIND(L_copy_shorts);
duke@435 2617 __ cmpl(rax_elsize, LogBytesPerShort);
duke@435 2618 __ jccb(Assembler::notEqual, L_copy_ints);
never@739 2619 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
never@739 2620 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
never@739 2621 __ movl2ptr(count, r11_length); // length
duke@435 2622 __ jump(RuntimeAddress(short_copy_entry));
duke@435 2623
duke@435 2624 __ BIND(L_copy_ints);
duke@435 2625 __ cmpl(rax_elsize, LogBytesPerInt);
duke@435 2626 __ jccb(Assembler::notEqual, L_copy_longs);
never@739 2627 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
never@739 2628 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
never@739 2629 __ movl2ptr(count, r11_length); // length
duke@435 2630 __ jump(RuntimeAddress(int_copy_entry));
duke@435 2631
duke@435 2632 __ BIND(L_copy_longs);
duke@435 2633 #ifdef ASSERT
twisti@2348 2634 {
twisti@2348 2635 BLOCK_COMMENT("assert long copy {");
twisti@2348 2636 Label L;
duke@435 2637 __ cmpl(rax_elsize, LogBytesPerLong);
duke@435 2638 __ jcc(Assembler::equal, L);
duke@435 2639 __ stop("must be long copy, but elsize is wrong");
duke@435 2640 __ bind(L);
twisti@2348 2641 BLOCK_COMMENT("} assert long copy done");
duke@435 2642 }
duke@435 2643 #endif
never@739 2644 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
never@739 2645 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
never@739 2646 __ movl2ptr(count, r11_length); // length
duke@435 2647 __ jump(RuntimeAddress(long_copy_entry));
duke@435 2648
duke@435 2649 // objArrayKlass
duke@435 2650 __ BIND(L_objArray);
twisti@2348 2651 // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos]
duke@435 2652
duke@435 2653 Label L_plain_copy, L_checkcast_copy;
duke@435 2654 // test array classes for subtyping
twisti@2348 2655 __ load_klass(rax, dst);
twisti@2348 2656 __ cmpq(r10_src_klass, rax); // usual case is exact equality
duke@435 2657 __ jcc(Assembler::notEqual, L_checkcast_copy);
duke@435 2658
duke@435 2659 // Identically typed arrays can be copied without element-wise checks.
duke@435 2660 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2661 r10, L_failed);
duke@435 2662
never@739 2663 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2664 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 2665 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
never@739 2666 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 2667 __ movl2ptr(count, r11_length); // length
duke@435 2668 __ BIND(L_plain_copy);
duke@435 2669 __ jump(RuntimeAddress(oop_copy_entry));
duke@435 2670
duke@435 2671 __ BIND(L_checkcast_copy);
twisti@2348 2672 // live at this point: r10_src_klass, r11_length, rax (dst_klass)
duke@435 2673 {
duke@435 2674 // Before looking at dst.length, make sure dst is also an objArray.
twisti@2348 2675 __ cmpl(Address(rax, lh_offset), objArray_lh);
duke@435 2676 __ jcc(Assembler::notEqual, L_failed);
duke@435 2677
duke@435 2678 // It is safe to examine both src.length and dst.length.
duke@435 2679 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
duke@435 2680 rax, L_failed);
twisti@2348 2681
twisti@2348 2682 const Register r11_dst_klass = r11;
coleenp@548 2683 __ load_klass(r11_dst_klass, dst); // reload
duke@435 2684
duke@435 2685 // Marshal the base address arguments now, freeing registers.
never@739 2686 __ lea(from, Address(src, src_pos, TIMES_OOP,
duke@435 2687 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 2688 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
duke@435 2689 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
twisti@2348 2690 __ movl(count, length); // length (reloaded)
duke@435 2691 Register sco_temp = c_rarg3; // this register is free now
duke@435 2692 assert_different_registers(from, to, count, sco_temp,
duke@435 2693 r11_dst_klass, r10_src_klass);
duke@435 2694 assert_clean_int(count, sco_temp);
duke@435 2695
duke@435 2696 // Generate the type check.
twisti@2348 2697 const int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
twisti@2348 2698 Klass::super_check_offset_offset_in_bytes());
duke@435 2699 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2700 assert_clean_int(sco_temp, rax);
duke@435 2701 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
duke@435 2702
duke@435 2703 // Fetch destination element klass from the objArrayKlass header.
duke@435 2704 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2705 objArrayKlass::element_klass_offset_in_bytes());
never@739 2706 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
twisti@2348 2707 __ movl( sco_temp, Address(r11_dst_klass, sco_offset));
duke@435 2708 assert_clean_int(sco_temp, rax);
duke@435 2709
duke@435 2710 // the checkcast_copy loop needs two extra arguments:
duke@435 2711 assert(c_rarg3 == sco_temp, "#3 already in place");
twisti@2348 2712 // Set up arguments for checkcast_copy_entry.
twisti@2348 2713 setup_arg_regs(4);
twisti@2348 2714 __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
duke@435 2715 __ jump(RuntimeAddress(checkcast_copy_entry));
duke@435 2716 }
duke@435 2717
duke@435 2718 __ BIND(L_failed);
never@739 2719 __ xorptr(rax, rax);
never@739 2720 __ notptr(rax); // return -1
duke@435 2721 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2722 __ ret(0);
duke@435 2723
duke@435 2724 return start;
duke@435 2725 }
duke@435 2726
duke@435 2727 void generate_arraycopy_stubs() {
duke@435 2728 // Call the conjoint generation methods immediately after
duke@435 2729 // the disjoint ones so that short branches from the former
duke@435 2730 // to the latter can be generated.
duke@435 2731 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2732 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2733
duke@435 2734 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2735 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2736
coleenp@548 2737 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
coleenp@548 2738 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
duke@435 2739
duke@435 2740 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
duke@435 2741 StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
duke@435 2742
coleenp@548 2743
coleenp@548 2744 if (UseCompressedOops) {
coleenp@548 2745 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2746 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2747 } else {
coleenp@548 2748 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
coleenp@548 2749 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
coleenp@548 2750 }
duke@435 2751
duke@435 2752 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2753 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2754 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2755
never@2118 2756 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2757 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2758 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2759 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2760 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2761 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2762
duke@435 2763 // We don't generate specialized code for HeapWord-aligned source
duke@435 2764 // arrays, so just use the code we've already generated
duke@435 2765 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy;
duke@435 2766 StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy;
duke@435 2767
duke@435 2768 StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
duke@435 2769 StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy;
duke@435 2770
duke@435 2771 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
duke@435 2772 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2773
duke@435 2774 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2775 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2776
duke@435 2777 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
duke@435 2778 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2779 }
duke@435 2780
never@1609 2781 void generate_math_stubs() {
never@1609 2782 {
never@1609 2783 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2784 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2785
never@1609 2786 __ subq(rsp, 8);
never@1609 2787 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2788 __ fld_d(Address(rsp, 0));
never@1609 2789 __ flog();
never@1609 2790 __ fstp_d(Address(rsp, 0));
never@1609 2791 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2792 __ addq(rsp, 8);
never@1609 2793 __ ret(0);
never@1609 2794 }
never@1609 2795 {
never@1609 2796 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2797 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2798
never@1609 2799 __ subq(rsp, 8);
never@1609 2800 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2801 __ fld_d(Address(rsp, 0));
never@1609 2802 __ flog10();
never@1609 2803 __ fstp_d(Address(rsp, 0));
never@1609 2804 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2805 __ addq(rsp, 8);
never@1609 2806 __ ret(0);
never@1609 2807 }
never@1609 2808 {
never@1609 2809 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2810 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2811
never@1609 2812 __ subq(rsp, 8);
never@1609 2813 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2814 __ fld_d(Address(rsp, 0));
never@1609 2815 __ trigfunc('s');
never@1609 2816 __ fstp_d(Address(rsp, 0));
never@1609 2817 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2818 __ addq(rsp, 8);
never@1609 2819 __ ret(0);
never@1609 2820 }
never@1609 2821 {
never@1609 2822 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2823 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2824
never@1609 2825 __ subq(rsp, 8);
never@1609 2826 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2827 __ fld_d(Address(rsp, 0));
never@1609 2828 __ trigfunc('c');
never@1609 2829 __ fstp_d(Address(rsp, 0));
never@1609 2830 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2831 __ addq(rsp, 8);
never@1609 2832 __ ret(0);
never@1609 2833 }
never@1609 2834 {
never@1609 2835 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2836 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2837
never@1609 2838 __ subq(rsp, 8);
never@1609 2839 __ movdbl(Address(rsp, 0), xmm0);
never@1609 2840 __ fld_d(Address(rsp, 0));
never@1609 2841 __ trigfunc('t');
never@1609 2842 __ fstp_d(Address(rsp, 0));
never@1609 2843 __ movdbl(xmm0, Address(rsp, 0));
never@1609 2844 __ addq(rsp, 8);
never@1609 2845 __ ret(0);
never@1609 2846 }
never@1609 2847
never@1609 2848 // The intrinsic version of these seem to return the same value as
never@1609 2849 // the strict version.
never@1609 2850 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2851 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2852 }
never@1609 2853
duke@435 2854 #undef __
duke@435 2855 #define __ masm->
duke@435 2856
duke@435 2857 // Continuation point for throwing of implicit exceptions that are
duke@435 2858 // not handled in the current activation. Fabricates an exception
duke@435 2859 // oop and initiates normal exception dispatching in this
duke@435 2860 // frame. Since we need to preserve callee-saved values (currently
duke@435 2861 // only for C2, but done for C1 as well) we need a callee-saved oop
duke@435 2862 // map and therefore have to make these stubs into RuntimeStubs
duke@435 2863 // rather than BufferBlobs. If the compiler needs all registers to
duke@435 2864 // be preserved between the fault point and the exception handler
duke@435 2865 // then it must assume responsibility for that in
duke@435 2866 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2867 // continuation_for_implicit_division_by_zero_exception. All other
duke@435 2868 // implicit exceptions (e.g., NullPointerException or
duke@435 2869 // AbstractMethodError on entry) are either at call sites or
duke@435 2870 // otherwise assume that stack unwinding will be initiated, so
duke@435 2871 // caller saved registers were assumed volatile in the compiler.
duke@435 2872 address generate_throw_exception(const char* name,
duke@435 2873 address runtime_entry,
duke@435 2874 bool restore_saved_exception_pc) {
duke@435 2875 // Information about frame layout at time of blocking runtime call.
duke@435 2876 // Note that we only have to preserve callee-saved registers since
duke@435 2877 // the compilers are responsible for supplying a continuation point
duke@435 2878 // if they expect all registers to be preserved.
duke@435 2879 enum layout {
duke@435 2880 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
duke@435 2881 rbp_off2,
duke@435 2882 return_off,
duke@435 2883 return_off2,
duke@435 2884 framesize // inclusive of return address
duke@435 2885 };
duke@435 2886
duke@435 2887 int insts_size = 512;
duke@435 2888 int locs_size = 64;
duke@435 2889
duke@435 2890 CodeBuffer code(name, insts_size, locs_size);
duke@435 2891 OopMapSet* oop_maps = new OopMapSet();
duke@435 2892 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2893
duke@435 2894 address start = __ pc();
duke@435 2895
duke@435 2896 // This is an inlined and slightly modified version of call_VM
duke@435 2897 // which has the ability to fetch the return PC out of
duke@435 2898 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2899 // differently than the real call_VM
duke@435 2900 if (restore_saved_exception_pc) {
never@739 2901 __ movptr(rax,
never@739 2902 Address(r15_thread,
never@739 2903 in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2904 __ push(rax);
duke@435 2905 }
duke@435 2906
duke@435 2907 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2908
duke@435 2909 assert(is_even(framesize/2), "sp not 16-byte aligned");
duke@435 2910
duke@435 2911 // return address and rbp are already in place
never@739 2912 __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
duke@435 2913
duke@435 2914 int frame_complete = __ pc() - start;
duke@435 2915
duke@435 2916 // Set up last_Java_sp and last_Java_fp
duke@435 2917 __ set_last_Java_frame(rsp, rbp, NULL);
duke@435 2918
duke@435 2919 // Call runtime
never@739 2920 __ movptr(c_rarg0, r15_thread);
duke@435 2921 BLOCK_COMMENT("call runtime_entry");
duke@435 2922 __ call(RuntimeAddress(runtime_entry));
duke@435 2923
duke@435 2924 // Generate oop map
duke@435 2925 OopMap* map = new OopMap(framesize, 0);
duke@435 2926
duke@435 2927 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2928
duke@435 2929 __ reset_last_Java_frame(true, false);
duke@435 2930
duke@435 2931 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2932
duke@435 2933 // check for pending exceptions
duke@435 2934 #ifdef ASSERT
duke@435 2935 Label L;
never@739 2936 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
never@739 2937 (int32_t) NULL_WORD);
duke@435 2938 __ jcc(Assembler::notEqual, L);
duke@435 2939 __ should_not_reach_here();
duke@435 2940 __ bind(L);
duke@435 2941 #endif // ASSERT
duke@435 2942 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2943
duke@435 2944
duke@435 2945 // codeBlob framesize is in words (not VMRegImpl::slot_size)
duke@435 2946 RuntimeStub* stub =
duke@435 2947 RuntimeStub::new_runtime_stub(name,
duke@435 2948 &code,
duke@435 2949 frame_complete,
duke@435 2950 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
duke@435 2951 oop_maps, false);
duke@435 2952 return stub->entry_point();
duke@435 2953 }
duke@435 2954
duke@435 2955 // Initialization
duke@435 2956 void generate_initial() {
duke@435 2957 // Generates all stubs and initializes the entry points
duke@435 2958
duke@435 2959 // This platform-specific stub is needed by generate_call_stub()
never@739 2960 StubRoutines::x86::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
duke@435 2961
duke@435 2962 // entry points that exist in all platforms Note: This is code
duke@435 2963 // that could be shared among different platforms - however the
duke@435 2964 // benefit seems to be smaller than the disadvantage of having a
duke@435 2965 // much more complicated generator structure. See also comment in
duke@435 2966 // stubRoutines.hpp.
duke@435 2967
duke@435 2968 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2969
duke@435 2970 StubRoutines::_call_stub_entry =
duke@435 2971 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2972
duke@435 2973 // is referenced by megamorphic call
duke@435 2974 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2975
duke@435 2976 // atomic calls
duke@435 2977 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2978 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
duke@435 2979 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2980 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2981 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2982 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
duke@435 2983 StubRoutines::_fence_entry = generate_orderaccess_fence();
duke@435 2984
duke@435 2985 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2986 generate_handler_for_unsafe_access();
duke@435 2987
duke@435 2988 // platform dependent
never@739 2989 StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
never@739 2990
never@739 2991 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
duke@435 2992 }
duke@435 2993
duke@435 2994 void generate_all() {
duke@435 2995 // Generates all stubs and initializes the entry points
duke@435 2996
duke@435 2997 // These entry points require SharedInfo::stack0 to be set up in
duke@435 2998 // non-core builds and need to be relocatable, so they each
duke@435 2999 // fabricate a RuntimeStub internally.
duke@435 3000 StubRoutines::_throw_AbstractMethodError_entry =
duke@435 3001 generate_throw_exception("AbstractMethodError throw_exception",
duke@435 3002 CAST_FROM_FN_PTR(address,
duke@435 3003 SharedRuntime::
duke@435 3004 throw_AbstractMethodError),
duke@435 3005 false);
duke@435 3006
dcubed@451 3007 StubRoutines::_throw_IncompatibleClassChangeError_entry =
dcubed@451 3008 generate_throw_exception("IncompatibleClassChangeError throw_exception",
dcubed@451 3009 CAST_FROM_FN_PTR(address,
dcubed@451 3010 SharedRuntime::
dcubed@451 3011 throw_IncompatibleClassChangeError),
dcubed@451 3012 false);
dcubed@451 3013
duke@435 3014 StubRoutines::_throw_ArithmeticException_entry =
duke@435 3015 generate_throw_exception("ArithmeticException throw_exception",
duke@435 3016 CAST_FROM_FN_PTR(address,
duke@435 3017 SharedRuntime::
duke@435 3018 throw_ArithmeticException),
duke@435 3019 true);
duke@435 3020
duke@435 3021 StubRoutines::_throw_NullPointerException_entry =
duke@435 3022 generate_throw_exception("NullPointerException throw_exception",
duke@435 3023 CAST_FROM_FN_PTR(address,
duke@435 3024 SharedRuntime::
duke@435 3025 throw_NullPointerException),
duke@435 3026 true);
duke@435 3027
duke@435 3028 StubRoutines::_throw_NullPointerException_at_call_entry =
duke@435 3029 generate_throw_exception("NullPointerException at call throw_exception",
duke@435 3030 CAST_FROM_FN_PTR(address,
duke@435 3031 SharedRuntime::
duke@435 3032 throw_NullPointerException_at_call),
duke@435 3033 false);
duke@435 3034
duke@435 3035 StubRoutines::_throw_StackOverflowError_entry =
duke@435 3036 generate_throw_exception("StackOverflowError throw_exception",
duke@435 3037 CAST_FROM_FN_PTR(address,
duke@435 3038 SharedRuntime::
duke@435 3039 throw_StackOverflowError),
duke@435 3040 false);
duke@435 3041
duke@435 3042 // entry points that are platform specific
never@739 3043 StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
never@739 3044 StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
never@739 3045 StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
never@739 3046 StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
never@739 3047
never@739 3048 StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
never@739 3049 StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
never@739 3050 StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
never@739 3051 StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
duke@435 3052
duke@435 3053 // support for verify_oop (must happen after universe_init)
duke@435 3054 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 3055
duke@435 3056 // arraycopy stubs used by compilers
duke@435 3057 generate_arraycopy_stubs();
twisti@1543 3058
never@1609 3059 generate_math_stubs();
duke@435 3060 }
duke@435 3061
duke@435 3062 public:
duke@435 3063 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3064 if (all) {
duke@435 3065 generate_all();
duke@435 3066 } else {
duke@435 3067 generate_initial();
duke@435 3068 }
duke@435 3069 }
duke@435 3070 }; // end class declaration
duke@435 3071
duke@435 3072 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 3073 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 3074 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 3075 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 3076 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 3077
duke@435 3078 address StubGenerator::byte_copy_entry = NULL;
duke@435 3079 address StubGenerator::short_copy_entry = NULL;
duke@435 3080 address StubGenerator::int_copy_entry = NULL;
duke@435 3081 address StubGenerator::long_copy_entry = NULL;
duke@435 3082 address StubGenerator::oop_copy_entry = NULL;
duke@435 3083
duke@435 3084 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3085
duke@435 3086 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3087 StubGenerator g(code, all);
duke@435 3088 }

mercurial