src/share/vm/memory/defNewGeneration.cpp

Mon, 23 Jun 2008 16:49:37 -0700

author
ysr
date
Mon, 23 Jun 2008 16:49:37 -0700
changeset 782
60fb9c4db4e6
parent 777
37f87013dfd8
child 791
1ee8caae33af
permissions
-rw-r--r--

6718086: CMS assert: _concurrent_iteration_safe_limit update missed
Summary: Initialize the field correctly in ContiguousSpace's constructor and initialize() methods, using the latter for the survivor spaces upon initial construction or a subsequent resizing of the young generation. Add some missing Space sub-class constructors.
Reviewed-by: apetrusenko

duke@435 1 /*
duke@435 2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_defNewGeneration.cpp.incl"
duke@435 27
duke@435 28 //
duke@435 29 // DefNewGeneration functions.
duke@435 30
duke@435 31 // Methods of protected closure types.
duke@435 32
duke@435 33 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
duke@435 34 assert(g->level() == 0, "Optimized for youngest gen.");
duke@435 35 }
duke@435 36 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
duke@435 37 assert(false, "Do not call.");
duke@435 38 }
duke@435 39 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
duke@435 40 return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
duke@435 41 }
duke@435 42
duke@435 43 DefNewGeneration::KeepAliveClosure::
duke@435 44 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
duke@435 45 GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
duke@435 46 assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
duke@435 47 _rs = (CardTableRS*)rs;
duke@435 48 }
duke@435 49
coleenp@548 50 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
coleenp@548 51 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
duke@435 52
duke@435 53
duke@435 54 DefNewGeneration::FastKeepAliveClosure::
duke@435 55 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
duke@435 56 DefNewGeneration::KeepAliveClosure(cl) {
duke@435 57 _boundary = g->reserved().end();
duke@435 58 }
duke@435 59
coleenp@548 60 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
coleenp@548 61 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
duke@435 62
duke@435 63 DefNewGeneration::EvacuateFollowersClosure::
duke@435 64 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 65 ScanClosure* cur, ScanClosure* older) :
duke@435 66 _gch(gch), _level(level),
duke@435 67 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 68 {}
duke@435 69
duke@435 70 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
duke@435 71 do {
duke@435 72 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 73 _scan_older);
duke@435 74 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 75 }
duke@435 76
duke@435 77 DefNewGeneration::FastEvacuateFollowersClosure::
duke@435 78 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
duke@435 79 DefNewGeneration* gen,
duke@435 80 FastScanClosure* cur, FastScanClosure* older) :
duke@435 81 _gch(gch), _level(level), _gen(gen),
duke@435 82 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 83 {}
duke@435 84
duke@435 85 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
duke@435 86 do {
duke@435 87 _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
duke@435 88 _scan_older);
duke@435 89 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 90 guarantee(_gen->promo_failure_scan_stack() == NULL
duke@435 91 || _gen->promo_failure_scan_stack()->length() == 0,
duke@435 92 "Failed to finish scan");
duke@435 93 }
duke@435 94
duke@435 95 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 96 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 97 {
duke@435 98 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 99 _boundary = _g->reserved().end();
duke@435 100 }
duke@435 101
coleenp@548 102 void ScanClosure::do_oop(oop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 103 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
coleenp@548 104
duke@435 105 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
duke@435 106 OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
duke@435 107 {
duke@435 108 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 109 _boundary = _g->reserved().end();
duke@435 110 }
duke@435 111
coleenp@548 112 void FastScanClosure::do_oop(oop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 113 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
coleenp@548 114
duke@435 115 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
duke@435 116 OopClosure(g->ref_processor()), _g(g)
duke@435 117 {
duke@435 118 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 119 _boundary = _g->reserved().end();
duke@435 120 }
duke@435 121
coleenp@548 122 void ScanWeakRefClosure::do_oop(oop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 123 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
coleenp@548 124
coleenp@548 125 void FilteringClosure::do_oop(oop* p) { FilteringClosure::do_oop_work(p); }
coleenp@548 126 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
duke@435 127
duke@435 128 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
duke@435 129 size_t initial_size,
duke@435 130 int level,
duke@435 131 const char* policy)
duke@435 132 : Generation(rs, initial_size, level),
duke@435 133 _objs_with_preserved_marks(NULL),
duke@435 134 _preserved_marks_of_objs(NULL),
duke@435 135 _promo_failure_scan_stack(NULL),
duke@435 136 _promo_failure_drain_in_progress(false),
duke@435 137 _should_allocate_from_space(false)
duke@435 138 {
duke@435 139 MemRegion cmr((HeapWord*)_virtual_space.low(),
duke@435 140 (HeapWord*)_virtual_space.high());
duke@435 141 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 142
duke@435 143 if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
duke@435 144 _eden_space = new ConcEdenSpace(this);
duke@435 145 } else {
duke@435 146 _eden_space = new EdenSpace(this);
duke@435 147 }
duke@435 148 _from_space = new ContiguousSpace();
duke@435 149 _to_space = new ContiguousSpace();
duke@435 150
duke@435 151 if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
duke@435 152 vm_exit_during_initialization("Could not allocate a new gen space");
duke@435 153
duke@435 154 // Compute the maximum eden and survivor space sizes. These sizes
duke@435 155 // are computed assuming the entire reserved space is committed.
duke@435 156 // These values are exported as performance counters.
duke@435 157 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 158 uintx size = _virtual_space.reserved_size();
duke@435 159 _max_survivor_size = compute_survivor_size(size, alignment);
duke@435 160 _max_eden_size = size - (2*_max_survivor_size);
duke@435 161
duke@435 162 // allocate the performance counters
duke@435 163
duke@435 164 // Generation counters -- generation 0, 3 subspaces
duke@435 165 _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
duke@435 166 _gc_counters = new CollectorCounters(policy, 0);
duke@435 167
duke@435 168 _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
duke@435 169 _gen_counters);
duke@435 170 _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
duke@435 171 _gen_counters);
duke@435 172 _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
duke@435 173 _gen_counters);
duke@435 174
duke@435 175 compute_space_boundaries(0);
duke@435 176 update_counters();
duke@435 177 _next_gen = NULL;
duke@435 178 _tenuring_threshold = MaxTenuringThreshold;
duke@435 179 _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
duke@435 180 }
duke@435 181
duke@435 182 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size) {
duke@435 183 uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 184
duke@435 185 // Compute sizes
duke@435 186 uintx size = _virtual_space.committed_size();
duke@435 187 uintx survivor_size = compute_survivor_size(size, alignment);
duke@435 188 uintx eden_size = size - (2*survivor_size);
duke@435 189 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 190
duke@435 191 if (eden_size < minimum_eden_size) {
duke@435 192 // May happen due to 64Kb rounding, if so adjust eden size back up
duke@435 193 minimum_eden_size = align_size_up(minimum_eden_size, alignment);
duke@435 194 uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
duke@435 195 uintx unaligned_survivor_size =
duke@435 196 align_size_down(maximum_survivor_size, alignment);
duke@435 197 survivor_size = MAX2(unaligned_survivor_size, alignment);
duke@435 198 eden_size = size - (2*survivor_size);
duke@435 199 assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
duke@435 200 assert(eden_size >= minimum_eden_size, "just checking");
duke@435 201 }
duke@435 202
duke@435 203 char *eden_start = _virtual_space.low();
duke@435 204 char *from_start = eden_start + eden_size;
duke@435 205 char *to_start = from_start + survivor_size;
duke@435 206 char *to_end = to_start + survivor_size;
duke@435 207
duke@435 208 assert(to_end == _virtual_space.high(), "just checking");
duke@435 209 assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
duke@435 210 assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
duke@435 211 assert(Space::is_aligned((HeapWord*)to_start), "checking alignment");
duke@435 212
duke@435 213 MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
duke@435 214 MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
duke@435 215 MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
duke@435 216
ysr@777 217 eden()->set_bounds(edenMR);
ysr@777 218 if (minimum_eden_size == 0) {
ysr@777 219 // The "minimum_eden_size" is really the amount of eden occupied by
ysr@777 220 // allocated objects -- if this is zero, then we can clear the space.
ysr@777 221 eden()->clear();
ysr@777 222 } else {
ysr@777 223 // Otherwise, we will not have cleared eden. This can cause newly
ysr@777 224 // expanded space not to be mangled if using ZapUnusedHeapArea.
ysr@777 225 // We explicitly do such mangling here.
ysr@777 226 if (ZapUnusedHeapArea) {
ysr@777 227 eden()->mangle_unused_area();
ysr@777 228 }
duke@435 229 }
ysr@782 230 from()->initialize(fromMR, true /* clear */);
ysr@782 231 to()->initialize( toMR, true /* clear */);
ysr@777 232 // Make sure we compact eden, then from.
duke@435 233 // The to-space is normally empty before a compaction so need
duke@435 234 // not be considered. The exception is during promotion
duke@435 235 // failure handling when to-space can contain live objects.
ysr@777 236 eden()->set_next_compaction_space(from());
duke@435 237 from()->set_next_compaction_space(NULL);
duke@435 238 }
duke@435 239
duke@435 240 void DefNewGeneration::swap_spaces() {
duke@435 241 ContiguousSpace* s = from();
duke@435 242 _from_space = to();
duke@435 243 _to_space = s;
duke@435 244 eden()->set_next_compaction_space(from());
duke@435 245 // The to-space is normally empty before a compaction so need
duke@435 246 // not be considered. The exception is during promotion
duke@435 247 // failure handling when to-space can contain live objects.
duke@435 248 from()->set_next_compaction_space(NULL);
duke@435 249
duke@435 250 if (UsePerfData) {
duke@435 251 CSpaceCounters* c = _from_counters;
duke@435 252 _from_counters = _to_counters;
duke@435 253 _to_counters = c;
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 bool DefNewGeneration::expand(size_t bytes) {
duke@435 258 MutexLocker x(ExpandHeap_lock);
duke@435 259 bool success = _virtual_space.expand_by(bytes);
duke@435 260
duke@435 261 // Do not attempt an expand-to-the reserve size. The
duke@435 262 // request should properly observe the maximum size of
duke@435 263 // the generation so an expand-to-reserve should be
duke@435 264 // unnecessary. Also a second call to expand-to-reserve
duke@435 265 // value potentially can cause an undue expansion.
duke@435 266 // For example if the first expand fail for unknown reasons,
duke@435 267 // but the second succeeds and expands the heap to its maximum
duke@435 268 // value.
duke@435 269 if (GC_locker::is_active()) {
duke@435 270 if (PrintGC && Verbose) {
duke@435 271 gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275 return success;
duke@435 276 }
duke@435 277
duke@435 278
duke@435 279 void DefNewGeneration::compute_new_size() {
duke@435 280 // This is called after a gc that includes the following generation
duke@435 281 // (which is required to exist.) So from-space will normally be empty.
duke@435 282 // Note that we check both spaces, since if scavenge failed they revert roles.
duke@435 283 // If not we bail out (otherwise we would have to relocate the objects)
duke@435 284 if (!from()->is_empty() || !to()->is_empty()) {
duke@435 285 return;
duke@435 286 }
duke@435 287
duke@435 288 int next_level = level() + 1;
duke@435 289 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 290 assert(next_level < gch->_n_gens,
duke@435 291 "DefNewGeneration cannot be an oldest gen");
duke@435 292
duke@435 293 Generation* next_gen = gch->_gens[next_level];
duke@435 294 size_t old_size = next_gen->capacity();
duke@435 295 size_t new_size_before = _virtual_space.committed_size();
duke@435 296 size_t min_new_size = spec()->init_size();
duke@435 297 size_t max_new_size = reserved().byte_size();
duke@435 298 assert(min_new_size <= new_size_before &&
duke@435 299 new_size_before <= max_new_size,
duke@435 300 "just checking");
duke@435 301 // All space sizes must be multiples of Generation::GenGrain.
duke@435 302 size_t alignment = Generation::GenGrain;
duke@435 303
duke@435 304 // Compute desired new generation size based on NewRatio and
duke@435 305 // NewSizeThreadIncrease
duke@435 306 size_t desired_new_size = old_size/NewRatio;
duke@435 307 int threads_count = Threads::number_of_non_daemon_threads();
duke@435 308 size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
duke@435 309 desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
duke@435 310
duke@435 311 // Adjust new generation size
duke@435 312 desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
duke@435 313 assert(desired_new_size <= max_new_size, "just checking");
duke@435 314
duke@435 315 bool changed = false;
duke@435 316 if (desired_new_size > new_size_before) {
duke@435 317 size_t change = desired_new_size - new_size_before;
duke@435 318 assert(change % alignment == 0, "just checking");
duke@435 319 if (expand(change)) {
duke@435 320 changed = true;
duke@435 321 }
duke@435 322 // If the heap failed to expand to the desired size,
duke@435 323 // "changed" will be false. If the expansion failed
duke@435 324 // (and at this point it was expected to succeed),
duke@435 325 // ignore the failure (leaving "changed" as false).
duke@435 326 }
duke@435 327 if (desired_new_size < new_size_before && eden()->is_empty()) {
duke@435 328 // bail out of shrinking if objects in eden
duke@435 329 size_t change = new_size_before - desired_new_size;
duke@435 330 assert(change % alignment == 0, "just checking");
duke@435 331 _virtual_space.shrink_by(change);
duke@435 332 changed = true;
duke@435 333 }
duke@435 334 if (changed) {
duke@435 335 compute_space_boundaries(eden()->used());
duke@435 336 MemRegion cmr((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high());
duke@435 337 Universe::heap()->barrier_set()->resize_covered_region(cmr);
duke@435 338 if (Verbose && PrintGC) {
duke@435 339 size_t new_size_after = _virtual_space.committed_size();
duke@435 340 size_t eden_size_after = eden()->capacity();
duke@435 341 size_t survivor_size_after = from()->capacity();
duke@435 342 gclog_or_tty->print("New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden="
duke@435 343 SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
duke@435 344 new_size_before/K, new_size_after/K, eden_size_after/K, survivor_size_after/K);
duke@435 345 if (WizardMode) {
duke@435 346 gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
duke@435 347 thread_increase_size/K, threads_count);
duke@435 348 }
duke@435 349 gclog_or_tty->cr();
duke@435 350 }
duke@435 351 }
duke@435 352 }
duke@435 353
duke@435 354 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
duke@435 355 // $$$ This may be wrong in case of "scavenge failure"?
duke@435 356 eden()->object_iterate(cl);
duke@435 357 }
duke@435 358
duke@435 359 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
duke@435 360 assert(false, "NYI -- are you sure you want to call this?");
duke@435 361 }
duke@435 362
duke@435 363
duke@435 364 size_t DefNewGeneration::capacity() const {
duke@435 365 return eden()->capacity()
duke@435 366 + from()->capacity(); // to() is only used during scavenge
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 size_t DefNewGeneration::used() const {
duke@435 371 return eden()->used()
duke@435 372 + from()->used(); // to() is only used during scavenge
duke@435 373 }
duke@435 374
duke@435 375
duke@435 376 size_t DefNewGeneration::free() const {
duke@435 377 return eden()->free()
duke@435 378 + from()->free(); // to() is only used during scavenge
duke@435 379 }
duke@435 380
duke@435 381 size_t DefNewGeneration::max_capacity() const {
duke@435 382 const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
duke@435 383 const size_t reserved_bytes = reserved().byte_size();
duke@435 384 return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
duke@435 385 }
duke@435 386
duke@435 387 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
duke@435 388 return eden()->free();
duke@435 389 }
duke@435 390
duke@435 391 size_t DefNewGeneration::capacity_before_gc() const {
duke@435 392 return eden()->capacity();
duke@435 393 }
duke@435 394
duke@435 395 size_t DefNewGeneration::contiguous_available() const {
duke@435 396 return eden()->free();
duke@435 397 }
duke@435 398
duke@435 399
duke@435 400 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
duke@435 401 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
duke@435 402
duke@435 403 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
duke@435 404 eden()->object_iterate(blk);
duke@435 405 from()->object_iterate(blk);
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 void DefNewGeneration::space_iterate(SpaceClosure* blk,
duke@435 410 bool usedOnly) {
duke@435 411 blk->do_space(eden());
duke@435 412 blk->do_space(from());
duke@435 413 blk->do_space(to());
duke@435 414 }
duke@435 415
duke@435 416 // The last collection bailed out, we are running out of heap space,
duke@435 417 // so we try to allocate the from-space, too.
duke@435 418 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
duke@435 419 HeapWord* result = NULL;
duke@435 420 if (PrintGC && Verbose) {
duke@435 421 gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
duke@435 422 " will_fail: %s"
duke@435 423 " heap_lock: %s"
duke@435 424 " free: " SIZE_FORMAT,
duke@435 425 size,
duke@435 426 GenCollectedHeap::heap()->incremental_collection_will_fail() ? "true" : "false",
duke@435 427 Heap_lock->is_locked() ? "locked" : "unlocked",
duke@435 428 from()->free());
duke@435 429 }
duke@435 430 if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
duke@435 431 if (Heap_lock->owned_by_self() ||
duke@435 432 (SafepointSynchronize::is_at_safepoint() &&
duke@435 433 Thread::current()->is_VM_thread())) {
duke@435 434 // If the Heap_lock is not locked by this thread, this will be called
duke@435 435 // again later with the Heap_lock held.
duke@435 436 result = from()->allocate(size);
duke@435 437 } else if (PrintGC && Verbose) {
duke@435 438 gclog_or_tty->print_cr(" Heap_lock is not owned by self");
duke@435 439 }
duke@435 440 } else if (PrintGC && Verbose) {
duke@435 441 gclog_or_tty->print_cr(" should_allocate_from_space: NOT");
duke@435 442 }
duke@435 443 if (PrintGC && Verbose) {
duke@435 444 gclog_or_tty->print_cr(" returns %s", result == NULL ? "NULL" : "object");
duke@435 445 }
duke@435 446 return result;
duke@435 447 }
duke@435 448
duke@435 449 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
duke@435 450 bool is_tlab,
duke@435 451 bool parallel) {
duke@435 452 // We don't attempt to expand the young generation (but perhaps we should.)
duke@435 453 return allocate(size, is_tlab);
duke@435 454 }
duke@435 455
duke@435 456
duke@435 457 void DefNewGeneration::collect(bool full,
duke@435 458 bool clear_all_soft_refs,
duke@435 459 size_t size,
duke@435 460 bool is_tlab) {
duke@435 461 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 462 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 463 _next_gen = gch->next_gen(this);
duke@435 464 assert(_next_gen != NULL,
duke@435 465 "This must be the youngest gen, and not the only gen");
duke@435 466
duke@435 467 // If the next generation is too full to accomodate promotion
duke@435 468 // from this generation, pass on collection; let the next generation
duke@435 469 // do it.
duke@435 470 if (!collection_attempt_is_safe()) {
duke@435 471 gch->set_incremental_collection_will_fail();
duke@435 472 return;
duke@435 473 }
duke@435 474 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 475
duke@435 476 init_assuming_no_promotion_failure();
duke@435 477
duke@435 478 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 479 // Capture heap used before collection (for printing).
duke@435 480 size_t gch_prev_used = gch->used();
duke@435 481
duke@435 482 SpecializationStats::clear();
duke@435 483
duke@435 484 // These can be shared for all code paths
duke@435 485 IsAliveClosure is_alive(this);
duke@435 486 ScanWeakRefClosure scan_weak_ref(this);
duke@435 487
duke@435 488 age_table()->clear();
duke@435 489 to()->clear();
duke@435 490
duke@435 491 gch->rem_set()->prepare_for_younger_refs_iterate(false);
duke@435 492
duke@435 493 assert(gch->no_allocs_since_save_marks(0),
duke@435 494 "save marks have not been newly set.");
duke@435 495
duke@435 496 // Weak refs.
duke@435 497 // FIXME: Are these storage leaks, or are they resource objects?
duke@435 498 #ifdef COMPILER2
duke@435 499 ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy();
duke@435 500 #else
duke@435 501 ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy();
duke@435 502 #endif // COMPILER2
duke@435 503
duke@435 504 // Not very pretty.
duke@435 505 CollectorPolicy* cp = gch->collector_policy();
duke@435 506
duke@435 507 FastScanClosure fsc_with_no_gc_barrier(this, false);
duke@435 508 FastScanClosure fsc_with_gc_barrier(this, true);
duke@435 509
duke@435 510 set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
duke@435 511 FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
duke@435 512 &fsc_with_no_gc_barrier,
duke@435 513 &fsc_with_gc_barrier);
duke@435 514
duke@435 515 assert(gch->no_allocs_since_save_marks(0),
duke@435 516 "save marks have not been newly set.");
duke@435 517
duke@435 518 gch->gen_process_strong_roots(_level,
duke@435 519 true, // Process younger gens, if any, as
duke@435 520 // strong roots.
duke@435 521 false,// not collecting permanent generation.
duke@435 522 SharedHeap::SO_AllClasses,
duke@435 523 &fsc_with_gc_barrier,
duke@435 524 &fsc_with_no_gc_barrier);
duke@435 525
duke@435 526 // "evacuate followers".
duke@435 527 evacuate_followers.do_void();
duke@435 528
duke@435 529 FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
duke@435 530 ref_processor()->process_discovered_references(
duke@435 531 soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers, NULL);
duke@435 532 if (!promotion_failed()) {
duke@435 533 // Swap the survivor spaces.
duke@435 534 eden()->clear();
duke@435 535 from()->clear();
duke@435 536 swap_spaces();
duke@435 537
duke@435 538 assert(to()->is_empty(), "to space should be empty now");
duke@435 539
duke@435 540 // Set the desired survivor size to half the real survivor space
duke@435 541 _tenuring_threshold =
duke@435 542 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 543
duke@435 544 if (PrintGC && !PrintGCDetails) {
duke@435 545 gch->print_heap_change(gch_prev_used);
duke@435 546 }
duke@435 547 } else {
duke@435 548 assert(HandlePromotionFailure,
duke@435 549 "Should not be here unless promotion failure handling is on");
duke@435 550 assert(_promo_failure_scan_stack != NULL &&
duke@435 551 _promo_failure_scan_stack->length() == 0, "post condition");
duke@435 552
duke@435 553 // deallocate stack and it's elements
duke@435 554 delete _promo_failure_scan_stack;
duke@435 555 _promo_failure_scan_stack = NULL;
duke@435 556
duke@435 557 remove_forwarding_pointers();
duke@435 558 if (PrintGCDetails) {
duke@435 559 gclog_or_tty->print(" (promotion failed)");
duke@435 560 }
duke@435 561 // Add to-space to the list of space to compact
duke@435 562 // when a promotion failure has occurred. In that
duke@435 563 // case there can be live objects in to-space
duke@435 564 // as a result of a partial evacuation of eden
duke@435 565 // and from-space.
duke@435 566 swap_spaces(); // For the sake of uniformity wrt ParNewGeneration::collect().
duke@435 567 from()->set_next_compaction_space(to());
duke@435 568 gch->set_incremental_collection_will_fail();
duke@435 569
duke@435 570 // Reset the PromotionFailureALot counters.
duke@435 571 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 572 }
duke@435 573 // set new iteration safe limit for the survivor spaces
duke@435 574 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 575 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 576 SpecializationStats::print();
duke@435 577 update_time_of_last_gc(os::javaTimeMillis());
duke@435 578 }
duke@435 579
duke@435 580 class RemoveForwardPointerClosure: public ObjectClosure {
duke@435 581 public:
duke@435 582 void do_object(oop obj) {
duke@435 583 obj->init_mark();
duke@435 584 }
duke@435 585 };
duke@435 586
duke@435 587 void DefNewGeneration::init_assuming_no_promotion_failure() {
duke@435 588 _promotion_failed = false;
duke@435 589 from()->set_next_compaction_space(NULL);
duke@435 590 }
duke@435 591
duke@435 592 void DefNewGeneration::remove_forwarding_pointers() {
duke@435 593 RemoveForwardPointerClosure rspc;
duke@435 594 eden()->object_iterate(&rspc);
duke@435 595 from()->object_iterate(&rspc);
duke@435 596 // Now restore saved marks, if any.
duke@435 597 if (_objs_with_preserved_marks != NULL) {
duke@435 598 assert(_preserved_marks_of_objs != NULL, "Both or none.");
duke@435 599 assert(_objs_with_preserved_marks->length() ==
duke@435 600 _preserved_marks_of_objs->length(), "Both or none.");
duke@435 601 for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
duke@435 602 oop obj = _objs_with_preserved_marks->at(i);
duke@435 603 markOop m = _preserved_marks_of_objs->at(i);
duke@435 604 obj->set_mark(m);
duke@435 605 }
duke@435 606 delete _objs_with_preserved_marks;
duke@435 607 delete _preserved_marks_of_objs;
duke@435 608 _objs_with_preserved_marks = NULL;
duke@435 609 _preserved_marks_of_objs = NULL;
duke@435 610 }
duke@435 611 }
duke@435 612
duke@435 613 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 614 if (m->must_be_preserved_for_promotion_failure(obj)) {
duke@435 615 if (_objs_with_preserved_marks == NULL) {
duke@435 616 assert(_preserved_marks_of_objs == NULL, "Both or none.");
duke@435 617 _objs_with_preserved_marks = new (ResourceObj::C_HEAP)
duke@435 618 GrowableArray<oop>(PreserveMarkStackSize, true);
duke@435 619 _preserved_marks_of_objs = new (ResourceObj::C_HEAP)
duke@435 620 GrowableArray<markOop>(PreserveMarkStackSize, true);
duke@435 621 }
duke@435 622 _objs_with_preserved_marks->push(obj);
duke@435 623 _preserved_marks_of_objs->push(m);
duke@435 624 }
duke@435 625 }
duke@435 626
duke@435 627 void DefNewGeneration::handle_promotion_failure(oop old) {
duke@435 628 preserve_mark_if_necessary(old, old->mark());
duke@435 629 // forward to self
duke@435 630 old->forward_to(old);
duke@435 631 _promotion_failed = true;
duke@435 632
duke@435 633 push_on_promo_failure_scan_stack(old);
duke@435 634
duke@435 635 if (!_promo_failure_drain_in_progress) {
duke@435 636 // prevent recursion in copy_to_survivor_space()
duke@435 637 _promo_failure_drain_in_progress = true;
duke@435 638 drain_promo_failure_scan_stack();
duke@435 639 _promo_failure_drain_in_progress = false;
duke@435 640 }
duke@435 641 }
duke@435 642
coleenp@548 643 oop DefNewGeneration::copy_to_survivor_space(oop old) {
duke@435 644 assert(is_in_reserved(old) && !old->is_forwarded(),
duke@435 645 "shouldn't be scavenging this oop");
duke@435 646 size_t s = old->size();
duke@435 647 oop obj = NULL;
duke@435 648
duke@435 649 // Try allocating obj in to-space (unless too old)
duke@435 650 if (old->age() < tenuring_threshold()) {
duke@435 651 obj = (oop) to()->allocate(s);
duke@435 652 }
duke@435 653
duke@435 654 // Otherwise try allocating obj tenured
duke@435 655 if (obj == NULL) {
coleenp@548 656 obj = _next_gen->promote(old, s);
duke@435 657 if (obj == NULL) {
duke@435 658 if (!HandlePromotionFailure) {
duke@435 659 // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
duke@435 660 // is incorrectly set. In any case, its seriously wrong to be here!
duke@435 661 vm_exit_out_of_memory(s*wordSize, "promotion");
duke@435 662 }
duke@435 663
duke@435 664 handle_promotion_failure(old);
duke@435 665 return old;
duke@435 666 }
duke@435 667 } else {
duke@435 668 // Prefetch beyond obj
duke@435 669 const intx interval = PrefetchCopyIntervalInBytes;
duke@435 670 Prefetch::write(obj, interval);
duke@435 671
duke@435 672 // Copy obj
duke@435 673 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
duke@435 674
duke@435 675 // Increment age if obj still in new generation
duke@435 676 obj->incr_age();
duke@435 677 age_table()->add(obj, s);
duke@435 678 }
duke@435 679
duke@435 680 // Done, insert forward pointer to obj in this header
duke@435 681 old->forward_to(obj);
duke@435 682
duke@435 683 return obj;
duke@435 684 }
duke@435 685
duke@435 686 void DefNewGeneration::push_on_promo_failure_scan_stack(oop obj) {
duke@435 687 if (_promo_failure_scan_stack == NULL) {
duke@435 688 _promo_failure_scan_stack = new (ResourceObj::C_HEAP)
duke@435 689 GrowableArray<oop>(40, true);
duke@435 690 }
duke@435 691
duke@435 692 _promo_failure_scan_stack->push(obj);
duke@435 693 }
duke@435 694
duke@435 695 void DefNewGeneration::drain_promo_failure_scan_stack() {
duke@435 696 assert(_promo_failure_scan_stack != NULL, "precondition");
duke@435 697
duke@435 698 while (_promo_failure_scan_stack->length() > 0) {
duke@435 699 oop obj = _promo_failure_scan_stack->pop();
duke@435 700 obj->oop_iterate(_promo_failure_scan_stack_closure);
duke@435 701 }
duke@435 702 }
duke@435 703
duke@435 704 void DefNewGeneration::save_marks() {
duke@435 705 eden()->set_saved_mark();
duke@435 706 to()->set_saved_mark();
duke@435 707 from()->set_saved_mark();
duke@435 708 }
duke@435 709
duke@435 710
duke@435 711 void DefNewGeneration::reset_saved_marks() {
duke@435 712 eden()->reset_saved_mark();
duke@435 713 to()->reset_saved_mark();
duke@435 714 from()->reset_saved_mark();
duke@435 715 }
duke@435 716
duke@435 717
duke@435 718 bool DefNewGeneration::no_allocs_since_save_marks() {
duke@435 719 assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
duke@435 720 assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
duke@435 721 return to()->saved_mark_at_top();
duke@435 722 }
duke@435 723
duke@435 724 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
duke@435 725 \
duke@435 726 void DefNewGeneration:: \
duke@435 727 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 728 cl->set_generation(this); \
duke@435 729 eden()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 730 to()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 731 from()->oop_since_save_marks_iterate##nv_suffix(cl); \
duke@435 732 cl->reset_generation(); \
duke@435 733 save_marks(); \
duke@435 734 }
duke@435 735
duke@435 736 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
duke@435 737
duke@435 738 #undef DefNew_SINCE_SAVE_MARKS_DEFN
duke@435 739
duke@435 740 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 741 size_t max_alloc_words) {
duke@435 742 if (requestor == this || _promotion_failed) return;
duke@435 743 assert(requestor->level() > level(), "DefNewGeneration must be youngest");
duke@435 744
duke@435 745 /* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
duke@435 746 if (to_space->top() > to_space->bottom()) {
duke@435 747 trace("to_space not empty when contribute_scratch called");
duke@435 748 }
duke@435 749 */
duke@435 750
duke@435 751 ContiguousSpace* to_space = to();
duke@435 752 assert(to_space->end() >= to_space->top(), "pointers out of order");
duke@435 753 size_t free_words = pointer_delta(to_space->end(), to_space->top());
duke@435 754 if (free_words >= MinFreeScratchWords) {
duke@435 755 ScratchBlock* sb = (ScratchBlock*)to_space->top();
duke@435 756 sb->num_words = free_words;
duke@435 757 sb->next = list;
duke@435 758 list = sb;
duke@435 759 }
duke@435 760 }
duke@435 761
duke@435 762 bool DefNewGeneration::collection_attempt_is_safe() {
duke@435 763 if (!to()->is_empty()) {
duke@435 764 return false;
duke@435 765 }
duke@435 766 if (_next_gen == NULL) {
duke@435 767 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 768 _next_gen = gch->next_gen(this);
duke@435 769 assert(_next_gen != NULL,
duke@435 770 "This must be the youngest gen, and not the only gen");
duke@435 771 }
duke@435 772
duke@435 773 // Decide if there's enough room for a full promotion
duke@435 774 // When using extremely large edens, we effectively lose a
duke@435 775 // large amount of old space. Use the "MaxLiveObjectEvacuationRatio"
duke@435 776 // flag to reduce the minimum evacuation space requirements. If
duke@435 777 // there is not enough space to evacuate eden during a scavenge,
duke@435 778 // the VM will immediately exit with an out of memory error.
duke@435 779 // This flag has not been tested
duke@435 780 // with collectors other than simple mark & sweep.
duke@435 781 //
duke@435 782 // Note that with the addition of promotion failure handling, the
duke@435 783 // VM will not immediately exit but will undo the young generation
duke@435 784 // collection. The parameter is left here for compatibility.
duke@435 785 const double evacuation_ratio = MaxLiveObjectEvacuationRatio / 100.0;
duke@435 786
duke@435 787 // worst_case_evacuation is based on "used()". For the case where this
duke@435 788 // method is called after a collection, this is still appropriate because
duke@435 789 // the case that needs to be detected is one in which a full collection
duke@435 790 // has been done and has overflowed into the young generation. In that
duke@435 791 // case a minor collection will fail (the overflow of the full collection
duke@435 792 // means there is no space in the old generation for any promotion).
duke@435 793 size_t worst_case_evacuation = (size_t)(used() * evacuation_ratio);
duke@435 794
duke@435 795 return _next_gen->promotion_attempt_is_safe(worst_case_evacuation,
duke@435 796 HandlePromotionFailure);
duke@435 797 }
duke@435 798
duke@435 799 void DefNewGeneration::gc_epilogue(bool full) {
duke@435 800 // Check if the heap is approaching full after a collection has
duke@435 801 // been done. Generally the young generation is empty at
duke@435 802 // a minimum at the end of a collection. If it is not, then
duke@435 803 // the heap is approaching full.
duke@435 804 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 805 clear_should_allocate_from_space();
duke@435 806 if (collection_attempt_is_safe()) {
duke@435 807 gch->clear_incremental_collection_will_fail();
duke@435 808 } else {
duke@435 809 gch->set_incremental_collection_will_fail();
duke@435 810 if (full) { // we seem to be running out of space
duke@435 811 set_should_allocate_from_space();
duke@435 812 }
duke@435 813 }
duke@435 814
duke@435 815 // update the generation and space performance counters
duke@435 816 update_counters();
duke@435 817 gch->collector_policy()->counters()->update_counters();
duke@435 818 }
duke@435 819
duke@435 820 void DefNewGeneration::update_counters() {
duke@435 821 if (UsePerfData) {
duke@435 822 _eden_counters->update_all();
duke@435 823 _from_counters->update_all();
duke@435 824 _to_counters->update_all();
duke@435 825 _gen_counters->update_all();
duke@435 826 }
duke@435 827 }
duke@435 828
duke@435 829 void DefNewGeneration::verify(bool allow_dirty) {
duke@435 830 eden()->verify(allow_dirty);
duke@435 831 from()->verify(allow_dirty);
duke@435 832 to()->verify(allow_dirty);
duke@435 833 }
duke@435 834
duke@435 835 void DefNewGeneration::print_on(outputStream* st) const {
duke@435 836 Generation::print_on(st);
duke@435 837 st->print(" eden");
duke@435 838 eden()->print_on(st);
duke@435 839 st->print(" from");
duke@435 840 from()->print_on(st);
duke@435 841 st->print(" to ");
duke@435 842 to()->print_on(st);
duke@435 843 }
duke@435 844
duke@435 845
duke@435 846 const char* DefNewGeneration::name() const {
duke@435 847 return "def new generation";
duke@435 848 }
coleenp@548 849
coleenp@548 850 // Moved from inline file as they are not called inline
coleenp@548 851 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
coleenp@548 852 return eden();
coleenp@548 853 }
coleenp@548 854
coleenp@548 855 HeapWord* DefNewGeneration::allocate(size_t word_size,
coleenp@548 856 bool is_tlab) {
coleenp@548 857 // This is the slow-path allocation for the DefNewGeneration.
coleenp@548 858 // Most allocations are fast-path in compiled code.
coleenp@548 859 // We try to allocate from the eden. If that works, we are happy.
coleenp@548 860 // Note that since DefNewGeneration supports lock-free allocation, we
coleenp@548 861 // have to use it here, as well.
coleenp@548 862 HeapWord* result = eden()->par_allocate(word_size);
coleenp@548 863 if (result != NULL) {
coleenp@548 864 return result;
coleenp@548 865 }
coleenp@548 866 do {
coleenp@548 867 HeapWord* old_limit = eden()->soft_end();
coleenp@548 868 if (old_limit < eden()->end()) {
coleenp@548 869 // Tell the next generation we reached a limit.
coleenp@548 870 HeapWord* new_limit =
coleenp@548 871 next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
coleenp@548 872 if (new_limit != NULL) {
coleenp@548 873 Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
coleenp@548 874 } else {
coleenp@548 875 assert(eden()->soft_end() == eden()->end(),
coleenp@548 876 "invalid state after allocation_limit_reached returned null");
coleenp@548 877 }
coleenp@548 878 } else {
coleenp@548 879 // The allocation failed and the soft limit is equal to the hard limit,
coleenp@548 880 // there are no reasons to do an attempt to allocate
coleenp@548 881 assert(old_limit == eden()->end(), "sanity check");
coleenp@548 882 break;
coleenp@548 883 }
coleenp@548 884 // Try to allocate until succeeded or the soft limit can't be adjusted
coleenp@548 885 result = eden()->par_allocate(word_size);
coleenp@548 886 } while (result == NULL);
coleenp@548 887
coleenp@548 888 // If the eden is full and the last collection bailed out, we are running
coleenp@548 889 // out of heap space, and we try to allocate the from-space, too.
coleenp@548 890 // allocate_from_space can't be inlined because that would introduce a
coleenp@548 891 // circular dependency at compile time.
coleenp@548 892 if (result == NULL) {
coleenp@548 893 result = allocate_from_space(word_size);
coleenp@548 894 }
coleenp@548 895 return result;
coleenp@548 896 }
coleenp@548 897
coleenp@548 898 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
coleenp@548 899 bool is_tlab) {
coleenp@548 900 return eden()->par_allocate(word_size);
coleenp@548 901 }
coleenp@548 902
coleenp@548 903 void DefNewGeneration::gc_prologue(bool full) {
coleenp@548 904 // Ensure that _end and _soft_end are the same in eden space.
coleenp@548 905 eden()->set_soft_end(eden()->end());
coleenp@548 906 }
coleenp@548 907
coleenp@548 908 size_t DefNewGeneration::tlab_capacity() const {
coleenp@548 909 return eden()->capacity();
coleenp@548 910 }
coleenp@548 911
coleenp@548 912 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
coleenp@548 913 return unsafe_max_alloc_nogc();
coleenp@548 914 }

mercurial