src/share/vm/opto/macro.cpp

Tue, 02 Sep 2008 15:03:05 -0700

author
never
date
Tue, 02 Sep 2008 15:03:05 -0700
changeset 753
60bc5071073f
parent 741
af945ba2e739
child 797
f8199438385b
permissions
-rw-r--r--

6738933: assert with base pointers must match with compressed oops enabled
Reviewed-by: kvn, rasbold

duke@435 1 /*
xdono@631 2 * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_macro.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 //
duke@435 30 // Replace any references to "oldref" in inputs to "use" with "newref".
duke@435 31 // Returns the number of replacements made.
duke@435 32 //
duke@435 33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
duke@435 34 int nreplacements = 0;
duke@435 35 uint req = use->req();
duke@435 36 for (uint j = 0; j < use->len(); j++) {
duke@435 37 Node *uin = use->in(j);
duke@435 38 if (uin == oldref) {
duke@435 39 if (j < req)
duke@435 40 use->set_req(j, newref);
duke@435 41 else
duke@435 42 use->set_prec(j, newref);
duke@435 43 nreplacements++;
duke@435 44 } else if (j >= req && uin == NULL) {
duke@435 45 break;
duke@435 46 }
duke@435 47 }
duke@435 48 return nreplacements;
duke@435 49 }
duke@435 50
duke@435 51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
duke@435 52 // Copy debug information and adjust JVMState information
duke@435 53 uint old_dbg_start = oldcall->tf()->domain()->cnt();
duke@435 54 uint new_dbg_start = newcall->tf()->domain()->cnt();
duke@435 55 int jvms_adj = new_dbg_start - old_dbg_start;
duke@435 56 assert (new_dbg_start == newcall->req(), "argument count mismatch");
kvn@498 57
kvn@498 58 Dict* sosn_map = new Dict(cmpkey,hashkey);
duke@435 59 for (uint i = old_dbg_start; i < oldcall->req(); i++) {
kvn@498 60 Node* old_in = oldcall->in(i);
kvn@498 61 // Clone old SafePointScalarObjectNodes, adjusting their field contents.
kvn@498 62 if (old_in->is_SafePointScalarObject()) {
kvn@498 63 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
kvn@498 64 uint old_unique = C->unique();
kvn@498 65 Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
kvn@498 66 if (old_unique != C->unique()) {
kvn@498 67 new_in = transform_later(new_in); // Register new node.
kvn@498 68 }
kvn@498 69 old_in = new_in;
kvn@498 70 }
kvn@498 71 newcall->add_req(old_in);
duke@435 72 }
kvn@498 73
duke@435 74 newcall->set_jvms(oldcall->jvms());
duke@435 75 for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 76 jvms->set_map(newcall);
duke@435 77 jvms->set_locoff(jvms->locoff()+jvms_adj);
duke@435 78 jvms->set_stkoff(jvms->stkoff()+jvms_adj);
duke@435 79 jvms->set_monoff(jvms->monoff()+jvms_adj);
kvn@498 80 jvms->set_scloff(jvms->scloff()+jvms_adj);
duke@435 81 jvms->set_endoff(jvms->endoff()+jvms_adj);
duke@435 82 }
duke@435 83 }
duke@435 84
duke@435 85 Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) {
duke@435 86 IfNode *opt_iff = transform_later(iff)->as_If();
duke@435 87
duke@435 88 // Fast path taken; set region slot 2
duke@435 89 Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) );
duke@435 90 region->init_req(2,fast_taken); // Capture fast-control
duke@435 91
duke@435 92 // Fast path not-taken, i.e. slow path
duke@435 93 Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) );
duke@435 94 return slow_taken;
duke@435 95 }
duke@435 96
duke@435 97 //--------------------copy_predefined_input_for_runtime_call--------------------
duke@435 98 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
duke@435 99 // Set fixed predefined input arguments
duke@435 100 call->init_req( TypeFunc::Control, ctrl );
duke@435 101 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
duke@435 102 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
duke@435 103 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
duke@435 104 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
duke@435 105 }
duke@435 106
duke@435 107 //------------------------------make_slow_call---------------------------------
duke@435 108 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
duke@435 109
duke@435 110 // Slow-path call
duke@435 111 int size = slow_call_type->domain()->cnt();
duke@435 112 CallNode *call = leaf_name
duke@435 113 ? (CallNode*)new (C, size) CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
duke@435 114 : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
duke@435 115
duke@435 116 // Slow path call has no side-effects, uses few values
duke@435 117 copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
duke@435 118 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
duke@435 119 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
duke@435 120 copy_call_debug_info(oldcall, call);
duke@435 121 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 122 _igvn.hash_delete(oldcall);
duke@435 123 _igvn.subsume_node(oldcall, call);
duke@435 124 transform_later(call);
duke@435 125
duke@435 126 return call;
duke@435 127 }
duke@435 128
duke@435 129 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
duke@435 130 _fallthroughproj = NULL;
duke@435 131 _fallthroughcatchproj = NULL;
duke@435 132 _ioproj_fallthrough = NULL;
duke@435 133 _ioproj_catchall = NULL;
duke@435 134 _catchallcatchproj = NULL;
duke@435 135 _memproj_fallthrough = NULL;
duke@435 136 _memproj_catchall = NULL;
duke@435 137 _resproj = NULL;
duke@435 138 for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
duke@435 139 ProjNode *pn = call->fast_out(i)->as_Proj();
duke@435 140 switch (pn->_con) {
duke@435 141 case TypeFunc::Control:
duke@435 142 {
duke@435 143 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
duke@435 144 _fallthroughproj = pn;
duke@435 145 DUIterator_Fast jmax, j = pn->fast_outs(jmax);
duke@435 146 const Node *cn = pn->fast_out(j);
duke@435 147 if (cn->is_Catch()) {
duke@435 148 ProjNode *cpn = NULL;
duke@435 149 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
duke@435 150 cpn = cn->fast_out(k)->as_Proj();
duke@435 151 assert(cpn->is_CatchProj(), "must be a CatchProjNode");
duke@435 152 if (cpn->_con == CatchProjNode::fall_through_index)
duke@435 153 _fallthroughcatchproj = cpn;
duke@435 154 else {
duke@435 155 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
duke@435 156 _catchallcatchproj = cpn;
duke@435 157 }
duke@435 158 }
duke@435 159 }
duke@435 160 break;
duke@435 161 }
duke@435 162 case TypeFunc::I_O:
duke@435 163 if (pn->_is_io_use)
duke@435 164 _ioproj_catchall = pn;
duke@435 165 else
duke@435 166 _ioproj_fallthrough = pn;
duke@435 167 break;
duke@435 168 case TypeFunc::Memory:
duke@435 169 if (pn->_is_io_use)
duke@435 170 _memproj_catchall = pn;
duke@435 171 else
duke@435 172 _memproj_fallthrough = pn;
duke@435 173 break;
duke@435 174 case TypeFunc::Parms:
duke@435 175 _resproj = pn;
duke@435 176 break;
duke@435 177 default:
duke@435 178 assert(false, "unexpected projection from allocation node.");
duke@435 179 }
duke@435 180 }
duke@435 181
duke@435 182 }
duke@435 183
kvn@508 184 // Eliminate a card mark sequence. p2x is a ConvP2XNode
kvn@508 185 void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
kvn@508 186 assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
kvn@508 187 Node *shift = p2x->unique_out();
kvn@508 188 Node *addp = shift->unique_out();
kvn@508 189 for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
kvn@508 190 Node *st = addp->last_out(j);
kvn@508 191 assert(st->is_Store(), "store required");
kvn@508 192 _igvn.replace_node(st, st->in(MemNode::Memory));
kvn@508 193 }
kvn@508 194 }
kvn@508 195
kvn@508 196 // Search for a memory operation for the specified memory slice.
kvn@688 197 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
kvn@508 198 Node *orig_mem = mem;
kvn@508 199 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@688 200 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
kvn@508 201 while (true) {
kvn@508 202 if (mem == alloc_mem || mem == start_mem ) {
kvn@508 203 return mem; // hit one of our sentinals
kvn@508 204 } else if (mem->is_MergeMem()) {
kvn@508 205 mem = mem->as_MergeMem()->memory_at(alias_idx);
kvn@508 206 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
kvn@508 207 Node *in = mem->in(0);
kvn@508 208 // we can safely skip over safepoints, calls, locks and membars because we
kvn@508 209 // already know that the object is safe to eliminate.
kvn@508 210 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
kvn@508 211 return in;
kvn@688 212 } else if (in->is_Call()) {
kvn@688 213 CallNode *call = in->as_Call();
kvn@688 214 if (!call->may_modify(tinst, phase)) {
kvn@688 215 mem = call->in(TypeFunc::Memory);
kvn@688 216 }
kvn@688 217 mem = in->in(TypeFunc::Memory);
kvn@688 218 } else if (in->is_MemBar()) {
kvn@508 219 mem = in->in(TypeFunc::Memory);
kvn@508 220 } else {
kvn@508 221 assert(false, "unexpected projection");
kvn@508 222 }
kvn@508 223 } else if (mem->is_Store()) {
kvn@508 224 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 225 int adr_idx = Compile::current()->get_alias_index(atype);
kvn@508 226 if (adr_idx == alias_idx) {
kvn@508 227 assert(atype->isa_oopptr(), "address type must be oopptr");
kvn@508 228 int adr_offset = atype->offset();
kvn@508 229 uint adr_iid = atype->is_oopptr()->instance_id();
kvn@508 230 // Array elements references have the same alias_idx
kvn@508 231 // but different offset and different instance_id.
kvn@508 232 if (adr_offset == offset && adr_iid == alloc->_idx)
kvn@508 233 return mem;
kvn@508 234 } else {
kvn@508 235 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
kvn@508 236 }
kvn@508 237 mem = mem->in(MemNode::Memory);
kvn@508 238 } else {
kvn@508 239 return mem;
kvn@508 240 }
kvn@682 241 assert(mem != orig_mem, "dead memory loop");
kvn@508 242 }
kvn@508 243 }
kvn@508 244
kvn@508 245 //
kvn@508 246 // Given a Memory Phi, compute a value Phi containing the values from stores
kvn@508 247 // on the input paths.
kvn@508 248 // Note: this function is recursive, its depth is limied by the "level" argument
kvn@508 249 // Returns the computed Phi, or NULL if it cannot compute it.
kvn@682 250 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
kvn@682 251 assert(mem->is_Phi(), "sanity");
kvn@682 252 int alias_idx = C->get_alias_index(adr_t);
kvn@682 253 int offset = adr_t->offset();
kvn@682 254 int instance_id = adr_t->instance_id();
kvn@682 255
kvn@682 256 // Check if an appropriate value phi already exists.
kvn@682 257 Node* region = mem->in(0);
kvn@682 258 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@682 259 Node* phi = region->fast_out(k);
kvn@682 260 if (phi->is_Phi() && phi != mem &&
kvn@682 261 phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
kvn@682 262 return phi;
kvn@682 263 }
kvn@682 264 }
kvn@682 265 // Check if an appropriate new value phi already exists.
kvn@682 266 Node* new_phi = NULL;
kvn@682 267 uint size = value_phis->size();
kvn@682 268 for (uint i=0; i < size; i++) {
kvn@682 269 if ( mem->_idx == value_phis->index_at(i) ) {
kvn@682 270 return value_phis->node_at(i);
kvn@682 271 }
kvn@682 272 }
kvn@508 273
kvn@508 274 if (level <= 0) {
kvn@688 275 return NULL; // Give up: phi tree too deep
kvn@508 276 }
kvn@508 277 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 278 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@508 279
kvn@508 280 uint length = mem->req();
kvn@508 281 GrowableArray <Node *> values(length, length, NULL);
kvn@508 282
kvn@682 283 // create a new Phi for the value
kvn@682 284 PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
kvn@682 285 transform_later(phi);
kvn@682 286 value_phis->push(phi, mem->_idx);
kvn@682 287
kvn@508 288 for (uint j = 1; j < length; j++) {
kvn@508 289 Node *in = mem->in(j);
kvn@508 290 if (in == NULL || in->is_top()) {
kvn@508 291 values.at_put(j, in);
kvn@508 292 } else {
kvn@688 293 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 294 if (val == start_mem || val == alloc_mem) {
kvn@508 295 // hit a sentinel, return appropriate 0 value
kvn@508 296 values.at_put(j, _igvn.zerocon(ft));
kvn@508 297 continue;
kvn@508 298 }
kvn@508 299 if (val->is_Initialize()) {
kvn@508 300 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 301 }
kvn@508 302 if (val == NULL) {
kvn@508 303 return NULL; // can't find a value on this path
kvn@508 304 }
kvn@508 305 if (val == mem) {
kvn@508 306 values.at_put(j, mem);
kvn@508 307 } else if (val->is_Store()) {
kvn@508 308 values.at_put(j, val->in(MemNode::ValueIn));
kvn@508 309 } else if(val->is_Proj() && val->in(0) == alloc) {
kvn@508 310 values.at_put(j, _igvn.zerocon(ft));
kvn@508 311 } else if (val->is_Phi()) {
kvn@682 312 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
kvn@682 313 if (val == NULL) {
kvn@682 314 return NULL;
kvn@508 315 }
kvn@682 316 values.at_put(j, val);
kvn@508 317 } else {
kvn@688 318 assert(false, "unknown node on this path");
kvn@688 319 return NULL; // unknown node on this path
kvn@508 320 }
kvn@508 321 }
kvn@508 322 }
kvn@682 323 // Set Phi's inputs
kvn@508 324 for (uint j = 1; j < length; j++) {
kvn@508 325 if (values.at(j) == mem) {
kvn@508 326 phi->init_req(j, phi);
kvn@508 327 } else {
kvn@508 328 phi->init_req(j, values.at(j));
kvn@508 329 }
kvn@508 330 }
kvn@508 331 return phi;
kvn@508 332 }
kvn@508 333
kvn@508 334 // Search the last value stored into the object's field.
kvn@508 335 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
kvn@658 336 assert(adr_t->is_known_instance_field(), "instance required");
kvn@658 337 int instance_id = adr_t->instance_id();
kvn@658 338 assert((uint)instance_id == alloc->_idx, "wrong allocation");
kvn@508 339
kvn@508 340 int alias_idx = C->get_alias_index(adr_t);
kvn@508 341 int offset = adr_t->offset();
kvn@508 342 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@508 343 Node *alloc_ctrl = alloc->in(TypeFunc::Control);
kvn@508 344 Node *alloc_mem = alloc->in(TypeFunc::Memory);
kvn@682 345 Arena *a = Thread::current()->resource_area();
kvn@682 346 VectorSet visited(a);
kvn@508 347
kvn@508 348
kvn@508 349 bool done = sfpt_mem == alloc_mem;
kvn@508 350 Node *mem = sfpt_mem;
kvn@508 351 while (!done) {
kvn@508 352 if (visited.test_set(mem->_idx)) {
kvn@508 353 return NULL; // found a loop, give up
kvn@508 354 }
kvn@688 355 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 356 if (mem == start_mem || mem == alloc_mem) {
kvn@508 357 done = true; // hit a sentinel, return appropriate 0 value
kvn@508 358 } else if (mem->is_Initialize()) {
kvn@508 359 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
kvn@508 360 if (mem == NULL) {
kvn@508 361 done = true; // Something go wrong.
kvn@508 362 } else if (mem->is_Store()) {
kvn@508 363 const TypePtr* atype = mem->as_Store()->adr_type();
kvn@508 364 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
kvn@508 365 done = true;
kvn@508 366 }
kvn@508 367 } else if (mem->is_Store()) {
kvn@508 368 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
kvn@508 369 assert(atype != NULL, "address type must be oopptr");
kvn@508 370 assert(C->get_alias_index(atype) == alias_idx &&
kvn@658 371 atype->is_known_instance_field() && atype->offset() == offset &&
kvn@508 372 atype->instance_id() == instance_id, "store is correct memory slice");
kvn@508 373 done = true;
kvn@508 374 } else if (mem->is_Phi()) {
kvn@508 375 // try to find a phi's unique input
kvn@508 376 Node *unique_input = NULL;
kvn@508 377 Node *top = C->top();
kvn@508 378 for (uint i = 1; i < mem->req(); i++) {
kvn@688 379 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
kvn@508 380 if (n == NULL || n == top || n == mem) {
kvn@508 381 continue;
kvn@508 382 } else if (unique_input == NULL) {
kvn@508 383 unique_input = n;
kvn@508 384 } else if (unique_input != n) {
kvn@508 385 unique_input = top;
kvn@508 386 break;
kvn@508 387 }
kvn@508 388 }
kvn@508 389 if (unique_input != NULL && unique_input != top) {
kvn@508 390 mem = unique_input;
kvn@508 391 } else {
kvn@508 392 done = true;
kvn@508 393 }
kvn@508 394 } else {
kvn@508 395 assert(false, "unexpected node");
kvn@508 396 }
kvn@508 397 }
kvn@508 398 if (mem != NULL) {
kvn@508 399 if (mem == start_mem || mem == alloc_mem) {
kvn@508 400 // hit a sentinel, return appropriate 0 value
kvn@508 401 return _igvn.zerocon(ft);
kvn@508 402 } else if (mem->is_Store()) {
kvn@508 403 return mem->in(MemNode::ValueIn);
kvn@508 404 } else if (mem->is_Phi()) {
kvn@508 405 // attempt to produce a Phi reflecting the values on the input paths of the Phi
kvn@682 406 Node_Stack value_phis(a, 8);
kvn@688 407 Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
kvn@508 408 if (phi != NULL) {
kvn@508 409 return phi;
kvn@682 410 } else {
kvn@682 411 // Kill all new Phis
kvn@682 412 while(value_phis.is_nonempty()) {
kvn@682 413 Node* n = value_phis.node();
kvn@682 414 _igvn.hash_delete(n);
kvn@682 415 _igvn.subsume_node(n, C->top());
kvn@682 416 value_phis.pop();
kvn@682 417 }
kvn@508 418 }
kvn@508 419 }
kvn@508 420 }
kvn@508 421 // Something go wrong.
kvn@508 422 return NULL;
kvn@508 423 }
kvn@508 424
kvn@508 425 // Check the possibility of scalar replacement.
kvn@508 426 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 427 // Scan the uses of the allocation to check for anything that would
kvn@508 428 // prevent us from eliminating it.
kvn@508 429 NOT_PRODUCT( const char* fail_eliminate = NULL; )
kvn@508 430 DEBUG_ONLY( Node* disq_node = NULL; )
kvn@508 431 bool can_eliminate = true;
kvn@508 432
kvn@508 433 Node* res = alloc->result_cast();
kvn@508 434 const TypeOopPtr* res_type = NULL;
kvn@508 435 if (res == NULL) {
kvn@508 436 // All users were eliminated.
kvn@508 437 } else if (!res->is_CheckCastPP()) {
kvn@508 438 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 439 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
kvn@508 440 can_eliminate = false;
kvn@508 441 } else {
kvn@508 442 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 443 if (res_type == NULL) {
kvn@508 444 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
kvn@508 445 can_eliminate = false;
kvn@508 446 } else if (res_type->isa_aryptr()) {
kvn@508 447 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 448 if (length < 0) {
kvn@508 449 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
kvn@508 450 can_eliminate = false;
kvn@508 451 }
kvn@508 452 }
kvn@508 453 }
kvn@508 454
kvn@508 455 if (can_eliminate && res != NULL) {
kvn@508 456 for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
kvn@508 457 j < jmax && can_eliminate; j++) {
kvn@508 458 Node* use = res->fast_out(j);
kvn@508 459
kvn@508 460 if (use->is_AddP()) {
kvn@508 461 const TypePtr* addp_type = _igvn.type(use)->is_ptr();
kvn@508 462 int offset = addp_type->offset();
kvn@508 463
kvn@508 464 if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
kvn@508 465 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
kvn@508 466 can_eliminate = false;
kvn@508 467 break;
kvn@508 468 }
kvn@508 469 for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
kvn@508 470 k < kmax && can_eliminate; k++) {
kvn@508 471 Node* n = use->fast_out(k);
kvn@508 472 if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
kvn@508 473 DEBUG_ONLY(disq_node = n;)
kvn@688 474 if (n->is_Load() || n->is_LoadStore()) {
kvn@508 475 NOT_PRODUCT(fail_eliminate = "Field load";)
kvn@508 476 } else {
kvn@508 477 NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
kvn@508 478 }
kvn@508 479 can_eliminate = false;
kvn@508 480 }
kvn@508 481 }
kvn@508 482 } else if (use->is_SafePoint()) {
kvn@508 483 SafePointNode* sfpt = use->as_SafePoint();
kvn@603 484 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
kvn@508 485 // Object is passed as argument.
kvn@508 486 DEBUG_ONLY(disq_node = use;)
kvn@508 487 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
kvn@508 488 can_eliminate = false;
kvn@508 489 }
kvn@508 490 Node* sfptMem = sfpt->memory();
kvn@508 491 if (sfptMem == NULL || sfptMem->is_top()) {
kvn@508 492 DEBUG_ONLY(disq_node = use;)
kvn@508 493 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
kvn@508 494 can_eliminate = false;
kvn@508 495 } else {
kvn@508 496 safepoints.append_if_missing(sfpt);
kvn@508 497 }
kvn@508 498 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
kvn@508 499 if (use->is_Phi()) {
kvn@508 500 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
kvn@508 501 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 502 } else {
kvn@508 503 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
kvn@508 504 }
kvn@508 505 DEBUG_ONLY(disq_node = use;)
kvn@508 506 } else {
kvn@508 507 if (use->Opcode() == Op_Return) {
kvn@508 508 NOT_PRODUCT(fail_eliminate = "Object is return value";)
kvn@508 509 }else {
kvn@508 510 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
kvn@508 511 }
kvn@508 512 DEBUG_ONLY(disq_node = use;)
kvn@508 513 }
kvn@508 514 can_eliminate = false;
kvn@508 515 }
kvn@508 516 }
kvn@508 517 }
kvn@508 518
kvn@508 519 #ifndef PRODUCT
kvn@508 520 if (PrintEliminateAllocations) {
kvn@508 521 if (can_eliminate) {
kvn@508 522 tty->print("Scalar ");
kvn@508 523 if (res == NULL)
kvn@508 524 alloc->dump();
kvn@508 525 else
kvn@508 526 res->dump();
kvn@508 527 } else {
kvn@508 528 tty->print("NotScalar (%s)", fail_eliminate);
kvn@508 529 if (res == NULL)
kvn@508 530 alloc->dump();
kvn@508 531 else
kvn@508 532 res->dump();
kvn@508 533 #ifdef ASSERT
kvn@508 534 if (disq_node != NULL) {
kvn@508 535 tty->print(" >>>> ");
kvn@508 536 disq_node->dump();
kvn@508 537 }
kvn@508 538 #endif /*ASSERT*/
kvn@508 539 }
kvn@508 540 }
kvn@508 541 #endif
kvn@508 542 return can_eliminate;
kvn@508 543 }
kvn@508 544
kvn@508 545 // Do scalar replacement.
kvn@508 546 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
kvn@508 547 GrowableArray <SafePointNode *> safepoints_done;
kvn@508 548
kvn@508 549 ciKlass* klass = NULL;
kvn@508 550 ciInstanceKlass* iklass = NULL;
kvn@508 551 int nfields = 0;
kvn@508 552 int array_base;
kvn@508 553 int element_size;
kvn@508 554 BasicType basic_elem_type;
kvn@508 555 ciType* elem_type;
kvn@508 556
kvn@508 557 Node* res = alloc->result_cast();
kvn@508 558 const TypeOopPtr* res_type = NULL;
kvn@508 559 if (res != NULL) { // Could be NULL when there are no users
kvn@508 560 res_type = _igvn.type(res)->isa_oopptr();
kvn@508 561 }
kvn@508 562
kvn@508 563 if (res != NULL) {
kvn@508 564 klass = res_type->klass();
kvn@508 565 if (res_type->isa_instptr()) {
kvn@508 566 // find the fields of the class which will be needed for safepoint debug information
kvn@508 567 assert(klass->is_instance_klass(), "must be an instance klass.");
kvn@508 568 iklass = klass->as_instance_klass();
kvn@508 569 nfields = iklass->nof_nonstatic_fields();
kvn@508 570 } else {
kvn@508 571 // find the array's elements which will be needed for safepoint debug information
kvn@508 572 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
kvn@508 573 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
kvn@508 574 elem_type = klass->as_array_klass()->element_type();
kvn@508 575 basic_elem_type = elem_type->basic_type();
kvn@508 576 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@508 577 element_size = type2aelembytes(basic_elem_type);
kvn@508 578 }
kvn@508 579 }
kvn@508 580 //
kvn@508 581 // Process the safepoint uses
kvn@508 582 //
kvn@508 583 while (safepoints.length() > 0) {
kvn@508 584 SafePointNode* sfpt = safepoints.pop();
kvn@508 585 Node* mem = sfpt->memory();
kvn@508 586 uint first_ind = sfpt->req();
kvn@508 587 SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
kvn@508 588 #ifdef ASSERT
kvn@508 589 alloc,
kvn@508 590 #endif
kvn@508 591 first_ind, nfields);
kvn@508 592 sobj->init_req(0, sfpt->in(TypeFunc::Control));
kvn@508 593 transform_later(sobj);
kvn@508 594
kvn@508 595 // Scan object's fields adding an input to the safepoint for each field.
kvn@508 596 for (int j = 0; j < nfields; j++) {
kvn@741 597 intptr_t offset;
kvn@508 598 ciField* field = NULL;
kvn@508 599 if (iklass != NULL) {
kvn@508 600 field = iklass->nonstatic_field_at(j);
kvn@508 601 offset = field->offset();
kvn@508 602 elem_type = field->type();
kvn@508 603 basic_elem_type = field->layout_type();
kvn@508 604 } else {
kvn@741 605 offset = array_base + j * (intptr_t)element_size;
kvn@508 606 }
kvn@508 607
kvn@508 608 const Type *field_type;
kvn@508 609 // The next code is taken from Parse::do_get_xxx().
kvn@559 610 if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
kvn@508 611 if (!elem_type->is_loaded()) {
kvn@508 612 field_type = TypeInstPtr::BOTTOM;
kvn@508 613 } else if (field != NULL && field->is_constant()) {
kvn@508 614 // This can happen if the constant oop is non-perm.
kvn@508 615 ciObject* con = field->constant_value().as_object();
kvn@508 616 // Do not "join" in the previous type; it doesn't add value,
kvn@508 617 // and may yield a vacuous result if the field is of interface type.
kvn@508 618 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
kvn@508 619 assert(field_type != NULL, "field singleton type must be consistent");
kvn@508 620 } else {
kvn@508 621 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
kvn@508 622 }
kvn@559 623 if (UseCompressedOops) {
kvn@656 624 field_type = field_type->make_narrowoop();
kvn@559 625 basic_elem_type = T_NARROWOOP;
kvn@559 626 }
kvn@508 627 } else {
kvn@508 628 field_type = Type::get_const_basic_type(basic_elem_type);
kvn@508 629 }
kvn@508 630
kvn@508 631 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
kvn@508 632
kvn@508 633 Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
kvn@508 634 if (field_val == NULL) {
kvn@508 635 // we weren't able to find a value for this field,
kvn@508 636 // give up on eliminating this allocation
kvn@508 637 alloc->_is_scalar_replaceable = false; // don't try again
kvn@508 638 // remove any extra entries we added to the safepoint
kvn@508 639 uint last = sfpt->req() - 1;
kvn@508 640 for (int k = 0; k < j; k++) {
kvn@508 641 sfpt->del_req(last--);
kvn@508 642 }
kvn@508 643 // rollback processed safepoints
kvn@508 644 while (safepoints_done.length() > 0) {
kvn@508 645 SafePointNode* sfpt_done = safepoints_done.pop();
kvn@508 646 // remove any extra entries we added to the safepoint
kvn@508 647 last = sfpt_done->req() - 1;
kvn@508 648 for (int k = 0; k < nfields; k++) {
kvn@508 649 sfpt_done->del_req(last--);
kvn@508 650 }
kvn@508 651 JVMState *jvms = sfpt_done->jvms();
kvn@508 652 jvms->set_endoff(sfpt_done->req());
kvn@508 653 // Now make a pass over the debug information replacing any references
kvn@508 654 // to SafePointScalarObjectNode with the allocated object.
kvn@508 655 int start = jvms->debug_start();
kvn@508 656 int end = jvms->debug_end();
kvn@508 657 for (int i = start; i < end; i++) {
kvn@508 658 if (sfpt_done->in(i)->is_SafePointScalarObject()) {
kvn@508 659 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
kvn@508 660 if (scobj->first_index() == sfpt_done->req() &&
kvn@508 661 scobj->n_fields() == (uint)nfields) {
kvn@508 662 assert(scobj->alloc() == alloc, "sanity");
kvn@508 663 sfpt_done->set_req(i, res);
kvn@508 664 }
kvn@508 665 }
kvn@508 666 }
kvn@508 667 }
kvn@508 668 #ifndef PRODUCT
kvn@508 669 if (PrintEliminateAllocations) {
kvn@508 670 if (field != NULL) {
kvn@508 671 tty->print("=== At SafePoint node %d can't find value of Field: ",
kvn@508 672 sfpt->_idx);
kvn@508 673 field->print();
kvn@508 674 int field_idx = C->get_alias_index(field_addr_type);
kvn@508 675 tty->print(" (alias_idx=%d)", field_idx);
kvn@508 676 } else { // Array's element
kvn@508 677 tty->print("=== At SafePoint node %d can't find value of array element [%d]",
kvn@508 678 sfpt->_idx, j);
kvn@508 679 }
kvn@508 680 tty->print(", which prevents elimination of: ");
kvn@508 681 if (res == NULL)
kvn@508 682 alloc->dump();
kvn@508 683 else
kvn@508 684 res->dump();
kvn@508 685 }
kvn@508 686 #endif
kvn@508 687 return false;
kvn@508 688 }
kvn@559 689 if (UseCompressedOops && field_type->isa_narrowoop()) {
kvn@559 690 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
kvn@559 691 // to be able scalar replace the allocation.
kvn@656 692 if (field_val->is_EncodeP()) {
kvn@656 693 field_val = field_val->in(1);
kvn@656 694 } else {
kvn@656 695 field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
kvn@656 696 }
kvn@559 697 }
kvn@508 698 sfpt->add_req(field_val);
kvn@508 699 }
kvn@508 700 JVMState *jvms = sfpt->jvms();
kvn@508 701 jvms->set_endoff(sfpt->req());
kvn@508 702 // Now make a pass over the debug information replacing any references
kvn@508 703 // to the allocated object with "sobj"
kvn@508 704 int start = jvms->debug_start();
kvn@508 705 int end = jvms->debug_end();
kvn@508 706 for (int i = start; i < end; i++) {
kvn@508 707 if (sfpt->in(i) == res) {
kvn@508 708 sfpt->set_req(i, sobj);
kvn@508 709 }
kvn@508 710 }
kvn@508 711 safepoints_done.append_if_missing(sfpt); // keep it for rollback
kvn@508 712 }
kvn@508 713 return true;
kvn@508 714 }
kvn@508 715
kvn@508 716 // Process users of eliminated allocation.
kvn@508 717 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
kvn@508 718 Node* res = alloc->result_cast();
kvn@508 719 if (res != NULL) {
kvn@508 720 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
kvn@508 721 Node *use = res->last_out(j);
kvn@508 722 uint oc1 = res->outcnt();
kvn@508 723
kvn@508 724 if (use->is_AddP()) {
kvn@508 725 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
kvn@508 726 Node *n = use->last_out(k);
kvn@508 727 uint oc2 = use->outcnt();
kvn@508 728 if (n->is_Store()) {
kvn@508 729 _igvn.replace_node(n, n->in(MemNode::Memory));
kvn@508 730 } else {
kvn@508 731 assert( n->Opcode() == Op_CastP2X, "CastP2X required");
kvn@508 732 eliminate_card_mark(n);
kvn@508 733 }
kvn@508 734 k -= (oc2 - use->outcnt());
kvn@508 735 }
kvn@508 736 } else {
kvn@508 737 assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
kvn@508 738 assert( use->Opcode() == Op_CastP2X, "CastP2X required");
kvn@508 739 eliminate_card_mark(use);
kvn@508 740 }
kvn@508 741 j -= (oc1 - res->outcnt());
kvn@508 742 }
kvn@508 743 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
kvn@508 744 _igvn.remove_dead_node(res);
kvn@508 745 }
kvn@508 746
kvn@508 747 //
kvn@508 748 // Process other users of allocation's projections
kvn@508 749 //
kvn@508 750 if (_resproj != NULL && _resproj->outcnt() != 0) {
kvn@508 751 for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
kvn@508 752 Node *use = _resproj->last_out(j);
kvn@508 753 uint oc1 = _resproj->outcnt();
kvn@508 754 if (use->is_Initialize()) {
kvn@508 755 // Eliminate Initialize node.
kvn@508 756 InitializeNode *init = use->as_Initialize();
kvn@508 757 assert(init->outcnt() <= 2, "only a control and memory projection expected");
kvn@508 758 Node *ctrl_proj = init->proj_out(TypeFunc::Control);
kvn@508 759 if (ctrl_proj != NULL) {
kvn@508 760 assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
kvn@508 761 _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
kvn@508 762 }
kvn@508 763 Node *mem_proj = init->proj_out(TypeFunc::Memory);
kvn@508 764 if (mem_proj != NULL) {
kvn@508 765 Node *mem = init->in(TypeFunc::Memory);
kvn@508 766 #ifdef ASSERT
kvn@508 767 if (mem->is_MergeMem()) {
kvn@508 768 assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
kvn@508 769 } else {
kvn@508 770 assert(mem == _memproj_fallthrough, "allocation memory projection");
kvn@508 771 }
kvn@508 772 #endif
kvn@508 773 _igvn.replace_node(mem_proj, mem);
kvn@508 774 }
kvn@508 775 } else if (use->is_AddP()) {
kvn@508 776 // raw memory addresses used only by the initialization
kvn@508 777 _igvn.hash_delete(use);
kvn@508 778 _igvn.subsume_node(use, C->top());
kvn@508 779 } else {
kvn@508 780 assert(false, "only Initialize or AddP expected");
kvn@508 781 }
kvn@508 782 j -= (oc1 - _resproj->outcnt());
kvn@508 783 }
kvn@508 784 }
kvn@508 785 if (_fallthroughcatchproj != NULL) {
kvn@508 786 _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
kvn@508 787 }
kvn@508 788 if (_memproj_fallthrough != NULL) {
kvn@508 789 _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
kvn@508 790 }
kvn@508 791 if (_memproj_catchall != NULL) {
kvn@508 792 _igvn.replace_node(_memproj_catchall, C->top());
kvn@508 793 }
kvn@508 794 if (_ioproj_fallthrough != NULL) {
kvn@508 795 _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
kvn@508 796 }
kvn@508 797 if (_ioproj_catchall != NULL) {
kvn@508 798 _igvn.replace_node(_ioproj_catchall, C->top());
kvn@508 799 }
kvn@508 800 if (_catchallcatchproj != NULL) {
kvn@508 801 _igvn.replace_node(_catchallcatchproj, C->top());
kvn@508 802 }
kvn@508 803 }
kvn@508 804
kvn@508 805 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
kvn@508 806
kvn@508 807 if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
kvn@508 808 return false;
kvn@508 809 }
kvn@508 810
kvn@508 811 extract_call_projections(alloc);
kvn@508 812
kvn@508 813 GrowableArray <SafePointNode *> safepoints;
kvn@508 814 if (!can_eliminate_allocation(alloc, safepoints)) {
kvn@508 815 return false;
kvn@508 816 }
kvn@508 817
kvn@508 818 if (!scalar_replacement(alloc, safepoints)) {
kvn@508 819 return false;
kvn@508 820 }
kvn@508 821
kvn@508 822 process_users_of_allocation(alloc);
kvn@508 823
kvn@508 824 #ifndef PRODUCT
kvn@508 825 if (PrintEliminateAllocations) {
kvn@508 826 if (alloc->is_AllocateArray())
kvn@508 827 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
kvn@508 828 else
kvn@508 829 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
kvn@508 830 }
kvn@508 831 #endif
kvn@508 832
kvn@508 833 return true;
kvn@508 834 }
kvn@508 835
duke@435 836
duke@435 837 //---------------------------set_eden_pointers-------------------------
duke@435 838 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
duke@435 839 if (UseTLAB) { // Private allocation: load from TLS
duke@435 840 Node* thread = transform_later(new (C, 1) ThreadLocalNode());
duke@435 841 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
duke@435 842 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
duke@435 843 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
duke@435 844 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
duke@435 845 } else { // Shared allocation: load from globals
duke@435 846 CollectedHeap* ch = Universe::heap();
duke@435 847 address top_adr = (address)ch->top_addr();
duke@435 848 address end_adr = (address)ch->end_addr();
duke@435 849 eden_top_adr = makecon(TypeRawPtr::make(top_adr));
duke@435 850 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
duke@435 851 }
duke@435 852 }
duke@435 853
duke@435 854
duke@435 855 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
duke@435 856 Node* adr = basic_plus_adr(base, offset);
duke@435 857 const TypePtr* adr_type = TypeRawPtr::BOTTOM;
coleenp@548 858 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
duke@435 859 transform_later(value);
duke@435 860 return value;
duke@435 861 }
duke@435 862
duke@435 863
duke@435 864 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
duke@435 865 Node* adr = basic_plus_adr(base, offset);
coleenp@548 866 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
duke@435 867 transform_later(mem);
duke@435 868 return mem;
duke@435 869 }
duke@435 870
duke@435 871 //=============================================================================
duke@435 872 //
duke@435 873 // A L L O C A T I O N
duke@435 874 //
duke@435 875 // Allocation attempts to be fast in the case of frequent small objects.
duke@435 876 // It breaks down like this:
duke@435 877 //
duke@435 878 // 1) Size in doublewords is computed. This is a constant for objects and
duke@435 879 // variable for most arrays. Doubleword units are used to avoid size
duke@435 880 // overflow of huge doubleword arrays. We need doublewords in the end for
duke@435 881 // rounding.
duke@435 882 //
duke@435 883 // 2) Size is checked for being 'too large'. Too-large allocations will go
duke@435 884 // the slow path into the VM. The slow path can throw any required
duke@435 885 // exceptions, and does all the special checks for very large arrays. The
duke@435 886 // size test can constant-fold away for objects. For objects with
duke@435 887 // finalizers it constant-folds the otherway: you always go slow with
duke@435 888 // finalizers.
duke@435 889 //
duke@435 890 // 3) If NOT using TLABs, this is the contended loop-back point.
duke@435 891 // Load-Locked the heap top. If using TLABs normal-load the heap top.
duke@435 892 //
duke@435 893 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
duke@435 894 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
duke@435 895 // "size*8" we always enter the VM, where "largish" is a constant picked small
duke@435 896 // enough that there's always space between the eden max and 4Gig (old space is
duke@435 897 // there so it's quite large) and large enough that the cost of entering the VM
duke@435 898 // is dwarfed by the cost to initialize the space.
duke@435 899 //
duke@435 900 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
duke@435 901 // down. If contended, repeat at step 3. If using TLABs normal-store
duke@435 902 // adjusted heap top back down; there is no contention.
duke@435 903 //
duke@435 904 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
duke@435 905 // fields.
duke@435 906 //
duke@435 907 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
duke@435 908 // oop flavor.
duke@435 909 //
duke@435 910 //=============================================================================
duke@435 911 // FastAllocateSizeLimit value is in DOUBLEWORDS.
duke@435 912 // Allocations bigger than this always go the slow route.
duke@435 913 // This value must be small enough that allocation attempts that need to
duke@435 914 // trigger exceptions go the slow route. Also, it must be small enough so
duke@435 915 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
duke@435 916 //=============================================================================j//
duke@435 917 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
duke@435 918 // The allocator will coalesce int->oop copies away. See comment in
duke@435 919 // coalesce.cpp about how this works. It depends critically on the exact
duke@435 920 // code shape produced here, so if you are changing this code shape
duke@435 921 // make sure the GC info for the heap-top is correct in and around the
duke@435 922 // slow-path call.
duke@435 923 //
duke@435 924
duke@435 925 void PhaseMacroExpand::expand_allocate_common(
duke@435 926 AllocateNode* alloc, // allocation node to be expanded
duke@435 927 Node* length, // array length for an array allocation
duke@435 928 const TypeFunc* slow_call_type, // Type of slow call
duke@435 929 address slow_call_address // Address of slow call
duke@435 930 )
duke@435 931 {
duke@435 932
duke@435 933 Node* ctrl = alloc->in(TypeFunc::Control);
duke@435 934 Node* mem = alloc->in(TypeFunc::Memory);
duke@435 935 Node* i_o = alloc->in(TypeFunc::I_O);
duke@435 936 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
duke@435 937 Node* klass_node = alloc->in(AllocateNode::KlassNode);
duke@435 938 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
duke@435 939
kvn@508 940 // With escape analysis, the entire memory state was needed to be able to
kvn@508 941 // eliminate the allocation. Since the allocations cannot be eliminated,
kvn@508 942 // optimize it to the raw slice.
kvn@508 943 if (mem->is_MergeMem()) {
kvn@508 944 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
kvn@508 945 }
kvn@508 946
duke@435 947 Node* eden_top_adr;
duke@435 948 Node* eden_end_adr;
duke@435 949 set_eden_pointers(eden_top_adr, eden_end_adr);
duke@435 950
duke@435 951 uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM);
duke@435 952 assert(ctrl != NULL, "must have control");
duke@435 953
duke@435 954 // Load Eden::end. Loop invariant and hoisted.
duke@435 955 //
duke@435 956 // Note: We set the control input on "eden_end" and "old_eden_top" when using
duke@435 957 // a TLAB to work around a bug where these values were being moved across
duke@435 958 // a safepoint. These are not oops, so they cannot be include in the oop
duke@435 959 // map, but the can be changed by a GC. The proper way to fix this would
duke@435 960 // be to set the raw memory state when generating a SafepointNode. However
duke@435 961 // this will require extensive changes to the loop optimization in order to
duke@435 962 // prevent a degradation of the optimization.
duke@435 963 // See comment in memnode.hpp, around line 227 in class LoadPNode.
duke@435 964 Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 965
duke@435 966 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
duke@435 967 // they will not be used if "always_slow" is set
duke@435 968 enum { slow_result_path = 1, fast_result_path = 2 };
duke@435 969 Node *result_region;
duke@435 970 Node *result_phi_rawmem;
duke@435 971 Node *result_phi_rawoop;
duke@435 972 Node *result_phi_i_o;
duke@435 973
duke@435 974 // The initial slow comparison is a size check, the comparison
duke@435 975 // we want to do is a BoolTest::gt
duke@435 976 bool always_slow = false;
duke@435 977 int tv = _igvn.find_int_con(initial_slow_test, -1);
duke@435 978 if (tv >= 0) {
duke@435 979 always_slow = (tv == 1);
duke@435 980 initial_slow_test = NULL;
duke@435 981 } else {
duke@435 982 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
duke@435 983 }
duke@435 984
duke@435 985 if (DTraceAllocProbes) {
duke@435 986 // Force slow-path allocation
duke@435 987 always_slow = true;
duke@435 988 initial_slow_test = NULL;
duke@435 989 }
duke@435 990
duke@435 991 enum { too_big_or_final_path = 1, need_gc_path = 2 };
duke@435 992 Node *slow_region = NULL;
duke@435 993 Node *toobig_false = ctrl;
duke@435 994
duke@435 995 assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
duke@435 996 // generate the initial test if necessary
duke@435 997 if (initial_slow_test != NULL ) {
duke@435 998 slow_region = new (C, 3) RegionNode(3);
duke@435 999
duke@435 1000 // Now make the initial failure test. Usually a too-big test but
duke@435 1001 // might be a TRUE for finalizers or a fancy class check for
duke@435 1002 // newInstance0.
duke@435 1003 IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
duke@435 1004 transform_later(toobig_iff);
duke@435 1005 // Plug the failing-too-big test into the slow-path region
duke@435 1006 Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
duke@435 1007 transform_later(toobig_true);
duke@435 1008 slow_region ->init_req( too_big_or_final_path, toobig_true );
duke@435 1009 toobig_false = new (C, 1) IfFalseNode( toobig_iff );
duke@435 1010 transform_later(toobig_false);
duke@435 1011 } else { // No initial test, just fall into next case
duke@435 1012 toobig_false = ctrl;
duke@435 1013 debug_only(slow_region = NodeSentinel);
duke@435 1014 }
duke@435 1015
duke@435 1016 Node *slow_mem = mem; // save the current memory state for slow path
duke@435 1017 // generate the fast allocation code unless we know that the initial test will always go slow
duke@435 1018 if (!always_slow) {
duke@435 1019 // allocate the Region and Phi nodes for the result
duke@435 1020 result_region = new (C, 3) RegionNode(3);
duke@435 1021 result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
duke@435 1022 result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
duke@435 1023 result_phi_i_o = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
duke@435 1024
duke@435 1025 // We need a Region for the loop-back contended case.
duke@435 1026 enum { fall_in_path = 1, contended_loopback_path = 2 };
duke@435 1027 Node *contended_region;
duke@435 1028 Node *contended_phi_rawmem;
duke@435 1029 if( UseTLAB ) {
duke@435 1030 contended_region = toobig_false;
duke@435 1031 contended_phi_rawmem = mem;
duke@435 1032 } else {
duke@435 1033 contended_region = new (C, 3) RegionNode(3);
duke@435 1034 contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1035 // Now handle the passing-too-big test. We fall into the contended
duke@435 1036 // loop-back merge point.
duke@435 1037 contended_region ->init_req( fall_in_path, toobig_false );
duke@435 1038 contended_phi_rawmem->init_req( fall_in_path, mem );
duke@435 1039 transform_later(contended_region);
duke@435 1040 transform_later(contended_phi_rawmem);
duke@435 1041 }
duke@435 1042
duke@435 1043 // Load(-locked) the heap top.
duke@435 1044 // See note above concerning the control input when using a TLAB
duke@435 1045 Node *old_eden_top = UseTLAB
duke@435 1046 ? new (C, 3) LoadPNode ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
duke@435 1047 : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
duke@435 1048
duke@435 1049 transform_later(old_eden_top);
duke@435 1050 // Add to heap top to get a new heap top
duke@435 1051 Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
duke@435 1052 transform_later(new_eden_top);
duke@435 1053 // Check for needing a GC; compare against heap end
duke@435 1054 Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
duke@435 1055 transform_later(needgc_cmp);
duke@435 1056 Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
duke@435 1057 transform_later(needgc_bol);
duke@435 1058 IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1059 transform_later(needgc_iff);
duke@435 1060
duke@435 1061 // Plug the failing-heap-space-need-gc test into the slow-path region
duke@435 1062 Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
duke@435 1063 transform_later(needgc_true);
duke@435 1064 if( initial_slow_test ) {
duke@435 1065 slow_region ->init_req( need_gc_path, needgc_true );
duke@435 1066 // This completes all paths into the slow merge point
duke@435 1067 transform_later(slow_region);
duke@435 1068 } else { // No initial slow path needed!
duke@435 1069 // Just fall from the need-GC path straight into the VM call.
duke@435 1070 slow_region = needgc_true;
duke@435 1071 }
duke@435 1072 // No need for a GC. Setup for the Store-Conditional
duke@435 1073 Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
duke@435 1074 transform_later(needgc_false);
duke@435 1075
duke@435 1076 // Grab regular I/O before optional prefetch may change it.
duke@435 1077 // Slow-path does no I/O so just set it to the original I/O.
duke@435 1078 result_phi_i_o->init_req( slow_result_path, i_o );
duke@435 1079
duke@435 1080 i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
duke@435 1081 old_eden_top, new_eden_top, length);
duke@435 1082
duke@435 1083 // Store (-conditional) the modified eden top back down.
duke@435 1084 // StorePConditional produces flags for a test PLUS a modified raw
duke@435 1085 // memory state.
duke@435 1086 Node *store_eden_top;
duke@435 1087 Node *fast_oop_ctrl;
duke@435 1088 if( UseTLAB ) {
duke@435 1089 store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
duke@435 1090 transform_later(store_eden_top);
duke@435 1091 fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
duke@435 1092 } else {
duke@435 1093 store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
duke@435 1094 transform_later(store_eden_top);
duke@435 1095 Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
duke@435 1096 transform_later(contention_check);
duke@435 1097 store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
duke@435 1098 transform_later(store_eden_top);
duke@435 1099
duke@435 1100 // If not using TLABs, check to see if there was contention.
duke@435 1101 IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
duke@435 1102 transform_later(contention_iff);
duke@435 1103 Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
duke@435 1104 transform_later(contention_true);
duke@435 1105 // If contention, loopback and try again.
duke@435 1106 contended_region->init_req( contended_loopback_path, contention_true );
duke@435 1107 contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
duke@435 1108
duke@435 1109 // Fast-path succeeded with no contention!
duke@435 1110 Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
duke@435 1111 transform_later(contention_false);
duke@435 1112 fast_oop_ctrl = contention_false;
duke@435 1113 }
duke@435 1114
duke@435 1115 // Rename successful fast-path variables to make meaning more obvious
duke@435 1116 Node* fast_oop = old_eden_top;
duke@435 1117 Node* fast_oop_rawmem = store_eden_top;
duke@435 1118 fast_oop_rawmem = initialize_object(alloc,
duke@435 1119 fast_oop_ctrl, fast_oop_rawmem, fast_oop,
duke@435 1120 klass_node, length, size_in_bytes);
duke@435 1121
duke@435 1122 if (ExtendedDTraceProbes) {
duke@435 1123 // Slow-path call
duke@435 1124 int size = TypeFunc::Parms + 2;
duke@435 1125 CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
duke@435 1126 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
duke@435 1127 "dtrace_object_alloc",
duke@435 1128 TypeRawPtr::BOTTOM);
duke@435 1129
duke@435 1130 // Get base of thread-local storage area
duke@435 1131 Node* thread = new (C, 1) ThreadLocalNode();
duke@435 1132 transform_later(thread);
duke@435 1133
duke@435 1134 call->init_req(TypeFunc::Parms+0, thread);
duke@435 1135 call->init_req(TypeFunc::Parms+1, fast_oop);
duke@435 1136 call->init_req( TypeFunc::Control, fast_oop_ctrl );
duke@435 1137 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1138 call->init_req( TypeFunc::Memory , fast_oop_rawmem );
duke@435 1139 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1140 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1141 transform_later(call);
duke@435 1142 fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
duke@435 1143 transform_later(fast_oop_ctrl);
duke@435 1144 fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
duke@435 1145 transform_later(fast_oop_rawmem);
duke@435 1146 }
duke@435 1147
duke@435 1148 // Plug in the successful fast-path into the result merge point
duke@435 1149 result_region ->init_req( fast_result_path, fast_oop_ctrl );
duke@435 1150 result_phi_rawoop->init_req( fast_result_path, fast_oop );
duke@435 1151 result_phi_i_o ->init_req( fast_result_path, i_o );
duke@435 1152 result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
duke@435 1153 } else {
duke@435 1154 slow_region = ctrl;
duke@435 1155 }
duke@435 1156
duke@435 1157 // Generate slow-path call
duke@435 1158 CallNode *call = new (C, slow_call_type->domain()->cnt())
duke@435 1159 CallStaticJavaNode(slow_call_type, slow_call_address,
duke@435 1160 OptoRuntime::stub_name(slow_call_address),
duke@435 1161 alloc->jvms()->bci(),
duke@435 1162 TypePtr::BOTTOM);
duke@435 1163 call->init_req( TypeFunc::Control, slow_region );
duke@435 1164 call->init_req( TypeFunc::I_O , top() ) ; // does no i/o
duke@435 1165 call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
duke@435 1166 call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
duke@435 1167 call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
duke@435 1168
duke@435 1169 call->init_req(TypeFunc::Parms+0, klass_node);
duke@435 1170 if (length != NULL) {
duke@435 1171 call->init_req(TypeFunc::Parms+1, length);
duke@435 1172 }
duke@435 1173
duke@435 1174 // Copy debug information and adjust JVMState information, then replace
duke@435 1175 // allocate node with the call
duke@435 1176 copy_call_debug_info((CallNode *) alloc, call);
duke@435 1177 if (!always_slow) {
duke@435 1178 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
duke@435 1179 }
duke@435 1180 _igvn.hash_delete(alloc);
duke@435 1181 _igvn.subsume_node(alloc, call);
duke@435 1182 transform_later(call);
duke@435 1183
duke@435 1184 // Identify the output projections from the allocate node and
duke@435 1185 // adjust any references to them.
duke@435 1186 // The control and io projections look like:
duke@435 1187 //
duke@435 1188 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
duke@435 1189 // Allocate Catch
duke@435 1190 // ^---Proj(io) <-------+ ^---CatchProj(io)
duke@435 1191 //
duke@435 1192 // We are interested in the CatchProj nodes.
duke@435 1193 //
duke@435 1194 extract_call_projections(call);
duke@435 1195
duke@435 1196 // An allocate node has separate memory projections for the uses on the control and i_o paths
duke@435 1197 // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
duke@435 1198 if (!always_slow && _memproj_fallthrough != NULL) {
duke@435 1199 for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1200 Node *use = _memproj_fallthrough->fast_out(i);
duke@435 1201 _igvn.hash_delete(use);
duke@435 1202 imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
duke@435 1203 _igvn._worklist.push(use);
duke@435 1204 // back up iterator
duke@435 1205 --i;
duke@435 1206 }
duke@435 1207 }
duke@435 1208 // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
duke@435 1209 // we end up with a call that has only 1 memory projection
duke@435 1210 if (_memproj_catchall != NULL ) {
duke@435 1211 if (_memproj_fallthrough == NULL) {
duke@435 1212 _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
duke@435 1213 transform_later(_memproj_fallthrough);
duke@435 1214 }
duke@435 1215 for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1216 Node *use = _memproj_catchall->fast_out(i);
duke@435 1217 _igvn.hash_delete(use);
duke@435 1218 imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
duke@435 1219 _igvn._worklist.push(use);
duke@435 1220 // back up iterator
duke@435 1221 --i;
duke@435 1222 }
duke@435 1223 }
duke@435 1224
duke@435 1225 mem = result_phi_rawmem;
duke@435 1226
duke@435 1227 // An allocate node has separate i_o projections for the uses on the control and i_o paths
duke@435 1228 // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
duke@435 1229 if (_ioproj_fallthrough == NULL) {
duke@435 1230 _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
duke@435 1231 transform_later(_ioproj_fallthrough);
duke@435 1232 } else if (!always_slow) {
duke@435 1233 for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
duke@435 1234 Node *use = _ioproj_fallthrough->fast_out(i);
duke@435 1235
duke@435 1236 _igvn.hash_delete(use);
duke@435 1237 imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
duke@435 1238 _igvn._worklist.push(use);
duke@435 1239 // back up iterator
duke@435 1240 --i;
duke@435 1241 }
duke@435 1242 }
duke@435 1243 // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
duke@435 1244 // we end up with a call that has only 1 control projection
duke@435 1245 if (_ioproj_catchall != NULL ) {
duke@435 1246 for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
duke@435 1247 Node *use = _ioproj_catchall->fast_out(i);
duke@435 1248 _igvn.hash_delete(use);
duke@435 1249 imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
duke@435 1250 _igvn._worklist.push(use);
duke@435 1251 // back up iterator
duke@435 1252 --i;
duke@435 1253 }
duke@435 1254 }
duke@435 1255
duke@435 1256 // if we generated only a slow call, we are done
duke@435 1257 if (always_slow)
duke@435 1258 return;
duke@435 1259
duke@435 1260
duke@435 1261 if (_fallthroughcatchproj != NULL) {
duke@435 1262 ctrl = _fallthroughcatchproj->clone();
duke@435 1263 transform_later(ctrl);
duke@435 1264 _igvn.hash_delete(_fallthroughcatchproj);
duke@435 1265 _igvn.subsume_node(_fallthroughcatchproj, result_region);
duke@435 1266 } else {
duke@435 1267 ctrl = top();
duke@435 1268 }
duke@435 1269 Node *slow_result;
duke@435 1270 if (_resproj == NULL) {
duke@435 1271 // no uses of the allocation result
duke@435 1272 slow_result = top();
duke@435 1273 } else {
duke@435 1274 slow_result = _resproj->clone();
duke@435 1275 transform_later(slow_result);
duke@435 1276 _igvn.hash_delete(_resproj);
duke@435 1277 _igvn.subsume_node(_resproj, result_phi_rawoop);
duke@435 1278 }
duke@435 1279
duke@435 1280 // Plug slow-path into result merge point
duke@435 1281 result_region ->init_req( slow_result_path, ctrl );
duke@435 1282 result_phi_rawoop->init_req( slow_result_path, slow_result);
duke@435 1283 result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
duke@435 1284 transform_later(result_region);
duke@435 1285 transform_later(result_phi_rawoop);
duke@435 1286 transform_later(result_phi_rawmem);
duke@435 1287 transform_later(result_phi_i_o);
duke@435 1288 // This completes all paths into the result merge point
duke@435 1289 }
duke@435 1290
duke@435 1291
duke@435 1292 // Helper for PhaseMacroExpand::expand_allocate_common.
duke@435 1293 // Initializes the newly-allocated storage.
duke@435 1294 Node*
duke@435 1295 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
duke@435 1296 Node* control, Node* rawmem, Node* object,
duke@435 1297 Node* klass_node, Node* length,
duke@435 1298 Node* size_in_bytes) {
duke@435 1299 InitializeNode* init = alloc->initialization();
duke@435 1300 // Store the klass & mark bits
duke@435 1301 Node* mark_node = NULL;
duke@435 1302 // For now only enable fast locking for non-array types
duke@435 1303 if (UseBiasedLocking && (length == NULL)) {
duke@435 1304 mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
duke@435 1305 } else {
duke@435 1306 mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
duke@435 1307 }
duke@435 1308 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
coleenp@548 1309
duke@435 1310 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
duke@435 1311 int header_size = alloc->minimum_header_size(); // conservatively small
duke@435 1312
duke@435 1313 // Array length
duke@435 1314 if (length != NULL) { // Arrays need length field
duke@435 1315 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
duke@435 1316 // conservatively small header size:
coleenp@548 1317 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
duke@435 1318 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
duke@435 1319 if (k->is_array_klass()) // we know the exact header size in most cases:
duke@435 1320 header_size = Klass::layout_helper_header_size(k->layout_helper());
duke@435 1321 }
duke@435 1322
duke@435 1323 // Clear the object body, if necessary.
duke@435 1324 if (init == NULL) {
duke@435 1325 // The init has somehow disappeared; be cautious and clear everything.
duke@435 1326 //
duke@435 1327 // This can happen if a node is allocated but an uncommon trap occurs
duke@435 1328 // immediately. In this case, the Initialize gets associated with the
duke@435 1329 // trap, and may be placed in a different (outer) loop, if the Allocate
duke@435 1330 // is in a loop. If (this is rare) the inner loop gets unrolled, then
duke@435 1331 // there can be two Allocates to one Initialize. The answer in all these
duke@435 1332 // edge cases is safety first. It is always safe to clear immediately
duke@435 1333 // within an Allocate, and then (maybe or maybe not) clear some more later.
duke@435 1334 if (!ZeroTLAB)
duke@435 1335 rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
duke@435 1336 header_size, size_in_bytes,
duke@435 1337 &_igvn);
duke@435 1338 } else {
duke@435 1339 if (!init->is_complete()) {
duke@435 1340 // Try to win by zeroing only what the init does not store.
duke@435 1341 // We can also try to do some peephole optimizations,
duke@435 1342 // such as combining some adjacent subword stores.
duke@435 1343 rawmem = init->complete_stores(control, rawmem, object,
duke@435 1344 header_size, size_in_bytes, &_igvn);
duke@435 1345 }
duke@435 1346 // We have no more use for this link, since the AllocateNode goes away:
duke@435 1347 init->set_req(InitializeNode::RawAddress, top());
duke@435 1348 // (If we keep the link, it just confuses the register allocator,
duke@435 1349 // who thinks he sees a real use of the address by the membar.)
duke@435 1350 }
duke@435 1351
duke@435 1352 return rawmem;
duke@435 1353 }
duke@435 1354
duke@435 1355 // Generate prefetch instructions for next allocations.
duke@435 1356 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
duke@435 1357 Node*& contended_phi_rawmem,
duke@435 1358 Node* old_eden_top, Node* new_eden_top,
duke@435 1359 Node* length) {
duke@435 1360 if( UseTLAB && AllocatePrefetchStyle == 2 ) {
duke@435 1361 // Generate prefetch allocation with watermark check.
duke@435 1362 // As an allocation hits the watermark, we will prefetch starting
duke@435 1363 // at a "distance" away from watermark.
duke@435 1364 enum { fall_in_path = 1, pf_path = 2 };
duke@435 1365
duke@435 1366 Node *pf_region = new (C, 3) RegionNode(3);
duke@435 1367 Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
duke@435 1368 TypeRawPtr::BOTTOM );
duke@435 1369 // I/O is used for Prefetch
duke@435 1370 Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
duke@435 1371
duke@435 1372 Node *thread = new (C, 1) ThreadLocalNode();
duke@435 1373 transform_later(thread);
duke@435 1374
duke@435 1375 Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
duke@435 1376 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
duke@435 1377 transform_later(eden_pf_adr);
duke@435 1378
duke@435 1379 Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
duke@435 1380 contended_phi_rawmem, eden_pf_adr,
duke@435 1381 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
duke@435 1382 transform_later(old_pf_wm);
duke@435 1383
duke@435 1384 // check against new_eden_top
duke@435 1385 Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
duke@435 1386 transform_later(need_pf_cmp);
duke@435 1387 Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
duke@435 1388 transform_later(need_pf_bol);
duke@435 1389 IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
duke@435 1390 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
duke@435 1391 transform_later(need_pf_iff);
duke@435 1392
duke@435 1393 // true node, add prefetchdistance
duke@435 1394 Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
duke@435 1395 transform_later(need_pf_true);
duke@435 1396
duke@435 1397 Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
duke@435 1398 transform_later(need_pf_false);
duke@435 1399
duke@435 1400 Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
duke@435 1401 _igvn.MakeConX(AllocatePrefetchDistance) );
duke@435 1402 transform_later(new_pf_wmt );
duke@435 1403 new_pf_wmt->set_req(0, need_pf_true);
duke@435 1404
duke@435 1405 Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
duke@435 1406 contended_phi_rawmem, eden_pf_adr,
duke@435 1407 TypeRawPtr::BOTTOM, new_pf_wmt );
duke@435 1408 transform_later(store_new_wmt);
duke@435 1409
duke@435 1410 // adding prefetches
duke@435 1411 pf_phi_abio->init_req( fall_in_path, i_o );
duke@435 1412
duke@435 1413 Node *prefetch_adr;
duke@435 1414 Node *prefetch;
duke@435 1415 uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
duke@435 1416 uint step_size = AllocatePrefetchStepSize;
duke@435 1417 uint distance = 0;
duke@435 1418
duke@435 1419 for ( uint i = 0; i < lines; i++ ) {
duke@435 1420 prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
duke@435 1421 _igvn.MakeConX(distance) );
duke@435 1422 transform_later(prefetch_adr);
duke@435 1423 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1424 transform_later(prefetch);
duke@435 1425 distance += step_size;
duke@435 1426 i_o = prefetch;
duke@435 1427 }
duke@435 1428 pf_phi_abio->set_req( pf_path, i_o );
duke@435 1429
duke@435 1430 pf_region->init_req( fall_in_path, need_pf_false );
duke@435 1431 pf_region->init_req( pf_path, need_pf_true );
duke@435 1432
duke@435 1433 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
duke@435 1434 pf_phi_rawmem->init_req( pf_path, store_new_wmt );
duke@435 1435
duke@435 1436 transform_later(pf_region);
duke@435 1437 transform_later(pf_phi_rawmem);
duke@435 1438 transform_later(pf_phi_abio);
duke@435 1439
duke@435 1440 needgc_false = pf_region;
duke@435 1441 contended_phi_rawmem = pf_phi_rawmem;
duke@435 1442 i_o = pf_phi_abio;
duke@435 1443 } else if( AllocatePrefetchStyle > 0 ) {
duke@435 1444 // Insert a prefetch for each allocation only on the fast-path
duke@435 1445 Node *prefetch_adr;
duke@435 1446 Node *prefetch;
duke@435 1447 // Generate several prefetch instructions only for arrays.
duke@435 1448 uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
duke@435 1449 uint step_size = AllocatePrefetchStepSize;
duke@435 1450 uint distance = AllocatePrefetchDistance;
duke@435 1451 for ( uint i = 0; i < lines; i++ ) {
duke@435 1452 prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
duke@435 1453 _igvn.MakeConX(distance) );
duke@435 1454 transform_later(prefetch_adr);
duke@435 1455 prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
duke@435 1456 // Do not let it float too high, since if eden_top == eden_end,
duke@435 1457 // both might be null.
duke@435 1458 if( i == 0 ) { // Set control for first prefetch, next follows it
duke@435 1459 prefetch->init_req(0, needgc_false);
duke@435 1460 }
duke@435 1461 transform_later(prefetch);
duke@435 1462 distance += step_size;
duke@435 1463 i_o = prefetch;
duke@435 1464 }
duke@435 1465 }
duke@435 1466 return i_o;
duke@435 1467 }
duke@435 1468
duke@435 1469
duke@435 1470 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
duke@435 1471 expand_allocate_common(alloc, NULL,
duke@435 1472 OptoRuntime::new_instance_Type(),
duke@435 1473 OptoRuntime::new_instance_Java());
duke@435 1474 }
duke@435 1475
duke@435 1476 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
duke@435 1477 Node* length = alloc->in(AllocateNode::ALength);
duke@435 1478 expand_allocate_common(alloc, length,
duke@435 1479 OptoRuntime::new_array_Type(),
duke@435 1480 OptoRuntime::new_array_Java());
duke@435 1481 }
duke@435 1482
duke@435 1483
duke@435 1484 // we have determined that this lock/unlock can be eliminated, we simply
duke@435 1485 // eliminate the node without expanding it.
duke@435 1486 //
duke@435 1487 // Note: The membar's associated with the lock/unlock are currently not
duke@435 1488 // eliminated. This should be investigated as a future enhancement.
duke@435 1489 //
kvn@501 1490 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
kvn@501 1491
kvn@501 1492 if (!alock->is_eliminated()) {
kvn@501 1493 return false;
kvn@501 1494 }
kvn@501 1495 // Mark the box lock as eliminated if all correspondent locks are eliminated
kvn@501 1496 // to construct correct debug info.
kvn@501 1497 BoxLockNode* box = alock->box_node()->as_BoxLock();
kvn@501 1498 if (!box->is_eliminated()) {
kvn@501 1499 bool eliminate = true;
kvn@501 1500 for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
kvn@501 1501 Node *lck = box->fast_out(i);
kvn@501 1502 if (lck->is_Lock() && !lck->as_AbstractLock()->is_eliminated()) {
kvn@501 1503 eliminate = false;
kvn@501 1504 break;
kvn@501 1505 }
kvn@501 1506 }
kvn@501 1507 if (eliminate)
kvn@501 1508 box->set_eliminated();
kvn@501 1509 }
kvn@501 1510
kvn@501 1511 #ifndef PRODUCT
kvn@501 1512 if (PrintEliminateLocks) {
kvn@501 1513 if (alock->is_Lock()) {
kvn@501 1514 tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
kvn@501 1515 } else {
kvn@501 1516 tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
kvn@501 1517 }
kvn@501 1518 }
kvn@501 1519 #endif
kvn@501 1520
kvn@501 1521 Node* mem = alock->in(TypeFunc::Memory);
kvn@501 1522 Node* ctrl = alock->in(TypeFunc::Control);
kvn@501 1523
kvn@501 1524 extract_call_projections(alock);
kvn@501 1525 // There are 2 projections from the lock. The lock node will
kvn@501 1526 // be deleted when its last use is subsumed below.
kvn@501 1527 assert(alock->outcnt() == 2 &&
kvn@501 1528 _fallthroughproj != NULL &&
kvn@501 1529 _memproj_fallthrough != NULL,
kvn@501 1530 "Unexpected projections from Lock/Unlock");
kvn@501 1531
kvn@501 1532 Node* fallthroughproj = _fallthroughproj;
kvn@501 1533 Node* memproj_fallthrough = _memproj_fallthrough;
duke@435 1534
duke@435 1535 // The memory projection from a lock/unlock is RawMem
duke@435 1536 // The input to a Lock is merged memory, so extract its RawMem input
duke@435 1537 // (unless the MergeMem has been optimized away.)
duke@435 1538 if (alock->is_Lock()) {
kvn@501 1539 // Seach for MemBarAcquire node and delete it also.
kvn@501 1540 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
kvn@501 1541 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
kvn@501 1542 Node* ctrlproj = membar->proj_out(TypeFunc::Control);
kvn@501 1543 Node* memproj = membar->proj_out(TypeFunc::Memory);
kvn@501 1544 _igvn.hash_delete(ctrlproj);
kvn@501 1545 _igvn.subsume_node(ctrlproj, fallthroughproj);
kvn@501 1546 _igvn.hash_delete(memproj);
kvn@501 1547 _igvn.subsume_node(memproj, memproj_fallthrough);
duke@435 1548 }
duke@435 1549
kvn@501 1550 // Seach for MemBarRelease node and delete it also.
kvn@501 1551 if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
kvn@501 1552 ctrl->in(0)->is_MemBar()) {
kvn@501 1553 MemBarNode* membar = ctrl->in(0)->as_MemBar();
kvn@501 1554 assert(membar->Opcode() == Op_MemBarRelease &&
kvn@501 1555 mem->is_Proj() && membar == mem->in(0), "");
kvn@501 1556 _igvn.hash_delete(fallthroughproj);
kvn@501 1557 _igvn.subsume_node(fallthroughproj, ctrl);
kvn@501 1558 _igvn.hash_delete(memproj_fallthrough);
kvn@501 1559 _igvn.subsume_node(memproj_fallthrough, mem);
kvn@501 1560 fallthroughproj = ctrl;
kvn@501 1561 memproj_fallthrough = mem;
kvn@501 1562 ctrl = membar->in(TypeFunc::Control);
kvn@501 1563 mem = membar->in(TypeFunc::Memory);
kvn@501 1564 }
kvn@501 1565
kvn@501 1566 _igvn.hash_delete(fallthroughproj);
kvn@501 1567 _igvn.subsume_node(fallthroughproj, ctrl);
kvn@501 1568 _igvn.hash_delete(memproj_fallthrough);
kvn@501 1569 _igvn.subsume_node(memproj_fallthrough, mem);
kvn@501 1570 return true;
duke@435 1571 }
duke@435 1572
duke@435 1573
duke@435 1574 //------------------------------expand_lock_node----------------------
duke@435 1575 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
duke@435 1576
duke@435 1577 Node* ctrl = lock->in(TypeFunc::Control);
duke@435 1578 Node* mem = lock->in(TypeFunc::Memory);
duke@435 1579 Node* obj = lock->obj_node();
duke@435 1580 Node* box = lock->box_node();
kvn@501 1581 Node* flock = lock->fastlock_node();
duke@435 1582
duke@435 1583 // Make the merge point
duke@435 1584 Node *region = new (C, 3) RegionNode(3);
duke@435 1585
duke@435 1586 Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne));
duke@435 1587 Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
duke@435 1588 // Optimize test; set region slot 2
duke@435 1589 Node *slow_path = opt_iff(region,iff);
duke@435 1590
duke@435 1591 // Make slow path call
duke@435 1592 CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
duke@435 1593
duke@435 1594 extract_call_projections(call);
duke@435 1595
duke@435 1596 // Slow path can only throw asynchronous exceptions, which are always
duke@435 1597 // de-opted. So the compiler thinks the slow-call can never throw an
duke@435 1598 // exception. If it DOES throw an exception we would need the debug
duke@435 1599 // info removed first (since if it throws there is no monitor).
duke@435 1600 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1601 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1602
duke@435 1603 // Capture slow path
duke@435 1604 // disconnect fall-through projection from call and create a new one
duke@435 1605 // hook up users of fall-through projection to region
duke@435 1606 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1607 transform_later(slow_ctrl);
duke@435 1608 _igvn.hash_delete(_fallthroughproj);
duke@435 1609 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1610 region->init_req(1, slow_ctrl);
duke@435 1611 // region inputs are now complete
duke@435 1612 transform_later(region);
duke@435 1613 _igvn.subsume_node(_fallthroughproj, region);
duke@435 1614
duke@435 1615 // create a Phi for the memory state
duke@435 1616 Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1617 Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 1618 mem_phi->init_req(1, memproj );
duke@435 1619 mem_phi->init_req(2, mem);
duke@435 1620 transform_later(mem_phi);
duke@435 1621 _igvn.hash_delete(_memproj_fallthrough);
duke@435 1622 _igvn.subsume_node(_memproj_fallthrough, mem_phi);
duke@435 1623
duke@435 1624
duke@435 1625 }
duke@435 1626
duke@435 1627 //------------------------------expand_unlock_node----------------------
duke@435 1628 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
duke@435 1629
kvn@501 1630 Node* ctrl = unlock->in(TypeFunc::Control);
duke@435 1631 Node* mem = unlock->in(TypeFunc::Memory);
duke@435 1632 Node* obj = unlock->obj_node();
duke@435 1633 Node* box = unlock->box_node();
duke@435 1634
duke@435 1635 // No need for a null check on unlock
duke@435 1636
duke@435 1637 // Make the merge point
duke@435 1638 RegionNode *region = new (C, 3) RegionNode(3);
duke@435 1639
duke@435 1640 FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
duke@435 1641 funlock = transform_later( funlock )->as_FastUnlock();
duke@435 1642 Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne));
duke@435 1643 Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
duke@435 1644 // Optimize test; set region slot 2
duke@435 1645 Node *slow_path = opt_iff(region,iff);
duke@435 1646
duke@435 1647 CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
duke@435 1648
duke@435 1649 extract_call_projections(call);
duke@435 1650
duke@435 1651 assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
duke@435 1652 _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
duke@435 1653
duke@435 1654 // No exceptions for unlocking
duke@435 1655 // Capture slow path
duke@435 1656 // disconnect fall-through projection from call and create a new one
duke@435 1657 // hook up users of fall-through projection to region
duke@435 1658 Node *slow_ctrl = _fallthroughproj->clone();
duke@435 1659 transform_later(slow_ctrl);
duke@435 1660 _igvn.hash_delete(_fallthroughproj);
duke@435 1661 _fallthroughproj->disconnect_inputs(NULL);
duke@435 1662 region->init_req(1, slow_ctrl);
duke@435 1663 // region inputs are now complete
duke@435 1664 transform_later(region);
duke@435 1665 _igvn.subsume_node(_fallthroughproj, region);
duke@435 1666
duke@435 1667 // create a Phi for the memory state
duke@435 1668 Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
duke@435 1669 Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
duke@435 1670 mem_phi->init_req(1, memproj );
duke@435 1671 mem_phi->init_req(2, mem);
duke@435 1672 transform_later(mem_phi);
duke@435 1673 _igvn.hash_delete(_memproj_fallthrough);
duke@435 1674 _igvn.subsume_node(_memproj_fallthrough, mem_phi);
duke@435 1675
duke@435 1676
duke@435 1677 }
duke@435 1678
duke@435 1679 //------------------------------expand_macro_nodes----------------------
duke@435 1680 // Returns true if a failure occurred.
duke@435 1681 bool PhaseMacroExpand::expand_macro_nodes() {
duke@435 1682 if (C->macro_count() == 0)
duke@435 1683 return false;
kvn@508 1684 // attempt to eliminate allocations
kvn@508 1685 bool progress = true;
kvn@508 1686 while (progress) {
kvn@508 1687 progress = false;
kvn@508 1688 for (int i = C->macro_count(); i > 0; i--) {
kvn@508 1689 Node * n = C->macro_node(i-1);
kvn@508 1690 bool success = false;
kvn@508 1691 debug_only(int old_macro_count = C->macro_count(););
kvn@508 1692 switch (n->class_id()) {
kvn@508 1693 case Node::Class_Allocate:
kvn@508 1694 case Node::Class_AllocateArray:
kvn@508 1695 success = eliminate_allocate_node(n->as_Allocate());
kvn@508 1696 break;
kvn@508 1697 case Node::Class_Lock:
kvn@508 1698 case Node::Class_Unlock:
kvn@508 1699 success = eliminate_locking_node(n->as_AbstractLock());
kvn@508 1700 break;
kvn@508 1701 default:
kvn@651 1702 if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
kvn@651 1703 _igvn.add_users_to_worklist(n);
kvn@651 1704 _igvn.hash_delete(n);
kvn@651 1705 _igvn.subsume_node(n, n->in(1));
kvn@651 1706 success = true;
kvn@651 1707 } else {
kvn@651 1708 assert(false, "unknown node type in macro list");
kvn@651 1709 }
kvn@508 1710 }
kvn@508 1711 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
kvn@508 1712 progress = progress || success;
kvn@508 1713 }
kvn@508 1714 }
kvn@508 1715 // Make sure expansion will not cause node limit to be exceeded.
kvn@508 1716 // Worst case is a macro node gets expanded into about 50 nodes.
kvn@508 1717 // Allow 50% more for optimization.
duke@435 1718 if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
duke@435 1719 return true;
kvn@508 1720
duke@435 1721 // expand "macro" nodes
duke@435 1722 // nodes are removed from the macro list as they are processed
duke@435 1723 while (C->macro_count() > 0) {
kvn@508 1724 int macro_count = C->macro_count();
kvn@508 1725 Node * n = C->macro_node(macro_count-1);
duke@435 1726 assert(n->is_macro(), "only macro nodes expected here");
duke@435 1727 if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
duke@435 1728 // node is unreachable, so don't try to expand it
duke@435 1729 C->remove_macro_node(n);
duke@435 1730 continue;
duke@435 1731 }
duke@435 1732 switch (n->class_id()) {
duke@435 1733 case Node::Class_Allocate:
duke@435 1734 expand_allocate(n->as_Allocate());
duke@435 1735 break;
duke@435 1736 case Node::Class_AllocateArray:
duke@435 1737 expand_allocate_array(n->as_AllocateArray());
duke@435 1738 break;
duke@435 1739 case Node::Class_Lock:
duke@435 1740 expand_lock_node(n->as_Lock());
duke@435 1741 break;
duke@435 1742 case Node::Class_Unlock:
duke@435 1743 expand_unlock_node(n->as_Unlock());
duke@435 1744 break;
duke@435 1745 default:
duke@435 1746 assert(false, "unknown node type in macro list");
duke@435 1747 }
kvn@508 1748 assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
duke@435 1749 if (C->failing()) return true;
duke@435 1750 }
coleenp@548 1751
coleenp@548 1752 _igvn.set_delay_transform(false);
duke@435 1753 _igvn.optimize();
duke@435 1754 return false;
duke@435 1755 }

mercurial