src/cpu/x86/vm/stubGenerator_x86_32.cpp

Fri, 18 Oct 2013 10:41:56 +0200

author
rbackman
date
Fri, 18 Oct 2013 10:41:56 +0200
changeset 5997
59e8ad757e19
parent 5528
740e263c80c6
child 6312
04d32e7fad07
permissions
-rw-r--r--

8026844: Various Math functions needs intrinsification
Reviewed-by: kvn, twisti

duke@435 1 /*
drchase@5353 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
coleenp@4037 31 #include "oops/method.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "utilities/top.hpp"
stefank@2314 42 #ifdef COMPILER2
stefank@2314 43 #include "opto/runtime.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 47 // For a more detailed description of the stub routine structure
duke@435 48 // see the comment in stubRoutines.hpp
duke@435 49
duke@435 50 #define __ _masm->
never@739 51 #define a__ ((Assembler*)_masm)->
duke@435 52
duke@435 53 #ifdef PRODUCT
duke@435 54 #define BLOCK_COMMENT(str) /* nothing */
duke@435 55 #else
duke@435 56 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 57 #endif
duke@435 58
duke@435 59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 60
duke@435 61 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
duke@435 63
duke@435 64 // -------------------------------------------------------------------------------------------------------------------------
duke@435 65 // Stub Code definitions
duke@435 66
duke@435 67 static address handle_unsafe_access() {
duke@435 68 JavaThread* thread = JavaThread::current();
duke@435 69 address pc = thread->saved_exception_pc();
duke@435 70 // pc is the instruction which we must emulate
duke@435 71 // doing a no-op is fine: return garbage from the load
duke@435 72 // therefore, compute npc
duke@435 73 address npc = Assembler::locate_next_instruction(pc);
duke@435 74
duke@435 75 // request an async exception
duke@435 76 thread->set_pending_unsafe_access_error();
duke@435 77
duke@435 78 // return address of next instruction to execute
duke@435 79 return npc;
duke@435 80 }
duke@435 81
duke@435 82 class StubGenerator: public StubCodeGenerator {
duke@435 83 private:
duke@435 84
duke@435 85 #ifdef PRODUCT
ccheung@5259 86 #define inc_counter_np(counter) ((void)0)
duke@435 87 #else
duke@435 88 void inc_counter_np_(int& counter) {
never@739 89 __ incrementl(ExternalAddress((address)&counter));
duke@435 90 }
duke@435 91 #define inc_counter_np(counter) \
duke@435 92 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 93 inc_counter_np_(counter);
duke@435 94 #endif //PRODUCT
duke@435 95
duke@435 96 void inc_copy_counter_np(BasicType t) {
duke@435 97 #ifndef PRODUCT
duke@435 98 switch (t) {
duke@435 99 case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
duke@435 100 case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
duke@435 101 case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
duke@435 102 case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
duke@435 103 case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
duke@435 104 }
duke@435 105 ShouldNotReachHere();
duke@435 106 #endif //PRODUCT
duke@435 107 }
duke@435 108
duke@435 109 //------------------------------------------------------------------------------------------------------------------------
duke@435 110 // Call stubs are used to call Java from C
duke@435 111 //
duke@435 112 // [ return_from_Java ] <--- rsp
duke@435 113 // [ argument word n ]
duke@435 114 // ...
duke@435 115 // -N [ argument word 1 ]
duke@435 116 // -7 [ Possible padding for stack alignment ]
duke@435 117 // -6 [ Possible padding for stack alignment ]
duke@435 118 // -5 [ Possible padding for stack alignment ]
duke@435 119 // -4 [ mxcsr save ] <--- rsp_after_call
duke@435 120 // -3 [ saved rbx, ]
duke@435 121 // -2 [ saved rsi ]
duke@435 122 // -1 [ saved rdi ]
duke@435 123 // 0 [ saved rbp, ] <--- rbp,
duke@435 124 // 1 [ return address ]
duke@435 125 // 2 [ ptr. to call wrapper ]
duke@435 126 // 3 [ result ]
duke@435 127 // 4 [ result_type ]
duke@435 128 // 5 [ method ]
duke@435 129 // 6 [ entry_point ]
duke@435 130 // 7 [ parameters ]
duke@435 131 // 8 [ parameter_size ]
duke@435 132 // 9 [ thread ]
duke@435 133
duke@435 134
duke@435 135 address generate_call_stub(address& return_address) {
duke@435 136 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 137 address start = __ pc();
duke@435 138
duke@435 139 // stub code parameters / addresses
duke@435 140 assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
duke@435 141 bool sse_save = false;
duke@435 142 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
duke@435 143 const int locals_count_in_bytes (4*wordSize);
duke@435 144 const Address mxcsr_save (rbp, -4 * wordSize);
duke@435 145 const Address saved_rbx (rbp, -3 * wordSize);
duke@435 146 const Address saved_rsi (rbp, -2 * wordSize);
duke@435 147 const Address saved_rdi (rbp, -1 * wordSize);
duke@435 148 const Address result (rbp, 3 * wordSize);
duke@435 149 const Address result_type (rbp, 4 * wordSize);
duke@435 150 const Address method (rbp, 5 * wordSize);
duke@435 151 const Address entry_point (rbp, 6 * wordSize);
duke@435 152 const Address parameters (rbp, 7 * wordSize);
duke@435 153 const Address parameter_size(rbp, 8 * wordSize);
duke@435 154 const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
duke@435 155 sse_save = UseSSE > 0;
duke@435 156
duke@435 157 // stub code
duke@435 158 __ enter();
never@739 159 __ movptr(rcx, parameter_size); // parameter counter
twisti@1861 160 __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
never@739 161 __ addptr(rcx, locals_count_in_bytes); // reserve space for register saves
never@739 162 __ subptr(rsp, rcx);
never@739 163 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 164
duke@435 165 // save rdi, rsi, & rbx, according to C calling conventions
never@739 166 __ movptr(saved_rdi, rdi);
never@739 167 __ movptr(saved_rsi, rsi);
never@739 168 __ movptr(saved_rbx, rbx);
duke@435 169 // save and initialize %mxcsr
duke@435 170 if (sse_save) {
duke@435 171 Label skip_ldmx;
duke@435 172 __ stmxcsr(mxcsr_save);
duke@435 173 __ movl(rax, mxcsr_save);
duke@435 174 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 175 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 176 __ cmp32(rax, mxcsr_std);
duke@435 177 __ jcc(Assembler::equal, skip_ldmx);
duke@435 178 __ ldmxcsr(mxcsr_std);
duke@435 179 __ bind(skip_ldmx);
duke@435 180 }
duke@435 181
duke@435 182 // make sure the control word is correct.
duke@435 183 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 184
duke@435 185 #ifdef ASSERT
duke@435 186 // make sure we have no pending exceptions
duke@435 187 { Label L;
never@739 188 __ movptr(rcx, thread);
never@739 189 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 190 __ jcc(Assembler::equal, L);
duke@435 191 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 192 __ bind(L);
duke@435 193 }
duke@435 194 #endif
duke@435 195
duke@435 196 // pass parameters if any
duke@435 197 BLOCK_COMMENT("pass parameters if any");
duke@435 198 Label parameters_done;
duke@435 199 __ movl(rcx, parameter_size); // parameter counter
duke@435 200 __ testl(rcx, rcx);
duke@435 201 __ jcc(Assembler::zero, parameters_done);
duke@435 202
duke@435 203 // parameter passing loop
duke@435 204
duke@435 205 Label loop;
duke@435 206 // Copy Java parameters in reverse order (receiver last)
duke@435 207 // Note that the argument order is inverted in the process
duke@435 208 // source is rdx[rcx: N-1..0]
duke@435 209 // dest is rsp[rbx: 0..N-1]
duke@435 210
never@739 211 __ movptr(rdx, parameters); // parameter pointer
never@739 212 __ xorptr(rbx, rbx);
duke@435 213
duke@435 214 __ BIND(loop);
duke@435 215
duke@435 216 // get parameter
never@739 217 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
never@739 218 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 219 Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
duke@435 220 __ increment(rbx);
duke@435 221 __ decrement(rcx);
duke@435 222 __ jcc(Assembler::notZero, loop);
duke@435 223
duke@435 224 // call Java function
duke@435 225 __ BIND(parameters_done);
coleenp@4037 226 __ movptr(rbx, method); // get Method*
never@739 227 __ movptr(rax, entry_point); // get entry_point
never@739 228 __ mov(rsi, rsp); // set sender sp
duke@435 229 BLOCK_COMMENT("call Java function");
duke@435 230 __ call(rax);
duke@435 231
duke@435 232 BLOCK_COMMENT("call_stub_return_address:");
duke@435 233 return_address = __ pc();
duke@435 234
twisti@2552 235 #ifdef COMPILER2
twisti@2552 236 {
twisti@2552 237 Label L_skip;
twisti@2552 238 if (UseSSE >= 2) {
twisti@2552 239 __ verify_FPU(0, "call_stub_return");
twisti@2552 240 } else {
twisti@2552 241 for (int i = 1; i < 8; i++) {
twisti@2552 242 __ ffree(i);
twisti@2552 243 }
duke@435 244
twisti@2552 245 // UseSSE <= 1 so double result should be left on TOS
twisti@2552 246 __ movl(rsi, result_type);
twisti@2552 247 __ cmpl(rsi, T_DOUBLE);
twisti@2552 248 __ jcc(Assembler::equal, L_skip);
twisti@2552 249 if (UseSSE == 0) {
twisti@2552 250 // UseSSE == 0 so float result should be left on TOS
twisti@2552 251 __ cmpl(rsi, T_FLOAT);
twisti@2552 252 __ jcc(Assembler::equal, L_skip);
twisti@2552 253 }
twisti@2552 254 __ ffree(0);
twisti@2552 255 }
twisti@2552 256 __ BIND(L_skip);
twisti@2552 257 }
twisti@2552 258 #endif // COMPILER2
duke@435 259
duke@435 260 // store result depending on type
duke@435 261 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 262 __ movptr(rdi, result);
duke@435 263 Label is_long, is_float, is_double, exit;
duke@435 264 __ movl(rsi, result_type);
duke@435 265 __ cmpl(rsi, T_LONG);
duke@435 266 __ jcc(Assembler::equal, is_long);
duke@435 267 __ cmpl(rsi, T_FLOAT);
duke@435 268 __ jcc(Assembler::equal, is_float);
duke@435 269 __ cmpl(rsi, T_DOUBLE);
duke@435 270 __ jcc(Assembler::equal, is_double);
duke@435 271
duke@435 272 // handle T_INT case
duke@435 273 __ movl(Address(rdi, 0), rax);
duke@435 274 __ BIND(exit);
duke@435 275
duke@435 276 // check that FPU stack is empty
duke@435 277 __ verify_FPU(0, "generate_call_stub");
duke@435 278
duke@435 279 // pop parameters
never@739 280 __ lea(rsp, rsp_after_call);
duke@435 281
duke@435 282 // restore %mxcsr
duke@435 283 if (sse_save) {
duke@435 284 __ ldmxcsr(mxcsr_save);
duke@435 285 }
duke@435 286
duke@435 287 // restore rdi, rsi and rbx,
never@739 288 __ movptr(rbx, saved_rbx);
never@739 289 __ movptr(rsi, saved_rsi);
never@739 290 __ movptr(rdi, saved_rdi);
never@739 291 __ addptr(rsp, 4*wordSize);
duke@435 292
duke@435 293 // return
never@739 294 __ pop(rbp);
duke@435 295 __ ret(0);
duke@435 296
duke@435 297 // handle return types different from T_INT
duke@435 298 __ BIND(is_long);
duke@435 299 __ movl(Address(rdi, 0 * wordSize), rax);
duke@435 300 __ movl(Address(rdi, 1 * wordSize), rdx);
duke@435 301 __ jmp(exit);
duke@435 302
duke@435 303 __ BIND(is_float);
duke@435 304 // interpreter uses xmm0 for return values
duke@435 305 if (UseSSE >= 1) {
duke@435 306 __ movflt(Address(rdi, 0), xmm0);
duke@435 307 } else {
duke@435 308 __ fstp_s(Address(rdi, 0));
duke@435 309 }
duke@435 310 __ jmp(exit);
duke@435 311
duke@435 312 __ BIND(is_double);
duke@435 313 // interpreter uses xmm0 for return values
duke@435 314 if (UseSSE >= 2) {
duke@435 315 __ movdbl(Address(rdi, 0), xmm0);
duke@435 316 } else {
duke@435 317 __ fstp_d(Address(rdi, 0));
duke@435 318 }
duke@435 319 __ jmp(exit);
duke@435 320
duke@435 321 return start;
duke@435 322 }
duke@435 323
duke@435 324
duke@435 325 //------------------------------------------------------------------------------------------------------------------------
duke@435 326 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 327 // The exception is caught and transformed into a pending exception stored in
duke@435 328 // JavaThread that can be tested from within the VM.
duke@435 329 //
duke@435 330 // Note: Usually the parameters are removed by the callee. In case of an exception
duke@435 331 // crossing an activation frame boundary, that is not the case if the callee
duke@435 332 // is compiled code => need to setup the rsp.
duke@435 333 //
duke@435 334 // rax,: exception oop
duke@435 335
duke@435 336 address generate_catch_exception() {
duke@435 337 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 338 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
duke@435 339 const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
duke@435 340 address start = __ pc();
duke@435 341
duke@435 342 // get thread directly
never@739 343 __ movptr(rcx, thread);
duke@435 344 #ifdef ASSERT
duke@435 345 // verify that threads correspond
duke@435 346 { Label L;
duke@435 347 __ get_thread(rbx);
never@739 348 __ cmpptr(rbx, rcx);
duke@435 349 __ jcc(Assembler::equal, L);
duke@435 350 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 351 __ bind(L);
duke@435 352 }
duke@435 353 #endif
duke@435 354 // set pending exception
duke@435 355 __ verify_oop(rax);
never@739 356 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax );
duke@435 357 __ lea(Address(rcx, Thread::exception_file_offset ()),
duke@435 358 ExternalAddress((address)__FILE__));
duke@435 359 __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
duke@435 360 // complete return to VM
duke@435 361 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
duke@435 362 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 363
duke@435 364 return start;
duke@435 365 }
duke@435 366
duke@435 367
duke@435 368 //------------------------------------------------------------------------------------------------------------------------
duke@435 369 // Continuation point for runtime calls returning with a pending exception.
duke@435 370 // The pending exception check happened in the runtime or native call stub.
duke@435 371 // The pending exception in Thread is converted into a Java-level exception.
duke@435 372 //
duke@435 373 // Contract with Java-level exception handlers:
twisti@1730 374 // rax: exception
duke@435 375 // rdx: throwing pc
duke@435 376 //
duke@435 377 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 378
duke@435 379 address generate_forward_exception() {
duke@435 380 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 381 address start = __ pc();
twisti@1730 382 const Register thread = rcx;
twisti@1730 383
twisti@1730 384 // other registers used in this stub
twisti@1730 385 const Register exception_oop = rax;
twisti@1730 386 const Register handler_addr = rbx;
twisti@1730 387 const Register exception_pc = rdx;
duke@435 388
duke@435 389 // Upon entry, the sp points to the return address returning into Java
duke@435 390 // (interpreted or compiled) code; i.e., the return address becomes the
duke@435 391 // throwing pc.
duke@435 392 //
duke@435 393 // Arguments pushed before the runtime call are still on the stack but
duke@435 394 // the exception handler will reset the stack pointer -> ignore them.
duke@435 395 // A potential result in registers can be ignored as well.
duke@435 396
duke@435 397 #ifdef ASSERT
duke@435 398 // make sure this code is only executed if there is a pending exception
duke@435 399 { Label L;
twisti@1730 400 __ get_thread(thread);
twisti@1730 401 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 402 __ jcc(Assembler::notEqual, L);
duke@435 403 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 404 __ bind(L);
duke@435 405 }
duke@435 406 #endif
duke@435 407
duke@435 408 // compute exception handler into rbx,
twisti@1730 409 __ get_thread(thread);
twisti@1730 410 __ movptr(exception_pc, Address(rsp, 0));
duke@435 411 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 412 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
twisti@1730 413 __ mov(handler_addr, rax);
duke@435 414
twisti@1730 415 // setup rax & rdx, remove return address & clear pending exception
twisti@1730 416 __ get_thread(thread);
twisti@1730 417 __ pop(exception_pc);
twisti@1730 418 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
twisti@1730 419 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 420
duke@435 421 #ifdef ASSERT
duke@435 422 // make sure exception is set
duke@435 423 { Label L;
twisti@1730 424 __ testptr(exception_oop, exception_oop);
duke@435 425 __ jcc(Assembler::notEqual, L);
duke@435 426 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 427 __ bind(L);
duke@435 428 }
duke@435 429 #endif
duke@435 430
twisti@1730 431 // Verify that there is really a valid exception in RAX.
twisti@1730 432 __ verify_oop(exception_oop);
twisti@1730 433
duke@435 434 // continue at exception handler (return address removed)
twisti@1730 435 // rax: exception
twisti@1730 436 // rbx: exception handler
duke@435 437 // rdx: throwing pc
twisti@1730 438 __ jmp(handler_addr);
duke@435 439
duke@435 440 return start;
duke@435 441 }
duke@435 442
duke@435 443
duke@435 444 //----------------------------------------------------------------------------------------------------
duke@435 445 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 446 //
duke@435 447 // xchg exists as far back as 8086, lock needed for MP only
duke@435 448 // Stack layout immediately after call:
duke@435 449 //
duke@435 450 // 0 [ret addr ] <--- rsp
duke@435 451 // 1 [ ex ]
duke@435 452 // 2 [ dest ]
duke@435 453 //
duke@435 454 // Result: *dest <- ex, return (old *dest)
duke@435 455 //
duke@435 456 // Note: win32 does not currently use this code
duke@435 457
duke@435 458 address generate_atomic_xchg() {
duke@435 459 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 460 address start = __ pc();
duke@435 461
never@739 462 __ push(rdx);
duke@435 463 Address exchange(rsp, 2 * wordSize);
duke@435 464 Address dest_addr(rsp, 3 * wordSize);
duke@435 465 __ movl(rax, exchange);
never@739 466 __ movptr(rdx, dest_addr);
never@739 467 __ xchgl(rax, Address(rdx, 0));
never@739 468 __ pop(rdx);
duke@435 469 __ ret(0);
duke@435 470
duke@435 471 return start;
duke@435 472 }
duke@435 473
duke@435 474 //----------------------------------------------------------------------------------------------------
duke@435 475 // Support for void verify_mxcsr()
duke@435 476 //
duke@435 477 // This routine is used with -Xcheck:jni to verify that native
duke@435 478 // JNI code does not return to Java code without restoring the
duke@435 479 // MXCSR register to our expected state.
duke@435 480
duke@435 481
duke@435 482 address generate_verify_mxcsr() {
duke@435 483 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 484 address start = __ pc();
duke@435 485
duke@435 486 const Address mxcsr_save(rsp, 0);
duke@435 487
duke@435 488 if (CheckJNICalls && UseSSE > 0 ) {
duke@435 489 Label ok_ret;
duke@435 490 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
never@739 491 __ push(rax);
never@739 492 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 493 __ stmxcsr(mxcsr_save);
duke@435 494 __ movl(rax, mxcsr_save);
duke@435 495 __ andl(rax, MXCSR_MASK);
duke@435 496 __ cmp32(rax, mxcsr_std);
duke@435 497 __ jcc(Assembler::equal, ok_ret);
duke@435 498
duke@435 499 __ warn("MXCSR changed by native JNI code.");
duke@435 500
duke@435 501 __ ldmxcsr(mxcsr_std);
duke@435 502
duke@435 503 __ bind(ok_ret);
never@739 504 __ addptr(rsp, wordSize);
never@739 505 __ pop(rax);
duke@435 506 }
duke@435 507
duke@435 508 __ ret(0);
duke@435 509
duke@435 510 return start;
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 //---------------------------------------------------------------------------
duke@435 515 // Support for void verify_fpu_cntrl_wrd()
duke@435 516 //
duke@435 517 // This routine is used with -Xcheck:jni to verify that native
duke@435 518 // JNI code does not return to Java code without restoring the
duke@435 519 // FP control word to our expected state.
duke@435 520
duke@435 521 address generate_verify_fpu_cntrl_wrd() {
duke@435 522 StubCodeMark mark(this, "StubRoutines", "verify_spcw");
duke@435 523 address start = __ pc();
duke@435 524
duke@435 525 const Address fpu_cntrl_wrd_save(rsp, 0);
duke@435 526
duke@435 527 if (CheckJNICalls) {
duke@435 528 Label ok_ret;
never@739 529 __ push(rax);
never@739 530 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 531 __ fnstcw(fpu_cntrl_wrd_save);
duke@435 532 __ movl(rax, fpu_cntrl_wrd_save);
duke@435 533 __ andl(rax, FPU_CNTRL_WRD_MASK);
duke@435 534 ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 535 __ cmp32(rax, fpu_std);
duke@435 536 __ jcc(Assembler::equal, ok_ret);
duke@435 537
duke@435 538 __ warn("Floating point control word changed by native JNI code.");
duke@435 539
duke@435 540 __ fldcw(fpu_std);
duke@435 541
duke@435 542 __ bind(ok_ret);
never@739 543 __ addptr(rsp, wordSize);
never@739 544 __ pop(rax);
duke@435 545 }
duke@435 546
duke@435 547 __ ret(0);
duke@435 548
duke@435 549 return start;
duke@435 550 }
duke@435 551
duke@435 552 //---------------------------------------------------------------------------
duke@435 553 // Wrapper for slow-case handling of double-to-integer conversion
duke@435 554 // d2i or f2i fast case failed either because it is nan or because
duke@435 555 // of under/overflow.
duke@435 556 // Input: FPU TOS: float value
duke@435 557 // Output: rax, (rdx): integer (long) result
duke@435 558
duke@435 559 address generate_d2i_wrapper(BasicType t, address fcn) {
duke@435 560 StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
duke@435 561 address start = __ pc();
duke@435 562
duke@435 563 // Capture info about frame layout
duke@435 564 enum layout { FPUState_off = 0,
duke@435 565 rbp_off = FPUStateSizeInWords,
duke@435 566 rdi_off,
duke@435 567 rsi_off,
duke@435 568 rcx_off,
duke@435 569 rbx_off,
duke@435 570 saved_argument_off,
duke@435 571 saved_argument_off2, // 2nd half of double
duke@435 572 framesize
duke@435 573 };
duke@435 574
duke@435 575 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 576
duke@435 577 // Save outgoing argument to stack across push_FPU_state()
never@739 578 __ subptr(rsp, wordSize * 2);
duke@435 579 __ fstp_d(Address(rsp, 0));
duke@435 580
duke@435 581 // Save CPU & FPU state
never@739 582 __ push(rbx);
never@739 583 __ push(rcx);
never@739 584 __ push(rsi);
never@739 585 __ push(rdi);
never@739 586 __ push(rbp);
duke@435 587 __ push_FPU_state();
duke@435 588
duke@435 589 // push_FPU_state() resets the FP top of stack
duke@435 590 // Load original double into FP top of stack
duke@435 591 __ fld_d(Address(rsp, saved_argument_off * wordSize));
duke@435 592 // Store double into stack as outgoing argument
never@739 593 __ subptr(rsp, wordSize*2);
duke@435 594 __ fst_d(Address(rsp, 0));
duke@435 595
duke@435 596 // Prepare FPU for doing math in C-land
duke@435 597 __ empty_FPU_stack();
duke@435 598 // Call the C code to massage the double. Result in EAX
duke@435 599 if (t == T_INT)
duke@435 600 { BLOCK_COMMENT("SharedRuntime::d2i"); }
duke@435 601 else if (t == T_LONG)
duke@435 602 { BLOCK_COMMENT("SharedRuntime::d2l"); }
duke@435 603 __ call_VM_leaf( fcn, 2 );
duke@435 604
duke@435 605 // Restore CPU & FPU state
duke@435 606 __ pop_FPU_state();
never@739 607 __ pop(rbp);
never@739 608 __ pop(rdi);
never@739 609 __ pop(rsi);
never@739 610 __ pop(rcx);
never@739 611 __ pop(rbx);
never@739 612 __ addptr(rsp, wordSize * 2);
duke@435 613
duke@435 614 __ ret(0);
duke@435 615
duke@435 616 return start;
duke@435 617 }
duke@435 618
duke@435 619
duke@435 620 //---------------------------------------------------------------------------
duke@435 621 // The following routine generates a subroutine to throw an asynchronous
duke@435 622 // UnknownError when an unsafe access gets a fault that could not be
duke@435 623 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 624 address generate_handler_for_unsafe_access() {
duke@435 625 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 626 address start = __ pc();
duke@435 627
never@739 628 __ push(0); // hole for return address-to-be
never@739 629 __ pusha(); // push registers
duke@435 630 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 631 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 632 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 633 __ movptr(next_pc, rax); // stuff next address
never@739 634 __ popa();
duke@435 635 __ ret(0); // jump to next address
duke@435 636
duke@435 637 return start;
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 //----------------------------------------------------------------------------------------------------
duke@435 642 // Non-destructive plausibility checks for oops
duke@435 643
duke@435 644 address generate_verify_oop() {
duke@435 645 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 646 address start = __ pc();
duke@435 647
duke@435 648 // Incoming arguments on stack after saving rax,:
duke@435 649 //
duke@435 650 // [tos ]: saved rdx
duke@435 651 // [tos + 1]: saved EFLAGS
duke@435 652 // [tos + 2]: return address
duke@435 653 // [tos + 3]: char* error message
duke@435 654 // [tos + 4]: oop object to verify
duke@435 655 // [tos + 5]: saved rax, - saved by caller and bashed
duke@435 656
duke@435 657 Label exit, error;
never@739 658 __ pushf();
never@739 659 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
never@739 660 __ push(rdx); // save rdx
duke@435 661 // make sure object is 'reasonable'
never@739 662 __ movptr(rax, Address(rsp, 4 * wordSize)); // get object
never@739 663 __ testptr(rax, rax);
duke@435 664 __ jcc(Assembler::zero, exit); // if obj is NULL it is ok
duke@435 665
duke@435 666 // Check if the oop is in the right area of memory
duke@435 667 const int oop_mask = Universe::verify_oop_mask();
duke@435 668 const int oop_bits = Universe::verify_oop_bits();
never@739 669 __ mov(rdx, rax);
never@739 670 __ andptr(rdx, oop_mask);
never@739 671 __ cmpptr(rdx, oop_bits);
duke@435 672 __ jcc(Assembler::notZero, error);
duke@435 673
coleenp@4037 674 // make sure klass is 'reasonable', which is not zero.
never@739 675 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
never@739 676 __ testptr(rax, rax);
duke@435 677 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 678
duke@435 679 // return if everything seems ok
duke@435 680 __ bind(exit);
never@739 681 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 682 __ pop(rdx); // restore rdx
never@739 683 __ popf(); // restore EFLAGS
duke@435 684 __ ret(3 * wordSize); // pop arguments
duke@435 685
duke@435 686 // handle errors
duke@435 687 __ bind(error);
never@739 688 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 689 __ pop(rdx); // get saved rdx back
never@739 690 __ popf(); // get saved EFLAGS off stack -- will be ignored
never@739 691 __ pusha(); // push registers (eip = return address & msg are already pushed)
duke@435 692 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 693 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
never@739 694 __ popa();
duke@435 695 __ ret(3 * wordSize); // pop arguments
duke@435 696 return start;
duke@435 697 }
duke@435 698
duke@435 699 //
duke@435 700 // Generate pre-barrier for array stores
duke@435 701 //
duke@435 702 // Input:
duke@435 703 // start - starting address
ysr@1280 704 // count - element count
iveresov@2606 705 void gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
duke@435 706 assert_different_registers(start, count);
duke@435 707 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 708 switch (bs->kind()) {
duke@435 709 case BarrierSet::G1SATBCT:
duke@435 710 case BarrierSet::G1SATBCTLogging:
iveresov@2606 711 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 712 if (!uninitialized_target) {
iveresov@2606 713 __ pusha(); // push registers
iveresov@2606 714 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
iveresov@2606 715 start, count);
iveresov@2606 716 __ popa();
iveresov@2606 717 }
duke@435 718 break;
duke@435 719 case BarrierSet::CardTableModRef:
duke@435 720 case BarrierSet::CardTableExtension:
duke@435 721 case BarrierSet::ModRef:
duke@435 722 break;
duke@435 723 default :
duke@435 724 ShouldNotReachHere();
duke@435 725
duke@435 726 }
duke@435 727 }
duke@435 728
duke@435 729
duke@435 730 //
duke@435 731 // Generate a post-barrier for an array store
duke@435 732 //
duke@435 733 // start - starting address
duke@435 734 // count - element count
duke@435 735 //
duke@435 736 // The two input registers are overwritten.
duke@435 737 //
duke@435 738 void gen_write_ref_array_post_barrier(Register start, Register count) {
duke@435 739 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 740 assert_different_registers(start, count);
duke@435 741 switch (bs->kind()) {
duke@435 742 case BarrierSet::G1SATBCT:
duke@435 743 case BarrierSet::G1SATBCTLogging:
duke@435 744 {
never@739 745 __ pusha(); // push registers
apetrusenko@1627 746 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
apetrusenko@1627 747 start, count);
never@739 748 __ popa();
duke@435 749 }
duke@435 750 break;
duke@435 751
duke@435 752 case BarrierSet::CardTableModRef:
duke@435 753 case BarrierSet::CardTableExtension:
duke@435 754 {
duke@435 755 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 756 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 757
duke@435 758 Label L_loop;
duke@435 759 const Register end = count; // elements count; end == start+count-1
duke@435 760 assert_different_registers(start, end);
duke@435 761
never@739 762 __ lea(end, Address(start, count, Address::times_ptr, -wordSize));
never@739 763 __ shrptr(start, CardTableModRefBS::card_shift);
never@739 764 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 765 __ subptr(end, start); // end --> count
duke@435 766 __ BIND(L_loop);
never@684 767 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 768 Address cardtable(start, count, Address::times_1, disp);
never@684 769 __ movb(cardtable, 0);
duke@435 770 __ decrement(count);
duke@435 771 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 772 }
duke@435 773 break;
duke@435 774 case BarrierSet::ModRef:
duke@435 775 break;
duke@435 776 default :
duke@435 777 ShouldNotReachHere();
duke@435 778
duke@435 779 }
duke@435 780 }
duke@435 781
kvn@840 782
kvn@840 783 // Copy 64 bytes chunks
kvn@840 784 //
kvn@840 785 // Inputs:
kvn@840 786 // from - source array address
kvn@840 787 // to_from - destination array address - from
kvn@840 788 // qword_count - 8-bytes element count, negative
kvn@840 789 //
kvn@840 790 void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 791 assert( UseSSE >= 2, "supported cpu only" );
kvn@840 792 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
kvn@840 793 // Copy 64-byte chunks
kvn@840 794 __ jmpb(L_copy_64_bytes);
kvn@1800 795 __ align(OptoLoopAlignment);
kvn@840 796 __ BIND(L_copy_64_bytes_loop);
kvn@840 797
kvn@4411 798 if (UseUnalignedLoadStores) {
kvn@4411 799 if (UseAVX >= 2) {
kvn@4411 800 __ vmovdqu(xmm0, Address(from, 0));
kvn@4411 801 __ vmovdqu(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@4411 802 __ vmovdqu(xmm1, Address(from, 32));
kvn@4411 803 __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
kvn@4411 804 } else {
kvn@4411 805 __ movdqu(xmm0, Address(from, 0));
kvn@4411 806 __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@4411 807 __ movdqu(xmm1, Address(from, 16));
kvn@4411 808 __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
kvn@4411 809 __ movdqu(xmm2, Address(from, 32));
kvn@4411 810 __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
kvn@4411 811 __ movdqu(xmm3, Address(from, 48));
kvn@4411 812 __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
kvn@4411 813 }
kvn@840 814 } else {
kvn@840 815 __ movq(xmm0, Address(from, 0));
kvn@840 816 __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 817 __ movq(xmm1, Address(from, 8));
kvn@840 818 __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
kvn@840 819 __ movq(xmm2, Address(from, 16));
kvn@840 820 __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
kvn@840 821 __ movq(xmm3, Address(from, 24));
kvn@840 822 __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
kvn@840 823 __ movq(xmm4, Address(from, 32));
kvn@840 824 __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
kvn@840 825 __ movq(xmm5, Address(from, 40));
kvn@840 826 __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
kvn@840 827 __ movq(xmm6, Address(from, 48));
kvn@840 828 __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
kvn@840 829 __ movq(xmm7, Address(from, 56));
kvn@840 830 __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
kvn@840 831 }
kvn@840 832
kvn@840 833 __ addl(from, 64);
kvn@840 834 __ BIND(L_copy_64_bytes);
kvn@840 835 __ subl(qword_count, 8);
kvn@840 836 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
kvn@4873 837
kvn@4873 838 if (UseUnalignedLoadStores && (UseAVX >= 2)) {
kvn@4873 839 // clean upper bits of YMM registers
kvn@4873 840 __ vzeroupper();
kvn@4873 841 }
kvn@840 842 __ addl(qword_count, 8);
kvn@840 843 __ jccb(Assembler::zero, L_exit);
kvn@840 844 //
kvn@840 845 // length is too short, just copy qwords
kvn@840 846 //
kvn@840 847 __ BIND(L_copy_8_bytes);
kvn@840 848 __ movq(xmm0, Address(from, 0));
kvn@840 849 __ movq(Address(from, to_from, Address::times_1), xmm0);
kvn@840 850 __ addl(from, 8);
kvn@840 851 __ decrement(qword_count);
kvn@840 852 __ jcc(Assembler::greater, L_copy_8_bytes);
kvn@840 853 __ BIND(L_exit);
kvn@840 854 }
kvn@840 855
duke@435 856 // Copy 64 bytes chunks
duke@435 857 //
duke@435 858 // Inputs:
duke@435 859 // from - source array address
duke@435 860 // to_from - destination array address - from
duke@435 861 // qword_count - 8-bytes element count, negative
duke@435 862 //
duke@435 863 void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 864 assert( VM_Version::supports_mmx(), "supported cpu only" );
duke@435 865 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
duke@435 866 // Copy 64-byte chunks
duke@435 867 __ jmpb(L_copy_64_bytes);
kvn@1800 868 __ align(OptoLoopAlignment);
duke@435 869 __ BIND(L_copy_64_bytes_loop);
duke@435 870 __ movq(mmx0, Address(from, 0));
duke@435 871 __ movq(mmx1, Address(from, 8));
duke@435 872 __ movq(mmx2, Address(from, 16));
duke@435 873 __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
duke@435 874 __ movq(mmx3, Address(from, 24));
duke@435 875 __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
duke@435 876 __ movq(mmx4, Address(from, 32));
duke@435 877 __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
duke@435 878 __ movq(mmx5, Address(from, 40));
duke@435 879 __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
duke@435 880 __ movq(mmx6, Address(from, 48));
duke@435 881 __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
duke@435 882 __ movq(mmx7, Address(from, 56));
duke@435 883 __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
duke@435 884 __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
duke@435 885 __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
never@739 886 __ addptr(from, 64);
duke@435 887 __ BIND(L_copy_64_bytes);
duke@435 888 __ subl(qword_count, 8);
duke@435 889 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
duke@435 890 __ addl(qword_count, 8);
duke@435 891 __ jccb(Assembler::zero, L_exit);
duke@435 892 //
duke@435 893 // length is too short, just copy qwords
duke@435 894 //
duke@435 895 __ BIND(L_copy_8_bytes);
duke@435 896 __ movq(mmx0, Address(from, 0));
duke@435 897 __ movq(Address(from, to_from, Address::times_1), mmx0);
never@739 898 __ addptr(from, 8);
duke@435 899 __ decrement(qword_count);
duke@435 900 __ jcc(Assembler::greater, L_copy_8_bytes);
duke@435 901 __ BIND(L_exit);
duke@435 902 __ emms();
duke@435 903 }
duke@435 904
duke@435 905 address generate_disjoint_copy(BasicType t, bool aligned,
duke@435 906 Address::ScaleFactor sf,
iveresov@2606 907 address* entry, const char *name,
iveresov@2606 908 bool dest_uninitialized = false) {
duke@435 909 __ align(CodeEntryAlignment);
duke@435 910 StubCodeMark mark(this, "StubRoutines", name);
duke@435 911 address start = __ pc();
duke@435 912
duke@435 913 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 914 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
duke@435 915
never@739 916 int shift = Address::times_ptr - sf;
duke@435 917
duke@435 918 const Register from = rsi; // source array address
duke@435 919 const Register to = rdi; // destination array address
duke@435 920 const Register count = rcx; // elements count
duke@435 921 const Register to_from = to; // (to - from)
duke@435 922 const Register saved_to = rdx; // saved destination array address
duke@435 923
duke@435 924 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 925 __ push(rsi);
never@739 926 __ push(rdi);
never@739 927 __ movptr(from , Address(rsp, 12+ 4));
never@739 928 __ movptr(to , Address(rsp, 12+ 8));
duke@435 929 __ movl(count, Address(rsp, 12+ 12));
iveresov@2595 930
iveresov@2595 931 if (entry != NULL) {
iveresov@2595 932 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
iveresov@2595 933 BLOCK_COMMENT("Entry:");
iveresov@2595 934 }
iveresov@2595 935
duke@435 936 if (t == T_OBJECT) {
duke@435 937 __ testl(count, count);
duke@435 938 __ jcc(Assembler::zero, L_0_count);
iveresov@2606 939 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
never@739 940 __ mov(saved_to, to); // save 'to'
duke@435 941 }
duke@435 942
never@739 943 __ subptr(to, from); // to --> to_from
duke@435 944 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 945 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
kvn@840 946 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
duke@435 947 // align source address at 4 bytes address boundary
duke@435 948 if (t == T_BYTE) {
duke@435 949 // One byte misalignment happens only for byte arrays
duke@435 950 __ testl(from, 1);
duke@435 951 __ jccb(Assembler::zero, L_skip_align1);
duke@435 952 __ movb(rax, Address(from, 0));
duke@435 953 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 954 __ increment(from);
duke@435 955 __ decrement(count);
duke@435 956 __ BIND(L_skip_align1);
duke@435 957 }
duke@435 958 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 959 __ testl(from, 2);
duke@435 960 __ jccb(Assembler::zero, L_skip_align2);
duke@435 961 __ movw(rax, Address(from, 0));
duke@435 962 __ movw(Address(from, to_from, Address::times_1, 0), rax);
never@739 963 __ addptr(from, 2);
duke@435 964 __ subl(count, 1<<(shift-1));
duke@435 965 __ BIND(L_skip_align2);
duke@435 966 }
duke@435 967 if (!VM_Version::supports_mmx()) {
never@739 968 __ mov(rax, count); // save 'count'
never@739 969 __ shrl(count, shift); // bytes count
never@739 970 __ addptr(to_from, from);// restore 'to'
never@739 971 __ rep_mov();
never@739 972 __ subptr(to_from, from);// restore 'to_from'
never@739 973 __ mov(count, rax); // restore 'count'
duke@435 974 __ jmpb(L_copy_2_bytes); // all dwords were copied
duke@435 975 } else {
kvn@840 976 if (!UseUnalignedLoadStores) {
kvn@840 977 // align to 8 bytes, we know we are 4 byte aligned to start
kvn@840 978 __ testptr(from, 4);
kvn@840 979 __ jccb(Assembler::zero, L_copy_64_bytes);
kvn@840 980 __ movl(rax, Address(from, 0));
kvn@840 981 __ movl(Address(from, to_from, Address::times_1, 0), rax);
kvn@840 982 __ addptr(from, 4);
kvn@840 983 __ subl(count, 1<<shift);
kvn@840 984 }
duke@435 985 __ BIND(L_copy_64_bytes);
never@739 986 __ mov(rax, count);
duke@435 987 __ shrl(rax, shift+1); // 8 bytes chunk count
duke@435 988 //
duke@435 989 // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
duke@435 990 //
kvn@840 991 if (UseXMMForArrayCopy) {
kvn@840 992 xmm_copy_forward(from, to_from, rax);
kvn@840 993 } else {
kvn@840 994 mmx_copy_forward(from, to_from, rax);
kvn@840 995 }
duke@435 996 }
duke@435 997 // copy tailing dword
duke@435 998 __ BIND(L_copy_4_bytes);
duke@435 999 __ testl(count, 1<<shift);
duke@435 1000 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1001 __ movl(rax, Address(from, 0));
duke@435 1002 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1003 if (t == T_BYTE || t == T_SHORT) {
never@739 1004 __ addptr(from, 4);
duke@435 1005 __ BIND(L_copy_2_bytes);
duke@435 1006 // copy tailing word
duke@435 1007 __ testl(count, 1<<(shift-1));
duke@435 1008 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1009 __ movw(rax, Address(from, 0));
duke@435 1010 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1011 if (t == T_BYTE) {
never@739 1012 __ addptr(from, 2);
duke@435 1013 __ BIND(L_copy_byte);
duke@435 1014 // copy tailing byte
duke@435 1015 __ testl(count, 1);
duke@435 1016 __ jccb(Assembler::zero, L_exit);
duke@435 1017 __ movb(rax, Address(from, 0));
duke@435 1018 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1019 __ BIND(L_exit);
duke@435 1020 } else {
duke@435 1021 __ BIND(L_copy_byte);
duke@435 1022 }
duke@435 1023 } else {
duke@435 1024 __ BIND(L_copy_2_bytes);
duke@435 1025 }
duke@435 1026
duke@435 1027 if (t == T_OBJECT) {
duke@435 1028 __ movl(count, Address(rsp, 12+12)); // reread 'count'
never@739 1029 __ mov(to, saved_to); // restore 'to'
duke@435 1030 gen_write_ref_array_post_barrier(to, count);
duke@435 1031 __ BIND(L_0_count);
duke@435 1032 }
duke@435 1033 inc_copy_counter_np(t);
never@739 1034 __ pop(rdi);
never@739 1035 __ pop(rsi);
duke@435 1036 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1037 __ xorptr(rax, rax); // return 0
duke@435 1038 __ ret(0);
duke@435 1039 return start;
duke@435 1040 }
duke@435 1041
duke@435 1042
never@2118 1043 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1044 __ align(CodeEntryAlignment);
never@2118 1045 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1046 address start = __ pc();
never@2118 1047
never@2118 1048 BLOCK_COMMENT("Entry:");
never@2118 1049
never@2118 1050 const Register to = rdi; // source array address
never@2118 1051 const Register value = rdx; // value
never@2118 1052 const Register count = rsi; // elements count
never@2118 1053
never@2118 1054 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1055 __ push(rsi);
never@2118 1056 __ push(rdi);
never@2118 1057 __ movptr(to , Address(rsp, 12+ 4));
never@2118 1058 __ movl(value, Address(rsp, 12+ 8));
never@2118 1059 __ movl(count, Address(rsp, 12+ 12));
never@2118 1060
never@2118 1061 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1062
never@2118 1063 __ pop(rdi);
never@2118 1064 __ pop(rsi);
never@2118 1065 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1066 __ ret(0);
never@2118 1067 return start;
never@2118 1068 }
never@2118 1069
duke@435 1070 address generate_conjoint_copy(BasicType t, bool aligned,
duke@435 1071 Address::ScaleFactor sf,
duke@435 1072 address nooverlap_target,
iveresov@2606 1073 address* entry, const char *name,
iveresov@2606 1074 bool dest_uninitialized = false) {
duke@435 1075 __ align(CodeEntryAlignment);
duke@435 1076 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1077 address start = __ pc();
duke@435 1078
duke@435 1079 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 1080 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1081
never@739 1082 int shift = Address::times_ptr - sf;
duke@435 1083
duke@435 1084 const Register src = rax; // source array address
duke@435 1085 const Register dst = rdx; // destination array address
duke@435 1086 const Register from = rsi; // source array address
duke@435 1087 const Register to = rdi; // destination array address
duke@435 1088 const Register count = rcx; // elements count
duke@435 1089 const Register end = rax; // array end address
duke@435 1090
duke@435 1091 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1092 __ push(rsi);
never@739 1093 __ push(rdi);
never@739 1094 __ movptr(src , Address(rsp, 12+ 4)); // from
never@739 1095 __ movptr(dst , Address(rsp, 12+ 8)); // to
never@739 1096 __ movl2ptr(count, Address(rsp, 12+12)); // count
duke@435 1097
duke@435 1098 if (entry != NULL) {
duke@435 1099 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1100 BLOCK_COMMENT("Entry:");
duke@435 1101 }
duke@435 1102
iveresov@2595 1103 // nooverlap_target expects arguments in rsi and rdi.
never@739 1104 __ mov(from, src);
never@739 1105 __ mov(to , dst);
duke@435 1106
iveresov@2595 1107 // arrays overlap test: dispatch to disjoint stub if necessary.
duke@435 1108 RuntimeAddress nooverlap(nooverlap_target);
never@739 1109 __ cmpptr(dst, src);
never@739 1110 __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
duke@435 1111 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1112 __ cmpptr(dst, end);
duke@435 1113 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1114
iveresov@2595 1115 if (t == T_OBJECT) {
iveresov@2595 1116 __ testl(count, count);
iveresov@2595 1117 __ jcc(Assembler::zero, L_0_count);
iveresov@2606 1118 gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
iveresov@2595 1119 }
iveresov@2595 1120
duke@435 1121 // copy from high to low
duke@435 1122 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1123 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 1124 if (t == T_BYTE || t == T_SHORT) {
duke@435 1125 // Align the end of destination array at 4 bytes address boundary
never@739 1126 __ lea(end, Address(dst, count, sf, 0));
duke@435 1127 if (t == T_BYTE) {
duke@435 1128 // One byte misalignment happens only for byte arrays
duke@435 1129 __ testl(end, 1);
duke@435 1130 __ jccb(Assembler::zero, L_skip_align1);
duke@435 1131 __ decrement(count);
duke@435 1132 __ movb(rdx, Address(from, count, sf, 0));
duke@435 1133 __ movb(Address(to, count, sf, 0), rdx);
duke@435 1134 __ BIND(L_skip_align1);
duke@435 1135 }
duke@435 1136 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 1137 __ testl(end, 2);
duke@435 1138 __ jccb(Assembler::zero, L_skip_align2);
never@739 1139 __ subptr(count, 1<<(shift-1));
duke@435 1140 __ movw(rdx, Address(from, count, sf, 0));
duke@435 1141 __ movw(Address(to, count, sf, 0), rdx);
duke@435 1142 __ BIND(L_skip_align2);
duke@435 1143 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1144 __ jcc(Assembler::below, L_copy_4_bytes);
duke@435 1145 }
duke@435 1146
duke@435 1147 if (!VM_Version::supports_mmx()) {
duke@435 1148 __ std();
never@739 1149 __ mov(rax, count); // Save 'count'
never@739 1150 __ mov(rdx, to); // Save 'to'
never@739 1151 __ lea(rsi, Address(from, count, sf, -4));
never@739 1152 __ lea(rdi, Address(to , count, sf, -4));
never@739 1153 __ shrptr(count, shift); // bytes count
never@739 1154 __ rep_mov();
duke@435 1155 __ cld();
never@739 1156 __ mov(count, rax); // restore 'count'
duke@435 1157 __ andl(count, (1<<shift)-1); // mask the number of rest elements
never@739 1158 __ movptr(from, Address(rsp, 12+4)); // reread 'from'
never@739 1159 __ mov(to, rdx); // restore 'to'
duke@435 1160 __ jmpb(L_copy_2_bytes); // all dword were copied
duke@435 1161 } else {
duke@435 1162 // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
never@739 1163 __ testptr(end, 4);
duke@435 1164 __ jccb(Assembler::zero, L_copy_8_bytes);
duke@435 1165 __ subl(count, 1<<shift);
duke@435 1166 __ movl(rdx, Address(from, count, sf, 0));
duke@435 1167 __ movl(Address(to, count, sf, 0), rdx);
duke@435 1168 __ jmpb(L_copy_8_bytes);
duke@435 1169
kvn@1800 1170 __ align(OptoLoopAlignment);
duke@435 1171 // Move 8 bytes
duke@435 1172 __ BIND(L_copy_8_bytes_loop);
kvn@840 1173 if (UseXMMForArrayCopy) {
kvn@840 1174 __ movq(xmm0, Address(from, count, sf, 0));
kvn@840 1175 __ movq(Address(to, count, sf, 0), xmm0);
kvn@840 1176 } else {
kvn@840 1177 __ movq(mmx0, Address(from, count, sf, 0));
kvn@840 1178 __ movq(Address(to, count, sf, 0), mmx0);
kvn@840 1179 }
duke@435 1180 __ BIND(L_copy_8_bytes);
duke@435 1181 __ subl(count, 2<<shift);
duke@435 1182 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1183 __ addl(count, 2<<shift);
kvn@840 1184 if (!UseXMMForArrayCopy) {
kvn@840 1185 __ emms();
kvn@840 1186 }
duke@435 1187 }
duke@435 1188 __ BIND(L_copy_4_bytes);
duke@435 1189 // copy prefix qword
duke@435 1190 __ testl(count, 1<<shift);
duke@435 1191 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1192 __ movl(rdx, Address(from, count, sf, -4));
duke@435 1193 __ movl(Address(to, count, sf, -4), rdx);
duke@435 1194
duke@435 1195 if (t == T_BYTE || t == T_SHORT) {
duke@435 1196 __ subl(count, (1<<shift));
duke@435 1197 __ BIND(L_copy_2_bytes);
duke@435 1198 // copy prefix dword
duke@435 1199 __ testl(count, 1<<(shift-1));
duke@435 1200 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1201 __ movw(rdx, Address(from, count, sf, -2));
duke@435 1202 __ movw(Address(to, count, sf, -2), rdx);
duke@435 1203 if (t == T_BYTE) {
duke@435 1204 __ subl(count, 1<<(shift-1));
duke@435 1205 __ BIND(L_copy_byte);
duke@435 1206 // copy prefix byte
duke@435 1207 __ testl(count, 1);
duke@435 1208 __ jccb(Assembler::zero, L_exit);
duke@435 1209 __ movb(rdx, Address(from, 0));
duke@435 1210 __ movb(Address(to, 0), rdx);
duke@435 1211 __ BIND(L_exit);
duke@435 1212 } else {
duke@435 1213 __ BIND(L_copy_byte);
duke@435 1214 }
duke@435 1215 } else {
duke@435 1216 __ BIND(L_copy_2_bytes);
duke@435 1217 }
duke@435 1218 if (t == T_OBJECT) {
never@739 1219 __ movl2ptr(count, Address(rsp, 12+12)); // reread count
duke@435 1220 gen_write_ref_array_post_barrier(to, count);
duke@435 1221 __ BIND(L_0_count);
duke@435 1222 }
duke@435 1223 inc_copy_counter_np(t);
never@739 1224 __ pop(rdi);
never@739 1225 __ pop(rsi);
duke@435 1226 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1227 __ xorptr(rax, rax); // return 0
duke@435 1228 __ ret(0);
duke@435 1229 return start;
duke@435 1230 }
duke@435 1231
duke@435 1232
duke@435 1233 address generate_disjoint_long_copy(address* entry, const char *name) {
duke@435 1234 __ align(CodeEntryAlignment);
duke@435 1235 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1236 address start = __ pc();
duke@435 1237
duke@435 1238 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1239 const Register from = rax; // source array address
duke@435 1240 const Register to = rdx; // destination array address
duke@435 1241 const Register count = rcx; // elements count
duke@435 1242 const Register to_from = rdx; // (to - from)
duke@435 1243
duke@435 1244 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1245 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1246 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1247 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1248
duke@435 1249 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 1250 BLOCK_COMMENT("Entry:");
duke@435 1251
never@739 1252 __ subptr(to, from); // to --> to_from
duke@435 1253 if (VM_Version::supports_mmx()) {
kvn@840 1254 if (UseXMMForArrayCopy) {
kvn@840 1255 xmm_copy_forward(from, to_from, count);
kvn@840 1256 } else {
kvn@840 1257 mmx_copy_forward(from, to_from, count);
kvn@840 1258 }
duke@435 1259 } else {
duke@435 1260 __ jmpb(L_copy_8_bytes);
kvn@1800 1261 __ align(OptoLoopAlignment);
duke@435 1262 __ BIND(L_copy_8_bytes_loop);
duke@435 1263 __ fild_d(Address(from, 0));
duke@435 1264 __ fistp_d(Address(from, to_from, Address::times_1));
never@739 1265 __ addptr(from, 8);
duke@435 1266 __ BIND(L_copy_8_bytes);
duke@435 1267 __ decrement(count);
duke@435 1268 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1269 }
duke@435 1270 inc_copy_counter_np(T_LONG);
duke@435 1271 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1272 __ xorptr(rax, rax); // return 0
duke@435 1273 __ ret(0);
duke@435 1274 return start;
duke@435 1275 }
duke@435 1276
duke@435 1277 address generate_conjoint_long_copy(address nooverlap_target,
duke@435 1278 address* entry, const char *name) {
duke@435 1279 __ align(CodeEntryAlignment);
duke@435 1280 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1281 address start = __ pc();
duke@435 1282
duke@435 1283 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1284 const Register from = rax; // source array address
duke@435 1285 const Register to = rdx; // destination array address
duke@435 1286 const Register count = rcx; // elements count
duke@435 1287 const Register end_from = rax; // source array end address
duke@435 1288
duke@435 1289 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1290 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1291 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1292 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1293
duke@435 1294 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1295 BLOCK_COMMENT("Entry:");
duke@435 1296
duke@435 1297 // arrays overlap test
never@739 1298 __ cmpptr(to, from);
duke@435 1299 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1300 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1301 __ lea(end_from, Address(from, count, Address::times_8, 0));
never@739 1302 __ cmpptr(to, end_from);
never@739 1303 __ movptr(from, Address(rsp, 8)); // from
duke@435 1304 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1305
duke@435 1306 __ jmpb(L_copy_8_bytes);
duke@435 1307
kvn@1800 1308 __ align(OptoLoopAlignment);
duke@435 1309 __ BIND(L_copy_8_bytes_loop);
duke@435 1310 if (VM_Version::supports_mmx()) {
kvn@840 1311 if (UseXMMForArrayCopy) {
kvn@840 1312 __ movq(xmm0, Address(from, count, Address::times_8));
kvn@840 1313 __ movq(Address(to, count, Address::times_8), xmm0);
kvn@840 1314 } else {
kvn@840 1315 __ movq(mmx0, Address(from, count, Address::times_8));
kvn@840 1316 __ movq(Address(to, count, Address::times_8), mmx0);
kvn@840 1317 }
duke@435 1318 } else {
duke@435 1319 __ fild_d(Address(from, count, Address::times_8));
duke@435 1320 __ fistp_d(Address(to, count, Address::times_8));
duke@435 1321 }
duke@435 1322 __ BIND(L_copy_8_bytes);
duke@435 1323 __ decrement(count);
duke@435 1324 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1325
kvn@840 1326 if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
duke@435 1327 __ emms();
duke@435 1328 }
duke@435 1329 inc_copy_counter_np(T_LONG);
duke@435 1330 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1331 __ xorptr(rax, rax); // return 0
duke@435 1332 __ ret(0);
duke@435 1333 return start;
duke@435 1334 }
duke@435 1335
duke@435 1336
duke@435 1337 // Helper for generating a dynamic type check.
duke@435 1338 // The sub_klass must be one of {rbx, rdx, rsi}.
duke@435 1339 // The temp is killed.
duke@435 1340 void generate_type_check(Register sub_klass,
duke@435 1341 Address& super_check_offset_addr,
duke@435 1342 Address& super_klass_addr,
duke@435 1343 Register temp,
jrose@1079 1344 Label* L_success, Label* L_failure) {
duke@435 1345 BLOCK_COMMENT("type_check:");
duke@435 1346
duke@435 1347 Label L_fallthrough;
jrose@1079 1348 #define LOCAL_JCC(assembler_con, label_ptr) \
jrose@1079 1349 if (label_ptr != NULL) __ jcc(assembler_con, *(label_ptr)); \
jrose@1079 1350 else __ jcc(assembler_con, L_fallthrough) /*omit semi*/
duke@435 1351
jrose@1079 1352 // The following is a strange variation of the fast path which requires
jrose@1079 1353 // one less register, because needed values are on the argument stack.
jrose@1079 1354 // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
jrose@1079 1355 // L_success, L_failure, NULL);
duke@435 1356 assert_different_registers(sub_klass, temp);
duke@435 1357
stefank@3391 1358 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1359
duke@435 1360 // if the pointers are equal, we are done (e.g., String[] elements)
never@739 1361 __ cmpptr(sub_klass, super_klass_addr);
jrose@1079 1362 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1363
duke@435 1364 // check the supertype display:
never@739 1365 __ movl2ptr(temp, super_check_offset_addr);
duke@435 1366 Address super_check_addr(sub_klass, temp, Address::times_1, 0);
never@739 1367 __ movptr(temp, super_check_addr); // load displayed supertype
never@739 1368 __ cmpptr(temp, super_klass_addr); // test the super type
jrose@1079 1369 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1370
duke@435 1371 // if it was a primary super, we can just fail immediately
duke@435 1372 __ cmpl(super_check_offset_addr, sc_offset);
jrose@1079 1373 LOCAL_JCC(Assembler::notEqual, L_failure);
duke@435 1374
jrose@1079 1375 // The repne_scan instruction uses fixed registers, which will get spilled.
jrose@1079 1376 // We happen to know this works best when super_klass is in rax.
jrose@1079 1377 Register super_klass = temp;
jrose@1079 1378 __ movptr(super_klass, super_klass_addr);
jrose@1079 1379 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
jrose@1079 1380 L_success, L_failure);
duke@435 1381
jrose@1079 1382 __ bind(L_fallthrough);
duke@435 1383
jrose@1079 1384 if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
jrose@1079 1385 if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
duke@435 1386
jrose@1079 1387 #undef LOCAL_JCC
duke@435 1388 }
duke@435 1389
duke@435 1390 //
duke@435 1391 // Generate checkcasting array copy stub
duke@435 1392 //
duke@435 1393 // Input:
duke@435 1394 // 4(rsp) - source array address
duke@435 1395 // 8(rsp) - destination array address
duke@435 1396 // 12(rsp) - element count, can be zero
duke@435 1397 // 16(rsp) - size_t ckoff (super_check_offset)
duke@435 1398 // 20(rsp) - oop ckval (super_klass)
duke@435 1399 //
duke@435 1400 // Output:
duke@435 1401 // rax, == 0 - success
duke@435 1402 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1403 //
iveresov@2606 1404 address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
duke@435 1405 __ align(CodeEntryAlignment);
duke@435 1406 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1407 address start = __ pc();
duke@435 1408
duke@435 1409 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 1410
duke@435 1411 // register use:
duke@435 1412 // rax, rdx, rcx -- loop control (end_from, end_to, count)
duke@435 1413 // rdi, rsi -- element access (oop, klass)
duke@435 1414 // rbx, -- temp
duke@435 1415 const Register from = rax; // source array address
duke@435 1416 const Register to = rdx; // destination array address
duke@435 1417 const Register length = rcx; // elements count
duke@435 1418 const Register elem = rdi; // each oop copied
duke@435 1419 const Register elem_klass = rsi; // each elem._klass (sub_klass)
duke@435 1420 const Register temp = rbx; // lone remaining temp
duke@435 1421
duke@435 1422 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1423
never@739 1424 __ push(rsi);
never@739 1425 __ push(rdi);
never@739 1426 __ push(rbx);
duke@435 1427
duke@435 1428 Address from_arg(rsp, 16+ 4); // from
duke@435 1429 Address to_arg(rsp, 16+ 8); // to
duke@435 1430 Address length_arg(rsp, 16+12); // elements count
duke@435 1431 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1432 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1433
duke@435 1434 // Load up:
never@739 1435 __ movptr(from, from_arg);
never@739 1436 __ movptr(to, to_arg);
never@739 1437 __ movl2ptr(length, length_arg);
duke@435 1438
iveresov@2595 1439 if (entry != NULL) {
iveresov@2595 1440 *entry = __ pc(); // Entry point from generic arraycopy stub.
iveresov@2595 1441 BLOCK_COMMENT("Entry:");
iveresov@2595 1442 }
duke@435 1443
duke@435 1444 //---------------------------------------------------------------
duke@435 1445 // Assembler stub will be used for this call to arraycopy
duke@435 1446 // if the two arrays are subtypes of Object[] but the
duke@435 1447 // destination array type is not equal to or a supertype
duke@435 1448 // of the source type. Each element must be separately
duke@435 1449 // checked.
duke@435 1450
duke@435 1451 // Loop-invariant addresses. They are exclusive end pointers.
never@739 1452 Address end_from_addr(from, length, Address::times_ptr, 0);
never@739 1453 Address end_to_addr(to, length, Address::times_ptr, 0);
duke@435 1454
duke@435 1455 Register end_from = from; // re-use
duke@435 1456 Register end_to = to; // re-use
duke@435 1457 Register count = length; // re-use
duke@435 1458
duke@435 1459 // Loop-variant addresses. They assume post-incremented count < 0.
never@739 1460 Address from_element_addr(end_from, count, Address::times_ptr, 0);
never@739 1461 Address to_element_addr(end_to, count, Address::times_ptr, 0);
duke@435 1462 Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
duke@435 1463
duke@435 1464 // Copy from low to high addresses, indexed from the end of each array.
iveresov@2606 1465 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
never@739 1466 __ lea(end_from, end_from_addr);
never@739 1467 __ lea(end_to, end_to_addr);
duke@435 1468 assert(length == count, ""); // else fix next line:
never@739 1469 __ negptr(count); // negate and test the length
duke@435 1470 __ jccb(Assembler::notZero, L_load_element);
duke@435 1471
duke@435 1472 // Empty array: Nothing to do.
never@739 1473 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 1474 __ jmp(L_done);
duke@435 1475
duke@435 1476 // ======== begin loop ========
duke@435 1477 // (Loop is rotated; its entry is L_load_element.)
duke@435 1478 // Loop control:
duke@435 1479 // for (count = -count; count != 0; count++)
duke@435 1480 // Base pointers src, dst are biased by 8*count,to last element.
kvn@1800 1481 __ align(OptoLoopAlignment);
duke@435 1482
duke@435 1483 __ BIND(L_store_element);
never@739 1484 __ movptr(to_element_addr, elem); // store the oop
duke@435 1485 __ increment(count); // increment the count toward zero
duke@435 1486 __ jccb(Assembler::zero, L_do_card_marks);
duke@435 1487
duke@435 1488 // ======== loop entry is here ========
duke@435 1489 __ BIND(L_load_element);
never@739 1490 __ movptr(elem, from_element_addr); // load the oop
never@739 1491 __ testptr(elem, elem);
duke@435 1492 __ jccb(Assembler::zero, L_store_element);
duke@435 1493
duke@435 1494 // (Could do a trick here: Remember last successful non-null
duke@435 1495 // element stored and make a quick oop equality check on it.)
duke@435 1496
never@739 1497 __ movptr(elem_klass, elem_klass_addr); // query the object klass
duke@435 1498 generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
duke@435 1499 &L_store_element, NULL);
kvn@5156 1500 // (On fall-through, we have failed the element type check.)
duke@435 1501 // ======== end loop ========
duke@435 1502
duke@435 1503 // It was a real error; we must depend on the caller to finish the job.
rasbold@454 1504 // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
rasbold@454 1505 // Emit GC store barriers for the oops we have copied (length_arg + count),
duke@435 1506 // and report their number to the caller.
kvn@5156 1507 assert_different_registers(to, count, rax);
kvn@5156 1508 Label L_post_barrier;
duke@435 1509 __ addl(count, length_arg); // transfers = (length - remaining)
never@739 1510 __ movl2ptr(rax, count); // save the value
kvn@5156 1511 __ notptr(rax); // report (-1^K) to caller (does not affect flags)
kvn@5156 1512 __ jccb(Assembler::notZero, L_post_barrier);
kvn@5156 1513 __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
duke@435 1514
duke@435 1515 // Come here on success only.
duke@435 1516 __ BIND(L_do_card_marks);
kvn@5156 1517 __ xorptr(rax, rax); // return 0 on success
never@739 1518 __ movl2ptr(count, length_arg);
kvn@5156 1519
kvn@5156 1520 __ BIND(L_post_barrier);
kvn@5156 1521 __ movptr(to, to_arg); // reload
duke@435 1522 gen_write_ref_array_post_barrier(to, count);
duke@435 1523
duke@435 1524 // Common exit point (success or failure).
duke@435 1525 __ BIND(L_done);
never@739 1526 __ pop(rbx);
never@739 1527 __ pop(rdi);
never@739 1528 __ pop(rsi);
duke@435 1529 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 1530 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1531 __ ret(0);
duke@435 1532
duke@435 1533 return start;
duke@435 1534 }
duke@435 1535
duke@435 1536 //
duke@435 1537 // Generate 'unsafe' array copy stub
duke@435 1538 // Though just as safe as the other stubs, it takes an unscaled
duke@435 1539 // size_t argument instead of an element count.
duke@435 1540 //
duke@435 1541 // Input:
duke@435 1542 // 4(rsp) - source array address
duke@435 1543 // 8(rsp) - destination array address
duke@435 1544 // 12(rsp) - byte count, can be zero
duke@435 1545 //
duke@435 1546 // Output:
duke@435 1547 // rax, == 0 - success
duke@435 1548 // rax, == -1 - need to call System.arraycopy
duke@435 1549 //
duke@435 1550 // Examines the alignment of the operands and dispatches
duke@435 1551 // to a long, int, short, or byte copy loop.
duke@435 1552 //
duke@435 1553 address generate_unsafe_copy(const char *name,
duke@435 1554 address byte_copy_entry,
duke@435 1555 address short_copy_entry,
duke@435 1556 address int_copy_entry,
duke@435 1557 address long_copy_entry) {
duke@435 1558
duke@435 1559 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 1560
duke@435 1561 __ align(CodeEntryAlignment);
duke@435 1562 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1563 address start = __ pc();
duke@435 1564
duke@435 1565 const Register from = rax; // source array address
duke@435 1566 const Register to = rdx; // destination array address
duke@435 1567 const Register count = rcx; // elements count
duke@435 1568
duke@435 1569 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1570 __ push(rsi);
never@739 1571 __ push(rdi);
duke@435 1572 Address from_arg(rsp, 12+ 4); // from
duke@435 1573 Address to_arg(rsp, 12+ 8); // to
duke@435 1574 Address count_arg(rsp, 12+12); // byte count
duke@435 1575
duke@435 1576 // Load up:
never@739 1577 __ movptr(from , from_arg);
never@739 1578 __ movptr(to , to_arg);
never@739 1579 __ movl2ptr(count, count_arg);
duke@435 1580
duke@435 1581 // bump this on entry, not on exit:
duke@435 1582 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 1583
duke@435 1584 const Register bits = rsi;
never@739 1585 __ mov(bits, from);
never@739 1586 __ orptr(bits, to);
never@739 1587 __ orptr(bits, count);
duke@435 1588
duke@435 1589 __ testl(bits, BytesPerLong-1);
duke@435 1590 __ jccb(Assembler::zero, L_long_aligned);
duke@435 1591
duke@435 1592 __ testl(bits, BytesPerInt-1);
duke@435 1593 __ jccb(Assembler::zero, L_int_aligned);
duke@435 1594
duke@435 1595 __ testl(bits, BytesPerShort-1);
duke@435 1596 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 1597
duke@435 1598 __ BIND(L_short_aligned);
never@739 1599 __ shrptr(count, LogBytesPerShort); // size => short_count
duke@435 1600 __ movl(count_arg, count); // update 'count'
duke@435 1601 __ jump(RuntimeAddress(short_copy_entry));
duke@435 1602
duke@435 1603 __ BIND(L_int_aligned);
never@739 1604 __ shrptr(count, LogBytesPerInt); // size => int_count
duke@435 1605 __ movl(count_arg, count); // update 'count'
duke@435 1606 __ jump(RuntimeAddress(int_copy_entry));
duke@435 1607
duke@435 1608 __ BIND(L_long_aligned);
never@739 1609 __ shrptr(count, LogBytesPerLong); // size => qword_count
duke@435 1610 __ movl(count_arg, count); // update 'count'
never@739 1611 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1612 __ pop(rsi);
duke@435 1613 __ jump(RuntimeAddress(long_copy_entry));
duke@435 1614
duke@435 1615 return start;
duke@435 1616 }
duke@435 1617
duke@435 1618
duke@435 1619 // Perform range checks on the proposed arraycopy.
duke@435 1620 // Smashes src_pos and dst_pos. (Uses them up for temps.)
duke@435 1621 void arraycopy_range_checks(Register src,
duke@435 1622 Register src_pos,
duke@435 1623 Register dst,
duke@435 1624 Register dst_pos,
duke@435 1625 Address& length,
duke@435 1626 Label& L_failed) {
duke@435 1627 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 1628 const Register src_end = src_pos; // source array end position
duke@435 1629 const Register dst_end = dst_pos; // destination array end position
duke@435 1630 __ addl(src_end, length); // src_pos + length
duke@435 1631 __ addl(dst_end, length); // dst_pos + length
duke@435 1632
duke@435 1633 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 1634 __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 1635 __ jcc(Assembler::above, L_failed);
duke@435 1636
duke@435 1637 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 1638 __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 1639 __ jcc(Assembler::above, L_failed);
duke@435 1640
duke@435 1641 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 1642 }
duke@435 1643
duke@435 1644
duke@435 1645 //
duke@435 1646 // Generate generic array copy stubs
duke@435 1647 //
duke@435 1648 // Input:
duke@435 1649 // 4(rsp) - src oop
duke@435 1650 // 8(rsp) - src_pos
duke@435 1651 // 12(rsp) - dst oop
duke@435 1652 // 16(rsp) - dst_pos
duke@435 1653 // 20(rsp) - element count
duke@435 1654 //
duke@435 1655 // Output:
duke@435 1656 // rax, == 0 - success
duke@435 1657 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1658 //
duke@435 1659 address generate_generic_copy(const char *name,
duke@435 1660 address entry_jbyte_arraycopy,
duke@435 1661 address entry_jshort_arraycopy,
duke@435 1662 address entry_jint_arraycopy,
duke@435 1663 address entry_oop_arraycopy,
duke@435 1664 address entry_jlong_arraycopy,
duke@435 1665 address entry_checkcast_arraycopy) {
duke@435 1666 Label L_failed, L_failed_0, L_objArray;
duke@435 1667
duke@435 1668 { int modulus = CodeEntryAlignment;
duke@435 1669 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 1670 int advance = target - (__ offset() % modulus);
duke@435 1671 if (advance < 0) advance += modulus;
duke@435 1672 if (advance > 0) __ nop(advance);
duke@435 1673 }
duke@435 1674 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1675
duke@435 1676 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 1677 __ BIND(L_failed_0);
duke@435 1678 __ jmp(L_failed);
duke@435 1679 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 1680
duke@435 1681 __ align(CodeEntryAlignment);
duke@435 1682 address start = __ pc();
duke@435 1683
duke@435 1684 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1685 __ push(rsi);
never@739 1686 __ push(rdi);
duke@435 1687
duke@435 1688 // bump this on entry, not on exit:
duke@435 1689 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 1690
duke@435 1691 // Input values
duke@435 1692 Address SRC (rsp, 12+ 4);
duke@435 1693 Address SRC_POS (rsp, 12+ 8);
duke@435 1694 Address DST (rsp, 12+12);
duke@435 1695 Address DST_POS (rsp, 12+16);
duke@435 1696 Address LENGTH (rsp, 12+20);
duke@435 1697
duke@435 1698 //-----------------------------------------------------------------------
duke@435 1699 // Assembler stub will be used for this call to arraycopy
duke@435 1700 // if the following conditions are met:
duke@435 1701 //
duke@435 1702 // (1) src and dst must not be null.
duke@435 1703 // (2) src_pos must not be negative.
duke@435 1704 // (3) dst_pos must not be negative.
duke@435 1705 // (4) length must not be negative.
duke@435 1706 // (5) src klass and dst klass should be the same and not NULL.
duke@435 1707 // (6) src and dst should be arrays.
duke@435 1708 // (7) src_pos + length must not exceed length of src.
duke@435 1709 // (8) dst_pos + length must not exceed length of dst.
duke@435 1710 //
duke@435 1711
duke@435 1712 const Register src = rax; // source array oop
duke@435 1713 const Register src_pos = rsi;
duke@435 1714 const Register dst = rdx; // destination array oop
duke@435 1715 const Register dst_pos = rdi;
duke@435 1716 const Register length = rcx; // transfer count
duke@435 1717
duke@435 1718 // if (src == NULL) return -1;
never@739 1719 __ movptr(src, SRC); // src oop
never@739 1720 __ testptr(src, src);
duke@435 1721 __ jccb(Assembler::zero, L_failed_0);
duke@435 1722
duke@435 1723 // if (src_pos < 0) return -1;
never@739 1724 __ movl2ptr(src_pos, SRC_POS); // src_pos
duke@435 1725 __ testl(src_pos, src_pos);
duke@435 1726 __ jccb(Assembler::negative, L_failed_0);
duke@435 1727
duke@435 1728 // if (dst == NULL) return -1;
never@739 1729 __ movptr(dst, DST); // dst oop
never@739 1730 __ testptr(dst, dst);
duke@435 1731 __ jccb(Assembler::zero, L_failed_0);
duke@435 1732
duke@435 1733 // if (dst_pos < 0) return -1;
never@739 1734 __ movl2ptr(dst_pos, DST_POS); // dst_pos
duke@435 1735 __ testl(dst_pos, dst_pos);
duke@435 1736 __ jccb(Assembler::negative, L_failed_0);
duke@435 1737
duke@435 1738 // if (length < 0) return -1;
never@739 1739 __ movl2ptr(length, LENGTH); // length
duke@435 1740 __ testl(length, length);
duke@435 1741 __ jccb(Assembler::negative, L_failed_0);
duke@435 1742
duke@435 1743 // if (src->klass() == NULL) return -1;
duke@435 1744 Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
duke@435 1745 Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
duke@435 1746 const Register rcx_src_klass = rcx; // array klass
never@739 1747 __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
duke@435 1748
duke@435 1749 #ifdef ASSERT
duke@435 1750 // assert(src->klass() != NULL);
duke@435 1751 BLOCK_COMMENT("assert klasses not null");
duke@435 1752 { Label L1, L2;
never@739 1753 __ testptr(rcx_src_klass, rcx_src_klass);
duke@435 1754 __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 1755 __ bind(L1);
duke@435 1756 __ stop("broken null klass");
duke@435 1757 __ bind(L2);
never@739 1758 __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
duke@435 1759 __ jccb(Assembler::equal, L1); // this would be broken also
duke@435 1760 BLOCK_COMMENT("assert done");
duke@435 1761 }
duke@435 1762 #endif //ASSERT
duke@435 1763
duke@435 1764 // Load layout helper (32-bits)
duke@435 1765 //
duke@435 1766 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 1767 // 32 30 24 16 8 2 0
duke@435 1768 //
duke@435 1769 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 1770 //
duke@435 1771
stefank@3391 1772 int lh_offset = in_bytes(Klass::layout_helper_offset());
duke@435 1773 Address src_klass_lh_addr(rcx_src_klass, lh_offset);
duke@435 1774
duke@435 1775 // Handle objArrays completely differently...
duke@435 1776 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 1777 __ cmpl(src_klass_lh_addr, objArray_lh);
duke@435 1778 __ jcc(Assembler::equal, L_objArray);
duke@435 1779
duke@435 1780 // if (src->klass() != dst->klass()) return -1;
never@739 1781 __ cmpptr(rcx_src_klass, dst_klass_addr);
duke@435 1782 __ jccb(Assembler::notEqual, L_failed_0);
duke@435 1783
duke@435 1784 const Register rcx_lh = rcx; // layout helper
duke@435 1785 assert(rcx_lh == rcx_src_klass, "known alias");
duke@435 1786 __ movl(rcx_lh, src_klass_lh_addr);
duke@435 1787
duke@435 1788 // if (!src->is_Array()) return -1;
duke@435 1789 __ cmpl(rcx_lh, Klass::_lh_neutral_value);
duke@435 1790 __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
duke@435 1791
duke@435 1792 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 1793 #ifdef ASSERT
duke@435 1794 { Label L;
duke@435 1795 __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 1796 __ jcc(Assembler::greaterEqual, L); // signed cmp
duke@435 1797 __ stop("must be a primitive array");
duke@435 1798 __ bind(L);
duke@435 1799 }
duke@435 1800 #endif
duke@435 1801
duke@435 1802 assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
duke@435 1803 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1804
coleenp@4142 1805 // TypeArrayKlass
duke@435 1806 //
duke@435 1807 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 1808 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 1809 //
duke@435 1810 const Register rsi_offset = rsi; // array offset
duke@435 1811 const Register src_array = src; // src array offset
duke@435 1812 const Register dst_array = dst; // dst array offset
duke@435 1813 const Register rdi_elsize = rdi; // log2 element size
duke@435 1814
never@739 1815 __ mov(rsi_offset, rcx_lh);
never@739 1816 __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
never@739 1817 __ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset
never@739 1818 __ addptr(src_array, rsi_offset); // src array offset
never@739 1819 __ addptr(dst_array, rsi_offset); // dst array offset
never@739 1820 __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
duke@435 1821
duke@435 1822 // next registers should be set before the jump to corresponding stub
duke@435 1823 const Register from = src; // source array address
duke@435 1824 const Register to = dst; // destination array address
duke@435 1825 const Register count = rcx; // elements count
duke@435 1826 // some of them should be duplicated on stack
duke@435 1827 #define FROM Address(rsp, 12+ 4)
duke@435 1828 #define TO Address(rsp, 12+ 8) // Not used now
duke@435 1829 #define COUNT Address(rsp, 12+12) // Only for oop arraycopy
duke@435 1830
duke@435 1831 BLOCK_COMMENT("scale indexes to element size");
never@739 1832 __ movl2ptr(rsi, SRC_POS); // src_pos
never@739 1833 __ shlptr(rsi); // src_pos << rcx (log2 elsize)
duke@435 1834 assert(src_array == from, "");
never@739 1835 __ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize
never@739 1836 __ movl2ptr(rdi, DST_POS); // dst_pos
never@739 1837 __ shlptr(rdi); // dst_pos << rcx (log2 elsize)
duke@435 1838 assert(dst_array == to, "");
never@739 1839 __ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize
never@739 1840 __ movptr(FROM, from); // src_addr
never@739 1841 __ mov(rdi_elsize, rcx_lh); // log2 elsize
never@739 1842 __ movl2ptr(count, LENGTH); // elements count
duke@435 1843
duke@435 1844 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 1845 __ cmpl(rdi_elsize, 0);
duke@435 1846
duke@435 1847 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
duke@435 1848 __ cmpl(rdi_elsize, LogBytesPerShort);
duke@435 1849 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
duke@435 1850 __ cmpl(rdi_elsize, LogBytesPerInt);
duke@435 1851 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
duke@435 1852 #ifdef ASSERT
duke@435 1853 __ cmpl(rdi_elsize, LogBytesPerLong);
duke@435 1854 __ jccb(Assembler::notEqual, L_failed);
duke@435 1855 #endif
never@739 1856 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1857 __ pop(rsi);
duke@435 1858 __ jump(RuntimeAddress(entry_jlong_arraycopy));
duke@435 1859
duke@435 1860 __ BIND(L_failed);
never@739 1861 __ xorptr(rax, rax);
never@739 1862 __ notptr(rax); // return -1
never@739 1863 __ pop(rdi);
never@739 1864 __ pop(rsi);
duke@435 1865 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1866 __ ret(0);
duke@435 1867
coleenp@4142 1868 // ObjArrayKlass
duke@435 1869 __ BIND(L_objArray);
duke@435 1870 // live at this point: rcx_src_klass, src[_pos], dst[_pos]
duke@435 1871
duke@435 1872 Label L_plain_copy, L_checkcast_copy;
duke@435 1873 // test array classes for subtyping
never@739 1874 __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
duke@435 1875 __ jccb(Assembler::notEqual, L_checkcast_copy);
duke@435 1876
duke@435 1877 // Identically typed arrays can be copied without element-wise checks.
duke@435 1878 assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
duke@435 1879 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1880
duke@435 1881 __ BIND(L_plain_copy);
never@739 1882 __ movl2ptr(count, LENGTH); // elements count
never@739 1883 __ movl2ptr(src_pos, SRC_POS); // reload src_pos
never@739 1884 __ lea(from, Address(src, src_pos, Address::times_ptr,
never@739 1885 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 1886 __ movl2ptr(dst_pos, DST_POS); // reload dst_pos
never@739 1887 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
never@739 1888 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 1889 __ movptr(FROM, from); // src_addr
never@739 1890 __ movptr(TO, to); // dst_addr
duke@435 1891 __ movl(COUNT, count); // count
duke@435 1892 __ jump(RuntimeAddress(entry_oop_arraycopy));
duke@435 1893
duke@435 1894 __ BIND(L_checkcast_copy);
duke@435 1895 // live at this point: rcx_src_klass, dst[_pos], src[_pos]
duke@435 1896 {
duke@435 1897 // Handy offsets:
coleenp@4142 1898 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
stefank@3391 1899 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 1900
duke@435 1901 Register rsi_dst_klass = rsi;
duke@435 1902 Register rdi_temp = rdi;
duke@435 1903 assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
duke@435 1904 assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
duke@435 1905 Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
duke@435 1906
duke@435 1907 // Before looking at dst.length, make sure dst is also an objArray.
never@739 1908 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1909 __ cmpl(dst_klass_lh_addr, objArray_lh);
duke@435 1910 __ jccb(Assembler::notEqual, L_failed);
duke@435 1911
duke@435 1912 // It is safe to examine both src.length and dst.length.
never@739 1913 __ movl2ptr(src_pos, SRC_POS); // reload rsi
duke@435 1914 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1915 // (Now src_pos and dst_pos are killed, but not src and dst.)
duke@435 1916
duke@435 1917 // We'll need this temp (don't forget to pop it after the type check).
never@739 1918 __ push(rbx);
duke@435 1919 Register rbx_src_klass = rbx;
duke@435 1920
never@739 1921 __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
never@739 1922 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1923 Address super_check_offset_addr(rsi_dst_klass, sco_offset);
duke@435 1924 Label L_fail_array_check;
duke@435 1925 generate_type_check(rbx_src_klass,
duke@435 1926 super_check_offset_addr, dst_klass_addr,
duke@435 1927 rdi_temp, NULL, &L_fail_array_check);
duke@435 1928 // (On fall-through, we have passed the array type check.)
never@739 1929 __ pop(rbx);
duke@435 1930 __ jmp(L_plain_copy);
duke@435 1931
duke@435 1932 __ BIND(L_fail_array_check);
duke@435 1933 // Reshuffle arguments so we can call checkcast_arraycopy:
duke@435 1934
duke@435 1935 // match initial saves for checkcast_arraycopy
never@739 1936 // push(rsi); // already done; see above
never@739 1937 // push(rdi); // already done; see above
never@739 1938 // push(rbx); // already done; see above
duke@435 1939
duke@435 1940 // Marshal outgoing arguments now, freeing registers.
duke@435 1941 Address from_arg(rsp, 16+ 4); // from
duke@435 1942 Address to_arg(rsp, 16+ 8); // to
duke@435 1943 Address length_arg(rsp, 16+12); // elements count
duke@435 1944 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1945 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1946
duke@435 1947 Address SRC_POS_arg(rsp, 16+ 8);
duke@435 1948 Address DST_POS_arg(rsp, 16+16);
duke@435 1949 Address LENGTH_arg(rsp, 16+20);
duke@435 1950 // push rbx, changed the incoming offsets (why not just use rbp,??)
duke@435 1951 // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
duke@435 1952
never@739 1953 __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
never@739 1954 __ movl2ptr(length, LENGTH_arg); // reload elements count
never@739 1955 __ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos
never@739 1956 __ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos
duke@435 1957
never@739 1958 __ movptr(ckval_arg, rbx); // destination element type
duke@435 1959 __ movl(rbx, Address(rbx, sco_offset));
duke@435 1960 __ movl(ckoff_arg, rbx); // corresponding class check offset
duke@435 1961
duke@435 1962 __ movl(length_arg, length); // outgoing length argument
duke@435 1963
never@739 1964 __ lea(from, Address(src, src_pos, Address::times_ptr,
duke@435 1965 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1966 __ movptr(from_arg, from);
duke@435 1967
never@739 1968 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
duke@435 1969 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1970 __ movptr(to_arg, to);
duke@435 1971 __ jump(RuntimeAddress(entry_checkcast_arraycopy));
duke@435 1972 }
duke@435 1973
duke@435 1974 return start;
duke@435 1975 }
duke@435 1976
duke@435 1977 void generate_arraycopy_stubs() {
duke@435 1978 address entry;
duke@435 1979 address entry_jbyte_arraycopy;
duke@435 1980 address entry_jshort_arraycopy;
duke@435 1981 address entry_jint_arraycopy;
duke@435 1982 address entry_oop_arraycopy;
duke@435 1983 address entry_jlong_arraycopy;
duke@435 1984 address entry_checkcast_arraycopy;
duke@435 1985
duke@435 1986 StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
duke@435 1987 generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
duke@435 1988 "arrayof_jbyte_disjoint_arraycopy");
duke@435 1989 StubRoutines::_arrayof_jbyte_arraycopy =
duke@435 1990 generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
duke@435 1991 NULL, "arrayof_jbyte_arraycopy");
duke@435 1992 StubRoutines::_jbyte_disjoint_arraycopy =
duke@435 1993 generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
duke@435 1994 "jbyte_disjoint_arraycopy");
duke@435 1995 StubRoutines::_jbyte_arraycopy =
duke@435 1996 generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
duke@435 1997 &entry_jbyte_arraycopy, "jbyte_arraycopy");
duke@435 1998
duke@435 1999 StubRoutines::_arrayof_jshort_disjoint_arraycopy =
duke@435 2000 generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
duke@435 2001 "arrayof_jshort_disjoint_arraycopy");
duke@435 2002 StubRoutines::_arrayof_jshort_arraycopy =
duke@435 2003 generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
duke@435 2004 NULL, "arrayof_jshort_arraycopy");
duke@435 2005 StubRoutines::_jshort_disjoint_arraycopy =
duke@435 2006 generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
duke@435 2007 "jshort_disjoint_arraycopy");
duke@435 2008 StubRoutines::_jshort_arraycopy =
duke@435 2009 generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
duke@435 2010 &entry_jshort_arraycopy, "jshort_arraycopy");
duke@435 2011
duke@435 2012 // Next arrays are always aligned on 4 bytes at least.
duke@435 2013 StubRoutines::_jint_disjoint_arraycopy =
duke@435 2014 generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
duke@435 2015 "jint_disjoint_arraycopy");
duke@435 2016 StubRoutines::_jint_arraycopy =
duke@435 2017 generate_conjoint_copy(T_INT, true, Address::times_4, entry,
duke@435 2018 &entry_jint_arraycopy, "jint_arraycopy");
duke@435 2019
duke@435 2020 StubRoutines::_oop_disjoint_arraycopy =
never@739 2021 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
duke@435 2022 "oop_disjoint_arraycopy");
duke@435 2023 StubRoutines::_oop_arraycopy =
never@739 2024 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
duke@435 2025 &entry_oop_arraycopy, "oop_arraycopy");
duke@435 2026
iveresov@2606 2027 StubRoutines::_oop_disjoint_arraycopy_uninit =
iveresov@2606 2028 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
iveresov@2606 2029 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2030 /*dest_uninitialized*/true);
iveresov@2606 2031 StubRoutines::_oop_arraycopy_uninit =
iveresov@2606 2032 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
iveresov@2606 2033 NULL, "oop_arraycopy_uninit",
iveresov@2606 2034 /*dest_uninitialized*/true);
iveresov@2606 2035
duke@435 2036 StubRoutines::_jlong_disjoint_arraycopy =
duke@435 2037 generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
duke@435 2038 StubRoutines::_jlong_arraycopy =
duke@435 2039 generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
duke@435 2040 "jlong_arraycopy");
duke@435 2041
never@2118 2042 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2043 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2044 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2045 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2046 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2047 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2048
iveresov@2606 2049 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
iveresov@2606 2050 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
iveresov@2606 2051 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2052 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2053
iveresov@2606 2054 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
iveresov@2606 2055 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2056 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
iveresov@2606 2057 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2058
duke@435 2059 StubRoutines::_checkcast_arraycopy =
iveresov@2606 2060 generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2061 StubRoutines::_checkcast_arraycopy_uninit =
iveresov@2606 2062 generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
duke@435 2063
duke@435 2064 StubRoutines::_unsafe_arraycopy =
duke@435 2065 generate_unsafe_copy("unsafe_arraycopy",
duke@435 2066 entry_jbyte_arraycopy,
duke@435 2067 entry_jshort_arraycopy,
duke@435 2068 entry_jint_arraycopy,
duke@435 2069 entry_jlong_arraycopy);
duke@435 2070
duke@435 2071 StubRoutines::_generic_arraycopy =
duke@435 2072 generate_generic_copy("generic_arraycopy",
duke@435 2073 entry_jbyte_arraycopy,
duke@435 2074 entry_jshort_arraycopy,
duke@435 2075 entry_jint_arraycopy,
duke@435 2076 entry_oop_arraycopy,
duke@435 2077 entry_jlong_arraycopy,
duke@435 2078 entry_checkcast_arraycopy);
duke@435 2079 }
duke@435 2080
never@1609 2081 void generate_math_stubs() {
never@1609 2082 {
never@1609 2083 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2084 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2085
never@1609 2086 __ fld_d(Address(rsp, 4));
never@1609 2087 __ flog();
never@1609 2088 __ ret(0);
never@1609 2089 }
never@1609 2090 {
never@1609 2091 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2092 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2093
never@1609 2094 __ fld_d(Address(rsp, 4));
never@1609 2095 __ flog10();
never@1609 2096 __ ret(0);
never@1609 2097 }
never@1609 2098 {
never@1609 2099 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2100 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2101
never@1609 2102 __ fld_d(Address(rsp, 4));
never@1609 2103 __ trigfunc('s');
never@1609 2104 __ ret(0);
never@1609 2105 }
never@1609 2106 {
never@1609 2107 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2108 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2109
never@1609 2110 __ fld_d(Address(rsp, 4));
never@1609 2111 __ trigfunc('c');
never@1609 2112 __ ret(0);
never@1609 2113 }
never@1609 2114 {
never@1609 2115 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2116 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2117
never@1609 2118 __ fld_d(Address(rsp, 4));
never@1609 2119 __ trigfunc('t');
never@1609 2120 __ ret(0);
never@1609 2121 }
roland@3787 2122 {
roland@3787 2123 StubCodeMark mark(this, "StubRoutines", "exp");
roland@3787 2124 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
never@1609 2125
roland@3787 2126 __ fld_d(Address(rsp, 4));
roland@3787 2127 __ exp_with_fallback(0);
roland@3787 2128 __ ret(0);
roland@3787 2129 }
roland@3787 2130 {
roland@3787 2131 StubCodeMark mark(this, "StubRoutines", "pow");
roland@3787 2132 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
roland@3787 2133
roland@3787 2134 __ fld_d(Address(rsp, 12));
roland@3787 2135 __ fld_d(Address(rsp, 4));
roland@3787 2136 __ pow_with_fallback(0);
roland@3787 2137 __ ret(0);
roland@3787 2138 }
never@1609 2139 }
never@1609 2140
kvn@4205 2141 // AES intrinsic stubs
kvn@4205 2142 enum {AESBlockSize = 16};
kvn@4205 2143
kvn@4205 2144 address generate_key_shuffle_mask() {
kvn@4205 2145 __ align(16);
kvn@4205 2146 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
kvn@4205 2147 address start = __ pc();
kvn@4205 2148 __ emit_data(0x00010203, relocInfo::none, 0 );
kvn@4205 2149 __ emit_data(0x04050607, relocInfo::none, 0 );
kvn@4205 2150 __ emit_data(0x08090a0b, relocInfo::none, 0 );
kvn@4205 2151 __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
kvn@4205 2152 return start;
kvn@4205 2153 }
kvn@4205 2154
kvn@4205 2155 // Utility routine for loading a 128-bit key word in little endian format
kvn@4205 2156 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 2157 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 2158 __ movdqu(xmmdst, Address(key, offset));
kvn@4205 2159 if (xmm_shuf_mask != NULL) {
kvn@4205 2160 __ pshufb(xmmdst, xmm_shuf_mask);
kvn@4205 2161 } else {
kvn@4205 2162 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2163 }
kvn@4205 2164 }
kvn@4205 2165
kvn@4205 2166 // aesenc using specified key+offset
kvn@4205 2167 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 2168 void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 2169 load_key(xmmtmp, key, offset, xmm_shuf_mask);
kvn@4205 2170 __ aesenc(xmmdst, xmmtmp);
kvn@4205 2171 }
kvn@4205 2172
kvn@4205 2173 // aesdec using specified key+offset
kvn@4205 2174 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 2175 void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 2176 load_key(xmmtmp, key, offset, xmm_shuf_mask);
kvn@4205 2177 __ aesdec(xmmdst, xmmtmp);
kvn@4205 2178 }
kvn@4205 2179
kvn@4205 2180
kvn@4205 2181 // Arguments:
kvn@4205 2182 //
kvn@4205 2183 // Inputs:
kvn@4205 2184 // c_rarg0 - source byte array address
kvn@4205 2185 // c_rarg1 - destination byte array address
kvn@4205 2186 // c_rarg2 - K (key) in little endian int array
kvn@4205 2187 //
kvn@4205 2188 address generate_aescrypt_encryptBlock() {
kvn@4363 2189 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2190 __ align(CodeEntryAlignment);
kvn@4205 2191 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
kvn@4205 2192 Label L_doLast;
kvn@4205 2193 address start = __ pc();
kvn@4205 2194
kvn@4363 2195 const Register from = rdx; // source array address
kvn@4205 2196 const Register to = rdx; // destination array address
kvn@4205 2197 const Register key = rcx; // key array address
kvn@4205 2198 const Register keylen = rax;
kvn@4205 2199 const Address from_param(rbp, 8+0);
kvn@4205 2200 const Address to_param (rbp, 8+4);
kvn@4205 2201 const Address key_param (rbp, 8+8);
kvn@4205 2202
kvn@4205 2203 const XMMRegister xmm_result = xmm0;
kvn@4363 2204 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 2205 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 2206 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 2207 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 2208 const XMMRegister xmm_temp4 = xmm5;
kvn@4363 2209
kvn@4363 2210 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4363 2211 __ movptr(from, from_param);
kvn@4363 2212 __ movptr(key, key_param);
kvn@4363 2213
kvn@4363 2214 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 2215 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2216
kvn@4205 2217 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2218 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
kvn@4363 2219 __ movptr(to, to_param);
kvn@4205 2220
kvn@4205 2221 // For encryption, the java expanded key ordering is just what we need
kvn@4205 2222
kvn@4363 2223 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
kvn@4363 2224 __ pxor(xmm_result, xmm_temp1);
kvn@4363 2225
kvn@4363 2226 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 2227 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 2228 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 2229 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 2230
kvn@4363 2231 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2232 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2233 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 2234 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 2235
kvn@4363 2236 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 2237 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 2238 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 2239 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 2240
kvn@4363 2241 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2242 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2243 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 2244 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 2245
kvn@4363 2246 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 2247 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 2248
kvn@4363 2249 __ cmpl(keylen, 44);
kvn@4363 2250 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2251
kvn@4363 2252 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2253 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2254
kvn@4363 2255 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 2256 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 2257
kvn@4363 2258 __ cmpl(keylen, 52);
kvn@4363 2259 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2260
kvn@4363 2261 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2262 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2263
kvn@4363 2264 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 2265 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 2266
kvn@4205 2267 __ BIND(L_doLast);
kvn@4363 2268 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2269 __ aesenclast(xmm_result, xmm_temp2);
kvn@4205 2270 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 2271 __ xorptr(rax, rax); // return 0
kvn@4205 2272 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2273 __ ret(0);
kvn@4205 2274
kvn@4205 2275 return start;
kvn@4205 2276 }
kvn@4205 2277
kvn@4205 2278
kvn@4205 2279 // Arguments:
kvn@4205 2280 //
kvn@4205 2281 // Inputs:
kvn@4205 2282 // c_rarg0 - source byte array address
kvn@4205 2283 // c_rarg1 - destination byte array address
kvn@4205 2284 // c_rarg2 - K (key) in little endian int array
kvn@4205 2285 //
kvn@4205 2286 address generate_aescrypt_decryptBlock() {
kvn@4363 2287 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2288 __ align(CodeEntryAlignment);
kvn@4205 2289 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
kvn@4205 2290 Label L_doLast;
kvn@4205 2291 address start = __ pc();
kvn@4205 2292
kvn@4363 2293 const Register from = rdx; // source array address
kvn@4205 2294 const Register to = rdx; // destination array address
kvn@4205 2295 const Register key = rcx; // key array address
kvn@4205 2296 const Register keylen = rax;
kvn@4205 2297 const Address from_param(rbp, 8+0);
kvn@4205 2298 const Address to_param (rbp, 8+4);
kvn@4205 2299 const Address key_param (rbp, 8+8);
kvn@4205 2300
kvn@4205 2301 const XMMRegister xmm_result = xmm0;
kvn@4363 2302 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 2303 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 2304 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 2305 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 2306 const XMMRegister xmm_temp4 = xmm5;
kvn@4205 2307
kvn@4205 2308 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4363 2309 __ movptr(from, from_param);
kvn@4363 2310 __ movptr(key, key_param);
kvn@4363 2311
kvn@4363 2312 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 2313 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2314
kvn@4205 2315 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2316 __ movdqu(xmm_result, Address(from, 0));
kvn@4363 2317 __ movptr(to, to_param);
kvn@4205 2318
kvn@4205 2319 // for decryption java expanded key ordering is rotated one position from what we want
kvn@4205 2320 // so we start from 0x10 here and hit 0x00 last
kvn@4205 2321 // we don't know if the key is aligned, hence not using load-execute form
kvn@4363 2322 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 2323 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 2324 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 2325 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 2326
kvn@4363 2327 __ pxor (xmm_result, xmm_temp1);
kvn@4363 2328 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2329 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 2330 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 2331
kvn@4363 2332 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 2333 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 2334 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 2335 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 2336
kvn@4363 2337 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2338 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2339 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 2340 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 2341
kvn@4363 2342 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 2343 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 2344 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
kvn@4363 2345
kvn@4363 2346 __ cmpl(keylen, 44);
kvn@4363 2347 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2348
kvn@4363 2349 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2350 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2351
kvn@4363 2352 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 2353 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 2354
kvn@4363 2355 __ cmpl(keylen, 52);
kvn@4363 2356 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2357
kvn@4363 2358 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2359 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2360
kvn@4363 2361 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 2362 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 2363
kvn@4205 2364 __ BIND(L_doLast);
kvn@4363 2365 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2366 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2367
kvn@4205 2368 // for decryption the aesdeclast operation is always on key+0x00
kvn@4363 2369 __ aesdeclast(xmm_result, xmm_temp3);
kvn@4205 2370 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 2371 __ xorptr(rax, rax); // return 0
kvn@4205 2372 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2373 __ ret(0);
kvn@4205 2374
kvn@4205 2375 return start;
kvn@4205 2376 }
kvn@4205 2377
kvn@4205 2378 void handleSOERegisters(bool saving) {
kvn@4205 2379 const int saveFrameSizeInBytes = 4 * wordSize;
kvn@4205 2380 const Address saved_rbx (rbp, -3 * wordSize);
kvn@4205 2381 const Address saved_rsi (rbp, -2 * wordSize);
kvn@4205 2382 const Address saved_rdi (rbp, -1 * wordSize);
kvn@4205 2383
kvn@4205 2384 if (saving) {
kvn@4205 2385 __ subptr(rsp, saveFrameSizeInBytes);
kvn@4205 2386 __ movptr(saved_rsi, rsi);
kvn@4205 2387 __ movptr(saved_rdi, rdi);
kvn@4205 2388 __ movptr(saved_rbx, rbx);
kvn@4205 2389 } else {
kvn@4205 2390 // restoring
kvn@4205 2391 __ movptr(rsi, saved_rsi);
kvn@4205 2392 __ movptr(rdi, saved_rdi);
kvn@4205 2393 __ movptr(rbx, saved_rbx);
kvn@4205 2394 }
kvn@4205 2395 }
kvn@4205 2396
kvn@4205 2397 // Arguments:
kvn@4205 2398 //
kvn@4205 2399 // Inputs:
kvn@4205 2400 // c_rarg0 - source byte array address
kvn@4205 2401 // c_rarg1 - destination byte array address
kvn@4205 2402 // c_rarg2 - K (key) in little endian int array
kvn@4205 2403 // c_rarg3 - r vector byte array address
kvn@4205 2404 // c_rarg4 - input length
kvn@4205 2405 //
kvn@4205 2406 address generate_cipherBlockChaining_encryptAESCrypt() {
kvn@4363 2407 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2408 __ align(CodeEntryAlignment);
kvn@4205 2409 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
kvn@4205 2410 address start = __ pc();
kvn@4205 2411
kvn@4205 2412 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
kvn@4205 2413 const Register from = rsi; // source array address
kvn@4205 2414 const Register to = rdx; // destination array address
kvn@4205 2415 const Register key = rcx; // key array address
kvn@4205 2416 const Register rvec = rdi; // r byte array initialized from initvector array address
kvn@4205 2417 // and left with the results of the last encryption block
kvn@4205 2418 const Register len_reg = rbx; // src len (must be multiple of blocksize 16)
kvn@4205 2419 const Register pos = rax;
kvn@4205 2420
kvn@4205 2421 // xmm register assignments for the loops below
kvn@4205 2422 const XMMRegister xmm_result = xmm0;
kvn@4205 2423 const XMMRegister xmm_temp = xmm1;
kvn@4205 2424 // first 6 keys preloaded into xmm2-xmm7
kvn@4205 2425 const int XMM_REG_NUM_KEY_FIRST = 2;
kvn@4205 2426 const int XMM_REG_NUM_KEY_LAST = 7;
kvn@4205 2427 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4205 2428
kvn@4205 2429 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2430 handleSOERegisters(true /*saving*/);
kvn@4205 2431
kvn@4205 2432 // load registers from incoming parameters
kvn@4205 2433 const Address from_param(rbp, 8+0);
kvn@4205 2434 const Address to_param (rbp, 8+4);
kvn@4205 2435 const Address key_param (rbp, 8+8);
kvn@4205 2436 const Address rvec_param (rbp, 8+12);
kvn@4205 2437 const Address len_param (rbp, 8+16);
kvn@4205 2438 __ movptr(from , from_param);
kvn@4205 2439 __ movptr(to , to_param);
kvn@4205 2440 __ movptr(key , key_param);
kvn@4205 2441 __ movptr(rvec , rvec_param);
kvn@4205 2442 __ movptr(len_reg , len_param);
kvn@4205 2443
kvn@4205 2444 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
kvn@4205 2445 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2446 // load up xmm regs 2 thru 7 with keys 0-5
kvn@4205 2447 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2448 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 2449 offset += 0x10;
kvn@4205 2450 }
kvn@4205 2451
kvn@4205 2452 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
kvn@4205 2453
kvn@4205 2454 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 2455 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2456 __ cmpl(rax, 44);
kvn@4205 2457 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 2458
kvn@4205 2459 // 128 bit code follows here
kvn@4363 2460 __ movl(pos, 0);
kvn@4205 2461 __ align(OptoLoopAlignment);
kvn@4205 2462 __ BIND(L_loopTop_128);
kvn@4205 2463 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 2464 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2465
kvn@4205 2466 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4205 2467 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2468 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 2469 }
kvn@4205 2470 for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
kvn@4205 2471 aes_enc_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2472 }
kvn@4205 2473 load_key(xmm_temp, key, 0xa0);
kvn@4205 2474 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 2475
kvn@4205 2476 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2477 // no need to store r to memory until we exit
kvn@4205 2478 __ addptr(pos, AESBlockSize);
kvn@4205 2479 __ subptr(len_reg, AESBlockSize);
kvn@4205 2480 __ jcc(Assembler::notEqual, L_loopTop_128);
kvn@4205 2481
kvn@4205 2482 __ BIND(L_exit);
kvn@4205 2483 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 2484
kvn@4205 2485 handleSOERegisters(false /*restoring*/);
kvn@4205 2486 __ movl(rax, 0); // return 0 (why?)
kvn@4205 2487 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2488 __ ret(0);
kvn@4205 2489
kvn@4363 2490 __ BIND(L_key_192_256);
kvn@4363 2491 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4205 2492 __ cmpl(rax, 52);
kvn@4205 2493 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 2494
kvn@4205 2495 // 192-bit code follows here (could be changed to use more xmm registers)
kvn@4363 2496 __ movl(pos, 0);
kvn@4363 2497 __ align(OptoLoopAlignment);
kvn@4363 2498 __ BIND(L_loopTop_192);
kvn@4205 2499 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 2500 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2501
kvn@4205 2502 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4205 2503 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2504 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 2505 }
kvn@4205 2506 for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
kvn@4205 2507 aes_enc_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2508 }
kvn@4205 2509 load_key(xmm_temp, key, 0xc0);
kvn@4205 2510 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 2511
kvn@4205 2512 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2513 // no need to store r to memory until we exit
kvn@4205 2514 __ addptr(pos, AESBlockSize);
kvn@4205 2515 __ subptr(len_reg, AESBlockSize);
kvn@4205 2516 __ jcc(Assembler::notEqual, L_loopTop_192);
kvn@4205 2517 __ jmp(L_exit);
kvn@4205 2518
kvn@4363 2519 __ BIND(L_key_256);
kvn@4205 2520 // 256-bit code follows here (could be changed to use more xmm registers)
kvn@4363 2521 __ movl(pos, 0);
kvn@4363 2522 __ align(OptoLoopAlignment);
kvn@4363 2523 __ BIND(L_loopTop_256);
kvn@4205 2524 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 2525 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2526
kvn@4205 2527 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4205 2528 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2529 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 2530 }
kvn@4205 2531 for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
kvn@4205 2532 aes_enc_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2533 }
kvn@4205 2534 load_key(xmm_temp, key, 0xe0);
kvn@4205 2535 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 2536
kvn@4205 2537 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2538 // no need to store r to memory until we exit
kvn@4205 2539 __ addptr(pos, AESBlockSize);
kvn@4205 2540 __ subptr(len_reg, AESBlockSize);
kvn@4205 2541 __ jcc(Assembler::notEqual, L_loopTop_256);
kvn@4205 2542 __ jmp(L_exit);
kvn@4205 2543
kvn@4205 2544 return start;
kvn@4205 2545 }
kvn@4205 2546
kvn@4205 2547
kvn@4205 2548 // CBC AES Decryption.
kvn@4205 2549 // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
kvn@4205 2550 //
kvn@4205 2551 // Arguments:
kvn@4205 2552 //
kvn@4205 2553 // Inputs:
kvn@4205 2554 // c_rarg0 - source byte array address
kvn@4205 2555 // c_rarg1 - destination byte array address
kvn@4205 2556 // c_rarg2 - K (key) in little endian int array
kvn@4205 2557 // c_rarg3 - r vector byte array address
kvn@4205 2558 // c_rarg4 - input length
kvn@4205 2559 //
kvn@4205 2560
kvn@4205 2561 address generate_cipherBlockChaining_decryptAESCrypt() {
kvn@4363 2562 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2563 __ align(CodeEntryAlignment);
kvn@4205 2564 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
kvn@4205 2565 address start = __ pc();
kvn@4205 2566
kvn@4205 2567 Label L_exit, L_key_192_256, L_key_256;
kvn@4205 2568 Label L_singleBlock_loopTop_128;
kvn@4205 2569 Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
kvn@4205 2570 const Register from = rsi; // source array address
kvn@4205 2571 const Register to = rdx; // destination array address
kvn@4205 2572 const Register key = rcx; // key array address
kvn@4205 2573 const Register rvec = rdi; // r byte array initialized from initvector array address
kvn@4205 2574 // and left with the results of the last encryption block
kvn@4205 2575 const Register len_reg = rbx; // src len (must be multiple of blocksize 16)
kvn@4205 2576 const Register pos = rax;
kvn@4205 2577
kvn@4205 2578 // xmm register assignments for the loops below
kvn@4205 2579 const XMMRegister xmm_result = xmm0;
kvn@4205 2580 const XMMRegister xmm_temp = xmm1;
kvn@4205 2581 // first 6 keys preloaded into xmm2-xmm7
kvn@4205 2582 const int XMM_REG_NUM_KEY_FIRST = 2;
kvn@4205 2583 const int XMM_REG_NUM_KEY_LAST = 7;
kvn@4205 2584 const int FIRST_NON_REG_KEY_offset = 0x70;
kvn@4205 2585 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4205 2586
kvn@4205 2587 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2588 handleSOERegisters(true /*saving*/);
kvn@4205 2589
kvn@4205 2590 // load registers from incoming parameters
kvn@4205 2591 const Address from_param(rbp, 8+0);
kvn@4205 2592 const Address to_param (rbp, 8+4);
kvn@4205 2593 const Address key_param (rbp, 8+8);
kvn@4205 2594 const Address rvec_param (rbp, 8+12);
kvn@4205 2595 const Address len_param (rbp, 8+16);
kvn@4205 2596 __ movptr(from , from_param);
kvn@4205 2597 __ movptr(to , to_param);
kvn@4205 2598 __ movptr(key , key_param);
kvn@4205 2599 __ movptr(rvec , rvec_param);
kvn@4205 2600 __ movptr(len_reg , len_param);
kvn@4205 2601
kvn@4205 2602 // the java expanded key ordering is rotated one position from what we want
kvn@4205 2603 // so we start from 0x10 here and hit 0x00 last
kvn@4205 2604 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
kvn@4205 2605 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2606 // load up xmm regs 2 thru 6 with first 5 keys
kvn@4205 2607 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2608 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 2609 offset += 0x10;
kvn@4205 2610 }
kvn@4205 2611
kvn@4205 2612 // inside here, use the rvec register to point to previous block cipher
kvn@4205 2613 // with which we xor at the end of each newly decrypted block
kvn@4205 2614 const Register prev_block_cipher_ptr = rvec;
kvn@4205 2615
kvn@4205 2616 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 2617 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2618 __ cmpl(rax, 44);
kvn@4205 2619 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 2620
kvn@4205 2621
kvn@4205 2622 // 128-bit code follows here, parallelized
kvn@4363 2623 __ movl(pos, 0);
kvn@4363 2624 __ align(OptoLoopAlignment);
kvn@4363 2625 __ BIND(L_singleBlock_loopTop_128);
kvn@4205 2626 __ cmpptr(len_reg, 0); // any blocks left??
kvn@4205 2627 __ jcc(Assembler::equal, L_exit);
kvn@4205 2628 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 2629 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 2630 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2631 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 2632 }
kvn@4205 2633 for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) { // 128-bit runs up to key offset a0
kvn@4205 2634 aes_dec_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2635 }
kvn@4205 2636 load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0
kvn@4205 2637 __ aesdeclast(xmm_result, xmm_temp);
kvn@4205 2638 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2639 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2640 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2641 // no need to store r to memory until we exit
kvn@4205 2642 __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr
kvn@4205 2643 __ addptr(pos, AESBlockSize);
kvn@4205 2644 __ subptr(len_reg, AESBlockSize);
kvn@4205 2645 __ jmp(L_singleBlock_loopTop_128);
kvn@4205 2646
kvn@4205 2647
kvn@4205 2648 __ BIND(L_exit);
kvn@4205 2649 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2650 __ movptr(rvec , rvec_param); // restore this since used in loop
kvn@4205 2651 __ movdqu(Address(rvec, 0), xmm_temp); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 2652 handleSOERegisters(false /*restoring*/);
kvn@4205 2653 __ movl(rax, 0); // return 0 (why?)
kvn@4205 2654 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2655 __ ret(0);
kvn@4205 2656
kvn@4205 2657
kvn@4205 2658 __ BIND(L_key_192_256);
kvn@4205 2659 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4205 2660 __ cmpl(rax, 52);
kvn@4205 2661 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 2662
kvn@4205 2663 // 192-bit code follows here (could be optimized to use parallelism)
kvn@4363 2664 __ movl(pos, 0);
kvn@4205 2665 __ align(OptoLoopAlignment);
kvn@4205 2666 __ BIND(L_singleBlock_loopTop_192);
kvn@4205 2667 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 2668 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 2669 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2670 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 2671 }
kvn@4205 2672 for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) { // 192-bit runs up to key offset c0
kvn@4205 2673 aes_dec_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2674 }
kvn@4205 2675 load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0
kvn@4205 2676 __ aesdeclast(xmm_result, xmm_temp);
kvn@4205 2677 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2678 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2679 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2680 // no need to store r to memory until we exit
kvn@4205 2681 __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr
kvn@4205 2682 __ addptr(pos, AESBlockSize);
kvn@4205 2683 __ subptr(len_reg, AESBlockSize);
kvn@4205 2684 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
kvn@4205 2685 __ jmp(L_exit);
kvn@4205 2686
kvn@4205 2687 __ BIND(L_key_256);
kvn@4205 2688 // 256-bit code follows here (could be optimized to use parallelism)
kvn@4363 2689 __ movl(pos, 0);
kvn@4205 2690 __ align(OptoLoopAlignment);
kvn@4205 2691 __ BIND(L_singleBlock_loopTop_256);
kvn@4205 2692 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 2693 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 2694 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2695 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 2696 }
kvn@4205 2697 for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) { // 256-bit runs up to key offset e0
kvn@4205 2698 aes_dec_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2699 }
kvn@4205 2700 load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0
kvn@4205 2701 __ aesdeclast(xmm_result, xmm_temp);
kvn@4205 2702 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2703 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2704 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2705 // no need to store r to memory until we exit
kvn@4205 2706 __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr
kvn@4205 2707 __ addptr(pos, AESBlockSize);
kvn@4205 2708 __ subptr(len_reg, AESBlockSize);
kvn@4205 2709 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
kvn@4205 2710 __ jmp(L_exit);
kvn@4205 2711
kvn@4205 2712 return start;
kvn@4205 2713 }
kvn@4205 2714
drchase@5353 2715 /**
drchase@5353 2716 * Arguments:
drchase@5353 2717 *
drchase@5353 2718 * Inputs:
drchase@5353 2719 * rsp(4) - int crc
drchase@5353 2720 * rsp(8) - byte* buf
drchase@5353 2721 * rsp(12) - int length
drchase@5353 2722 *
drchase@5353 2723 * Ouput:
drchase@5353 2724 * rax - int crc result
drchase@5353 2725 */
drchase@5353 2726 address generate_updateBytesCRC32() {
drchase@5353 2727 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
drchase@5353 2728
drchase@5353 2729 __ align(CodeEntryAlignment);
drchase@5353 2730 StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
drchase@5353 2731
drchase@5353 2732 address start = __ pc();
drchase@5353 2733
drchase@5353 2734 const Register crc = rdx; // crc
drchase@5353 2735 const Register buf = rsi; // source java byte array address
drchase@5353 2736 const Register len = rcx; // length
drchase@5353 2737 const Register table = rdi; // crc_table address (reuse register)
drchase@5353 2738 const Register tmp = rbx;
drchase@5353 2739 assert_different_registers(crc, buf, len, table, tmp, rax);
drchase@5353 2740
drchase@5353 2741 BLOCK_COMMENT("Entry:");
drchase@5353 2742 __ enter(); // required for proper stackwalking of RuntimeStub frame
drchase@5353 2743 __ push(rsi);
drchase@5353 2744 __ push(rdi);
drchase@5353 2745 __ push(rbx);
drchase@5353 2746
drchase@5353 2747 Address crc_arg(rbp, 8 + 0);
drchase@5353 2748 Address buf_arg(rbp, 8 + 4);
drchase@5353 2749 Address len_arg(rbp, 8 + 8);
drchase@5353 2750
drchase@5353 2751 // Load up:
drchase@5353 2752 __ movl(crc, crc_arg);
drchase@5353 2753 __ movptr(buf, buf_arg);
drchase@5353 2754 __ movl(len, len_arg);
drchase@5353 2755
drchase@5353 2756 __ kernel_crc32(crc, buf, len, table, tmp);
drchase@5353 2757
drchase@5353 2758 __ movl(rax, crc);
drchase@5353 2759 __ pop(rbx);
drchase@5353 2760 __ pop(rdi);
drchase@5353 2761 __ pop(rsi);
drchase@5353 2762 __ leave(); // required for proper stackwalking of RuntimeStub frame
drchase@5353 2763 __ ret(0);
drchase@5353 2764
drchase@5353 2765 return start;
drchase@5353 2766 }
drchase@5353 2767
goetz@5400 2768 // Safefetch stubs.
goetz@5400 2769 void generate_safefetch(const char* name, int size, address* entry,
goetz@5400 2770 address* fault_pc, address* continuation_pc) {
goetz@5400 2771 // safefetch signatures:
goetz@5400 2772 // int SafeFetch32(int* adr, int errValue);
goetz@5400 2773 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
goetz@5400 2774
goetz@5400 2775 StubCodeMark mark(this, "StubRoutines", name);
goetz@5400 2776
goetz@5400 2777 // Entry point, pc or function descriptor.
goetz@5400 2778 *entry = __ pc();
goetz@5400 2779
goetz@5400 2780 __ movl(rax, Address(rsp, 0x8));
goetz@5400 2781 __ movl(rcx, Address(rsp, 0x4));
goetz@5400 2782 // Load *adr into eax, may fault.
goetz@5400 2783 *fault_pc = __ pc();
goetz@5400 2784 switch (size) {
goetz@5400 2785 case 4:
goetz@5400 2786 // int32_t
goetz@5400 2787 __ movl(rax, Address(rcx, 0));
goetz@5400 2788 break;
goetz@5400 2789 case 8:
goetz@5400 2790 // int64_t
goetz@5400 2791 Unimplemented();
goetz@5400 2792 break;
goetz@5400 2793 default:
goetz@5400 2794 ShouldNotReachHere();
goetz@5400 2795 }
goetz@5400 2796
goetz@5400 2797 // Return errValue or *adr.
goetz@5400 2798 *continuation_pc = __ pc();
goetz@5400 2799 __ ret(0);
goetz@5400 2800 }
kvn@4205 2801
duke@435 2802 public:
duke@435 2803 // Information about frame layout at time of blocking runtime call.
duke@435 2804 // Note that we only have to preserve callee-saved registers since
duke@435 2805 // the compilers are responsible for supplying a continuation point
duke@435 2806 // if they expect all registers to be preserved.
duke@435 2807 enum layout {
duke@435 2808 thread_off, // last_java_sp
never@2978 2809 arg1_off,
never@2978 2810 arg2_off,
duke@435 2811 rbp_off, // callee saved register
duke@435 2812 ret_pc,
duke@435 2813 framesize
duke@435 2814 };
duke@435 2815
duke@435 2816 private:
duke@435 2817
duke@435 2818 #undef __
duke@435 2819 #define __ masm->
duke@435 2820
duke@435 2821 //------------------------------------------------------------------------------------------------------------------------
duke@435 2822 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 2823 // the current activation. Fabricates an exception oop and initiates normal
duke@435 2824 // exception dispatching in this frame.
duke@435 2825 //
duke@435 2826 // Previously the compiler (c2) allowed for callee save registers on Java calls.
duke@435 2827 // This is no longer true after adapter frames were removed but could possibly
duke@435 2828 // be brought back in the future if the interpreter code was reworked and it
duke@435 2829 // was deemed worthwhile. The comment below was left to describe what must
duke@435 2830 // happen here if callee saves were resurrected. As it stands now this stub
duke@435 2831 // could actually be a vanilla BufferBlob and have now oopMap at all.
duke@435 2832 // Since it doesn't make much difference we've chosen to leave it the
duke@435 2833 // way it was in the callee save days and keep the comment.
duke@435 2834
duke@435 2835 // If we need to preserve callee-saved values we need a callee-saved oop map and
duke@435 2836 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
duke@435 2837 // If the compiler needs all registers to be preserved between the fault
duke@435 2838 // point and the exception handler then it must assume responsibility for that in
duke@435 2839 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2840 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 2841 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 2842 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 2843 // so caller saved registers were assumed volatile in the compiler.
duke@435 2844 address generate_throw_exception(const char* name, address runtime_entry,
never@3136 2845 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 2846
duke@435 2847 int insts_size = 256;
duke@435 2848 int locs_size = 32;
duke@435 2849
duke@435 2850 CodeBuffer code(name, insts_size, locs_size);
duke@435 2851 OopMapSet* oop_maps = new OopMapSet();
duke@435 2852 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2853
duke@435 2854 address start = __ pc();
duke@435 2855
duke@435 2856 // This is an inlined and slightly modified version of call_VM
duke@435 2857 // which has the ability to fetch the return PC out of
duke@435 2858 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2859 // differently than the real call_VM
duke@435 2860 Register java_thread = rbx;
duke@435 2861 __ get_thread(java_thread);
duke@435 2862
duke@435 2863 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2864
duke@435 2865 // pc and rbp, already pushed
never@739 2866 __ subptr(rsp, (framesize-2) * wordSize); // prolog
duke@435 2867
duke@435 2868 // Frame is now completed as far as size and linkage.
duke@435 2869
duke@435 2870 int frame_complete = __ pc() - start;
duke@435 2871
duke@435 2872 // push java thread (becomes first argument of C function)
never@739 2873 __ movptr(Address(rsp, thread_off * wordSize), java_thread);
never@2978 2874 if (arg1 != noreg) {
never@2978 2875 __ movptr(Address(rsp, arg1_off * wordSize), arg1);
never@2978 2876 }
never@2978 2877 if (arg2 != noreg) {
never@2978 2878 assert(arg1 != noreg, "missing reg arg");
never@2978 2879 __ movptr(Address(rsp, arg2_off * wordSize), arg2);
never@2978 2880 }
duke@435 2881
duke@435 2882 // Set up last_Java_sp and last_Java_fp
duke@435 2883 __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
duke@435 2884
duke@435 2885 // Call runtime
duke@435 2886 BLOCK_COMMENT("call runtime_entry");
duke@435 2887 __ call(RuntimeAddress(runtime_entry));
duke@435 2888 // Generate oop map
duke@435 2889 OopMap* map = new OopMap(framesize, 0);
duke@435 2890 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2891
duke@435 2892 // restore the thread (cannot use the pushed argument since arguments
duke@435 2893 // may be overwritten by C code generated by an optimizing compiler);
duke@435 2894 // however can use the register value directly if it is callee saved.
duke@435 2895 __ get_thread(java_thread);
duke@435 2896
duke@435 2897 __ reset_last_Java_frame(java_thread, true, false);
duke@435 2898
duke@435 2899 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2900
duke@435 2901 // check for pending exceptions
duke@435 2902 #ifdef ASSERT
duke@435 2903 Label L;
never@739 2904 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2905 __ jcc(Assembler::notEqual, L);
duke@435 2906 __ should_not_reach_here();
duke@435 2907 __ bind(L);
duke@435 2908 #endif /* ASSERT */
duke@435 2909 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2910
duke@435 2911
duke@435 2912 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
duke@435 2913 return stub->entry_point();
duke@435 2914 }
duke@435 2915
duke@435 2916
duke@435 2917 void create_control_words() {
duke@435 2918 // Round to nearest, 53-bit mode, exceptions masked
duke@435 2919 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
duke@435 2920 // Round to zero, 53-bit mode, exception mased
duke@435 2921 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
duke@435 2922 // Round to nearest, 24-bit mode, exceptions masked
duke@435 2923 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
duke@435 2924 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2925 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
duke@435 2926 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2927 StubRoutines::_mxcsr_std = 0x1F80;
duke@435 2928 // Note: the following two constants are 80-bit values
duke@435 2929 // layout is critical for correct loading by FPU.
duke@435 2930 // Bias for strict fp multiply/divide
duke@435 2931 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
duke@435 2932 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
duke@435 2933 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
duke@435 2934 // Un-Bias for strict fp multiply/divide
duke@435 2935 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
duke@435 2936 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
duke@435 2937 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
duke@435 2938 }
duke@435 2939
duke@435 2940 //---------------------------------------------------------------------------
duke@435 2941 // Initialization
duke@435 2942
duke@435 2943 void generate_initial() {
duke@435 2944 // Generates all stubs and initializes the entry points
duke@435 2945
duke@435 2946 //------------------------------------------------------------------------------------------------------------------------
duke@435 2947 // entry points that exist in all platforms
duke@435 2948 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2949 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2950 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2951
duke@435 2952 StubRoutines::_call_stub_entry =
duke@435 2953 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2954 // is referenced by megamorphic call
duke@435 2955 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2956
duke@435 2957 // These are currently used by Solaris/Intel
duke@435 2958 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2959
duke@435 2960 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2961 generate_handler_for_unsafe_access();
duke@435 2962
duke@435 2963 // platform dependent
duke@435 2964 create_control_words();
duke@435 2965
never@739 2966 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@739 2967 StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
duke@435 2968 StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
duke@435 2969 CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
duke@435 2970 StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
duke@435 2971 CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
never@2978 2972
never@2978 2973 // Build this early so it's available for the interpreter
bdelsart@3372 2974 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
drchase@5353 2975
drchase@5353 2976 if (UseCRC32Intrinsics) {
drchase@5353 2977 // set table address before stub generation which use it
drchase@5353 2978 StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
drchase@5353 2979 StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
drchase@5353 2980 }
duke@435 2981 }
duke@435 2982
duke@435 2983
duke@435 2984 void generate_all() {
duke@435 2985 // Generates all stubs and initializes the entry points
duke@435 2986
duke@435 2987 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2988 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
never@3136 2989 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
never@3136 2990 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
never@3136 2991 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
duke@435 2992
duke@435 2993 //------------------------------------------------------------------------------------------------------------------------
duke@435 2994 // entry points that are platform specific
duke@435 2995
duke@435 2996 // support for verify_oop (must happen after universe_init)
duke@435 2997 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2998
duke@435 2999 // arraycopy stubs used by compilers
duke@435 3000 generate_arraycopy_stubs();
jrose@1145 3001
never@1609 3002 generate_math_stubs();
kvn@4205 3003
kvn@4205 3004 // don't bother generating these AES intrinsic stubs unless global flag is set
kvn@4205 3005 if (UseAESIntrinsics) {
kvn@4205 3006 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // might be needed by the others
kvn@4205 3007
kvn@4205 3008 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
kvn@4205 3009 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
kvn@4205 3010 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
kvn@4205 3011 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
kvn@4205 3012 }
goetz@5400 3013
goetz@5400 3014 // Safefetch stubs.
goetz@5400 3015 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
goetz@5400 3016 &StubRoutines::_safefetch32_fault_pc,
goetz@5400 3017 &StubRoutines::_safefetch32_continuation_pc);
goetz@5400 3018 StubRoutines::_safefetchN_entry = StubRoutines::_safefetch32_entry;
goetz@5400 3019 StubRoutines::_safefetchN_fault_pc = StubRoutines::_safefetch32_fault_pc;
goetz@5400 3020 StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
duke@435 3021 }
duke@435 3022
duke@435 3023
duke@435 3024 public:
duke@435 3025 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3026 if (all) {
duke@435 3027 generate_all();
duke@435 3028 } else {
duke@435 3029 generate_initial();
duke@435 3030 }
duke@435 3031 }
duke@435 3032 }; // end class declaration
duke@435 3033
duke@435 3034
duke@435 3035 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3036 StubGenerator g(code, all);
duke@435 3037 }

mercurial