src/cpu/x86/vm/stubGenerator_x86_32.cpp

Wed, 19 Dec 2012 15:40:35 -0800

author
kvn
date
Wed, 19 Dec 2012 15:40:35 -0800
changeset 4363
2c7f594145dc
parent 4325
d2f8c38e543d
child 4411
e2e6bf86682c
permissions
-rw-r--r--

8004835: Improve AES intrinsics on x86
Summary: Enable AES intrinsics on non-AVX cpus, group together aes instructions in crypto stubs.
Reviewed-by: roland, twisti

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4318 26 #include "asm/macroAssembler.hpp"
twisti@4318 27 #include "asm/macroAssembler.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_x86.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
coleenp@4037 31 #include "oops/method.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "utilities/top.hpp"
stefank@2314 42 #ifdef COMPILER2
stefank@2314 43 #include "opto/runtime.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 47 // For a more detailed description of the stub routine structure
duke@435 48 // see the comment in stubRoutines.hpp
duke@435 49
duke@435 50 #define __ _masm->
never@739 51 #define a__ ((Assembler*)_masm)->
duke@435 52
duke@435 53 #ifdef PRODUCT
duke@435 54 #define BLOCK_COMMENT(str) /* nothing */
duke@435 55 #else
duke@435 56 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 57 #endif
duke@435 58
duke@435 59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 60
duke@435 61 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
duke@435 63
duke@435 64 // -------------------------------------------------------------------------------------------------------------------------
duke@435 65 // Stub Code definitions
duke@435 66
duke@435 67 static address handle_unsafe_access() {
duke@435 68 JavaThread* thread = JavaThread::current();
duke@435 69 address pc = thread->saved_exception_pc();
duke@435 70 // pc is the instruction which we must emulate
duke@435 71 // doing a no-op is fine: return garbage from the load
duke@435 72 // therefore, compute npc
duke@435 73 address npc = Assembler::locate_next_instruction(pc);
duke@435 74
duke@435 75 // request an async exception
duke@435 76 thread->set_pending_unsafe_access_error();
duke@435 77
duke@435 78 // return address of next instruction to execute
duke@435 79 return npc;
duke@435 80 }
duke@435 81
duke@435 82 class StubGenerator: public StubCodeGenerator {
duke@435 83 private:
duke@435 84
duke@435 85 #ifdef PRODUCT
duke@435 86 #define inc_counter_np(counter) (0)
duke@435 87 #else
duke@435 88 void inc_counter_np_(int& counter) {
never@739 89 __ incrementl(ExternalAddress((address)&counter));
duke@435 90 }
duke@435 91 #define inc_counter_np(counter) \
duke@435 92 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 93 inc_counter_np_(counter);
duke@435 94 #endif //PRODUCT
duke@435 95
duke@435 96 void inc_copy_counter_np(BasicType t) {
duke@435 97 #ifndef PRODUCT
duke@435 98 switch (t) {
duke@435 99 case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
duke@435 100 case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
duke@435 101 case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
duke@435 102 case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
duke@435 103 case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
duke@435 104 }
duke@435 105 ShouldNotReachHere();
duke@435 106 #endif //PRODUCT
duke@435 107 }
duke@435 108
duke@435 109 //------------------------------------------------------------------------------------------------------------------------
duke@435 110 // Call stubs are used to call Java from C
duke@435 111 //
duke@435 112 // [ return_from_Java ] <--- rsp
duke@435 113 // [ argument word n ]
duke@435 114 // ...
duke@435 115 // -N [ argument word 1 ]
duke@435 116 // -7 [ Possible padding for stack alignment ]
duke@435 117 // -6 [ Possible padding for stack alignment ]
duke@435 118 // -5 [ Possible padding for stack alignment ]
duke@435 119 // -4 [ mxcsr save ] <--- rsp_after_call
duke@435 120 // -3 [ saved rbx, ]
duke@435 121 // -2 [ saved rsi ]
duke@435 122 // -1 [ saved rdi ]
duke@435 123 // 0 [ saved rbp, ] <--- rbp,
duke@435 124 // 1 [ return address ]
duke@435 125 // 2 [ ptr. to call wrapper ]
duke@435 126 // 3 [ result ]
duke@435 127 // 4 [ result_type ]
duke@435 128 // 5 [ method ]
duke@435 129 // 6 [ entry_point ]
duke@435 130 // 7 [ parameters ]
duke@435 131 // 8 [ parameter_size ]
duke@435 132 // 9 [ thread ]
duke@435 133
duke@435 134
duke@435 135 address generate_call_stub(address& return_address) {
duke@435 136 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 137 address start = __ pc();
duke@435 138
duke@435 139 // stub code parameters / addresses
duke@435 140 assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
duke@435 141 bool sse_save = false;
duke@435 142 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
duke@435 143 const int locals_count_in_bytes (4*wordSize);
duke@435 144 const Address mxcsr_save (rbp, -4 * wordSize);
duke@435 145 const Address saved_rbx (rbp, -3 * wordSize);
duke@435 146 const Address saved_rsi (rbp, -2 * wordSize);
duke@435 147 const Address saved_rdi (rbp, -1 * wordSize);
duke@435 148 const Address result (rbp, 3 * wordSize);
duke@435 149 const Address result_type (rbp, 4 * wordSize);
duke@435 150 const Address method (rbp, 5 * wordSize);
duke@435 151 const Address entry_point (rbp, 6 * wordSize);
duke@435 152 const Address parameters (rbp, 7 * wordSize);
duke@435 153 const Address parameter_size(rbp, 8 * wordSize);
duke@435 154 const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
duke@435 155 sse_save = UseSSE > 0;
duke@435 156
duke@435 157 // stub code
duke@435 158 __ enter();
never@739 159 __ movptr(rcx, parameter_size); // parameter counter
twisti@1861 160 __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
never@739 161 __ addptr(rcx, locals_count_in_bytes); // reserve space for register saves
never@739 162 __ subptr(rsp, rcx);
never@739 163 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 164
duke@435 165 // save rdi, rsi, & rbx, according to C calling conventions
never@739 166 __ movptr(saved_rdi, rdi);
never@739 167 __ movptr(saved_rsi, rsi);
never@739 168 __ movptr(saved_rbx, rbx);
duke@435 169 // save and initialize %mxcsr
duke@435 170 if (sse_save) {
duke@435 171 Label skip_ldmx;
duke@435 172 __ stmxcsr(mxcsr_save);
duke@435 173 __ movl(rax, mxcsr_save);
duke@435 174 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 175 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 176 __ cmp32(rax, mxcsr_std);
duke@435 177 __ jcc(Assembler::equal, skip_ldmx);
duke@435 178 __ ldmxcsr(mxcsr_std);
duke@435 179 __ bind(skip_ldmx);
duke@435 180 }
duke@435 181
duke@435 182 // make sure the control word is correct.
duke@435 183 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 184
duke@435 185 #ifdef ASSERT
duke@435 186 // make sure we have no pending exceptions
duke@435 187 { Label L;
never@739 188 __ movptr(rcx, thread);
never@739 189 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 190 __ jcc(Assembler::equal, L);
duke@435 191 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 192 __ bind(L);
duke@435 193 }
duke@435 194 #endif
duke@435 195
duke@435 196 // pass parameters if any
duke@435 197 BLOCK_COMMENT("pass parameters if any");
duke@435 198 Label parameters_done;
duke@435 199 __ movl(rcx, parameter_size); // parameter counter
duke@435 200 __ testl(rcx, rcx);
duke@435 201 __ jcc(Assembler::zero, parameters_done);
duke@435 202
duke@435 203 // parameter passing loop
duke@435 204
duke@435 205 Label loop;
duke@435 206 // Copy Java parameters in reverse order (receiver last)
duke@435 207 // Note that the argument order is inverted in the process
duke@435 208 // source is rdx[rcx: N-1..0]
duke@435 209 // dest is rsp[rbx: 0..N-1]
duke@435 210
never@739 211 __ movptr(rdx, parameters); // parameter pointer
never@739 212 __ xorptr(rbx, rbx);
duke@435 213
duke@435 214 __ BIND(loop);
duke@435 215
duke@435 216 // get parameter
never@739 217 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
never@739 218 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 219 Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
duke@435 220 __ increment(rbx);
duke@435 221 __ decrement(rcx);
duke@435 222 __ jcc(Assembler::notZero, loop);
duke@435 223
duke@435 224 // call Java function
duke@435 225 __ BIND(parameters_done);
coleenp@4037 226 __ movptr(rbx, method); // get Method*
never@739 227 __ movptr(rax, entry_point); // get entry_point
never@739 228 __ mov(rsi, rsp); // set sender sp
duke@435 229 BLOCK_COMMENT("call Java function");
duke@435 230 __ call(rax);
duke@435 231
duke@435 232 BLOCK_COMMENT("call_stub_return_address:");
duke@435 233 return_address = __ pc();
duke@435 234
twisti@2552 235 #ifdef COMPILER2
twisti@2552 236 {
twisti@2552 237 Label L_skip;
twisti@2552 238 if (UseSSE >= 2) {
twisti@2552 239 __ verify_FPU(0, "call_stub_return");
twisti@2552 240 } else {
twisti@2552 241 for (int i = 1; i < 8; i++) {
twisti@2552 242 __ ffree(i);
twisti@2552 243 }
duke@435 244
twisti@2552 245 // UseSSE <= 1 so double result should be left on TOS
twisti@2552 246 __ movl(rsi, result_type);
twisti@2552 247 __ cmpl(rsi, T_DOUBLE);
twisti@2552 248 __ jcc(Assembler::equal, L_skip);
twisti@2552 249 if (UseSSE == 0) {
twisti@2552 250 // UseSSE == 0 so float result should be left on TOS
twisti@2552 251 __ cmpl(rsi, T_FLOAT);
twisti@2552 252 __ jcc(Assembler::equal, L_skip);
twisti@2552 253 }
twisti@2552 254 __ ffree(0);
twisti@2552 255 }
twisti@2552 256 __ BIND(L_skip);
twisti@2552 257 }
twisti@2552 258 #endif // COMPILER2
duke@435 259
duke@435 260 // store result depending on type
duke@435 261 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 262 __ movptr(rdi, result);
duke@435 263 Label is_long, is_float, is_double, exit;
duke@435 264 __ movl(rsi, result_type);
duke@435 265 __ cmpl(rsi, T_LONG);
duke@435 266 __ jcc(Assembler::equal, is_long);
duke@435 267 __ cmpl(rsi, T_FLOAT);
duke@435 268 __ jcc(Assembler::equal, is_float);
duke@435 269 __ cmpl(rsi, T_DOUBLE);
duke@435 270 __ jcc(Assembler::equal, is_double);
duke@435 271
duke@435 272 // handle T_INT case
duke@435 273 __ movl(Address(rdi, 0), rax);
duke@435 274 __ BIND(exit);
duke@435 275
duke@435 276 // check that FPU stack is empty
duke@435 277 __ verify_FPU(0, "generate_call_stub");
duke@435 278
duke@435 279 // pop parameters
never@739 280 __ lea(rsp, rsp_after_call);
duke@435 281
duke@435 282 // restore %mxcsr
duke@435 283 if (sse_save) {
duke@435 284 __ ldmxcsr(mxcsr_save);
duke@435 285 }
duke@435 286
duke@435 287 // restore rdi, rsi and rbx,
never@739 288 __ movptr(rbx, saved_rbx);
never@739 289 __ movptr(rsi, saved_rsi);
never@739 290 __ movptr(rdi, saved_rdi);
never@739 291 __ addptr(rsp, 4*wordSize);
duke@435 292
duke@435 293 // return
never@739 294 __ pop(rbp);
duke@435 295 __ ret(0);
duke@435 296
duke@435 297 // handle return types different from T_INT
duke@435 298 __ BIND(is_long);
duke@435 299 __ movl(Address(rdi, 0 * wordSize), rax);
duke@435 300 __ movl(Address(rdi, 1 * wordSize), rdx);
duke@435 301 __ jmp(exit);
duke@435 302
duke@435 303 __ BIND(is_float);
duke@435 304 // interpreter uses xmm0 for return values
duke@435 305 if (UseSSE >= 1) {
duke@435 306 __ movflt(Address(rdi, 0), xmm0);
duke@435 307 } else {
duke@435 308 __ fstp_s(Address(rdi, 0));
duke@435 309 }
duke@435 310 __ jmp(exit);
duke@435 311
duke@435 312 __ BIND(is_double);
duke@435 313 // interpreter uses xmm0 for return values
duke@435 314 if (UseSSE >= 2) {
duke@435 315 __ movdbl(Address(rdi, 0), xmm0);
duke@435 316 } else {
duke@435 317 __ fstp_d(Address(rdi, 0));
duke@435 318 }
duke@435 319 __ jmp(exit);
duke@435 320
duke@435 321 return start;
duke@435 322 }
duke@435 323
duke@435 324
duke@435 325 //------------------------------------------------------------------------------------------------------------------------
duke@435 326 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 327 // The exception is caught and transformed into a pending exception stored in
duke@435 328 // JavaThread that can be tested from within the VM.
duke@435 329 //
duke@435 330 // Note: Usually the parameters are removed by the callee. In case of an exception
duke@435 331 // crossing an activation frame boundary, that is not the case if the callee
duke@435 332 // is compiled code => need to setup the rsp.
duke@435 333 //
duke@435 334 // rax,: exception oop
duke@435 335
duke@435 336 address generate_catch_exception() {
duke@435 337 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 338 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
duke@435 339 const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
duke@435 340 address start = __ pc();
duke@435 341
duke@435 342 // get thread directly
never@739 343 __ movptr(rcx, thread);
duke@435 344 #ifdef ASSERT
duke@435 345 // verify that threads correspond
duke@435 346 { Label L;
duke@435 347 __ get_thread(rbx);
never@739 348 __ cmpptr(rbx, rcx);
duke@435 349 __ jcc(Assembler::equal, L);
duke@435 350 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 351 __ bind(L);
duke@435 352 }
duke@435 353 #endif
duke@435 354 // set pending exception
duke@435 355 __ verify_oop(rax);
never@739 356 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax );
duke@435 357 __ lea(Address(rcx, Thread::exception_file_offset ()),
duke@435 358 ExternalAddress((address)__FILE__));
duke@435 359 __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
duke@435 360 // complete return to VM
duke@435 361 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
duke@435 362 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 363
duke@435 364 return start;
duke@435 365 }
duke@435 366
duke@435 367
duke@435 368 //------------------------------------------------------------------------------------------------------------------------
duke@435 369 // Continuation point for runtime calls returning with a pending exception.
duke@435 370 // The pending exception check happened in the runtime or native call stub.
duke@435 371 // The pending exception in Thread is converted into a Java-level exception.
duke@435 372 //
duke@435 373 // Contract with Java-level exception handlers:
twisti@1730 374 // rax: exception
duke@435 375 // rdx: throwing pc
duke@435 376 //
duke@435 377 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 378
duke@435 379 address generate_forward_exception() {
duke@435 380 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 381 address start = __ pc();
twisti@1730 382 const Register thread = rcx;
twisti@1730 383
twisti@1730 384 // other registers used in this stub
twisti@1730 385 const Register exception_oop = rax;
twisti@1730 386 const Register handler_addr = rbx;
twisti@1730 387 const Register exception_pc = rdx;
duke@435 388
duke@435 389 // Upon entry, the sp points to the return address returning into Java
duke@435 390 // (interpreted or compiled) code; i.e., the return address becomes the
duke@435 391 // throwing pc.
duke@435 392 //
duke@435 393 // Arguments pushed before the runtime call are still on the stack but
duke@435 394 // the exception handler will reset the stack pointer -> ignore them.
duke@435 395 // A potential result in registers can be ignored as well.
duke@435 396
duke@435 397 #ifdef ASSERT
duke@435 398 // make sure this code is only executed if there is a pending exception
duke@435 399 { Label L;
twisti@1730 400 __ get_thread(thread);
twisti@1730 401 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 402 __ jcc(Assembler::notEqual, L);
duke@435 403 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 404 __ bind(L);
duke@435 405 }
duke@435 406 #endif
duke@435 407
duke@435 408 // compute exception handler into rbx,
twisti@1730 409 __ get_thread(thread);
twisti@1730 410 __ movptr(exception_pc, Address(rsp, 0));
duke@435 411 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 412 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
twisti@1730 413 __ mov(handler_addr, rax);
duke@435 414
twisti@1730 415 // setup rax & rdx, remove return address & clear pending exception
twisti@1730 416 __ get_thread(thread);
twisti@1730 417 __ pop(exception_pc);
twisti@1730 418 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
twisti@1730 419 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 420
duke@435 421 #ifdef ASSERT
duke@435 422 // make sure exception is set
duke@435 423 { Label L;
twisti@1730 424 __ testptr(exception_oop, exception_oop);
duke@435 425 __ jcc(Assembler::notEqual, L);
duke@435 426 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 427 __ bind(L);
duke@435 428 }
duke@435 429 #endif
duke@435 430
twisti@1730 431 // Verify that there is really a valid exception in RAX.
twisti@1730 432 __ verify_oop(exception_oop);
twisti@1730 433
duke@435 434 // continue at exception handler (return address removed)
twisti@1730 435 // rax: exception
twisti@1730 436 // rbx: exception handler
duke@435 437 // rdx: throwing pc
twisti@1730 438 __ jmp(handler_addr);
duke@435 439
duke@435 440 return start;
duke@435 441 }
duke@435 442
duke@435 443
duke@435 444 //----------------------------------------------------------------------------------------------------
duke@435 445 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 446 //
duke@435 447 // xchg exists as far back as 8086, lock needed for MP only
duke@435 448 // Stack layout immediately after call:
duke@435 449 //
duke@435 450 // 0 [ret addr ] <--- rsp
duke@435 451 // 1 [ ex ]
duke@435 452 // 2 [ dest ]
duke@435 453 //
duke@435 454 // Result: *dest <- ex, return (old *dest)
duke@435 455 //
duke@435 456 // Note: win32 does not currently use this code
duke@435 457
duke@435 458 address generate_atomic_xchg() {
duke@435 459 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 460 address start = __ pc();
duke@435 461
never@739 462 __ push(rdx);
duke@435 463 Address exchange(rsp, 2 * wordSize);
duke@435 464 Address dest_addr(rsp, 3 * wordSize);
duke@435 465 __ movl(rax, exchange);
never@739 466 __ movptr(rdx, dest_addr);
never@739 467 __ xchgl(rax, Address(rdx, 0));
never@739 468 __ pop(rdx);
duke@435 469 __ ret(0);
duke@435 470
duke@435 471 return start;
duke@435 472 }
duke@435 473
duke@435 474 //----------------------------------------------------------------------------------------------------
duke@435 475 // Support for void verify_mxcsr()
duke@435 476 //
duke@435 477 // This routine is used with -Xcheck:jni to verify that native
duke@435 478 // JNI code does not return to Java code without restoring the
duke@435 479 // MXCSR register to our expected state.
duke@435 480
duke@435 481
duke@435 482 address generate_verify_mxcsr() {
duke@435 483 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 484 address start = __ pc();
duke@435 485
duke@435 486 const Address mxcsr_save(rsp, 0);
duke@435 487
duke@435 488 if (CheckJNICalls && UseSSE > 0 ) {
duke@435 489 Label ok_ret;
duke@435 490 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
never@739 491 __ push(rax);
never@739 492 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 493 __ stmxcsr(mxcsr_save);
duke@435 494 __ movl(rax, mxcsr_save);
duke@435 495 __ andl(rax, MXCSR_MASK);
duke@435 496 __ cmp32(rax, mxcsr_std);
duke@435 497 __ jcc(Assembler::equal, ok_ret);
duke@435 498
duke@435 499 __ warn("MXCSR changed by native JNI code.");
duke@435 500
duke@435 501 __ ldmxcsr(mxcsr_std);
duke@435 502
duke@435 503 __ bind(ok_ret);
never@739 504 __ addptr(rsp, wordSize);
never@739 505 __ pop(rax);
duke@435 506 }
duke@435 507
duke@435 508 __ ret(0);
duke@435 509
duke@435 510 return start;
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 //---------------------------------------------------------------------------
duke@435 515 // Support for void verify_fpu_cntrl_wrd()
duke@435 516 //
duke@435 517 // This routine is used with -Xcheck:jni to verify that native
duke@435 518 // JNI code does not return to Java code without restoring the
duke@435 519 // FP control word to our expected state.
duke@435 520
duke@435 521 address generate_verify_fpu_cntrl_wrd() {
duke@435 522 StubCodeMark mark(this, "StubRoutines", "verify_spcw");
duke@435 523 address start = __ pc();
duke@435 524
duke@435 525 const Address fpu_cntrl_wrd_save(rsp, 0);
duke@435 526
duke@435 527 if (CheckJNICalls) {
duke@435 528 Label ok_ret;
never@739 529 __ push(rax);
never@739 530 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 531 __ fnstcw(fpu_cntrl_wrd_save);
duke@435 532 __ movl(rax, fpu_cntrl_wrd_save);
duke@435 533 __ andl(rax, FPU_CNTRL_WRD_MASK);
duke@435 534 ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 535 __ cmp32(rax, fpu_std);
duke@435 536 __ jcc(Assembler::equal, ok_ret);
duke@435 537
duke@435 538 __ warn("Floating point control word changed by native JNI code.");
duke@435 539
duke@435 540 __ fldcw(fpu_std);
duke@435 541
duke@435 542 __ bind(ok_ret);
never@739 543 __ addptr(rsp, wordSize);
never@739 544 __ pop(rax);
duke@435 545 }
duke@435 546
duke@435 547 __ ret(0);
duke@435 548
duke@435 549 return start;
duke@435 550 }
duke@435 551
duke@435 552 //---------------------------------------------------------------------------
duke@435 553 // Wrapper for slow-case handling of double-to-integer conversion
duke@435 554 // d2i or f2i fast case failed either because it is nan or because
duke@435 555 // of under/overflow.
duke@435 556 // Input: FPU TOS: float value
duke@435 557 // Output: rax, (rdx): integer (long) result
duke@435 558
duke@435 559 address generate_d2i_wrapper(BasicType t, address fcn) {
duke@435 560 StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
duke@435 561 address start = __ pc();
duke@435 562
duke@435 563 // Capture info about frame layout
duke@435 564 enum layout { FPUState_off = 0,
duke@435 565 rbp_off = FPUStateSizeInWords,
duke@435 566 rdi_off,
duke@435 567 rsi_off,
duke@435 568 rcx_off,
duke@435 569 rbx_off,
duke@435 570 saved_argument_off,
duke@435 571 saved_argument_off2, // 2nd half of double
duke@435 572 framesize
duke@435 573 };
duke@435 574
duke@435 575 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 576
duke@435 577 // Save outgoing argument to stack across push_FPU_state()
never@739 578 __ subptr(rsp, wordSize * 2);
duke@435 579 __ fstp_d(Address(rsp, 0));
duke@435 580
duke@435 581 // Save CPU & FPU state
never@739 582 __ push(rbx);
never@739 583 __ push(rcx);
never@739 584 __ push(rsi);
never@739 585 __ push(rdi);
never@739 586 __ push(rbp);
duke@435 587 __ push_FPU_state();
duke@435 588
duke@435 589 // push_FPU_state() resets the FP top of stack
duke@435 590 // Load original double into FP top of stack
duke@435 591 __ fld_d(Address(rsp, saved_argument_off * wordSize));
duke@435 592 // Store double into stack as outgoing argument
never@739 593 __ subptr(rsp, wordSize*2);
duke@435 594 __ fst_d(Address(rsp, 0));
duke@435 595
duke@435 596 // Prepare FPU for doing math in C-land
duke@435 597 __ empty_FPU_stack();
duke@435 598 // Call the C code to massage the double. Result in EAX
duke@435 599 if (t == T_INT)
duke@435 600 { BLOCK_COMMENT("SharedRuntime::d2i"); }
duke@435 601 else if (t == T_LONG)
duke@435 602 { BLOCK_COMMENT("SharedRuntime::d2l"); }
duke@435 603 __ call_VM_leaf( fcn, 2 );
duke@435 604
duke@435 605 // Restore CPU & FPU state
duke@435 606 __ pop_FPU_state();
never@739 607 __ pop(rbp);
never@739 608 __ pop(rdi);
never@739 609 __ pop(rsi);
never@739 610 __ pop(rcx);
never@739 611 __ pop(rbx);
never@739 612 __ addptr(rsp, wordSize * 2);
duke@435 613
duke@435 614 __ ret(0);
duke@435 615
duke@435 616 return start;
duke@435 617 }
duke@435 618
duke@435 619
duke@435 620 //---------------------------------------------------------------------------
duke@435 621 // The following routine generates a subroutine to throw an asynchronous
duke@435 622 // UnknownError when an unsafe access gets a fault that could not be
duke@435 623 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 624 address generate_handler_for_unsafe_access() {
duke@435 625 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 626 address start = __ pc();
duke@435 627
never@739 628 __ push(0); // hole for return address-to-be
never@739 629 __ pusha(); // push registers
duke@435 630 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 631 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 632 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 633 __ movptr(next_pc, rax); // stuff next address
never@739 634 __ popa();
duke@435 635 __ ret(0); // jump to next address
duke@435 636
duke@435 637 return start;
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 //----------------------------------------------------------------------------------------------------
duke@435 642 // Non-destructive plausibility checks for oops
duke@435 643
duke@435 644 address generate_verify_oop() {
duke@435 645 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 646 address start = __ pc();
duke@435 647
duke@435 648 // Incoming arguments on stack after saving rax,:
duke@435 649 //
duke@435 650 // [tos ]: saved rdx
duke@435 651 // [tos + 1]: saved EFLAGS
duke@435 652 // [tos + 2]: return address
duke@435 653 // [tos + 3]: char* error message
duke@435 654 // [tos + 4]: oop object to verify
duke@435 655 // [tos + 5]: saved rax, - saved by caller and bashed
duke@435 656
duke@435 657 Label exit, error;
never@739 658 __ pushf();
never@739 659 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
never@739 660 __ push(rdx); // save rdx
duke@435 661 // make sure object is 'reasonable'
never@739 662 __ movptr(rax, Address(rsp, 4 * wordSize)); // get object
never@739 663 __ testptr(rax, rax);
duke@435 664 __ jcc(Assembler::zero, exit); // if obj is NULL it is ok
duke@435 665
duke@435 666 // Check if the oop is in the right area of memory
duke@435 667 const int oop_mask = Universe::verify_oop_mask();
duke@435 668 const int oop_bits = Universe::verify_oop_bits();
never@739 669 __ mov(rdx, rax);
never@739 670 __ andptr(rdx, oop_mask);
never@739 671 __ cmpptr(rdx, oop_bits);
duke@435 672 __ jcc(Assembler::notZero, error);
duke@435 673
coleenp@4037 674 // make sure klass is 'reasonable', which is not zero.
never@739 675 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
never@739 676 __ testptr(rax, rax);
duke@435 677 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
coleenp@4037 678 // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
duke@435 679
duke@435 680 // return if everything seems ok
duke@435 681 __ bind(exit);
never@739 682 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 683 __ pop(rdx); // restore rdx
never@739 684 __ popf(); // restore EFLAGS
duke@435 685 __ ret(3 * wordSize); // pop arguments
duke@435 686
duke@435 687 // handle errors
duke@435 688 __ bind(error);
never@739 689 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 690 __ pop(rdx); // get saved rdx back
never@739 691 __ popf(); // get saved EFLAGS off stack -- will be ignored
never@739 692 __ pusha(); // push registers (eip = return address & msg are already pushed)
duke@435 693 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 694 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
never@739 695 __ popa();
duke@435 696 __ ret(3 * wordSize); // pop arguments
duke@435 697 return start;
duke@435 698 }
duke@435 699
duke@435 700 //
duke@435 701 // Generate pre-barrier for array stores
duke@435 702 //
duke@435 703 // Input:
duke@435 704 // start - starting address
ysr@1280 705 // count - element count
iveresov@2606 706 void gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
duke@435 707 assert_different_registers(start, count);
duke@435 708 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 709 switch (bs->kind()) {
duke@435 710 case BarrierSet::G1SATBCT:
duke@435 711 case BarrierSet::G1SATBCTLogging:
iveresov@2606 712 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 713 if (!uninitialized_target) {
iveresov@2606 714 __ pusha(); // push registers
iveresov@2606 715 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
iveresov@2606 716 start, count);
iveresov@2606 717 __ popa();
iveresov@2606 718 }
duke@435 719 break;
duke@435 720 case BarrierSet::CardTableModRef:
duke@435 721 case BarrierSet::CardTableExtension:
duke@435 722 case BarrierSet::ModRef:
duke@435 723 break;
duke@435 724 default :
duke@435 725 ShouldNotReachHere();
duke@435 726
duke@435 727 }
duke@435 728 }
duke@435 729
duke@435 730
duke@435 731 //
duke@435 732 // Generate a post-barrier for an array store
duke@435 733 //
duke@435 734 // start - starting address
duke@435 735 // count - element count
duke@435 736 //
duke@435 737 // The two input registers are overwritten.
duke@435 738 //
duke@435 739 void gen_write_ref_array_post_barrier(Register start, Register count) {
duke@435 740 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 741 assert_different_registers(start, count);
duke@435 742 switch (bs->kind()) {
duke@435 743 case BarrierSet::G1SATBCT:
duke@435 744 case BarrierSet::G1SATBCTLogging:
duke@435 745 {
never@739 746 __ pusha(); // push registers
apetrusenko@1627 747 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
apetrusenko@1627 748 start, count);
never@739 749 __ popa();
duke@435 750 }
duke@435 751 break;
duke@435 752
duke@435 753 case BarrierSet::CardTableModRef:
duke@435 754 case BarrierSet::CardTableExtension:
duke@435 755 {
duke@435 756 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 757 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 758
duke@435 759 Label L_loop;
duke@435 760 const Register end = count; // elements count; end == start+count-1
duke@435 761 assert_different_registers(start, end);
duke@435 762
never@739 763 __ lea(end, Address(start, count, Address::times_ptr, -wordSize));
never@739 764 __ shrptr(start, CardTableModRefBS::card_shift);
never@739 765 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 766 __ subptr(end, start); // end --> count
duke@435 767 __ BIND(L_loop);
never@684 768 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 769 Address cardtable(start, count, Address::times_1, disp);
never@684 770 __ movb(cardtable, 0);
duke@435 771 __ decrement(count);
duke@435 772 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 773 }
duke@435 774 break;
duke@435 775 case BarrierSet::ModRef:
duke@435 776 break;
duke@435 777 default :
duke@435 778 ShouldNotReachHere();
duke@435 779
duke@435 780 }
duke@435 781 }
duke@435 782
kvn@840 783
kvn@840 784 // Copy 64 bytes chunks
kvn@840 785 //
kvn@840 786 // Inputs:
kvn@840 787 // from - source array address
kvn@840 788 // to_from - destination array address - from
kvn@840 789 // qword_count - 8-bytes element count, negative
kvn@840 790 //
kvn@840 791 void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 792 assert( UseSSE >= 2, "supported cpu only" );
kvn@840 793 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
kvn@840 794 // Copy 64-byte chunks
kvn@840 795 __ jmpb(L_copy_64_bytes);
kvn@1800 796 __ align(OptoLoopAlignment);
kvn@840 797 __ BIND(L_copy_64_bytes_loop);
kvn@840 798
kvn@840 799 if(UseUnalignedLoadStores) {
kvn@840 800 __ movdqu(xmm0, Address(from, 0));
kvn@840 801 __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 802 __ movdqu(xmm1, Address(from, 16));
kvn@840 803 __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
kvn@840 804 __ movdqu(xmm2, Address(from, 32));
kvn@840 805 __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
kvn@840 806 __ movdqu(xmm3, Address(from, 48));
kvn@840 807 __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
kvn@840 808
kvn@840 809 } else {
kvn@840 810 __ movq(xmm0, Address(from, 0));
kvn@840 811 __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 812 __ movq(xmm1, Address(from, 8));
kvn@840 813 __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
kvn@840 814 __ movq(xmm2, Address(from, 16));
kvn@840 815 __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
kvn@840 816 __ movq(xmm3, Address(from, 24));
kvn@840 817 __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
kvn@840 818 __ movq(xmm4, Address(from, 32));
kvn@840 819 __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
kvn@840 820 __ movq(xmm5, Address(from, 40));
kvn@840 821 __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
kvn@840 822 __ movq(xmm6, Address(from, 48));
kvn@840 823 __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
kvn@840 824 __ movq(xmm7, Address(from, 56));
kvn@840 825 __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
kvn@840 826 }
kvn@840 827
kvn@840 828 __ addl(from, 64);
kvn@840 829 __ BIND(L_copy_64_bytes);
kvn@840 830 __ subl(qword_count, 8);
kvn@840 831 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
kvn@840 832 __ addl(qword_count, 8);
kvn@840 833 __ jccb(Assembler::zero, L_exit);
kvn@840 834 //
kvn@840 835 // length is too short, just copy qwords
kvn@840 836 //
kvn@840 837 __ BIND(L_copy_8_bytes);
kvn@840 838 __ movq(xmm0, Address(from, 0));
kvn@840 839 __ movq(Address(from, to_from, Address::times_1), xmm0);
kvn@840 840 __ addl(from, 8);
kvn@840 841 __ decrement(qword_count);
kvn@840 842 __ jcc(Assembler::greater, L_copy_8_bytes);
kvn@840 843 __ BIND(L_exit);
kvn@840 844 }
kvn@840 845
duke@435 846 // Copy 64 bytes chunks
duke@435 847 //
duke@435 848 // Inputs:
duke@435 849 // from - source array address
duke@435 850 // to_from - destination array address - from
duke@435 851 // qword_count - 8-bytes element count, negative
duke@435 852 //
duke@435 853 void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 854 assert( VM_Version::supports_mmx(), "supported cpu only" );
duke@435 855 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
duke@435 856 // Copy 64-byte chunks
duke@435 857 __ jmpb(L_copy_64_bytes);
kvn@1800 858 __ align(OptoLoopAlignment);
duke@435 859 __ BIND(L_copy_64_bytes_loop);
duke@435 860 __ movq(mmx0, Address(from, 0));
duke@435 861 __ movq(mmx1, Address(from, 8));
duke@435 862 __ movq(mmx2, Address(from, 16));
duke@435 863 __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
duke@435 864 __ movq(mmx3, Address(from, 24));
duke@435 865 __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
duke@435 866 __ movq(mmx4, Address(from, 32));
duke@435 867 __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
duke@435 868 __ movq(mmx5, Address(from, 40));
duke@435 869 __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
duke@435 870 __ movq(mmx6, Address(from, 48));
duke@435 871 __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
duke@435 872 __ movq(mmx7, Address(from, 56));
duke@435 873 __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
duke@435 874 __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
duke@435 875 __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
never@739 876 __ addptr(from, 64);
duke@435 877 __ BIND(L_copy_64_bytes);
duke@435 878 __ subl(qword_count, 8);
duke@435 879 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
duke@435 880 __ addl(qword_count, 8);
duke@435 881 __ jccb(Assembler::zero, L_exit);
duke@435 882 //
duke@435 883 // length is too short, just copy qwords
duke@435 884 //
duke@435 885 __ BIND(L_copy_8_bytes);
duke@435 886 __ movq(mmx0, Address(from, 0));
duke@435 887 __ movq(Address(from, to_from, Address::times_1), mmx0);
never@739 888 __ addptr(from, 8);
duke@435 889 __ decrement(qword_count);
duke@435 890 __ jcc(Assembler::greater, L_copy_8_bytes);
duke@435 891 __ BIND(L_exit);
duke@435 892 __ emms();
duke@435 893 }
duke@435 894
duke@435 895 address generate_disjoint_copy(BasicType t, bool aligned,
duke@435 896 Address::ScaleFactor sf,
iveresov@2606 897 address* entry, const char *name,
iveresov@2606 898 bool dest_uninitialized = false) {
duke@435 899 __ align(CodeEntryAlignment);
duke@435 900 StubCodeMark mark(this, "StubRoutines", name);
duke@435 901 address start = __ pc();
duke@435 902
duke@435 903 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 904 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
duke@435 905
never@739 906 int shift = Address::times_ptr - sf;
duke@435 907
duke@435 908 const Register from = rsi; // source array address
duke@435 909 const Register to = rdi; // destination array address
duke@435 910 const Register count = rcx; // elements count
duke@435 911 const Register to_from = to; // (to - from)
duke@435 912 const Register saved_to = rdx; // saved destination array address
duke@435 913
duke@435 914 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 915 __ push(rsi);
never@739 916 __ push(rdi);
never@739 917 __ movptr(from , Address(rsp, 12+ 4));
never@739 918 __ movptr(to , Address(rsp, 12+ 8));
duke@435 919 __ movl(count, Address(rsp, 12+ 12));
iveresov@2595 920
iveresov@2595 921 if (entry != NULL) {
iveresov@2595 922 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
iveresov@2595 923 BLOCK_COMMENT("Entry:");
iveresov@2595 924 }
iveresov@2595 925
duke@435 926 if (t == T_OBJECT) {
duke@435 927 __ testl(count, count);
duke@435 928 __ jcc(Assembler::zero, L_0_count);
iveresov@2606 929 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
never@739 930 __ mov(saved_to, to); // save 'to'
duke@435 931 }
duke@435 932
never@739 933 __ subptr(to, from); // to --> to_from
duke@435 934 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 935 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
kvn@840 936 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
duke@435 937 // align source address at 4 bytes address boundary
duke@435 938 if (t == T_BYTE) {
duke@435 939 // One byte misalignment happens only for byte arrays
duke@435 940 __ testl(from, 1);
duke@435 941 __ jccb(Assembler::zero, L_skip_align1);
duke@435 942 __ movb(rax, Address(from, 0));
duke@435 943 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 944 __ increment(from);
duke@435 945 __ decrement(count);
duke@435 946 __ BIND(L_skip_align1);
duke@435 947 }
duke@435 948 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 949 __ testl(from, 2);
duke@435 950 __ jccb(Assembler::zero, L_skip_align2);
duke@435 951 __ movw(rax, Address(from, 0));
duke@435 952 __ movw(Address(from, to_from, Address::times_1, 0), rax);
never@739 953 __ addptr(from, 2);
duke@435 954 __ subl(count, 1<<(shift-1));
duke@435 955 __ BIND(L_skip_align2);
duke@435 956 }
duke@435 957 if (!VM_Version::supports_mmx()) {
never@739 958 __ mov(rax, count); // save 'count'
never@739 959 __ shrl(count, shift); // bytes count
never@739 960 __ addptr(to_from, from);// restore 'to'
never@739 961 __ rep_mov();
never@739 962 __ subptr(to_from, from);// restore 'to_from'
never@739 963 __ mov(count, rax); // restore 'count'
duke@435 964 __ jmpb(L_copy_2_bytes); // all dwords were copied
duke@435 965 } else {
kvn@840 966 if (!UseUnalignedLoadStores) {
kvn@840 967 // align to 8 bytes, we know we are 4 byte aligned to start
kvn@840 968 __ testptr(from, 4);
kvn@840 969 __ jccb(Assembler::zero, L_copy_64_bytes);
kvn@840 970 __ movl(rax, Address(from, 0));
kvn@840 971 __ movl(Address(from, to_from, Address::times_1, 0), rax);
kvn@840 972 __ addptr(from, 4);
kvn@840 973 __ subl(count, 1<<shift);
kvn@840 974 }
duke@435 975 __ BIND(L_copy_64_bytes);
never@739 976 __ mov(rax, count);
duke@435 977 __ shrl(rax, shift+1); // 8 bytes chunk count
duke@435 978 //
duke@435 979 // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
duke@435 980 //
kvn@840 981 if (UseXMMForArrayCopy) {
kvn@840 982 xmm_copy_forward(from, to_from, rax);
kvn@840 983 } else {
kvn@840 984 mmx_copy_forward(from, to_from, rax);
kvn@840 985 }
duke@435 986 }
duke@435 987 // copy tailing dword
duke@435 988 __ BIND(L_copy_4_bytes);
duke@435 989 __ testl(count, 1<<shift);
duke@435 990 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 991 __ movl(rax, Address(from, 0));
duke@435 992 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 993 if (t == T_BYTE || t == T_SHORT) {
never@739 994 __ addptr(from, 4);
duke@435 995 __ BIND(L_copy_2_bytes);
duke@435 996 // copy tailing word
duke@435 997 __ testl(count, 1<<(shift-1));
duke@435 998 __ jccb(Assembler::zero, L_copy_byte);
duke@435 999 __ movw(rax, Address(from, 0));
duke@435 1000 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1001 if (t == T_BYTE) {
never@739 1002 __ addptr(from, 2);
duke@435 1003 __ BIND(L_copy_byte);
duke@435 1004 // copy tailing byte
duke@435 1005 __ testl(count, 1);
duke@435 1006 __ jccb(Assembler::zero, L_exit);
duke@435 1007 __ movb(rax, Address(from, 0));
duke@435 1008 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1009 __ BIND(L_exit);
duke@435 1010 } else {
duke@435 1011 __ BIND(L_copy_byte);
duke@435 1012 }
duke@435 1013 } else {
duke@435 1014 __ BIND(L_copy_2_bytes);
duke@435 1015 }
duke@435 1016
duke@435 1017 if (t == T_OBJECT) {
duke@435 1018 __ movl(count, Address(rsp, 12+12)); // reread 'count'
never@739 1019 __ mov(to, saved_to); // restore 'to'
duke@435 1020 gen_write_ref_array_post_barrier(to, count);
duke@435 1021 __ BIND(L_0_count);
duke@435 1022 }
duke@435 1023 inc_copy_counter_np(t);
never@739 1024 __ pop(rdi);
never@739 1025 __ pop(rsi);
duke@435 1026 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1027 __ xorptr(rax, rax); // return 0
duke@435 1028 __ ret(0);
duke@435 1029 return start;
duke@435 1030 }
duke@435 1031
duke@435 1032
never@2118 1033 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1034 __ align(CodeEntryAlignment);
never@2118 1035 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1036 address start = __ pc();
never@2118 1037
never@2118 1038 BLOCK_COMMENT("Entry:");
never@2118 1039
never@2118 1040 const Register to = rdi; // source array address
never@2118 1041 const Register value = rdx; // value
never@2118 1042 const Register count = rsi; // elements count
never@2118 1043
never@2118 1044 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1045 __ push(rsi);
never@2118 1046 __ push(rdi);
never@2118 1047 __ movptr(to , Address(rsp, 12+ 4));
never@2118 1048 __ movl(value, Address(rsp, 12+ 8));
never@2118 1049 __ movl(count, Address(rsp, 12+ 12));
never@2118 1050
never@2118 1051 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1052
never@2118 1053 __ pop(rdi);
never@2118 1054 __ pop(rsi);
never@2118 1055 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1056 __ ret(0);
never@2118 1057 return start;
never@2118 1058 }
never@2118 1059
duke@435 1060 address generate_conjoint_copy(BasicType t, bool aligned,
duke@435 1061 Address::ScaleFactor sf,
duke@435 1062 address nooverlap_target,
iveresov@2606 1063 address* entry, const char *name,
iveresov@2606 1064 bool dest_uninitialized = false) {
duke@435 1065 __ align(CodeEntryAlignment);
duke@435 1066 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1067 address start = __ pc();
duke@435 1068
duke@435 1069 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 1070 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1071
never@739 1072 int shift = Address::times_ptr - sf;
duke@435 1073
duke@435 1074 const Register src = rax; // source array address
duke@435 1075 const Register dst = rdx; // destination array address
duke@435 1076 const Register from = rsi; // source array address
duke@435 1077 const Register to = rdi; // destination array address
duke@435 1078 const Register count = rcx; // elements count
duke@435 1079 const Register end = rax; // array end address
duke@435 1080
duke@435 1081 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1082 __ push(rsi);
never@739 1083 __ push(rdi);
never@739 1084 __ movptr(src , Address(rsp, 12+ 4)); // from
never@739 1085 __ movptr(dst , Address(rsp, 12+ 8)); // to
never@739 1086 __ movl2ptr(count, Address(rsp, 12+12)); // count
duke@435 1087
duke@435 1088 if (entry != NULL) {
duke@435 1089 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1090 BLOCK_COMMENT("Entry:");
duke@435 1091 }
duke@435 1092
iveresov@2595 1093 // nooverlap_target expects arguments in rsi and rdi.
never@739 1094 __ mov(from, src);
never@739 1095 __ mov(to , dst);
duke@435 1096
iveresov@2595 1097 // arrays overlap test: dispatch to disjoint stub if necessary.
duke@435 1098 RuntimeAddress nooverlap(nooverlap_target);
never@739 1099 __ cmpptr(dst, src);
never@739 1100 __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
duke@435 1101 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1102 __ cmpptr(dst, end);
duke@435 1103 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1104
iveresov@2595 1105 if (t == T_OBJECT) {
iveresov@2595 1106 __ testl(count, count);
iveresov@2595 1107 __ jcc(Assembler::zero, L_0_count);
iveresov@2606 1108 gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
iveresov@2595 1109 }
iveresov@2595 1110
duke@435 1111 // copy from high to low
duke@435 1112 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1113 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 1114 if (t == T_BYTE || t == T_SHORT) {
duke@435 1115 // Align the end of destination array at 4 bytes address boundary
never@739 1116 __ lea(end, Address(dst, count, sf, 0));
duke@435 1117 if (t == T_BYTE) {
duke@435 1118 // One byte misalignment happens only for byte arrays
duke@435 1119 __ testl(end, 1);
duke@435 1120 __ jccb(Assembler::zero, L_skip_align1);
duke@435 1121 __ decrement(count);
duke@435 1122 __ movb(rdx, Address(from, count, sf, 0));
duke@435 1123 __ movb(Address(to, count, sf, 0), rdx);
duke@435 1124 __ BIND(L_skip_align1);
duke@435 1125 }
duke@435 1126 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 1127 __ testl(end, 2);
duke@435 1128 __ jccb(Assembler::zero, L_skip_align2);
never@739 1129 __ subptr(count, 1<<(shift-1));
duke@435 1130 __ movw(rdx, Address(from, count, sf, 0));
duke@435 1131 __ movw(Address(to, count, sf, 0), rdx);
duke@435 1132 __ BIND(L_skip_align2);
duke@435 1133 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1134 __ jcc(Assembler::below, L_copy_4_bytes);
duke@435 1135 }
duke@435 1136
duke@435 1137 if (!VM_Version::supports_mmx()) {
duke@435 1138 __ std();
never@739 1139 __ mov(rax, count); // Save 'count'
never@739 1140 __ mov(rdx, to); // Save 'to'
never@739 1141 __ lea(rsi, Address(from, count, sf, -4));
never@739 1142 __ lea(rdi, Address(to , count, sf, -4));
never@739 1143 __ shrptr(count, shift); // bytes count
never@739 1144 __ rep_mov();
duke@435 1145 __ cld();
never@739 1146 __ mov(count, rax); // restore 'count'
duke@435 1147 __ andl(count, (1<<shift)-1); // mask the number of rest elements
never@739 1148 __ movptr(from, Address(rsp, 12+4)); // reread 'from'
never@739 1149 __ mov(to, rdx); // restore 'to'
duke@435 1150 __ jmpb(L_copy_2_bytes); // all dword were copied
duke@435 1151 } else {
duke@435 1152 // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
never@739 1153 __ testptr(end, 4);
duke@435 1154 __ jccb(Assembler::zero, L_copy_8_bytes);
duke@435 1155 __ subl(count, 1<<shift);
duke@435 1156 __ movl(rdx, Address(from, count, sf, 0));
duke@435 1157 __ movl(Address(to, count, sf, 0), rdx);
duke@435 1158 __ jmpb(L_copy_8_bytes);
duke@435 1159
kvn@1800 1160 __ align(OptoLoopAlignment);
duke@435 1161 // Move 8 bytes
duke@435 1162 __ BIND(L_copy_8_bytes_loop);
kvn@840 1163 if (UseXMMForArrayCopy) {
kvn@840 1164 __ movq(xmm0, Address(from, count, sf, 0));
kvn@840 1165 __ movq(Address(to, count, sf, 0), xmm0);
kvn@840 1166 } else {
kvn@840 1167 __ movq(mmx0, Address(from, count, sf, 0));
kvn@840 1168 __ movq(Address(to, count, sf, 0), mmx0);
kvn@840 1169 }
duke@435 1170 __ BIND(L_copy_8_bytes);
duke@435 1171 __ subl(count, 2<<shift);
duke@435 1172 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1173 __ addl(count, 2<<shift);
kvn@840 1174 if (!UseXMMForArrayCopy) {
kvn@840 1175 __ emms();
kvn@840 1176 }
duke@435 1177 }
duke@435 1178 __ BIND(L_copy_4_bytes);
duke@435 1179 // copy prefix qword
duke@435 1180 __ testl(count, 1<<shift);
duke@435 1181 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1182 __ movl(rdx, Address(from, count, sf, -4));
duke@435 1183 __ movl(Address(to, count, sf, -4), rdx);
duke@435 1184
duke@435 1185 if (t == T_BYTE || t == T_SHORT) {
duke@435 1186 __ subl(count, (1<<shift));
duke@435 1187 __ BIND(L_copy_2_bytes);
duke@435 1188 // copy prefix dword
duke@435 1189 __ testl(count, 1<<(shift-1));
duke@435 1190 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1191 __ movw(rdx, Address(from, count, sf, -2));
duke@435 1192 __ movw(Address(to, count, sf, -2), rdx);
duke@435 1193 if (t == T_BYTE) {
duke@435 1194 __ subl(count, 1<<(shift-1));
duke@435 1195 __ BIND(L_copy_byte);
duke@435 1196 // copy prefix byte
duke@435 1197 __ testl(count, 1);
duke@435 1198 __ jccb(Assembler::zero, L_exit);
duke@435 1199 __ movb(rdx, Address(from, 0));
duke@435 1200 __ movb(Address(to, 0), rdx);
duke@435 1201 __ BIND(L_exit);
duke@435 1202 } else {
duke@435 1203 __ BIND(L_copy_byte);
duke@435 1204 }
duke@435 1205 } else {
duke@435 1206 __ BIND(L_copy_2_bytes);
duke@435 1207 }
duke@435 1208 if (t == T_OBJECT) {
never@739 1209 __ movl2ptr(count, Address(rsp, 12+12)); // reread count
duke@435 1210 gen_write_ref_array_post_barrier(to, count);
duke@435 1211 __ BIND(L_0_count);
duke@435 1212 }
duke@435 1213 inc_copy_counter_np(t);
never@739 1214 __ pop(rdi);
never@739 1215 __ pop(rsi);
duke@435 1216 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1217 __ xorptr(rax, rax); // return 0
duke@435 1218 __ ret(0);
duke@435 1219 return start;
duke@435 1220 }
duke@435 1221
duke@435 1222
duke@435 1223 address generate_disjoint_long_copy(address* entry, const char *name) {
duke@435 1224 __ align(CodeEntryAlignment);
duke@435 1225 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1226 address start = __ pc();
duke@435 1227
duke@435 1228 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1229 const Register from = rax; // source array address
duke@435 1230 const Register to = rdx; // destination array address
duke@435 1231 const Register count = rcx; // elements count
duke@435 1232 const Register to_from = rdx; // (to - from)
duke@435 1233
duke@435 1234 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1235 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1236 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1237 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1238
duke@435 1239 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 1240 BLOCK_COMMENT("Entry:");
duke@435 1241
never@739 1242 __ subptr(to, from); // to --> to_from
duke@435 1243 if (VM_Version::supports_mmx()) {
kvn@840 1244 if (UseXMMForArrayCopy) {
kvn@840 1245 xmm_copy_forward(from, to_from, count);
kvn@840 1246 } else {
kvn@840 1247 mmx_copy_forward(from, to_from, count);
kvn@840 1248 }
duke@435 1249 } else {
duke@435 1250 __ jmpb(L_copy_8_bytes);
kvn@1800 1251 __ align(OptoLoopAlignment);
duke@435 1252 __ BIND(L_copy_8_bytes_loop);
duke@435 1253 __ fild_d(Address(from, 0));
duke@435 1254 __ fistp_d(Address(from, to_from, Address::times_1));
never@739 1255 __ addptr(from, 8);
duke@435 1256 __ BIND(L_copy_8_bytes);
duke@435 1257 __ decrement(count);
duke@435 1258 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1259 }
duke@435 1260 inc_copy_counter_np(T_LONG);
duke@435 1261 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1262 __ xorptr(rax, rax); // return 0
duke@435 1263 __ ret(0);
duke@435 1264 return start;
duke@435 1265 }
duke@435 1266
duke@435 1267 address generate_conjoint_long_copy(address nooverlap_target,
duke@435 1268 address* entry, const char *name) {
duke@435 1269 __ align(CodeEntryAlignment);
duke@435 1270 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1271 address start = __ pc();
duke@435 1272
duke@435 1273 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1274 const Register from = rax; // source array address
duke@435 1275 const Register to = rdx; // destination array address
duke@435 1276 const Register count = rcx; // elements count
duke@435 1277 const Register end_from = rax; // source array end address
duke@435 1278
duke@435 1279 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1280 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1281 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1282 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1283
duke@435 1284 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1285 BLOCK_COMMENT("Entry:");
duke@435 1286
duke@435 1287 // arrays overlap test
never@739 1288 __ cmpptr(to, from);
duke@435 1289 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1290 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1291 __ lea(end_from, Address(from, count, Address::times_8, 0));
never@739 1292 __ cmpptr(to, end_from);
never@739 1293 __ movptr(from, Address(rsp, 8)); // from
duke@435 1294 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1295
duke@435 1296 __ jmpb(L_copy_8_bytes);
duke@435 1297
kvn@1800 1298 __ align(OptoLoopAlignment);
duke@435 1299 __ BIND(L_copy_8_bytes_loop);
duke@435 1300 if (VM_Version::supports_mmx()) {
kvn@840 1301 if (UseXMMForArrayCopy) {
kvn@840 1302 __ movq(xmm0, Address(from, count, Address::times_8));
kvn@840 1303 __ movq(Address(to, count, Address::times_8), xmm0);
kvn@840 1304 } else {
kvn@840 1305 __ movq(mmx0, Address(from, count, Address::times_8));
kvn@840 1306 __ movq(Address(to, count, Address::times_8), mmx0);
kvn@840 1307 }
duke@435 1308 } else {
duke@435 1309 __ fild_d(Address(from, count, Address::times_8));
duke@435 1310 __ fistp_d(Address(to, count, Address::times_8));
duke@435 1311 }
duke@435 1312 __ BIND(L_copy_8_bytes);
duke@435 1313 __ decrement(count);
duke@435 1314 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1315
kvn@840 1316 if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
duke@435 1317 __ emms();
duke@435 1318 }
duke@435 1319 inc_copy_counter_np(T_LONG);
duke@435 1320 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1321 __ xorptr(rax, rax); // return 0
duke@435 1322 __ ret(0);
duke@435 1323 return start;
duke@435 1324 }
duke@435 1325
duke@435 1326
duke@435 1327 // Helper for generating a dynamic type check.
duke@435 1328 // The sub_klass must be one of {rbx, rdx, rsi}.
duke@435 1329 // The temp is killed.
duke@435 1330 void generate_type_check(Register sub_klass,
duke@435 1331 Address& super_check_offset_addr,
duke@435 1332 Address& super_klass_addr,
duke@435 1333 Register temp,
jrose@1079 1334 Label* L_success, Label* L_failure) {
duke@435 1335 BLOCK_COMMENT("type_check:");
duke@435 1336
duke@435 1337 Label L_fallthrough;
jrose@1079 1338 #define LOCAL_JCC(assembler_con, label_ptr) \
jrose@1079 1339 if (label_ptr != NULL) __ jcc(assembler_con, *(label_ptr)); \
jrose@1079 1340 else __ jcc(assembler_con, L_fallthrough) /*omit semi*/
duke@435 1341
jrose@1079 1342 // The following is a strange variation of the fast path which requires
jrose@1079 1343 // one less register, because needed values are on the argument stack.
jrose@1079 1344 // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
jrose@1079 1345 // L_success, L_failure, NULL);
duke@435 1346 assert_different_registers(sub_klass, temp);
duke@435 1347
stefank@3391 1348 int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
duke@435 1349
duke@435 1350 // if the pointers are equal, we are done (e.g., String[] elements)
never@739 1351 __ cmpptr(sub_klass, super_klass_addr);
jrose@1079 1352 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1353
duke@435 1354 // check the supertype display:
never@739 1355 __ movl2ptr(temp, super_check_offset_addr);
duke@435 1356 Address super_check_addr(sub_klass, temp, Address::times_1, 0);
never@739 1357 __ movptr(temp, super_check_addr); // load displayed supertype
never@739 1358 __ cmpptr(temp, super_klass_addr); // test the super type
jrose@1079 1359 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1360
duke@435 1361 // if it was a primary super, we can just fail immediately
duke@435 1362 __ cmpl(super_check_offset_addr, sc_offset);
jrose@1079 1363 LOCAL_JCC(Assembler::notEqual, L_failure);
duke@435 1364
jrose@1079 1365 // The repne_scan instruction uses fixed registers, which will get spilled.
jrose@1079 1366 // We happen to know this works best when super_klass is in rax.
jrose@1079 1367 Register super_klass = temp;
jrose@1079 1368 __ movptr(super_klass, super_klass_addr);
jrose@1079 1369 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
jrose@1079 1370 L_success, L_failure);
duke@435 1371
jrose@1079 1372 __ bind(L_fallthrough);
duke@435 1373
jrose@1079 1374 if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
jrose@1079 1375 if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
duke@435 1376
jrose@1079 1377 #undef LOCAL_JCC
duke@435 1378 }
duke@435 1379
duke@435 1380 //
duke@435 1381 // Generate checkcasting array copy stub
duke@435 1382 //
duke@435 1383 // Input:
duke@435 1384 // 4(rsp) - source array address
duke@435 1385 // 8(rsp) - destination array address
duke@435 1386 // 12(rsp) - element count, can be zero
duke@435 1387 // 16(rsp) - size_t ckoff (super_check_offset)
duke@435 1388 // 20(rsp) - oop ckval (super_klass)
duke@435 1389 //
duke@435 1390 // Output:
duke@435 1391 // rax, == 0 - success
duke@435 1392 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1393 //
iveresov@2606 1394 address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
duke@435 1395 __ align(CodeEntryAlignment);
duke@435 1396 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1397 address start = __ pc();
duke@435 1398
duke@435 1399 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 1400
duke@435 1401 // register use:
duke@435 1402 // rax, rdx, rcx -- loop control (end_from, end_to, count)
duke@435 1403 // rdi, rsi -- element access (oop, klass)
duke@435 1404 // rbx, -- temp
duke@435 1405 const Register from = rax; // source array address
duke@435 1406 const Register to = rdx; // destination array address
duke@435 1407 const Register length = rcx; // elements count
duke@435 1408 const Register elem = rdi; // each oop copied
duke@435 1409 const Register elem_klass = rsi; // each elem._klass (sub_klass)
duke@435 1410 const Register temp = rbx; // lone remaining temp
duke@435 1411
duke@435 1412 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1413
never@739 1414 __ push(rsi);
never@739 1415 __ push(rdi);
never@739 1416 __ push(rbx);
duke@435 1417
duke@435 1418 Address from_arg(rsp, 16+ 4); // from
duke@435 1419 Address to_arg(rsp, 16+ 8); // to
duke@435 1420 Address length_arg(rsp, 16+12); // elements count
duke@435 1421 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1422 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1423
duke@435 1424 // Load up:
never@739 1425 __ movptr(from, from_arg);
never@739 1426 __ movptr(to, to_arg);
never@739 1427 __ movl2ptr(length, length_arg);
duke@435 1428
iveresov@2595 1429 if (entry != NULL) {
iveresov@2595 1430 *entry = __ pc(); // Entry point from generic arraycopy stub.
iveresov@2595 1431 BLOCK_COMMENT("Entry:");
iveresov@2595 1432 }
duke@435 1433
duke@435 1434 //---------------------------------------------------------------
duke@435 1435 // Assembler stub will be used for this call to arraycopy
duke@435 1436 // if the two arrays are subtypes of Object[] but the
duke@435 1437 // destination array type is not equal to or a supertype
duke@435 1438 // of the source type. Each element must be separately
duke@435 1439 // checked.
duke@435 1440
duke@435 1441 // Loop-invariant addresses. They are exclusive end pointers.
never@739 1442 Address end_from_addr(from, length, Address::times_ptr, 0);
never@739 1443 Address end_to_addr(to, length, Address::times_ptr, 0);
duke@435 1444
duke@435 1445 Register end_from = from; // re-use
duke@435 1446 Register end_to = to; // re-use
duke@435 1447 Register count = length; // re-use
duke@435 1448
duke@435 1449 // Loop-variant addresses. They assume post-incremented count < 0.
never@739 1450 Address from_element_addr(end_from, count, Address::times_ptr, 0);
never@739 1451 Address to_element_addr(end_to, count, Address::times_ptr, 0);
duke@435 1452 Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
duke@435 1453
duke@435 1454 // Copy from low to high addresses, indexed from the end of each array.
iveresov@2606 1455 gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
never@739 1456 __ lea(end_from, end_from_addr);
never@739 1457 __ lea(end_to, end_to_addr);
duke@435 1458 assert(length == count, ""); // else fix next line:
never@739 1459 __ negptr(count); // negate and test the length
duke@435 1460 __ jccb(Assembler::notZero, L_load_element);
duke@435 1461
duke@435 1462 // Empty array: Nothing to do.
never@739 1463 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 1464 __ jmp(L_done);
duke@435 1465
duke@435 1466 // ======== begin loop ========
duke@435 1467 // (Loop is rotated; its entry is L_load_element.)
duke@435 1468 // Loop control:
duke@435 1469 // for (count = -count; count != 0; count++)
duke@435 1470 // Base pointers src, dst are biased by 8*count,to last element.
kvn@1800 1471 __ align(OptoLoopAlignment);
duke@435 1472
duke@435 1473 __ BIND(L_store_element);
never@739 1474 __ movptr(to_element_addr, elem); // store the oop
duke@435 1475 __ increment(count); // increment the count toward zero
duke@435 1476 __ jccb(Assembler::zero, L_do_card_marks);
duke@435 1477
duke@435 1478 // ======== loop entry is here ========
duke@435 1479 __ BIND(L_load_element);
never@739 1480 __ movptr(elem, from_element_addr); // load the oop
never@739 1481 __ testptr(elem, elem);
duke@435 1482 __ jccb(Assembler::zero, L_store_element);
duke@435 1483
duke@435 1484 // (Could do a trick here: Remember last successful non-null
duke@435 1485 // element stored and make a quick oop equality check on it.)
duke@435 1486
never@739 1487 __ movptr(elem_klass, elem_klass_addr); // query the object klass
duke@435 1488 generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
duke@435 1489 &L_store_element, NULL);
duke@435 1490 // (On fall-through, we have failed the element type check.)
duke@435 1491 // ======== end loop ========
duke@435 1492
duke@435 1493 // It was a real error; we must depend on the caller to finish the job.
rasbold@454 1494 // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
rasbold@454 1495 // Emit GC store barriers for the oops we have copied (length_arg + count),
duke@435 1496 // and report their number to the caller.
duke@435 1497 __ addl(count, length_arg); // transfers = (length - remaining)
never@739 1498 __ movl2ptr(rax, count); // save the value
never@739 1499 __ notptr(rax); // report (-1^K) to caller
never@739 1500 __ movptr(to, to_arg); // reload
duke@435 1501 assert_different_registers(to, count, rax);
duke@435 1502 gen_write_ref_array_post_barrier(to, count);
duke@435 1503 __ jmpb(L_done);
duke@435 1504
duke@435 1505 // Come here on success only.
duke@435 1506 __ BIND(L_do_card_marks);
never@739 1507 __ movl2ptr(count, length_arg);
never@739 1508 __ movptr(to, to_arg); // reload
duke@435 1509 gen_write_ref_array_post_barrier(to, count);
never@739 1510 __ xorptr(rax, rax); // return 0 on success
duke@435 1511
duke@435 1512 // Common exit point (success or failure).
duke@435 1513 __ BIND(L_done);
never@739 1514 __ pop(rbx);
never@739 1515 __ pop(rdi);
never@739 1516 __ pop(rsi);
duke@435 1517 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 1518 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1519 __ ret(0);
duke@435 1520
duke@435 1521 return start;
duke@435 1522 }
duke@435 1523
duke@435 1524 //
duke@435 1525 // Generate 'unsafe' array copy stub
duke@435 1526 // Though just as safe as the other stubs, it takes an unscaled
duke@435 1527 // size_t argument instead of an element count.
duke@435 1528 //
duke@435 1529 // Input:
duke@435 1530 // 4(rsp) - source array address
duke@435 1531 // 8(rsp) - destination array address
duke@435 1532 // 12(rsp) - byte count, can be zero
duke@435 1533 //
duke@435 1534 // Output:
duke@435 1535 // rax, == 0 - success
duke@435 1536 // rax, == -1 - need to call System.arraycopy
duke@435 1537 //
duke@435 1538 // Examines the alignment of the operands and dispatches
duke@435 1539 // to a long, int, short, or byte copy loop.
duke@435 1540 //
duke@435 1541 address generate_unsafe_copy(const char *name,
duke@435 1542 address byte_copy_entry,
duke@435 1543 address short_copy_entry,
duke@435 1544 address int_copy_entry,
duke@435 1545 address long_copy_entry) {
duke@435 1546
duke@435 1547 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 1548
duke@435 1549 __ align(CodeEntryAlignment);
duke@435 1550 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1551 address start = __ pc();
duke@435 1552
duke@435 1553 const Register from = rax; // source array address
duke@435 1554 const Register to = rdx; // destination array address
duke@435 1555 const Register count = rcx; // elements count
duke@435 1556
duke@435 1557 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1558 __ push(rsi);
never@739 1559 __ push(rdi);
duke@435 1560 Address from_arg(rsp, 12+ 4); // from
duke@435 1561 Address to_arg(rsp, 12+ 8); // to
duke@435 1562 Address count_arg(rsp, 12+12); // byte count
duke@435 1563
duke@435 1564 // Load up:
never@739 1565 __ movptr(from , from_arg);
never@739 1566 __ movptr(to , to_arg);
never@739 1567 __ movl2ptr(count, count_arg);
duke@435 1568
duke@435 1569 // bump this on entry, not on exit:
duke@435 1570 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 1571
duke@435 1572 const Register bits = rsi;
never@739 1573 __ mov(bits, from);
never@739 1574 __ orptr(bits, to);
never@739 1575 __ orptr(bits, count);
duke@435 1576
duke@435 1577 __ testl(bits, BytesPerLong-1);
duke@435 1578 __ jccb(Assembler::zero, L_long_aligned);
duke@435 1579
duke@435 1580 __ testl(bits, BytesPerInt-1);
duke@435 1581 __ jccb(Assembler::zero, L_int_aligned);
duke@435 1582
duke@435 1583 __ testl(bits, BytesPerShort-1);
duke@435 1584 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 1585
duke@435 1586 __ BIND(L_short_aligned);
never@739 1587 __ shrptr(count, LogBytesPerShort); // size => short_count
duke@435 1588 __ movl(count_arg, count); // update 'count'
duke@435 1589 __ jump(RuntimeAddress(short_copy_entry));
duke@435 1590
duke@435 1591 __ BIND(L_int_aligned);
never@739 1592 __ shrptr(count, LogBytesPerInt); // size => int_count
duke@435 1593 __ movl(count_arg, count); // update 'count'
duke@435 1594 __ jump(RuntimeAddress(int_copy_entry));
duke@435 1595
duke@435 1596 __ BIND(L_long_aligned);
never@739 1597 __ shrptr(count, LogBytesPerLong); // size => qword_count
duke@435 1598 __ movl(count_arg, count); // update 'count'
never@739 1599 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1600 __ pop(rsi);
duke@435 1601 __ jump(RuntimeAddress(long_copy_entry));
duke@435 1602
duke@435 1603 return start;
duke@435 1604 }
duke@435 1605
duke@435 1606
duke@435 1607 // Perform range checks on the proposed arraycopy.
duke@435 1608 // Smashes src_pos and dst_pos. (Uses them up for temps.)
duke@435 1609 void arraycopy_range_checks(Register src,
duke@435 1610 Register src_pos,
duke@435 1611 Register dst,
duke@435 1612 Register dst_pos,
duke@435 1613 Address& length,
duke@435 1614 Label& L_failed) {
duke@435 1615 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 1616 const Register src_end = src_pos; // source array end position
duke@435 1617 const Register dst_end = dst_pos; // destination array end position
duke@435 1618 __ addl(src_end, length); // src_pos + length
duke@435 1619 __ addl(dst_end, length); // dst_pos + length
duke@435 1620
duke@435 1621 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 1622 __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 1623 __ jcc(Assembler::above, L_failed);
duke@435 1624
duke@435 1625 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 1626 __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 1627 __ jcc(Assembler::above, L_failed);
duke@435 1628
duke@435 1629 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 1630 }
duke@435 1631
duke@435 1632
duke@435 1633 //
duke@435 1634 // Generate generic array copy stubs
duke@435 1635 //
duke@435 1636 // Input:
duke@435 1637 // 4(rsp) - src oop
duke@435 1638 // 8(rsp) - src_pos
duke@435 1639 // 12(rsp) - dst oop
duke@435 1640 // 16(rsp) - dst_pos
duke@435 1641 // 20(rsp) - element count
duke@435 1642 //
duke@435 1643 // Output:
duke@435 1644 // rax, == 0 - success
duke@435 1645 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1646 //
duke@435 1647 address generate_generic_copy(const char *name,
duke@435 1648 address entry_jbyte_arraycopy,
duke@435 1649 address entry_jshort_arraycopy,
duke@435 1650 address entry_jint_arraycopy,
duke@435 1651 address entry_oop_arraycopy,
duke@435 1652 address entry_jlong_arraycopy,
duke@435 1653 address entry_checkcast_arraycopy) {
duke@435 1654 Label L_failed, L_failed_0, L_objArray;
duke@435 1655
duke@435 1656 { int modulus = CodeEntryAlignment;
duke@435 1657 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 1658 int advance = target - (__ offset() % modulus);
duke@435 1659 if (advance < 0) advance += modulus;
duke@435 1660 if (advance > 0) __ nop(advance);
duke@435 1661 }
duke@435 1662 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1663
duke@435 1664 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 1665 __ BIND(L_failed_0);
duke@435 1666 __ jmp(L_failed);
duke@435 1667 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 1668
duke@435 1669 __ align(CodeEntryAlignment);
duke@435 1670 address start = __ pc();
duke@435 1671
duke@435 1672 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1673 __ push(rsi);
never@739 1674 __ push(rdi);
duke@435 1675
duke@435 1676 // bump this on entry, not on exit:
duke@435 1677 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 1678
duke@435 1679 // Input values
duke@435 1680 Address SRC (rsp, 12+ 4);
duke@435 1681 Address SRC_POS (rsp, 12+ 8);
duke@435 1682 Address DST (rsp, 12+12);
duke@435 1683 Address DST_POS (rsp, 12+16);
duke@435 1684 Address LENGTH (rsp, 12+20);
duke@435 1685
duke@435 1686 //-----------------------------------------------------------------------
duke@435 1687 // Assembler stub will be used for this call to arraycopy
duke@435 1688 // if the following conditions are met:
duke@435 1689 //
duke@435 1690 // (1) src and dst must not be null.
duke@435 1691 // (2) src_pos must not be negative.
duke@435 1692 // (3) dst_pos must not be negative.
duke@435 1693 // (4) length must not be negative.
duke@435 1694 // (5) src klass and dst klass should be the same and not NULL.
duke@435 1695 // (6) src and dst should be arrays.
duke@435 1696 // (7) src_pos + length must not exceed length of src.
duke@435 1697 // (8) dst_pos + length must not exceed length of dst.
duke@435 1698 //
duke@435 1699
duke@435 1700 const Register src = rax; // source array oop
duke@435 1701 const Register src_pos = rsi;
duke@435 1702 const Register dst = rdx; // destination array oop
duke@435 1703 const Register dst_pos = rdi;
duke@435 1704 const Register length = rcx; // transfer count
duke@435 1705
duke@435 1706 // if (src == NULL) return -1;
never@739 1707 __ movptr(src, SRC); // src oop
never@739 1708 __ testptr(src, src);
duke@435 1709 __ jccb(Assembler::zero, L_failed_0);
duke@435 1710
duke@435 1711 // if (src_pos < 0) return -1;
never@739 1712 __ movl2ptr(src_pos, SRC_POS); // src_pos
duke@435 1713 __ testl(src_pos, src_pos);
duke@435 1714 __ jccb(Assembler::negative, L_failed_0);
duke@435 1715
duke@435 1716 // if (dst == NULL) return -1;
never@739 1717 __ movptr(dst, DST); // dst oop
never@739 1718 __ testptr(dst, dst);
duke@435 1719 __ jccb(Assembler::zero, L_failed_0);
duke@435 1720
duke@435 1721 // if (dst_pos < 0) return -1;
never@739 1722 __ movl2ptr(dst_pos, DST_POS); // dst_pos
duke@435 1723 __ testl(dst_pos, dst_pos);
duke@435 1724 __ jccb(Assembler::negative, L_failed_0);
duke@435 1725
duke@435 1726 // if (length < 0) return -1;
never@739 1727 __ movl2ptr(length, LENGTH); // length
duke@435 1728 __ testl(length, length);
duke@435 1729 __ jccb(Assembler::negative, L_failed_0);
duke@435 1730
duke@435 1731 // if (src->klass() == NULL) return -1;
duke@435 1732 Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
duke@435 1733 Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
duke@435 1734 const Register rcx_src_klass = rcx; // array klass
never@739 1735 __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
duke@435 1736
duke@435 1737 #ifdef ASSERT
duke@435 1738 // assert(src->klass() != NULL);
duke@435 1739 BLOCK_COMMENT("assert klasses not null");
duke@435 1740 { Label L1, L2;
never@739 1741 __ testptr(rcx_src_klass, rcx_src_klass);
duke@435 1742 __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 1743 __ bind(L1);
duke@435 1744 __ stop("broken null klass");
duke@435 1745 __ bind(L2);
never@739 1746 __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
duke@435 1747 __ jccb(Assembler::equal, L1); // this would be broken also
duke@435 1748 BLOCK_COMMENT("assert done");
duke@435 1749 }
duke@435 1750 #endif //ASSERT
duke@435 1751
duke@435 1752 // Load layout helper (32-bits)
duke@435 1753 //
duke@435 1754 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 1755 // 32 30 24 16 8 2 0
duke@435 1756 //
duke@435 1757 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 1758 //
duke@435 1759
stefank@3391 1760 int lh_offset = in_bytes(Klass::layout_helper_offset());
duke@435 1761 Address src_klass_lh_addr(rcx_src_klass, lh_offset);
duke@435 1762
duke@435 1763 // Handle objArrays completely differently...
duke@435 1764 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 1765 __ cmpl(src_klass_lh_addr, objArray_lh);
duke@435 1766 __ jcc(Assembler::equal, L_objArray);
duke@435 1767
duke@435 1768 // if (src->klass() != dst->klass()) return -1;
never@739 1769 __ cmpptr(rcx_src_klass, dst_klass_addr);
duke@435 1770 __ jccb(Assembler::notEqual, L_failed_0);
duke@435 1771
duke@435 1772 const Register rcx_lh = rcx; // layout helper
duke@435 1773 assert(rcx_lh == rcx_src_klass, "known alias");
duke@435 1774 __ movl(rcx_lh, src_klass_lh_addr);
duke@435 1775
duke@435 1776 // if (!src->is_Array()) return -1;
duke@435 1777 __ cmpl(rcx_lh, Klass::_lh_neutral_value);
duke@435 1778 __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
duke@435 1779
duke@435 1780 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 1781 #ifdef ASSERT
duke@435 1782 { Label L;
duke@435 1783 __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 1784 __ jcc(Assembler::greaterEqual, L); // signed cmp
duke@435 1785 __ stop("must be a primitive array");
duke@435 1786 __ bind(L);
duke@435 1787 }
duke@435 1788 #endif
duke@435 1789
duke@435 1790 assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
duke@435 1791 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1792
coleenp@4142 1793 // TypeArrayKlass
duke@435 1794 //
duke@435 1795 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 1796 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 1797 //
duke@435 1798 const Register rsi_offset = rsi; // array offset
duke@435 1799 const Register src_array = src; // src array offset
duke@435 1800 const Register dst_array = dst; // dst array offset
duke@435 1801 const Register rdi_elsize = rdi; // log2 element size
duke@435 1802
never@739 1803 __ mov(rsi_offset, rcx_lh);
never@739 1804 __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
never@739 1805 __ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset
never@739 1806 __ addptr(src_array, rsi_offset); // src array offset
never@739 1807 __ addptr(dst_array, rsi_offset); // dst array offset
never@739 1808 __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
duke@435 1809
duke@435 1810 // next registers should be set before the jump to corresponding stub
duke@435 1811 const Register from = src; // source array address
duke@435 1812 const Register to = dst; // destination array address
duke@435 1813 const Register count = rcx; // elements count
duke@435 1814 // some of them should be duplicated on stack
duke@435 1815 #define FROM Address(rsp, 12+ 4)
duke@435 1816 #define TO Address(rsp, 12+ 8) // Not used now
duke@435 1817 #define COUNT Address(rsp, 12+12) // Only for oop arraycopy
duke@435 1818
duke@435 1819 BLOCK_COMMENT("scale indexes to element size");
never@739 1820 __ movl2ptr(rsi, SRC_POS); // src_pos
never@739 1821 __ shlptr(rsi); // src_pos << rcx (log2 elsize)
duke@435 1822 assert(src_array == from, "");
never@739 1823 __ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize
never@739 1824 __ movl2ptr(rdi, DST_POS); // dst_pos
never@739 1825 __ shlptr(rdi); // dst_pos << rcx (log2 elsize)
duke@435 1826 assert(dst_array == to, "");
never@739 1827 __ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize
never@739 1828 __ movptr(FROM, from); // src_addr
never@739 1829 __ mov(rdi_elsize, rcx_lh); // log2 elsize
never@739 1830 __ movl2ptr(count, LENGTH); // elements count
duke@435 1831
duke@435 1832 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 1833 __ cmpl(rdi_elsize, 0);
duke@435 1834
duke@435 1835 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
duke@435 1836 __ cmpl(rdi_elsize, LogBytesPerShort);
duke@435 1837 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
duke@435 1838 __ cmpl(rdi_elsize, LogBytesPerInt);
duke@435 1839 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
duke@435 1840 #ifdef ASSERT
duke@435 1841 __ cmpl(rdi_elsize, LogBytesPerLong);
duke@435 1842 __ jccb(Assembler::notEqual, L_failed);
duke@435 1843 #endif
never@739 1844 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1845 __ pop(rsi);
duke@435 1846 __ jump(RuntimeAddress(entry_jlong_arraycopy));
duke@435 1847
duke@435 1848 __ BIND(L_failed);
never@739 1849 __ xorptr(rax, rax);
never@739 1850 __ notptr(rax); // return -1
never@739 1851 __ pop(rdi);
never@739 1852 __ pop(rsi);
duke@435 1853 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1854 __ ret(0);
duke@435 1855
coleenp@4142 1856 // ObjArrayKlass
duke@435 1857 __ BIND(L_objArray);
duke@435 1858 // live at this point: rcx_src_klass, src[_pos], dst[_pos]
duke@435 1859
duke@435 1860 Label L_plain_copy, L_checkcast_copy;
duke@435 1861 // test array classes for subtyping
never@739 1862 __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
duke@435 1863 __ jccb(Assembler::notEqual, L_checkcast_copy);
duke@435 1864
duke@435 1865 // Identically typed arrays can be copied without element-wise checks.
duke@435 1866 assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
duke@435 1867 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1868
duke@435 1869 __ BIND(L_plain_copy);
never@739 1870 __ movl2ptr(count, LENGTH); // elements count
never@739 1871 __ movl2ptr(src_pos, SRC_POS); // reload src_pos
never@739 1872 __ lea(from, Address(src, src_pos, Address::times_ptr,
never@739 1873 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 1874 __ movl2ptr(dst_pos, DST_POS); // reload dst_pos
never@739 1875 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
never@739 1876 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 1877 __ movptr(FROM, from); // src_addr
never@739 1878 __ movptr(TO, to); // dst_addr
duke@435 1879 __ movl(COUNT, count); // count
duke@435 1880 __ jump(RuntimeAddress(entry_oop_arraycopy));
duke@435 1881
duke@435 1882 __ BIND(L_checkcast_copy);
duke@435 1883 // live at this point: rcx_src_klass, dst[_pos], src[_pos]
duke@435 1884 {
duke@435 1885 // Handy offsets:
coleenp@4142 1886 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
stefank@3391 1887 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 1888
duke@435 1889 Register rsi_dst_klass = rsi;
duke@435 1890 Register rdi_temp = rdi;
duke@435 1891 assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
duke@435 1892 assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
duke@435 1893 Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
duke@435 1894
duke@435 1895 // Before looking at dst.length, make sure dst is also an objArray.
never@739 1896 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1897 __ cmpl(dst_klass_lh_addr, objArray_lh);
duke@435 1898 __ jccb(Assembler::notEqual, L_failed);
duke@435 1899
duke@435 1900 // It is safe to examine both src.length and dst.length.
never@739 1901 __ movl2ptr(src_pos, SRC_POS); // reload rsi
duke@435 1902 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1903 // (Now src_pos and dst_pos are killed, but not src and dst.)
duke@435 1904
duke@435 1905 // We'll need this temp (don't forget to pop it after the type check).
never@739 1906 __ push(rbx);
duke@435 1907 Register rbx_src_klass = rbx;
duke@435 1908
never@739 1909 __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
never@739 1910 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1911 Address super_check_offset_addr(rsi_dst_klass, sco_offset);
duke@435 1912 Label L_fail_array_check;
duke@435 1913 generate_type_check(rbx_src_klass,
duke@435 1914 super_check_offset_addr, dst_klass_addr,
duke@435 1915 rdi_temp, NULL, &L_fail_array_check);
duke@435 1916 // (On fall-through, we have passed the array type check.)
never@739 1917 __ pop(rbx);
duke@435 1918 __ jmp(L_plain_copy);
duke@435 1919
duke@435 1920 __ BIND(L_fail_array_check);
duke@435 1921 // Reshuffle arguments so we can call checkcast_arraycopy:
duke@435 1922
duke@435 1923 // match initial saves for checkcast_arraycopy
never@739 1924 // push(rsi); // already done; see above
never@739 1925 // push(rdi); // already done; see above
never@739 1926 // push(rbx); // already done; see above
duke@435 1927
duke@435 1928 // Marshal outgoing arguments now, freeing registers.
duke@435 1929 Address from_arg(rsp, 16+ 4); // from
duke@435 1930 Address to_arg(rsp, 16+ 8); // to
duke@435 1931 Address length_arg(rsp, 16+12); // elements count
duke@435 1932 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1933 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1934
duke@435 1935 Address SRC_POS_arg(rsp, 16+ 8);
duke@435 1936 Address DST_POS_arg(rsp, 16+16);
duke@435 1937 Address LENGTH_arg(rsp, 16+20);
duke@435 1938 // push rbx, changed the incoming offsets (why not just use rbp,??)
duke@435 1939 // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
duke@435 1940
never@739 1941 __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
never@739 1942 __ movl2ptr(length, LENGTH_arg); // reload elements count
never@739 1943 __ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos
never@739 1944 __ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos
duke@435 1945
never@739 1946 __ movptr(ckval_arg, rbx); // destination element type
duke@435 1947 __ movl(rbx, Address(rbx, sco_offset));
duke@435 1948 __ movl(ckoff_arg, rbx); // corresponding class check offset
duke@435 1949
duke@435 1950 __ movl(length_arg, length); // outgoing length argument
duke@435 1951
never@739 1952 __ lea(from, Address(src, src_pos, Address::times_ptr,
duke@435 1953 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1954 __ movptr(from_arg, from);
duke@435 1955
never@739 1956 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
duke@435 1957 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1958 __ movptr(to_arg, to);
duke@435 1959 __ jump(RuntimeAddress(entry_checkcast_arraycopy));
duke@435 1960 }
duke@435 1961
duke@435 1962 return start;
duke@435 1963 }
duke@435 1964
duke@435 1965 void generate_arraycopy_stubs() {
duke@435 1966 address entry;
duke@435 1967 address entry_jbyte_arraycopy;
duke@435 1968 address entry_jshort_arraycopy;
duke@435 1969 address entry_jint_arraycopy;
duke@435 1970 address entry_oop_arraycopy;
duke@435 1971 address entry_jlong_arraycopy;
duke@435 1972 address entry_checkcast_arraycopy;
duke@435 1973
duke@435 1974 StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
duke@435 1975 generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
duke@435 1976 "arrayof_jbyte_disjoint_arraycopy");
duke@435 1977 StubRoutines::_arrayof_jbyte_arraycopy =
duke@435 1978 generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
duke@435 1979 NULL, "arrayof_jbyte_arraycopy");
duke@435 1980 StubRoutines::_jbyte_disjoint_arraycopy =
duke@435 1981 generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
duke@435 1982 "jbyte_disjoint_arraycopy");
duke@435 1983 StubRoutines::_jbyte_arraycopy =
duke@435 1984 generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
duke@435 1985 &entry_jbyte_arraycopy, "jbyte_arraycopy");
duke@435 1986
duke@435 1987 StubRoutines::_arrayof_jshort_disjoint_arraycopy =
duke@435 1988 generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
duke@435 1989 "arrayof_jshort_disjoint_arraycopy");
duke@435 1990 StubRoutines::_arrayof_jshort_arraycopy =
duke@435 1991 generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
duke@435 1992 NULL, "arrayof_jshort_arraycopy");
duke@435 1993 StubRoutines::_jshort_disjoint_arraycopy =
duke@435 1994 generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
duke@435 1995 "jshort_disjoint_arraycopy");
duke@435 1996 StubRoutines::_jshort_arraycopy =
duke@435 1997 generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
duke@435 1998 &entry_jshort_arraycopy, "jshort_arraycopy");
duke@435 1999
duke@435 2000 // Next arrays are always aligned on 4 bytes at least.
duke@435 2001 StubRoutines::_jint_disjoint_arraycopy =
duke@435 2002 generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
duke@435 2003 "jint_disjoint_arraycopy");
duke@435 2004 StubRoutines::_jint_arraycopy =
duke@435 2005 generate_conjoint_copy(T_INT, true, Address::times_4, entry,
duke@435 2006 &entry_jint_arraycopy, "jint_arraycopy");
duke@435 2007
duke@435 2008 StubRoutines::_oop_disjoint_arraycopy =
never@739 2009 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
duke@435 2010 "oop_disjoint_arraycopy");
duke@435 2011 StubRoutines::_oop_arraycopy =
never@739 2012 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
duke@435 2013 &entry_oop_arraycopy, "oop_arraycopy");
duke@435 2014
iveresov@2606 2015 StubRoutines::_oop_disjoint_arraycopy_uninit =
iveresov@2606 2016 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
iveresov@2606 2017 "oop_disjoint_arraycopy_uninit",
iveresov@2606 2018 /*dest_uninitialized*/true);
iveresov@2606 2019 StubRoutines::_oop_arraycopy_uninit =
iveresov@2606 2020 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
iveresov@2606 2021 NULL, "oop_arraycopy_uninit",
iveresov@2606 2022 /*dest_uninitialized*/true);
iveresov@2606 2023
duke@435 2024 StubRoutines::_jlong_disjoint_arraycopy =
duke@435 2025 generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
duke@435 2026 StubRoutines::_jlong_arraycopy =
duke@435 2027 generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
duke@435 2028 "jlong_arraycopy");
duke@435 2029
never@2118 2030 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2031 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2032 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2033 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2034 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2035 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2036
iveresov@2606 2037 StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
iveresov@2606 2038 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
iveresov@2606 2039 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
iveresov@2606 2040 StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2041
iveresov@2606 2042 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
iveresov@2606 2043 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
iveresov@2606 2044 StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
iveresov@2606 2045 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2046
duke@435 2047 StubRoutines::_checkcast_arraycopy =
iveresov@2606 2048 generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 2049 StubRoutines::_checkcast_arraycopy_uninit =
iveresov@2606 2050 generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
duke@435 2051
duke@435 2052 StubRoutines::_unsafe_arraycopy =
duke@435 2053 generate_unsafe_copy("unsafe_arraycopy",
duke@435 2054 entry_jbyte_arraycopy,
duke@435 2055 entry_jshort_arraycopy,
duke@435 2056 entry_jint_arraycopy,
duke@435 2057 entry_jlong_arraycopy);
duke@435 2058
duke@435 2059 StubRoutines::_generic_arraycopy =
duke@435 2060 generate_generic_copy("generic_arraycopy",
duke@435 2061 entry_jbyte_arraycopy,
duke@435 2062 entry_jshort_arraycopy,
duke@435 2063 entry_jint_arraycopy,
duke@435 2064 entry_oop_arraycopy,
duke@435 2065 entry_jlong_arraycopy,
duke@435 2066 entry_checkcast_arraycopy);
duke@435 2067 }
duke@435 2068
never@1609 2069 void generate_math_stubs() {
never@1609 2070 {
never@1609 2071 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2072 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2073
never@1609 2074 __ fld_d(Address(rsp, 4));
never@1609 2075 __ flog();
never@1609 2076 __ ret(0);
never@1609 2077 }
never@1609 2078 {
never@1609 2079 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2080 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2081
never@1609 2082 __ fld_d(Address(rsp, 4));
never@1609 2083 __ flog10();
never@1609 2084 __ ret(0);
never@1609 2085 }
never@1609 2086 {
never@1609 2087 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2088 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2089
never@1609 2090 __ fld_d(Address(rsp, 4));
never@1609 2091 __ trigfunc('s');
never@1609 2092 __ ret(0);
never@1609 2093 }
never@1609 2094 {
never@1609 2095 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2096 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2097
never@1609 2098 __ fld_d(Address(rsp, 4));
never@1609 2099 __ trigfunc('c');
never@1609 2100 __ ret(0);
never@1609 2101 }
never@1609 2102 {
never@1609 2103 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2104 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2105
never@1609 2106 __ fld_d(Address(rsp, 4));
never@1609 2107 __ trigfunc('t');
never@1609 2108 __ ret(0);
never@1609 2109 }
roland@3787 2110 {
roland@3787 2111 StubCodeMark mark(this, "StubRoutines", "exp");
roland@3787 2112 StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
never@1609 2113
roland@3787 2114 __ fld_d(Address(rsp, 4));
roland@3787 2115 __ exp_with_fallback(0);
roland@3787 2116 __ ret(0);
roland@3787 2117 }
roland@3787 2118 {
roland@3787 2119 StubCodeMark mark(this, "StubRoutines", "pow");
roland@3787 2120 StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
roland@3787 2121
roland@3787 2122 __ fld_d(Address(rsp, 12));
roland@3787 2123 __ fld_d(Address(rsp, 4));
roland@3787 2124 __ pow_with_fallback(0);
roland@3787 2125 __ ret(0);
roland@3787 2126 }
never@1609 2127 }
never@1609 2128
kvn@4205 2129 // AES intrinsic stubs
kvn@4205 2130 enum {AESBlockSize = 16};
kvn@4205 2131
kvn@4205 2132 address generate_key_shuffle_mask() {
kvn@4205 2133 __ align(16);
kvn@4205 2134 StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
kvn@4205 2135 address start = __ pc();
kvn@4205 2136 __ emit_data(0x00010203, relocInfo::none, 0 );
kvn@4205 2137 __ emit_data(0x04050607, relocInfo::none, 0 );
kvn@4205 2138 __ emit_data(0x08090a0b, relocInfo::none, 0 );
kvn@4205 2139 __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
kvn@4205 2140 return start;
kvn@4205 2141 }
kvn@4205 2142
kvn@4205 2143 // Utility routine for loading a 128-bit key word in little endian format
kvn@4205 2144 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 2145 void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 2146 __ movdqu(xmmdst, Address(key, offset));
kvn@4205 2147 if (xmm_shuf_mask != NULL) {
kvn@4205 2148 __ pshufb(xmmdst, xmm_shuf_mask);
kvn@4205 2149 } else {
kvn@4205 2150 __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2151 }
kvn@4205 2152 }
kvn@4205 2153
kvn@4205 2154 // aesenc using specified key+offset
kvn@4205 2155 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 2156 void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 2157 load_key(xmmtmp, key, offset, xmm_shuf_mask);
kvn@4205 2158 __ aesenc(xmmdst, xmmtmp);
kvn@4205 2159 }
kvn@4205 2160
kvn@4205 2161 // aesdec using specified key+offset
kvn@4205 2162 // can optionally specify that the shuffle mask is already in an xmmregister
kvn@4205 2163 void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
kvn@4205 2164 load_key(xmmtmp, key, offset, xmm_shuf_mask);
kvn@4205 2165 __ aesdec(xmmdst, xmmtmp);
kvn@4205 2166 }
kvn@4205 2167
kvn@4205 2168
kvn@4205 2169 // Arguments:
kvn@4205 2170 //
kvn@4205 2171 // Inputs:
kvn@4205 2172 // c_rarg0 - source byte array address
kvn@4205 2173 // c_rarg1 - destination byte array address
kvn@4205 2174 // c_rarg2 - K (key) in little endian int array
kvn@4205 2175 //
kvn@4205 2176 address generate_aescrypt_encryptBlock() {
kvn@4363 2177 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2178 __ align(CodeEntryAlignment);
kvn@4205 2179 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
kvn@4205 2180 Label L_doLast;
kvn@4205 2181 address start = __ pc();
kvn@4205 2182
kvn@4363 2183 const Register from = rdx; // source array address
kvn@4205 2184 const Register to = rdx; // destination array address
kvn@4205 2185 const Register key = rcx; // key array address
kvn@4205 2186 const Register keylen = rax;
kvn@4205 2187 const Address from_param(rbp, 8+0);
kvn@4205 2188 const Address to_param (rbp, 8+4);
kvn@4205 2189 const Address key_param (rbp, 8+8);
kvn@4205 2190
kvn@4205 2191 const XMMRegister xmm_result = xmm0;
kvn@4363 2192 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 2193 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 2194 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 2195 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 2196 const XMMRegister xmm_temp4 = xmm5;
kvn@4363 2197
kvn@4363 2198 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4363 2199 __ movptr(from, from_param);
kvn@4363 2200 __ movptr(key, key_param);
kvn@4363 2201
kvn@4363 2202 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 2203 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2204
kvn@4205 2205 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2206 __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
kvn@4363 2207 __ movptr(to, to_param);
kvn@4205 2208
kvn@4205 2209 // For encryption, the java expanded key ordering is just what we need
kvn@4205 2210
kvn@4363 2211 load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
kvn@4363 2212 __ pxor(xmm_result, xmm_temp1);
kvn@4363 2213
kvn@4363 2214 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 2215 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 2216 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 2217 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 2218
kvn@4363 2219 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2220 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2221 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 2222 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 2223
kvn@4363 2224 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 2225 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 2226 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 2227 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 2228
kvn@4363 2229 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2230 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2231 __ aesenc(xmm_result, xmm_temp3);
kvn@4363 2232 __ aesenc(xmm_result, xmm_temp4);
kvn@4363 2233
kvn@4363 2234 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 2235 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 2236
kvn@4363 2237 __ cmpl(keylen, 44);
kvn@4363 2238 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2239
kvn@4363 2240 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2241 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2242
kvn@4363 2243 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 2244 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 2245
kvn@4363 2246 __ cmpl(keylen, 52);
kvn@4363 2247 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2248
kvn@4363 2249 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2250 __ aesenc(xmm_result, xmm_temp2);
kvn@4363 2251
kvn@4363 2252 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 2253 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 2254
kvn@4205 2255 __ BIND(L_doLast);
kvn@4363 2256 __ aesenc(xmm_result, xmm_temp1);
kvn@4363 2257 __ aesenclast(xmm_result, xmm_temp2);
kvn@4205 2258 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 2259 __ xorptr(rax, rax); // return 0
kvn@4205 2260 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2261 __ ret(0);
kvn@4205 2262
kvn@4205 2263 return start;
kvn@4205 2264 }
kvn@4205 2265
kvn@4205 2266
kvn@4205 2267 // Arguments:
kvn@4205 2268 //
kvn@4205 2269 // Inputs:
kvn@4205 2270 // c_rarg0 - source byte array address
kvn@4205 2271 // c_rarg1 - destination byte array address
kvn@4205 2272 // c_rarg2 - K (key) in little endian int array
kvn@4205 2273 //
kvn@4205 2274 address generate_aescrypt_decryptBlock() {
kvn@4363 2275 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2276 __ align(CodeEntryAlignment);
kvn@4205 2277 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
kvn@4205 2278 Label L_doLast;
kvn@4205 2279 address start = __ pc();
kvn@4205 2280
kvn@4363 2281 const Register from = rdx; // source array address
kvn@4205 2282 const Register to = rdx; // destination array address
kvn@4205 2283 const Register key = rcx; // key array address
kvn@4205 2284 const Register keylen = rax;
kvn@4205 2285 const Address from_param(rbp, 8+0);
kvn@4205 2286 const Address to_param (rbp, 8+4);
kvn@4205 2287 const Address key_param (rbp, 8+8);
kvn@4205 2288
kvn@4205 2289 const XMMRegister xmm_result = xmm0;
kvn@4363 2290 const XMMRegister xmm_key_shuf_mask = xmm1;
kvn@4363 2291 const XMMRegister xmm_temp1 = xmm2;
kvn@4363 2292 const XMMRegister xmm_temp2 = xmm3;
kvn@4363 2293 const XMMRegister xmm_temp3 = xmm4;
kvn@4363 2294 const XMMRegister xmm_temp4 = xmm5;
kvn@4205 2295
kvn@4205 2296 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4363 2297 __ movptr(from, from_param);
kvn@4363 2298 __ movptr(key, key_param);
kvn@4363 2299
kvn@4363 2300 // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
kvn@4205 2301 __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2302
kvn@4205 2303 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2304 __ movdqu(xmm_result, Address(from, 0));
kvn@4363 2305 __ movptr(to, to_param);
kvn@4205 2306
kvn@4205 2307 // for decryption java expanded key ordering is rotated one position from what we want
kvn@4205 2308 // so we start from 0x10 here and hit 0x00 last
kvn@4205 2309 // we don't know if the key is aligned, hence not using load-execute form
kvn@4363 2310 load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
kvn@4363 2311 load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
kvn@4363 2312 load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
kvn@4363 2313 load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
kvn@4363 2314
kvn@4363 2315 __ pxor (xmm_result, xmm_temp1);
kvn@4363 2316 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2317 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 2318 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 2319
kvn@4363 2320 load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
kvn@4363 2321 load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
kvn@4363 2322 load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
kvn@4363 2323 load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
kvn@4363 2324
kvn@4363 2325 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2326 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2327 __ aesdec(xmm_result, xmm_temp3);
kvn@4363 2328 __ aesdec(xmm_result, xmm_temp4);
kvn@4363 2329
kvn@4363 2330 load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
kvn@4363 2331 load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
kvn@4363 2332 load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
kvn@4363 2333
kvn@4363 2334 __ cmpl(keylen, 44);
kvn@4363 2335 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2336
kvn@4363 2337 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2338 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2339
kvn@4363 2340 load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
kvn@4363 2341 load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
kvn@4363 2342
kvn@4363 2343 __ cmpl(keylen, 52);
kvn@4363 2344 __ jccb(Assembler::equal, L_doLast);
kvn@4363 2345
kvn@4363 2346 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2347 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2348
kvn@4363 2349 load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
kvn@4363 2350 load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
kvn@4205 2351
kvn@4205 2352 __ BIND(L_doLast);
kvn@4363 2353 __ aesdec(xmm_result, xmm_temp1);
kvn@4363 2354 __ aesdec(xmm_result, xmm_temp2);
kvn@4363 2355
kvn@4205 2356 // for decryption the aesdeclast operation is always on key+0x00
kvn@4363 2357 __ aesdeclast(xmm_result, xmm_temp3);
kvn@4205 2358 __ movdqu(Address(to, 0), xmm_result); // store the result
kvn@4205 2359 __ xorptr(rax, rax); // return 0
kvn@4205 2360 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2361 __ ret(0);
kvn@4205 2362
kvn@4205 2363 return start;
kvn@4205 2364 }
kvn@4205 2365
kvn@4205 2366 void handleSOERegisters(bool saving) {
kvn@4205 2367 const int saveFrameSizeInBytes = 4 * wordSize;
kvn@4205 2368 const Address saved_rbx (rbp, -3 * wordSize);
kvn@4205 2369 const Address saved_rsi (rbp, -2 * wordSize);
kvn@4205 2370 const Address saved_rdi (rbp, -1 * wordSize);
kvn@4205 2371
kvn@4205 2372 if (saving) {
kvn@4205 2373 __ subptr(rsp, saveFrameSizeInBytes);
kvn@4205 2374 __ movptr(saved_rsi, rsi);
kvn@4205 2375 __ movptr(saved_rdi, rdi);
kvn@4205 2376 __ movptr(saved_rbx, rbx);
kvn@4205 2377 } else {
kvn@4205 2378 // restoring
kvn@4205 2379 __ movptr(rsi, saved_rsi);
kvn@4205 2380 __ movptr(rdi, saved_rdi);
kvn@4205 2381 __ movptr(rbx, saved_rbx);
kvn@4205 2382 }
kvn@4205 2383 }
kvn@4205 2384
kvn@4205 2385 // Arguments:
kvn@4205 2386 //
kvn@4205 2387 // Inputs:
kvn@4205 2388 // c_rarg0 - source byte array address
kvn@4205 2389 // c_rarg1 - destination byte array address
kvn@4205 2390 // c_rarg2 - K (key) in little endian int array
kvn@4205 2391 // c_rarg3 - r vector byte array address
kvn@4205 2392 // c_rarg4 - input length
kvn@4205 2393 //
kvn@4205 2394 address generate_cipherBlockChaining_encryptAESCrypt() {
kvn@4363 2395 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2396 __ align(CodeEntryAlignment);
kvn@4205 2397 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
kvn@4205 2398 address start = __ pc();
kvn@4205 2399
kvn@4205 2400 Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
kvn@4205 2401 const Register from = rsi; // source array address
kvn@4205 2402 const Register to = rdx; // destination array address
kvn@4205 2403 const Register key = rcx; // key array address
kvn@4205 2404 const Register rvec = rdi; // r byte array initialized from initvector array address
kvn@4205 2405 // and left with the results of the last encryption block
kvn@4205 2406 const Register len_reg = rbx; // src len (must be multiple of blocksize 16)
kvn@4205 2407 const Register pos = rax;
kvn@4205 2408
kvn@4205 2409 // xmm register assignments for the loops below
kvn@4205 2410 const XMMRegister xmm_result = xmm0;
kvn@4205 2411 const XMMRegister xmm_temp = xmm1;
kvn@4205 2412 // first 6 keys preloaded into xmm2-xmm7
kvn@4205 2413 const int XMM_REG_NUM_KEY_FIRST = 2;
kvn@4205 2414 const int XMM_REG_NUM_KEY_LAST = 7;
kvn@4205 2415 const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4205 2416
kvn@4205 2417 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2418 handleSOERegisters(true /*saving*/);
kvn@4205 2419
kvn@4205 2420 // load registers from incoming parameters
kvn@4205 2421 const Address from_param(rbp, 8+0);
kvn@4205 2422 const Address to_param (rbp, 8+4);
kvn@4205 2423 const Address key_param (rbp, 8+8);
kvn@4205 2424 const Address rvec_param (rbp, 8+12);
kvn@4205 2425 const Address len_param (rbp, 8+16);
kvn@4205 2426 __ movptr(from , from_param);
kvn@4205 2427 __ movptr(to , to_param);
kvn@4205 2428 __ movptr(key , key_param);
kvn@4205 2429 __ movptr(rvec , rvec_param);
kvn@4205 2430 __ movptr(len_reg , len_param);
kvn@4205 2431
kvn@4205 2432 const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
kvn@4205 2433 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2434 // load up xmm regs 2 thru 7 with keys 0-5
kvn@4205 2435 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2436 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 2437 offset += 0x10;
kvn@4205 2438 }
kvn@4205 2439
kvn@4205 2440 __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
kvn@4205 2441
kvn@4205 2442 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 2443 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2444 __ cmpl(rax, 44);
kvn@4205 2445 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 2446
kvn@4205 2447 // 128 bit code follows here
kvn@4363 2448 __ movl(pos, 0);
kvn@4205 2449 __ align(OptoLoopAlignment);
kvn@4205 2450 __ BIND(L_loopTop_128);
kvn@4205 2451 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 2452 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2453
kvn@4205 2454 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4205 2455 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2456 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 2457 }
kvn@4205 2458 for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
kvn@4205 2459 aes_enc_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2460 }
kvn@4205 2461 load_key(xmm_temp, key, 0xa0);
kvn@4205 2462 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 2463
kvn@4205 2464 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2465 // no need to store r to memory until we exit
kvn@4205 2466 __ addptr(pos, AESBlockSize);
kvn@4205 2467 __ subptr(len_reg, AESBlockSize);
kvn@4205 2468 __ jcc(Assembler::notEqual, L_loopTop_128);
kvn@4205 2469
kvn@4205 2470 __ BIND(L_exit);
kvn@4205 2471 __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 2472
kvn@4205 2473 handleSOERegisters(false /*restoring*/);
kvn@4205 2474 __ movl(rax, 0); // return 0 (why?)
kvn@4205 2475 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2476 __ ret(0);
kvn@4205 2477
kvn@4363 2478 __ BIND(L_key_192_256);
kvn@4363 2479 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4205 2480 __ cmpl(rax, 52);
kvn@4205 2481 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 2482
kvn@4205 2483 // 192-bit code follows here (could be changed to use more xmm registers)
kvn@4363 2484 __ movl(pos, 0);
kvn@4363 2485 __ align(OptoLoopAlignment);
kvn@4363 2486 __ BIND(L_loopTop_192);
kvn@4205 2487 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 2488 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2489
kvn@4205 2490 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4205 2491 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2492 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 2493 }
kvn@4205 2494 for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
kvn@4205 2495 aes_enc_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2496 }
kvn@4205 2497 load_key(xmm_temp, key, 0xc0);
kvn@4205 2498 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 2499
kvn@4205 2500 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2501 // no need to store r to memory until we exit
kvn@4205 2502 __ addptr(pos, AESBlockSize);
kvn@4205 2503 __ subptr(len_reg, AESBlockSize);
kvn@4205 2504 __ jcc(Assembler::notEqual, L_loopTop_192);
kvn@4205 2505 __ jmp(L_exit);
kvn@4205 2506
kvn@4363 2507 __ BIND(L_key_256);
kvn@4205 2508 // 256-bit code follows here (could be changed to use more xmm registers)
kvn@4363 2509 __ movl(pos, 0);
kvn@4363 2510 __ align(OptoLoopAlignment);
kvn@4363 2511 __ BIND(L_loopTop_256);
kvn@4205 2512 __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
kvn@4205 2513 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2514
kvn@4205 2515 __ pxor (xmm_result, xmm_key0); // do the aes rounds
kvn@4205 2516 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2517 __ aesenc(xmm_result, as_XMMRegister(rnum));
kvn@4205 2518 }
kvn@4205 2519 for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
kvn@4205 2520 aes_enc_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2521 }
kvn@4205 2522 load_key(xmm_temp, key, 0xe0);
kvn@4205 2523 __ aesenclast(xmm_result, xmm_temp);
kvn@4205 2524
kvn@4205 2525 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2526 // no need to store r to memory until we exit
kvn@4205 2527 __ addptr(pos, AESBlockSize);
kvn@4205 2528 __ subptr(len_reg, AESBlockSize);
kvn@4205 2529 __ jcc(Assembler::notEqual, L_loopTop_256);
kvn@4205 2530 __ jmp(L_exit);
kvn@4205 2531
kvn@4205 2532 return start;
kvn@4205 2533 }
kvn@4205 2534
kvn@4205 2535
kvn@4205 2536 // CBC AES Decryption.
kvn@4205 2537 // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
kvn@4205 2538 //
kvn@4205 2539 // Arguments:
kvn@4205 2540 //
kvn@4205 2541 // Inputs:
kvn@4205 2542 // c_rarg0 - source byte array address
kvn@4205 2543 // c_rarg1 - destination byte array address
kvn@4205 2544 // c_rarg2 - K (key) in little endian int array
kvn@4205 2545 // c_rarg3 - r vector byte array address
kvn@4205 2546 // c_rarg4 - input length
kvn@4205 2547 //
kvn@4205 2548
kvn@4205 2549 address generate_cipherBlockChaining_decryptAESCrypt() {
kvn@4363 2550 assert(UseAES, "need AES instructions and misaligned SSE support");
kvn@4205 2551 __ align(CodeEntryAlignment);
kvn@4205 2552 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
kvn@4205 2553 address start = __ pc();
kvn@4205 2554
kvn@4205 2555 Label L_exit, L_key_192_256, L_key_256;
kvn@4205 2556 Label L_singleBlock_loopTop_128;
kvn@4205 2557 Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
kvn@4205 2558 const Register from = rsi; // source array address
kvn@4205 2559 const Register to = rdx; // destination array address
kvn@4205 2560 const Register key = rcx; // key array address
kvn@4205 2561 const Register rvec = rdi; // r byte array initialized from initvector array address
kvn@4205 2562 // and left with the results of the last encryption block
kvn@4205 2563 const Register len_reg = rbx; // src len (must be multiple of blocksize 16)
kvn@4205 2564 const Register pos = rax;
kvn@4205 2565
kvn@4205 2566 // xmm register assignments for the loops below
kvn@4205 2567 const XMMRegister xmm_result = xmm0;
kvn@4205 2568 const XMMRegister xmm_temp = xmm1;
kvn@4205 2569 // first 6 keys preloaded into xmm2-xmm7
kvn@4205 2570 const int XMM_REG_NUM_KEY_FIRST = 2;
kvn@4205 2571 const int XMM_REG_NUM_KEY_LAST = 7;
kvn@4205 2572 const int FIRST_NON_REG_KEY_offset = 0x70;
kvn@4205 2573 const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
kvn@4205 2574
kvn@4205 2575 __ enter(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2576 handleSOERegisters(true /*saving*/);
kvn@4205 2577
kvn@4205 2578 // load registers from incoming parameters
kvn@4205 2579 const Address from_param(rbp, 8+0);
kvn@4205 2580 const Address to_param (rbp, 8+4);
kvn@4205 2581 const Address key_param (rbp, 8+8);
kvn@4205 2582 const Address rvec_param (rbp, 8+12);
kvn@4205 2583 const Address len_param (rbp, 8+16);
kvn@4205 2584 __ movptr(from , from_param);
kvn@4205 2585 __ movptr(to , to_param);
kvn@4205 2586 __ movptr(key , key_param);
kvn@4205 2587 __ movptr(rvec , rvec_param);
kvn@4205 2588 __ movptr(len_reg , len_param);
kvn@4205 2589
kvn@4205 2590 // the java expanded key ordering is rotated one position from what we want
kvn@4205 2591 // so we start from 0x10 here and hit 0x00 last
kvn@4205 2592 const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front
kvn@4205 2593 __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
kvn@4205 2594 // load up xmm regs 2 thru 6 with first 5 keys
kvn@4205 2595 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2596 load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
kvn@4205 2597 offset += 0x10;
kvn@4205 2598 }
kvn@4205 2599
kvn@4205 2600 // inside here, use the rvec register to point to previous block cipher
kvn@4205 2601 // with which we xor at the end of each newly decrypted block
kvn@4205 2602 const Register prev_block_cipher_ptr = rvec;
kvn@4205 2603
kvn@4205 2604 // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
kvn@4205 2605 __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
kvn@4205 2606 __ cmpl(rax, 44);
kvn@4205 2607 __ jcc(Assembler::notEqual, L_key_192_256);
kvn@4205 2608
kvn@4205 2609
kvn@4205 2610 // 128-bit code follows here, parallelized
kvn@4363 2611 __ movl(pos, 0);
kvn@4363 2612 __ align(OptoLoopAlignment);
kvn@4363 2613 __ BIND(L_singleBlock_loopTop_128);
kvn@4205 2614 __ cmpptr(len_reg, 0); // any blocks left??
kvn@4205 2615 __ jcc(Assembler::equal, L_exit);
kvn@4205 2616 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 2617 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 2618 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2619 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 2620 }
kvn@4205 2621 for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) { // 128-bit runs up to key offset a0
kvn@4205 2622 aes_dec_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2623 }
kvn@4205 2624 load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0
kvn@4205 2625 __ aesdeclast(xmm_result, xmm_temp);
kvn@4205 2626 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2627 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2628 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2629 // no need to store r to memory until we exit
kvn@4205 2630 __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr
kvn@4205 2631 __ addptr(pos, AESBlockSize);
kvn@4205 2632 __ subptr(len_reg, AESBlockSize);
kvn@4205 2633 __ jmp(L_singleBlock_loopTop_128);
kvn@4205 2634
kvn@4205 2635
kvn@4205 2636 __ BIND(L_exit);
kvn@4205 2637 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2638 __ movptr(rvec , rvec_param); // restore this since used in loop
kvn@4205 2639 __ movdqu(Address(rvec, 0), xmm_temp); // final value of r stored in rvec of CipherBlockChaining object
kvn@4205 2640 handleSOERegisters(false /*restoring*/);
kvn@4205 2641 __ movl(rax, 0); // return 0 (why?)
kvn@4205 2642 __ leave(); // required for proper stackwalking of RuntimeStub frame
kvn@4205 2643 __ ret(0);
kvn@4205 2644
kvn@4205 2645
kvn@4205 2646 __ BIND(L_key_192_256);
kvn@4205 2647 // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
kvn@4205 2648 __ cmpl(rax, 52);
kvn@4205 2649 __ jcc(Assembler::notEqual, L_key_256);
kvn@4205 2650
kvn@4205 2651 // 192-bit code follows here (could be optimized to use parallelism)
kvn@4363 2652 __ movl(pos, 0);
kvn@4205 2653 __ align(OptoLoopAlignment);
kvn@4205 2654 __ BIND(L_singleBlock_loopTop_192);
kvn@4205 2655 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 2656 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 2657 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2658 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 2659 }
kvn@4205 2660 for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) { // 192-bit runs up to key offset c0
kvn@4205 2661 aes_dec_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2662 }
kvn@4205 2663 load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0
kvn@4205 2664 __ aesdeclast(xmm_result, xmm_temp);
kvn@4205 2665 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2666 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2667 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2668 // no need to store r to memory until we exit
kvn@4205 2669 __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr
kvn@4205 2670 __ addptr(pos, AESBlockSize);
kvn@4205 2671 __ subptr(len_reg, AESBlockSize);
kvn@4205 2672 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
kvn@4205 2673 __ jmp(L_exit);
kvn@4205 2674
kvn@4205 2675 __ BIND(L_key_256);
kvn@4205 2676 // 256-bit code follows here (could be optimized to use parallelism)
kvn@4363 2677 __ movl(pos, 0);
kvn@4205 2678 __ align(OptoLoopAlignment);
kvn@4205 2679 __ BIND(L_singleBlock_loopTop_256);
kvn@4205 2680 __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
kvn@4205 2681 __ pxor (xmm_result, xmm_key_first); // do the aes dec rounds
kvn@4205 2682 for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
kvn@4205 2683 __ aesdec(xmm_result, as_XMMRegister(rnum));
kvn@4205 2684 }
kvn@4205 2685 for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) { // 256-bit runs up to key offset e0
kvn@4205 2686 aes_dec_key(xmm_result, xmm_temp, key, key_offset);
kvn@4205 2687 }
kvn@4205 2688 load_key(xmm_temp, key, 0x00); // final key is stored in java expanded array at offset 0
kvn@4205 2689 __ aesdeclast(xmm_result, xmm_temp);
kvn@4205 2690 __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
kvn@4205 2691 __ pxor (xmm_result, xmm_temp); // xor with the current r vector
kvn@4205 2692 __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
kvn@4205 2693 // no need to store r to memory until we exit
kvn@4205 2694 __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0)); // set up new ptr
kvn@4205 2695 __ addptr(pos, AESBlockSize);
kvn@4205 2696 __ subptr(len_reg, AESBlockSize);
kvn@4205 2697 __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
kvn@4205 2698 __ jmp(L_exit);
kvn@4205 2699
kvn@4205 2700 return start;
kvn@4205 2701 }
kvn@4205 2702
kvn@4205 2703
duke@435 2704 public:
duke@435 2705 // Information about frame layout at time of blocking runtime call.
duke@435 2706 // Note that we only have to preserve callee-saved registers since
duke@435 2707 // the compilers are responsible for supplying a continuation point
duke@435 2708 // if they expect all registers to be preserved.
duke@435 2709 enum layout {
duke@435 2710 thread_off, // last_java_sp
never@2978 2711 arg1_off,
never@2978 2712 arg2_off,
duke@435 2713 rbp_off, // callee saved register
duke@435 2714 ret_pc,
duke@435 2715 framesize
duke@435 2716 };
duke@435 2717
duke@435 2718 private:
duke@435 2719
duke@435 2720 #undef __
duke@435 2721 #define __ masm->
duke@435 2722
duke@435 2723 //------------------------------------------------------------------------------------------------------------------------
duke@435 2724 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 2725 // the current activation. Fabricates an exception oop and initiates normal
duke@435 2726 // exception dispatching in this frame.
duke@435 2727 //
duke@435 2728 // Previously the compiler (c2) allowed for callee save registers on Java calls.
duke@435 2729 // This is no longer true after adapter frames were removed but could possibly
duke@435 2730 // be brought back in the future if the interpreter code was reworked and it
duke@435 2731 // was deemed worthwhile. The comment below was left to describe what must
duke@435 2732 // happen here if callee saves were resurrected. As it stands now this stub
duke@435 2733 // could actually be a vanilla BufferBlob and have now oopMap at all.
duke@435 2734 // Since it doesn't make much difference we've chosen to leave it the
duke@435 2735 // way it was in the callee save days and keep the comment.
duke@435 2736
duke@435 2737 // If we need to preserve callee-saved values we need a callee-saved oop map and
duke@435 2738 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
duke@435 2739 // If the compiler needs all registers to be preserved between the fault
duke@435 2740 // point and the exception handler then it must assume responsibility for that in
duke@435 2741 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2742 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 2743 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 2744 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 2745 // so caller saved registers were assumed volatile in the compiler.
duke@435 2746 address generate_throw_exception(const char* name, address runtime_entry,
never@3136 2747 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 2748
duke@435 2749 int insts_size = 256;
duke@435 2750 int locs_size = 32;
duke@435 2751
duke@435 2752 CodeBuffer code(name, insts_size, locs_size);
duke@435 2753 OopMapSet* oop_maps = new OopMapSet();
duke@435 2754 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2755
duke@435 2756 address start = __ pc();
duke@435 2757
duke@435 2758 // This is an inlined and slightly modified version of call_VM
duke@435 2759 // which has the ability to fetch the return PC out of
duke@435 2760 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2761 // differently than the real call_VM
duke@435 2762 Register java_thread = rbx;
duke@435 2763 __ get_thread(java_thread);
duke@435 2764
duke@435 2765 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2766
duke@435 2767 // pc and rbp, already pushed
never@739 2768 __ subptr(rsp, (framesize-2) * wordSize); // prolog
duke@435 2769
duke@435 2770 // Frame is now completed as far as size and linkage.
duke@435 2771
duke@435 2772 int frame_complete = __ pc() - start;
duke@435 2773
duke@435 2774 // push java thread (becomes first argument of C function)
never@739 2775 __ movptr(Address(rsp, thread_off * wordSize), java_thread);
never@2978 2776 if (arg1 != noreg) {
never@2978 2777 __ movptr(Address(rsp, arg1_off * wordSize), arg1);
never@2978 2778 }
never@2978 2779 if (arg2 != noreg) {
never@2978 2780 assert(arg1 != noreg, "missing reg arg");
never@2978 2781 __ movptr(Address(rsp, arg2_off * wordSize), arg2);
never@2978 2782 }
duke@435 2783
duke@435 2784 // Set up last_Java_sp and last_Java_fp
duke@435 2785 __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
duke@435 2786
duke@435 2787 // Call runtime
duke@435 2788 BLOCK_COMMENT("call runtime_entry");
duke@435 2789 __ call(RuntimeAddress(runtime_entry));
duke@435 2790 // Generate oop map
duke@435 2791 OopMap* map = new OopMap(framesize, 0);
duke@435 2792 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2793
duke@435 2794 // restore the thread (cannot use the pushed argument since arguments
duke@435 2795 // may be overwritten by C code generated by an optimizing compiler);
duke@435 2796 // however can use the register value directly if it is callee saved.
duke@435 2797 __ get_thread(java_thread);
duke@435 2798
duke@435 2799 __ reset_last_Java_frame(java_thread, true, false);
duke@435 2800
duke@435 2801 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2802
duke@435 2803 // check for pending exceptions
duke@435 2804 #ifdef ASSERT
duke@435 2805 Label L;
never@739 2806 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2807 __ jcc(Assembler::notEqual, L);
duke@435 2808 __ should_not_reach_here();
duke@435 2809 __ bind(L);
duke@435 2810 #endif /* ASSERT */
duke@435 2811 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2812
duke@435 2813
duke@435 2814 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
duke@435 2815 return stub->entry_point();
duke@435 2816 }
duke@435 2817
duke@435 2818
duke@435 2819 void create_control_words() {
duke@435 2820 // Round to nearest, 53-bit mode, exceptions masked
duke@435 2821 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
duke@435 2822 // Round to zero, 53-bit mode, exception mased
duke@435 2823 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
duke@435 2824 // Round to nearest, 24-bit mode, exceptions masked
duke@435 2825 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
duke@435 2826 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2827 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
duke@435 2828 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2829 StubRoutines::_mxcsr_std = 0x1F80;
duke@435 2830 // Note: the following two constants are 80-bit values
duke@435 2831 // layout is critical for correct loading by FPU.
duke@435 2832 // Bias for strict fp multiply/divide
duke@435 2833 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
duke@435 2834 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
duke@435 2835 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
duke@435 2836 // Un-Bias for strict fp multiply/divide
duke@435 2837 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
duke@435 2838 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
duke@435 2839 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
duke@435 2840 }
duke@435 2841
duke@435 2842 //---------------------------------------------------------------------------
duke@435 2843 // Initialization
duke@435 2844
duke@435 2845 void generate_initial() {
duke@435 2846 // Generates all stubs and initializes the entry points
duke@435 2847
duke@435 2848 //------------------------------------------------------------------------------------------------------------------------
duke@435 2849 // entry points that exist in all platforms
duke@435 2850 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2851 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2852 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2853
duke@435 2854 StubRoutines::_call_stub_entry =
duke@435 2855 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2856 // is referenced by megamorphic call
duke@435 2857 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2858
duke@435 2859 // These are currently used by Solaris/Intel
duke@435 2860 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2861
duke@435 2862 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2863 generate_handler_for_unsafe_access();
duke@435 2864
duke@435 2865 // platform dependent
duke@435 2866 create_control_words();
duke@435 2867
never@739 2868 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@739 2869 StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
duke@435 2870 StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
duke@435 2871 CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
duke@435 2872 StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
duke@435 2873 CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
never@2978 2874
never@2978 2875 // Build this early so it's available for the interpreter
bdelsart@3372 2876 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
duke@435 2877 }
duke@435 2878
duke@435 2879
duke@435 2880 void generate_all() {
duke@435 2881 // Generates all stubs and initializes the entry points
duke@435 2882
duke@435 2883 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2884 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
never@3136 2885 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
never@3136 2886 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
never@3136 2887 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
duke@435 2888
duke@435 2889 //------------------------------------------------------------------------------------------------------------------------
duke@435 2890 // entry points that are platform specific
duke@435 2891
duke@435 2892 // support for verify_oop (must happen after universe_init)
duke@435 2893 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2894
duke@435 2895 // arraycopy stubs used by compilers
duke@435 2896 generate_arraycopy_stubs();
jrose@1145 2897
never@1609 2898 generate_math_stubs();
kvn@4205 2899
kvn@4205 2900 // don't bother generating these AES intrinsic stubs unless global flag is set
kvn@4205 2901 if (UseAESIntrinsics) {
kvn@4205 2902 StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // might be needed by the others
kvn@4205 2903
kvn@4205 2904 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
kvn@4205 2905 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
kvn@4205 2906 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
kvn@4205 2907 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
kvn@4205 2908 }
duke@435 2909 }
duke@435 2910
duke@435 2911
duke@435 2912 public:
duke@435 2913 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2914 if (all) {
duke@435 2915 generate_all();
duke@435 2916 } else {
duke@435 2917 generate_initial();
duke@435 2918 }
duke@435 2919 }
duke@435 2920 }; // end class declaration
duke@435 2921
duke@435 2922
duke@435 2923 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2924 StubGenerator g(code, all);
duke@435 2925 }

mercurial