src/share/vm/opto/memnode.hpp

Fri, 20 Aug 2010 23:40:30 -0700

author
jrose
date
Fri, 20 Aug 2010 23:40:30 -0700
changeset 2101
4b29a725c43c
parent 1964
4311f23817fd
child 2314
f95d63e2154a
permissions
-rw-r--r--

6912064: type profiles need to be exploited more for dynamic language support
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 class MultiNode;
duke@435 28 class PhaseCCP;
duke@435 29 class PhaseTransform;
duke@435 30
duke@435 31 //------------------------------MemNode----------------------------------------
duke@435 32 // Load or Store, possibly throwing a NULL pointer exception
duke@435 33 class MemNode : public Node {
duke@435 34 protected:
duke@435 35 #ifdef ASSERT
duke@435 36 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 37 #endif
duke@435 38 virtual uint size_of() const; // Size is bigger (ASSERT only)
duke@435 39 public:
duke@435 40 enum { Control, // When is it safe to do this load?
duke@435 41 Memory, // Chunk of memory is being loaded from
duke@435 42 Address, // Actually address, derived from base
duke@435 43 ValueIn, // Value to store
duke@435 44 OopStore // Preceeding oop store, only in StoreCM
duke@435 45 };
duke@435 46 protected:
duke@435 47 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
duke@435 48 : Node(c0,c1,c2 ) {
duke@435 49 init_class_id(Class_Mem);
duke@435 50 debug_only(_adr_type=at; adr_type();)
duke@435 51 }
duke@435 52 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
duke@435 53 : Node(c0,c1,c2,c3) {
duke@435 54 init_class_id(Class_Mem);
duke@435 55 debug_only(_adr_type=at; adr_type();)
duke@435 56 }
duke@435 57 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
duke@435 58 : Node(c0,c1,c2,c3,c4) {
duke@435 59 init_class_id(Class_Mem);
duke@435 60 debug_only(_adr_type=at; adr_type();)
duke@435 61 }
duke@435 62
kvn@468 63 public:
duke@435 64 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 65 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 66 Node* p2, AllocateNode* a2,
duke@435 67 PhaseTransform* phase);
duke@435 68 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 69
kvn@509 70 static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
kvn@509 71 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
duke@435 72 // This one should probably be a phase-specific function:
kvn@520 73 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 74
kvn@598 75 // Find any cast-away of null-ness and keep its control.
kvn@598 76 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 77 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 78
duke@435 79 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 80
duke@435 81 // Shared code for Ideal methods:
duke@435 82 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 83
duke@435 84 // Helper function for adr_type() implementations.
duke@435 85 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 86
duke@435 87 // Raw access function, to allow copying of adr_type efficiently in
duke@435 88 // product builds and retain the debug info for debug builds.
duke@435 89 const TypePtr *raw_adr_type() const {
duke@435 90 #ifdef ASSERT
duke@435 91 return _adr_type;
duke@435 92 #else
duke@435 93 return 0;
duke@435 94 #endif
duke@435 95 }
duke@435 96
duke@435 97 // Map a load or store opcode to its corresponding store opcode.
duke@435 98 // (Return -1 if unknown.)
duke@435 99 virtual int store_Opcode() const { return -1; }
duke@435 100
duke@435 101 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 102 virtual BasicType memory_type() const = 0;
kvn@464 103 virtual int memory_size() const {
kvn@464 104 #ifdef ASSERT
kvn@464 105 return type2aelembytes(memory_type(), true);
kvn@464 106 #else
kvn@464 107 return type2aelembytes(memory_type());
kvn@464 108 #endif
kvn@464 109 }
duke@435 110
duke@435 111 // Search through memory states which precede this node (load or store).
duke@435 112 // Look for an exact match for the address, with no intervening
duke@435 113 // aliased stores.
duke@435 114 Node* find_previous_store(PhaseTransform* phase);
duke@435 115
duke@435 116 // Can this node (load or store) accurately see a stored value in
duke@435 117 // the given memory state? (The state may or may not be in(Memory).)
duke@435 118 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 119
duke@435 120 #ifndef PRODUCT
duke@435 121 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 122 virtual void dump_spec(outputStream *st) const;
duke@435 123 #endif
duke@435 124 };
duke@435 125
duke@435 126 //------------------------------LoadNode---------------------------------------
duke@435 127 // Load value; requires Memory and Address
duke@435 128 class LoadNode : public MemNode {
duke@435 129 protected:
duke@435 130 virtual uint cmp( const Node &n ) const;
duke@435 131 virtual uint size_of() const; // Size is bigger
duke@435 132 const Type* const _type; // What kind of value is loaded?
duke@435 133 public:
duke@435 134
duke@435 135 LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
duke@435 136 : MemNode(c,mem,adr,at), _type(rt) {
duke@435 137 init_class_id(Class_Load);
duke@435 138 }
duke@435 139
duke@435 140 // Polymorphic factory method:
coleenp@548 141 static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 142 const TypePtr* at, const Type *rt, BasicType bt );
duke@435 143
duke@435 144 virtual uint hash() const; // Check the type
duke@435 145
duke@435 146 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 147 // we are equivalent to. We look for Load of a Store.
duke@435 148 virtual Node *Identity( PhaseTransform *phase );
duke@435 149
duke@435 150 // If the load is from Field memory and the pointer is non-null, we can
duke@435 151 // zero out the control input.
duke@435 152 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 153
kvn@598 154 // Split instance field load through Phi.
kvn@598 155 Node* split_through_phi(PhaseGVN *phase);
kvn@598 156
never@452 157 // Recover original value from boxed values
never@452 158 Node *eliminate_autobox(PhaseGVN *phase);
never@452 159
duke@435 160 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 161 // then call the virtual add() to set the type.
duke@435 162 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 163
kvn@599 164 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 165 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 166 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 167
duke@435 168 virtual uint ideal_reg() const;
duke@435 169 virtual const Type *bottom_type() const;
duke@435 170 // Following method is copied from TypeNode:
duke@435 171 void set_type(const Type* t) {
duke@435 172 assert(t != NULL, "sanity");
duke@435 173 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 174 *(const Type**)&_type = t; // cast away const-ness
duke@435 175 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 176 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 177 }
duke@435 178 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 179
duke@435 180 // Do not match memory edge
duke@435 181 virtual uint match_edge(uint idx) const;
duke@435 182
duke@435 183 // Map a load opcode to its corresponding store opcode.
duke@435 184 virtual int store_Opcode() const = 0;
duke@435 185
kvn@499 186 // Check if the load's memory input is a Phi node with the same control.
kvn@499 187 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 188
duke@435 189 #ifndef PRODUCT
duke@435 190 virtual void dump_spec(outputStream *st) const;
duke@435 191 #endif
kvn@1964 192 #ifdef ASSERT
kvn@1964 193 // Helper function to allow a raw load without control edge for some cases
kvn@1964 194 static bool is_immutable_value(Node* adr);
kvn@1964 195 #endif
duke@435 196 protected:
duke@435 197 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 198 ciKlass* klass) const;
duke@435 199 };
duke@435 200
duke@435 201 //------------------------------LoadBNode--------------------------------------
duke@435 202 // Load a byte (8bits signed) from memory
duke@435 203 class LoadBNode : public LoadNode {
duke@435 204 public:
duke@435 205 LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
duke@435 206 : LoadNode(c,mem,adr,at,ti) {}
duke@435 207 virtual int Opcode() const;
duke@435 208 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 209 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 210 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 211 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 212 };
duke@435 213
twisti@1059 214 //------------------------------LoadUBNode-------------------------------------
twisti@1059 215 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 216 class LoadUBNode : public LoadNode {
twisti@1059 217 public:
twisti@1059 218 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
twisti@1059 219 : LoadNode(c, mem, adr, at, ti) {}
twisti@1059 220 virtual int Opcode() const;
twisti@1059 221 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 222 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
twisti@1059 223 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 224 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 225 };
twisti@1059 226
twisti@993 227 //------------------------------LoadUSNode-------------------------------------
twisti@993 228 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 229 class LoadUSNode : public LoadNode {
duke@435 230 public:
twisti@993 231 LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
duke@435 232 : LoadNode(c,mem,adr,at,ti) {}
duke@435 233 virtual int Opcode() const;
duke@435 234 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 235 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 236 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 237 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 238 };
duke@435 239
duke@435 240 //------------------------------LoadINode--------------------------------------
duke@435 241 // Load an integer from memory
duke@435 242 class LoadINode : public LoadNode {
duke@435 243 public:
duke@435 244 LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
duke@435 245 : LoadNode(c,mem,adr,at,ti) {}
duke@435 246 virtual int Opcode() const;
duke@435 247 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 248 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 249 virtual BasicType memory_type() const { return T_INT; }
duke@435 250 };
duke@435 251
twisti@1059 252 //------------------------------LoadUI2LNode-----------------------------------
twisti@1059 253 // Load an unsigned integer into long from memory
twisti@1059 254 class LoadUI2LNode : public LoadNode {
twisti@1059 255 public:
twisti@1059 256 LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
twisti@1059 257 : LoadNode(c, mem, adr, at, t) {}
twisti@1059 258 virtual int Opcode() const;
twisti@1059 259 virtual uint ideal_reg() const { return Op_RegL; }
twisti@1059 260 virtual int store_Opcode() const { return Op_StoreL; }
twisti@1059 261 virtual BasicType memory_type() const { return T_LONG; }
twisti@1059 262 };
twisti@1059 263
duke@435 264 //------------------------------LoadRangeNode----------------------------------
duke@435 265 // Load an array length from the array
duke@435 266 class LoadRangeNode : public LoadINode {
duke@435 267 public:
duke@435 268 LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
duke@435 269 : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
duke@435 270 virtual int Opcode() const;
duke@435 271 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 272 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 273 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 274 };
duke@435 275
duke@435 276 //------------------------------LoadLNode--------------------------------------
duke@435 277 // Load a long from memory
duke@435 278 class LoadLNode : public LoadNode {
duke@435 279 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 280 virtual uint cmp( const Node &n ) const {
duke@435 281 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 282 && LoadNode::cmp(n);
duke@435 283 }
duke@435 284 virtual uint size_of() const { return sizeof(*this); }
duke@435 285 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 286
duke@435 287 public:
duke@435 288 LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
duke@435 289 const TypeLong *tl = TypeLong::LONG,
duke@435 290 bool require_atomic_access = false )
duke@435 291 : LoadNode(c,mem,adr,at,tl)
duke@435 292 , _require_atomic_access(require_atomic_access)
duke@435 293 {}
duke@435 294 virtual int Opcode() const;
duke@435 295 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 296 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 297 virtual BasicType memory_type() const { return T_LONG; }
duke@435 298 bool require_atomic_access() { return _require_atomic_access; }
duke@435 299 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
duke@435 300 #ifndef PRODUCT
duke@435 301 virtual void dump_spec(outputStream *st) const {
duke@435 302 LoadNode::dump_spec(st);
duke@435 303 if (_require_atomic_access) st->print(" Atomic!");
duke@435 304 }
duke@435 305 #endif
duke@435 306 };
duke@435 307
duke@435 308 //------------------------------LoadL_unalignedNode----------------------------
duke@435 309 // Load a long from unaligned memory
duke@435 310 class LoadL_unalignedNode : public LoadLNode {
duke@435 311 public:
duke@435 312 LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 313 : LoadLNode(c,mem,adr,at) {}
duke@435 314 virtual int Opcode() const;
duke@435 315 };
duke@435 316
duke@435 317 //------------------------------LoadFNode--------------------------------------
duke@435 318 // Load a float (64 bits) from memory
duke@435 319 class LoadFNode : public LoadNode {
duke@435 320 public:
duke@435 321 LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
duke@435 322 : LoadNode(c,mem,adr,at,t) {}
duke@435 323 virtual int Opcode() const;
duke@435 324 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 325 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 326 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 327 };
duke@435 328
duke@435 329 //------------------------------LoadDNode--------------------------------------
duke@435 330 // Load a double (64 bits) from memory
duke@435 331 class LoadDNode : public LoadNode {
duke@435 332 public:
duke@435 333 LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
duke@435 334 : LoadNode(c,mem,adr,at,t) {}
duke@435 335 virtual int Opcode() const;
duke@435 336 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 337 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 338 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 339 };
duke@435 340
duke@435 341 //------------------------------LoadD_unalignedNode----------------------------
duke@435 342 // Load a double from unaligned memory
duke@435 343 class LoadD_unalignedNode : public LoadDNode {
duke@435 344 public:
duke@435 345 LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 346 : LoadDNode(c,mem,adr,at) {}
duke@435 347 virtual int Opcode() const;
duke@435 348 };
duke@435 349
duke@435 350 //------------------------------LoadPNode--------------------------------------
duke@435 351 // Load a pointer from memory (either object or array)
duke@435 352 class LoadPNode : public LoadNode {
duke@435 353 public:
duke@435 354 LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
duke@435 355 : LoadNode(c,mem,adr,at,t) {}
duke@435 356 virtual int Opcode() const;
duke@435 357 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 358 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 359 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 360 // depends_only_on_test is almost always true, and needs to be almost always
duke@435 361 // true to enable key hoisting & commoning optimizations. However, for the
duke@435 362 // special case of RawPtr loads from TLS top & end, the control edge carries
duke@435 363 // the dependence preventing hoisting past a Safepoint instead of the memory
duke@435 364 // edge. (An unfortunate consequence of having Safepoints not set Raw
duke@435 365 // Memory; itself an unfortunate consequence of having Nodes which produce
duke@435 366 // results (new raw memory state) inside of loops preventing all manner of
duke@435 367 // other optimizations). Basically, it's ugly but so is the alternative.
duke@435 368 // See comment in macro.cpp, around line 125 expand_allocate_common().
duke@435 369 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
duke@435 370 };
duke@435 371
coleenp@548 372
coleenp@548 373 //------------------------------LoadNNode--------------------------------------
coleenp@548 374 // Load a narrow oop from memory (either object or array)
coleenp@548 375 class LoadNNode : public LoadNode {
coleenp@548 376 public:
coleenp@548 377 LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
coleenp@548 378 : LoadNode(c,mem,adr,at,t) {}
coleenp@548 379 virtual int Opcode() const;
coleenp@548 380 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 381 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 382 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 383 // depends_only_on_test is almost always true, and needs to be almost always
coleenp@548 384 // true to enable key hoisting & commoning optimizations. However, for the
coleenp@548 385 // special case of RawPtr loads from TLS top & end, the control edge carries
coleenp@548 386 // the dependence preventing hoisting past a Safepoint instead of the memory
coleenp@548 387 // edge. (An unfortunate consequence of having Safepoints not set Raw
coleenp@548 388 // Memory; itself an unfortunate consequence of having Nodes which produce
coleenp@548 389 // results (new raw memory state) inside of loops preventing all manner of
coleenp@548 390 // other optimizations). Basically, it's ugly but so is the alternative.
coleenp@548 391 // See comment in macro.cpp, around line 125 expand_allocate_common().
coleenp@548 392 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
coleenp@548 393 };
coleenp@548 394
duke@435 395 //------------------------------LoadKlassNode----------------------------------
duke@435 396 // Load a Klass from an object
duke@435 397 class LoadKlassNode : public LoadPNode {
duke@435 398 public:
kvn@599 399 LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
duke@435 400 : LoadPNode(c,mem,adr,at,tk) {}
duke@435 401 virtual int Opcode() const;
duke@435 402 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 403 virtual Node *Identity( PhaseTransform *phase );
duke@435 404 virtual bool depends_only_on_test() const { return true; }
kvn@599 405
kvn@599 406 // Polymorphic factory method:
kvn@599 407 static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
kvn@599 408 const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
duke@435 409 };
duke@435 410
kvn@599 411 //------------------------------LoadNKlassNode---------------------------------
kvn@599 412 // Load a narrow Klass from an object.
kvn@599 413 class LoadNKlassNode : public LoadNNode {
kvn@599 414 public:
kvn@599 415 LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
kvn@599 416 : LoadNNode(c,mem,adr,at,tk) {}
kvn@599 417 virtual int Opcode() const;
kvn@599 418 virtual uint ideal_reg() const { return Op_RegN; }
kvn@599 419 virtual int store_Opcode() const { return Op_StoreN; }
kvn@599 420 virtual BasicType memory_type() const { return T_NARROWOOP; }
kvn@599 421
kvn@599 422 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 423 virtual Node *Identity( PhaseTransform *phase );
kvn@599 424 virtual bool depends_only_on_test() const { return true; }
kvn@599 425 };
kvn@599 426
kvn@599 427
duke@435 428 //------------------------------LoadSNode--------------------------------------
duke@435 429 // Load a short (16bits signed) from memory
duke@435 430 class LoadSNode : public LoadNode {
duke@435 431 public:
duke@435 432 LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
duke@435 433 : LoadNode(c,mem,adr,at,ti) {}
duke@435 434 virtual int Opcode() const;
duke@435 435 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 436 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 437 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 438 virtual BasicType memory_type() const { return T_SHORT; }
duke@435 439 };
duke@435 440
duke@435 441 //------------------------------StoreNode--------------------------------------
duke@435 442 // Store value; requires Store, Address and Value
duke@435 443 class StoreNode : public MemNode {
duke@435 444 protected:
duke@435 445 virtual uint cmp( const Node &n ) const;
duke@435 446 virtual bool depends_only_on_test() const { return false; }
duke@435 447
duke@435 448 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 449 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 450
duke@435 451 public:
duke@435 452 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
duke@435 453 : MemNode(c,mem,adr,at,val) {
duke@435 454 init_class_id(Class_Store);
duke@435 455 }
duke@435 456 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
duke@435 457 : MemNode(c,mem,adr,at,val,oop_store) {
duke@435 458 init_class_id(Class_Store);
duke@435 459 }
duke@435 460
duke@435 461 // Polymorphic factory method:
coleenp@548 462 static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 463 const TypePtr* at, Node *val, BasicType bt );
duke@435 464
duke@435 465 virtual uint hash() const; // Check the type
duke@435 466
duke@435 467 // If the store is to Field memory and the pointer is non-null, we can
duke@435 468 // zero out the control input.
duke@435 469 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 470
duke@435 471 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 472 // then call the virtual add() to set the type.
duke@435 473 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 474
duke@435 475 // Check for identity function on memory (Load then Store at same address)
duke@435 476 virtual Node *Identity( PhaseTransform *phase );
duke@435 477
duke@435 478 // Do not match memory edge
duke@435 479 virtual uint match_edge(uint idx) const;
duke@435 480
duke@435 481 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 482
duke@435 483 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 484 virtual int store_Opcode() const { return Opcode(); }
duke@435 485
duke@435 486 // have all possible loads of the value stored been optimized away?
duke@435 487 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 488 };
duke@435 489
duke@435 490 //------------------------------StoreBNode-------------------------------------
duke@435 491 // Store byte to memory
duke@435 492 class StoreBNode : public StoreNode {
duke@435 493 public:
duke@435 494 StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 495 virtual int Opcode() const;
duke@435 496 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 497 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 498 };
duke@435 499
duke@435 500 //------------------------------StoreCNode-------------------------------------
duke@435 501 // Store char/short to memory
duke@435 502 class StoreCNode : public StoreNode {
duke@435 503 public:
duke@435 504 StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 505 virtual int Opcode() const;
duke@435 506 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 507 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 508 };
duke@435 509
duke@435 510 //------------------------------StoreINode-------------------------------------
duke@435 511 // Store int to memory
duke@435 512 class StoreINode : public StoreNode {
duke@435 513 public:
duke@435 514 StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 515 virtual int Opcode() const;
duke@435 516 virtual BasicType memory_type() const { return T_INT; }
duke@435 517 };
duke@435 518
duke@435 519 //------------------------------StoreLNode-------------------------------------
duke@435 520 // Store long to memory
duke@435 521 class StoreLNode : public StoreNode {
duke@435 522 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 523 virtual uint cmp( const Node &n ) const {
duke@435 524 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 525 && StoreNode::cmp(n);
duke@435 526 }
duke@435 527 virtual uint size_of() const { return sizeof(*this); }
duke@435 528 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 529
duke@435 530 public:
duke@435 531 StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
duke@435 532 bool require_atomic_access = false )
duke@435 533 : StoreNode(c,mem,adr,at,val)
duke@435 534 , _require_atomic_access(require_atomic_access)
duke@435 535 {}
duke@435 536 virtual int Opcode() const;
duke@435 537 virtual BasicType memory_type() const { return T_LONG; }
duke@435 538 bool require_atomic_access() { return _require_atomic_access; }
duke@435 539 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
duke@435 540 #ifndef PRODUCT
duke@435 541 virtual void dump_spec(outputStream *st) const {
duke@435 542 StoreNode::dump_spec(st);
duke@435 543 if (_require_atomic_access) st->print(" Atomic!");
duke@435 544 }
duke@435 545 #endif
duke@435 546 };
duke@435 547
duke@435 548 //------------------------------StoreFNode-------------------------------------
duke@435 549 // Store float to memory
duke@435 550 class StoreFNode : public StoreNode {
duke@435 551 public:
duke@435 552 StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 553 virtual int Opcode() const;
duke@435 554 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 555 };
duke@435 556
duke@435 557 //------------------------------StoreDNode-------------------------------------
duke@435 558 // Store double to memory
duke@435 559 class StoreDNode : public StoreNode {
duke@435 560 public:
duke@435 561 StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 562 virtual int Opcode() const;
duke@435 563 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 564 };
duke@435 565
duke@435 566 //------------------------------StorePNode-------------------------------------
duke@435 567 // Store pointer to memory
duke@435 568 class StorePNode : public StoreNode {
duke@435 569 public:
duke@435 570 StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 571 virtual int Opcode() const;
duke@435 572 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 573 };
duke@435 574
coleenp@548 575 //------------------------------StoreNNode-------------------------------------
coleenp@548 576 // Store narrow oop to memory
coleenp@548 577 class StoreNNode : public StoreNode {
coleenp@548 578 public:
coleenp@548 579 StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
coleenp@548 580 virtual int Opcode() const;
coleenp@548 581 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 582 };
coleenp@548 583
duke@435 584 //------------------------------StoreCMNode-----------------------------------
duke@435 585 // Store card-mark byte to memory for CM
duke@435 586 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 587 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 588 class StoreCMNode : public StoreNode {
cfang@1420 589 private:
never@1633 590 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 591 virtual uint cmp( const Node &n ) const {
never@1633 592 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 593 && StoreNode::cmp(n);
never@1633 594 }
never@1633 595 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 596 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 597
duke@435 598 public:
never@1633 599 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
never@1633 600 StoreNode(c,mem,adr,at,val,oop_store),
never@1633 601 _oop_alias_idx(oop_alias_idx) {
never@1633 602 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 603 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 604 "bad oop alias idx");
never@1633 605 }
duke@435 606 virtual int Opcode() const;
duke@435 607 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 608 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 609 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 610 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 611 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 612 };
duke@435 613
duke@435 614 //------------------------------LoadPLockedNode---------------------------------
duke@435 615 // Load-locked a pointer from memory (either object or array).
duke@435 616 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 617 // On PowerPC and friends it's a real load-locked.
duke@435 618 class LoadPLockedNode : public LoadPNode {
duke@435 619 public:
duke@435 620 LoadPLockedNode( Node *c, Node *mem, Node *adr )
duke@435 621 : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
duke@435 622 virtual int Opcode() const;
duke@435 623 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 624 virtual bool depends_only_on_test() const { return true; }
duke@435 625 };
duke@435 626
duke@435 627 //------------------------------LoadLLockedNode---------------------------------
duke@435 628 // Load-locked a pointer from memory (either object or array).
duke@435 629 // On Sparc & Intel this is implemented as a normal long load.
duke@435 630 class LoadLLockedNode : public LoadLNode {
duke@435 631 public:
duke@435 632 LoadLLockedNode( Node *c, Node *mem, Node *adr )
duke@435 633 : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
duke@435 634 virtual int Opcode() const;
duke@435 635 virtual int store_Opcode() const { return Op_StoreLConditional; }
duke@435 636 };
duke@435 637
duke@435 638 //------------------------------SCMemProjNode---------------------------------------
duke@435 639 // This class defines a projection of the memory state of a store conditional node.
duke@435 640 // These nodes return a value, but also update memory.
duke@435 641 class SCMemProjNode : public ProjNode {
duke@435 642 public:
duke@435 643 enum {SCMEMPROJCON = (uint)-2};
duke@435 644 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 645 virtual int Opcode() const;
duke@435 646 virtual bool is_CFG() const { return false; }
duke@435 647 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 648 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 649 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 650 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 651 #ifndef PRODUCT
duke@435 652 virtual void dump_spec(outputStream *st) const {};
duke@435 653 #endif
duke@435 654 };
duke@435 655
duke@435 656 //------------------------------LoadStoreNode---------------------------
kvn@688 657 // Note: is_Mem() method returns 'true' for this class.
duke@435 658 class LoadStoreNode : public Node {
duke@435 659 public:
duke@435 660 enum {
duke@435 661 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 662 };
duke@435 663 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 664 virtual bool depends_only_on_test() const { return false; }
duke@435 665 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
duke@435 666 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 667 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
duke@435 668 };
duke@435 669
duke@435 670 //------------------------------StorePConditionalNode---------------------------
duke@435 671 // Conditionally store pointer to memory, if no change since prior
duke@435 672 // load-locked. Sets flags for success or failure of the store.
duke@435 673 class StorePConditionalNode : public LoadStoreNode {
duke@435 674 public:
duke@435 675 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 676 virtual int Opcode() const;
duke@435 677 // Produces flags
duke@435 678 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 679 };
duke@435 680
kvn@855 681 //------------------------------StoreIConditionalNode---------------------------
kvn@855 682 // Conditionally store int to memory, if no change since prior
kvn@855 683 // load-locked. Sets flags for success or failure of the store.
kvn@855 684 class StoreIConditionalNode : public LoadStoreNode {
kvn@855 685 public:
kvn@855 686 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
kvn@855 687 virtual int Opcode() const;
kvn@855 688 // Produces flags
kvn@855 689 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 690 };
kvn@855 691
duke@435 692 //------------------------------StoreLConditionalNode---------------------------
duke@435 693 // Conditionally store long to memory, if no change since prior
duke@435 694 // load-locked. Sets flags for success or failure of the store.
duke@435 695 class StoreLConditionalNode : public LoadStoreNode {
duke@435 696 public:
duke@435 697 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 698 virtual int Opcode() const;
kvn@855 699 // Produces flags
kvn@855 700 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 701 };
duke@435 702
duke@435 703
duke@435 704 //------------------------------CompareAndSwapLNode---------------------------
duke@435 705 class CompareAndSwapLNode : public LoadStoreNode {
duke@435 706 public:
duke@435 707 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 708 virtual int Opcode() const;
duke@435 709 };
duke@435 710
duke@435 711
duke@435 712 //------------------------------CompareAndSwapINode---------------------------
duke@435 713 class CompareAndSwapINode : public LoadStoreNode {
duke@435 714 public:
duke@435 715 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 716 virtual int Opcode() const;
duke@435 717 };
duke@435 718
duke@435 719
duke@435 720 //------------------------------CompareAndSwapPNode---------------------------
duke@435 721 class CompareAndSwapPNode : public LoadStoreNode {
duke@435 722 public:
duke@435 723 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 724 virtual int Opcode() const;
duke@435 725 };
duke@435 726
coleenp@548 727 //------------------------------CompareAndSwapNNode---------------------------
coleenp@548 728 class CompareAndSwapNNode : public LoadStoreNode {
coleenp@548 729 public:
coleenp@548 730 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
coleenp@548 731 virtual int Opcode() const;
coleenp@548 732 };
coleenp@548 733
duke@435 734 //------------------------------ClearArray-------------------------------------
duke@435 735 class ClearArrayNode: public Node {
duke@435 736 public:
kvn@1535 737 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 738 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 739 init_class_id(Class_ClearArray);
kvn@1535 740 }
duke@435 741 virtual int Opcode() const;
duke@435 742 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 743 // ClearArray modifies array elements, and so affects only the
duke@435 744 // array memory addressed by the bottom_type of its base address.
duke@435 745 virtual const class TypePtr *adr_type() const;
duke@435 746 virtual Node *Identity( PhaseTransform *phase );
duke@435 747 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 748 virtual uint match_edge(uint idx) const;
duke@435 749
duke@435 750 // Clear the given area of an object or array.
duke@435 751 // The start offset must always be aligned mod BytesPerInt.
duke@435 752 // The end offset must always be aligned mod BytesPerLong.
duke@435 753 // Return the new memory.
duke@435 754 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 755 intptr_t start_offset,
duke@435 756 intptr_t end_offset,
duke@435 757 PhaseGVN* phase);
duke@435 758 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 759 intptr_t start_offset,
duke@435 760 Node* end_offset,
duke@435 761 PhaseGVN* phase);
duke@435 762 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 763 Node* start_offset,
duke@435 764 Node* end_offset,
duke@435 765 PhaseGVN* phase);
kvn@1535 766 // Return allocation input memory edge if it is different instance
kvn@1535 767 // or itself if it is the one we are looking for.
kvn@1535 768 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 769 };
duke@435 770
duke@435 771 //------------------------------StrComp-------------------------------------
duke@435 772 class StrCompNode: public Node {
duke@435 773 public:
kvn@1421 774 StrCompNode(Node* control, Node* char_array_mem,
kvn@1421 775 Node* s1, Node* c1,
kvn@1421 776 Node* s2, Node* c2): Node(control, char_array_mem,
kvn@1421 777 s1, c1,
kvn@1421 778 s2, c2) {};
duke@435 779 virtual int Opcode() const;
duke@435 780 virtual bool depends_only_on_test() const { return false; }
duke@435 781 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@1421 782 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 783 virtual uint match_edge(uint idx) const;
duke@435 784 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 785 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 786 };
duke@435 787
cfang@1116 788 //------------------------------StrEquals-------------------------------------
cfang@1116 789 class StrEqualsNode: public Node {
cfang@1116 790 public:
kvn@1421 791 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@1421 792 Node* s1, Node* s2, Node* c): Node(control, char_array_mem,
kvn@1421 793 s1, s2, c) {};
cfang@1116 794 virtual int Opcode() const;
cfang@1116 795 virtual bool depends_only_on_test() const { return false; }
cfang@1116 796 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
kvn@1421 797 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
cfang@1116 798 virtual uint match_edge(uint idx) const;
cfang@1116 799 virtual uint ideal_reg() const { return Op_RegI; }
cfang@1116 800 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
cfang@1116 801 };
cfang@1116 802
cfang@1116 803 //------------------------------StrIndexOf-------------------------------------
cfang@1116 804 class StrIndexOfNode: public Node {
cfang@1116 805 public:
kvn@1421 806 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@1421 807 Node* s1, Node* c1,
kvn@1421 808 Node* s2, Node* c2): Node(control, char_array_mem,
kvn@1421 809 s1, c1,
kvn@1421 810 s2, c2) {};
cfang@1116 811 virtual int Opcode() const;
cfang@1116 812 virtual bool depends_only_on_test() const { return false; }
cfang@1116 813 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@1421 814 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
cfang@1116 815 virtual uint match_edge(uint idx) const;
cfang@1116 816 virtual uint ideal_reg() const { return Op_RegI; }
cfang@1116 817 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
cfang@1116 818 };
cfang@1116 819
rasbold@604 820 //------------------------------AryEq---------------------------------------
rasbold@604 821 class AryEqNode: public Node {
rasbold@604 822 public:
kvn@1421 823 AryEqNode(Node* control, Node* char_array_mem,
kvn@1421 824 Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) {};
rasbold@604 825 virtual int Opcode() const;
rasbold@604 826 virtual bool depends_only_on_test() const { return false; }
rasbold@604 827 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 828 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
kvn@1421 829 virtual uint match_edge(uint idx) const;
rasbold@604 830 virtual uint ideal_reg() const { return Op_RegI; }
rasbold@604 831 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
rasbold@604 832 };
rasbold@604 833
duke@435 834 //------------------------------MemBar-----------------------------------------
duke@435 835 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 836 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 837 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 838 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 839 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 840 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 841 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 842 // separate it from any following volatile-load.
duke@435 843 class MemBarNode: public MultiNode {
duke@435 844 virtual uint hash() const ; // { return NO_HASH; }
duke@435 845 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 846
duke@435 847 virtual uint size_of() const { return sizeof(*this); }
duke@435 848 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 849 const TypePtr* _adr_type;
duke@435 850
duke@435 851 public:
duke@435 852 enum {
duke@435 853 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 854 };
duke@435 855 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 856 virtual int Opcode() const = 0;
duke@435 857 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 858 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 859 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 860 virtual uint match_edge(uint idx) const { return 0; }
duke@435 861 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 862 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 863 // Factory method. Builds a wide or narrow membar.
duke@435 864 // Optional 'precedent' becomes an extra edge if not null.
duke@435 865 static MemBarNode* make(Compile* C, int opcode,
duke@435 866 int alias_idx = Compile::AliasIdxBot,
duke@435 867 Node* precedent = NULL);
duke@435 868 };
duke@435 869
duke@435 870 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 871 // follow, like an early Load stalled in cache). Requires multi-cpu
duke@435 872 // visibility. Inserted after a volatile load or FastLock.
duke@435 873 class MemBarAcquireNode: public MemBarNode {
duke@435 874 public:
duke@435 875 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 876 : MemBarNode(C, alias_idx, precedent) {}
duke@435 877 virtual int Opcode() const;
duke@435 878 };
duke@435 879
duke@435 880 // "Release" - no earlier ref can move after (but later refs can move
duke@435 881 // up, like a speculative pipelined cache-hitting Load). Requires
duke@435 882 // multi-cpu visibility. Inserted before a volatile store or FastUnLock.
duke@435 883 class MemBarReleaseNode: public MemBarNode {
duke@435 884 public:
duke@435 885 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 886 : MemBarNode(C, alias_idx, precedent) {}
duke@435 887 virtual int Opcode() const;
duke@435 888 };
duke@435 889
duke@435 890 // Ordering between a volatile store and a following volatile load.
duke@435 891 // Requires multi-CPU visibility?
duke@435 892 class MemBarVolatileNode: public MemBarNode {
duke@435 893 public:
duke@435 894 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 895 : MemBarNode(C, alias_idx, precedent) {}
duke@435 896 virtual int Opcode() const;
duke@435 897 };
duke@435 898
duke@435 899 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 900 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 901 // compiler because the CPU does all the ordering for us.
duke@435 902 class MemBarCPUOrderNode: public MemBarNode {
duke@435 903 public:
duke@435 904 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 905 : MemBarNode(C, alias_idx, precedent) {}
duke@435 906 virtual int Opcode() const;
duke@435 907 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 908 };
duke@435 909
duke@435 910 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 911 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 912 class InitializeNode: public MemBarNode {
duke@435 913 friend class AllocateNode;
duke@435 914
duke@435 915 bool _is_complete;
duke@435 916
duke@435 917 public:
duke@435 918 enum {
duke@435 919 Control = TypeFunc::Control,
duke@435 920 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 921 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 922 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 923 };
duke@435 924
duke@435 925 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 926 virtual int Opcode() const;
duke@435 927 virtual uint size_of() const { return sizeof(*this); }
duke@435 928 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 929 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 930
duke@435 931 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 932 Node* memory(uint alias_idx);
duke@435 933
duke@435 934 // The raw memory edge coming directly from the Allocation.
duke@435 935 // The contents of this memory are *always* all-zero-bits.
duke@435 936 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 937
duke@435 938 // Return the corresponding allocation for this initialization (or null if none).
duke@435 939 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 940 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 941 AllocateNode* allocation();
duke@435 942
duke@435 943 // Anything other than zeroing in this init?
duke@435 944 bool is_non_zero();
duke@435 945
duke@435 946 // An InitializeNode must completed before macro expansion is done.
duke@435 947 // Completion requires that the AllocateNode must be followed by
duke@435 948 // initialization of the new memory to zero, then to any initializers.
duke@435 949 bool is_complete() { return _is_complete; }
duke@435 950
duke@435 951 // Mark complete. (Must not yet be complete.)
duke@435 952 void set_complete(PhaseGVN* phase);
duke@435 953
duke@435 954 #ifdef ASSERT
duke@435 955 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 956 bool stores_are_sane(PhaseTransform* phase);
duke@435 957 #endif //ASSERT
duke@435 958
duke@435 959 // See if this store can be captured; return offset where it initializes.
duke@435 960 // Return 0 if the store cannot be moved (any sort of problem).
duke@435 961 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
duke@435 962
duke@435 963 // Capture another store; reformat it to write my internal raw memory.
duke@435 964 // Return the captured copy, else NULL if there is some sort of problem.
duke@435 965 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
duke@435 966
duke@435 967 // Find captured store which corresponds to the range [start..start+size).
duke@435 968 // Return my own memory projection (meaning the initial zero bits)
duke@435 969 // if there is no such store. Return NULL if there is a problem.
duke@435 970 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 971
duke@435 972 // Called when the associated AllocateNode is expanded into CFG.
duke@435 973 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 974 intptr_t header_size, Node* size_in_bytes,
duke@435 975 PhaseGVN* phase);
duke@435 976
duke@435 977 private:
duke@435 978 void remove_extra_zeroes();
duke@435 979
duke@435 980 // Find out where a captured store should be placed (or already is placed).
duke@435 981 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 982 PhaseTransform* phase);
duke@435 983
duke@435 984 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 985
duke@435 986 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 987
duke@435 988 bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
duke@435 989
duke@435 990 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 991 PhaseGVN* phase);
duke@435 992
duke@435 993 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 994 };
duke@435 995
duke@435 996 //------------------------------MergeMem---------------------------------------
duke@435 997 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 998 class MergeMemNode: public Node {
duke@435 999 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1000 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1001 friend class MergeMemStream;
duke@435 1002 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 1003
duke@435 1004 public:
duke@435 1005 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1006 // Otherwise, make a new memory state with just that base memory input.
duke@435 1007 // In either case, the result is a newly created MergeMem.
duke@435 1008 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1009
duke@435 1010 virtual int Opcode() const;
duke@435 1011 virtual Node *Identity( PhaseTransform *phase );
duke@435 1012 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1013 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1014 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1015 virtual const RegMask &out_RegMask() const;
duke@435 1016 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1017 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1018 // sparse accessors
duke@435 1019 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1020 // (Caller should clone it if it is a phi-nest.)
duke@435 1021 Node* memory_at(uint alias_idx) const;
duke@435 1022 // set the memory, regardless of its previous value
duke@435 1023 void set_memory_at(uint alias_idx, Node* n);
duke@435 1024 // the "base" is the memory that provides the non-finite support
duke@435 1025 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1026 // warning: setting the base can implicitly set any of the other slices too
duke@435 1027 void set_base_memory(Node* def);
duke@435 1028 // sentinel value which denotes a copy of the base memory:
duke@435 1029 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1030 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1031 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1032 // hook for the iterator, to perform any necessary setup
duke@435 1033 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1034 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1035 void grow_to_match(const MergeMemNode* other);
duke@435 1036 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1037 #ifndef PRODUCT
duke@435 1038 virtual void dump_spec(outputStream *st) const;
duke@435 1039 #endif
duke@435 1040 };
duke@435 1041
duke@435 1042 class MergeMemStream : public StackObj {
duke@435 1043 private:
duke@435 1044 MergeMemNode* _mm;
duke@435 1045 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1046 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1047 int _idx;
duke@435 1048 int _cnt;
duke@435 1049 Node* _mem;
duke@435 1050 Node* _mem2;
duke@435 1051 int _cnt2;
duke@435 1052
duke@435 1053 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1054 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1055 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1056 // the raw edge will update to base, although it should be top.
duke@435 1057 // This iterator will recognize either top or base_memory as an
duke@435 1058 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1059 //
duke@435 1060 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1061 // As long as access to a MergeMem goes through this iterator
duke@435 1062 // or the memory_at accessor, flaws in the sparseness will
duke@435 1063 // never be observed.
duke@435 1064 //
duke@435 1065 // Also, iteration_setup repairs sparseness.
duke@435 1066 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1067 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1068
duke@435 1069 _mm = mm;
duke@435 1070 _mm_base = mm->base_memory();
duke@435 1071 _mm2 = mm2;
duke@435 1072 _cnt = mm->req();
duke@435 1073 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1074 _mem = NULL;
duke@435 1075 _mem2 = NULL;
duke@435 1076 }
duke@435 1077
duke@435 1078 #ifdef ASSERT
duke@435 1079 Node* check_memory() const {
duke@435 1080 if (at_base_memory())
duke@435 1081 return _mm->base_memory();
duke@435 1082 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1083 return _mm->memory_at(_idx);
duke@435 1084 else
duke@435 1085 return _mm_base;
duke@435 1086 }
duke@435 1087 Node* check_memory2() const {
duke@435 1088 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1089 }
duke@435 1090 #endif
duke@435 1091
duke@435 1092 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1093 void assert_synch() const {
duke@435 1094 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1095 "no side-effects except through the stream");
duke@435 1096 }
duke@435 1097
duke@435 1098 public:
duke@435 1099
duke@435 1100 // expected usages:
duke@435 1101 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1102 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1103
duke@435 1104 // iterate over one merge
duke@435 1105 MergeMemStream(MergeMemNode* mm) {
duke@435 1106 mm->iteration_setup();
duke@435 1107 init(mm);
duke@435 1108 debug_only(_cnt2 = 999);
duke@435 1109 }
duke@435 1110 // iterate in parallel over two merges
duke@435 1111 // only iterates through non-empty elements of mm2
duke@435 1112 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1113 assert(mm2, "second argument must be a MergeMem also");
duke@435 1114 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1115 mm->iteration_setup(mm2);
duke@435 1116 init(mm, mm2);
duke@435 1117 _cnt2 = mm2->req();
duke@435 1118 }
duke@435 1119 #ifdef ASSERT
duke@435 1120 ~MergeMemStream() {
duke@435 1121 assert_synch();
duke@435 1122 }
duke@435 1123 #endif
duke@435 1124
duke@435 1125 MergeMemNode* all_memory() const {
duke@435 1126 return _mm;
duke@435 1127 }
duke@435 1128 Node* base_memory() const {
duke@435 1129 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1130 return _mm_base;
duke@435 1131 }
duke@435 1132 const MergeMemNode* all_memory2() const {
duke@435 1133 assert(_mm2 != NULL, "");
duke@435 1134 return _mm2;
duke@435 1135 }
duke@435 1136 bool at_base_memory() const {
duke@435 1137 return _idx == Compile::AliasIdxBot;
duke@435 1138 }
duke@435 1139 int alias_idx() const {
duke@435 1140 assert(_mem, "must call next 1st");
duke@435 1141 return _idx;
duke@435 1142 }
duke@435 1143
duke@435 1144 const TypePtr* adr_type() const {
duke@435 1145 return Compile::current()->get_adr_type(alias_idx());
duke@435 1146 }
duke@435 1147
duke@435 1148 const TypePtr* adr_type(Compile* C) const {
duke@435 1149 return C->get_adr_type(alias_idx());
duke@435 1150 }
duke@435 1151 bool is_empty() const {
duke@435 1152 assert(_mem, "must call next 1st");
duke@435 1153 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1154 return _mem->is_top();
duke@435 1155 }
duke@435 1156 bool is_empty2() const {
duke@435 1157 assert(_mem2, "must call next 1st");
duke@435 1158 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1159 return _mem2->is_top();
duke@435 1160 }
duke@435 1161 Node* memory() const {
duke@435 1162 assert(!is_empty(), "must not be empty");
duke@435 1163 assert_synch();
duke@435 1164 return _mem;
duke@435 1165 }
duke@435 1166 // get the current memory, regardless of empty or non-empty status
duke@435 1167 Node* force_memory() const {
duke@435 1168 assert(!is_empty() || !at_base_memory(), "");
duke@435 1169 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1170 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1171 assert(mem == check_memory(), "");
duke@435 1172 return mem;
duke@435 1173 }
duke@435 1174 Node* memory2() const {
duke@435 1175 assert(_mem2 == check_memory2(), "");
duke@435 1176 return _mem2;
duke@435 1177 }
duke@435 1178 void set_memory(Node* mem) {
duke@435 1179 if (at_base_memory()) {
duke@435 1180 // Note that this does not change the invariant _mm_base.
duke@435 1181 _mm->set_base_memory(mem);
duke@435 1182 } else {
duke@435 1183 _mm->set_memory_at(_idx, mem);
duke@435 1184 }
duke@435 1185 _mem = mem;
duke@435 1186 assert_synch();
duke@435 1187 }
duke@435 1188
duke@435 1189 // Recover from a side effect to the MergeMemNode.
duke@435 1190 void set_memory() {
duke@435 1191 _mem = _mm->in(_idx);
duke@435 1192 }
duke@435 1193
duke@435 1194 bool next() { return next(false); }
duke@435 1195 bool next2() { return next(true); }
duke@435 1196
duke@435 1197 bool next_non_empty() { return next_non_empty(false); }
duke@435 1198 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1199 // next_non_empty2 can yield states where is_empty() is true
duke@435 1200
duke@435 1201 private:
duke@435 1202 // find the next item, which might be empty
duke@435 1203 bool next(bool have_mm2) {
duke@435 1204 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1205 assert_synch();
duke@435 1206 if (++_idx < _cnt) {
duke@435 1207 // Note: This iterator allows _mm to be non-sparse.
duke@435 1208 // It behaves the same whether _mem is top or base_memory.
duke@435 1209 _mem = _mm->in(_idx);
duke@435 1210 if (have_mm2)
duke@435 1211 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1212 return true;
duke@435 1213 }
duke@435 1214 return false;
duke@435 1215 }
duke@435 1216
duke@435 1217 // find the next non-empty item
duke@435 1218 bool next_non_empty(bool have_mm2) {
duke@435 1219 while (next(have_mm2)) {
duke@435 1220 if (!is_empty()) {
duke@435 1221 // make sure _mem2 is filled in sensibly
duke@435 1222 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1223 return true;
duke@435 1224 } else if (have_mm2 && !is_empty2()) {
duke@435 1225 return true; // is_empty() == true
duke@435 1226 }
duke@435 1227 }
duke@435 1228 return false;
duke@435 1229 }
duke@435 1230 };
duke@435 1231
duke@435 1232 //------------------------------Prefetch---------------------------------------
duke@435 1233
duke@435 1234 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1235 class PrefetchReadNode : public Node {
duke@435 1236 public:
duke@435 1237 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1238 virtual int Opcode() const;
duke@435 1239 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1240 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1241 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1242 };
duke@435 1243
duke@435 1244 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1245 class PrefetchWriteNode : public Node {
duke@435 1246 public:
duke@435 1247 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1248 virtual int Opcode() const;
duke@435 1249 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1250 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@1802 1251 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
duke@435 1252 };

mercurial