src/share/vm/utilities/taskqueue.hpp

Fri, 16 Aug 2013 14:11:40 -0700

author
kvn
date
Fri, 16 Aug 2013 14:11:40 -0700
changeset 5543
4b2838704fd5
parent 5483
cd25d3be91c5
child 5555
61521bd65100
child 6461
bdd155477289
permissions
-rw-r--r--

8021898: Broken JIT compiler optimization for loop unswitching
Summary: fix method clone_projs() to clone all related MachProj nodes.
Reviewed-by: roland, adlertz

duke@435 1 /*
mikael@4153 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
stefank@2314 26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
stefank@2314 27
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "memory/allocation.inline.hpp"
stefank@2314 30 #include "runtime/mutex.hpp"
stefank@2314 31 #include "utilities/stack.hpp"
stefank@2314 32 #ifdef TARGET_OS_ARCH_linux_x86
stefank@2314 33 # include "orderAccess_linux_x86.inline.hpp"
stefank@2314 34 #endif
stefank@2314 35 #ifdef TARGET_OS_ARCH_linux_sparc
stefank@2314 36 # include "orderAccess_linux_sparc.inline.hpp"
stefank@2314 37 #endif
stefank@2314 38 #ifdef TARGET_OS_ARCH_linux_zero
stefank@2314 39 # include "orderAccess_linux_zero.inline.hpp"
stefank@2314 40 #endif
stefank@2314 41 #ifdef TARGET_OS_ARCH_solaris_x86
stefank@2314 42 # include "orderAccess_solaris_x86.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_ARCH_solaris_sparc
stefank@2314 45 # include "orderAccess_solaris_sparc.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef TARGET_OS_ARCH_windows_x86
stefank@2314 48 # include "orderAccess_windows_x86.inline.hpp"
stefank@2314 49 #endif
bobv@2508 50 #ifdef TARGET_OS_ARCH_linux_arm
bobv@2508 51 # include "orderAccess_linux_arm.inline.hpp"
bobv@2508 52 #endif
bobv@2508 53 #ifdef TARGET_OS_ARCH_linux_ppc
bobv@2508 54 # include "orderAccess_linux_ppc.inline.hpp"
bobv@2508 55 #endif
never@3156 56 #ifdef TARGET_OS_ARCH_bsd_x86
never@3156 57 # include "orderAccess_bsd_x86.inline.hpp"
never@3156 58 #endif
never@3156 59 #ifdef TARGET_OS_ARCH_bsd_zero
never@3156 60 # include "orderAccess_bsd_zero.inline.hpp"
never@3156 61 #endif
stefank@2314 62
jcoomes@2020 63 // Simple TaskQueue stats that are collected by default in debug builds.
jcoomes@2020 64
jcoomes@2020 65 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
jcoomes@2020 66 #define TASKQUEUE_STATS 1
jcoomes@2020 67 #elif !defined(TASKQUEUE_STATS)
jcoomes@2020 68 #define TASKQUEUE_STATS 0
jcoomes@2020 69 #endif
jcoomes@2020 70
jcoomes@2020 71 #if TASKQUEUE_STATS
jcoomes@2020 72 #define TASKQUEUE_STATS_ONLY(code) code
jcoomes@2020 73 #else
jcoomes@2020 74 #define TASKQUEUE_STATS_ONLY(code)
jcoomes@2020 75 #endif // TASKQUEUE_STATS
jcoomes@2020 76
jcoomes@2020 77 #if TASKQUEUE_STATS
jcoomes@2020 78 class TaskQueueStats {
jcoomes@2020 79 public:
jcoomes@2020 80 enum StatId {
jcoomes@2020 81 push, // number of taskqueue pushes
jcoomes@2020 82 pop, // number of taskqueue pops
jcoomes@2020 83 pop_slow, // subset of taskqueue pops that were done slow-path
jcoomes@2020 84 steal_attempt, // number of taskqueue steal attempts
jcoomes@2020 85 steal, // number of taskqueue steals
jcoomes@2020 86 overflow, // number of overflow pushes
jcoomes@2020 87 overflow_max_len, // max length of overflow stack
jcoomes@2020 88 last_stat_id
jcoomes@2020 89 };
jcoomes@2020 90
jcoomes@2020 91 public:
jcoomes@2020 92 inline TaskQueueStats() { reset(); }
jcoomes@2020 93
jcoomes@2020 94 inline void record_push() { ++_stats[push]; }
jcoomes@2020 95 inline void record_pop() { ++_stats[pop]; }
jcoomes@2020 96 inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
jcoomes@2020 97 inline void record_steal(bool success);
jcoomes@2020 98 inline void record_overflow(size_t new_length);
jcoomes@2020 99
jcoomes@2064 100 TaskQueueStats & operator +=(const TaskQueueStats & addend);
jcoomes@2064 101
jcoomes@2020 102 inline size_t get(StatId id) const { return _stats[id]; }
jcoomes@2020 103 inline const size_t* get() const { return _stats; }
jcoomes@2020 104
jcoomes@2020 105 inline void reset();
jcoomes@2020 106
jcoomes@2064 107 // Print the specified line of the header (does not include a line separator).
jcoomes@2020 108 static void print_header(unsigned int line, outputStream* const stream = tty,
jcoomes@2020 109 unsigned int width = 10);
jcoomes@2064 110 // Print the statistics (does not include a line separator).
jcoomes@2020 111 void print(outputStream* const stream = tty, unsigned int width = 10) const;
jcoomes@2020 112
jcoomes@2064 113 DEBUG_ONLY(void verify() const;)
jcoomes@2064 114
jcoomes@2020 115 private:
jcoomes@2020 116 size_t _stats[last_stat_id];
jcoomes@2020 117 static const char * const _names[last_stat_id];
jcoomes@2020 118 };
jcoomes@2020 119
jcoomes@2020 120 void TaskQueueStats::record_steal(bool success) {
jcoomes@2020 121 ++_stats[steal_attempt];
jcoomes@2020 122 if (success) ++_stats[steal];
jcoomes@2020 123 }
jcoomes@2020 124
jcoomes@2020 125 void TaskQueueStats::record_overflow(size_t new_len) {
jcoomes@2020 126 ++_stats[overflow];
jcoomes@2020 127 if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
jcoomes@2020 128 }
jcoomes@2020 129
jcoomes@2020 130 void TaskQueueStats::reset() {
jcoomes@2020 131 memset(_stats, 0, sizeof(_stats));
jcoomes@2020 132 }
jcoomes@2020 133 #endif // TASKQUEUE_STATS
jcoomes@2020 134
zgu@3900 135 template <unsigned int N, MEMFLAGS F>
zgu@3900 136 class TaskQueueSuper: public CHeapObj<F> {
duke@435 137 protected:
jcoomes@1342 138 // Internal type for indexing the queue; also used for the tag.
jcoomes@1342 139 typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
jcoomes@1342 140
jcoomes@1342 141 // The first free element after the last one pushed (mod N).
ysr@976 142 volatile uint _bottom;
duke@435 143
jcoomes@1746 144 enum { MOD_N_MASK = N - 1 };
duke@435 145
jcoomes@1342 146 class Age {
jcoomes@1342 147 public:
jcoomes@1342 148 Age(size_t data = 0) { _data = data; }
jcoomes@1342 149 Age(const Age& age) { _data = age._data; }
jcoomes@1342 150 Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
duke@435 151
jcoomes@1342 152 Age get() const volatile { return _data; }
jcoomes@1342 153 void set(Age age) volatile { _data = age._data; }
duke@435 154
jcoomes@1342 155 idx_t top() const volatile { return _fields._top; }
jcoomes@1342 156 idx_t tag() const volatile { return _fields._tag; }
duke@435 157
jcoomes@1342 158 // Increment top; if it wraps, increment tag also.
jcoomes@1342 159 void increment() {
jcoomes@1342 160 _fields._top = increment_index(_fields._top);
jcoomes@1342 161 if (_fields._top == 0) ++_fields._tag;
jcoomes@1342 162 }
duke@435 163
jcoomes@1342 164 Age cmpxchg(const Age new_age, const Age old_age) volatile {
jcoomes@1342 165 return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
jcoomes@1342 166 (volatile intptr_t *)&_data,
jcoomes@1342 167 (intptr_t)old_age._data);
duke@435 168 }
jcoomes@1342 169
jcoomes@1342 170 bool operator ==(const Age& other) const { return _data == other._data; }
jcoomes@1342 171
jcoomes@1342 172 private:
jcoomes@1342 173 struct fields {
jcoomes@1342 174 idx_t _top;
jcoomes@1342 175 idx_t _tag;
jcoomes@1342 176 };
jcoomes@1342 177 union {
jcoomes@1342 178 size_t _data;
jcoomes@1342 179 fields _fields;
jcoomes@1342 180 };
duke@435 181 };
jcoomes@1342 182
jcoomes@1342 183 volatile Age _age;
jcoomes@1342 184
jcoomes@1342 185 // These both operate mod N.
jcoomes@1342 186 static uint increment_index(uint ind) {
jcoomes@1342 187 return (ind + 1) & MOD_N_MASK;
duke@435 188 }
jcoomes@1342 189 static uint decrement_index(uint ind) {
jcoomes@1342 190 return (ind - 1) & MOD_N_MASK;
duke@435 191 }
duke@435 192
jcoomes@1342 193 // Returns a number in the range [0..N). If the result is "N-1", it should be
jcoomes@1342 194 // interpreted as 0.
jcoomes@1746 195 uint dirty_size(uint bot, uint top) const {
jcoomes@1342 196 return (bot - top) & MOD_N_MASK;
duke@435 197 }
duke@435 198
duke@435 199 // Returns the size corresponding to the given "bot" and "top".
jcoomes@1746 200 uint size(uint bot, uint top) const {
ysr@976 201 uint sz = dirty_size(bot, top);
jcoomes@1342 202 // Has the queue "wrapped", so that bottom is less than top? There's a
jcoomes@1342 203 // complicated special case here. A pair of threads could perform pop_local
jcoomes@1342 204 // and pop_global operations concurrently, starting from a state in which
jcoomes@1342 205 // _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
jcoomes@1342 206 // and the pop_global in incrementing _top (in which case the pop_global
jcoomes@1342 207 // will be awarded the contested queue element.) The resulting state must
jcoomes@1342 208 // be interpreted as an empty queue. (We only need to worry about one such
jcoomes@1342 209 // event: only the queue owner performs pop_local's, and several concurrent
jcoomes@1342 210 // threads attempting to perform the pop_global will all perform the same
jcoomes@1342 211 // CAS, and only one can succeed.) Any stealing thread that reads after
jcoomes@1342 212 // either the increment or decrement will see an empty queue, and will not
jcoomes@1342 213 // join the competitors. The "sz == -1 || sz == N-1" state will not be
jcoomes@1342 214 // modified by concurrent queues, so the owner thread can reset the state to
jcoomes@1342 215 // _bottom == top so subsequent pushes will be performed normally.
jcoomes@1342 216 return (sz == N - 1) ? 0 : sz;
duke@435 217 }
duke@435 218
duke@435 219 public:
duke@435 220 TaskQueueSuper() : _bottom(0), _age() {}
duke@435 221
jcoomes@1993 222 // Return true if the TaskQueue contains/does not contain any tasks.
jcoomes@1993 223 bool peek() const { return _bottom != _age.top(); }
jcoomes@1993 224 bool is_empty() const { return size() == 0; }
duke@435 225
duke@435 226 // Return an estimate of the number of elements in the queue.
duke@435 227 // The "careful" version admits the possibility of pop_local/pop_global
duke@435 228 // races.
jcoomes@1746 229 uint size() const {
jcoomes@1342 230 return size(_bottom, _age.top());
duke@435 231 }
duke@435 232
jcoomes@1746 233 uint dirty_size() const {
jcoomes@1342 234 return dirty_size(_bottom, _age.top());
duke@435 235 }
duke@435 236
ysr@777 237 void set_empty() {
ysr@777 238 _bottom = 0;
jcoomes@1342 239 _age.set(0);
ysr@777 240 }
ysr@777 241
duke@435 242 // Maximum number of elements allowed in the queue. This is two less
duke@435 243 // than the actual queue size, for somewhat complicated reasons.
jcoomes@1746 244 uint max_elems() const { return N - 2; }
jmasa@1719 245
jmasa@1719 246 // Total size of queue.
jmasa@1719 247 static const uint total_size() { return N; }
jcoomes@2020 248
jcoomes@2020 249 TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
duke@435 250 };
duke@435 251
zgu@3900 252
zgu@3900 253
zgu@3900 254 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
zgu@3900 255 class GenericTaskQueue: public TaskQueueSuper<N, F> {
brutisso@4901 256 ArrayAllocator<E, F> _array_allocator;
jcoomes@1746 257 protected:
zgu@3900 258 typedef typename TaskQueueSuper<N, F>::Age Age;
zgu@3900 259 typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
jcoomes@1746 260
zgu@3900 261 using TaskQueueSuper<N, F>::_bottom;
zgu@3900 262 using TaskQueueSuper<N, F>::_age;
zgu@3900 263 using TaskQueueSuper<N, F>::increment_index;
zgu@3900 264 using TaskQueueSuper<N, F>::decrement_index;
zgu@3900 265 using TaskQueueSuper<N, F>::dirty_size;
jcoomes@1746 266
jcoomes@1746 267 public:
zgu@3900 268 using TaskQueueSuper<N, F>::max_elems;
zgu@3900 269 using TaskQueueSuper<N, F>::size;
zgu@3900 270
zgu@3900 271 #if TASKQUEUE_STATS
zgu@3900 272 using TaskQueueSuper<N, F>::stats;
zgu@3900 273 #endif
jcoomes@1746 274
duke@435 275 private:
duke@435 276 // Slow paths for push, pop_local. (pop_global has no fast path.)
ysr@976 277 bool push_slow(E t, uint dirty_n_elems);
ysr@976 278 bool pop_local_slow(uint localBot, Age oldAge);
duke@435 279
duke@435 280 public:
jcoomes@1746 281 typedef E element_type;
jcoomes@1746 282
duke@435 283 // Initializes the queue to empty.
duke@435 284 GenericTaskQueue();
duke@435 285
duke@435 286 void initialize();
duke@435 287
jcoomes@1993 288 // Push the task "t" on the queue. Returns "false" iff the queue is full.
duke@435 289 inline bool push(E t);
duke@435 290
jcoomes@1993 291 // Attempts to claim a task from the "local" end of the queue (the most
jcoomes@1993 292 // recently pushed). If successful, returns true and sets t to the task;
jcoomes@1993 293 // otherwise, returns false (the queue is empty).
duke@435 294 inline bool pop_local(E& t);
duke@435 295
jcoomes@1993 296 // Like pop_local(), but uses the "global" end of the queue (the least
jcoomes@1993 297 // recently pushed).
duke@435 298 bool pop_global(E& t);
duke@435 299
duke@435 300 // Delete any resource associated with the queue.
duke@435 301 ~GenericTaskQueue();
duke@435 302
ysr@777 303 // apply the closure to all elements in the task queue
ysr@777 304 void oops_do(OopClosure* f);
ysr@777 305
duke@435 306 private:
duke@435 307 // Element array.
duke@435 308 volatile E* _elems;
duke@435 309 };
duke@435 310
zgu@3900 311 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 312 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
jcoomes@1342 313 assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
duke@435 314 }
duke@435 315
zgu@3900 316 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 317 void GenericTaskQueue<E, F, N>::initialize() {
brutisso@4901 318 _elems = _array_allocator.allocate(N);
duke@435 319 }
duke@435 320
zgu@3900 321 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 322 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
ysr@777 323 // tty->print_cr("START OopTaskQueue::oops_do");
ysr@976 324 uint iters = size();
ysr@976 325 uint index = _bottom;
ysr@976 326 for (uint i = 0; i < iters; ++i) {
ysr@777 327 index = decrement_index(index);
ysr@777 328 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
ysr@777 329 // index, &_elems[index], _elems[index]);
ysr@777 330 E* t = (E*)&_elems[index]; // cast away volatility
ysr@777 331 oop* p = (oop*)t;
ysr@777 332 assert((*t)->is_oop_or_null(), "Not an oop or null");
ysr@777 333 f->do_oop(p);
ysr@777 334 }
ysr@777 335 // tty->print_cr("END OopTaskQueue::oops_do");
ysr@777 336 }
ysr@777 337
zgu@3900 338 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 339 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
jcoomes@1342 340 if (dirty_n_elems == N - 1) {
duke@435 341 // Actually means 0, so do the push.
ysr@976 342 uint localBot = _bottom;
ccheung@5259 343 // g++ complains if the volatile result of the assignment is
ccheung@5259 344 // unused, so we cast the volatile away. We cannot cast directly
ccheung@5259 345 // to void, because gcc treats that as not using the result of the
ccheung@5259 346 // assignment. However, casting to E& means that we trigger an
ccheung@5259 347 // unused-value warning. So, we cast the E& to void.
ccheung@5259 348 (void)const_cast<E&>(_elems[localBot] = t);
bobv@1459 349 OrderAccess::release_store(&_bottom, increment_index(localBot));
jcoomes@2020 350 TASKQUEUE_STATS_ONLY(stats.record_push());
duke@435 351 return true;
jcoomes@1342 352 }
jcoomes@1342 353 return false;
duke@435 354 }
duke@435 355
jmasa@2188 356 // pop_local_slow() is done by the owning thread and is trying to
jmasa@2188 357 // get the last task in the queue. It will compete with pop_global()
jmasa@2188 358 // that will be used by other threads. The tag age is incremented
jmasa@2188 359 // whenever the queue goes empty which it will do here if this thread
jmasa@2188 360 // gets the last task or in pop_global() if the queue wraps (top == 0
jmasa@2188 361 // and pop_global() succeeds, see pop_global()).
zgu@3900 362 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 363 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
duke@435 364 // This queue was observed to contain exactly one element; either this
duke@435 365 // thread will claim it, or a competing "pop_global". In either case,
duke@435 366 // the queue will be logically empty afterwards. Create a new Age value
duke@435 367 // that represents the empty queue for the given value of "_bottom". (We
duke@435 368 // must also increment "tag" because of the case where "bottom == 1",
duke@435 369 // "top == 0". A pop_global could read the queue element in that case,
duke@435 370 // then have the owner thread do a pop followed by another push. Without
duke@435 371 // the incrementing of "tag", the pop_global's CAS could succeed,
duke@435 372 // allowing it to believe it has claimed the stale element.)
jcoomes@1342 373 Age newAge((idx_t)localBot, oldAge.tag() + 1);
duke@435 374 // Perhaps a competing pop_global has already incremented "top", in which
duke@435 375 // case it wins the element.
duke@435 376 if (localBot == oldAge.top()) {
duke@435 377 // No competing pop_global has yet incremented "top"; we'll try to
duke@435 378 // install new_age, thus claiming the element.
jcoomes@1342 379 Age tempAge = _age.cmpxchg(newAge, oldAge);
duke@435 380 if (tempAge == oldAge) {
duke@435 381 // We win.
jcoomes@1342 382 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
jcoomes@2020 383 TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
duke@435 384 return true;
duke@435 385 }
duke@435 386 }
jcoomes@1342 387 // We lose; a completing pop_global gets the element. But the queue is empty
jcoomes@1342 388 // and top is greater than bottom. Fix this representation of the empty queue
jcoomes@1342 389 // to become the canonical one.
jcoomes@1342 390 _age.set(newAge);
jcoomes@1342 391 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
duke@435 392 return false;
duke@435 393 }
duke@435 394
zgu@3900 395 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 396 bool GenericTaskQueue<E, F, N>::pop_global(E& t) {
jcoomes@1342 397 Age oldAge = _age.get();
vladidan@5483 398 // Architectures with weak memory model require a barrier here
vladidan@5483 399 // to guarantee that bottom is not older than age,
vladidan@5483 400 // which is crucial for the correctness of the algorithm.
vladidan@5483 401 #if !(defined SPARC || defined IA32 || defined AMD64)
vladidan@5483 402 OrderAccess::fence();
vladidan@5483 403 #endif
vladidan@5483 404 uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
ysr@976 405 uint n_elems = size(localBot, oldAge.top());
duke@435 406 if (n_elems == 0) {
duke@435 407 return false;
duke@435 408 }
jcoomes@1342 409
ccheung@5259 410 // g++ complains if the volatile result of the assignment is
ccheung@5259 411 // unused, so we cast the volatile away. We cannot cast directly
ccheung@5259 412 // to void, because gcc treats that as not using the result of the
ccheung@5259 413 // assignment. However, casting to E& means that we trigger an
ccheung@5259 414 // unused-value warning. So, we cast the E& to void.
ccheung@5259 415 (void) const_cast<E&>(t = _elems[oldAge.top()]);
jcoomes@1342 416 Age newAge(oldAge);
jcoomes@1342 417 newAge.increment();
jcoomes@1342 418 Age resAge = _age.cmpxchg(newAge, oldAge);
jcoomes@1342 419
duke@435 420 // Note that using "_bottom" here might fail, since a pop_local might
duke@435 421 // have decremented it.
jcoomes@1342 422 assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
jcoomes@1342 423 return resAge == oldAge;
duke@435 424 }
duke@435 425
zgu@3900 426 template<class E, MEMFLAGS F, unsigned int N>
zgu@3900 427 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
zgu@3900 428 FREE_C_HEAP_ARRAY(E, _elems, F);
duke@435 429 }
duke@435 430
jcoomes@1993 431 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
jcoomes@1993 432 // elements that do not fit in the TaskQueue.
jcoomes@1993 433 //
jcoomes@2191 434 // This class hides two methods from super classes:
jcoomes@1993 435 //
jcoomes@1993 436 // push() - push onto the task queue or, if that fails, onto the overflow stack
jcoomes@1993 437 // is_empty() - return true if both the TaskQueue and overflow stack are empty
jcoomes@1993 438 //
jcoomes@2191 439 // Note that size() is not hidden--it returns the number of elements in the
jcoomes@1993 440 // TaskQueue, and does not include the size of the overflow stack. This
jcoomes@1993 441 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
zgu@3900 442 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
zgu@3900 443 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
jcoomes@1993 444 {
jcoomes@1993 445 public:
zgu@3900 446 typedef Stack<E, F> overflow_t;
zgu@3900 447 typedef GenericTaskQueue<E, F, N> taskqueue_t;
jcoomes@1993 448
jcoomes@2020 449 TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
jcoomes@2020 450
jcoomes@1993 451 // Push task t onto the queue or onto the overflow stack. Return true.
jcoomes@1993 452 inline bool push(E t);
jcoomes@1993 453
jcoomes@1993 454 // Attempt to pop from the overflow stack; return true if anything was popped.
jcoomes@1993 455 inline bool pop_overflow(E& t);
jcoomes@1993 456
jcoomes@2191 457 inline overflow_t* overflow_stack() { return &_overflow_stack; }
jcoomes@2191 458
jcoomes@1993 459 inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
jcoomes@2191 460 inline bool overflow_empty() const { return _overflow_stack.is_empty(); }
jcoomes@1993 461 inline bool is_empty() const {
jcoomes@1993 462 return taskqueue_empty() && overflow_empty();
jcoomes@1993 463 }
jcoomes@1993 464
jcoomes@1993 465 private:
jcoomes@2191 466 overflow_t _overflow_stack;
jcoomes@1993 467 };
jcoomes@1993 468
zgu@3900 469 template <class E, MEMFLAGS F, unsigned int N>
zgu@3900 470 bool OverflowTaskQueue<E, F, N>::push(E t)
jcoomes@1993 471 {
jcoomes@1993 472 if (!taskqueue_t::push(t)) {
jcoomes@1993 473 overflow_stack()->push(t);
jcoomes@2191 474 TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
jcoomes@1993 475 }
jcoomes@1993 476 return true;
jcoomes@1993 477 }
jcoomes@1993 478
zgu@3900 479 template <class E, MEMFLAGS F, unsigned int N>
zgu@3900 480 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
jcoomes@1993 481 {
jcoomes@1993 482 if (overflow_empty()) return false;
jcoomes@1993 483 t = overflow_stack()->pop();
jcoomes@1993 484 return true;
jcoomes@1993 485 }
jcoomes@1993 486
zgu@3900 487 class TaskQueueSetSuper {
duke@435 488 protected:
duke@435 489 static int randomParkAndMiller(int* seed0);
duke@435 490 public:
duke@435 491 // Returns "true" if some TaskQueue in the set contains a task.
duke@435 492 virtual bool peek() = 0;
duke@435 493 };
duke@435 494
zgu@3900 495 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
zgu@3900 496 };
zgu@3900 497
zgu@3900 498 template<class T, MEMFLAGS F>
zgu@3900 499 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
duke@435 500 private:
ysr@976 501 uint _n;
jcoomes@1746 502 T** _queues;
duke@435 503
duke@435 504 public:
jcoomes@1746 505 typedef typename T::element_type E;
jcoomes@1746 506
duke@435 507 GenericTaskQueueSet(int n) : _n(n) {
jcoomes@1746 508 typedef T* GenericTaskQueuePtr;
zgu@3900 509 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
duke@435 510 for (int i = 0; i < n; i++) {
duke@435 511 _queues[i] = NULL;
duke@435 512 }
duke@435 513 }
duke@435 514
ysr@976 515 bool steal_best_of_2(uint queue_num, int* seed, E& t);
duke@435 516
jcoomes@1746 517 void register_queue(uint i, T* q);
duke@435 518
jcoomes@1746 519 T* queue(uint n);
duke@435 520
jcoomes@1993 521 // The thread with queue number "queue_num" (and whose random number seed is
jcoomes@1993 522 // at "seed") is trying to steal a task from some other queue. (It may try
jcoomes@1993 523 // several queues, according to some configuration parameter.) If some steal
jcoomes@1993 524 // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
jcoomes@1993 525 // false.
ysr@976 526 bool steal(uint queue_num, int* seed, E& t);
duke@435 527
duke@435 528 bool peek();
duke@435 529 };
duke@435 530
zgu@3900 531 template<class T, MEMFLAGS F> void
zgu@3900 532 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
ysr@976 533 assert(i < _n, "index out of range.");
duke@435 534 _queues[i] = q;
duke@435 535 }
duke@435 536
zgu@3900 537 template<class T, MEMFLAGS F> T*
zgu@3900 538 GenericTaskQueueSet<T, F>::queue(uint i) {
duke@435 539 return _queues[i];
duke@435 540 }
duke@435 541
zgu@3900 542 template<class T, MEMFLAGS F> bool
zgu@3900 543 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
jcoomes@2020 544 for (uint i = 0; i < 2 * _n; i++) {
jcoomes@2020 545 if (steal_best_of_2(queue_num, seed, t)) {
jcoomes@2020 546 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
duke@435 547 return true;
jcoomes@2020 548 }
jcoomes@2020 549 }
jcoomes@2020 550 TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
duke@435 551 return false;
duke@435 552 }
duke@435 553
zgu@3900 554 template<class T, MEMFLAGS F> bool
zgu@3900 555 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
duke@435 556 if (_n > 2) {
ysr@976 557 uint k1 = queue_num;
zgu@3900 558 while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
ysr@976 559 uint k2 = queue_num;
zgu@3900 560 while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
duke@435 561 // Sample both and try the larger.
ysr@976 562 uint sz1 = _queues[k1]->size();
ysr@976 563 uint sz2 = _queues[k2]->size();
duke@435 564 if (sz2 > sz1) return _queues[k2]->pop_global(t);
duke@435 565 else return _queues[k1]->pop_global(t);
duke@435 566 } else if (_n == 2) {
duke@435 567 // Just try the other one.
ysr@976 568 uint k = (queue_num + 1) % 2;
duke@435 569 return _queues[k]->pop_global(t);
duke@435 570 } else {
duke@435 571 assert(_n == 1, "can't be zero.");
duke@435 572 return false;
duke@435 573 }
duke@435 574 }
duke@435 575
zgu@3900 576 template<class T, MEMFLAGS F>
zgu@3900 577 bool GenericTaskQueueSet<T, F>::peek() {
duke@435 578 // Try all the queues.
ysr@976 579 for (uint j = 0; j < _n; j++) {
duke@435 580 if (_queues[j]->peek())
duke@435 581 return true;
duke@435 582 }
duke@435 583 return false;
duke@435 584 }
duke@435 585
ysr@777 586 // When to terminate from the termination protocol.
zgu@3900 587 class TerminatorTerminator: public CHeapObj<mtInternal> {
ysr@777 588 public:
ysr@777 589 virtual bool should_exit_termination() = 0;
ysr@777 590 };
ysr@777 591
duke@435 592 // A class to aid in the termination of a set of parallel tasks using
duke@435 593 // TaskQueueSet's for work stealing.
duke@435 594
jmasa@981 595 #undef TRACESPINNING
jmasa@981 596
duke@435 597 class ParallelTaskTerminator: public StackObj {
duke@435 598 private:
duke@435 599 int _n_threads;
duke@435 600 TaskQueueSetSuper* _queue_set;
ysr@976 601 int _offered_termination;
duke@435 602
jmasa@981 603 #ifdef TRACESPINNING
jmasa@981 604 static uint _total_yields;
jmasa@981 605 static uint _total_spins;
jmasa@981 606 static uint _total_peeks;
jmasa@981 607 #endif
jmasa@981 608
duke@435 609 bool peek_in_queue_set();
duke@435 610 protected:
duke@435 611 virtual void yield();
duke@435 612 void sleep(uint millis);
duke@435 613
duke@435 614 public:
duke@435 615
duke@435 616 // "n_threads" is the number of threads to be terminated. "queue_set" is a
duke@435 617 // queue sets of work queues of other threads.
duke@435 618 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
duke@435 619
duke@435 620 // The current thread has no work, and is ready to terminate if everyone
duke@435 621 // else is. If returns "true", all threads are terminated. If returns
duke@435 622 // "false", available work has been observed in one of the task queues,
duke@435 623 // so the global task is not complete.
ysr@777 624 bool offer_termination() {
ysr@777 625 return offer_termination(NULL);
ysr@777 626 }
ysr@777 627
jcoomes@1342 628 // As above, but it also terminates if the should_exit_termination()
ysr@777 629 // method of the terminator parameter returns true. If terminator is
ysr@777 630 // NULL, then it is ignored.
ysr@777 631 bool offer_termination(TerminatorTerminator* terminator);
duke@435 632
duke@435 633 // Reset the terminator, so that it may be reused again.
duke@435 634 // The caller is responsible for ensuring that this is done
duke@435 635 // in an MT-safe manner, once the previous round of use of
duke@435 636 // the terminator is finished.
duke@435 637 void reset_for_reuse();
jmasa@2188 638 // Same as above but the number of parallel threads is set to the
jmasa@2188 639 // given number.
jmasa@2188 640 void reset_for_reuse(int n_threads);
duke@435 641
jmasa@981 642 #ifdef TRACESPINNING
jmasa@981 643 static uint total_yields() { return _total_yields; }
jmasa@981 644 static uint total_spins() { return _total_spins; }
jmasa@981 645 static uint total_peeks() { return _total_peeks; }
jmasa@981 646 static void print_termination_counts();
jmasa@981 647 #endif
duke@435 648 };
duke@435 649
zgu@3900 650 template<class E, MEMFLAGS F, unsigned int N> inline bool
zgu@3900 651 GenericTaskQueue<E, F, N>::push(E t) {
ysr@976 652 uint localBot = _bottom;
vladidan@5483 653 assert(localBot < N, "_bottom out of range.");
jcoomes@1342 654 idx_t top = _age.top();
ysr@976 655 uint dirty_n_elems = dirty_size(localBot, top);
jcoomes@1746 656 assert(dirty_n_elems < N, "n_elems out of range.");
duke@435 657 if (dirty_n_elems < max_elems()) {
ccheung@5259 658 // g++ complains if the volatile result of the assignment is
ccheung@5259 659 // unused, so we cast the volatile away. We cannot cast directly
ccheung@5259 660 // to void, because gcc treats that as not using the result of the
ccheung@5259 661 // assignment. However, casting to E& means that we trigger an
ccheung@5259 662 // unused-value warning. So, we cast the E& to void.
ccheung@5259 663 (void) const_cast<E&>(_elems[localBot] = t);
bobv@1459 664 OrderAccess::release_store(&_bottom, increment_index(localBot));
jcoomes@2020 665 TASKQUEUE_STATS_ONLY(stats.record_push());
duke@435 666 return true;
duke@435 667 } else {
duke@435 668 return push_slow(t, dirty_n_elems);
duke@435 669 }
duke@435 670 }
duke@435 671
zgu@3900 672 template<class E, MEMFLAGS F, unsigned int N> inline bool
zgu@3900 673 GenericTaskQueue<E, F, N>::pop_local(E& t) {
ysr@976 674 uint localBot = _bottom;
jcoomes@1342 675 // This value cannot be N-1. That can only occur as a result of
duke@435 676 // the assignment to bottom in this method. If it does, this method
jcoomes@1993 677 // resets the size to 0 before the next call (which is sequential,
duke@435 678 // since this is pop_local.)
jcoomes@1342 679 uint dirty_n_elems = dirty_size(localBot, _age.top());
jcoomes@1342 680 assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
duke@435 681 if (dirty_n_elems == 0) return false;
duke@435 682 localBot = decrement_index(localBot);
duke@435 683 _bottom = localBot;
duke@435 684 // This is necessary to prevent any read below from being reordered
duke@435 685 // before the store just above.
duke@435 686 OrderAccess::fence();
ccheung@5259 687 // g++ complains if the volatile result of the assignment is
ccheung@5259 688 // unused, so we cast the volatile away. We cannot cast directly
ccheung@5259 689 // to void, because gcc treats that as not using the result of the
ccheung@5259 690 // assignment. However, casting to E& means that we trigger an
ccheung@5259 691 // unused-value warning. So, we cast the E& to void.
ccheung@5259 692 (void) const_cast<E&>(t = _elems[localBot]);
duke@435 693 // This is a second read of "age"; the "size()" above is the first.
duke@435 694 // If there's still at least one element in the queue, based on the
duke@435 695 // "_bottom" and "age" we've read, then there can be no interference with
duke@435 696 // a "pop_global" operation, and we're done.
jcoomes@1342 697 idx_t tp = _age.top(); // XXX
duke@435 698 if (size(localBot, tp) > 0) {
jcoomes@1342 699 assert(dirty_size(localBot, tp) != N - 1, "sanity");
jcoomes@2020 700 TASKQUEUE_STATS_ONLY(stats.record_pop());
duke@435 701 return true;
duke@435 702 } else {
duke@435 703 // Otherwise, the queue contained exactly one element; we take the slow
duke@435 704 // path.
jcoomes@1342 705 return pop_local_slow(localBot, _age.get());
duke@435 706 }
duke@435 707 }
duke@435 708
zgu@3900 709 typedef GenericTaskQueue<oop, mtGC> OopTaskQueue;
zgu@3900 710 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
duke@435 711
jcoomes@1746 712 #ifdef _MSC_VER
jcoomes@1746 713 #pragma warning(push)
jcoomes@1746 714 // warning C4522: multiple assignment operators specified
jcoomes@1746 715 #pragma warning(disable:4522)
jcoomes@1746 716 #endif
coleenp@548 717
coleenp@548 718 // This is a container class for either an oop* or a narrowOop*.
coleenp@548 719 // Both are pushed onto a task queue and the consumer will test is_narrow()
coleenp@548 720 // to determine which should be processed.
coleenp@548 721 class StarTask {
coleenp@548 722 void* _holder; // either union oop* or narrowOop*
jcoomes@1746 723
jcoomes@1746 724 enum { COMPRESSED_OOP_MASK = 1 };
jcoomes@1746 725
coleenp@548 726 public:
ysr@1280 727 StarTask(narrowOop* p) {
ysr@1280 728 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 729 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
ysr@1280 730 }
ysr@1280 731 StarTask(oop* p) {
ysr@1280 732 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 733 _holder = (void*)p;
ysr@1280 734 }
coleenp@548 735 StarTask() { _holder = NULL; }
coleenp@548 736 operator oop*() { return (oop*)_holder; }
coleenp@548 737 operator narrowOop*() {
coleenp@548 738 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
coleenp@548 739 }
coleenp@548 740
jcoomes@1746 741 StarTask& operator=(const StarTask& t) {
jcoomes@1746 742 _holder = t._holder;
jcoomes@1746 743 return *this;
jcoomes@1746 744 }
jcoomes@1746 745 volatile StarTask& operator=(const volatile StarTask& t) volatile {
jcoomes@1746 746 _holder = t._holder;
jcoomes@1746 747 return *this;
jcoomes@1746 748 }
coleenp@548 749
coleenp@548 750 bool is_narrow() const {
coleenp@548 751 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
coleenp@548 752 }
coleenp@548 753 };
coleenp@548 754
jcoomes@1746 755 class ObjArrayTask
jcoomes@1746 756 {
jcoomes@1746 757 public:
jcoomes@1746 758 ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
jcoomes@1746 759 ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
jcoomes@1746 760 assert(idx <= size_t(max_jint), "too big");
jcoomes@1746 761 }
jcoomes@1746 762 ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
jcoomes@1746 763
jcoomes@1746 764 ObjArrayTask& operator =(const ObjArrayTask& t) {
jcoomes@1746 765 _obj = t._obj;
jcoomes@1746 766 _index = t._index;
jcoomes@1746 767 return *this;
jcoomes@1746 768 }
jcoomes@1746 769 volatile ObjArrayTask&
jcoomes@1746 770 operator =(const volatile ObjArrayTask& t) volatile {
jcoomes@1746 771 _obj = t._obj;
jcoomes@1746 772 _index = t._index;
jcoomes@1746 773 return *this;
jcoomes@1746 774 }
jcoomes@1746 775
jcoomes@1746 776 inline oop obj() const { return _obj; }
jcoomes@1746 777 inline int index() const { return _index; }
jcoomes@1746 778
jcoomes@1746 779 DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
jcoomes@1746 780
jcoomes@1746 781 private:
jcoomes@1746 782 oop _obj;
jcoomes@1746 783 int _index;
jcoomes@1746 784 };
jcoomes@1746 785
jcoomes@1746 786 #ifdef _MSC_VER
jcoomes@1746 787 #pragma warning(pop)
jcoomes@1746 788 #endif
jcoomes@1746 789
zgu@3900 790 typedef OverflowTaskQueue<StarTask, mtClass> OopStarTaskQueue;
zgu@3900 791 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
duke@435 792
zgu@3900 793 typedef OverflowTaskQueue<size_t, mtInternal> RegionTaskQueue;
zgu@3900 794 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass> RegionTaskQueueSet;
jmasa@2188 795
stefank@2314 796
stefank@2314 797 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial