src/share/vm/opto/escape.cpp

Fri, 11 Jul 2008 12:19:29 -0700

author
kvn
date
Fri, 11 Jul 2008 12:19:29 -0700
changeset 680
4a4c365f777d
parent 670
9c2ecc2ffb12
parent 679
524eca34ea76
child 682
02a35ad4adf8
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@631 2 * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
duke@435 65 void PointsToNode::dump() const {
duke@435 66 NodeType nt = node_type();
duke@435 67 EscapeState es = escape_state();
kvn@500 68 tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
duke@435 69 for (uint i = 0; i < edge_count(); i++) {
duke@435 70 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 71 }
duke@435 72 tty->print("]] ");
duke@435 73 if (_node == NULL)
duke@435 74 tty->print_cr("<null>");
duke@435 75 else
duke@435 76 _node->dump();
duke@435 77 }
duke@435 78 #endif
duke@435 79
kvn@679 80 ConnectionGraph::ConnectionGraph(Compile * C) :
kvn@679 81 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 82 _processed(C->comp_arena()),
kvn@679 83 _collecting(true),
kvn@679 84 _compile(C),
kvn@679 85 _node_map(C->comp_arena()) {
kvn@679 86
duke@435 87 _phantom_object = C->top()->_idx;
duke@435 88 PointsToNode *phn = ptnode_adr(_phantom_object);
kvn@500 89 phn->_node = C->top();
duke@435 90 phn->set_node_type(PointsToNode::JavaObject);
duke@435 91 phn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 92 }
duke@435 93
duke@435 94 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 95 PointsToNode *f = ptnode_adr(from_i);
duke@435 96 PointsToNode *t = ptnode_adr(to_i);
duke@435 97
duke@435 98 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 99 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 100 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 101 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 102 }
duke@435 103
duke@435 104 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 105 PointsToNode *f = ptnode_adr(from_i);
duke@435 106 PointsToNode *t = ptnode_adr(to_i);
duke@435 107
duke@435 108 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 109 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 110 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 111 // don't add a self-referential edge, this can occur during removal of
duke@435 112 // deferred edges
duke@435 113 if (from_i != to_i)
duke@435 114 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 115 }
duke@435 116
kvn@500 117 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 118 const Type *adr_type = phase->type(adr);
kvn@500 119 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 120 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 121 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 122 // We are computing a raw address for a store captured by an Initialize
kvn@500 123 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 124 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 125 assert(offs != Type::OffsetBot ||
kvn@500 126 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 127 "offset must be a constant or it is initialization of array");
kvn@500 128 return offs;
kvn@500 129 }
kvn@500 130 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 131 assert(t_ptr != NULL, "must be a pointer type");
duke@435 132 return t_ptr->offset();
duke@435 133 }
duke@435 134
duke@435 135 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 136 PointsToNode *f = ptnode_adr(from_i);
duke@435 137 PointsToNode *t = ptnode_adr(to_i);
duke@435 138
duke@435 139 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 140 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 141 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 142 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 143 t->set_offset(offset);
duke@435 144
duke@435 145 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 146 }
duke@435 147
duke@435 148 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 149 PointsToNode *npt = ptnode_adr(ni);
duke@435 150 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 151 if (es > old_es)
duke@435 152 npt->set_escape_state(es);
duke@435 153 }
duke@435 154
kvn@500 155 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 156 PointsToNode::EscapeState es, bool done) {
kvn@500 157 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 158 ptadr->_node = n;
kvn@500 159 ptadr->set_node_type(nt);
kvn@500 160
kvn@500 161 // inline set_escape_state(idx, es);
kvn@500 162 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 163 if (es > old_es)
kvn@500 164 ptadr->set_escape_state(es);
kvn@500 165
kvn@500 166 if (done)
kvn@500 167 _processed.set(n->_idx);
kvn@500 168 }
kvn@500 169
duke@435 170 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 171 uint idx = n->_idx;
duke@435 172 PointsToNode::EscapeState es;
duke@435 173
kvn@500 174 // If we are still collecting or there were no non-escaping allocations
kvn@500 175 // we don't know the answer yet
kvn@679 176 if (_collecting)
duke@435 177 return PointsToNode::UnknownEscape;
duke@435 178
duke@435 179 // if the node was created after the escape computation, return
duke@435 180 // UnknownEscape
kvn@679 181 if (idx >= nodes_size())
duke@435 182 return PointsToNode::UnknownEscape;
duke@435 183
kvn@679 184 es = ptnode_adr(idx)->escape_state();
duke@435 185
duke@435 186 // if we have already computed a value, return it
duke@435 187 if (es != PointsToNode::UnknownEscape)
duke@435 188 return es;
duke@435 189
kvn@679 190 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 191 if (n->uncast()->_idx >= nodes_size())
kvn@679 192 return PointsToNode::UnknownEscape;
kvn@679 193
duke@435 194 // compute max escape state of anything this node could point to
duke@435 195 VectorSet ptset(Thread::current()->resource_area());
duke@435 196 PointsTo(ptset, n, phase);
kvn@500 197 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 198 uint pt = i.elem;
kvn@679 199 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 200 if (pes > es)
duke@435 201 es = pes;
duke@435 202 }
duke@435 203 // cache the computed escape state
duke@435 204 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@679 205 ptnode_adr(idx)->set_escape_state(es);
duke@435 206 return es;
duke@435 207 }
duke@435 208
duke@435 209 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 210 VectorSet visited(Thread::current()->resource_area());
duke@435 211 GrowableArray<uint> worklist;
duke@435 212
kvn@559 213 #ifdef ASSERT
kvn@559 214 Node *orig_n = n;
kvn@559 215 #endif
kvn@559 216
kvn@500 217 n = n->uncast();
kvn@679 218 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 219
duke@435 220 // If we have a JavaObject, return just that object
kvn@679 221 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 222 ptset.set(n->_idx);
duke@435 223 return;
duke@435 224 }
kvn@559 225 #ifdef ASSERT
kvn@679 226 if (npt->_node == NULL) {
kvn@559 227 if (orig_n != n)
kvn@559 228 orig_n->dump();
kvn@559 229 n->dump();
kvn@679 230 assert(npt->_node != NULL, "unregistered node");
kvn@559 231 }
kvn@559 232 #endif
duke@435 233 worklist.push(n->_idx);
duke@435 234 while(worklist.length() > 0) {
duke@435 235 int ni = worklist.pop();
kvn@679 236 if (visited.test_set(ni))
kvn@679 237 continue;
duke@435 238
kvn@679 239 PointsToNode* pn = ptnode_adr(ni);
kvn@679 240 // ensure that all inputs of a Phi have been processed
kvn@679 241 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 242
kvn@679 243 int edges_processed = 0;
kvn@679 244 uint e_cnt = pn->edge_count();
kvn@679 245 for (uint e = 0; e < e_cnt; e++) {
kvn@679 246 uint etgt = pn->edge_target(e);
kvn@679 247 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 248 if (et == PointsToNode::PointsToEdge) {
kvn@679 249 ptset.set(etgt);
kvn@679 250 edges_processed++;
kvn@679 251 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 252 worklist.push(etgt);
kvn@679 253 edges_processed++;
kvn@679 254 } else {
kvn@679 255 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 256 }
kvn@679 257 }
kvn@679 258 if (edges_processed == 0) {
kvn@679 259 // no deferred or pointsto edges found. Assume the value was set
kvn@679 260 // outside this method. Add the phantom object to the pointsto set.
kvn@679 261 ptset.set(_phantom_object);
duke@435 262 }
duke@435 263 }
duke@435 264 }
duke@435 265
kvn@536 266 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 267 // This method is most expensive during ConnectionGraph construction.
kvn@536 268 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 269 deferred_edges->clear();
kvn@536 270 visited->Clear();
duke@435 271
kvn@679 272 visited->set(ni);
duke@435 273 PointsToNode *ptn = ptnode_adr(ni);
duke@435 274
kvn@536 275 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 276 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 277 uint t = ptn->edge_target(i);
kvn@536 278 #ifdef ASSERT
kvn@536 279 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 280 #else
kvn@536 281 visited->set(t);
kvn@536 282 #endif
kvn@536 283 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 284 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 285 deferred_edges->append(t);
kvn@559 286 } else {
kvn@559 287 i++;
kvn@536 288 }
kvn@536 289 }
kvn@536 290 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 291 uint t = deferred_edges->at(next);
kvn@500 292 PointsToNode *ptt = ptnode_adr(t);
kvn@679 293 uint e_cnt = ptt->edge_count();
kvn@679 294 for (uint e = 0; e < e_cnt; e++) {
kvn@679 295 uint etgt = ptt->edge_target(e);
kvn@679 296 if (visited->test_set(etgt))
kvn@536 297 continue;
kvn@679 298
kvn@679 299 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 300 if (et == PointsToNode::PointsToEdge) {
kvn@679 301 add_pointsto_edge(ni, etgt);
kvn@679 302 if(etgt == _phantom_object) {
kvn@679 303 // Special case - field set outside (globally escaping).
kvn@679 304 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 305 }
kvn@679 306 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 307 deferred_edges->append(etgt);
kvn@679 308 } else {
kvn@679 309 assert(false,"invalid connection graph");
duke@435 310 }
duke@435 311 }
duke@435 312 }
duke@435 313 }
duke@435 314
duke@435 315
duke@435 316 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 317 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 318 // a pointsto edge is added if it is a JavaObject
duke@435 319
duke@435 320 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 321 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 322 PointsToNode* to = ptnode_adr(to_i);
kvn@679 323 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 324
kvn@679 325 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 326 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 327 int fi = an->edge_target(fe);
kvn@679 328 PointsToNode* pf = ptnode_adr(fi);
kvn@679 329 int po = pf->offset();
duke@435 330 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 331 if (deferred)
duke@435 332 add_deferred_edge(fi, to_i);
duke@435 333 else
duke@435 334 add_pointsto_edge(fi, to_i);
duke@435 335 }
duke@435 336 }
duke@435 337 }
duke@435 338
kvn@500 339 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 340 // whose offset matches "offset".
duke@435 341 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 342 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 343 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 344 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 345 int fi = an->edge_target(fe);
kvn@679 346 PointsToNode* pf = ptnode_adr(fi);
kvn@679 347 int po = pf->offset();
kvn@679 348 if (pf->edge_count() == 0) {
duke@435 349 // we have not seen any stores to this field, assume it was set outside this method
duke@435 350 add_pointsto_edge(fi, _phantom_object);
duke@435 351 }
duke@435 352 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 353 add_deferred_edge(from_i, fi);
duke@435 354 }
duke@435 355 }
duke@435 356 }
duke@435 357
kvn@500 358 // Helper functions
kvn@500 359
kvn@500 360 static Node* get_addp_base(Node *addp) {
kvn@500 361 assert(addp->is_AddP(), "must be AddP");
kvn@500 362 //
kvn@500 363 // AddP cases for Base and Address inputs:
kvn@500 364 // case #1. Direct object's field reference:
kvn@500 365 // Allocate
kvn@500 366 // |
kvn@500 367 // Proj #5 ( oop result )
kvn@500 368 // |
kvn@500 369 // CheckCastPP (cast to instance type)
kvn@500 370 // | |
kvn@500 371 // AddP ( base == address )
kvn@500 372 //
kvn@500 373 // case #2. Indirect object's field reference:
kvn@500 374 // Phi
kvn@500 375 // |
kvn@500 376 // CastPP (cast to instance type)
kvn@500 377 // | |
kvn@500 378 // AddP ( base == address )
kvn@500 379 //
kvn@500 380 // case #3. Raw object's field reference for Initialize node:
kvn@500 381 // Allocate
kvn@500 382 // |
kvn@500 383 // Proj #5 ( oop result )
kvn@500 384 // top |
kvn@500 385 // \ |
kvn@500 386 // AddP ( base == top )
kvn@500 387 //
kvn@500 388 // case #4. Array's element reference:
kvn@500 389 // {CheckCastPP | CastPP}
kvn@500 390 // | | |
kvn@500 391 // | AddP ( array's element offset )
kvn@500 392 // | |
kvn@500 393 // AddP ( array's offset )
kvn@500 394 //
kvn@500 395 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 396 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 397 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 398 // Allocate
kvn@500 399 // |
kvn@500 400 // Proj #5 ( oop result )
kvn@500 401 // | |
kvn@500 402 // AddP ( base == address )
kvn@500 403 //
kvn@512 404 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 405 // Raw object's field reference:
kvn@512 406 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 407 // top |
kvn@500 408 // \ |
kvn@500 409 // AddP ( base == top )
kvn@500 410 //
kvn@512 411 // case #7. Klass's field reference.
kvn@512 412 // LoadKlass
kvn@512 413 // | |
kvn@512 414 // AddP ( base == address )
kvn@512 415 //
kvn@599 416 // case #8. narrow Klass's field reference.
kvn@599 417 // LoadNKlass
kvn@599 418 // |
kvn@599 419 // DecodeN
kvn@599 420 // | |
kvn@599 421 // AddP ( base == address )
kvn@599 422 //
kvn@500 423 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 424 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 425 base = addp->in(AddPNode::Address)->uncast();
kvn@500 426 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 427 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 428 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 429 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 430 }
kvn@500 431 return base;
kvn@500 432 }
kvn@500 433
kvn@500 434 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 435 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 436
kvn@500 437 Node* addp2 = addp->raw_out(0);
kvn@500 438 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 439 addp2->in(AddPNode::Base) == n &&
kvn@500 440 addp2->in(AddPNode::Address) == addp) {
kvn@500 441
kvn@500 442 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 443 //
kvn@500 444 // Find array's offset to push it on worklist first and
kvn@500 445 // as result process an array's element offset first (pushed second)
kvn@500 446 // to avoid CastPP for the array's offset.
kvn@500 447 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 448 // the AddP (Field) points to. Which would be wrong since
kvn@500 449 // the algorithm expects the CastPP has the same point as
kvn@500 450 // as AddP's base CheckCastPP (LocalVar).
kvn@500 451 //
kvn@500 452 // ArrayAllocation
kvn@500 453 // |
kvn@500 454 // CheckCastPP
kvn@500 455 // |
kvn@500 456 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 457 // | ||
kvn@500 458 // | || Int (element index)
kvn@500 459 // | || | ConI (log(element size))
kvn@500 460 // | || | /
kvn@500 461 // | || LShift
kvn@500 462 // | || /
kvn@500 463 // | AddP (array's element offset)
kvn@500 464 // | |
kvn@500 465 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 466 // | / /
kvn@500 467 // AddP (array's offset)
kvn@500 468 // |
kvn@500 469 // Load/Store (memory operation on array's element)
kvn@500 470 //
kvn@500 471 return addp2;
kvn@500 472 }
kvn@500 473 return NULL;
duke@435 474 }
duke@435 475
duke@435 476 //
duke@435 477 // Adjust the type and inputs of an AddP which computes the
duke@435 478 // address of a field of an instance
duke@435 479 //
duke@435 480 void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 481 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 482 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 483 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 484 if (t == NULL) {
kvn@500 485 // We are computing a raw address for a store captured by an Initialize
kvn@500 486 // compute an appropriate address type.
kvn@500 487 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 488 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@500 489 int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 490 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 491 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 492 }
kvn@658 493 int inst_id = base_t->instance_id();
kvn@658 494 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 495 "old type must be non-instance or match new type");
duke@435 496 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@500 497 // Do NOT remove the next call: ensure an new alias index is allocated
kvn@500 498 // for the instance type
duke@435 499 int alias_idx = _compile->get_alias_index(tinst);
duke@435 500 igvn->set_type(addp, tinst);
duke@435 501 // record the allocation in the node map
duke@435 502 set_map(addp->_idx, get_map(base->_idx));
kvn@500 503 // if the Address input is not the appropriate instance type
kvn@500 504 // (due to intervening casts,) insert a cast
duke@435 505 Node *adr = addp->in(AddPNode::Address);
duke@435 506 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@500 507 if (atype != NULL && atype->instance_id() != inst_id) {
kvn@658 508 assert(!atype->is_known_instance(), "no conflicting instances");
duke@435 509 const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
duke@435 510 Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
duke@435 511 acast->set_req(0, adr->in(0));
duke@435 512 igvn->set_type(acast, new_atype);
duke@435 513 record_for_optimizer(acast);
duke@435 514 Node *bcast = acast;
duke@435 515 Node *abase = addp->in(AddPNode::Base);
duke@435 516 if (abase != adr) {
duke@435 517 bcast = new (_compile, 2) CastPPNode(abase, base_t);
duke@435 518 bcast->set_req(0, abase->in(0));
duke@435 519 igvn->set_type(bcast, base_t);
duke@435 520 record_for_optimizer(bcast);
duke@435 521 }
duke@435 522 igvn->hash_delete(addp);
duke@435 523 addp->set_req(AddPNode::Base, bcast);
duke@435 524 addp->set_req(AddPNode::Address, acast);
duke@435 525 igvn->hash_insert(addp);
duke@435 526 }
kvn@500 527 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 528 record_for_optimizer(addp);
duke@435 529 }
duke@435 530
duke@435 531 //
duke@435 532 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 533 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 534 // phi was created. Cache the last newly created phi in the node map.
duke@435 535 //
duke@435 536 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 537 Compile *C = _compile;
duke@435 538 new_created = false;
duke@435 539 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 540 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 541 if (phi_alias_idx == alias_idx) {
duke@435 542 return orig_phi;
duke@435 543 }
duke@435 544 // have we already created a Phi for this alias index?
duke@435 545 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 546 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 547 return result;
duke@435 548 }
kvn@473 549 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 550 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 551 // Retry compilation without escape analysis.
kvn@473 552 // If this is the first failure, the sentinel string will "stick"
kvn@473 553 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 554 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 555 }
kvn@473 556 return NULL;
kvn@473 557 }
duke@435 558 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 559 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 560 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
duke@435 561 set_map_phi(orig_phi->_idx, result);
duke@435 562 igvn->set_type(result, result->bottom_type());
duke@435 563 record_for_optimizer(result);
duke@435 564 new_created = true;
duke@435 565 return result;
duke@435 566 }
duke@435 567
duke@435 568 //
duke@435 569 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 570 // specified alias index.
duke@435 571 //
duke@435 572 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 573
duke@435 574 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 575 Compile *C = _compile;
duke@435 576 bool new_phi_created;
kvn@500 577 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 578 if (!new_phi_created) {
duke@435 579 return result;
duke@435 580 }
duke@435 581
duke@435 582 GrowableArray<PhiNode *> phi_list;
duke@435 583 GrowableArray<uint> cur_input;
duke@435 584
duke@435 585 PhiNode *phi = orig_phi;
duke@435 586 uint idx = 1;
duke@435 587 bool finished = false;
duke@435 588 while(!finished) {
duke@435 589 while (idx < phi->req()) {
kvn@500 590 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 591 if (mem != NULL && mem->is_Phi()) {
kvn@500 592 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 593 if (new_phi_created) {
duke@435 594 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 595 // processing new one
duke@435 596 phi_list.push(phi);
duke@435 597 cur_input.push(idx);
duke@435 598 phi = mem->as_Phi();
kvn@500 599 result = newphi;
duke@435 600 idx = 1;
duke@435 601 continue;
duke@435 602 } else {
kvn@500 603 mem = newphi;
duke@435 604 }
duke@435 605 }
kvn@473 606 if (C->failing()) {
kvn@473 607 return NULL;
kvn@473 608 }
duke@435 609 result->set_req(idx++, mem);
duke@435 610 }
duke@435 611 #ifdef ASSERT
duke@435 612 // verify that the new Phi has an input for each input of the original
duke@435 613 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 614 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 615 #endif
kvn@500 616 // Check if all new phi's inputs have specified alias index.
kvn@500 617 // Otherwise use old phi.
duke@435 618 for (uint i = 1; i < phi->req(); i++) {
kvn@500 619 Node* in = result->in(i);
kvn@500 620 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 621 }
duke@435 622 // we have finished processing a Phi, see if there are any more to do
duke@435 623 finished = (phi_list.length() == 0 );
duke@435 624 if (!finished) {
duke@435 625 phi = phi_list.pop();
duke@435 626 idx = cur_input.pop();
kvn@500 627 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 628 prev_result->set_req(idx++, result);
kvn@500 629 result = prev_result;
duke@435 630 }
duke@435 631 }
duke@435 632 return result;
duke@435 633 }
duke@435 634
kvn@500 635
kvn@500 636 //
kvn@500 637 // The next methods are derived from methods in MemNode.
kvn@500 638 //
kvn@500 639 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 640 Node *mem = mmem;
kvn@500 641 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 642 // means an array I have not precisely typed yet. Do not do any
kvn@500 643 // alias stuff with it any time soon.
kvn@500 644 if( tinst->base() != Type::AnyPtr &&
kvn@500 645 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 646 tinst->offset() == Type::OffsetBot) ) {
kvn@500 647 mem = mmem->memory_at(alias_idx);
kvn@500 648 // Update input if it is progress over what we have now
kvn@500 649 }
kvn@500 650 return mem;
kvn@500 651 }
kvn@500 652
kvn@500 653 //
kvn@500 654 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 655 // is the specified alias index.
kvn@500 656 //
kvn@500 657 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 658 if (orig_mem == NULL)
kvn@500 659 return orig_mem;
kvn@500 660 Compile* C = phase->C;
kvn@500 661 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@658 662 bool is_instance = (tinst != NULL) && tinst->is_known_instance();
kvn@500 663 Node *prev = NULL;
kvn@500 664 Node *result = orig_mem;
kvn@500 665 while (prev != result) {
kvn@500 666 prev = result;
kvn@500 667 if (result->is_Mem()) {
kvn@500 668 MemNode *mem = result->as_Mem();
kvn@500 669 const Type *at = phase->type(mem->in(MemNode::Address));
kvn@500 670 if (at != Type::TOP) {
kvn@500 671 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 672 int idx = C->get_alias_index(at->is_ptr());
kvn@500 673 if (idx == alias_idx)
kvn@500 674 break;
kvn@500 675 }
kvn@500 676 result = mem->in(MemNode::Memory);
kvn@500 677 }
kvn@500 678 if (!is_instance)
kvn@500 679 continue; // don't search further for non-instance types
kvn@500 680 // skip over a call which does not affect this memory slice
kvn@500 681 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 682 Node *proj_in = result->in(0);
kvn@500 683 if (proj_in->is_Call()) {
kvn@500 684 CallNode *call = proj_in->as_Call();
kvn@500 685 if (!call->may_modify(tinst, phase)) {
kvn@500 686 result = call->in(TypeFunc::Memory);
kvn@500 687 }
kvn@500 688 } else if (proj_in->is_Initialize()) {
kvn@500 689 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 690 // Stop if this is the initialization for the object instance which
kvn@500 691 // which contains this memory slice, otherwise skip over it.
kvn@658 692 if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
kvn@500 693 result = proj_in->in(TypeFunc::Memory);
kvn@500 694 }
kvn@500 695 } else if (proj_in->is_MemBar()) {
kvn@500 696 result = proj_in->in(TypeFunc::Memory);
kvn@500 697 }
kvn@500 698 } else if (result->is_MergeMem()) {
kvn@500 699 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 700 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 701 if (result == mmem->base_memory()) {
kvn@500 702 // Didn't find instance memory, search through general slice recursively.
kvn@500 703 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 704 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 705 if (C->failing()) {
kvn@500 706 return NULL;
kvn@500 707 }
kvn@500 708 mmem->set_memory_at(alias_idx, result);
kvn@500 709 }
kvn@500 710 } else if (result->is_Phi() &&
kvn@500 711 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 712 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 713 if (un != NULL) {
kvn@500 714 result = un;
kvn@500 715 } else {
kvn@500 716 break;
kvn@500 717 }
kvn@500 718 }
kvn@500 719 }
kvn@500 720 if (is_instance && result->is_Phi()) {
kvn@500 721 PhiNode *mphi = result->as_Phi();
kvn@500 722 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 723 const TypePtr *t = mphi->adr_type();
kvn@500 724 if (C->get_alias_index(t) != alias_idx) {
kvn@500 725 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 726 }
kvn@500 727 }
kvn@500 728 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 729 return result;
kvn@500 730 }
kvn@500 731
kvn@500 732
duke@435 733 //
duke@435 734 // Convert the types of unescaped object to instance types where possible,
duke@435 735 // propagate the new type information through the graph, and update memory
duke@435 736 // edges and MergeMem inputs to reflect the new type.
duke@435 737 //
duke@435 738 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 739 // The processing is done in 4 phases:
duke@435 740 //
duke@435 741 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 742 // types for the CheckCastPP for allocations where possible.
duke@435 743 // Propagate the the new types through users as follows:
duke@435 744 // casts and Phi: push users on alloc_worklist
duke@435 745 // AddP: cast Base and Address inputs to the instance type
duke@435 746 // push any AddP users on alloc_worklist and push any memnode
duke@435 747 // users onto memnode_worklist.
duke@435 748 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 749 // search the Memory chain for a store with the appropriate type
duke@435 750 // address type. If a Phi is found, create a new version with
duke@435 751 // the approriate memory slices from each of the Phi inputs.
duke@435 752 // For stores, process the users as follows:
duke@435 753 // MemNode: push on memnode_worklist
duke@435 754 // MergeMem: push on mergemem_worklist
duke@435 755 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 756 // moving the first node encountered of each instance type to the
duke@435 757 // the input corresponding to its alias index.
duke@435 758 // appropriate memory slice.
duke@435 759 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 760 //
duke@435 761 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 762 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 763 // instance type.
duke@435 764 //
duke@435 765 // We start with:
duke@435 766 //
duke@435 767 // 7 Parm #memory
duke@435 768 // 10 ConI "12"
duke@435 769 // 19 CheckCastPP "Foo"
duke@435 770 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 771 // 29 CheckCastPP "Foo"
duke@435 772 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 773 //
duke@435 774 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 775 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 776 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 777 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 778 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 779 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 780 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 781 //
duke@435 782 //
duke@435 783 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 784 // and creating a new alias index for node 30. This gives:
duke@435 785 //
duke@435 786 // 7 Parm #memory
duke@435 787 // 10 ConI "12"
duke@435 788 // 19 CheckCastPP "Foo"
duke@435 789 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 790 // 29 CheckCastPP "Foo" iid=24
duke@435 791 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 792 //
duke@435 793 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 794 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 795 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 796 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 797 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 798 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 799 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 800 //
duke@435 801 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 802 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 803 // node 80 are updated and then the memory nodes are updated with the
duke@435 804 // values computed in phase 2. This results in:
duke@435 805 //
duke@435 806 // 7 Parm #memory
duke@435 807 // 10 ConI "12"
duke@435 808 // 19 CheckCastPP "Foo"
duke@435 809 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 810 // 29 CheckCastPP "Foo" iid=24
duke@435 811 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 812 //
duke@435 813 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 814 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 815 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 816 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 817 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 818 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 819 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 820 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 821 //
duke@435 822 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 823 GrowableArray<Node *> memnode_worklist;
duke@435 824 GrowableArray<Node *> mergemem_worklist;
duke@435 825 GrowableArray<PhiNode *> orig_phis;
duke@435 826 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 827 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 828 VectorSet visited(Thread::current()->resource_area());
duke@435 829 VectorSet ptset(Thread::current()->resource_area());
duke@435 830
kvn@500 831
kvn@500 832 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 833 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 834 //
kvn@679 835 // (Note: don't forget to change the order of the second AddP node on
kvn@679 836 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 837 // see the comment in find_second_addp().)
kvn@679 838 //
duke@435 839 while (alloc_worklist.length() != 0) {
duke@435 840 Node *n = alloc_worklist.pop();
duke@435 841 uint ni = n->_idx;
kvn@500 842 const TypeOopPtr* tinst = NULL;
duke@435 843 if (n->is_Call()) {
duke@435 844 CallNode *alloc = n->as_Call();
duke@435 845 // copy escape information to call node
kvn@679 846 PointsToNode* ptn = ptnode_adr(alloc->_idx);
duke@435 847 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 848 // We have an allocation or call which returns a Java object,
kvn@500 849 // see if it is unescaped.
kvn@500 850 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 851 continue;
kvn@474 852 if (alloc->is_Allocate()) {
kvn@474 853 // Set the scalar_replaceable flag before the next check.
kvn@474 854 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@474 855 }
kvn@500 856 // find CheckCastPP of call return value
kvn@500 857 n = alloc->result_cast();
kvn@500 858 if (n == NULL || // No uses accept Initialize or
kvn@500 859 !n->is_CheckCastPP()) // not unique CheckCastPP.
kvn@500 860 continue;
kvn@500 861 // The inline code for Object.clone() casts the allocation result to
kvn@500 862 // java.lang.Object and then to the the actual type of the allocated
kvn@500 863 // object. Detect this case and use the second cast.
kvn@500 864 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@500 865 && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
kvn@500 866 Node *cast2 = NULL;
kvn@500 867 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 868 Node *use = n->fast_out(i);
kvn@500 869 if (use->is_CheckCastPP()) {
kvn@500 870 cast2 = use;
kvn@500 871 break;
kvn@500 872 }
kvn@500 873 }
kvn@500 874 if (cast2 != NULL) {
kvn@500 875 n = cast2;
kvn@500 876 } else {
kvn@500 877 continue;
kvn@500 878 }
kvn@500 879 }
kvn@500 880 set_escape_state(n->_idx, es);
kvn@500 881 // in order for an object to be stackallocatable, it must be:
kvn@500 882 // - a direct allocation (not a call returning an object)
kvn@500 883 // - non-escaping
kvn@500 884 // - eligible to be a unique type
kvn@500 885 // - not determined to be ineligible by escape analysis
duke@435 886 set_map(alloc->_idx, n);
duke@435 887 set_map(n->_idx, alloc);
kvn@500 888 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 889 if (t == NULL)
duke@435 890 continue; // not a TypeInstPtr
kvn@658 891 tinst = t->cast_to_instance_id(ni);
duke@435 892 igvn->hash_delete(n);
duke@435 893 igvn->set_type(n, tinst);
duke@435 894 n->raise_bottom_type(tinst);
duke@435 895 igvn->hash_insert(n);
kvn@500 896 record_for_optimizer(n);
kvn@500 897 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 898 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 899
kvn@598 900 // First, put on the worklist all Field edges from Connection Graph
kvn@598 901 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 902 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 903 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 904 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 905 "only AddP nodes are Field edges in CG");
kvn@598 906 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 907 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 908 if (addp2 != NULL) {
kvn@598 909 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 910 alloc_worklist.append_if_missing(addp2);
kvn@598 911 }
kvn@598 912 alloc_worklist.append_if_missing(use);
kvn@598 913 }
kvn@598 914 }
kvn@598 915
kvn@500 916 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 917 // the users of the raw allocation result and push AddP users
kvn@500 918 // on alloc_worklist.
kvn@500 919 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 920 assert (raw_result != NULL, "must have an allocation result");
kvn@500 921 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 922 Node *use = raw_result->fast_out(i);
kvn@500 923 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 924 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 925 if (addp2 != NULL) {
kvn@500 926 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 927 alloc_worklist.append_if_missing(addp2);
kvn@500 928 }
kvn@500 929 alloc_worklist.append_if_missing(use);
kvn@500 930 } else if (use->is_Initialize()) {
kvn@500 931 memnode_worklist.append_if_missing(use);
kvn@500 932 }
kvn@500 933 }
kvn@500 934 }
duke@435 935 } else if (n->is_AddP()) {
duke@435 936 ptset.Clear();
kvn@500 937 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 938 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 939 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 940 if (elem == _phantom_object)
kvn@500 941 continue; // Assume the value was set outside this method.
kvn@500 942 Node *base = get_map(elem); // CheckCastPP node
duke@435 943 split_AddP(n, base, igvn);
kvn@500 944 tinst = igvn->type(base)->isa_oopptr();
kvn@500 945 } else if (n->is_Phi() ||
kvn@500 946 n->is_CheckCastPP() ||
kvn@603 947 n->is_EncodeP() ||
kvn@603 948 n->is_DecodeN() ||
kvn@500 949 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 950 if (visited.test_set(n->_idx)) {
duke@435 951 assert(n->is_Phi(), "loops only through Phi's");
duke@435 952 continue; // already processed
duke@435 953 }
duke@435 954 ptset.Clear();
duke@435 955 PointsTo(ptset, n, igvn);
duke@435 956 if (ptset.Size() == 1) {
kvn@500 957 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 958 if (elem == _phantom_object)
kvn@500 959 continue; // Assume the value was set outside this method.
kvn@500 960 Node *val = get_map(elem); // CheckCastPP node
duke@435 961 TypeNode *tn = n->as_Type();
kvn@500 962 tinst = igvn->type(val)->isa_oopptr();
kvn@658 963 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 964 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 965
kvn@598 966 const Type *tn_type = igvn->type(tn);
kvn@658 967 const TypeOopPtr *tn_t;
kvn@658 968 if (tn_type->isa_narrowoop()) {
kvn@658 969 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 970 } else {
kvn@658 971 tn_t = tn_type->isa_oopptr();
kvn@658 972 }
duke@435 973
kvn@500 974 if (tn_t != NULL &&
kvn@658 975 tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
kvn@598 976 if (tn_type->isa_narrowoop()) {
kvn@598 977 tn_type = tinst->make_narrowoop();
kvn@598 978 } else {
kvn@598 979 tn_type = tinst;
kvn@598 980 }
duke@435 981 igvn->hash_delete(tn);
kvn@598 982 igvn->set_type(tn, tn_type);
kvn@598 983 tn->set_type(tn_type);
duke@435 984 igvn->hash_insert(tn);
kvn@500 985 record_for_optimizer(n);
duke@435 986 }
duke@435 987 }
duke@435 988 } else {
duke@435 989 continue;
duke@435 990 }
duke@435 991 // push users on appropriate worklist
duke@435 992 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 993 Node *use = n->fast_out(i);
duke@435 994 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@500 995 memnode_worklist.append_if_missing(use);
kvn@500 996 } else if (use->is_Initialize()) {
kvn@500 997 memnode_worklist.append_if_missing(use);
kvn@500 998 } else if (use->is_MergeMem()) {
kvn@500 999 mergemem_worklist.append_if_missing(use);
kvn@500 1000 } else if (use->is_Call() && tinst != NULL) {
kvn@500 1001 // Look for MergeMem nodes for calls which reference unique allocation
kvn@500 1002 // (through CheckCastPP nodes) even for debug info.
kvn@500 1003 Node* m = use->in(TypeFunc::Memory);
kvn@500 1004 uint iid = tinst->instance_id();
kvn@500 1005 while (m->is_Proj() && m->in(0)->is_Call() &&
kvn@500 1006 m->in(0) != use && !m->in(0)->_idx != iid) {
kvn@500 1007 m = m->in(0)->in(TypeFunc::Memory);
kvn@500 1008 }
kvn@500 1009 if (m->is_MergeMem()) {
kvn@500 1010 mergemem_worklist.append_if_missing(m);
kvn@500 1011 }
kvn@500 1012 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1013 Node* addp2 = find_second_addp(use, n);
kvn@500 1014 if (addp2 != NULL) {
kvn@500 1015 alloc_worklist.append_if_missing(addp2);
kvn@500 1016 }
kvn@500 1017 alloc_worklist.append_if_missing(use);
kvn@500 1018 } else if (use->is_Phi() ||
kvn@500 1019 use->is_CheckCastPP() ||
kvn@603 1020 use->is_EncodeP() ||
kvn@603 1021 use->is_DecodeN() ||
kvn@500 1022 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1023 alloc_worklist.append_if_missing(use);
duke@435 1024 }
duke@435 1025 }
duke@435 1026
duke@435 1027 }
kvn@500 1028 // New alias types were created in split_AddP().
duke@435 1029 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1030
duke@435 1031 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1032 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1033 // actually updated until phase 4.)
duke@435 1034 if (memnode_worklist.length() == 0)
duke@435 1035 return; // nothing to do
duke@435 1036
duke@435 1037 while (memnode_worklist.length() != 0) {
duke@435 1038 Node *n = memnode_worklist.pop();
kvn@500 1039 if (visited.test_set(n->_idx))
kvn@500 1040 continue;
duke@435 1041 if (n->is_Phi()) {
duke@435 1042 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 1043 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 1044 // this Phi before
kvn@500 1045 } else if (n->is_Initialize()) {
kvn@500 1046 // we don't need to do anything, but the users of the memory projection must be pushed
kvn@500 1047 n = n->as_Initialize()->proj_out(TypeFunc::Memory);
kvn@500 1048 if (n == NULL)
duke@435 1049 continue;
duke@435 1050 } else {
duke@435 1051 assert(n->is_Mem(), "memory node required.");
duke@435 1052 Node *addr = n->in(MemNode::Address);
kvn@500 1053 assert(addr->is_AddP(), "AddP required");
duke@435 1054 const Type *addr_t = igvn->type(addr);
duke@435 1055 if (addr_t == Type::TOP)
duke@435 1056 continue;
duke@435 1057 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1058 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1059 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1060 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1061 if (_compile->failing()) {
kvn@473 1062 return;
kvn@473 1063 }
kvn@500 1064 if (mem != n->in(MemNode::Memory)) {
duke@435 1065 set_map(n->_idx, mem);
kvn@679 1066 ptnode_adr(n->_idx)->_node = n;
kvn@500 1067 }
duke@435 1068 if (n->is_Load()) {
duke@435 1069 continue; // don't push users
duke@435 1070 } else if (n->is_LoadStore()) {
duke@435 1071 // get the memory projection
duke@435 1072 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1073 Node *use = n->fast_out(i);
duke@435 1074 if (use->Opcode() == Op_SCMemProj) {
duke@435 1075 n = use;
duke@435 1076 break;
duke@435 1077 }
duke@435 1078 }
duke@435 1079 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1080 }
duke@435 1081 }
duke@435 1082 // push user on appropriate worklist
duke@435 1083 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1084 Node *use = n->fast_out(i);
duke@435 1085 if (use->is_Phi()) {
kvn@500 1086 memnode_worklist.append_if_missing(use);
duke@435 1087 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@500 1088 memnode_worklist.append_if_missing(use);
kvn@500 1089 } else if (use->is_Initialize()) {
kvn@500 1090 memnode_worklist.append_if_missing(use);
duke@435 1091 } else if (use->is_MergeMem()) {
kvn@500 1092 mergemem_worklist.append_if_missing(use);
duke@435 1093 }
duke@435 1094 }
duke@435 1095 }
duke@435 1096
kvn@500 1097 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@500 1098 // Walk each memory moving the first node encountered of each
kvn@500 1099 // instance type to the the input corresponding to its alias index.
duke@435 1100 while (mergemem_worklist.length() != 0) {
duke@435 1101 Node *n = mergemem_worklist.pop();
duke@435 1102 assert(n->is_MergeMem(), "MergeMem node required.");
kvn@500 1103 if (visited.test_set(n->_idx))
kvn@500 1104 continue;
duke@435 1105 MergeMemNode *nmm = n->as_MergeMem();
duke@435 1106 // Note: we don't want to use MergeMemStream here because we only want to
kvn@500 1107 // scan inputs which exist at the start, not ones we add during processing.
duke@435 1108 uint nslices = nmm->req();
duke@435 1109 igvn->hash_delete(nmm);
duke@435 1110 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1111 Node* mem = nmm->in(i);
kvn@500 1112 Node* cur = NULL;
duke@435 1113 if (mem == NULL || mem->is_top())
duke@435 1114 continue;
duke@435 1115 while (mem->is_Mem()) {
duke@435 1116 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1117 if (at != Type::TOP) {
duke@435 1118 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1119 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1120 if (idx == i) {
duke@435 1121 if (cur == NULL)
duke@435 1122 cur = mem;
duke@435 1123 } else {
duke@435 1124 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1125 nmm->set_memory_at(idx, mem);
duke@435 1126 }
duke@435 1127 }
duke@435 1128 }
duke@435 1129 mem = mem->in(MemNode::Memory);
duke@435 1130 }
duke@435 1131 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1132 // Find any instance of the current type if we haven't encountered
kvn@500 1133 // a value of the instance along the chain.
kvn@500 1134 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1135 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1136 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1137 if (nmm->is_empty_memory(m)) {
kvn@500 1138 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1139 if (_compile->failing()) {
kvn@500 1140 return;
kvn@500 1141 }
kvn@500 1142 nmm->set_memory_at(ni, result);
kvn@500 1143 }
kvn@500 1144 }
kvn@500 1145 }
kvn@500 1146 }
kvn@500 1147 // Find the rest of instances values
kvn@500 1148 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1149 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1150 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1151 if (result == nmm->base_memory()) {
kvn@500 1152 // Didn't find instance memory, search through general slice recursively.
kvn@500 1153 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1154 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1155 if (_compile->failing()) {
kvn@500 1156 return;
kvn@500 1157 }
kvn@500 1158 nmm->set_memory_at(ni, result);
kvn@500 1159 }
kvn@500 1160 }
kvn@500 1161 igvn->hash_insert(nmm);
kvn@500 1162 record_for_optimizer(nmm);
kvn@500 1163
kvn@500 1164 // Propagate new memory slices to following MergeMem nodes.
kvn@500 1165 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1166 Node *use = n->fast_out(i);
kvn@500 1167 if (use->is_Call()) {
kvn@500 1168 CallNode* in = use->as_Call();
kvn@500 1169 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1170 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1171 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1172 Node* mm = m->fast_out(j);
kvn@500 1173 if (mm->is_MergeMem()) {
kvn@500 1174 mergemem_worklist.append_if_missing(mm);
kvn@500 1175 }
kvn@500 1176 }
kvn@500 1177 }
kvn@500 1178 if (use->is_Allocate()) {
kvn@500 1179 use = use->as_Allocate()->initialization();
kvn@500 1180 if (use == NULL) {
kvn@500 1181 continue;
kvn@500 1182 }
kvn@500 1183 }
kvn@500 1184 }
kvn@500 1185 if (use->is_Initialize()) {
kvn@500 1186 InitializeNode* in = use->as_Initialize();
kvn@500 1187 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1188 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1189 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1190 Node* mm = m->fast_out(j);
kvn@500 1191 if (mm->is_MergeMem()) {
kvn@500 1192 mergemem_worklist.append_if_missing(mm);
duke@435 1193 }
duke@435 1194 }
duke@435 1195 }
duke@435 1196 }
duke@435 1197 }
duke@435 1198 }
duke@435 1199
kvn@500 1200 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1201 // the Memory input of memnodes
duke@435 1202 // First update the inputs of any non-instance Phi's from
duke@435 1203 // which we split out an instance Phi. Note we don't have
duke@435 1204 // to recursively process Phi's encounted on the input memory
duke@435 1205 // chains as is done in split_memory_phi() since they will
duke@435 1206 // also be processed here.
duke@435 1207 while (orig_phis.length() != 0) {
duke@435 1208 PhiNode *phi = orig_phis.pop();
duke@435 1209 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1210 igvn->hash_delete(phi);
duke@435 1211 for (uint i = 1; i < phi->req(); i++) {
duke@435 1212 Node *mem = phi->in(i);
kvn@500 1213 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1214 if (_compile->failing()) {
kvn@500 1215 return;
kvn@500 1216 }
duke@435 1217 if (mem != new_mem) {
duke@435 1218 phi->set_req(i, new_mem);
duke@435 1219 }
duke@435 1220 }
duke@435 1221 igvn->hash_insert(phi);
duke@435 1222 record_for_optimizer(phi);
duke@435 1223 }
duke@435 1224
duke@435 1225 // Update the memory inputs of MemNodes with the value we computed
duke@435 1226 // in Phase 2.
kvn@679 1227 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1228 Node *nmem = get_map(i);
duke@435 1229 if (nmem != NULL) {
kvn@679 1230 Node *n = ptnode_adr(i)->_node;
duke@435 1231 if (n != NULL && n->is_Mem()) {
duke@435 1232 igvn->hash_delete(n);
duke@435 1233 n->set_req(MemNode::Memory, nmem);
duke@435 1234 igvn->hash_insert(n);
duke@435 1235 record_for_optimizer(n);
duke@435 1236 }
duke@435 1237 }
duke@435 1238 }
duke@435 1239 }
duke@435 1240
kvn@679 1241 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1242 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1243 // are represented by ideal Macro nodes.
kvn@679 1244 int cnt = C->macro_count();
kvn@679 1245 for( int i=0; i < cnt; i++ ) {
kvn@679 1246 Node *n = C->macro_node(i);
kvn@679 1247 if ( n->is_Allocate() )
kvn@679 1248 return true;
kvn@679 1249 if( n->is_Lock() ) {
kvn@679 1250 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1251 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1252 return true;
kvn@679 1253 }
kvn@679 1254 }
kvn@679 1255 return false;
kvn@679 1256 }
kvn@679 1257
kvn@679 1258 bool ConnectionGraph::compute_escape() {
kvn@679 1259 Compile* C = _compile;
duke@435 1260
kvn@598 1261 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1262
kvn@500 1263 Unique_Node_List worklist_init;
kvn@679 1264 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1265
kvn@500 1266 // Initialize worklist
kvn@679 1267 if (C->root() != NULL) {
kvn@679 1268 worklist_init.push(C->root());
kvn@500 1269 }
kvn@500 1270
kvn@500 1271 GrowableArray<int> cg_worklist;
kvn@679 1272 PhaseGVN* igvn = C->initial_gvn();
kvn@500 1273 bool has_allocations = false;
kvn@500 1274
kvn@500 1275 // Push all useful nodes onto CG list and set their type.
kvn@500 1276 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1277 Node* n = worklist_init.at(next);
kvn@500 1278 record_for_escape_analysis(n, igvn);
kvn@679 1279 // Only allocations and java static calls results are checked
kvn@679 1280 // for an escape status. See process_call_result() below.
kvn@679 1281 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1282 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1283 has_allocations = true;
kvn@500 1284 }
kvn@500 1285 if(n->is_AddP())
kvn@500 1286 cg_worklist.append(n->_idx);
kvn@500 1287 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1288 Node* m = n->fast_out(i); // Get user
kvn@500 1289 worklist_init.push(m);
kvn@500 1290 }
kvn@500 1291 }
kvn@500 1292
kvn@679 1293 if (!has_allocations) {
kvn@500 1294 _collecting = false;
kvn@679 1295 return false; // Nothing to do.
kvn@500 1296 }
kvn@500 1297
kvn@500 1298 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1299 uint delayed_size = _delayed_worklist.size();
kvn@679 1300 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1301 Node* n = _delayed_worklist.at(next);
kvn@500 1302 build_connection_graph(n, igvn);
kvn@500 1303 }
kvn@500 1304
kvn@500 1305 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1306 uint cg_length = cg_worklist.length();
kvn@679 1307 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1308 int ni = cg_worklist.at(next);
kvn@679 1309 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1310 }
kvn@500 1311
kvn@500 1312 cg_worklist.clear();
kvn@500 1313 cg_worklist.append(_phantom_object);
kvn@500 1314
kvn@500 1315 // 4. Build Connection Graph which need
kvn@500 1316 // to walk the connection graph.
kvn@679 1317 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1318 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1319 Node *n = ptn->_node;
kvn@500 1320 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1321 build_connection_graph(n, igvn);
kvn@500 1322 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1323 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1324 }
duke@435 1325 }
duke@435 1326
duke@435 1327 VectorSet ptset(Thread::current()->resource_area());
kvn@536 1328 GrowableArray<uint> deferred_edges;
kvn@536 1329 VectorSet visited(Thread::current()->resource_area());
duke@435 1330
kvn@679 1331 // 5. Remove deferred edges from the graph and collect
kvn@679 1332 // information needed for type splitting.
kvn@679 1333 cg_length = cg_worklist.length();
kvn@679 1334 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1335 int ni = cg_worklist.at(next);
kvn@679 1336 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1337 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1338 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1339 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1340 Node *n = ptn->_node;
duke@435 1341 if (n->is_AddP()) {
kvn@500 1342 // If this AddP computes an address which may point to more that one
kvn@598 1343 // object or more then one field (array's element), nothing the address
kvn@598 1344 // points to can be scalar replaceable.
kvn@500 1345 Node *base = get_addp_base(n);
duke@435 1346 ptset.Clear();
duke@435 1347 PointsTo(ptset, base, igvn);
kvn@598 1348 if (ptset.Size() > 1 ||
kvn@598 1349 (ptset.Size() != 0 && ptn->offset() == Type::OffsetBot)) {
duke@435 1350 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@679 1351 ptnode_adr(j.elem)->_scalar_replaceable = false;
duke@435 1352 }
duke@435 1353 }
duke@435 1354 }
duke@435 1355 }
duke@435 1356 }
kvn@500 1357
kvn@679 1358 // 6. Propagate escape states.
kvn@679 1359 GrowableArray<int> worklist;
kvn@679 1360 bool has_non_escaping_obj = false;
kvn@679 1361
duke@435 1362 // push all GlobalEscape nodes on the worklist
kvn@679 1363 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1364 int nk = cg_worklist.at(next);
kvn@679 1365 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1366 worklist.push(nk);
duke@435 1367 }
kvn@679 1368 // mark all nodes reachable from GlobalEscape nodes
duke@435 1369 while(worklist.length() > 0) {
kvn@679 1370 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1371 uint e_cnt = ptn->edge_count();
kvn@679 1372 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1373 uint npi = ptn->edge_target(ei);
duke@435 1374 PointsToNode *np = ptnode_adr(npi);
kvn@500 1375 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1376 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1377 worklist.push(npi);
duke@435 1378 }
duke@435 1379 }
duke@435 1380 }
duke@435 1381
duke@435 1382 // push all ArgEscape nodes on the worklist
kvn@679 1383 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1384 int nk = cg_worklist.at(next);
kvn@679 1385 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1386 worklist.push(nk);
duke@435 1387 }
kvn@679 1388 // mark all nodes reachable from ArgEscape nodes
duke@435 1389 while(worklist.length() > 0) {
kvn@679 1390 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1391 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1392 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1393 uint e_cnt = ptn->edge_count();
kvn@679 1394 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1395 uint npi = ptn->edge_target(ei);
duke@435 1396 PointsToNode *np = ptnode_adr(npi);
kvn@500 1397 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1398 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1399 worklist.push(npi);
duke@435 1400 }
duke@435 1401 }
duke@435 1402 }
kvn@500 1403
kvn@679 1404 GrowableArray<Node*> alloc_worklist;
kvn@679 1405
kvn@500 1406 // push all NoEscape nodes on the worklist
kvn@679 1407 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1408 int nk = cg_worklist.at(next);
kvn@679 1409 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1410 worklist.push(nk);
kvn@500 1411 }
kvn@679 1412 // mark all nodes reachable from NoEscape nodes
kvn@500 1413 while(worklist.length() > 0) {
kvn@679 1414 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1415 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1416 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1417 Node* n = ptn->_node;
kvn@679 1418 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
kvn@679 1419 // Push scalar replaceable alocations on alloc_worklist
kvn@679 1420 // for processing in split_unique_types().
kvn@679 1421 alloc_worklist.append(n);
kvn@679 1422 }
kvn@679 1423 uint e_cnt = ptn->edge_count();
kvn@679 1424 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1425 uint npi = ptn->edge_target(ei);
kvn@500 1426 PointsToNode *np = ptnode_adr(npi);
kvn@500 1427 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1428 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1429 worklist.push(npi);
kvn@500 1430 }
kvn@500 1431 }
kvn@500 1432 }
kvn@500 1433
duke@435 1434 _collecting = false;
kvn@679 1435 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1436
kvn@679 1437 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1438 if ( has_scalar_replaceable_candidates &&
kvn@679 1439 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1440
kvn@679 1441 // Now use the escape information to create unique types for
kvn@679 1442 // scalar replaceable objects.
kvn@679 1443 split_unique_types(alloc_worklist);
duke@435 1444
kvn@679 1445 if (C->failing()) return false;
duke@435 1446
kvn@500 1447 // Clean up after split unique types.
kvn@500 1448 ResourceMark rm;
kvn@679 1449 PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
kvn@679 1450
kvn@679 1451 C->print_method("After Escape Analysis", 2);
duke@435 1452
kvn@500 1453 #ifdef ASSERT
kvn@679 1454 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1455 tty->print("=== No allocations eliminated for ");
kvn@679 1456 C->method()->print_short_name();
kvn@500 1457 if(!EliminateAllocations) {
kvn@500 1458 tty->print(" since EliminateAllocations is off ===");
kvn@679 1459 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1460 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1461 } else if(C->AliasLevel() < 3) {
kvn@500 1462 tty->print(" since AliasLevel < 3 ===");
duke@435 1463 }
kvn@500 1464 tty->cr();
kvn@500 1465 #endif
duke@435 1466 }
kvn@679 1467 return has_non_escaping_obj;
duke@435 1468 }
duke@435 1469
duke@435 1470 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1471
duke@435 1472 switch (call->Opcode()) {
kvn@500 1473 #ifdef ASSERT
duke@435 1474 case Op_Allocate:
duke@435 1475 case Op_AllocateArray:
duke@435 1476 case Op_Lock:
duke@435 1477 case Op_Unlock:
kvn@500 1478 assert(false, "should be done already");
duke@435 1479 break;
kvn@500 1480 #endif
kvn@500 1481 case Op_CallLeafNoFP:
kvn@500 1482 {
kvn@500 1483 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1484 // Adjust escape state for outgoing arguments.
kvn@500 1485 const TypeTuple * d = call->tf()->domain();
kvn@500 1486 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1487 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1488 const Type* at = d->field_at(i);
kvn@500 1489 Node *arg = call->in(i)->uncast();
kvn@500 1490 const Type *aat = phase->type(arg);
kvn@500 1491 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
kvn@500 1492 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1493 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@500 1494 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1495 if (arg->is_AddP()) {
kvn@500 1496 //
kvn@500 1497 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1498 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1499 //
kvn@500 1500 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1501 // pointer to the base (with offset) is passed as argument.
kvn@500 1502 //
kvn@500 1503 arg = get_addp_base(arg);
kvn@500 1504 }
kvn@500 1505 ptset.Clear();
kvn@500 1506 PointsTo(ptset, arg, phase);
kvn@500 1507 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1508 uint pt = j.elem;
kvn@500 1509 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1510 }
kvn@500 1511 }
kvn@500 1512 }
kvn@500 1513 break;
kvn@500 1514 }
duke@435 1515
duke@435 1516 case Op_CallStaticJava:
duke@435 1517 // For a static call, we know exactly what method is being called.
duke@435 1518 // Use bytecode estimator to record the call's escape affects
duke@435 1519 {
duke@435 1520 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1521 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1522 // fall-through if not a Java method or no analyzer information
kvn@500 1523 if (call_analyzer != NULL) {
duke@435 1524 const TypeTuple * d = call->tf()->domain();
duke@435 1525 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1526 bool copy_dependencies = false;
duke@435 1527 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1528 const Type* at = d->field_at(i);
duke@435 1529 int k = i - TypeFunc::Parms;
duke@435 1530
duke@435 1531 if (at->isa_oopptr() != NULL) {
kvn@500 1532 Node *arg = call->in(i)->uncast();
duke@435 1533
kvn@500 1534 bool global_escapes = false;
kvn@500 1535 bool fields_escapes = false;
kvn@500 1536 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1537 // The argument global escapes, mark everything it could point to
kvn@500 1538 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1539 global_escapes = true;
kvn@500 1540 } else {
kvn@500 1541 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1542 // The argument itself doesn't escape, but any fields might
kvn@500 1543 fields_escapes = true;
kvn@500 1544 }
kvn@500 1545 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1546 copy_dependencies = true;
kvn@500 1547 }
duke@435 1548
kvn@500 1549 ptset.Clear();
kvn@500 1550 PointsTo(ptset, arg, phase);
kvn@500 1551 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1552 uint pt = j.elem;
kvn@500 1553 if (global_escapes) {
kvn@500 1554 //The argument global escapes, mark everything it could point to
duke@435 1555 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1556 } else {
kvn@500 1557 if (fields_escapes) {
kvn@500 1558 // The argument itself doesn't escape, but any fields might
kvn@500 1559 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1560 }
kvn@500 1561 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1562 }
duke@435 1563 }
duke@435 1564 }
duke@435 1565 }
kvn@500 1566 if (copy_dependencies)
kvn@679 1567 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1568 break;
duke@435 1569 }
duke@435 1570 }
duke@435 1571
duke@435 1572 default:
kvn@500 1573 // Fall-through here if not a Java method or no analyzer information
kvn@500 1574 // or some other type of call, assume the worst case: all arguments
duke@435 1575 // globally escape.
duke@435 1576 {
duke@435 1577 // adjust escape state for outgoing arguments
duke@435 1578 const TypeTuple * d = call->tf()->domain();
duke@435 1579 VectorSet ptset(Thread::current()->resource_area());
duke@435 1580 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1581 const Type* at = d->field_at(i);
duke@435 1582 if (at->isa_oopptr() != NULL) {
kvn@500 1583 Node *arg = call->in(i)->uncast();
kvn@500 1584 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1585 ptset.Clear();
duke@435 1586 PointsTo(ptset, arg, phase);
duke@435 1587 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1588 uint pt = j.elem;
duke@435 1589 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 1590 }
duke@435 1591 }
duke@435 1592 }
duke@435 1593 }
duke@435 1594 }
duke@435 1595 }
duke@435 1596 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 1597 CallNode *call = resproj->in(0)->as_Call();
kvn@679 1598 uint call_idx = call->_idx;
kvn@679 1599 uint resproj_idx = resproj->_idx;
duke@435 1600
duke@435 1601 switch (call->Opcode()) {
duke@435 1602 case Op_Allocate:
duke@435 1603 {
duke@435 1604 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1605 const TypeKlassPtr *kt;
duke@435 1606 if (k->Opcode() == Op_LoadKlass) {
duke@435 1607 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1608 } else {
kvn@599 1609 // Also works for DecodeN(LoadNKlass).
duke@435 1610 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1611 }
duke@435 1612 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1613 ciKlass* cik = kt->klass();
duke@435 1614 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1615
kvn@500 1616 PointsToNode::EscapeState es;
kvn@500 1617 uint edge_to;
duke@435 1618 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1619 es = PointsToNode::GlobalEscape;
kvn@500 1620 edge_to = _phantom_object; // Could not be worse
duke@435 1621 } else {
kvn@500 1622 es = PointsToNode::NoEscape;
kvn@679 1623 edge_to = call_idx;
duke@435 1624 }
kvn@679 1625 set_escape_state(call_idx, es);
kvn@679 1626 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 1627 _processed.set(resproj_idx);
duke@435 1628 break;
duke@435 1629 }
duke@435 1630
duke@435 1631 case Op_AllocateArray:
duke@435 1632 {
kvn@500 1633 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1634 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1635 // Not scalar replaceable if the length is not constant or too big.
kvn@679 1636 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@500 1637 }
kvn@679 1638 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1639 add_pointsto_edge(resproj_idx, call_idx);
kvn@679 1640 _processed.set(resproj_idx);
duke@435 1641 break;
duke@435 1642 }
duke@435 1643
duke@435 1644 case Op_CallStaticJava:
duke@435 1645 // For a static call, we know exactly what method is being called.
duke@435 1646 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1647 {
kvn@500 1648 bool done = true;
duke@435 1649 const TypeTuple *r = call->tf()->range();
duke@435 1650 const Type* ret_type = NULL;
duke@435 1651
duke@435 1652 if (r->cnt() > TypeFunc::Parms)
duke@435 1653 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1654
duke@435 1655 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1656 // _multianewarray functions return a TypeRawPtr.
kvn@500 1657 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 1658 _processed.set(resproj_idx);
duke@435 1659 break; // doesn't return a pointer type
kvn@500 1660 }
duke@435 1661 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1662 const TypeTuple * d = call->tf()->domain();
duke@435 1663 if (meth == NULL) {
duke@435 1664 // not a Java method, assume global escape
kvn@679 1665 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1666 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1667 } else {
kvn@500 1668 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 1669 bool copy_dependencies = false;
duke@435 1670
kvn@500 1671 if (call_analyzer->is_return_allocated()) {
kvn@500 1672 // Returns a newly allocated unescaped object, simply
kvn@500 1673 // update dependency information.
kvn@500 1674 // Mark it as NoEscape so that objects referenced by
kvn@500 1675 // it's fields will be marked as NoEscape at least.
kvn@679 1676 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1677 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 1678 copy_dependencies = true;
kvn@679 1679 } else if (call_analyzer->is_return_local()) {
duke@435 1680 // determine whether any arguments are returned
kvn@679 1681 set_escape_state(call_idx, PointsToNode::NoEscape);
duke@435 1682 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1683 const Type* at = d->field_at(i);
duke@435 1684
duke@435 1685 if (at->isa_oopptr() != NULL) {
kvn@500 1686 Node *arg = call->in(i)->uncast();
duke@435 1687
kvn@500 1688 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@679 1689 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1690 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1691 done = false;
kvn@500 1692 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 1693 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 1694 else
kvn@679 1695 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 1696 arg_esp->_hidden_alias = true;
duke@435 1697 }
duke@435 1698 }
duke@435 1699 }
kvn@500 1700 copy_dependencies = true;
duke@435 1701 } else {
kvn@679 1702 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1703 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 1704 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1705 const Type* at = d->field_at(i);
kvn@500 1706 if (at->isa_oopptr() != NULL) {
kvn@500 1707 Node *arg = call->in(i)->uncast();
kvn@679 1708 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1709 arg_esp->_hidden_alias = true;
kvn@500 1710 }
kvn@500 1711 }
duke@435 1712 }
kvn@500 1713 if (copy_dependencies)
kvn@679 1714 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1715 }
kvn@500 1716 if (done)
kvn@679 1717 _processed.set(resproj_idx);
duke@435 1718 break;
duke@435 1719 }
duke@435 1720
duke@435 1721 default:
duke@435 1722 // Some other type of call, assume the worst case that the
duke@435 1723 // returned value, if any, globally escapes.
duke@435 1724 {
duke@435 1725 const TypeTuple *r = call->tf()->range();
duke@435 1726 if (r->cnt() > TypeFunc::Parms) {
duke@435 1727 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1728
duke@435 1729 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1730 // _multianewarray functions return a TypeRawPtr.
duke@435 1731 if (ret_type->isa_ptr() != NULL) {
kvn@679 1732 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1733 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1734 }
duke@435 1735 }
kvn@679 1736 _processed.set(resproj_idx);
duke@435 1737 }
duke@435 1738 }
duke@435 1739 }
duke@435 1740
kvn@500 1741 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 1742 // connection graph edges (do not need to check the node_type of inputs
kvn@500 1743 // or to call PointsTo() to walk the connection graph).
kvn@500 1744 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 1745 if (_processed.test(n->_idx))
kvn@500 1746 return; // No need to redefine node's state.
kvn@500 1747
kvn@500 1748 if (n->is_Call()) {
kvn@500 1749 // Arguments to allocation and locking don't escape.
kvn@500 1750 if (n->is_Allocate()) {
kvn@500 1751 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 1752 record_for_optimizer(n);
kvn@500 1753 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 1754 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 1755 // the first IGVN optimization when escape information is still available.
kvn@500 1756 record_for_optimizer(n);
kvn@500 1757 _processed.set(n->_idx);
kvn@500 1758 } else {
kvn@500 1759 // Have to process call's arguments first.
kvn@500 1760 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@500 1761
kvn@500 1762 // Check if a call returns an object.
kvn@500 1763 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@679 1764 if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
kvn@500 1765 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@500 1766 // Note: use isa_ptr() instead of isa_oopptr() here because
kvn@500 1767 // the _multianewarray functions return a TypeRawPtr.
kvn@500 1768 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@500 1769 nt = PointsToNode::JavaObject;
kvn@500 1770 }
duke@435 1771 }
kvn@500 1772 add_node(n, nt, PointsToNode::UnknownEscape, false);
duke@435 1773 }
kvn@500 1774 return;
duke@435 1775 }
kvn@500 1776
kvn@500 1777 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 1778 // ThreadLocal has RawPrt type.
kvn@500 1779 switch (n->Opcode()) {
kvn@500 1780 case Op_AddP:
kvn@500 1781 {
kvn@500 1782 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 1783 break;
kvn@500 1784 }
kvn@500 1785 case Op_CastX2P:
kvn@500 1786 { // "Unsafe" memory access.
kvn@500 1787 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1788 break;
kvn@500 1789 }
kvn@500 1790 case Op_CastPP:
kvn@500 1791 case Op_CheckCastPP:
kvn@559 1792 case Op_EncodeP:
kvn@559 1793 case Op_DecodeN:
kvn@500 1794 {
kvn@500 1795 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1796 int ti = n->in(1)->_idx;
kvn@679 1797 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 1798 if (nt == PointsToNode::UnknownType) {
kvn@500 1799 _delayed_worklist.push(n); // Process it later.
kvn@500 1800 break;
kvn@500 1801 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1802 add_pointsto_edge(n->_idx, ti);
kvn@500 1803 } else {
kvn@500 1804 add_deferred_edge(n->_idx, ti);
kvn@500 1805 }
kvn@500 1806 _processed.set(n->_idx);
kvn@500 1807 break;
kvn@500 1808 }
kvn@500 1809 case Op_ConP:
kvn@500 1810 {
kvn@500 1811 // assume all pointer constants globally escape except for null
kvn@500 1812 PointsToNode::EscapeState es;
kvn@500 1813 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 1814 es = PointsToNode::NoEscape;
kvn@500 1815 else
kvn@500 1816 es = PointsToNode::GlobalEscape;
kvn@500 1817
kvn@500 1818 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 1819 break;
kvn@500 1820 }
coleenp@548 1821 case Op_ConN:
coleenp@548 1822 {
coleenp@548 1823 // assume all narrow oop constants globally escape except for null
coleenp@548 1824 PointsToNode::EscapeState es;
coleenp@548 1825 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 1826 es = PointsToNode::NoEscape;
coleenp@548 1827 else
coleenp@548 1828 es = PointsToNode::GlobalEscape;
coleenp@548 1829
coleenp@548 1830 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 1831 break;
coleenp@548 1832 }
kvn@559 1833 case Op_CreateEx:
kvn@559 1834 {
kvn@559 1835 // assume that all exception objects globally escape
kvn@559 1836 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 1837 break;
kvn@559 1838 }
kvn@500 1839 case Op_LoadKlass:
kvn@599 1840 case Op_LoadNKlass:
kvn@500 1841 {
kvn@500 1842 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1843 break;
kvn@500 1844 }
kvn@500 1845 case Op_LoadP:
coleenp@548 1846 case Op_LoadN:
kvn@500 1847 {
kvn@500 1848 const Type *t = phase->type(n);
coleenp@548 1849 if (!t->isa_narrowoop() && t->isa_ptr() == NULL) {
kvn@500 1850 _processed.set(n->_idx);
kvn@500 1851 return;
kvn@500 1852 }
kvn@500 1853 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1854 break;
kvn@500 1855 }
kvn@500 1856 case Op_Parm:
kvn@500 1857 {
kvn@500 1858 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 1859 uint con = n->as_Proj()->_con;
kvn@500 1860 if (con < TypeFunc::Parms)
kvn@500 1861 return;
kvn@500 1862 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 1863 if (t->isa_ptr() == NULL)
kvn@500 1864 return;
kvn@500 1865 // We have to assume all input parameters globally escape
kvn@500 1866 // (Note: passing 'false' since _processed is already set).
kvn@500 1867 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 1868 break;
kvn@500 1869 }
kvn@500 1870 case Op_Phi:
kvn@500 1871 {
kvn@500 1872 if (n->as_Phi()->type()->isa_ptr() == NULL) {
kvn@500 1873 // nothing to do if not an oop
kvn@500 1874 _processed.set(n->_idx);
kvn@500 1875 return;
kvn@500 1876 }
kvn@500 1877 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1878 uint i;
kvn@500 1879 for (i = 1; i < n->req() ; i++) {
kvn@500 1880 Node* in = n->in(i);
kvn@500 1881 if (in == NULL)
kvn@500 1882 continue; // ignore NULL
kvn@500 1883 in = in->uncast();
kvn@500 1884 if (in->is_top() || in == n)
kvn@500 1885 continue; // ignore top or inputs which go back this node
kvn@500 1886 int ti = in->_idx;
kvn@679 1887 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 1888 if (nt == PointsToNode::UnknownType) {
kvn@500 1889 break;
kvn@500 1890 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1891 add_pointsto_edge(n->_idx, ti);
kvn@500 1892 } else {
kvn@500 1893 add_deferred_edge(n->_idx, ti);
kvn@500 1894 }
kvn@500 1895 }
kvn@500 1896 if (i >= n->req())
kvn@500 1897 _processed.set(n->_idx);
kvn@500 1898 else
kvn@500 1899 _delayed_worklist.push(n);
kvn@500 1900 break;
kvn@500 1901 }
kvn@500 1902 case Op_Proj:
kvn@500 1903 {
kvn@500 1904 // we are only interested in the result projection from a call
kvn@500 1905 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 1906 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1907 process_call_result(n->as_Proj(), phase);
kvn@500 1908 if (!_processed.test(n->_idx)) {
kvn@500 1909 // The call's result may need to be processed later if the call
kvn@500 1910 // returns it's argument and the argument is not processed yet.
kvn@500 1911 _delayed_worklist.push(n);
kvn@500 1912 }
kvn@500 1913 } else {
kvn@500 1914 _processed.set(n->_idx);
kvn@500 1915 }
kvn@500 1916 break;
kvn@500 1917 }
kvn@500 1918 case Op_Return:
kvn@500 1919 {
kvn@500 1920 if( n->req() > TypeFunc::Parms &&
kvn@500 1921 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 1922 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 1923 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 1924 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 1925 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 1926 if (nt == PointsToNode::UnknownType) {
kvn@500 1927 _delayed_worklist.push(n); // Process it later.
kvn@500 1928 break;
kvn@500 1929 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1930 add_pointsto_edge(n->_idx, ti);
kvn@500 1931 } else {
kvn@500 1932 add_deferred_edge(n->_idx, ti);
kvn@500 1933 }
kvn@500 1934 }
kvn@500 1935 _processed.set(n->_idx);
kvn@500 1936 break;
kvn@500 1937 }
kvn@500 1938 case Op_StoreP:
coleenp@548 1939 case Op_StoreN:
kvn@500 1940 {
kvn@500 1941 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 1942 adr_type = adr_type->make_ptr();
kvn@500 1943 if (adr_type->isa_oopptr()) {
kvn@500 1944 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1945 } else {
kvn@500 1946 Node* adr = n->in(MemNode::Address);
kvn@500 1947 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 1948 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 1949 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 1950 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1951 // We are computing a raw address for a store captured
kvn@500 1952 // by an Initialize compute an appropriate address type.
kvn@500 1953 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 1954 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 1955 } else {
kvn@500 1956 _processed.set(n->_idx);
kvn@500 1957 return;
kvn@500 1958 }
kvn@500 1959 }
kvn@500 1960 break;
kvn@500 1961 }
kvn@500 1962 case Op_StorePConditional:
kvn@500 1963 case Op_CompareAndSwapP:
coleenp@548 1964 case Op_CompareAndSwapN:
kvn@500 1965 {
kvn@500 1966 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 1967 adr_type = adr_type->make_ptr();
kvn@500 1968 if (adr_type->isa_oopptr()) {
kvn@500 1969 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1970 } else {
kvn@500 1971 _processed.set(n->_idx);
kvn@500 1972 return;
kvn@500 1973 }
kvn@500 1974 break;
kvn@500 1975 }
kvn@500 1976 case Op_ThreadLocal:
kvn@500 1977 {
kvn@500 1978 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 1979 break;
kvn@500 1980 }
kvn@500 1981 default:
kvn@500 1982 ;
kvn@500 1983 // nothing to do
kvn@500 1984 }
kvn@500 1985 return;
duke@435 1986 }
duke@435 1987
kvn@500 1988 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 1989 uint n_idx = n->_idx;
kvn@679 1990
kvn@500 1991 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 1992 // they may need more then one pass to process.
kvn@679 1993 if (_processed.test(n_idx))
kvn@500 1994 return; // No need to redefine node's state.
duke@435 1995
duke@435 1996 if (n->is_Call()) {
duke@435 1997 CallNode *call = n->as_Call();
duke@435 1998 process_call_arguments(call, phase);
kvn@679 1999 _processed.set(n_idx);
duke@435 2000 return;
duke@435 2001 }
duke@435 2002
kvn@500 2003 switch (n->Opcode()) {
duke@435 2004 case Op_AddP:
duke@435 2005 {
kvn@500 2006 Node *base = get_addp_base(n);
kvn@500 2007 // Create a field edge to this node from everything base could point to.
duke@435 2008 VectorSet ptset(Thread::current()->resource_area());
duke@435 2009 PointsTo(ptset, base, phase);
duke@435 2010 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2011 uint pt = i.elem;
kvn@679 2012 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2013 }
kvn@500 2014 break;
kvn@500 2015 }
kvn@500 2016 case Op_CastX2P:
kvn@500 2017 {
kvn@500 2018 assert(false, "Op_CastX2P");
kvn@500 2019 break;
kvn@500 2020 }
kvn@500 2021 case Op_CastPP:
kvn@500 2022 case Op_CheckCastPP:
coleenp@548 2023 case Op_EncodeP:
coleenp@548 2024 case Op_DecodeN:
kvn@500 2025 {
kvn@500 2026 int ti = n->in(1)->_idx;
kvn@679 2027 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2028 add_pointsto_edge(n_idx, ti);
kvn@500 2029 } else {
kvn@679 2030 add_deferred_edge(n_idx, ti);
kvn@500 2031 }
kvn@679 2032 _processed.set(n_idx);
kvn@500 2033 break;
kvn@500 2034 }
kvn@500 2035 case Op_ConP:
kvn@500 2036 {
kvn@500 2037 assert(false, "Op_ConP");
kvn@500 2038 break;
kvn@500 2039 }
kvn@598 2040 case Op_ConN:
kvn@598 2041 {
kvn@598 2042 assert(false, "Op_ConN");
kvn@598 2043 break;
kvn@598 2044 }
kvn@500 2045 case Op_CreateEx:
kvn@500 2046 {
kvn@500 2047 assert(false, "Op_CreateEx");
kvn@500 2048 break;
kvn@500 2049 }
kvn@500 2050 case Op_LoadKlass:
kvn@599 2051 case Op_LoadNKlass:
kvn@500 2052 {
kvn@500 2053 assert(false, "Op_LoadKlass");
kvn@500 2054 break;
kvn@500 2055 }
kvn@500 2056 case Op_LoadP:
kvn@559 2057 case Op_LoadN:
kvn@500 2058 {
kvn@500 2059 const Type *t = phase->type(n);
kvn@500 2060 #ifdef ASSERT
kvn@559 2061 if (!t->isa_narrowoop() && t->isa_ptr() == NULL)
kvn@500 2062 assert(false, "Op_LoadP");
kvn@500 2063 #endif
kvn@500 2064
kvn@500 2065 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2066 const Type *adr_type = phase->type(adr);
kvn@500 2067 Node* adr_base;
kvn@500 2068 if (adr->is_AddP()) {
kvn@500 2069 adr_base = get_addp_base(adr);
kvn@500 2070 } else {
kvn@500 2071 adr_base = adr;
kvn@500 2072 }
kvn@500 2073
kvn@500 2074 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2075 // this node to each field with the same offset.
kvn@500 2076 VectorSet ptset(Thread::current()->resource_area());
kvn@500 2077 PointsTo(ptset, adr_base, phase);
kvn@500 2078 int offset = address_offset(adr, phase);
kvn@500 2079 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2080 uint pt = i.elem;
kvn@679 2081 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2082 }
duke@435 2083 break;
duke@435 2084 }
duke@435 2085 case Op_Parm:
duke@435 2086 {
kvn@500 2087 assert(false, "Op_Parm");
kvn@500 2088 break;
kvn@500 2089 }
kvn@500 2090 case Op_Phi:
kvn@500 2091 {
kvn@500 2092 #ifdef ASSERT
kvn@500 2093 if (n->as_Phi()->type()->isa_ptr() == NULL)
kvn@500 2094 assert(false, "Op_Phi");
kvn@500 2095 #endif
kvn@500 2096 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2097 Node* in = n->in(i);
kvn@500 2098 if (in == NULL)
kvn@500 2099 continue; // ignore NULL
kvn@500 2100 in = in->uncast();
kvn@500 2101 if (in->is_top() || in == n)
kvn@500 2102 continue; // ignore top or inputs which go back this node
kvn@500 2103 int ti = in->_idx;
kvn@679 2104 if (ptnode_adr(in->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@679 2105 add_pointsto_edge(n_idx, ti);
kvn@500 2106 } else {
kvn@679 2107 add_deferred_edge(n_idx, ti);
kvn@500 2108 }
duke@435 2109 }
kvn@679 2110 _processed.set(n_idx);
duke@435 2111 break;
duke@435 2112 }
kvn@500 2113 case Op_Proj:
duke@435 2114 {
kvn@500 2115 // we are only interested in the result projection from a call
kvn@500 2116 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2117 process_call_result(n->as_Proj(), phase);
kvn@679 2118 assert(_processed.test(n_idx), "all call results should be processed");
kvn@500 2119 } else {
kvn@500 2120 assert(false, "Op_Proj");
kvn@500 2121 }
duke@435 2122 break;
duke@435 2123 }
kvn@500 2124 case Op_Return:
duke@435 2125 {
kvn@500 2126 #ifdef ASSERT
kvn@500 2127 if( n->req() <= TypeFunc::Parms ||
kvn@500 2128 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2129 assert(false, "Op_Return");
kvn@500 2130 }
kvn@500 2131 #endif
kvn@500 2132 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2133 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2134 add_pointsto_edge(n_idx, ti);
kvn@500 2135 } else {
kvn@679 2136 add_deferred_edge(n_idx, ti);
kvn@500 2137 }
kvn@679 2138 _processed.set(n_idx);
duke@435 2139 break;
duke@435 2140 }
duke@435 2141 case Op_StoreP:
kvn@559 2142 case Op_StoreN:
duke@435 2143 case Op_StorePConditional:
duke@435 2144 case Op_CompareAndSwapP:
kvn@559 2145 case Op_CompareAndSwapN:
duke@435 2146 {
duke@435 2147 Node *adr = n->in(MemNode::Address);
kvn@656 2148 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2149 #ifdef ASSERT
duke@435 2150 if (!adr_type->isa_oopptr())
kvn@500 2151 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2152 #endif
duke@435 2153
kvn@500 2154 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2155 Node *adr_base = get_addp_base(adr);
kvn@500 2156 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2157 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2158 // to "val" from each field with the same offset.
duke@435 2159 VectorSet ptset(Thread::current()->resource_area());
duke@435 2160 PointsTo(ptset, adr_base, phase);
duke@435 2161 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2162 uint pt = i.elem;
kvn@500 2163 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2164 }
duke@435 2165 break;
duke@435 2166 }
kvn@500 2167 case Op_ThreadLocal:
duke@435 2168 {
kvn@500 2169 assert(false, "Op_ThreadLocal");
duke@435 2170 break;
duke@435 2171 }
duke@435 2172 default:
duke@435 2173 ;
duke@435 2174 // nothing to do
duke@435 2175 }
duke@435 2176 }
duke@435 2177
duke@435 2178 #ifndef PRODUCT
duke@435 2179 void ConnectionGraph::dump() {
duke@435 2180 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2181 bool first = true;
duke@435 2182
kvn@679 2183 uint size = nodes_size();
kvn@500 2184 for (uint ni = 0; ni < size; ni++) {
kvn@679 2185 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2186 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2187
kvn@500 2188 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2189 continue;
kvn@500 2190 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2191 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2192 if (first) {
kvn@500 2193 tty->cr();
kvn@500 2194 tty->print("======== Connection graph for ");
kvn@679 2195 _compile->method()->print_short_name();
kvn@500 2196 tty->cr();
kvn@500 2197 first = false;
kvn@500 2198 }
kvn@500 2199 tty->print("%6d ", ni);
kvn@500 2200 ptn->dump();
kvn@500 2201 // Print all locals which reference this allocation
kvn@500 2202 for (uint li = ni; li < size; li++) {
kvn@679 2203 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2204 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2205 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2206 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@500 2207 tty->print("%6d LocalVar [[%d]]", li, ni);
kvn@679 2208 ptnode_adr(li)->_node->dump();
duke@435 2209 }
duke@435 2210 }
kvn@500 2211 if (Verbose) {
kvn@500 2212 // Print all fields which reference this allocation
kvn@500 2213 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2214 uint ei = ptn->edge_target(i);
kvn@500 2215 tty->print("%6d Field [[%d]]", ei, ni);
kvn@679 2216 ptnode_adr(ei)->_node->dump();
kvn@500 2217 }
kvn@500 2218 }
kvn@500 2219 tty->cr();
duke@435 2220 }
duke@435 2221 }
duke@435 2222 }
duke@435 2223 #endif

mercurial