src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp

Thu, 06 Jan 2011 23:50:02 -0800

author
ysr
date
Thu, 06 Jan 2011 23:50:02 -0800
changeset 2452
4947ee68d19c
parent 2314
f95d63e2154a
child 3156
f08d439fab8c
permissions
-rw-r--r--

7008136: CMS: assert((HeapWord*)nextChunk <= _limit) failed: sweep invariant
Summary: The recorded _sweep_limit may not necessarily remain a block boundary as the old generation expands during a concurrent cycle. Terminal actions inside the sweep closure need to be aware of this as they cross over the limit.
Reviewed-by: johnc, minqi

duke@435 1 /*
stefank@2314 2 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcStats.hpp"
stefank@2314 28 #include "memory/defNewGeneration.hpp"
stefank@2314 29 #include "memory/genCollectedHeap.hpp"
stefank@2314 30 #include "runtime/thread.hpp"
stefank@2314 31 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 32 # include "os_linux.inline.hpp"
stefank@2314 33 #endif
stefank@2314 34 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 35 # include "os_solaris.inline.hpp"
stefank@2314 36 #endif
stefank@2314 37 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 38 # include "os_windows.inline.hpp"
stefank@2314 39 #endif
duke@435 40 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
duke@435 41 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
duke@435 42
duke@435 43 // Defined if the granularity of the time measurements is potentially too large.
duke@435 44 #define CLOCK_GRANULARITY_TOO_LARGE
duke@435 45
duke@435 46 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 47 size_t init_promo_size,
duke@435 48 size_t init_survivor_size,
duke@435 49 double max_gc_minor_pause_sec,
duke@435 50 double max_gc_pause_sec,
duke@435 51 uint gc_cost_ratio) :
duke@435 52 AdaptiveSizePolicy(init_eden_size,
duke@435 53 init_promo_size,
duke@435 54 init_survivor_size,
duke@435 55 max_gc_pause_sec,
duke@435 56 gc_cost_ratio) {
duke@435 57
duke@435 58 clear_internal_time_intervals();
duke@435 59
duke@435 60 _processor_count = os::active_processor_count();
duke@435 61
jmasa@1719 62 if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
duke@435 63 assert(_processor_count > 0, "Processor count is suspect");
jmasa@1719 64 _concurrent_processor_count = MIN2((uint) ConcGCThreads,
duke@435 65 (uint) _processor_count);
duke@435 66 } else {
duke@435 67 _concurrent_processor_count = 1;
duke@435 68 }
duke@435 69
duke@435 70 _avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 71 _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 72 _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 73
duke@435 74 _avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
duke@435 75 PausePadding);
duke@435 76 _avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight,
duke@435 77 PausePadding);
duke@435 78
duke@435 79 _avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 80 _avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 81
duke@435 82 _avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 83 _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 84 _avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 85
duke@435 86 // Mark-sweep-compact
duke@435 87 _avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 88 _avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 89 _avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 90
duke@435 91 // Mark-sweep
duke@435 92 _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 93 _avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 94 _avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
duke@435 95
duke@435 96 // Variables that estimate pause times as a function of generation
duke@435 97 // size.
duke@435 98 _remark_pause_old_estimator =
duke@435 99 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 100 _initial_pause_old_estimator =
duke@435 101 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 102 _remark_pause_young_estimator =
duke@435 103 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 104 _initial_pause_young_estimator =
duke@435 105 new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
duke@435 106
duke@435 107 // Alignment comes from that used in ReservedSpace.
duke@435 108 _generation_alignment = os::vm_allocation_granularity();
duke@435 109
duke@435 110 // Start the concurrent timer here so that the first
duke@435 111 // concurrent_phases_begin() measures a finite mutator
duke@435 112 // time. A finite mutator time is used to determine
duke@435 113 // if a concurrent collection has been started. If this
duke@435 114 // proves to be a problem, use some explicit flag to
duke@435 115 // signal that a concurrent collection has been started.
duke@435 116 _concurrent_timer.start();
duke@435 117 _STW_timer.start();
duke@435 118 }
duke@435 119
duke@435 120 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
duke@435 121 // For now assume no other daemon threads are taking alway
duke@435 122 // cpu's from the application.
duke@435 123 return ((double) _concurrent_processor_count / (double) _processor_count);
duke@435 124 }
duke@435 125
duke@435 126 double CMSAdaptiveSizePolicy::concurrent_collection_cost(
duke@435 127 double interval_in_seconds) {
duke@435 128 // When the precleaning and sweeping phases use multiple
duke@435 129 // threads, change one_processor_fraction to
duke@435 130 // concurrent_processor_fraction().
duke@435 131 double one_processor_fraction = 1.0 / ((double) processor_count());
duke@435 132 double concurrent_cost =
duke@435 133 collection_cost(_latest_cms_concurrent_marking_time_secs,
duke@435 134 interval_in_seconds) * concurrent_processor_fraction() +
duke@435 135 collection_cost(_latest_cms_concurrent_precleaning_time_secs,
duke@435 136 interval_in_seconds) * one_processor_fraction +
duke@435 137 collection_cost(_latest_cms_concurrent_sweeping_time_secs,
duke@435 138 interval_in_seconds) * one_processor_fraction;
duke@435 139 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 140 gclog_or_tty->print_cr(
duke@435 141 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
duke@435 142 "_latest_cms_concurrent_marking_cost %f "
duke@435 143 "_latest_cms_concurrent_precleaning_cost %f "
duke@435 144 "_latest_cms_concurrent_sweeping_cost %f "
duke@435 145 "concurrent_processor_fraction %f "
duke@435 146 "concurrent_cost %f ",
duke@435 147 interval_in_seconds,
duke@435 148 collection_cost(_latest_cms_concurrent_marking_time_secs,
duke@435 149 interval_in_seconds),
duke@435 150 collection_cost(_latest_cms_concurrent_precleaning_time_secs,
duke@435 151 interval_in_seconds),
duke@435 152 collection_cost(_latest_cms_concurrent_sweeping_time_secs,
duke@435 153 interval_in_seconds),
duke@435 154 concurrent_processor_fraction(),
duke@435 155 concurrent_cost);
duke@435 156 }
duke@435 157 return concurrent_cost;
duke@435 158 }
duke@435 159
duke@435 160 double CMSAdaptiveSizePolicy::concurrent_collection_time() {
duke@435 161 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 162 _latest_cms_concurrent_marking_time_secs +
duke@435 163 _latest_cms_concurrent_precleaning_time_secs +
duke@435 164 _latest_cms_concurrent_sweeping_time_secs;
duke@435 165 return latest_cms_sum_concurrent_phases_time_secs;
duke@435 166 }
duke@435 167
duke@435 168 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
duke@435 169 // When the precleaning and sweeping phases use multiple
duke@435 170 // threads, change one_processor_fraction to
duke@435 171 // concurrent_processor_fraction().
duke@435 172 double one_processor_fraction = 1.0 / ((double) processor_count());
duke@435 173 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 174 _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
duke@435 175 _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
duke@435 176 _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
duke@435 177 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 178 gclog_or_tty->print_cr(
duke@435 179 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
duke@435 180 "_latest_cms_concurrent_marking_time_secs %f "
duke@435 181 "_latest_cms_concurrent_precleaning_time_secs %f "
duke@435 182 "_latest_cms_concurrent_sweeping_time_secs %f "
duke@435 183 "concurrent_processor_fraction %f "
duke@435 184 "latest_cms_sum_concurrent_phases_time_secs %f ",
duke@435 185 _latest_cms_concurrent_marking_time_secs,
duke@435 186 _latest_cms_concurrent_precleaning_time_secs,
duke@435 187 _latest_cms_concurrent_sweeping_time_secs,
duke@435 188 concurrent_processor_fraction(),
duke@435 189 latest_cms_sum_concurrent_phases_time_secs);
duke@435 190 }
duke@435 191 return latest_cms_sum_concurrent_phases_time_secs;
duke@435 192 }
duke@435 193
duke@435 194 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
duke@435 195 double minor_pause_in_ms) {
duke@435 196 // Get the equivalent of the free space
duke@435 197 // that is available for promotions in the CMS generation
duke@435 198 // and use that to update _minor_pause_old_estimator
duke@435 199
duke@435 200 // Don't implement this until it is needed. A warning is
duke@435 201 // printed if _minor_pause_old_estimator is used.
duke@435 202 }
duke@435 203
duke@435 204 void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
duke@435 205 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 206 gclog_or_tty->print(" ");
duke@435 207 gclog_or_tty->stamp();
duke@435 208 gclog_or_tty->print(": concurrent_marking_begin ");
duke@435 209 }
duke@435 210 // Update the interval time
duke@435 211 _concurrent_timer.stop();
duke@435 212 _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
duke@435 213 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 214 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
duke@435 215 "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
duke@435 216 }
duke@435 217 _concurrent_timer.reset();
duke@435 218 _concurrent_timer.start();
duke@435 219 }
duke@435 220
duke@435 221 void CMSAdaptiveSizePolicy::concurrent_marking_end() {
duke@435 222 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 223 gclog_or_tty->stamp();
duke@435 224 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
duke@435 225 }
duke@435 226
duke@435 227 _concurrent_timer.stop();
duke@435 228 _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
duke@435 229
duke@435 230 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 231 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
duke@435 232 ":concurrent marking time (s) %f",
duke@435 233 _latest_cms_concurrent_marking_time_secs);
duke@435 234 }
duke@435 235 }
duke@435 236
duke@435 237 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
duke@435 238 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 239 gclog_or_tty->stamp();
duke@435 240 gclog_or_tty->print_cr(
duke@435 241 "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
duke@435 242 }
duke@435 243 _concurrent_timer.reset();
duke@435 244 _concurrent_timer.start();
duke@435 245 }
duke@435 246
duke@435 247
duke@435 248 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
duke@435 249 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 250 gclog_or_tty->stamp();
duke@435 251 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
duke@435 252 }
duke@435 253
duke@435 254 _concurrent_timer.stop();
duke@435 255 // May be set again by a second call during the same collection.
duke@435 256 _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
duke@435 257
duke@435 258 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 259 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
duke@435 260 ":concurrent precleaning time (s) %f",
duke@435 261 _latest_cms_concurrent_precleaning_time_secs);
duke@435 262 }
duke@435 263 }
duke@435 264
duke@435 265 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
duke@435 266 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 267 gclog_or_tty->stamp();
duke@435 268 gclog_or_tty->print_cr(
duke@435 269 "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
duke@435 270 }
duke@435 271 _concurrent_timer.reset();
duke@435 272 _concurrent_timer.start();
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
duke@435 277 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 278 gclog_or_tty->stamp();
duke@435 279 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
duke@435 280 }
duke@435 281
duke@435 282 _concurrent_timer.stop();
duke@435 283 _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
duke@435 284
duke@435 285 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 286 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
duke@435 287 ":concurrent sweeping time (s) %f",
duke@435 288 _latest_cms_concurrent_sweeping_time_secs);
duke@435 289 }
duke@435 290 }
duke@435 291
duke@435 292 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
duke@435 293 size_t cur_eden,
duke@435 294 size_t cur_promo) {
duke@435 295 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 296 gclog_or_tty->print(" ");
duke@435 297 gclog_or_tty->stamp();
duke@435 298 gclog_or_tty->print(": concurrent_phases_end ");
duke@435 299 }
duke@435 300
duke@435 301 // Update the concurrent timer
duke@435 302 _concurrent_timer.stop();
duke@435 303
duke@435 304 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 305 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 306
duke@435 307 avg_cms_free()->sample(cur_promo);
duke@435 308 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 309 concurrent_collection_time();
duke@435 310
duke@435 311 _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
duke@435 312
duke@435 313 // Cost of collection (unit-less)
duke@435 314
duke@435 315 // Total interval for collection. May not be valid. Tests
duke@435 316 // below determine whether to use this.
duke@435 317 //
duke@435 318 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 319 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
duke@435 320 "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
duke@435 321 "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
duke@435 322 "_latest_cms_remark_start_to_end_time_secs %f \n"
duke@435 323 "_latest_cms_concurrent_marking_time_secs %f \n"
duke@435 324 "_latest_cms_concurrent_precleaning_time_secs %f \n"
duke@435 325 "_latest_cms_concurrent_sweeping_time_secs %f \n"
duke@435 326 "latest_cms_sum_concurrent_phases_time_secs %f \n"
duke@435 327 "_latest_cms_collection_end_to_collection_start_secs %f \n"
duke@435 328 "concurrent_processor_fraction %f",
duke@435 329 _latest_cms_reset_end_to_initial_mark_start_secs,
duke@435 330 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 331 _latest_cms_remark_start_to_end_time_secs,
duke@435 332 _latest_cms_concurrent_marking_time_secs,
duke@435 333 _latest_cms_concurrent_precleaning_time_secs,
duke@435 334 _latest_cms_concurrent_sweeping_time_secs,
duke@435 335 latest_cms_sum_concurrent_phases_time_secs,
duke@435 336 _latest_cms_collection_end_to_collection_start_secs,
duke@435 337 concurrent_processor_fraction());
duke@435 338 }
duke@435 339 double interval_in_seconds =
duke@435 340 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 341 _latest_cms_remark_start_to_end_time_secs +
duke@435 342 latest_cms_sum_concurrent_phases_time_secs +
duke@435 343 _latest_cms_collection_end_to_collection_start_secs;
duke@435 344 assert(interval_in_seconds >= 0.0,
duke@435 345 "Bad interval between cms collections");
duke@435 346
duke@435 347 // Sample for performance counter
duke@435 348 avg_concurrent_interval()->sample(interval_in_seconds);
duke@435 349
duke@435 350 // STW costs (initial and remark pauses)
duke@435 351 // Cost of collection (unit-less)
duke@435 352 assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
duke@435 353 "Bad initial mark pause");
duke@435 354 assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
duke@435 355 "Bad remark pause");
duke@435 356 double STW_time_in_seconds =
duke@435 357 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 358 _latest_cms_remark_start_to_end_time_secs;
duke@435 359 double STW_collection_cost = 0.0;
duke@435 360 if (interval_in_seconds > 0.0) {
duke@435 361 // cost for the STW phases of the concurrent collection.
duke@435 362 STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
duke@435 363 avg_cms_STW_gc_cost()->sample(STW_collection_cost);
duke@435 364 }
duke@435 365 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 366 gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
duke@435 367 "STW gc cost: %f average: %f", STW_collection_cost,
duke@435 368 avg_cms_STW_gc_cost()->average());
duke@435 369 gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)",
duke@435 370 (double) STW_time_in_seconds * MILLIUNITS,
duke@435 371 (double) interval_in_seconds * MILLIUNITS);
duke@435 372 }
duke@435 373
duke@435 374 double concurrent_cost = 0.0;
duke@435 375 if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
duke@435 376 concurrent_cost = concurrent_collection_cost(interval_in_seconds);
duke@435 377
duke@435 378 avg_concurrent_gc_cost()->sample(concurrent_cost);
duke@435 379 // Average this ms cost into all the other types gc costs
duke@435 380
duke@435 381 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 382 gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
duke@435 383 "concurrent gc cost: %f average: %f",
duke@435 384 concurrent_cost,
duke@435 385 _avg_concurrent_gc_cost->average());
duke@435 386 gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)"
duke@435 387 " processor fraction: %f",
duke@435 388 latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
duke@435 389 interval_in_seconds * MILLIUNITS,
duke@435 390 concurrent_processor_fraction());
duke@435 391 }
duke@435 392 }
duke@435 393 double total_collection_cost = STW_collection_cost + concurrent_cost;
duke@435 394 avg_major_gc_cost()->sample(total_collection_cost);
duke@435 395
duke@435 396 // Gather information for estimating future behavior
duke@435 397 double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
duke@435 398 double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
duke@435 399
duke@435 400 double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
duke@435 401 initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
duke@435 402 initial_pause_in_ms);
duke@435 403 remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
duke@435 404 remark_pause_in_ms);
duke@435 405 major_collection_estimator()->update(cur_promo_size_in_mbytes,
duke@435 406 total_collection_cost);
duke@435 407
duke@435 408 // This estimate uses the average eden size. It could also
duke@435 409 // have used the latest eden size. Which is better?
duke@435 410 double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
duke@435 411 initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
duke@435 412 initial_pause_in_ms);
duke@435 413 remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
duke@435 414 remark_pause_in_ms);
duke@435 415 }
duke@435 416
duke@435 417 clear_internal_time_intervals();
duke@435 418
duke@435 419 set_first_after_collection();
duke@435 420
duke@435 421 // The concurrent phases keeps track of it's own mutator interval
duke@435 422 // with this timer. This allows the stop-the-world phase to
duke@435 423 // be included in the mutator time so that the stop-the-world time
duke@435 424 // is not double counted. Reset and start it.
duke@435 425 _concurrent_timer.reset();
duke@435 426 _concurrent_timer.start();
duke@435 427
duke@435 428 // The mutator time between STW phases does not include the
duke@435 429 // concurrent collection time.
duke@435 430 _STW_timer.reset();
duke@435 431 _STW_timer.start();
duke@435 432 }
duke@435 433
duke@435 434 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
duke@435 435 // Update the interval time
duke@435 436 _STW_timer.stop();
duke@435 437 _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
duke@435 438 // Reset for the initial mark
duke@435 439 _STW_timer.reset();
duke@435 440 _STW_timer.start();
duke@435 441 }
duke@435 442
duke@435 443 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
duke@435 444 GCCause::Cause gc_cause) {
duke@435 445 _STW_timer.stop();
duke@435 446
duke@435 447 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 448 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 449 _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
duke@435 450 avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
duke@435 451
duke@435 452 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 453 gclog_or_tty->print(
duke@435 454 "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
duke@435 455 "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
duke@435 456 }
duke@435 457 }
duke@435 458
duke@435 459 _STW_timer.reset();
duke@435 460 _STW_timer.start();
duke@435 461 }
duke@435 462
duke@435 463 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
duke@435 464 _STW_timer.stop();
duke@435 465 _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
duke@435 466 // Start accumumlating time for the remark in the STW timer.
duke@435 467 _STW_timer.reset();
duke@435 468 _STW_timer.start();
duke@435 469 }
duke@435 470
duke@435 471 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
duke@435 472 GCCause::Cause gc_cause) {
duke@435 473 _STW_timer.stop();
duke@435 474 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 475 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 476 // Total initial mark pause + remark pause.
duke@435 477 _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
duke@435 478 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 479 _latest_cms_remark_start_to_end_time_secs;
duke@435 480 double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
duke@435 481
duke@435 482 avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
duke@435 483
duke@435 484 // Sample total for initial mark + remark
duke@435 485 avg_cms_STW_time()->sample(STW_time_in_seconds);
duke@435 486
duke@435 487 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 488 gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
duke@435 489 "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
duke@435 490 }
duke@435 491
duke@435 492 }
duke@435 493 // Don't start the STW times here because the concurrent
duke@435 494 // sweep and reset has not happened.
duke@435 495 // Keep the old comment above in case I don't understand
duke@435 496 // what is going on but now
duke@435 497 // Start the STW timer because it is used by ms_collection_begin()
duke@435 498 // and ms_collection_end() to get the sweep time if a MS is being
duke@435 499 // done in the foreground.
duke@435 500 _STW_timer.reset();
duke@435 501 _STW_timer.start();
duke@435 502 }
duke@435 503
duke@435 504 void CMSAdaptiveSizePolicy::msc_collection_begin() {
duke@435 505 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 506 gclog_or_tty->print(" ");
duke@435 507 gclog_or_tty->stamp();
duke@435 508 gclog_or_tty->print(": msc_collection_begin ");
duke@435 509 }
duke@435 510 _STW_timer.stop();
duke@435 511 _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
duke@435 512 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 513 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
duke@435 514 "mutator time %f",
duke@435 515 _latest_cms_msc_end_to_msc_start_time_secs);
duke@435 516 }
duke@435 517 avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
duke@435 518 _STW_timer.reset();
duke@435 519 _STW_timer.start();
duke@435 520 }
duke@435 521
duke@435 522 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
duke@435 523 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 524 gclog_or_tty->print(" ");
duke@435 525 gclog_or_tty->stamp();
duke@435 526 gclog_or_tty->print(": msc_collection_end ");
duke@435 527 }
duke@435 528 _STW_timer.stop();
duke@435 529 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 530 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 531 double msc_pause_in_seconds = _STW_timer.seconds();
duke@435 532 if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
duke@435 533 (msc_pause_in_seconds > 0.0)) {
duke@435 534 avg_msc_pause()->sample(msc_pause_in_seconds);
duke@435 535 double mutator_time_in_seconds = 0.0;
duke@435 536 if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
duke@435 537 // This assertion may fail because of time stamp gradularity.
duke@435 538 // Comment it out and investiage it at a later time. The large
duke@435 539 // time stamp granularity occurs on some older linux systems.
duke@435 540 #ifndef CLOCK_GRANULARITY_TOO_LARGE
duke@435 541 assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
duke@435 542 (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
duke@435 543 (_latest_cms_concurrent_sweeping_time_secs == 0.0),
duke@435 544 "There should not be any concurrent time");
duke@435 545 #endif
duke@435 546 // A concurrent collection did not start. Mutator time
duke@435 547 // between collections comes from the STW MSC timer.
duke@435 548 mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
duke@435 549 } else {
duke@435 550 // The concurrent collection did start so count the mutator
duke@435 551 // time to the start of the concurrent collection. In this
duke@435 552 // case the _latest_cms_msc_end_to_msc_start_time_secs measures
duke@435 553 // the time between the initial mark or remark and the
duke@435 554 // start of the MSC. That has no real meaning.
duke@435 555 mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
duke@435 556 }
duke@435 557
duke@435 558 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 559 concurrent_collection_time();
duke@435 560 double interval_in_seconds =
duke@435 561 mutator_time_in_seconds +
duke@435 562 _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 563 _latest_cms_remark_start_to_end_time_secs +
duke@435 564 latest_cms_sum_concurrent_phases_time_secs +
duke@435 565 msc_pause_in_seconds;
duke@435 566
duke@435 567 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 568 gclog_or_tty->print_cr(" interval_in_seconds %f \n"
duke@435 569 " mutator_time_in_seconds %f \n"
duke@435 570 " _latest_cms_initial_mark_start_to_end_time_secs %f\n"
duke@435 571 " _latest_cms_remark_start_to_end_time_secs %f\n"
duke@435 572 " latest_cms_sum_concurrent_phases_time_secs %f\n"
duke@435 573 " msc_pause_in_seconds %f\n",
duke@435 574 interval_in_seconds,
duke@435 575 mutator_time_in_seconds,
duke@435 576 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 577 _latest_cms_remark_start_to_end_time_secs,
duke@435 578 latest_cms_sum_concurrent_phases_time_secs,
duke@435 579 msc_pause_in_seconds);
duke@435 580 }
duke@435 581
duke@435 582 // The concurrent cost is wasted cost but it should be
duke@435 583 // included.
duke@435 584 double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
duke@435 585
duke@435 586 // Initial mark and remark, also wasted.
duke@435 587 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 588 _latest_cms_remark_start_to_end_time_secs;
duke@435 589 double STW_collection_cost =
duke@435 590 collection_cost(STW_time_in_seconds, interval_in_seconds) +
duke@435 591 concurrent_cost;
duke@435 592
duke@435 593 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 594 gclog_or_tty->print_cr(" msc_collection_end:\n"
duke@435 595 "_latest_cms_collection_end_to_collection_start_secs %f\n"
duke@435 596 "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
duke@435 597 "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
duke@435 598 "_latest_cms_remark_start_to_end_time_secs %f\n"
duke@435 599 "latest_cms_sum_concurrent_phases_time_secs %f\n",
duke@435 600 _latest_cms_collection_end_to_collection_start_secs,
duke@435 601 _latest_cms_msc_end_to_msc_start_time_secs,
duke@435 602 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 603 _latest_cms_remark_start_to_end_time_secs,
duke@435 604 latest_cms_sum_concurrent_phases_time_secs);
duke@435 605
duke@435 606 gclog_or_tty->print_cr(" msc_collection_end: \n"
duke@435 607 "latest_cms_sum_concurrent_phases_time_secs %f\n"
duke@435 608 "STW_time_in_seconds %f\n"
duke@435 609 "msc_pause_in_seconds %f\n",
duke@435 610 latest_cms_sum_concurrent_phases_time_secs,
duke@435 611 STW_time_in_seconds,
duke@435 612 msc_pause_in_seconds);
duke@435 613 }
duke@435 614
duke@435 615 double cost = concurrent_cost + STW_collection_cost +
duke@435 616 collection_cost(msc_pause_in_seconds, interval_in_seconds);
duke@435 617
duke@435 618 _avg_msc_gc_cost->sample(cost);
duke@435 619
duke@435 620 // Average this ms cost into all the other types gc costs
duke@435 621 avg_major_gc_cost()->sample(cost);
duke@435 622
duke@435 623 // Sample for performance counter
duke@435 624 _avg_msc_interval->sample(interval_in_seconds);
duke@435 625 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 626 gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
duke@435 627 "MSC gc cost: %f average: %f", cost,
duke@435 628 _avg_msc_gc_cost->average());
duke@435 629
duke@435 630 double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
duke@435 631 gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)",
duke@435 632 msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
duke@435 633 }
duke@435 634 }
duke@435 635 }
duke@435 636
duke@435 637 clear_internal_time_intervals();
duke@435 638
duke@435 639 // Can this call be put into the epilogue?
duke@435 640 set_first_after_collection();
duke@435 641
duke@435 642 // The concurrent phases keeps track of it's own mutator interval
duke@435 643 // with this timer. This allows the stop-the-world phase to
duke@435 644 // be included in the mutator time so that the stop-the-world time
duke@435 645 // is not double counted. Reset and start it.
duke@435 646 _concurrent_timer.stop();
duke@435 647 _concurrent_timer.reset();
duke@435 648 _concurrent_timer.start();
duke@435 649
duke@435 650 _STW_timer.reset();
duke@435 651 _STW_timer.start();
duke@435 652 }
duke@435 653
duke@435 654 void CMSAdaptiveSizePolicy::ms_collection_begin() {
duke@435 655 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 656 gclog_or_tty->print(" ");
duke@435 657 gclog_or_tty->stamp();
duke@435 658 gclog_or_tty->print(": ms_collection_begin ");
duke@435 659 }
duke@435 660 _STW_timer.stop();
duke@435 661 _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
duke@435 662 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 663 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
duke@435 664 "mutator time %f",
duke@435 665 _latest_cms_ms_end_to_ms_start);
duke@435 666 }
duke@435 667 avg_ms_interval()->sample(_STW_timer.seconds());
duke@435 668 _STW_timer.reset();
duke@435 669 _STW_timer.start();
duke@435 670 }
duke@435 671
duke@435 672 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
duke@435 673 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 674 gclog_or_tty->print(" ");
duke@435 675 gclog_or_tty->stamp();
duke@435 676 gclog_or_tty->print(": ms_collection_end ");
duke@435 677 }
duke@435 678 _STW_timer.stop();
duke@435 679 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 680 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 681 // The MS collection is a foreground collection that does all
duke@435 682 // the parts of a mostly concurrent collection.
duke@435 683 //
duke@435 684 // For this collection include the cost of the
duke@435 685 // initial mark
duke@435 686 // remark
duke@435 687 // all concurrent time (scaled down by the
duke@435 688 // concurrent_processor_fraction). Some
duke@435 689 // may be zero if the baton was passed before
duke@435 690 // it was reached.
duke@435 691 // concurrent marking
duke@435 692 // sweeping
duke@435 693 // resetting
duke@435 694 // STW after baton was passed (STW_in_foreground_in_seconds)
duke@435 695 double STW_in_foreground_in_seconds = _STW_timer.seconds();
duke@435 696
duke@435 697 double latest_cms_sum_concurrent_phases_time_secs =
duke@435 698 concurrent_collection_time();
duke@435 699 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 700 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
duke@435 701 "STW_in_foreground_in_seconds %f "
duke@435 702 "_latest_cms_initial_mark_start_to_end_time_secs %f "
duke@435 703 "_latest_cms_remark_start_to_end_time_secs %f "
duke@435 704 "latest_cms_sum_concurrent_phases_time_secs %f "
duke@435 705 "_latest_cms_ms_marking_start_to_end_time_secs %f "
duke@435 706 "_latest_cms_ms_end_to_ms_start %f",
duke@435 707 STW_in_foreground_in_seconds,
duke@435 708 _latest_cms_initial_mark_start_to_end_time_secs,
duke@435 709 _latest_cms_remark_start_to_end_time_secs,
duke@435 710 latest_cms_sum_concurrent_phases_time_secs,
duke@435 711 _latest_cms_ms_marking_start_to_end_time_secs,
duke@435 712 _latest_cms_ms_end_to_ms_start);
duke@435 713 }
duke@435 714
duke@435 715 double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
duke@435 716 _latest_cms_remark_start_to_end_time_secs;
duke@435 717 #ifndef CLOCK_GRANULARITY_TOO_LARGE
duke@435 718 assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
duke@435 719 latest_cms_sum_concurrent_phases_time_secs == 0.0,
duke@435 720 "marking done twice?");
duke@435 721 #endif
duke@435 722 double ms_time_in_seconds = STW_marking_in_seconds +
duke@435 723 STW_in_foreground_in_seconds +
duke@435 724 _latest_cms_ms_marking_start_to_end_time_secs +
duke@435 725 scaled_concurrent_collection_time();
duke@435 726 avg_ms_pause()->sample(ms_time_in_seconds);
duke@435 727 // Use the STW costs from the initial mark and remark plus
duke@435 728 // the cost of the concurrent phase to calculate a
duke@435 729 // collection cost.
duke@435 730 double cost = 0.0;
duke@435 731 if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
duke@435 732 (ms_time_in_seconds > 0.0)) {
duke@435 733 double interval_in_seconds =
duke@435 734 _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
duke@435 735
duke@435 736 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 737 gclog_or_tty->print_cr("\n ms_time_in_seconds %f "
duke@435 738 "latest_cms_sum_concurrent_phases_time_secs %f "
duke@435 739 "interval_in_seconds %f",
duke@435 740 ms_time_in_seconds,
duke@435 741 latest_cms_sum_concurrent_phases_time_secs,
duke@435 742 interval_in_seconds);
duke@435 743 }
duke@435 744
duke@435 745 cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
duke@435 746
duke@435 747 _avg_ms_gc_cost->sample(cost);
duke@435 748 // Average this ms cost into all the other types gc costs
duke@435 749 avg_major_gc_cost()->sample(cost);
duke@435 750
duke@435 751 // Sample for performance counter
duke@435 752 _avg_ms_interval->sample(interval_in_seconds);
duke@435 753 }
duke@435 754 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 755 gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
duke@435 756 "MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average());
duke@435 757
duke@435 758 double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
duke@435 759 gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)",
duke@435 760 ms_time_in_ms,
duke@435 761 _latest_cms_ms_end_to_ms_start * MILLIUNITS);
duke@435 762 }
duke@435 763 }
duke@435 764
duke@435 765 // Consider putting this code (here to end) into a
duke@435 766 // method for convenience.
duke@435 767 clear_internal_time_intervals();
duke@435 768
duke@435 769 set_first_after_collection();
duke@435 770
duke@435 771 // The concurrent phases keeps track of it's own mutator interval
duke@435 772 // with this timer. This allows the stop-the-world phase to
duke@435 773 // be included in the mutator time so that the stop-the-world time
duke@435 774 // is not double counted. Reset and start it.
duke@435 775 _concurrent_timer.stop();
duke@435 776 _concurrent_timer.reset();
duke@435 777 _concurrent_timer.start();
duke@435 778
duke@435 779 _STW_timer.reset();
duke@435 780 _STW_timer.start();
duke@435 781 }
duke@435 782
duke@435 783 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
duke@435 784 _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
duke@435 785 _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
duke@435 786 _latest_cms_collection_end_to_collection_start_secs = 0.0;
duke@435 787 _latest_cms_concurrent_marking_time_secs = 0.0;
duke@435 788 _latest_cms_concurrent_precleaning_time_secs = 0.0;
duke@435 789 _latest_cms_concurrent_sweeping_time_secs = 0.0;
duke@435 790 _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
duke@435 791 _latest_cms_ms_end_to_ms_start = 0.0;
duke@435 792 _latest_cms_remark_start_to_end_time_secs = 0.0;
duke@435 793 _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
duke@435 794 _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
duke@435 795 }
duke@435 796
duke@435 797 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
duke@435 798 AdaptiveSizePolicy::clear_generation_free_space_flags();
duke@435 799
duke@435 800 set_change_young_gen_for_maj_pauses(0);
duke@435 801 }
duke@435 802
duke@435 803 void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
duke@435 804 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 805 gclog_or_tty->stamp();
duke@435 806 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
duke@435 807 }
duke@435 808 _concurrent_timer.start();
duke@435 809 }
duke@435 810
duke@435 811 double CMSAdaptiveSizePolicy::time_since_major_gc() const {
duke@435 812 _concurrent_timer.stop();
duke@435 813 double time_since_cms_gc = _concurrent_timer.seconds();
duke@435 814 _concurrent_timer.start();
duke@435 815 _STW_timer.stop();
duke@435 816 double time_since_STW_gc = _STW_timer.seconds();
duke@435 817 _STW_timer.start();
duke@435 818
duke@435 819 return MIN2(time_since_cms_gc, time_since_STW_gc);
duke@435 820 }
duke@435 821
duke@435 822 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
duke@435 823 double cms_interval = _avg_concurrent_interval->average();
duke@435 824 double msc_interval = _avg_msc_interval->average();
duke@435 825 double ms_interval = _avg_ms_interval->average();
duke@435 826
duke@435 827 return MAX3(cms_interval, msc_interval, ms_interval);
duke@435 828 }
duke@435 829
duke@435 830 double CMSAdaptiveSizePolicy::cms_gc_cost() const {
duke@435 831 return avg_major_gc_cost()->average();
duke@435 832 }
duke@435 833
duke@435 834 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
duke@435 835 _STW_timer.stop();
duke@435 836 // Start accumumlating time for the marking in the STW timer.
duke@435 837 _STW_timer.reset();
duke@435 838 _STW_timer.start();
duke@435 839 }
duke@435 840
duke@435 841 void CMSAdaptiveSizePolicy::ms_collection_marking_end(
duke@435 842 GCCause::Cause gc_cause) {
duke@435 843 _STW_timer.stop();
duke@435 844 if (gc_cause != GCCause::_java_lang_system_gc ||
duke@435 845 UseAdaptiveSizePolicyWithSystemGC) {
duke@435 846 _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
duke@435 847 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 848 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
duke@435 849 "msc_collection_marking_end: mutator time %f",
duke@435 850 _latest_cms_ms_marking_start_to_end_time_secs);
duke@435 851 }
duke@435 852 }
duke@435 853 _STW_timer.reset();
duke@435 854 _STW_timer.start();
duke@435 855 }
duke@435 856
duke@435 857 double CMSAdaptiveSizePolicy::gc_cost() const {
duke@435 858 double cms_gen_cost = cms_gc_cost();
duke@435 859 double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost);
duke@435 860 assert(result >= 0.0, "Both minor and major costs are non-negative");
duke@435 861 return result;
duke@435 862 }
duke@435 863
duke@435 864 // Cost of collection (unit-less)
duke@435 865 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
duke@435 866 double interval_in_seconds) {
duke@435 867 // Cost of collection (unit-less)
duke@435 868 double cost = 0.0;
duke@435 869 if ((interval_in_seconds > 0.0) &&
duke@435 870 (pause_in_seconds > 0.0)) {
duke@435 871 cost =
duke@435 872 pause_in_seconds / interval_in_seconds;
duke@435 873 }
duke@435 874 return cost;
duke@435 875 }
duke@435 876
duke@435 877 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
duke@435 878 size_t change = 0;
duke@435 879 size_t desired_eden = cur_eden;
duke@435 880
duke@435 881 // reduce eden size
duke@435 882 change = eden_decrement_aligned_down(cur_eden);
duke@435 883 desired_eden = cur_eden - change;
duke@435 884
duke@435 885 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 886 gclog_or_tty->print_cr(
duke@435 887 "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
duke@435 888 "adjusting eden for pause time. "
duke@435 889 " starting eden size " SIZE_FORMAT
duke@435 890 " reduced eden size " SIZE_FORMAT
duke@435 891 " eden delta " SIZE_FORMAT,
duke@435 892 cur_eden, desired_eden, change);
duke@435 893 }
duke@435 894
duke@435 895 return desired_eden;
duke@435 896 }
duke@435 897
duke@435 898 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
duke@435 899
duke@435 900 size_t desired_eden = cur_eden;
duke@435 901
duke@435 902 set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
duke@435 903
duke@435 904 size_t change = eden_increment_aligned_up(cur_eden);
duke@435 905 size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
duke@435 906
duke@435 907 if (cur_eden + scaled_change > cur_eden) {
duke@435 908 desired_eden = cur_eden + scaled_change;
duke@435 909 }
duke@435 910
duke@435 911 _young_gen_change_for_minor_throughput++;
duke@435 912
duke@435 913 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 914 gclog_or_tty->print_cr(
duke@435 915 "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
duke@435 916 "adjusting eden for throughput. "
duke@435 917 " starting eden size " SIZE_FORMAT
duke@435 918 " increased eden size " SIZE_FORMAT
duke@435 919 " eden delta " SIZE_FORMAT,
duke@435 920 cur_eden, desired_eden, scaled_change);
duke@435 921 }
duke@435 922
duke@435 923 return desired_eden;
duke@435 924 }
duke@435 925
duke@435 926 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
duke@435 927
duke@435 928 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 929
duke@435 930 size_t change = eden_decrement(cur_eden);
duke@435 931 size_t desired_eden_size = cur_eden - change;
duke@435 932
duke@435 933 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 934 gclog_or_tty->print_cr(
duke@435 935 "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
duke@435 936 "adjusting eden for footprint. "
duke@435 937 " starting eden size " SIZE_FORMAT
duke@435 938 " reduced eden size " SIZE_FORMAT
duke@435 939 " eden delta " SIZE_FORMAT,
duke@435 940 cur_eden, desired_eden_size, change);
duke@435 941 }
duke@435 942 return desired_eden_size;
duke@435 943 }
duke@435 944
duke@435 945 // The eden and promo versions should be combined if possible.
duke@435 946 // They are the same except that the sizes of the decrement
duke@435 947 // and increment are different for eden and promo.
duke@435 948 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
duke@435 949 size_t delta = eden_decrement(cur_eden);
duke@435 950 return align_size_down(delta, generation_alignment());
duke@435 951 }
duke@435 952
duke@435 953 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
duke@435 954 size_t delta = eden_increment(cur_eden);
duke@435 955 return align_size_up(delta, generation_alignment());
duke@435 956 }
duke@435 957
duke@435 958 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
duke@435 959 size_t delta = promo_decrement(cur_promo);
duke@435 960 return align_size_down(delta, generation_alignment());
duke@435 961 }
duke@435 962
duke@435 963 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
duke@435 964 size_t delta = promo_increment(cur_promo);
duke@435 965 return align_size_up(delta, generation_alignment());
duke@435 966 }
duke@435 967
duke@435 968
duke@435 969 void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden,
duke@435 970 size_t max_eden_size)
duke@435 971 {
duke@435 972 size_t desired_eden_size = cur_eden;
duke@435 973 size_t eden_limit = max_eden_size;
duke@435 974
duke@435 975 // Printout input
duke@435 976 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 977 gclog_or_tty->print_cr(
duke@435 978 "CMSAdaptiveSizePolicy::compute_young_generation_free_space: "
duke@435 979 "cur_eden " SIZE_FORMAT,
duke@435 980 cur_eden);
duke@435 981 }
duke@435 982
duke@435 983 // Used for diagnostics
duke@435 984 clear_generation_free_space_flags();
duke@435 985
duke@435 986 if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
duke@435 987 if (minor_pause_young_estimator()->decrement_will_decrease()) {
duke@435 988 // If the minor pause is too long, shrink the young gen.
duke@435 989 set_change_young_gen_for_min_pauses(
duke@435 990 decrease_young_gen_for_min_pauses_true);
duke@435 991 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
duke@435 992 }
duke@435 993 } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
duke@435 994 (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
duke@435 995 // The remark or initial pauses are not meeting the goal. Should
duke@435 996 // the generation be shrunk?
duke@435 997 if (get_and_clear_first_after_collection() &&
duke@435 998 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
duke@435 999 remark_pause_young_estimator()->decrement_will_decrease()) ||
duke@435 1000 (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
duke@435 1001 initial_pause_young_estimator()->decrement_will_decrease()))) {
duke@435 1002
duke@435 1003 set_change_young_gen_for_maj_pauses(
duke@435 1004 decrease_young_gen_for_maj_pauses_true);
duke@435 1005
duke@435 1006 // If the remark or initial pause is too long and this is the
duke@435 1007 // first young gen collection after a cms collection, shrink
duke@435 1008 // the young gen.
duke@435 1009 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
duke@435 1010 }
duke@435 1011 // If not the first young gen collection after a cms collection,
duke@435 1012 // don't do anything. In this case an adjustment has already
duke@435 1013 // been made and the results of the adjustment has not yet been
duke@435 1014 // measured.
duke@435 1015 } else if ((minor_gc_cost() >= 0.0) &&
duke@435 1016 (adjusted_mutator_cost() < _throughput_goal)) {
duke@435 1017 desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
duke@435 1018 } else {
duke@435 1019 desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
duke@435 1020 }
duke@435 1021
duke@435 1022 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1023 gclog_or_tty->print_cr(
duke@435 1024 "CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:"
duke@435 1025 " desired_eden_size: " SIZE_FORMAT
duke@435 1026 " old_eden_size: " SIZE_FORMAT,
duke@435 1027 desired_eden_size, cur_eden);
duke@435 1028 }
duke@435 1029
duke@435 1030 set_eden_size(desired_eden_size);
duke@435 1031 }
duke@435 1032
duke@435 1033 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
duke@435 1034 size_t change = 0;
duke@435 1035 size_t desired_promo = cur_promo;
duke@435 1036 // Move this test up to caller like the adjust_eden_for_pause_time()
duke@435 1037 // call.
duke@435 1038 if ((AdaptiveSizePausePolicy == 0) &&
duke@435 1039 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
duke@435 1040 (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
duke@435 1041 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 1042 change = promo_decrement_aligned_down(cur_promo);
duke@435 1043 desired_promo = cur_promo - change;
duke@435 1044 } else if ((AdaptiveSizePausePolicy > 0) &&
duke@435 1045 (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
duke@435 1046 remark_pause_old_estimator()->decrement_will_decrease()) ||
duke@435 1047 ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
duke@435 1048 initial_pause_old_estimator()->decrement_will_decrease()))) {
duke@435 1049 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
duke@435 1050 change = promo_decrement_aligned_down(cur_promo);
duke@435 1051 desired_promo = cur_promo - change;
duke@435 1052 }
duke@435 1053
duke@435 1054 if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
duke@435 1055 gclog_or_tty->print_cr(
duke@435 1056 "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
duke@435 1057 "adjusting promo for pause time. "
duke@435 1058 " starting promo size " SIZE_FORMAT
duke@435 1059 " reduced promo size " SIZE_FORMAT
duke@435 1060 " promo delta " SIZE_FORMAT,
duke@435 1061 cur_promo, desired_promo, change);
duke@435 1062 }
duke@435 1063
duke@435 1064 return desired_promo;
duke@435 1065 }
duke@435 1066
duke@435 1067 // Try to share this with PS.
duke@435 1068 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
duke@435 1069 double gen_gc_cost) {
duke@435 1070
duke@435 1071 // Calculate the change to use for the tenured gen.
duke@435 1072 size_t scaled_change = 0;
duke@435 1073 // Can the increment to the generation be scaled?
duke@435 1074 if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
duke@435 1075 double scale_by_ratio = gen_gc_cost / gc_cost();
duke@435 1076 scaled_change =
duke@435 1077 (size_t) (scale_by_ratio * (double) base_change);
duke@435 1078 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1079 gclog_or_tty->print_cr(
duke@435 1080 "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
duke@435 1081 SIZE_FORMAT,
duke@435 1082 base_change, scale_by_ratio, scaled_change);
duke@435 1083 }
duke@435 1084 } else if (gen_gc_cost >= 0.0) {
duke@435 1085 // Scaling is not going to work. If the major gc time is the
duke@435 1086 // larger than the other GC costs, give it a full increment.
duke@435 1087 if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
duke@435 1088 scaled_change = base_change;
duke@435 1089 }
duke@435 1090 } else {
duke@435 1091 // Don't expect to get here but it's ok if it does
duke@435 1092 // in the product build since the delta will be 0
duke@435 1093 // and nothing will change.
duke@435 1094 assert(false, "Unexpected value for gc costs");
duke@435 1095 }
duke@435 1096
duke@435 1097 return scaled_change;
duke@435 1098 }
duke@435 1099
duke@435 1100 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
duke@435 1101
duke@435 1102 size_t desired_promo = cur_promo;
duke@435 1103
duke@435 1104 set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
duke@435 1105
duke@435 1106 size_t change = promo_increment_aligned_up(cur_promo);
duke@435 1107 size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
duke@435 1108
duke@435 1109 if (cur_promo + scaled_change > cur_promo) {
duke@435 1110 desired_promo = cur_promo + scaled_change;
duke@435 1111 }
duke@435 1112
duke@435 1113 _old_gen_change_for_major_throughput++;
duke@435 1114
duke@435 1115 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1116 gclog_or_tty->print_cr(
duke@435 1117 "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
duke@435 1118 "adjusting promo for throughput. "
duke@435 1119 " starting promo size " SIZE_FORMAT
duke@435 1120 " increased promo size " SIZE_FORMAT
duke@435 1121 " promo delta " SIZE_FORMAT,
duke@435 1122 cur_promo, desired_promo, scaled_change);
duke@435 1123 }
duke@435 1124
duke@435 1125 return desired_promo;
duke@435 1126 }
duke@435 1127
duke@435 1128 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
duke@435 1129 size_t cur_eden) {
duke@435 1130
duke@435 1131 set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
duke@435 1132
duke@435 1133 size_t change = promo_decrement(cur_promo);
duke@435 1134 size_t desired_promo_size = cur_promo - change;
duke@435 1135
duke@435 1136 if (PrintAdaptiveSizePolicy && Verbose) {
duke@435 1137 gclog_or_tty->print_cr(
duke@435 1138 "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
duke@435 1139 "adjusting promo for footprint. "
duke@435 1140 " starting promo size " SIZE_FORMAT
duke@435 1141 " reduced promo size " SIZE_FORMAT
duke@435 1142 " promo delta " SIZE_FORMAT,
duke@435 1143 cur_promo, desired_promo_size, change);
duke@435 1144 }
duke@435 1145 return desired_promo_size;
duke@435 1146 }
duke@435 1147
duke@435 1148 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
duke@435 1149 size_t cur_tenured_free,
duke@435 1150 size_t max_tenured_available,
duke@435 1151 size_t cur_eden) {
duke@435 1152 // This can be bad if the desired value grows/shrinks without
duke@435 1153 // any connection to the read free space
duke@435 1154 size_t desired_promo_size = promo_size();
duke@435 1155 size_t tenured_limit = max_tenured_available;
duke@435 1156
duke@435 1157 // Printout input
duke@435 1158 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1159 gclog_or_tty->print_cr(
duke@435 1160 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
duke@435 1161 "cur_tenured_free " SIZE_FORMAT
duke@435 1162 " max_tenured_available " SIZE_FORMAT,
duke@435 1163 cur_tenured_free, max_tenured_available);
duke@435 1164 }
duke@435 1165
duke@435 1166 // Used for diagnostics
duke@435 1167 clear_generation_free_space_flags();
duke@435 1168
duke@435 1169 set_decide_at_full_gc(decide_at_full_gc_true);
duke@435 1170 if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
duke@435 1171 avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
duke@435 1172 desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
duke@435 1173 } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
duke@435 1174 // Nothing to do since the minor collections are too large and
duke@435 1175 // this method only deals with the cms generation.
duke@435 1176 } else if ((cms_gc_cost() >= 0.0) &&
duke@435 1177 (adjusted_mutator_cost() < _throughput_goal)) {
duke@435 1178 desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
duke@435 1179 } else {
duke@435 1180 desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
duke@435 1181 cur_eden);
duke@435 1182 }
duke@435 1183
duke@435 1184 if (PrintGC && PrintAdaptiveSizePolicy) {
duke@435 1185 gclog_or_tty->print_cr(
duke@435 1186 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
duke@435 1187 " desired_promo_size: " SIZE_FORMAT
duke@435 1188 " old_promo_size: " SIZE_FORMAT,
duke@435 1189 desired_promo_size, cur_tenured_free);
duke@435 1190 }
duke@435 1191
duke@435 1192 set_promo_size(desired_promo_size);
duke@435 1193 }
duke@435 1194
duke@435 1195 int CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
duke@435 1196 bool is_survivor_overflow,
duke@435 1197 int tenuring_threshold,
duke@435 1198 size_t survivor_limit) {
duke@435 1199 assert(survivor_limit >= generation_alignment(),
duke@435 1200 "survivor_limit too small");
duke@435 1201 assert((size_t)align_size_down(survivor_limit, generation_alignment())
duke@435 1202 == survivor_limit, "survivor_limit not aligned");
duke@435 1203
duke@435 1204 // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
duke@435 1205 if (!UsePSAdaptiveSurvivorSizePolicy ||
duke@435 1206 !young_gen_policy_is_ready()) {
duke@435 1207 return tenuring_threshold;
duke@435 1208 }
duke@435 1209
duke@435 1210 // We'll decide whether to increase or decrease the tenuring
duke@435 1211 // threshold based partly on the newly computed survivor size
duke@435 1212 // (if we hit the maximum limit allowed, we'll always choose to
duke@435 1213 // decrement the threshold).
duke@435 1214 bool incr_tenuring_threshold = false;
duke@435 1215 bool decr_tenuring_threshold = false;
duke@435 1216
duke@435 1217 set_decrement_tenuring_threshold_for_gc_cost(false);
duke@435 1218 set_increment_tenuring_threshold_for_gc_cost(false);
duke@435 1219 set_decrement_tenuring_threshold_for_survivor_limit(false);
duke@435 1220
duke@435 1221 if (!is_survivor_overflow) {
duke@435 1222 // Keep running averages on how much survived
duke@435 1223
duke@435 1224 // We use the tenuring threshold to equalize the cost of major
duke@435 1225 // and minor collections.
duke@435 1226 // ThresholdTolerance is used to indicate how sensitive the
duke@435 1227 // tenuring threshold is to differences in cost betweent the
duke@435 1228 // collection types.
duke@435 1229
duke@435 1230 // Get the times of interest. This involves a little work, so
duke@435 1231 // we cache the values here.
duke@435 1232 const double major_cost = major_gc_cost();
duke@435 1233 const double minor_cost = minor_gc_cost();
duke@435 1234
duke@435 1235 if (minor_cost > major_cost * _threshold_tolerance_percent) {
duke@435 1236 // Minor times are getting too long; lower the threshold so
duke@435 1237 // less survives and more is promoted.
duke@435 1238 decr_tenuring_threshold = true;
duke@435 1239 set_decrement_tenuring_threshold_for_gc_cost(true);
duke@435 1240 } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
duke@435 1241 // Major times are too long, so we want less promotion.
duke@435 1242 incr_tenuring_threshold = true;
duke@435 1243 set_increment_tenuring_threshold_for_gc_cost(true);
duke@435 1244 }
duke@435 1245
duke@435 1246 } else {
duke@435 1247 // Survivor space overflow occurred, so promoted and survived are
duke@435 1248 // not accurate. We'll make our best guess by combining survived
duke@435 1249 // and promoted and count them as survivors.
duke@435 1250 //
duke@435 1251 // We'll lower the tenuring threshold to see if we can correct
duke@435 1252 // things. Also, set the survivor size conservatively. We're
duke@435 1253 // trying to avoid many overflows from occurring if defnew size
duke@435 1254 // is just too small.
duke@435 1255
duke@435 1256 decr_tenuring_threshold = true;
duke@435 1257 }
duke@435 1258
duke@435 1259 // The padded average also maintains a deviation from the average;
duke@435 1260 // we use this to see how good of an estimate we have of what survived.
duke@435 1261 // We're trying to pad the survivor size as little as possible without
duke@435 1262 // overflowing the survivor spaces.
duke@435 1263 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
duke@435 1264 generation_alignment());
duke@435 1265 target_size = MAX2(target_size, generation_alignment());
duke@435 1266
duke@435 1267 if (target_size > survivor_limit) {
duke@435 1268 // Target size is bigger than we can handle. Let's also reduce
duke@435 1269 // the tenuring threshold.
duke@435 1270 target_size = survivor_limit;
duke@435 1271 decr_tenuring_threshold = true;
duke@435 1272 set_decrement_tenuring_threshold_for_survivor_limit(true);
duke@435 1273 }
duke@435 1274
duke@435 1275 // Finally, increment or decrement the tenuring threshold, as decided above.
duke@435 1276 // We test for decrementing first, as we might have hit the target size
duke@435 1277 // limit.
duke@435 1278 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1279 if (tenuring_threshold > 1) {
duke@435 1280 tenuring_threshold--;
duke@435 1281 }
duke@435 1282 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
duke@435 1283 if (tenuring_threshold < MaxTenuringThreshold) {
duke@435 1284 tenuring_threshold++;
duke@435 1285 }
duke@435 1286 }
duke@435 1287
duke@435 1288 // We keep a running average of the amount promoted which is used
duke@435 1289 // to decide when we should collect the old generation (when
duke@435 1290 // the amount of old gen free space is less than what we expect to
duke@435 1291 // promote).
duke@435 1292
duke@435 1293 if (PrintAdaptiveSizePolicy) {
duke@435 1294 // A little more detail if Verbose is on
duke@435 1295 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 1296 if (Verbose) {
duke@435 1297 gclog_or_tty->print( " avg_survived: %f"
duke@435 1298 " avg_deviation: %f",
duke@435 1299 _avg_survived->average(),
duke@435 1300 _avg_survived->deviation());
duke@435 1301 }
duke@435 1302
duke@435 1303 gclog_or_tty->print( " avg_survived_padded_avg: %f",
duke@435 1304 _avg_survived->padded_average());
duke@435 1305
duke@435 1306 if (Verbose) {
duke@435 1307 gclog_or_tty->print( " avg_promoted_avg: %f"
duke@435 1308 " avg_promoted_dev: %f",
duke@435 1309 gch->gc_stats(1)->avg_promoted()->average(),
duke@435 1310 gch->gc_stats(1)->avg_promoted()->deviation());
duke@435 1311 }
duke@435 1312
duke@435 1313 gclog_or_tty->print( " avg_promoted_padded_avg: %f"
duke@435 1314 " avg_pretenured_padded_avg: %f"
duke@435 1315 " tenuring_thresh: %d"
duke@435 1316 " target_size: " SIZE_FORMAT
duke@435 1317 " survivor_limit: " SIZE_FORMAT,
duke@435 1318 gch->gc_stats(1)->avg_promoted()->padded_average(),
duke@435 1319 _avg_pretenured->padded_average(),
duke@435 1320 tenuring_threshold, target_size, survivor_limit);
duke@435 1321 gclog_or_tty->cr();
duke@435 1322 }
duke@435 1323
duke@435 1324 set_survivor_size(target_size);
duke@435 1325
duke@435 1326 return tenuring_threshold;
duke@435 1327 }
duke@435 1328
duke@435 1329 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
duke@435 1330 bool result = _first_after_collection;
duke@435 1331 _first_after_collection = false;
duke@435 1332 return result;
duke@435 1333 }
duke@435 1334
duke@435 1335 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1336 outputStream* st) const {
duke@435 1337
duke@435 1338 if (!UseAdaptiveSizePolicy) return false;
duke@435 1339
duke@435 1340 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 1341 Generation* gen0 = gch->get_gen(0);
duke@435 1342 DefNewGeneration* def_new = gen0->as_DefNewGeneration();
duke@435 1343 return
duke@435 1344 AdaptiveSizePolicy::print_adaptive_size_policy_on(
duke@435 1345 st,
duke@435 1346 def_new->tenuring_threshold());
duke@435 1347 }

mercurial