duke@435: /* stefank@2314: * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * trims@1907: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA trims@1907: * or visit www.oracle.com if you need additional information or have any trims@1907: * questions. duke@435: * duke@435: */ duke@435: stefank@2314: #include "precompiled.hpp" stefank@2314: #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" stefank@2314: #include "gc_implementation/shared/gcStats.hpp" stefank@2314: #include "memory/defNewGeneration.hpp" stefank@2314: #include "memory/genCollectedHeap.hpp" stefank@2314: #include "runtime/thread.hpp" stefank@2314: #ifdef TARGET_OS_FAMILY_linux stefank@2314: # include "os_linux.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_solaris stefank@2314: # include "os_solaris.inline.hpp" stefank@2314: #endif stefank@2314: #ifdef TARGET_OS_FAMILY_windows stefank@2314: # include "os_windows.inline.hpp" stefank@2314: #endif duke@435: elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer; duke@435: elapsedTimer CMSAdaptiveSizePolicy::_STW_timer; duke@435: duke@435: // Defined if the granularity of the time measurements is potentially too large. duke@435: #define CLOCK_GRANULARITY_TOO_LARGE duke@435: duke@435: CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size, duke@435: size_t init_promo_size, duke@435: size_t init_survivor_size, duke@435: double max_gc_minor_pause_sec, duke@435: double max_gc_pause_sec, duke@435: uint gc_cost_ratio) : duke@435: AdaptiveSizePolicy(init_eden_size, duke@435: init_promo_size, duke@435: init_survivor_size, duke@435: max_gc_pause_sec, duke@435: gc_cost_ratio) { duke@435: duke@435: clear_internal_time_intervals(); duke@435: duke@435: _processor_count = os::active_processor_count(); duke@435: jmasa@1719: if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) { duke@435: assert(_processor_count > 0, "Processor count is suspect"); jmasa@1719: _concurrent_processor_count = MIN2((uint) ConcGCThreads, duke@435: (uint) _processor_count); duke@435: } else { duke@435: _concurrent_processor_count = 1; duke@435: } duke@435: duke@435: _avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: _avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight, duke@435: PausePadding); duke@435: _avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight, duke@435: PausePadding); duke@435: duke@435: _avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: _avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: // Mark-sweep-compact duke@435: _avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: // Mark-sweep duke@435: _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: _avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); duke@435: duke@435: // Variables that estimate pause times as a function of generation duke@435: // size. duke@435: _remark_pause_old_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _initial_pause_old_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _remark_pause_young_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: _initial_pause_young_estimator = duke@435: new LinearLeastSquareFit(AdaptiveSizePolicyWeight); duke@435: duke@435: // Alignment comes from that used in ReservedSpace. duke@435: _generation_alignment = os::vm_allocation_granularity(); duke@435: duke@435: // Start the concurrent timer here so that the first duke@435: // concurrent_phases_begin() measures a finite mutator duke@435: // time. A finite mutator time is used to determine duke@435: // if a concurrent collection has been started. If this duke@435: // proves to be a problem, use some explicit flag to duke@435: // signal that a concurrent collection has been started. duke@435: _concurrent_timer.start(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::concurrent_processor_fraction() { duke@435: // For now assume no other daemon threads are taking alway duke@435: // cpu's from the application. duke@435: return ((double) _concurrent_processor_count / (double) _processor_count); duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::concurrent_collection_cost( duke@435: double interval_in_seconds) { duke@435: // When the precleaning and sweeping phases use multiple duke@435: // threads, change one_processor_fraction to duke@435: // concurrent_processor_fraction(). duke@435: double one_processor_fraction = 1.0 / ((double) processor_count()); duke@435: double concurrent_cost = duke@435: collection_cost(_latest_cms_concurrent_marking_time_secs, duke@435: interval_in_seconds) * concurrent_processor_fraction() + duke@435: collection_cost(_latest_cms_concurrent_precleaning_time_secs, duke@435: interval_in_seconds) * one_processor_fraction + duke@435: collection_cost(_latest_cms_concurrent_sweeping_time_secs, duke@435: interval_in_seconds) * one_processor_fraction; duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) " duke@435: "_latest_cms_concurrent_marking_cost %f " duke@435: "_latest_cms_concurrent_precleaning_cost %f " duke@435: "_latest_cms_concurrent_sweeping_cost %f " duke@435: "concurrent_processor_fraction %f " duke@435: "concurrent_cost %f ", duke@435: interval_in_seconds, duke@435: collection_cost(_latest_cms_concurrent_marking_time_secs, duke@435: interval_in_seconds), duke@435: collection_cost(_latest_cms_concurrent_precleaning_time_secs, duke@435: interval_in_seconds), duke@435: collection_cost(_latest_cms_concurrent_sweeping_time_secs, duke@435: interval_in_seconds), duke@435: concurrent_processor_fraction(), duke@435: concurrent_cost); duke@435: } duke@435: return concurrent_cost; duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::concurrent_collection_time() { duke@435: double latest_cms_sum_concurrent_phases_time_secs = duke@435: _latest_cms_concurrent_marking_time_secs + duke@435: _latest_cms_concurrent_precleaning_time_secs + duke@435: _latest_cms_concurrent_sweeping_time_secs; duke@435: return latest_cms_sum_concurrent_phases_time_secs; duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() { duke@435: // When the precleaning and sweeping phases use multiple duke@435: // threads, change one_processor_fraction to duke@435: // concurrent_processor_fraction(). duke@435: double one_processor_fraction = 1.0 / ((double) processor_count()); duke@435: double latest_cms_sum_concurrent_phases_time_secs = duke@435: _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() + duke@435: _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction + duke@435: _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ; duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time " duke@435: "_latest_cms_concurrent_marking_time_secs %f " duke@435: "_latest_cms_concurrent_precleaning_time_secs %f " duke@435: "_latest_cms_concurrent_sweeping_time_secs %f " duke@435: "concurrent_processor_fraction %f " duke@435: "latest_cms_sum_concurrent_phases_time_secs %f ", duke@435: _latest_cms_concurrent_marking_time_secs, duke@435: _latest_cms_concurrent_precleaning_time_secs, duke@435: _latest_cms_concurrent_sweeping_time_secs, duke@435: concurrent_processor_fraction(), duke@435: latest_cms_sum_concurrent_phases_time_secs); duke@435: } duke@435: return latest_cms_sum_concurrent_phases_time_secs; duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator( duke@435: double minor_pause_in_ms) { duke@435: // Get the equivalent of the free space duke@435: // that is available for promotions in the CMS generation duke@435: // and use that to update _minor_pause_old_estimator duke@435: duke@435: // Don't implement this until it is needed. A warning is duke@435: // printed if _minor_pause_old_estimator is used. duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_marking_begin() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print(" "); duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print(": concurrent_marking_begin "); duke@435: } duke@435: // Update the interval time duke@435: _concurrent_timer.stop(); duke@435: _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds(); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: " duke@435: "mutator time %f", _latest_cms_collection_end_to_collection_start_secs); duke@435: } duke@435: _concurrent_timer.reset(); duke@435: _concurrent_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_marking_end() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()"); duke@435: } duke@435: duke@435: _concurrent_timer.stop(); duke@435: _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end" duke@435: ":concurrent marking time (s) %f", duke@435: _latest_cms_concurrent_marking_time_secs); duke@435: } duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()"); duke@435: } duke@435: _concurrent_timer.reset(); duke@435: _concurrent_timer.start(); duke@435: } duke@435: duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_precleaning_end() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()"); duke@435: } duke@435: duke@435: _concurrent_timer.stop(); duke@435: // May be set again by a second call during the same collection. duke@435: _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end" duke@435: ":concurrent precleaning time (s) %f", duke@435: _latest_cms_concurrent_precleaning_time_secs); duke@435: } duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()"); duke@435: } duke@435: _concurrent_timer.reset(); duke@435: _concurrent_timer.start(); duke@435: } duke@435: duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_sweeping_end() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()"); duke@435: } duke@435: duke@435: _concurrent_timer.stop(); duke@435: _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds(); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end" duke@435: ":concurrent sweeping time (s) %f", duke@435: _latest_cms_concurrent_sweeping_time_secs); duke@435: } duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause, duke@435: size_t cur_eden, duke@435: size_t cur_promo) { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print(" "); duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print(": concurrent_phases_end "); duke@435: } duke@435: duke@435: // Update the concurrent timer duke@435: _concurrent_timer.stop(); duke@435: duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: duke@435: avg_cms_free()->sample(cur_promo); duke@435: double latest_cms_sum_concurrent_phases_time_secs = duke@435: concurrent_collection_time(); duke@435: duke@435: _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs); duke@435: duke@435: // Cost of collection (unit-less) duke@435: duke@435: // Total interval for collection. May not be valid. Tests duke@435: // below determine whether to use this. duke@435: // duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n" duke@435: "_latest_cms_reset_end_to_initial_mark_start_secs %f \n" duke@435: "_latest_cms_initial_mark_start_to_end_time_secs %f \n" duke@435: "_latest_cms_remark_start_to_end_time_secs %f \n" duke@435: "_latest_cms_concurrent_marking_time_secs %f \n" duke@435: "_latest_cms_concurrent_precleaning_time_secs %f \n" duke@435: "_latest_cms_concurrent_sweeping_time_secs %f \n" duke@435: "latest_cms_sum_concurrent_phases_time_secs %f \n" duke@435: "_latest_cms_collection_end_to_collection_start_secs %f \n" duke@435: "concurrent_processor_fraction %f", duke@435: _latest_cms_reset_end_to_initial_mark_start_secs, duke@435: _latest_cms_initial_mark_start_to_end_time_secs, duke@435: _latest_cms_remark_start_to_end_time_secs, duke@435: _latest_cms_concurrent_marking_time_secs, duke@435: _latest_cms_concurrent_precleaning_time_secs, duke@435: _latest_cms_concurrent_sweeping_time_secs, duke@435: latest_cms_sum_concurrent_phases_time_secs, duke@435: _latest_cms_collection_end_to_collection_start_secs, duke@435: concurrent_processor_fraction()); duke@435: } duke@435: double interval_in_seconds = duke@435: _latest_cms_initial_mark_start_to_end_time_secs + duke@435: _latest_cms_remark_start_to_end_time_secs + duke@435: latest_cms_sum_concurrent_phases_time_secs + duke@435: _latest_cms_collection_end_to_collection_start_secs; duke@435: assert(interval_in_seconds >= 0.0, duke@435: "Bad interval between cms collections"); duke@435: duke@435: // Sample for performance counter duke@435: avg_concurrent_interval()->sample(interval_in_seconds); duke@435: duke@435: // STW costs (initial and remark pauses) duke@435: // Cost of collection (unit-less) duke@435: assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0, duke@435: "Bad initial mark pause"); duke@435: assert(_latest_cms_remark_start_to_end_time_secs >= 0.0, duke@435: "Bad remark pause"); duke@435: double STW_time_in_seconds = duke@435: _latest_cms_initial_mark_start_to_end_time_secs + duke@435: _latest_cms_remark_start_to_end_time_secs; duke@435: double STW_collection_cost = 0.0; duke@435: if (interval_in_seconds > 0.0) { duke@435: // cost for the STW phases of the concurrent collection. duke@435: STW_collection_cost = STW_time_in_seconds / interval_in_seconds; duke@435: avg_cms_STW_gc_cost()->sample(STW_collection_cost); duke@435: } duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: " duke@435: "STW gc cost: %f average: %f", STW_collection_cost, duke@435: avg_cms_STW_gc_cost()->average()); duke@435: gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)", duke@435: (double) STW_time_in_seconds * MILLIUNITS, duke@435: (double) interval_in_seconds * MILLIUNITS); duke@435: } duke@435: duke@435: double concurrent_cost = 0.0; duke@435: if (latest_cms_sum_concurrent_phases_time_secs > 0.0) { duke@435: concurrent_cost = concurrent_collection_cost(interval_in_seconds); duke@435: duke@435: avg_concurrent_gc_cost()->sample(concurrent_cost); duke@435: // Average this ms cost into all the other types gc costs duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: " duke@435: "concurrent gc cost: %f average: %f", duke@435: concurrent_cost, duke@435: _avg_concurrent_gc_cost->average()); duke@435: gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)" duke@435: " processor fraction: %f", duke@435: latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS, duke@435: interval_in_seconds * MILLIUNITS, duke@435: concurrent_processor_fraction()); duke@435: } duke@435: } duke@435: double total_collection_cost = STW_collection_cost + concurrent_cost; duke@435: avg_major_gc_cost()->sample(total_collection_cost); duke@435: duke@435: // Gather information for estimating future behavior duke@435: double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS; duke@435: double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS; duke@435: duke@435: double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M); duke@435: initial_pause_old_estimator()->update(cur_promo_size_in_mbytes, duke@435: initial_pause_in_ms); duke@435: remark_pause_old_estimator()->update(cur_promo_size_in_mbytes, duke@435: remark_pause_in_ms); duke@435: major_collection_estimator()->update(cur_promo_size_in_mbytes, duke@435: total_collection_cost); duke@435: duke@435: // This estimate uses the average eden size. It could also duke@435: // have used the latest eden size. Which is better? duke@435: double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M); duke@435: initial_pause_young_estimator()->update(cur_eden_size_in_mbytes, duke@435: initial_pause_in_ms); duke@435: remark_pause_young_estimator()->update(cur_eden_size_in_mbytes, duke@435: remark_pause_in_ms); duke@435: } duke@435: duke@435: clear_internal_time_intervals(); duke@435: duke@435: set_first_after_collection(); duke@435: duke@435: // The concurrent phases keeps track of it's own mutator interval duke@435: // with this timer. This allows the stop-the-world phase to duke@435: // be included in the mutator time so that the stop-the-world time duke@435: // is not double counted. Reset and start it. duke@435: _concurrent_timer.reset(); duke@435: _concurrent_timer.start(); duke@435: duke@435: // The mutator time between STW phases does not include the duke@435: // concurrent collection time. duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() { duke@435: // Update the interval time duke@435: _STW_timer.stop(); duke@435: _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds(); duke@435: // Reset for the initial mark duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end( duke@435: GCCause::Cause gc_cause) { duke@435: _STW_timer.stop(); duke@435: duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds(); duke@435: avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print( duke@435: "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: " duke@435: "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs); duke@435: } duke@435: } duke@435: duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() { duke@435: _STW_timer.stop(); duke@435: _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds(); duke@435: // Start accumumlating time for the remark in the STW timer. duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::checkpoint_roots_final_end( duke@435: GCCause::Cause gc_cause) { duke@435: _STW_timer.stop(); duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: // Total initial mark pause + remark pause. duke@435: _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds(); duke@435: double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + duke@435: _latest_cms_remark_start_to_end_time_secs; duke@435: double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS; duke@435: duke@435: avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs); duke@435: duke@435: // Sample total for initial mark + remark duke@435: avg_cms_STW_time()->sample(STW_time_in_seconds); duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: " duke@435: "remark pause: %f", _latest_cms_remark_start_to_end_time_secs); duke@435: } duke@435: duke@435: } duke@435: // Don't start the STW times here because the concurrent duke@435: // sweep and reset has not happened. duke@435: // Keep the old comment above in case I don't understand duke@435: // what is going on but now duke@435: // Start the STW timer because it is used by ms_collection_begin() duke@435: // and ms_collection_end() to get the sweep time if a MS is being duke@435: // done in the foreground. duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::msc_collection_begin() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print(" "); duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print(": msc_collection_begin "); duke@435: } duke@435: _STW_timer.stop(); duke@435: _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds(); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: " duke@435: "mutator time %f", duke@435: _latest_cms_msc_end_to_msc_start_time_secs); duke@435: } duke@435: avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs); duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print(" "); duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print(": msc_collection_end "); duke@435: } duke@435: _STW_timer.stop(); duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: double msc_pause_in_seconds = _STW_timer.seconds(); duke@435: if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) && duke@435: (msc_pause_in_seconds > 0.0)) { duke@435: avg_msc_pause()->sample(msc_pause_in_seconds); duke@435: double mutator_time_in_seconds = 0.0; duke@435: if (_latest_cms_collection_end_to_collection_start_secs == 0.0) { duke@435: // This assertion may fail because of time stamp gradularity. duke@435: // Comment it out and investiage it at a later time. The large duke@435: // time stamp granularity occurs on some older linux systems. duke@435: #ifndef CLOCK_GRANULARITY_TOO_LARGE duke@435: assert((_latest_cms_concurrent_marking_time_secs == 0.0) && duke@435: (_latest_cms_concurrent_precleaning_time_secs == 0.0) && duke@435: (_latest_cms_concurrent_sweeping_time_secs == 0.0), duke@435: "There should not be any concurrent time"); duke@435: #endif duke@435: // A concurrent collection did not start. Mutator time duke@435: // between collections comes from the STW MSC timer. duke@435: mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs; duke@435: } else { duke@435: // The concurrent collection did start so count the mutator duke@435: // time to the start of the concurrent collection. In this duke@435: // case the _latest_cms_msc_end_to_msc_start_time_secs measures duke@435: // the time between the initial mark or remark and the duke@435: // start of the MSC. That has no real meaning. duke@435: mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs; duke@435: } duke@435: duke@435: double latest_cms_sum_concurrent_phases_time_secs = duke@435: concurrent_collection_time(); duke@435: double interval_in_seconds = duke@435: mutator_time_in_seconds + duke@435: _latest_cms_initial_mark_start_to_end_time_secs + duke@435: _latest_cms_remark_start_to_end_time_secs + duke@435: latest_cms_sum_concurrent_phases_time_secs + duke@435: msc_pause_in_seconds; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" interval_in_seconds %f \n" duke@435: " mutator_time_in_seconds %f \n" duke@435: " _latest_cms_initial_mark_start_to_end_time_secs %f\n" duke@435: " _latest_cms_remark_start_to_end_time_secs %f\n" duke@435: " latest_cms_sum_concurrent_phases_time_secs %f\n" duke@435: " msc_pause_in_seconds %f\n", duke@435: interval_in_seconds, duke@435: mutator_time_in_seconds, duke@435: _latest_cms_initial_mark_start_to_end_time_secs, duke@435: _latest_cms_remark_start_to_end_time_secs, duke@435: latest_cms_sum_concurrent_phases_time_secs, duke@435: msc_pause_in_seconds); duke@435: } duke@435: duke@435: // The concurrent cost is wasted cost but it should be duke@435: // included. duke@435: double concurrent_cost = concurrent_collection_cost(interval_in_seconds); duke@435: duke@435: // Initial mark and remark, also wasted. duke@435: double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + duke@435: _latest_cms_remark_start_to_end_time_secs; duke@435: double STW_collection_cost = duke@435: collection_cost(STW_time_in_seconds, interval_in_seconds) + duke@435: concurrent_cost; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr(" msc_collection_end:\n" duke@435: "_latest_cms_collection_end_to_collection_start_secs %f\n" duke@435: "_latest_cms_msc_end_to_msc_start_time_secs %f\n" duke@435: "_latest_cms_initial_mark_start_to_end_time_secs %f\n" duke@435: "_latest_cms_remark_start_to_end_time_secs %f\n" duke@435: "latest_cms_sum_concurrent_phases_time_secs %f\n", duke@435: _latest_cms_collection_end_to_collection_start_secs, duke@435: _latest_cms_msc_end_to_msc_start_time_secs, duke@435: _latest_cms_initial_mark_start_to_end_time_secs, duke@435: _latest_cms_remark_start_to_end_time_secs, duke@435: latest_cms_sum_concurrent_phases_time_secs); duke@435: duke@435: gclog_or_tty->print_cr(" msc_collection_end: \n" duke@435: "latest_cms_sum_concurrent_phases_time_secs %f\n" duke@435: "STW_time_in_seconds %f\n" duke@435: "msc_pause_in_seconds %f\n", duke@435: latest_cms_sum_concurrent_phases_time_secs, duke@435: STW_time_in_seconds, duke@435: msc_pause_in_seconds); duke@435: } duke@435: duke@435: double cost = concurrent_cost + STW_collection_cost + duke@435: collection_cost(msc_pause_in_seconds, interval_in_seconds); duke@435: duke@435: _avg_msc_gc_cost->sample(cost); duke@435: duke@435: // Average this ms cost into all the other types gc costs duke@435: avg_major_gc_cost()->sample(cost); duke@435: duke@435: // Sample for performance counter duke@435: _avg_msc_interval->sample(interval_in_seconds); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: " duke@435: "MSC gc cost: %f average: %f", cost, duke@435: _avg_msc_gc_cost->average()); duke@435: duke@435: double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS; duke@435: gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)", duke@435: msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS); duke@435: } duke@435: } duke@435: } duke@435: duke@435: clear_internal_time_intervals(); duke@435: duke@435: // Can this call be put into the epilogue? duke@435: set_first_after_collection(); duke@435: duke@435: // The concurrent phases keeps track of it's own mutator interval duke@435: // with this timer. This allows the stop-the-world phase to duke@435: // be included in the mutator time so that the stop-the-world time duke@435: // is not double counted. Reset and start it. duke@435: _concurrent_timer.stop(); duke@435: _concurrent_timer.reset(); duke@435: _concurrent_timer.start(); duke@435: duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::ms_collection_begin() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print(" "); duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print(": ms_collection_begin "); duke@435: } duke@435: _STW_timer.stop(); duke@435: _latest_cms_ms_end_to_ms_start = _STW_timer.seconds(); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: " duke@435: "mutator time %f", duke@435: _latest_cms_ms_end_to_ms_start); duke@435: } duke@435: avg_ms_interval()->sample(_STW_timer.seconds()); duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print(" "); duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print(": ms_collection_end "); duke@435: } duke@435: _STW_timer.stop(); duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: // The MS collection is a foreground collection that does all duke@435: // the parts of a mostly concurrent collection. duke@435: // duke@435: // For this collection include the cost of the duke@435: // initial mark duke@435: // remark duke@435: // all concurrent time (scaled down by the duke@435: // concurrent_processor_fraction). Some duke@435: // may be zero if the baton was passed before duke@435: // it was reached. duke@435: // concurrent marking duke@435: // sweeping duke@435: // resetting duke@435: // STW after baton was passed (STW_in_foreground_in_seconds) duke@435: double STW_in_foreground_in_seconds = _STW_timer.seconds(); duke@435: duke@435: double latest_cms_sum_concurrent_phases_time_secs = duke@435: concurrent_collection_time(); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end " duke@435: "STW_in_foreground_in_seconds %f " duke@435: "_latest_cms_initial_mark_start_to_end_time_secs %f " duke@435: "_latest_cms_remark_start_to_end_time_secs %f " duke@435: "latest_cms_sum_concurrent_phases_time_secs %f " duke@435: "_latest_cms_ms_marking_start_to_end_time_secs %f " duke@435: "_latest_cms_ms_end_to_ms_start %f", duke@435: STW_in_foreground_in_seconds, duke@435: _latest_cms_initial_mark_start_to_end_time_secs, duke@435: _latest_cms_remark_start_to_end_time_secs, duke@435: latest_cms_sum_concurrent_phases_time_secs, duke@435: _latest_cms_ms_marking_start_to_end_time_secs, duke@435: _latest_cms_ms_end_to_ms_start); duke@435: } duke@435: duke@435: double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + duke@435: _latest_cms_remark_start_to_end_time_secs; duke@435: #ifndef CLOCK_GRANULARITY_TOO_LARGE duke@435: assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 || duke@435: latest_cms_sum_concurrent_phases_time_secs == 0.0, duke@435: "marking done twice?"); duke@435: #endif duke@435: double ms_time_in_seconds = STW_marking_in_seconds + duke@435: STW_in_foreground_in_seconds + duke@435: _latest_cms_ms_marking_start_to_end_time_secs + duke@435: scaled_concurrent_collection_time(); duke@435: avg_ms_pause()->sample(ms_time_in_seconds); duke@435: // Use the STW costs from the initial mark and remark plus duke@435: // the cost of the concurrent phase to calculate a duke@435: // collection cost. duke@435: double cost = 0.0; duke@435: if ((_latest_cms_ms_end_to_ms_start > 0.0) && duke@435: (ms_time_in_seconds > 0.0)) { duke@435: double interval_in_seconds = duke@435: _latest_cms_ms_end_to_ms_start + ms_time_in_seconds; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("\n ms_time_in_seconds %f " duke@435: "latest_cms_sum_concurrent_phases_time_secs %f " duke@435: "interval_in_seconds %f", duke@435: ms_time_in_seconds, duke@435: latest_cms_sum_concurrent_phases_time_secs, duke@435: interval_in_seconds); duke@435: } duke@435: duke@435: cost = collection_cost(ms_time_in_seconds, interval_in_seconds); duke@435: duke@435: _avg_ms_gc_cost->sample(cost); duke@435: // Average this ms cost into all the other types gc costs duke@435: avg_major_gc_cost()->sample(cost); duke@435: duke@435: // Sample for performance counter duke@435: _avg_ms_interval->sample(interval_in_seconds); duke@435: } duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: " duke@435: "MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average()); duke@435: duke@435: double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS; duke@435: gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)", duke@435: ms_time_in_ms, duke@435: _latest_cms_ms_end_to_ms_start * MILLIUNITS); duke@435: } duke@435: } duke@435: duke@435: // Consider putting this code (here to end) into a duke@435: // method for convenience. duke@435: clear_internal_time_intervals(); duke@435: duke@435: set_first_after_collection(); duke@435: duke@435: // The concurrent phases keeps track of it's own mutator interval duke@435: // with this timer. This allows the stop-the-world phase to duke@435: // be included in the mutator time so that the stop-the-world time duke@435: // is not double counted. Reset and start it. duke@435: _concurrent_timer.stop(); duke@435: _concurrent_timer.reset(); duke@435: _concurrent_timer.start(); duke@435: duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::clear_internal_time_intervals() { duke@435: _latest_cms_reset_end_to_initial_mark_start_secs = 0.0; duke@435: _latest_cms_initial_mark_end_to_remark_start_secs = 0.0; duke@435: _latest_cms_collection_end_to_collection_start_secs = 0.0; duke@435: _latest_cms_concurrent_marking_time_secs = 0.0; duke@435: _latest_cms_concurrent_precleaning_time_secs = 0.0; duke@435: _latest_cms_concurrent_sweeping_time_secs = 0.0; duke@435: _latest_cms_msc_end_to_msc_start_time_secs = 0.0; duke@435: _latest_cms_ms_end_to_ms_start = 0.0; duke@435: _latest_cms_remark_start_to_end_time_secs = 0.0; duke@435: _latest_cms_initial_mark_start_to_end_time_secs = 0.0; duke@435: _latest_cms_ms_marking_start_to_end_time_secs = 0.0; duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() { duke@435: AdaptiveSizePolicy::clear_generation_free_space_flags(); duke@435: duke@435: set_change_young_gen_for_maj_pauses(0); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::concurrent_phases_resume() { duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->stamp(); duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()"); duke@435: } duke@435: _concurrent_timer.start(); duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::time_since_major_gc() const { duke@435: _concurrent_timer.stop(); duke@435: double time_since_cms_gc = _concurrent_timer.seconds(); duke@435: _concurrent_timer.start(); duke@435: _STW_timer.stop(); duke@435: double time_since_STW_gc = _STW_timer.seconds(); duke@435: _STW_timer.start(); duke@435: duke@435: return MIN2(time_since_cms_gc, time_since_STW_gc); duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const { duke@435: double cms_interval = _avg_concurrent_interval->average(); duke@435: double msc_interval = _avg_msc_interval->average(); duke@435: double ms_interval = _avg_ms_interval->average(); duke@435: duke@435: return MAX3(cms_interval, msc_interval, ms_interval); duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::cms_gc_cost() const { duke@435: return avg_major_gc_cost()->average(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::ms_collection_marking_begin() { duke@435: _STW_timer.stop(); duke@435: // Start accumumlating time for the marking in the STW timer. duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::ms_collection_marking_end( duke@435: GCCause::Cause gc_cause) { duke@435: _STW_timer.stop(); duke@435: if (gc_cause != GCCause::_java_lang_system_gc || duke@435: UseAdaptiveSizePolicyWithSystemGC) { duke@435: _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds(); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::" duke@435: "msc_collection_marking_end: mutator time %f", duke@435: _latest_cms_ms_marking_start_to_end_time_secs); duke@435: } duke@435: } duke@435: _STW_timer.reset(); duke@435: _STW_timer.start(); duke@435: } duke@435: duke@435: double CMSAdaptiveSizePolicy::gc_cost() const { duke@435: double cms_gen_cost = cms_gc_cost(); duke@435: double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost); duke@435: assert(result >= 0.0, "Both minor and major costs are non-negative"); duke@435: return result; duke@435: } duke@435: duke@435: // Cost of collection (unit-less) duke@435: double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds, duke@435: double interval_in_seconds) { duke@435: // Cost of collection (unit-less) duke@435: double cost = 0.0; duke@435: if ((interval_in_seconds > 0.0) && duke@435: (pause_in_seconds > 0.0)) { duke@435: cost = duke@435: pause_in_seconds / interval_in_seconds; duke@435: } duke@435: return cost; duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) { duke@435: size_t change = 0; duke@435: size_t desired_eden = cur_eden; duke@435: duke@435: // reduce eden size duke@435: change = eden_decrement_aligned_down(cur_eden); duke@435: desired_eden = cur_eden - change; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time " duke@435: "adjusting eden for pause time. " duke@435: " starting eden size " SIZE_FORMAT duke@435: " reduced eden size " SIZE_FORMAT duke@435: " eden delta " SIZE_FORMAT, duke@435: cur_eden, desired_eden, change); duke@435: } duke@435: duke@435: return desired_eden; duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) { duke@435: duke@435: size_t desired_eden = cur_eden; duke@435: duke@435: set_change_young_gen_for_throughput(increase_young_gen_for_througput_true); duke@435: duke@435: size_t change = eden_increment_aligned_up(cur_eden); duke@435: size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost()); duke@435: duke@435: if (cur_eden + scaled_change > cur_eden) { duke@435: desired_eden = cur_eden + scaled_change; duke@435: } duke@435: duke@435: _young_gen_change_for_minor_throughput++; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::adjust_eden_for_throughput " duke@435: "adjusting eden for throughput. " duke@435: " starting eden size " SIZE_FORMAT duke@435: " increased eden size " SIZE_FORMAT duke@435: " eden delta " SIZE_FORMAT, duke@435: cur_eden, desired_eden, scaled_change); duke@435: } duke@435: duke@435: return desired_eden; duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) { duke@435: duke@435: set_decrease_for_footprint(decrease_young_gen_for_footprint_true); duke@435: duke@435: size_t change = eden_decrement(cur_eden); duke@435: size_t desired_eden_size = cur_eden - change; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::adjust_eden_for_footprint " duke@435: "adjusting eden for footprint. " duke@435: " starting eden size " SIZE_FORMAT duke@435: " reduced eden size " SIZE_FORMAT duke@435: " eden delta " SIZE_FORMAT, duke@435: cur_eden, desired_eden_size, change); duke@435: } duke@435: return desired_eden_size; duke@435: } duke@435: duke@435: // The eden and promo versions should be combined if possible. duke@435: // They are the same except that the sizes of the decrement duke@435: // and increment are different for eden and promo. duke@435: size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) { duke@435: size_t delta = eden_decrement(cur_eden); duke@435: return align_size_down(delta, generation_alignment()); duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) { duke@435: size_t delta = eden_increment(cur_eden); duke@435: return align_size_up(delta, generation_alignment()); duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) { duke@435: size_t delta = promo_decrement(cur_promo); duke@435: return align_size_down(delta, generation_alignment()); duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) { duke@435: size_t delta = promo_increment(cur_promo); duke@435: return align_size_up(delta, generation_alignment()); duke@435: } duke@435: duke@435: duke@435: void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden, duke@435: size_t max_eden_size) duke@435: { duke@435: size_t desired_eden_size = cur_eden; duke@435: size_t eden_limit = max_eden_size; duke@435: duke@435: // Printout input duke@435: if (PrintGC && PrintAdaptiveSizePolicy) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::compute_young_generation_free_space: " duke@435: "cur_eden " SIZE_FORMAT, duke@435: cur_eden); duke@435: } duke@435: duke@435: // Used for diagnostics duke@435: clear_generation_free_space_flags(); duke@435: duke@435: if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) { duke@435: if (minor_pause_young_estimator()->decrement_will_decrease()) { duke@435: // If the minor pause is too long, shrink the young gen. duke@435: set_change_young_gen_for_min_pauses( duke@435: decrease_young_gen_for_min_pauses_true); duke@435: desired_eden_size = adjust_eden_for_pause_time(desired_eden_size); duke@435: } duke@435: } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) || duke@435: (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) { duke@435: // The remark or initial pauses are not meeting the goal. Should duke@435: // the generation be shrunk? duke@435: if (get_and_clear_first_after_collection() && duke@435: ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() && duke@435: remark_pause_young_estimator()->decrement_will_decrease()) || duke@435: (avg_initial_pause()->padded_average() > gc_pause_goal_sec() && duke@435: initial_pause_young_estimator()->decrement_will_decrease()))) { duke@435: duke@435: set_change_young_gen_for_maj_pauses( duke@435: decrease_young_gen_for_maj_pauses_true); duke@435: duke@435: // If the remark or initial pause is too long and this is the duke@435: // first young gen collection after a cms collection, shrink duke@435: // the young gen. duke@435: desired_eden_size = adjust_eden_for_pause_time(desired_eden_size); duke@435: } duke@435: // If not the first young gen collection after a cms collection, duke@435: // don't do anything. In this case an adjustment has already duke@435: // been made and the results of the adjustment has not yet been duke@435: // measured. duke@435: } else if ((minor_gc_cost() >= 0.0) && duke@435: (adjusted_mutator_cost() < _throughput_goal)) { duke@435: desired_eden_size = adjust_eden_for_throughput(desired_eden_size); duke@435: } else { duke@435: desired_eden_size = adjust_eden_for_footprint(desired_eden_size); duke@435: } duke@435: duke@435: if (PrintGC && PrintAdaptiveSizePolicy) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:" duke@435: " desired_eden_size: " SIZE_FORMAT duke@435: " old_eden_size: " SIZE_FORMAT, duke@435: desired_eden_size, cur_eden); duke@435: } duke@435: duke@435: set_eden_size(desired_eden_size); duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) { duke@435: size_t change = 0; duke@435: size_t desired_promo = cur_promo; duke@435: // Move this test up to caller like the adjust_eden_for_pause_time() duke@435: // call. duke@435: if ((AdaptiveSizePausePolicy == 0) && duke@435: ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) || duke@435: (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) { duke@435: set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); duke@435: change = promo_decrement_aligned_down(cur_promo); duke@435: desired_promo = cur_promo - change; duke@435: } else if ((AdaptiveSizePausePolicy > 0) && duke@435: (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) && duke@435: remark_pause_old_estimator()->decrement_will_decrease()) || duke@435: ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) && duke@435: initial_pause_old_estimator()->decrement_will_decrease()))) { duke@435: set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); duke@435: change = promo_decrement_aligned_down(cur_promo); duke@435: desired_promo = cur_promo - change; duke@435: } duke@435: duke@435: if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time " duke@435: "adjusting promo for pause time. " duke@435: " starting promo size " SIZE_FORMAT duke@435: " reduced promo size " SIZE_FORMAT duke@435: " promo delta " SIZE_FORMAT, duke@435: cur_promo, desired_promo, change); duke@435: } duke@435: duke@435: return desired_promo; duke@435: } duke@435: duke@435: // Try to share this with PS. duke@435: size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change, duke@435: double gen_gc_cost) { duke@435: duke@435: // Calculate the change to use for the tenured gen. duke@435: size_t scaled_change = 0; duke@435: // Can the increment to the generation be scaled? duke@435: if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) { duke@435: double scale_by_ratio = gen_gc_cost / gc_cost(); duke@435: scaled_change = duke@435: (size_t) (scale_by_ratio * (double) base_change); duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "Scaled tenured increment: " SIZE_FORMAT " by %f down to " duke@435: SIZE_FORMAT, duke@435: base_change, scale_by_ratio, scaled_change); duke@435: } duke@435: } else if (gen_gc_cost >= 0.0) { duke@435: // Scaling is not going to work. If the major gc time is the duke@435: // larger than the other GC costs, give it a full increment. duke@435: if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) { duke@435: scaled_change = base_change; duke@435: } duke@435: } else { duke@435: // Don't expect to get here but it's ok if it does duke@435: // in the product build since the delta will be 0 duke@435: // and nothing will change. duke@435: assert(false, "Unexpected value for gc costs"); duke@435: } duke@435: duke@435: return scaled_change; duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) { duke@435: duke@435: size_t desired_promo = cur_promo; duke@435: duke@435: set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true); duke@435: duke@435: size_t change = promo_increment_aligned_up(cur_promo); duke@435: size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost()); duke@435: duke@435: if (cur_promo + scaled_change > cur_promo) { duke@435: desired_promo = cur_promo + scaled_change; duke@435: } duke@435: duke@435: _old_gen_change_for_major_throughput++; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::adjust_promo_for_throughput " duke@435: "adjusting promo for throughput. " duke@435: " starting promo size " SIZE_FORMAT duke@435: " increased promo size " SIZE_FORMAT duke@435: " promo delta " SIZE_FORMAT, duke@435: cur_promo, desired_promo, scaled_change); duke@435: } duke@435: duke@435: return desired_promo; duke@435: } duke@435: duke@435: size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo, duke@435: size_t cur_eden) { duke@435: duke@435: set_decrease_for_footprint(decrease_young_gen_for_footprint_true); duke@435: duke@435: size_t change = promo_decrement(cur_promo); duke@435: size_t desired_promo_size = cur_promo - change; duke@435: duke@435: if (PrintAdaptiveSizePolicy && Verbose) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::adjust_promo_for_footprint " duke@435: "adjusting promo for footprint. " duke@435: " starting promo size " SIZE_FORMAT duke@435: " reduced promo size " SIZE_FORMAT duke@435: " promo delta " SIZE_FORMAT, duke@435: cur_promo, desired_promo_size, change); duke@435: } duke@435: return desired_promo_size; duke@435: } duke@435: duke@435: void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space( duke@435: size_t cur_tenured_free, duke@435: size_t max_tenured_available, duke@435: size_t cur_eden) { duke@435: // This can be bad if the desired value grows/shrinks without duke@435: // any connection to the read free space duke@435: size_t desired_promo_size = promo_size(); duke@435: size_t tenured_limit = max_tenured_available; duke@435: duke@435: // Printout input duke@435: if (PrintGC && PrintAdaptiveSizePolicy) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: " duke@435: "cur_tenured_free " SIZE_FORMAT duke@435: " max_tenured_available " SIZE_FORMAT, duke@435: cur_tenured_free, max_tenured_available); duke@435: } duke@435: duke@435: // Used for diagnostics duke@435: clear_generation_free_space_flags(); duke@435: duke@435: set_decide_at_full_gc(decide_at_full_gc_true); duke@435: if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() || duke@435: avg_initial_pause()->padded_average() > gc_pause_goal_sec()) { duke@435: desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free); duke@435: } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) { duke@435: // Nothing to do since the minor collections are too large and duke@435: // this method only deals with the cms generation. duke@435: } else if ((cms_gc_cost() >= 0.0) && duke@435: (adjusted_mutator_cost() < _throughput_goal)) { duke@435: desired_promo_size = adjust_promo_for_throughput(cur_tenured_free); duke@435: } else { duke@435: desired_promo_size = adjust_promo_for_footprint(cur_tenured_free, duke@435: cur_eden); duke@435: } duke@435: duke@435: if (PrintGC && PrintAdaptiveSizePolicy) { duke@435: gclog_or_tty->print_cr( duke@435: "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:" duke@435: " desired_promo_size: " SIZE_FORMAT duke@435: " old_promo_size: " SIZE_FORMAT, duke@435: desired_promo_size, cur_tenured_free); duke@435: } duke@435: duke@435: set_promo_size(desired_promo_size); duke@435: } duke@435: duke@435: int CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold( duke@435: bool is_survivor_overflow, duke@435: int tenuring_threshold, duke@435: size_t survivor_limit) { duke@435: assert(survivor_limit >= generation_alignment(), duke@435: "survivor_limit too small"); duke@435: assert((size_t)align_size_down(survivor_limit, generation_alignment()) duke@435: == survivor_limit, "survivor_limit not aligned"); duke@435: duke@435: // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy? duke@435: if (!UsePSAdaptiveSurvivorSizePolicy || duke@435: !young_gen_policy_is_ready()) { duke@435: return tenuring_threshold; duke@435: } duke@435: duke@435: // We'll decide whether to increase or decrease the tenuring duke@435: // threshold based partly on the newly computed survivor size duke@435: // (if we hit the maximum limit allowed, we'll always choose to duke@435: // decrement the threshold). duke@435: bool incr_tenuring_threshold = false; duke@435: bool decr_tenuring_threshold = false; duke@435: duke@435: set_decrement_tenuring_threshold_for_gc_cost(false); duke@435: set_increment_tenuring_threshold_for_gc_cost(false); duke@435: set_decrement_tenuring_threshold_for_survivor_limit(false); duke@435: duke@435: if (!is_survivor_overflow) { duke@435: // Keep running averages on how much survived duke@435: duke@435: // We use the tenuring threshold to equalize the cost of major duke@435: // and minor collections. duke@435: // ThresholdTolerance is used to indicate how sensitive the duke@435: // tenuring threshold is to differences in cost betweent the duke@435: // collection types. duke@435: duke@435: // Get the times of interest. This involves a little work, so duke@435: // we cache the values here. duke@435: const double major_cost = major_gc_cost(); duke@435: const double minor_cost = minor_gc_cost(); duke@435: duke@435: if (minor_cost > major_cost * _threshold_tolerance_percent) { duke@435: // Minor times are getting too long; lower the threshold so duke@435: // less survives and more is promoted. duke@435: decr_tenuring_threshold = true; duke@435: set_decrement_tenuring_threshold_for_gc_cost(true); duke@435: } else if (major_cost > minor_cost * _threshold_tolerance_percent) { duke@435: // Major times are too long, so we want less promotion. duke@435: incr_tenuring_threshold = true; duke@435: set_increment_tenuring_threshold_for_gc_cost(true); duke@435: } duke@435: duke@435: } else { duke@435: // Survivor space overflow occurred, so promoted and survived are duke@435: // not accurate. We'll make our best guess by combining survived duke@435: // and promoted and count them as survivors. duke@435: // duke@435: // We'll lower the tenuring threshold to see if we can correct duke@435: // things. Also, set the survivor size conservatively. We're duke@435: // trying to avoid many overflows from occurring if defnew size duke@435: // is just too small. duke@435: duke@435: decr_tenuring_threshold = true; duke@435: } duke@435: duke@435: // The padded average also maintains a deviation from the average; duke@435: // we use this to see how good of an estimate we have of what survived. duke@435: // We're trying to pad the survivor size as little as possible without duke@435: // overflowing the survivor spaces. duke@435: size_t target_size = align_size_up((size_t)_avg_survived->padded_average(), duke@435: generation_alignment()); duke@435: target_size = MAX2(target_size, generation_alignment()); duke@435: duke@435: if (target_size > survivor_limit) { duke@435: // Target size is bigger than we can handle. Let's also reduce duke@435: // the tenuring threshold. duke@435: target_size = survivor_limit; duke@435: decr_tenuring_threshold = true; duke@435: set_decrement_tenuring_threshold_for_survivor_limit(true); duke@435: } duke@435: duke@435: // Finally, increment or decrement the tenuring threshold, as decided above. duke@435: // We test for decrementing first, as we might have hit the target size duke@435: // limit. duke@435: if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { duke@435: if (tenuring_threshold > 1) { duke@435: tenuring_threshold--; duke@435: } duke@435: } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { duke@435: if (tenuring_threshold < MaxTenuringThreshold) { duke@435: tenuring_threshold++; duke@435: } duke@435: } duke@435: duke@435: // We keep a running average of the amount promoted which is used duke@435: // to decide when we should collect the old generation (when duke@435: // the amount of old gen free space is less than what we expect to duke@435: // promote). duke@435: duke@435: if (PrintAdaptiveSizePolicy) { duke@435: // A little more detail if Verbose is on duke@435: GenCollectedHeap* gch = GenCollectedHeap::heap(); duke@435: if (Verbose) { duke@435: gclog_or_tty->print( " avg_survived: %f" duke@435: " avg_deviation: %f", duke@435: _avg_survived->average(), duke@435: _avg_survived->deviation()); duke@435: } duke@435: duke@435: gclog_or_tty->print( " avg_survived_padded_avg: %f", duke@435: _avg_survived->padded_average()); duke@435: duke@435: if (Verbose) { duke@435: gclog_or_tty->print( " avg_promoted_avg: %f" duke@435: " avg_promoted_dev: %f", duke@435: gch->gc_stats(1)->avg_promoted()->average(), duke@435: gch->gc_stats(1)->avg_promoted()->deviation()); duke@435: } duke@435: duke@435: gclog_or_tty->print( " avg_promoted_padded_avg: %f" duke@435: " avg_pretenured_padded_avg: %f" duke@435: " tenuring_thresh: %d" duke@435: " target_size: " SIZE_FORMAT duke@435: " survivor_limit: " SIZE_FORMAT, duke@435: gch->gc_stats(1)->avg_promoted()->padded_average(), duke@435: _avg_pretenured->padded_average(), duke@435: tenuring_threshold, target_size, survivor_limit); duke@435: gclog_or_tty->cr(); duke@435: } duke@435: duke@435: set_survivor_size(target_size); duke@435: duke@435: return tenuring_threshold; duke@435: } duke@435: duke@435: bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() { duke@435: bool result = _first_after_collection; duke@435: _first_after_collection = false; duke@435: return result; duke@435: } duke@435: duke@435: bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on( duke@435: outputStream* st) const { duke@435: duke@435: if (!UseAdaptiveSizePolicy) return false; duke@435: duke@435: GenCollectedHeap* gch = GenCollectedHeap::heap(); duke@435: Generation* gen0 = gch->get_gen(0); duke@435: DefNewGeneration* def_new = gen0->as_DefNewGeneration(); duke@435: return duke@435: AdaptiveSizePolicy::print_adaptive_size_policy_on( duke@435: st, duke@435: def_new->tenuring_threshold()); duke@435: }