src/cpu/x86/vm/sharedRuntime_x86_32.cpp

Thu, 03 Nov 2011 04:12:49 -0700

author
twisti
date
Thu, 03 Nov 2011 04:12:49 -0700
changeset 3252
448691f285a5
parent 3130
5432047c7db7
child 3500
0382d2b469b2
permissions
-rw-r--r--

7106944: assert(_pc == *pc_addr) failed may be too strong
Reviewed-by: kvn, never

duke@435 1 /*
twisti@2552 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_x86.inline.hpp"
stefank@2314 28 #include "code/debugInfoRec.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "interpreter/interpreter.hpp"
stefank@2314 32 #include "oops/compiledICHolderOop.hpp"
stefank@2314 33 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 34 #include "runtime/sharedRuntime.hpp"
stefank@2314 35 #include "runtime/vframeArray.hpp"
stefank@2314 36 #include "vmreg_x86.inline.hpp"
stefank@2314 37 #ifdef COMPILER1
stefank@2314 38 #include "c1/c1_Runtime1.hpp"
stefank@2314 39 #endif
stefank@2314 40 #ifdef COMPILER2
stefank@2314 41 #include "opto/runtime.hpp"
stefank@2314 42 #endif
duke@435 43
duke@435 44 #define __ masm->
duke@435 45
xlu@959 46 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
xlu@959 47
duke@435 48 class RegisterSaver {
duke@435 49 enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
duke@435 50 // Capture info about frame layout
duke@435 51 enum layout {
duke@435 52 fpu_state_off = 0,
duke@435 53 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
duke@435 54 st0_off, st0H_off,
duke@435 55 st1_off, st1H_off,
duke@435 56 st2_off, st2H_off,
duke@435 57 st3_off, st3H_off,
duke@435 58 st4_off, st4H_off,
duke@435 59 st5_off, st5H_off,
duke@435 60 st6_off, st6H_off,
duke@435 61 st7_off, st7H_off,
duke@435 62
duke@435 63 xmm0_off, xmm0H_off,
duke@435 64 xmm1_off, xmm1H_off,
duke@435 65 xmm2_off, xmm2H_off,
duke@435 66 xmm3_off, xmm3H_off,
duke@435 67 xmm4_off, xmm4H_off,
duke@435 68 xmm5_off, xmm5H_off,
duke@435 69 xmm6_off, xmm6H_off,
duke@435 70 xmm7_off, xmm7H_off,
duke@435 71 flags_off,
duke@435 72 rdi_off,
duke@435 73 rsi_off,
duke@435 74 ignore_off, // extra copy of rbp,
duke@435 75 rsp_off,
duke@435 76 rbx_off,
duke@435 77 rdx_off,
duke@435 78 rcx_off,
duke@435 79 rax_off,
duke@435 80 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 81 // will override any oopMap setting for it. We must therefore force the layout
duke@435 82 // so that it agrees with the frame sender code.
duke@435 83 rbp_off,
duke@435 84 return_off, // slot for return address
duke@435 85 reg_save_size };
duke@435 86
duke@435 87
duke@435 88 public:
duke@435 89
duke@435 90 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 91 int* total_frame_words, bool verify_fpu = true);
duke@435 92 static void restore_live_registers(MacroAssembler* masm);
duke@435 93
duke@435 94 static int rax_offset() { return rax_off; }
duke@435 95 static int rbx_offset() { return rbx_off; }
duke@435 96
duke@435 97 // Offsets into the register save area
duke@435 98 // Used by deoptimization when it is managing result register
duke@435 99 // values on its own
duke@435 100
duke@435 101 static int raxOffset(void) { return rax_off; }
duke@435 102 static int rdxOffset(void) { return rdx_off; }
duke@435 103 static int rbxOffset(void) { return rbx_off; }
duke@435 104 static int xmm0Offset(void) { return xmm0_off; }
duke@435 105 // This really returns a slot in the fp save area, which one is not important
duke@435 106 static int fpResultOffset(void) { return st0_off; }
duke@435 107
duke@435 108 // During deoptimization only the result register need to be restored
duke@435 109 // all the other values have already been extracted.
duke@435 110
duke@435 111 static void restore_result_registers(MacroAssembler* masm);
duke@435 112
duke@435 113 };
duke@435 114
duke@435 115 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
duke@435 116 int* total_frame_words, bool verify_fpu) {
duke@435 117
duke@435 118 int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize;
duke@435 119 int frame_words = frame_size_in_bytes / wordSize;
duke@435 120 *total_frame_words = frame_words;
duke@435 121
duke@435 122 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 123
duke@435 124 // save registers, fpu state, and flags
duke@435 125 // We assume caller has already has return address slot on the stack
duke@435 126 // We push epb twice in this sequence because we want the real rbp,
never@739 127 // to be under the return like a normal enter and we want to use pusha
duke@435 128 // We push by hand instead of pusing push
duke@435 129 __ enter();
never@739 130 __ pusha();
never@739 131 __ pushf();
never@739 132 __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
duke@435 133 __ push_FPU_state(); // Save FPU state & init
duke@435 134
duke@435 135 if (verify_fpu) {
duke@435 136 // Some stubs may have non standard FPU control word settings so
duke@435 137 // only check and reset the value when it required to be the
duke@435 138 // standard value. The safepoint blob in particular can be used
duke@435 139 // in methods which are using the 24 bit control word for
duke@435 140 // optimized float math.
duke@435 141
duke@435 142 #ifdef ASSERT
duke@435 143 // Make sure the control word has the expected value
duke@435 144 Label ok;
duke@435 145 __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 146 __ jccb(Assembler::equal, ok);
duke@435 147 __ stop("corrupted control word detected");
duke@435 148 __ bind(ok);
duke@435 149 #endif
duke@435 150
duke@435 151 // Reset the control word to guard against exceptions being unmasked
duke@435 152 // since fstp_d can cause FPU stack underflow exceptions. Write it
duke@435 153 // into the on stack copy and then reload that to make sure that the
duke@435 154 // current and future values are correct.
duke@435 155 __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
duke@435 156 }
duke@435 157
duke@435 158 __ frstor(Address(rsp, 0));
duke@435 159 if (!verify_fpu) {
duke@435 160 // Set the control word so that exceptions are masked for the
duke@435 161 // following code.
duke@435 162 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 163 }
duke@435 164
duke@435 165 // Save the FPU registers in de-opt-able form
duke@435 166
duke@435 167 __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
duke@435 168 __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
duke@435 169 __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
duke@435 170 __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
duke@435 171 __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
duke@435 172 __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
duke@435 173 __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
duke@435 174 __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
duke@435 175
duke@435 176 if( UseSSE == 1 ) { // Save the XMM state
duke@435 177 __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 178 __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 179 __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 180 __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 181 __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 182 __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 183 __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 184 __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 185 } else if( UseSSE >= 2 ) {
duke@435 186 __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
duke@435 187 __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
duke@435 188 __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
duke@435 189 __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
duke@435 190 __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
duke@435 191 __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
duke@435 192 __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
duke@435 193 __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
duke@435 194 }
duke@435 195
duke@435 196 // Set an oopmap for the call site. This oopmap will map all
duke@435 197 // oop-registers and debug-info registers as callee-saved. This
duke@435 198 // will allow deoptimization at this safepoint to find all possible
duke@435 199 // debug-info recordings, as well as let GC find all oops.
duke@435 200
duke@435 201 OopMapSet *oop_maps = new OopMapSet();
duke@435 202 OopMap* map = new OopMap( frame_words, 0 );
duke@435 203
duke@435 204 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
duke@435 205
duke@435 206 map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
duke@435 207 map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
duke@435 208 map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
duke@435 209 map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
duke@435 210 // rbp, location is known implicitly, no oopMap
duke@435 211 map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
duke@435 212 map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
duke@435 213 map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
duke@435 214 map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
duke@435 215 map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
duke@435 216 map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
duke@435 217 map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
duke@435 218 map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
duke@435 219 map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
duke@435 220 map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
duke@435 221 map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
duke@435 222 map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
duke@435 223 map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
duke@435 224 map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
duke@435 225 map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
duke@435 226 map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
duke@435 227 map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
duke@435 228 map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
duke@435 229 // %%% This is really a waste but we'll keep things as they were for now
duke@435 230 if (true) {
duke@435 231 #define NEXTREG(x) (x)->as_VMReg()->next()
duke@435 232 map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
duke@435 233 map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
duke@435 234 map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
duke@435 235 map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
duke@435 236 map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
duke@435 237 map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
duke@435 238 map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
duke@435 239 map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
duke@435 240 map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
duke@435 241 map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
duke@435 242 map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
duke@435 243 map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
duke@435 244 map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
duke@435 245 map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
duke@435 246 map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
duke@435 247 map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
duke@435 248 #undef NEXTREG
duke@435 249 #undef STACK_OFFSET
duke@435 250 }
duke@435 251
duke@435 252 return map;
duke@435 253
duke@435 254 }
duke@435 255
duke@435 256 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
duke@435 257
duke@435 258 // Recover XMM & FPU state
duke@435 259 if( UseSSE == 1 ) {
duke@435 260 __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 261 __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 262 __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 263 __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 264 __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 265 __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 266 __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 267 __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 268 } else if( UseSSE >= 2 ) {
duke@435 269 __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
duke@435 270 __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
duke@435 271 __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
duke@435 272 __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
duke@435 273 __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
duke@435 274 __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
duke@435 275 __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
duke@435 276 __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
duke@435 277 }
duke@435 278 __ pop_FPU_state();
never@739 279 __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
never@739 280
never@739 281 __ popf();
never@739 282 __ popa();
duke@435 283 // Get the rbp, described implicitly by the frame sender code (no oopMap)
never@739 284 __ pop(rbp);
duke@435 285
duke@435 286 }
duke@435 287
duke@435 288 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
duke@435 289
duke@435 290 // Just restore result register. Only used by deoptimization. By
duke@435 291 // now any callee save register that needs to be restore to a c2
duke@435 292 // caller of the deoptee has been extracted into the vframeArray
duke@435 293 // and will be stuffed into the c2i adapter we create for later
duke@435 294 // restoration so only result registers need to be restored here.
duke@435 295 //
duke@435 296
duke@435 297 __ frstor(Address(rsp, 0)); // Restore fpu state
duke@435 298
duke@435 299 // Recover XMM & FPU state
duke@435 300 if( UseSSE == 1 ) {
duke@435 301 __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 302 } else if( UseSSE >= 2 ) {
duke@435 303 __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
duke@435 304 }
never@739 305 __ movptr(rax, Address(rsp, rax_off*wordSize));
never@739 306 __ movptr(rdx, Address(rsp, rdx_off*wordSize));
duke@435 307 // Pop all of the register save are off the stack except the return address
never@739 308 __ addptr(rsp, return_off * wordSize);
duke@435 309 }
duke@435 310
duke@435 311 // The java_calling_convention describes stack locations as ideal slots on
duke@435 312 // a frame with no abi restrictions. Since we must observe abi restrictions
duke@435 313 // (like the placement of the register window) the slots must be biased by
duke@435 314 // the following value.
duke@435 315 static int reg2offset_in(VMReg r) {
duke@435 316 // Account for saved rbp, and return address
duke@435 317 // This should really be in_preserve_stack_slots
duke@435 318 return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
duke@435 319 }
duke@435 320
duke@435 321 static int reg2offset_out(VMReg r) {
duke@435 322 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
duke@435 323 }
duke@435 324
duke@435 325 // ---------------------------------------------------------------------------
duke@435 326 // Read the array of BasicTypes from a signature, and compute where the
duke@435 327 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
duke@435 328 // quantities. Values less than SharedInfo::stack0 are registers, those above
duke@435 329 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
duke@435 330 // as framesizes are fixed.
duke@435 331 // VMRegImpl::stack0 refers to the first slot 0(sp).
duke@435 332 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
duke@435 333 // up to RegisterImpl::number_of_registers) are the 32-bit
duke@435 334 // integer registers.
duke@435 335
duke@435 336 // Pass first two oop/int args in registers ECX and EDX.
duke@435 337 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 338 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 339 // the doubles will grab the registers before the floats will.
duke@435 340
duke@435 341 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
duke@435 342 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
duke@435 343 // units regardless of build. Of course for i486 there is no 64 bit build
duke@435 344
duke@435 345
duke@435 346 // ---------------------------------------------------------------------------
duke@435 347 // The compiled Java calling convention.
duke@435 348 // Pass first two oop/int args in registers ECX and EDX.
duke@435 349 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 350 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 351 // the doubles will grab the registers before the floats will.
duke@435 352 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
duke@435 353 VMRegPair *regs,
duke@435 354 int total_args_passed,
duke@435 355 int is_outgoing) {
duke@435 356 uint stack = 0; // Starting stack position for args on stack
duke@435 357
duke@435 358
duke@435 359 // Pass first two oop/int args in registers ECX and EDX.
duke@435 360 uint reg_arg0 = 9999;
duke@435 361 uint reg_arg1 = 9999;
duke@435 362
duke@435 363 // Pass first two float/double args in registers XMM0 and XMM1.
duke@435 364 // Doubles have precedence, so if you pass a mix of floats and doubles
duke@435 365 // the doubles will grab the registers before the floats will.
duke@435 366 // CNC - TURNED OFF FOR non-SSE.
duke@435 367 // On Intel we have to round all doubles (and most floats) at
duke@435 368 // call sites by storing to the stack in any case.
duke@435 369 // UseSSE=0 ==> Don't Use ==> 9999+0
duke@435 370 // UseSSE=1 ==> Floats only ==> 9999+1
duke@435 371 // UseSSE>=2 ==> Floats or doubles ==> 9999+2
duke@435 372 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
duke@435 373 uint fargs = (UseSSE>=2) ? 2 : UseSSE;
duke@435 374 uint freg_arg0 = 9999+fargs;
duke@435 375 uint freg_arg1 = 9999+fargs;
duke@435 376
duke@435 377 // Pass doubles & longs aligned on the stack. First count stack slots for doubles
duke@435 378 int i;
duke@435 379 for( i = 0; i < total_args_passed; i++) {
duke@435 380 if( sig_bt[i] == T_DOUBLE ) {
duke@435 381 // first 2 doubles go in registers
duke@435 382 if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
duke@435 383 else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
duke@435 384 else // Else double is passed low on the stack to be aligned.
duke@435 385 stack += 2;
duke@435 386 } else if( sig_bt[i] == T_LONG ) {
duke@435 387 stack += 2;
duke@435 388 }
duke@435 389 }
duke@435 390 int dstack = 0; // Separate counter for placing doubles
duke@435 391
duke@435 392 // Now pick where all else goes.
duke@435 393 for( i = 0; i < total_args_passed; i++) {
duke@435 394 // From the type and the argument number (count) compute the location
duke@435 395 switch( sig_bt[i] ) {
duke@435 396 case T_SHORT:
duke@435 397 case T_CHAR:
duke@435 398 case T_BYTE:
duke@435 399 case T_BOOLEAN:
duke@435 400 case T_INT:
duke@435 401 case T_ARRAY:
duke@435 402 case T_OBJECT:
duke@435 403 case T_ADDRESS:
duke@435 404 if( reg_arg0 == 9999 ) {
duke@435 405 reg_arg0 = i;
duke@435 406 regs[i].set1(rcx->as_VMReg());
duke@435 407 } else if( reg_arg1 == 9999 ) {
duke@435 408 reg_arg1 = i;
duke@435 409 regs[i].set1(rdx->as_VMReg());
duke@435 410 } else {
duke@435 411 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 412 }
duke@435 413 break;
duke@435 414 case T_FLOAT:
duke@435 415 if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
duke@435 416 freg_arg0 = i;
duke@435 417 regs[i].set1(xmm0->as_VMReg());
duke@435 418 } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
duke@435 419 freg_arg1 = i;
duke@435 420 regs[i].set1(xmm1->as_VMReg());
duke@435 421 } else {
duke@435 422 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 423 }
duke@435 424 break;
duke@435 425 case T_LONG:
duke@435 426 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 427 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 428 dstack += 2;
duke@435 429 break;
duke@435 430 case T_DOUBLE:
duke@435 431 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 432 if( freg_arg0 == (uint)i ) {
duke@435 433 regs[i].set2(xmm0->as_VMReg());
duke@435 434 } else if( freg_arg1 == (uint)i ) {
duke@435 435 regs[i].set2(xmm1->as_VMReg());
duke@435 436 } else {
duke@435 437 regs[i].set2(VMRegImpl::stack2reg(dstack));
duke@435 438 dstack += 2;
duke@435 439 }
duke@435 440 break;
duke@435 441 case T_VOID: regs[i].set_bad(); break;
duke@435 442 break;
duke@435 443 default:
duke@435 444 ShouldNotReachHere();
duke@435 445 break;
duke@435 446 }
duke@435 447 }
duke@435 448
duke@435 449 // return value can be odd number of VMRegImpl stack slots make multiple of 2
duke@435 450 return round_to(stack, 2);
duke@435 451 }
duke@435 452
duke@435 453 // Patch the callers callsite with entry to compiled code if it exists.
duke@435 454 static void patch_callers_callsite(MacroAssembler *masm) {
duke@435 455 Label L;
duke@435 456 __ verify_oop(rbx);
never@739 457 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 458 __ jcc(Assembler::equal, L);
duke@435 459 // Schedule the branch target address early.
duke@435 460 // Call into the VM to patch the caller, then jump to compiled callee
duke@435 461 // rax, isn't live so capture return address while we easily can
never@739 462 __ movptr(rax, Address(rsp, 0));
never@739 463 __ pusha();
never@739 464 __ pushf();
duke@435 465
duke@435 466 if (UseSSE == 1) {
never@739 467 __ subptr(rsp, 2*wordSize);
duke@435 468 __ movflt(Address(rsp, 0), xmm0);
duke@435 469 __ movflt(Address(rsp, wordSize), xmm1);
duke@435 470 }
duke@435 471 if (UseSSE >= 2) {
never@739 472 __ subptr(rsp, 4*wordSize);
duke@435 473 __ movdbl(Address(rsp, 0), xmm0);
duke@435 474 __ movdbl(Address(rsp, 2*wordSize), xmm1);
duke@435 475 }
duke@435 476 #ifdef COMPILER2
duke@435 477 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 478 if (UseSSE >= 2) {
duke@435 479 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 480 } else {
duke@435 481 __ empty_FPU_stack();
duke@435 482 }
duke@435 483 #endif /* COMPILER2 */
duke@435 484
duke@435 485 // VM needs caller's callsite
never@739 486 __ push(rax);
duke@435 487 // VM needs target method
never@739 488 __ push(rbx);
duke@435 489 __ verify_oop(rbx);
duke@435 490 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
never@739 491 __ addptr(rsp, 2*wordSize);
duke@435 492
duke@435 493 if (UseSSE == 1) {
duke@435 494 __ movflt(xmm0, Address(rsp, 0));
duke@435 495 __ movflt(xmm1, Address(rsp, wordSize));
never@739 496 __ addptr(rsp, 2*wordSize);
duke@435 497 }
duke@435 498 if (UseSSE >= 2) {
duke@435 499 __ movdbl(xmm0, Address(rsp, 0));
duke@435 500 __ movdbl(xmm1, Address(rsp, 2*wordSize));
never@739 501 __ addptr(rsp, 4*wordSize);
duke@435 502 }
duke@435 503
never@739 504 __ popf();
never@739 505 __ popa();
duke@435 506 __ bind(L);
duke@435 507 }
duke@435 508
duke@435 509
duke@435 510 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
twisti@1861 511 int next_off = st_off - Interpreter::stackElementSize;
twisti@1861 512 __ movdbl(Address(rsp, next_off), r);
duke@435 513 }
duke@435 514
duke@435 515 static void gen_c2i_adapter(MacroAssembler *masm,
duke@435 516 int total_args_passed,
duke@435 517 int comp_args_on_stack,
duke@435 518 const BasicType *sig_bt,
duke@435 519 const VMRegPair *regs,
duke@435 520 Label& skip_fixup) {
duke@435 521 // Before we get into the guts of the C2I adapter, see if we should be here
duke@435 522 // at all. We've come from compiled code and are attempting to jump to the
duke@435 523 // interpreter, which means the caller made a static call to get here
duke@435 524 // (vcalls always get a compiled target if there is one). Check for a
duke@435 525 // compiled target. If there is one, we need to patch the caller's call.
duke@435 526 patch_callers_callsite(masm);
duke@435 527
duke@435 528 __ bind(skip_fixup);
duke@435 529
duke@435 530 #ifdef COMPILER2
duke@435 531 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 532 if (UseSSE >= 2) {
duke@435 533 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 534 } else {
duke@435 535 __ empty_FPU_stack();
duke@435 536 }
duke@435 537 #endif /* COMPILER2 */
duke@435 538
duke@435 539 // Since all args are passed on the stack, total_args_passed * interpreter_
duke@435 540 // stack_element_size is the
duke@435 541 // space we need.
twisti@1861 542 int extraspace = total_args_passed * Interpreter::stackElementSize;
duke@435 543
duke@435 544 // Get return address
never@739 545 __ pop(rax);
duke@435 546
duke@435 547 // set senderSP value
never@739 548 __ movptr(rsi, rsp);
never@739 549
never@739 550 __ subptr(rsp, extraspace);
duke@435 551
duke@435 552 // Now write the args into the outgoing interpreter space
duke@435 553 for (int i = 0; i < total_args_passed; i++) {
duke@435 554 if (sig_bt[i] == T_VOID) {
duke@435 555 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 556 continue;
duke@435 557 }
duke@435 558
duke@435 559 // st_off points to lowest address on stack.
twisti@1861 560 int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
twisti@1861 561 int next_off = st_off - Interpreter::stackElementSize;
never@739 562
duke@435 563 // Say 4 args:
duke@435 564 // i st_off
duke@435 565 // 0 12 T_LONG
duke@435 566 // 1 8 T_VOID
duke@435 567 // 2 4 T_OBJECT
duke@435 568 // 3 0 T_BOOL
duke@435 569 VMReg r_1 = regs[i].first();
duke@435 570 VMReg r_2 = regs[i].second();
duke@435 571 if (!r_1->is_valid()) {
duke@435 572 assert(!r_2->is_valid(), "");
duke@435 573 continue;
duke@435 574 }
duke@435 575
duke@435 576 if (r_1->is_stack()) {
duke@435 577 // memory to memory use fpu stack top
duke@435 578 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
duke@435 579
duke@435 580 if (!r_2->is_valid()) {
duke@435 581 __ movl(rdi, Address(rsp, ld_off));
never@739 582 __ movptr(Address(rsp, st_off), rdi);
duke@435 583 } else {
duke@435 584
duke@435 585 // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
duke@435 586 // st_off == MSW, st_off-wordSize == LSW
duke@435 587
never@739 588 __ movptr(rdi, Address(rsp, ld_off));
never@739 589 __ movptr(Address(rsp, next_off), rdi);
never@739 590 #ifndef _LP64
never@739 591 __ movptr(rdi, Address(rsp, ld_off + wordSize));
never@739 592 __ movptr(Address(rsp, st_off), rdi);
never@739 593 #else
never@739 594 #ifdef ASSERT
never@739 595 // Overwrite the unused slot with known junk
never@739 596 __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
never@739 597 __ movptr(Address(rsp, st_off), rax);
never@739 598 #endif /* ASSERT */
never@739 599 #endif // _LP64
duke@435 600 }
duke@435 601 } else if (r_1->is_Register()) {
duke@435 602 Register r = r_1->as_Register();
duke@435 603 if (!r_2->is_valid()) {
duke@435 604 __ movl(Address(rsp, st_off), r);
duke@435 605 } else {
duke@435 606 // long/double in gpr
never@739 607 NOT_LP64(ShouldNotReachHere());
never@739 608 // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
never@739 609 // T_DOUBLE and T_LONG use two slots in the interpreter
never@739 610 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
never@739 611 // long/double in gpr
never@739 612 #ifdef ASSERT
never@739 613 // Overwrite the unused slot with known junk
never@739 614 LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
never@739 615 __ movptr(Address(rsp, st_off), rax);
never@739 616 #endif /* ASSERT */
never@739 617 __ movptr(Address(rsp, next_off), r);
never@739 618 } else {
never@739 619 __ movptr(Address(rsp, st_off), r);
never@739 620 }
duke@435 621 }
duke@435 622 } else {
duke@435 623 assert(r_1->is_XMMRegister(), "");
duke@435 624 if (!r_2->is_valid()) {
duke@435 625 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
duke@435 626 } else {
duke@435 627 assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
duke@435 628 move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
duke@435 629 }
duke@435 630 }
duke@435 631 }
duke@435 632
duke@435 633 // Schedule the branch target address early.
never@739 634 __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
duke@435 635 // And repush original return address
never@739 636 __ push(rax);
duke@435 637 __ jmp(rcx);
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
twisti@1861 642 int next_val_off = ld_off - Interpreter::stackElementSize;
twisti@1861 643 __ movdbl(r, Address(saved_sp, next_val_off));
duke@435 644 }
duke@435 645
duke@435 646 static void gen_i2c_adapter(MacroAssembler *masm,
duke@435 647 int total_args_passed,
duke@435 648 int comp_args_on_stack,
duke@435 649 const BasicType *sig_bt,
duke@435 650 const VMRegPair *regs) {
duke@435 651
duke@435 652 // Note: rsi contains the senderSP on entry. We must preserve it since
duke@435 653 // we may do a i2c -> c2i transition if we lose a race where compiled
duke@435 654 // code goes non-entrant while we get args ready.
duke@435 655
duke@435 656 // Pick up the return address
never@739 657 __ movptr(rax, Address(rsp, 0));
duke@435 658
duke@435 659 // Must preserve original SP for loading incoming arguments because
duke@435 660 // we need to align the outgoing SP for compiled code.
never@739 661 __ movptr(rdi, rsp);
duke@435 662
duke@435 663 // Cut-out for having no stack args. Since up to 2 int/oop args are passed
duke@435 664 // in registers, we will occasionally have no stack args.
duke@435 665 int comp_words_on_stack = 0;
duke@435 666 if (comp_args_on_stack) {
duke@435 667 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
duke@435 668 // registers are below. By subtracting stack0, we either get a negative
duke@435 669 // number (all values in registers) or the maximum stack slot accessed.
duke@435 670 // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
duke@435 671 // Convert 4-byte stack slots to words.
duke@435 672 comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
duke@435 673 // Round up to miminum stack alignment, in wordSize
duke@435 674 comp_words_on_stack = round_to(comp_words_on_stack, 2);
never@739 675 __ subptr(rsp, comp_words_on_stack * wordSize);
duke@435 676 }
duke@435 677
duke@435 678 // Align the outgoing SP
never@739 679 __ andptr(rsp, -(StackAlignmentInBytes));
duke@435 680
duke@435 681 // push the return address on the stack (note that pushing, rather
duke@435 682 // than storing it, yields the correct frame alignment for the callee)
never@739 683 __ push(rax);
duke@435 684
duke@435 685 // Put saved SP in another register
duke@435 686 const Register saved_sp = rax;
never@739 687 __ movptr(saved_sp, rdi);
duke@435 688
duke@435 689
duke@435 690 // Will jump to the compiled code just as if compiled code was doing it.
duke@435 691 // Pre-load the register-jump target early, to schedule it better.
never@739 692 __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
duke@435 693
duke@435 694 // Now generate the shuffle code. Pick up all register args and move the
duke@435 695 // rest through the floating point stack top.
duke@435 696 for (int i = 0; i < total_args_passed; i++) {
duke@435 697 if (sig_bt[i] == T_VOID) {
duke@435 698 // Longs and doubles are passed in native word order, but misaligned
duke@435 699 // in the 32-bit build.
duke@435 700 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
duke@435 701 continue;
duke@435 702 }
duke@435 703
duke@435 704 // Pick up 0, 1 or 2 words from SP+offset.
duke@435 705
duke@435 706 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
duke@435 707 "scrambled load targets?");
duke@435 708 // Load in argument order going down.
twisti@1861 709 int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
duke@435 710 // Point to interpreter value (vs. tag)
twisti@1861 711 int next_off = ld_off - Interpreter::stackElementSize;
duke@435 712 //
duke@435 713 //
duke@435 714 //
duke@435 715 VMReg r_1 = regs[i].first();
duke@435 716 VMReg r_2 = regs[i].second();
duke@435 717 if (!r_1->is_valid()) {
duke@435 718 assert(!r_2->is_valid(), "");
duke@435 719 continue;
duke@435 720 }
duke@435 721 if (r_1->is_stack()) {
duke@435 722 // Convert stack slot to an SP offset (+ wordSize to account for return address )
duke@435 723 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
duke@435 724
duke@435 725 // We can use rsi as a temp here because compiled code doesn't need rsi as an input
duke@435 726 // and if we end up going thru a c2i because of a miss a reasonable value of rsi
duke@435 727 // we be generated.
duke@435 728 if (!r_2->is_valid()) {
duke@435 729 // __ fld_s(Address(saved_sp, ld_off));
duke@435 730 // __ fstp_s(Address(rsp, st_off));
duke@435 731 __ movl(rsi, Address(saved_sp, ld_off));
never@739 732 __ movptr(Address(rsp, st_off), rsi);
duke@435 733 } else {
duke@435 734 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
duke@435 735 // are accessed as negative so LSW is at LOW address
duke@435 736
duke@435 737 // ld_off is MSW so get LSW
duke@435 738 // st_off is LSW (i.e. reg.first())
duke@435 739 // __ fld_d(Address(saved_sp, next_off));
duke@435 740 // __ fstp_d(Address(rsp, st_off));
never@739 741 //
never@739 742 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 743 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 744 // So we must adjust where to pick up the data to match the interpreter.
never@739 745 //
never@739 746 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
never@739 747 // are accessed as negative so LSW is at LOW address
never@739 748
never@739 749 // ld_off is MSW so get LSW
never@739 750 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 751 next_off : ld_off;
never@739 752 __ movptr(rsi, Address(saved_sp, offset));
never@739 753 __ movptr(Address(rsp, st_off), rsi);
never@739 754 #ifndef _LP64
never@739 755 __ movptr(rsi, Address(saved_sp, ld_off));
never@739 756 __ movptr(Address(rsp, st_off + wordSize), rsi);
never@739 757 #endif // _LP64
duke@435 758 }
duke@435 759 } else if (r_1->is_Register()) { // Register argument
duke@435 760 Register r = r_1->as_Register();
duke@435 761 assert(r != rax, "must be different");
duke@435 762 if (r_2->is_valid()) {
never@739 763 //
never@739 764 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
never@739 765 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
never@739 766 // So we must adjust where to pick up the data to match the interpreter.
never@739 767
never@739 768 const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
never@739 769 next_off : ld_off;
never@739 770
never@739 771 // this can be a misaligned move
never@739 772 __ movptr(r, Address(saved_sp, offset));
never@739 773 #ifndef _LP64
duke@435 774 assert(r_2->as_Register() != rax, "need another temporary register");
duke@435 775 // Remember r_1 is low address (and LSB on x86)
duke@435 776 // So r_2 gets loaded from high address regardless of the platform
never@739 777 __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
never@739 778 #endif // _LP64
duke@435 779 } else {
duke@435 780 __ movl(r, Address(saved_sp, ld_off));
duke@435 781 }
duke@435 782 } else {
duke@435 783 assert(r_1->is_XMMRegister(), "");
duke@435 784 if (!r_2->is_valid()) {
duke@435 785 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
duke@435 786 } else {
duke@435 787 move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
duke@435 788 }
duke@435 789 }
duke@435 790 }
duke@435 791
duke@435 792 // 6243940 We might end up in handle_wrong_method if
duke@435 793 // the callee is deoptimized as we race thru here. If that
duke@435 794 // happens we don't want to take a safepoint because the
duke@435 795 // caller frame will look interpreted and arguments are now
duke@435 796 // "compiled" so it is much better to make this transition
duke@435 797 // invisible to the stack walking code. Unfortunately if
duke@435 798 // we try and find the callee by normal means a safepoint
duke@435 799 // is possible. So we stash the desired callee in the thread
duke@435 800 // and the vm will find there should this case occur.
duke@435 801
duke@435 802 __ get_thread(rax);
never@739 803 __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
duke@435 804
duke@435 805 // move methodOop to rax, in case we end up in an c2i adapter.
duke@435 806 // the c2i adapters expect methodOop in rax, (c2) because c2's
duke@435 807 // resolve stubs return the result (the method) in rax,.
duke@435 808 // I'd love to fix this.
never@739 809 __ mov(rax, rbx);
duke@435 810
duke@435 811 __ jmp(rdi);
duke@435 812 }
duke@435 813
duke@435 814 // ---------------------------------------------------------------
duke@435 815 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
duke@435 816 int total_args_passed,
duke@435 817 int comp_args_on_stack,
duke@435 818 const BasicType *sig_bt,
never@1622 819 const VMRegPair *regs,
never@1622 820 AdapterFingerPrint* fingerprint) {
duke@435 821 address i2c_entry = __ pc();
duke@435 822
duke@435 823 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
duke@435 824
duke@435 825 // -------------------------------------------------------------------------
duke@435 826 // Generate a C2I adapter. On entry we know rbx, holds the methodOop during calls
duke@435 827 // to the interpreter. The args start out packed in the compiled layout. They
duke@435 828 // need to be unpacked into the interpreter layout. This will almost always
duke@435 829 // require some stack space. We grow the current (compiled) stack, then repack
duke@435 830 // the args. We finally end in a jump to the generic interpreter entry point.
duke@435 831 // On exit from the interpreter, the interpreter will restore our SP (lest the
duke@435 832 // compiled code, which relys solely on SP and not EBP, get sick).
duke@435 833
duke@435 834 address c2i_unverified_entry = __ pc();
duke@435 835 Label skip_fixup;
duke@435 836
duke@435 837 Register holder = rax;
duke@435 838 Register receiver = rcx;
duke@435 839 Register temp = rbx;
duke@435 840
duke@435 841 {
duke@435 842
duke@435 843 Label missed;
duke@435 844
duke@435 845 __ verify_oop(holder);
never@739 846 __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 847 __ verify_oop(temp);
duke@435 848
never@739 849 __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
never@739 850 __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
duke@435 851 __ jcc(Assembler::notEqual, missed);
duke@435 852 // Method might have been compiled since the call site was patched to
duke@435 853 // interpreted if that is the case treat it as a miss so we can get
duke@435 854 // the call site corrected.
never@739 855 __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
duke@435 856 __ jcc(Assembler::equal, skip_fixup);
duke@435 857
duke@435 858 __ bind(missed);
duke@435 859 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 860 }
duke@435 861
duke@435 862 address c2i_entry = __ pc();
duke@435 863
duke@435 864 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
duke@435 865
duke@435 866 __ flush();
never@1622 867 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
duke@435 868 }
duke@435 869
duke@435 870 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
duke@435 871 VMRegPair *regs,
duke@435 872 int total_args_passed) {
duke@435 873 // We return the amount of VMRegImpl stack slots we need to reserve for all
duke@435 874 // the arguments NOT counting out_preserve_stack_slots.
duke@435 875
duke@435 876 uint stack = 0; // All arguments on stack
duke@435 877
duke@435 878 for( int i = 0; i < total_args_passed; i++) {
duke@435 879 // From the type and the argument number (count) compute the location
duke@435 880 switch( sig_bt[i] ) {
duke@435 881 case T_BOOLEAN:
duke@435 882 case T_CHAR:
duke@435 883 case T_FLOAT:
duke@435 884 case T_BYTE:
duke@435 885 case T_SHORT:
duke@435 886 case T_INT:
duke@435 887 case T_OBJECT:
duke@435 888 case T_ARRAY:
duke@435 889 case T_ADDRESS:
duke@435 890 regs[i].set1(VMRegImpl::stack2reg(stack++));
duke@435 891 break;
duke@435 892 case T_LONG:
duke@435 893 case T_DOUBLE: // The stack numbering is reversed from Java
duke@435 894 // Since C arguments do not get reversed, the ordering for
duke@435 895 // doubles on the stack must be opposite the Java convention
duke@435 896 assert(sig_bt[i+1] == T_VOID, "missing Half" );
duke@435 897 regs[i].set2(VMRegImpl::stack2reg(stack));
duke@435 898 stack += 2;
duke@435 899 break;
duke@435 900 case T_VOID: regs[i].set_bad(); break;
duke@435 901 default:
duke@435 902 ShouldNotReachHere();
duke@435 903 break;
duke@435 904 }
duke@435 905 }
duke@435 906 return stack;
duke@435 907 }
duke@435 908
duke@435 909 // A simple move of integer like type
duke@435 910 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 911 if (src.first()->is_stack()) {
duke@435 912 if (dst.first()->is_stack()) {
duke@435 913 // stack to stack
duke@435 914 // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
duke@435 915 // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
never@739 916 __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 917 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 918 } else {
duke@435 919 // stack to reg
never@739 920 __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
duke@435 921 }
duke@435 922 } else if (dst.first()->is_stack()) {
duke@435 923 // reg to stack
never@739 924 // no need to sign extend on 64bit
never@739 925 __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
duke@435 926 } else {
never@739 927 if (dst.first() != src.first()) {
never@739 928 __ mov(dst.first()->as_Register(), src.first()->as_Register());
never@739 929 }
duke@435 930 }
duke@435 931 }
duke@435 932
duke@435 933 // An oop arg. Must pass a handle not the oop itself
duke@435 934 static void object_move(MacroAssembler* masm,
duke@435 935 OopMap* map,
duke@435 936 int oop_handle_offset,
duke@435 937 int framesize_in_slots,
duke@435 938 VMRegPair src,
duke@435 939 VMRegPair dst,
duke@435 940 bool is_receiver,
duke@435 941 int* receiver_offset) {
duke@435 942
duke@435 943 // Because of the calling conventions we know that src can be a
duke@435 944 // register or a stack location. dst can only be a stack location.
duke@435 945
duke@435 946 assert(dst.first()->is_stack(), "must be stack");
duke@435 947 // must pass a handle. First figure out the location we use as a handle
duke@435 948
duke@435 949 if (src.first()->is_stack()) {
duke@435 950 // Oop is already on the stack as an argument
duke@435 951 Register rHandle = rax;
duke@435 952 Label nil;
never@739 953 __ xorptr(rHandle, rHandle);
never@739 954 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
duke@435 955 __ jcc(Assembler::equal, nil);
never@739 956 __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
duke@435 957 __ bind(nil);
never@739 958 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 959
duke@435 960 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
duke@435 961 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
duke@435 962 if (is_receiver) {
duke@435 963 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
duke@435 964 }
duke@435 965 } else {
duke@435 966 // Oop is in an a register we must store it to the space we reserve
duke@435 967 // on the stack for oop_handles
duke@435 968 const Register rOop = src.first()->as_Register();
duke@435 969 const Register rHandle = rax;
duke@435 970 int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
duke@435 971 int offset = oop_slot*VMRegImpl::stack_slot_size;
duke@435 972 Label skip;
never@739 973 __ movptr(Address(rsp, offset), rOop);
duke@435 974 map->set_oop(VMRegImpl::stack2reg(oop_slot));
never@739 975 __ xorptr(rHandle, rHandle);
never@739 976 __ cmpptr(rOop, (int32_t)NULL_WORD);
duke@435 977 __ jcc(Assembler::equal, skip);
never@739 978 __ lea(rHandle, Address(rsp, offset));
duke@435 979 __ bind(skip);
duke@435 980 // Store the handle parameter
never@739 981 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
duke@435 982 if (is_receiver) {
duke@435 983 *receiver_offset = offset;
duke@435 984 }
duke@435 985 }
duke@435 986 }
duke@435 987
duke@435 988 // A float arg may have to do float reg int reg conversion
duke@435 989 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 990 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
duke@435 991
duke@435 992 // Because of the calling convention we know that src is either a stack location
duke@435 993 // or an xmm register. dst can only be a stack location.
duke@435 994
duke@435 995 assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
duke@435 996
duke@435 997 if (src.first()->is_stack()) {
duke@435 998 __ movl(rax, Address(rbp, reg2offset_in(src.first())));
never@739 999 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
duke@435 1000 } else {
duke@435 1001 // reg to stack
duke@435 1002 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1003 }
duke@435 1004 }
duke@435 1005
duke@435 1006 // A long move
duke@435 1007 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1008
duke@435 1009 // The only legal possibility for a long_move VMRegPair is:
duke@435 1010 // 1: two stack slots (possibly unaligned)
duke@435 1011 // as neither the java or C calling convention will use registers
duke@435 1012 // for longs.
duke@435 1013
duke@435 1014 if (src.first()->is_stack() && dst.first()->is_stack()) {
duke@435 1015 assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
never@739 1016 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1017 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1018 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1019 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1020 } else {
duke@435 1021 ShouldNotReachHere();
duke@435 1022 }
duke@435 1023 }
duke@435 1024
duke@435 1025 // A double move
duke@435 1026 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
duke@435 1027
duke@435 1028 // The only legal possibilities for a double_move VMRegPair are:
duke@435 1029 // The painful thing here is that like long_move a VMRegPair might be
duke@435 1030
duke@435 1031 // Because of the calling convention we know that src is either
duke@435 1032 // 1: a single physical register (xmm registers only)
duke@435 1033 // 2: two stack slots (possibly unaligned)
duke@435 1034 // dst can only be a pair of stack slots.
duke@435 1035
duke@435 1036 assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
duke@435 1037
duke@435 1038 if (src.first()->is_stack()) {
duke@435 1039 // source is all stack
never@739 1040 __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
never@739 1041 NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
never@739 1042 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
never@739 1043 NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
duke@435 1044 } else {
duke@435 1045 // reg to stack
duke@435 1046 // No worries about stack alignment
duke@435 1047 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
duke@435 1048 }
duke@435 1049 }
duke@435 1050
duke@435 1051
duke@435 1052 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1053 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1054 // which by this time is free to use
duke@435 1055 switch (ret_type) {
duke@435 1056 case T_FLOAT:
duke@435 1057 __ fstp_s(Address(rbp, -wordSize));
duke@435 1058 break;
duke@435 1059 case T_DOUBLE:
duke@435 1060 __ fstp_d(Address(rbp, -2*wordSize));
duke@435 1061 break;
duke@435 1062 case T_VOID: break;
duke@435 1063 case T_LONG:
never@739 1064 __ movptr(Address(rbp, -wordSize), rax);
never@739 1065 NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
duke@435 1066 break;
duke@435 1067 default: {
never@739 1068 __ movptr(Address(rbp, -wordSize), rax);
duke@435 1069 }
duke@435 1070 }
duke@435 1071 }
duke@435 1072
duke@435 1073 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
duke@435 1074 // We always ignore the frame_slots arg and just use the space just below frame pointer
duke@435 1075 // which by this time is free to use
duke@435 1076 switch (ret_type) {
duke@435 1077 case T_FLOAT:
duke@435 1078 __ fld_s(Address(rbp, -wordSize));
duke@435 1079 break;
duke@435 1080 case T_DOUBLE:
duke@435 1081 __ fld_d(Address(rbp, -2*wordSize));
duke@435 1082 break;
duke@435 1083 case T_LONG:
never@739 1084 __ movptr(rax, Address(rbp, -wordSize));
never@739 1085 NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
duke@435 1086 break;
duke@435 1087 case T_VOID: break;
duke@435 1088 default: {
never@739 1089 __ movptr(rax, Address(rbp, -wordSize));
duke@435 1090 }
duke@435 1091 }
duke@435 1092 }
duke@435 1093
duke@435 1094 // ---------------------------------------------------------------------------
duke@435 1095 // Generate a native wrapper for a given method. The method takes arguments
duke@435 1096 // in the Java compiled code convention, marshals them to the native
duke@435 1097 // convention (handlizes oops, etc), transitions to native, makes the call,
duke@435 1098 // returns to java state (possibly blocking), unhandlizes any result and
duke@435 1099 // returns.
duke@435 1100 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
duke@435 1101 methodHandle method,
twisti@2687 1102 int compile_id,
duke@435 1103 int total_in_args,
duke@435 1104 int comp_args_on_stack,
duke@435 1105 BasicType *in_sig_bt,
duke@435 1106 VMRegPair *in_regs,
duke@435 1107 BasicType ret_type) {
duke@435 1108
duke@435 1109 // An OopMap for lock (and class if static)
duke@435 1110 OopMapSet *oop_maps = new OopMapSet();
duke@435 1111
duke@435 1112 // We have received a description of where all the java arg are located
duke@435 1113 // on entry to the wrapper. We need to convert these args to where
duke@435 1114 // the jni function will expect them. To figure out where they go
duke@435 1115 // we convert the java signature to a C signature by inserting
duke@435 1116 // the hidden arguments as arg[0] and possibly arg[1] (static method)
duke@435 1117
duke@435 1118 int total_c_args = total_in_args + 1;
duke@435 1119 if (method->is_static()) {
duke@435 1120 total_c_args++;
duke@435 1121 }
duke@435 1122
duke@435 1123 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
duke@435 1124 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
duke@435 1125
duke@435 1126 int argc = 0;
duke@435 1127 out_sig_bt[argc++] = T_ADDRESS;
duke@435 1128 if (method->is_static()) {
duke@435 1129 out_sig_bt[argc++] = T_OBJECT;
duke@435 1130 }
duke@435 1131
duke@435 1132 int i;
duke@435 1133 for (i = 0; i < total_in_args ; i++ ) {
duke@435 1134 out_sig_bt[argc++] = in_sig_bt[i];
duke@435 1135 }
duke@435 1136
duke@435 1137
duke@435 1138 // Now figure out where the args must be stored and how much stack space
duke@435 1139 // they require (neglecting out_preserve_stack_slots but space for storing
duke@435 1140 // the 1st six register arguments). It's weird see int_stk_helper.
duke@435 1141 //
duke@435 1142 int out_arg_slots;
duke@435 1143 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
duke@435 1144
duke@435 1145 // Compute framesize for the wrapper. We need to handlize all oops in
duke@435 1146 // registers a max of 2 on x86.
duke@435 1147
duke@435 1148 // Calculate the total number of stack slots we will need.
duke@435 1149
duke@435 1150 // First count the abi requirement plus all of the outgoing args
duke@435 1151 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
duke@435 1152
duke@435 1153 // Now the space for the inbound oop handle area
duke@435 1154
duke@435 1155 int oop_handle_offset = stack_slots;
duke@435 1156 stack_slots += 2*VMRegImpl::slots_per_word;
duke@435 1157
duke@435 1158 // Now any space we need for handlizing a klass if static method
duke@435 1159
duke@435 1160 int klass_slot_offset = 0;
duke@435 1161 int klass_offset = -1;
duke@435 1162 int lock_slot_offset = 0;
duke@435 1163 bool is_static = false;
duke@435 1164 int oop_temp_slot_offset = 0;
duke@435 1165
duke@435 1166 if (method->is_static()) {
duke@435 1167 klass_slot_offset = stack_slots;
duke@435 1168 stack_slots += VMRegImpl::slots_per_word;
duke@435 1169 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
duke@435 1170 is_static = true;
duke@435 1171 }
duke@435 1172
duke@435 1173 // Plus a lock if needed
duke@435 1174
duke@435 1175 if (method->is_synchronized()) {
duke@435 1176 lock_slot_offset = stack_slots;
duke@435 1177 stack_slots += VMRegImpl::slots_per_word;
duke@435 1178 }
duke@435 1179
duke@435 1180 // Now a place (+2) to save return values or temp during shuffling
duke@435 1181 // + 2 for return address (which we own) and saved rbp,
duke@435 1182 stack_slots += 4;
duke@435 1183
duke@435 1184 // Ok The space we have allocated will look like:
duke@435 1185 //
duke@435 1186 //
duke@435 1187 // FP-> | |
duke@435 1188 // |---------------------|
duke@435 1189 // | 2 slots for moves |
duke@435 1190 // |---------------------|
duke@435 1191 // | lock box (if sync) |
duke@435 1192 // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset)
duke@435 1193 // | klass (if static) |
duke@435 1194 // |---------------------| <- klass_slot_offset
duke@435 1195 // | oopHandle area |
duke@435 1196 // |---------------------| <- oop_handle_offset (a max of 2 registers)
duke@435 1197 // | outbound memory |
duke@435 1198 // | based arguments |
duke@435 1199 // | |
duke@435 1200 // |---------------------|
duke@435 1201 // | |
duke@435 1202 // SP-> | out_preserved_slots |
duke@435 1203 //
duke@435 1204 //
duke@435 1205 // ****************************************************************************
duke@435 1206 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1207 // arguments off of the stack after the jni call. Before the call we can use
duke@435 1208 // instructions that are SP relative. After the jni call we switch to FP
duke@435 1209 // relative instructions instead of re-adjusting the stack on windows.
duke@435 1210 // ****************************************************************************
duke@435 1211
duke@435 1212
duke@435 1213 // Now compute actual number of stack words we need rounding to make
duke@435 1214 // stack properly aligned.
xlu@959 1215 stack_slots = round_to(stack_slots, StackAlignmentInSlots);
duke@435 1216
duke@435 1217 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
duke@435 1218
duke@435 1219 intptr_t start = (intptr_t)__ pc();
duke@435 1220
duke@435 1221 // First thing make an ic check to see if we should even be here
duke@435 1222
duke@435 1223 // We are free to use all registers as temps without saving them and
duke@435 1224 // restoring them except rbp,. rbp, is the only callee save register
duke@435 1225 // as far as the interpreter and the compiler(s) are concerned.
duke@435 1226
duke@435 1227
duke@435 1228 const Register ic_reg = rax;
duke@435 1229 const Register receiver = rcx;
duke@435 1230 Label hit;
duke@435 1231 Label exception_pending;
duke@435 1232
duke@435 1233
duke@435 1234 __ verify_oop(receiver);
never@739 1235 __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
duke@435 1236 __ jcc(Assembler::equal, hit);
duke@435 1237
duke@435 1238 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
duke@435 1239
duke@435 1240 // verified entry must be aligned for code patching.
duke@435 1241 // and the first 5 bytes must be in the same cache line
duke@435 1242 // if we align at 8 then we will be sure 5 bytes are in the same line
duke@435 1243 __ align(8);
duke@435 1244
duke@435 1245 __ bind(hit);
duke@435 1246
duke@435 1247 int vep_offset = ((intptr_t)__ pc()) - start;
duke@435 1248
duke@435 1249 #ifdef COMPILER1
duke@435 1250 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
duke@435 1251 // Object.hashCode can pull the hashCode from the header word
duke@435 1252 // instead of doing a full VM transition once it's been computed.
duke@435 1253 // Since hashCode is usually polymorphic at call sites we can't do
duke@435 1254 // this optimization at the call site without a lot of work.
duke@435 1255 Label slowCase;
duke@435 1256 Register receiver = rcx;
duke@435 1257 Register result = rax;
never@739 1258 __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
duke@435 1259
duke@435 1260 // check if locked
never@739 1261 __ testptr(result, markOopDesc::unlocked_value);
duke@435 1262 __ jcc (Assembler::zero, slowCase);
duke@435 1263
duke@435 1264 if (UseBiasedLocking) {
duke@435 1265 // Check if biased and fall through to runtime if so
never@739 1266 __ testptr(result, markOopDesc::biased_lock_bit_in_place);
duke@435 1267 __ jcc (Assembler::notZero, slowCase);
duke@435 1268 }
duke@435 1269
duke@435 1270 // get hash
never@739 1271 __ andptr(result, markOopDesc::hash_mask_in_place);
duke@435 1272 // test if hashCode exists
duke@435 1273 __ jcc (Assembler::zero, slowCase);
never@739 1274 __ shrptr(result, markOopDesc::hash_shift);
duke@435 1275 __ ret(0);
duke@435 1276 __ bind (slowCase);
duke@435 1277 }
duke@435 1278 #endif // COMPILER1
duke@435 1279
duke@435 1280 // The instruction at the verified entry point must be 5 bytes or longer
duke@435 1281 // because it can be patched on the fly by make_non_entrant. The stack bang
duke@435 1282 // instruction fits that requirement.
duke@435 1283
duke@435 1284 // Generate stack overflow check
duke@435 1285
duke@435 1286 if (UseStackBanging) {
duke@435 1287 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
duke@435 1288 } else {
duke@435 1289 // need a 5 byte instruction to allow MT safe patching to non-entrant
duke@435 1290 __ fat_nop();
duke@435 1291 }
duke@435 1292
duke@435 1293 // Generate a new frame for the wrapper.
duke@435 1294 __ enter();
duke@435 1295 // -2 because return address is already present and so is saved rbp,
never@739 1296 __ subptr(rsp, stack_size - 2*wordSize);
duke@435 1297
duke@435 1298 // Frame is now completed as far a size and linkage.
duke@435 1299
duke@435 1300 int frame_complete = ((intptr_t)__ pc()) - start;
duke@435 1301
duke@435 1302 // Calculate the difference between rsp and rbp,. We need to know it
duke@435 1303 // after the native call because on windows Java Natives will pop
duke@435 1304 // the arguments and it is painful to do rsp relative addressing
duke@435 1305 // in a platform independent way. So after the call we switch to
duke@435 1306 // rbp, relative addressing.
duke@435 1307
duke@435 1308 int fp_adjustment = stack_size - 2*wordSize;
duke@435 1309
duke@435 1310 #ifdef COMPILER2
duke@435 1311 // C2 may leave the stack dirty if not in SSE2+ mode
duke@435 1312 if (UseSSE >= 2) {
duke@435 1313 __ verify_FPU(0, "c2i transition should have clean FPU stack");
duke@435 1314 } else {
duke@435 1315 __ empty_FPU_stack();
duke@435 1316 }
duke@435 1317 #endif /* COMPILER2 */
duke@435 1318
duke@435 1319 // Compute the rbp, offset for any slots used after the jni call
duke@435 1320
duke@435 1321 int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1322 int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
duke@435 1323
duke@435 1324 // We use rdi as a thread pointer because it is callee save and
duke@435 1325 // if we load it once it is usable thru the entire wrapper
duke@435 1326 const Register thread = rdi;
duke@435 1327
duke@435 1328 // We use rsi as the oop handle for the receiver/klass
duke@435 1329 // It is callee save so it survives the call to native
duke@435 1330
duke@435 1331 const Register oop_handle_reg = rsi;
duke@435 1332
duke@435 1333 __ get_thread(thread);
duke@435 1334
duke@435 1335
duke@435 1336 //
duke@435 1337 // We immediately shuffle the arguments so that any vm call we have to
duke@435 1338 // make from here on out (sync slow path, jvmti, etc.) we will have
duke@435 1339 // captured the oops from our caller and have a valid oopMap for
duke@435 1340 // them.
duke@435 1341
duke@435 1342 // -----------------
duke@435 1343 // The Grand Shuffle
duke@435 1344 //
duke@435 1345 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
duke@435 1346 // and, if static, the class mirror instead of a receiver. This pretty much
duke@435 1347 // guarantees that register layout will not match (and x86 doesn't use reg
duke@435 1348 // parms though amd does). Since the native abi doesn't use register args
duke@435 1349 // and the java conventions does we don't have to worry about collisions.
duke@435 1350 // All of our moved are reg->stack or stack->stack.
duke@435 1351 // We ignore the extra arguments during the shuffle and handle them at the
duke@435 1352 // last moment. The shuffle is described by the two calling convention
duke@435 1353 // vectors we have in our possession. We simply walk the java vector to
duke@435 1354 // get the source locations and the c vector to get the destinations.
duke@435 1355
duke@435 1356 int c_arg = method->is_static() ? 2 : 1 ;
duke@435 1357
duke@435 1358 // Record rsp-based slot for receiver on stack for non-static methods
duke@435 1359 int receiver_offset = -1;
duke@435 1360
duke@435 1361 // This is a trick. We double the stack slots so we can claim
duke@435 1362 // the oops in the caller's frame. Since we are sure to have
duke@435 1363 // more args than the caller doubling is enough to make
duke@435 1364 // sure we can capture all the incoming oop args from the
duke@435 1365 // caller.
duke@435 1366 //
duke@435 1367 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
duke@435 1368
duke@435 1369 // Mark location of rbp,
duke@435 1370 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
duke@435 1371
duke@435 1372 // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
duke@435 1373 // Are free to temporaries if we have to do stack to steck moves.
duke@435 1374 // All inbound args are referenced based on rbp, and all outbound args via rsp.
duke@435 1375
duke@435 1376 for (i = 0; i < total_in_args ; i++, c_arg++ ) {
duke@435 1377 switch (in_sig_bt[i]) {
duke@435 1378 case T_ARRAY:
duke@435 1379 case T_OBJECT:
duke@435 1380 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
duke@435 1381 ((i == 0) && (!is_static)),
duke@435 1382 &receiver_offset);
duke@435 1383 break;
duke@435 1384 case T_VOID:
duke@435 1385 break;
duke@435 1386
duke@435 1387 case T_FLOAT:
duke@435 1388 float_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1389 break;
duke@435 1390
duke@435 1391 case T_DOUBLE:
duke@435 1392 assert( i + 1 < total_in_args &&
duke@435 1393 in_sig_bt[i + 1] == T_VOID &&
duke@435 1394 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
duke@435 1395 double_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1396 break;
duke@435 1397
duke@435 1398 case T_LONG :
duke@435 1399 long_move(masm, in_regs[i], out_regs[c_arg]);
duke@435 1400 break;
duke@435 1401
duke@435 1402 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
duke@435 1403
duke@435 1404 default:
duke@435 1405 simple_move32(masm, in_regs[i], out_regs[c_arg]);
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409 // Pre-load a static method's oop into rsi. Used both by locking code and
duke@435 1410 // the normal JNI call code.
duke@435 1411 if (method->is_static()) {
duke@435 1412
duke@435 1413 // load opp into a register
duke@435 1414 __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
duke@435 1415
duke@435 1416 // Now handlize the static class mirror it's known not-null.
never@739 1417 __ movptr(Address(rsp, klass_offset), oop_handle_reg);
duke@435 1418 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
duke@435 1419
duke@435 1420 // Now get the handle
never@739 1421 __ lea(oop_handle_reg, Address(rsp, klass_offset));
duke@435 1422 // store the klass handle as second argument
never@739 1423 __ movptr(Address(rsp, wordSize), oop_handle_reg);
duke@435 1424 }
duke@435 1425
duke@435 1426 // Change state to native (we save the return address in the thread, since it might not
duke@435 1427 // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
duke@435 1428 // points into the right code segment. It does not have to be the correct return pc.
duke@435 1429 // We use the same pc/oopMap repeatedly when we call out
duke@435 1430
duke@435 1431 intptr_t the_pc = (intptr_t) __ pc();
duke@435 1432 oop_maps->add_gc_map(the_pc - start, map);
duke@435 1433
duke@435 1434 __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
duke@435 1435
duke@435 1436
duke@435 1437 // We have all of the arguments setup at this point. We must not touch any register
duke@435 1438 // argument registers at this point (what if we save/restore them there are no oop?
duke@435 1439
duke@435 1440 {
duke@435 1441 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1442 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1443 __ call_VM_leaf(
duke@435 1444 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 1445 thread, rax);
duke@435 1446 }
duke@435 1447
dcubed@1045 1448 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 1449 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 1450 __ movoop(rax, JNIHandles::make_local(method()));
dcubed@1045 1451 __ call_VM_leaf(
dcubed@1045 1452 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 1453 thread, rax);
dcubed@1045 1454 }
dcubed@1045 1455
duke@435 1456 // These are register definitions we need for locking/unlocking
duke@435 1457 const Register swap_reg = rax; // Must use rax, for cmpxchg instruction
duke@435 1458 const Register obj_reg = rcx; // Will contain the oop
duke@435 1459 const Register lock_reg = rdx; // Address of compiler lock object (BasicLock)
duke@435 1460
duke@435 1461 Label slow_path_lock;
duke@435 1462 Label lock_done;
duke@435 1463
duke@435 1464 // Lock a synchronized method
duke@435 1465 if (method->is_synchronized()) {
duke@435 1466
duke@435 1467
duke@435 1468 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
duke@435 1469
duke@435 1470 // Get the handle (the 2nd argument)
never@739 1471 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1472
duke@435 1473 // Get address of the box
duke@435 1474
never@739 1475 __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
duke@435 1476
duke@435 1477 // Load the oop from the handle
never@739 1478 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1479
duke@435 1480 if (UseBiasedLocking) {
duke@435 1481 // Note that oop_handle_reg is trashed during this call
duke@435 1482 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
duke@435 1483 }
duke@435 1484
duke@435 1485 // Load immediate 1 into swap_reg %rax,
never@739 1486 __ movptr(swap_reg, 1);
duke@435 1487
duke@435 1488 // Load (object->mark() | 1) into swap_reg %rax,
never@739 1489 __ orptr(swap_reg, Address(obj_reg, 0));
duke@435 1490
duke@435 1491 // Save (object->mark() | 1) into BasicLock's displaced header
never@739 1492 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1493
duke@435 1494 if (os::is_MP()) {
duke@435 1495 __ lock();
duke@435 1496 }
duke@435 1497
duke@435 1498 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1499 // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1500 __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
duke@435 1501 __ jcc(Assembler::equal, lock_done);
duke@435 1502
duke@435 1503 // Test if the oopMark is an obvious stack pointer, i.e.,
duke@435 1504 // 1) (mark & 3) == 0, and
duke@435 1505 // 2) rsp <= mark < mark + os::pagesize()
duke@435 1506 // These 3 tests can be done by evaluating the following
duke@435 1507 // expression: ((mark - rsp) & (3 - os::vm_page_size())),
duke@435 1508 // assuming both stack pointer and pagesize have their
duke@435 1509 // least significant 2 bits clear.
duke@435 1510 // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
duke@435 1511
never@739 1512 __ subptr(swap_reg, rsp);
never@739 1513 __ andptr(swap_reg, 3 - os::vm_page_size());
duke@435 1514
duke@435 1515 // Save the test result, for recursive case, the result is zero
never@739 1516 __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
duke@435 1517 __ jcc(Assembler::notEqual, slow_path_lock);
duke@435 1518 // Slow path will re-enter here
duke@435 1519 __ bind(lock_done);
duke@435 1520
duke@435 1521 if (UseBiasedLocking) {
duke@435 1522 // Re-fetch oop_handle_reg as we trashed it above
never@739 1523 __ movptr(oop_handle_reg, Address(rsp, wordSize));
duke@435 1524 }
duke@435 1525 }
duke@435 1526
duke@435 1527
duke@435 1528 // Finally just about ready to make the JNI call
duke@435 1529
duke@435 1530
duke@435 1531 // get JNIEnv* which is first argument to native
duke@435 1532
never@739 1533 __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
never@739 1534 __ movptr(Address(rsp, 0), rdx);
duke@435 1535
duke@435 1536 // Now set thread in native
duke@435 1537 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
duke@435 1538
duke@435 1539 __ call(RuntimeAddress(method->native_function()));
duke@435 1540
duke@435 1541 // WARNING - on Windows Java Natives use pascal calling convention and pop the
duke@435 1542 // arguments off of the stack. We could just re-adjust the stack pointer here
duke@435 1543 // and continue to do SP relative addressing but we instead switch to FP
duke@435 1544 // relative addressing.
duke@435 1545
duke@435 1546 // Unpack native results.
duke@435 1547 switch (ret_type) {
duke@435 1548 case T_BOOLEAN: __ c2bool(rax); break;
never@739 1549 case T_CHAR : __ andptr(rax, 0xFFFF); break;
duke@435 1550 case T_BYTE : __ sign_extend_byte (rax); break;
duke@435 1551 case T_SHORT : __ sign_extend_short(rax); break;
duke@435 1552 case T_INT : /* nothing to do */ break;
duke@435 1553 case T_DOUBLE :
duke@435 1554 case T_FLOAT :
duke@435 1555 // Result is in st0 we'll save as needed
duke@435 1556 break;
duke@435 1557 case T_ARRAY: // Really a handle
duke@435 1558 case T_OBJECT: // Really a handle
duke@435 1559 break; // can't de-handlize until after safepoint check
duke@435 1560 case T_VOID: break;
duke@435 1561 case T_LONG: break;
duke@435 1562 default : ShouldNotReachHere();
duke@435 1563 }
duke@435 1564
duke@435 1565 // Switch thread to "native transition" state before reading the synchronization state.
duke@435 1566 // This additional state is necessary because reading and testing the synchronization
duke@435 1567 // state is not atomic w.r.t. GC, as this scenario demonstrates:
duke@435 1568 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
duke@435 1569 // VM thread changes sync state to synchronizing and suspends threads for GC.
duke@435 1570 // Thread A is resumed to finish this native method, but doesn't block here since it
duke@435 1571 // didn't see any synchronization is progress, and escapes.
duke@435 1572 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
duke@435 1573
duke@435 1574 if(os::is_MP()) {
duke@435 1575 if (UseMembar) {
never@739 1576 // Force this write out before the read below
never@739 1577 __ membar(Assembler::Membar_mask_bits(
never@739 1578 Assembler::LoadLoad | Assembler::LoadStore |
never@739 1579 Assembler::StoreLoad | Assembler::StoreStore));
duke@435 1580 } else {
duke@435 1581 // Write serialization page so VM thread can do a pseudo remote membar.
duke@435 1582 // We use the current thread pointer to calculate a thread specific
duke@435 1583 // offset to write to within the page. This minimizes bus traffic
duke@435 1584 // due to cache line collision.
duke@435 1585 __ serialize_memory(thread, rcx);
duke@435 1586 }
duke@435 1587 }
duke@435 1588
duke@435 1589 if (AlwaysRestoreFPU) {
duke@435 1590 // Make sure the control word is correct.
duke@435 1591 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1592 }
duke@435 1593
duke@435 1594 // check for safepoint operation in progress and/or pending suspend requests
duke@435 1595 { Label Continue;
duke@435 1596
duke@435 1597 __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
duke@435 1598 SafepointSynchronize::_not_synchronized);
duke@435 1599
duke@435 1600 Label L;
duke@435 1601 __ jcc(Assembler::notEqual, L);
duke@435 1602 __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
duke@435 1603 __ jcc(Assembler::equal, Continue);
duke@435 1604 __ bind(L);
duke@435 1605
duke@435 1606 // Don't use call_VM as it will see a possible pending exception and forward it
duke@435 1607 // and never return here preventing us from clearing _last_native_pc down below.
duke@435 1608 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
duke@435 1609 // preserved and correspond to the bcp/locals pointers. So we do a runtime call
duke@435 1610 // by hand.
duke@435 1611 //
duke@435 1612 save_native_result(masm, ret_type, stack_slots);
never@739 1613 __ push(thread);
duke@435 1614 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
duke@435 1615 JavaThread::check_special_condition_for_native_trans)));
duke@435 1616 __ increment(rsp, wordSize);
duke@435 1617 // Restore any method result value
duke@435 1618 restore_native_result(masm, ret_type, stack_slots);
duke@435 1619
duke@435 1620 __ bind(Continue);
duke@435 1621 }
duke@435 1622
duke@435 1623 // change thread state
duke@435 1624 __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
duke@435 1625
duke@435 1626 Label reguard;
duke@435 1627 Label reguard_done;
duke@435 1628 __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
duke@435 1629 __ jcc(Assembler::equal, reguard);
duke@435 1630
duke@435 1631 // slow path reguard re-enters here
duke@435 1632 __ bind(reguard_done);
duke@435 1633
duke@435 1634 // Handle possible exception (will unlock if necessary)
duke@435 1635
duke@435 1636 // native result if any is live
duke@435 1637
duke@435 1638 // Unlock
duke@435 1639 Label slow_path_unlock;
duke@435 1640 Label unlock_done;
duke@435 1641 if (method->is_synchronized()) {
duke@435 1642
duke@435 1643 Label done;
duke@435 1644
duke@435 1645 // Get locked oop from the handle we passed to jni
never@739 1646 __ movptr(obj_reg, Address(oop_handle_reg, 0));
duke@435 1647
duke@435 1648 if (UseBiasedLocking) {
duke@435 1649 __ biased_locking_exit(obj_reg, rbx, done);
duke@435 1650 }
duke@435 1651
duke@435 1652 // Simple recursive lock?
duke@435 1653
never@739 1654 __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
duke@435 1655 __ jcc(Assembler::equal, done);
duke@435 1656
duke@435 1657 // Must save rax, if if it is live now because cmpxchg must use it
duke@435 1658 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1659 save_native_result(masm, ret_type, stack_slots);
duke@435 1660 }
duke@435 1661
duke@435 1662 // get old displaced header
never@739 1663 __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
duke@435 1664
duke@435 1665 // get address of the stack lock
never@739 1666 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
duke@435 1667
duke@435 1668 // Atomic swap old header if oop still contains the stack lock
duke@435 1669 if (os::is_MP()) {
duke@435 1670 __ lock();
duke@435 1671 }
duke@435 1672
duke@435 1673 // src -> dest iff dest == rax, else rax, <- dest
duke@435 1674 // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
never@739 1675 __ cmpxchgptr(rbx, Address(obj_reg, 0));
duke@435 1676 __ jcc(Assembler::notEqual, slow_path_unlock);
duke@435 1677
duke@435 1678 // slow path re-enters here
duke@435 1679 __ bind(unlock_done);
duke@435 1680 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
duke@435 1681 restore_native_result(masm, ret_type, stack_slots);
duke@435 1682 }
duke@435 1683
duke@435 1684 __ bind(done);
duke@435 1685
duke@435 1686 }
duke@435 1687
duke@435 1688 {
duke@435 1689 SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
duke@435 1690 // Tell dtrace about this method exit
duke@435 1691 save_native_result(masm, ret_type, stack_slots);
duke@435 1692 __ movoop(rax, JNIHandles::make_local(method()));
duke@435 1693 __ call_VM_leaf(
duke@435 1694 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 1695 thread, rax);
duke@435 1696 restore_native_result(masm, ret_type, stack_slots);
duke@435 1697 }
duke@435 1698
duke@435 1699 // We can finally stop using that last_Java_frame we setup ages ago
duke@435 1700
duke@435 1701 __ reset_last_Java_frame(thread, false, true);
duke@435 1702
duke@435 1703 // Unpack oop result
duke@435 1704 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
duke@435 1705 Label L;
never@739 1706 __ cmpptr(rax, (int32_t)NULL_WORD);
duke@435 1707 __ jcc(Assembler::equal, L);
never@739 1708 __ movptr(rax, Address(rax, 0));
duke@435 1709 __ bind(L);
duke@435 1710 __ verify_oop(rax);
duke@435 1711 }
duke@435 1712
duke@435 1713 // reset handle block
never@739 1714 __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
never@739 1715
xlu@947 1716 __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
duke@435 1717
duke@435 1718 // Any exception pending?
never@739 1719 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1720 __ jcc(Assembler::notEqual, exception_pending);
duke@435 1721
duke@435 1722
duke@435 1723 // no exception, we're almost done
duke@435 1724
duke@435 1725 // check that only result value is on FPU stack
duke@435 1726 __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
duke@435 1727
duke@435 1728 // Fixup floating pointer results so that result looks like a return from a compiled method
duke@435 1729 if (ret_type == T_FLOAT) {
duke@435 1730 if (UseSSE >= 1) {
duke@435 1731 // Pop st0 and store as float and reload into xmm register
duke@435 1732 __ fstp_s(Address(rbp, -4));
duke@435 1733 __ movflt(xmm0, Address(rbp, -4));
duke@435 1734 }
duke@435 1735 } else if (ret_type == T_DOUBLE) {
duke@435 1736 if (UseSSE >= 2) {
duke@435 1737 // Pop st0 and store as double and reload into xmm register
duke@435 1738 __ fstp_d(Address(rbp, -8));
duke@435 1739 __ movdbl(xmm0, Address(rbp, -8));
duke@435 1740 }
duke@435 1741 }
duke@435 1742
duke@435 1743 // Return
duke@435 1744
duke@435 1745 __ leave();
duke@435 1746 __ ret(0);
duke@435 1747
duke@435 1748 // Unexpected paths are out of line and go here
duke@435 1749
duke@435 1750 // Slow path locking & unlocking
duke@435 1751 if (method->is_synchronized()) {
duke@435 1752
duke@435 1753 // BEGIN Slow path lock
duke@435 1754
duke@435 1755 __ bind(slow_path_lock);
duke@435 1756
duke@435 1757 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
duke@435 1758 // args are (oop obj, BasicLock* lock, JavaThread* thread)
never@739 1759 __ push(thread);
never@739 1760 __ push(lock_reg);
never@739 1761 __ push(obj_reg);
duke@435 1762 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
never@739 1763 __ addptr(rsp, 3*wordSize);
duke@435 1764
duke@435 1765 #ifdef ASSERT
duke@435 1766 { Label L;
never@739 1767 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
duke@435 1768 __ jcc(Assembler::equal, L);
duke@435 1769 __ stop("no pending exception allowed on exit from monitorenter");
duke@435 1770 __ bind(L);
duke@435 1771 }
duke@435 1772 #endif
duke@435 1773 __ jmp(lock_done);
duke@435 1774
duke@435 1775 // END Slow path lock
duke@435 1776
duke@435 1777 // BEGIN Slow path unlock
duke@435 1778 __ bind(slow_path_unlock);
duke@435 1779
duke@435 1780 // Slow path unlock
duke@435 1781
duke@435 1782 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1783 save_native_result(masm, ret_type, stack_slots);
duke@435 1784 }
duke@435 1785 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
duke@435 1786
never@739 1787 __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
xlu@947 1788 __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
duke@435 1789
duke@435 1790
duke@435 1791 // should be a peal
duke@435 1792 // +wordSize because of the push above
never@739 1793 __ lea(rax, Address(rbp, lock_slot_rbp_offset));
never@739 1794 __ push(rax);
never@739 1795
never@739 1796 __ push(obj_reg);
duke@435 1797 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
never@739 1798 __ addptr(rsp, 2*wordSize);
duke@435 1799 #ifdef ASSERT
duke@435 1800 {
duke@435 1801 Label L;
never@739 1802 __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
duke@435 1803 __ jcc(Assembler::equal, L);
duke@435 1804 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
duke@435 1805 __ bind(L);
duke@435 1806 }
duke@435 1807 #endif /* ASSERT */
duke@435 1808
never@739 1809 __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
duke@435 1810
duke@435 1811 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
duke@435 1812 restore_native_result(masm, ret_type, stack_slots);
duke@435 1813 }
duke@435 1814 __ jmp(unlock_done);
duke@435 1815 // END Slow path unlock
duke@435 1816
duke@435 1817 }
duke@435 1818
duke@435 1819 // SLOW PATH Reguard the stack if needed
duke@435 1820
duke@435 1821 __ bind(reguard);
duke@435 1822 save_native_result(masm, ret_type, stack_slots);
duke@435 1823 {
duke@435 1824 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
duke@435 1825 }
duke@435 1826 restore_native_result(masm, ret_type, stack_slots);
duke@435 1827 __ jmp(reguard_done);
duke@435 1828
duke@435 1829
duke@435 1830 // BEGIN EXCEPTION PROCESSING
duke@435 1831
duke@435 1832 // Forward the exception
duke@435 1833 __ bind(exception_pending);
duke@435 1834
duke@435 1835 // remove possible return value from FPU register stack
duke@435 1836 __ empty_FPU_stack();
duke@435 1837
duke@435 1838 // pop our frame
duke@435 1839 __ leave();
duke@435 1840 // and forward the exception
duke@435 1841 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 1842
duke@435 1843 __ flush();
duke@435 1844
duke@435 1845 nmethod *nm = nmethod::new_native_nmethod(method,
twisti@2687 1846 compile_id,
duke@435 1847 masm->code(),
duke@435 1848 vep_offset,
duke@435 1849 frame_complete,
duke@435 1850 stack_slots / VMRegImpl::slots_per_word,
duke@435 1851 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
duke@435 1852 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
duke@435 1853 oop_maps);
duke@435 1854 return nm;
duke@435 1855
duke@435 1856 }
duke@435 1857
kamg@551 1858 #ifdef HAVE_DTRACE_H
kamg@551 1859 // ---------------------------------------------------------------------------
kamg@551 1860 // Generate a dtrace nmethod for a given signature. The method takes arguments
kamg@551 1861 // in the Java compiled code convention, marshals them to the native
kamg@551 1862 // abi and then leaves nops at the position you would expect to call a native
kamg@551 1863 // function. When the probe is enabled the nops are replaced with a trap
kamg@551 1864 // instruction that dtrace inserts and the trace will cause a notification
kamg@551 1865 // to dtrace.
kamg@551 1866 //
kamg@551 1867 // The probes are only able to take primitive types and java/lang/String as
kamg@551 1868 // arguments. No other java types are allowed. Strings are converted to utf8
kamg@551 1869 // strings so that from dtrace point of view java strings are converted to C
kamg@551 1870 // strings. There is an arbitrary fixed limit on the total space that a method
kamg@551 1871 // can use for converting the strings. (256 chars per string in the signature).
kamg@551 1872 // So any java string larger then this is truncated.
kamg@551 1873
kamg@551 1874 nmethod *SharedRuntime::generate_dtrace_nmethod(
kamg@551 1875 MacroAssembler *masm, methodHandle method) {
kamg@551 1876
kamg@551 1877 // generate_dtrace_nmethod is guarded by a mutex so we are sure to
kamg@551 1878 // be single threaded in this method.
kamg@551 1879 assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
kamg@551 1880
kamg@551 1881 // Fill in the signature array, for the calling-convention call.
kamg@551 1882 int total_args_passed = method->size_of_parameters();
kamg@551 1883
kamg@551 1884 BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
kamg@551 1885 VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kamg@551 1886
kamg@551 1887 // The signature we are going to use for the trap that dtrace will see
kamg@551 1888 // java/lang/String is converted. We drop "this" and any other object
kamg@551 1889 // is converted to NULL. (A one-slot java/lang/Long object reference
kamg@551 1890 // is converted to a two-slot long, which is why we double the allocation).
kamg@551 1891 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
kamg@551 1892 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
kamg@551 1893
kamg@551 1894 int i=0;
kamg@551 1895 int total_strings = 0;
kamg@551 1896 int first_arg_to_pass = 0;
kamg@551 1897 int total_c_args = 0;
kamg@551 1898
kamg@551 1899 if( !method->is_static() ) { // Pass in receiver first
kamg@551 1900 in_sig_bt[i++] = T_OBJECT;
kamg@551 1901 first_arg_to_pass = 1;
kamg@551 1902 }
kamg@551 1903
kamg@551 1904 // We need to convert the java args to where a native (non-jni) function
kamg@551 1905 // would expect them. To figure out where they go we convert the java
kamg@551 1906 // signature to a C signature.
kamg@551 1907
kamg@551 1908 SignatureStream ss(method->signature());
kamg@551 1909 for ( ; !ss.at_return_type(); ss.next()) {
kamg@551 1910 BasicType bt = ss.type();
kamg@551 1911 in_sig_bt[i++] = bt; // Collect remaining bits of signature
kamg@551 1912 out_sig_bt[total_c_args++] = bt;
kamg@551 1913 if( bt == T_OBJECT) {
coleenp@2497 1914 Symbol* s = ss.as_symbol_or_null(); // symbol is created
kamg@551 1915 if (s == vmSymbols::java_lang_String()) {
kamg@551 1916 total_strings++;
kamg@551 1917 out_sig_bt[total_c_args-1] = T_ADDRESS;
kamg@551 1918 } else if (s == vmSymbols::java_lang_Boolean() ||
kamg@551 1919 s == vmSymbols::java_lang_Character() ||
kamg@551 1920 s == vmSymbols::java_lang_Byte() ||
kamg@551 1921 s == vmSymbols::java_lang_Short() ||
kamg@551 1922 s == vmSymbols::java_lang_Integer() ||
kamg@551 1923 s == vmSymbols::java_lang_Float()) {
kamg@551 1924 out_sig_bt[total_c_args-1] = T_INT;
kamg@551 1925 } else if (s == vmSymbols::java_lang_Long() ||
kamg@551 1926 s == vmSymbols::java_lang_Double()) {
kamg@551 1927 out_sig_bt[total_c_args-1] = T_LONG;
kamg@551 1928 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 1929 }
kamg@551 1930 } else if ( bt == T_LONG || bt == T_DOUBLE ) {
kamg@551 1931 in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kamg@551 1932 out_sig_bt[total_c_args++] = T_VOID;
kamg@551 1933 }
kamg@551 1934 }
kamg@551 1935
kamg@551 1936 assert(i==total_args_passed, "validly parsed signature");
kamg@551 1937
kamg@551 1938 // Now get the compiled-Java layout as input arguments
kamg@551 1939 int comp_args_on_stack;
kamg@551 1940 comp_args_on_stack = SharedRuntime::java_calling_convention(
kamg@551 1941 in_sig_bt, in_regs, total_args_passed, false);
kamg@551 1942
kamg@551 1943 // Now figure out where the args must be stored and how much stack space
kamg@551 1944 // they require (neglecting out_preserve_stack_slots).
kamg@551 1945
kamg@551 1946 int out_arg_slots;
kamg@551 1947 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
kamg@551 1948
kamg@551 1949 // Calculate the total number of stack slots we will need.
kamg@551 1950
kamg@551 1951 // First count the abi requirement plus all of the outgoing args
kamg@551 1952 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
kamg@551 1953
kamg@551 1954 // Now space for the string(s) we must convert
kamg@551 1955
kamg@551 1956 int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1);
kamg@551 1957 for (i = 0; i < total_strings ; i++) {
kamg@551 1958 string_locs[i] = stack_slots;
kamg@551 1959 stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
kamg@551 1960 }
kamg@551 1961
kamg@551 1962 // + 2 for return address (which we own) and saved rbp,
kamg@551 1963
kamg@551 1964 stack_slots += 2;
kamg@551 1965
kamg@551 1966 // Ok The space we have allocated will look like:
kamg@551 1967 //
kamg@551 1968 //
kamg@551 1969 // FP-> | |
kamg@551 1970 // |---------------------|
kamg@551 1971 // | string[n] |
kamg@551 1972 // |---------------------| <- string_locs[n]
kamg@551 1973 // | string[n-1] |
kamg@551 1974 // |---------------------| <- string_locs[n-1]
kamg@551 1975 // | ... |
kamg@551 1976 // | ... |
kamg@551 1977 // |---------------------| <- string_locs[1]
kamg@551 1978 // | string[0] |
kamg@551 1979 // |---------------------| <- string_locs[0]
kamg@551 1980 // | outbound memory |
kamg@551 1981 // | based arguments |
kamg@551 1982 // | |
kamg@551 1983 // |---------------------|
kamg@551 1984 // | |
kamg@551 1985 // SP-> | out_preserved_slots |
kamg@551 1986 //
kamg@551 1987 //
kamg@551 1988
kamg@551 1989 // Now compute actual number of stack words we need rounding to make
kamg@551 1990 // stack properly aligned.
kamg@551 1991 stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
kamg@551 1992
kamg@551 1993 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
kamg@551 1994
kamg@551 1995 intptr_t start = (intptr_t)__ pc();
kamg@551 1996
kamg@551 1997 // First thing make an ic check to see if we should even be here
kamg@551 1998
kamg@551 1999 // We are free to use all registers as temps without saving them and
kamg@551 2000 // restoring them except rbp. rbp, is the only callee save register
kamg@551 2001 // as far as the interpreter and the compiler(s) are concerned.
kamg@551 2002
kamg@551 2003 const Register ic_reg = rax;
kamg@551 2004 const Register receiver = rcx;
kamg@551 2005 Label hit;
kamg@551 2006 Label exception_pending;
kamg@551 2007
kamg@551 2008
kamg@551 2009 __ verify_oop(receiver);
kamg@551 2010 __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
kamg@551 2011 __ jcc(Assembler::equal, hit);
kamg@551 2012
kamg@551 2013 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
kamg@551 2014
kamg@551 2015 // verified entry must be aligned for code patching.
kamg@551 2016 // and the first 5 bytes must be in the same cache line
kamg@551 2017 // if we align at 8 then we will be sure 5 bytes are in the same line
kamg@551 2018 __ align(8);
kamg@551 2019
kamg@551 2020 __ bind(hit);
kamg@551 2021
kamg@551 2022 int vep_offset = ((intptr_t)__ pc()) - start;
kamg@551 2023
kamg@551 2024
kamg@551 2025 // The instruction at the verified entry point must be 5 bytes or longer
kamg@551 2026 // because it can be patched on the fly by make_non_entrant. The stack bang
kamg@551 2027 // instruction fits that requirement.
kamg@551 2028
kamg@551 2029 // Generate stack overflow check
kamg@551 2030
kamg@551 2031
kamg@551 2032 if (UseStackBanging) {
kamg@551 2033 if (stack_size <= StackShadowPages*os::vm_page_size()) {
kamg@551 2034 __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
kamg@551 2035 } else {
kamg@551 2036 __ movl(rax, stack_size);
kamg@551 2037 __ bang_stack_size(rax, rbx);
kamg@551 2038 }
kamg@551 2039 } else {
kamg@551 2040 // need a 5 byte instruction to allow MT safe patching to non-entrant
kamg@551 2041 __ fat_nop();
kamg@551 2042 }
kamg@551 2043
kamg@551 2044 assert(((int)__ pc() - start - vep_offset) >= 5,
kamg@551 2045 "valid size for make_non_entrant");
kamg@551 2046
kamg@551 2047 // Generate a new frame for the wrapper.
kamg@551 2048 __ enter();
kamg@551 2049
kamg@551 2050 // -2 because return address is already present and so is saved rbp,
kamg@551 2051 if (stack_size - 2*wordSize != 0) {
kamg@551 2052 __ subl(rsp, stack_size - 2*wordSize);
kamg@551 2053 }
kamg@551 2054
kamg@551 2055 // Frame is now completed as far a size and linkage.
kamg@551 2056
kamg@551 2057 int frame_complete = ((intptr_t)__ pc()) - start;
kamg@551 2058
kamg@551 2059 // First thing we do store all the args as if we are doing the call.
kamg@551 2060 // Since the C calling convention is stack based that ensures that
kamg@551 2061 // all the Java register args are stored before we need to convert any
kamg@551 2062 // string we might have.
kamg@551 2063
kamg@551 2064 int sid = 0;
kamg@551 2065 int c_arg, j_arg;
kamg@551 2066 int string_reg = 0;
kamg@551 2067
kamg@551 2068 for (j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2069 j_arg < total_args_passed ; j_arg++, c_arg++ ) {
kamg@551 2070
kamg@551 2071 VMRegPair src = in_regs[j_arg];
kamg@551 2072 VMRegPair dst = out_regs[c_arg];
kamg@551 2073 assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
kamg@551 2074 "stack based abi assumed");
kamg@551 2075
kamg@551 2076 switch (in_sig_bt[j_arg]) {
kamg@551 2077
kamg@551 2078 case T_ARRAY:
kamg@551 2079 case T_OBJECT:
kamg@551 2080 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2081 // Any register based arg for a java string after the first
kamg@551 2082 // will be destroyed by the call to get_utf so we store
kamg@551 2083 // the original value in the location the utf string address
kamg@551 2084 // will eventually be stored.
kamg@551 2085 if (src.first()->is_reg()) {
kamg@551 2086 if (string_reg++ != 0) {
kamg@551 2087 simple_move32(masm, src, dst);
kamg@551 2088 }
kamg@551 2089 }
kamg@551 2090 } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
kamg@551 2091 // need to unbox a one-word value
kamg@551 2092 Register in_reg = rax;
kamg@551 2093 if ( src.first()->is_reg() ) {
kamg@551 2094 in_reg = src.first()->as_Register();
kamg@551 2095 } else {
kamg@551 2096 simple_move32(masm, src, in_reg->as_VMReg());
kamg@551 2097 }
kamg@551 2098 Label skipUnbox;
kamg@551 2099 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2100 if ( out_sig_bt[c_arg] == T_LONG ) {
kamg@551 2101 __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
kamg@551 2102 }
kamg@551 2103 __ testl(in_reg, in_reg);
kamg@551 2104 __ jcc(Assembler::zero, skipUnbox);
kamg@551 2105 assert(dst.first()->is_stack() &&
kamg@551 2106 (!dst.second()->is_valid() || dst.second()->is_stack()),
kamg@551 2107 "value(s) must go into stack slots");
kvn@600 2108
kvn@600 2109 BasicType bt = out_sig_bt[c_arg];
kvn@600 2110 int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
kvn@600 2111 if ( bt == T_LONG ) {
kamg@551 2112 __ movl(rbx, Address(in_reg,
kamg@551 2113 box_offset + VMRegImpl::stack_slot_size));
kamg@551 2114 __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
kamg@551 2115 }
kamg@551 2116 __ movl(in_reg, Address(in_reg, box_offset));
kamg@551 2117 __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
kamg@551 2118 __ bind(skipUnbox);
kamg@551 2119 } else {
kamg@551 2120 // Convert the arg to NULL
kamg@551 2121 __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
kamg@551 2122 }
kamg@551 2123 if (out_sig_bt[c_arg] == T_LONG) {
kamg@551 2124 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2125 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2126 }
kamg@551 2127 break;
kamg@551 2128
kamg@551 2129 case T_VOID:
kamg@551 2130 break;
kamg@551 2131
kamg@551 2132 case T_FLOAT:
kamg@551 2133 float_move(masm, src, dst);
kamg@551 2134 break;
kamg@551 2135
kamg@551 2136 case T_DOUBLE:
kamg@551 2137 assert( j_arg + 1 < total_args_passed &&
kamg@551 2138 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
kamg@551 2139 double_move(masm, src, dst);
kamg@551 2140 break;
kamg@551 2141
kamg@551 2142 case T_LONG :
kamg@551 2143 long_move(masm, src, dst);
kamg@551 2144 break;
kamg@551 2145
kamg@551 2146 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
kamg@551 2147
kamg@551 2148 default:
kamg@551 2149 simple_move32(masm, src, dst);
kamg@551 2150 }
kamg@551 2151 }
kamg@551 2152
kamg@551 2153 // Now we must convert any string we have to utf8
kamg@551 2154 //
kamg@551 2155
kamg@551 2156 for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
kamg@551 2157 sid < total_strings ; j_arg++, c_arg++ ) {
kamg@551 2158
kamg@551 2159 if (out_sig_bt[c_arg] == T_ADDRESS) {
kamg@551 2160
kamg@551 2161 Address utf8_addr = Address(
kamg@551 2162 rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
kamg@551 2163 __ leal(rax, utf8_addr);
kamg@551 2164
kamg@551 2165 // The first string we find might still be in the original java arg
kamg@551 2166 // register
kamg@551 2167 VMReg orig_loc = in_regs[j_arg].first();
kamg@551 2168 Register string_oop;
kamg@551 2169
kamg@551 2170 // This is where the argument will eventually reside
kamg@551 2171 Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
kamg@551 2172
kamg@551 2173 if (sid == 1 && orig_loc->is_reg()) {
kamg@551 2174 string_oop = orig_loc->as_Register();
kamg@551 2175 assert(string_oop != rax, "smashed arg");
kamg@551 2176 } else {
kamg@551 2177
kamg@551 2178 if (orig_loc->is_reg()) {
kamg@551 2179 // Get the copy of the jls object
kamg@551 2180 __ movl(rcx, dest);
kamg@551 2181 } else {
kamg@551 2182 // arg is still in the original location
kamg@551 2183 __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
kamg@551 2184 }
kamg@551 2185 string_oop = rcx;
kamg@551 2186
kamg@551 2187 }
kamg@551 2188 Label nullString;
kamg@551 2189 __ movl(dest, NULL_WORD);
kamg@551 2190 __ testl(string_oop, string_oop);
kamg@551 2191 __ jcc(Assembler::zero, nullString);
kamg@551 2192
kamg@551 2193 // Now we can store the address of the utf string as the argument
kamg@551 2194 __ movl(dest, rax);
kamg@551 2195
kamg@551 2196 // And do the conversion
kamg@551 2197 __ call_VM_leaf(CAST_FROM_FN_PTR(
kamg@551 2198 address, SharedRuntime::get_utf), string_oop, rax);
kamg@551 2199 __ bind(nullString);
kamg@551 2200 }
kamg@551 2201
kamg@551 2202 if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
kamg@551 2203 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
kamg@551 2204 ++c_arg; // Move over the T_VOID To keep the loop indices in sync
kamg@551 2205 }
kamg@551 2206 }
kamg@551 2207
kamg@551 2208
kamg@551 2209 // Ok now we are done. Need to place the nop that dtrace wants in order to
kamg@551 2210 // patch in the trap
kamg@551 2211
kamg@551 2212 int patch_offset = ((intptr_t)__ pc()) - start;
kamg@551 2213
kamg@551 2214 __ nop();
kamg@551 2215
kamg@551 2216
kamg@551 2217 // Return
kamg@551 2218
kamg@551 2219 __ leave();
kamg@551 2220 __ ret(0);
kamg@551 2221
kamg@551 2222 __ flush();
kamg@551 2223
kamg@551 2224 nmethod *nm = nmethod::new_dtrace_nmethod(
kamg@551 2225 method, masm->code(), vep_offset, patch_offset, frame_complete,
kamg@551 2226 stack_slots / VMRegImpl::slots_per_word);
kamg@551 2227 return nm;
kamg@551 2228
kamg@551 2229 }
kamg@551 2230
kamg@551 2231 #endif // HAVE_DTRACE_H
kamg@551 2232
duke@435 2233 // this function returns the adjust size (in number of words) to a c2i adapter
duke@435 2234 // activation for use during deoptimization
duke@435 2235 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
twisti@1861 2236 return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
duke@435 2237 }
duke@435 2238
duke@435 2239
duke@435 2240 uint SharedRuntime::out_preserve_stack_slots() {
duke@435 2241 return 0;
duke@435 2242 }
duke@435 2243
duke@435 2244
duke@435 2245 //------------------------------generate_deopt_blob----------------------------
duke@435 2246 void SharedRuntime::generate_deopt_blob() {
duke@435 2247 // allocate space for the code
duke@435 2248 ResourceMark rm;
duke@435 2249 // setup code generation tools
duke@435 2250 CodeBuffer buffer("deopt_blob", 1024, 1024);
duke@435 2251 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2252 int frame_size_in_words;
duke@435 2253 OopMap* map = NULL;
duke@435 2254 // Account for the extra args we place on the stack
duke@435 2255 // by the time we call fetch_unroll_info
duke@435 2256 const int additional_words = 2; // deopt kind, thread
duke@435 2257
duke@435 2258 OopMapSet *oop_maps = new OopMapSet();
duke@435 2259
duke@435 2260 // -------------
duke@435 2261 // This code enters when returning to a de-optimized nmethod. A return
duke@435 2262 // address has been pushed on the the stack, and return values are in
duke@435 2263 // registers.
duke@435 2264 // If we are doing a normal deopt then we were called from the patched
duke@435 2265 // nmethod from the point we returned to the nmethod. So the return
duke@435 2266 // address on the stack is wrong by NativeCall::instruction_size
duke@435 2267 // We will adjust the value to it looks like we have the original return
duke@435 2268 // address on the stack (like when we eagerly deoptimized).
duke@435 2269 // In the case of an exception pending with deoptimized then we enter
duke@435 2270 // with a return address on the stack that points after the call we patched
duke@435 2271 // into the exception handler. We have the following register state:
duke@435 2272 // rax,: exception
duke@435 2273 // rbx,: exception handler
duke@435 2274 // rdx: throwing pc
duke@435 2275 // So in this case we simply jam rdx into the useless return address and
duke@435 2276 // the stack looks just like we want.
duke@435 2277 //
duke@435 2278 // At this point we need to de-opt. We save the argument return
duke@435 2279 // registers. We call the first C routine, fetch_unroll_info(). This
duke@435 2280 // routine captures the return values and returns a structure which
duke@435 2281 // describes the current frame size and the sizes of all replacement frames.
duke@435 2282 // The current frame is compiled code and may contain many inlined
duke@435 2283 // functions, each with their own JVM state. We pop the current frame, then
duke@435 2284 // push all the new frames. Then we call the C routine unpack_frames() to
duke@435 2285 // populate these frames. Finally unpack_frames() returns us the new target
duke@435 2286 // address. Notice that callee-save registers are BLOWN here; they have
duke@435 2287 // already been captured in the vframeArray at the time the return PC was
duke@435 2288 // patched.
duke@435 2289 address start = __ pc();
duke@435 2290 Label cont;
duke@435 2291
duke@435 2292 // Prolog for non exception case!
duke@435 2293
duke@435 2294 // Save everything in sight.
duke@435 2295
cfang@1361 2296 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2297 // Normal deoptimization
never@739 2298 __ push(Deoptimization::Unpack_deopt);
duke@435 2299 __ jmp(cont);
duke@435 2300
duke@435 2301 int reexecute_offset = __ pc() - start;
duke@435 2302
duke@435 2303 // Reexecute case
duke@435 2304 // return address is the pc describes what bci to do re-execute at
duke@435 2305
duke@435 2306 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2307 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2308
never@739 2309 __ push(Deoptimization::Unpack_reexecute);
duke@435 2310 __ jmp(cont);
duke@435 2311
duke@435 2312 int exception_offset = __ pc() - start;
duke@435 2313
duke@435 2314 // Prolog for exception case
duke@435 2315
duke@435 2316 // all registers are dead at this entry point, except for rax, and
duke@435 2317 // rdx which contain the exception oop and exception pc
duke@435 2318 // respectively. Set them in TLS and fall thru to the
duke@435 2319 // unpack_with_exception_in_tls entry point.
duke@435 2320
duke@435 2321 __ get_thread(rdi);
never@739 2322 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
never@739 2323 __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
duke@435 2324
duke@435 2325 int exception_in_tls_offset = __ pc() - start;
duke@435 2326
duke@435 2327 // new implementation because exception oop is now passed in JavaThread
duke@435 2328
duke@435 2329 // Prolog for exception case
duke@435 2330 // All registers must be preserved because they might be used by LinearScan
duke@435 2331 // Exceptiop oop and throwing PC are passed in JavaThread
duke@435 2332 // tos: stack at point of call to method that threw the exception (i.e. only
duke@435 2333 // args are on the stack, no return address)
duke@435 2334
duke@435 2335 // make room on stack for the return address
duke@435 2336 // It will be patched later with the throwing pc. The correct value is not
duke@435 2337 // available now because loading it from memory would destroy registers.
never@739 2338 __ push(0);
duke@435 2339
duke@435 2340 // Save everything in sight.
duke@435 2341
duke@435 2342 // No need to update map as each call to save_live_registers will produce identical oopmap
cfang@1361 2343 (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2344
duke@435 2345 // Now it is safe to overwrite any register
duke@435 2346
duke@435 2347 // store the correct deoptimization type
never@739 2348 __ push(Deoptimization::Unpack_exception);
duke@435 2349
duke@435 2350 // load throwing pc from JavaThread and patch it as the return address
duke@435 2351 // of the current frame. Then clear the field in JavaThread
duke@435 2352 __ get_thread(rdi);
never@739 2353 __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
never@739 2354 __ movptr(Address(rbp, wordSize), rdx);
xlu@947 2355 __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2356
duke@435 2357 #ifdef ASSERT
duke@435 2358 // verify that there is really an exception oop in JavaThread
never@739 2359 __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
duke@435 2360 __ verify_oop(rax);
duke@435 2361
duke@435 2362 // verify that there is no pending exception
duke@435 2363 Label no_pending_exception;
never@739 2364 __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
never@739 2365 __ testptr(rax, rax);
duke@435 2366 __ jcc(Assembler::zero, no_pending_exception);
duke@435 2367 __ stop("must not have pending exception here");
duke@435 2368 __ bind(no_pending_exception);
duke@435 2369 #endif
duke@435 2370
duke@435 2371 __ bind(cont);
duke@435 2372
duke@435 2373 // Compiled code leaves the floating point stack dirty, empty it.
duke@435 2374 __ empty_FPU_stack();
duke@435 2375
duke@435 2376
duke@435 2377 // Call C code. Need thread and this frame, but NOT official VM entry
duke@435 2378 // crud. We cannot block on this call, no GC can happen.
duke@435 2379 __ get_thread(rcx);
never@739 2380 __ push(rcx);
duke@435 2381 // fetch_unroll_info needs to call last_java_frame()
duke@435 2382 __ set_last_Java_frame(rcx, noreg, noreg, NULL);
duke@435 2383
duke@435 2384 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
duke@435 2385
duke@435 2386 // Need to have an oopmap that tells fetch_unroll_info where to
duke@435 2387 // find any register it might need.
duke@435 2388
duke@435 2389 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2390
duke@435 2391 // Discard arg to fetch_unroll_info
never@739 2392 __ pop(rcx);
duke@435 2393
duke@435 2394 __ get_thread(rcx);
duke@435 2395 __ reset_last_Java_frame(rcx, false, false);
duke@435 2396
duke@435 2397 // Load UnrollBlock into EDI
never@739 2398 __ mov(rdi, rax);
duke@435 2399
duke@435 2400 // Move the unpack kind to a safe place in the UnrollBlock because
duke@435 2401 // we are very short of registers
duke@435 2402
duke@435 2403 Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
duke@435 2404 // retrieve the deopt kind from where we left it.
never@739 2405 __ pop(rax);
duke@435 2406 __ movl(unpack_kind, rax); // save the unpack_kind value
duke@435 2407
duke@435 2408 Label noException;
duke@435 2409 __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending?
duke@435 2410 __ jcc(Assembler::notEqual, noException);
never@739 2411 __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
never@739 2412 __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
xlu@947 2413 __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
xlu@947 2414 __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
duke@435 2415
duke@435 2416 __ verify_oop(rax);
duke@435 2417
duke@435 2418 // Overwrite the result registers with the exception results.
never@739 2419 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2420 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2421
duke@435 2422 __ bind(noException);
duke@435 2423
duke@435 2424 // Stack is back to only having register save data on the stack.
duke@435 2425 // Now restore the result registers. Everything else is either dead or captured
duke@435 2426 // in the vframeArray.
duke@435 2427
duke@435 2428 RegisterSaver::restore_result_registers(masm);
duke@435 2429
cfang@1361 2430 // Non standard control word may be leaked out through a safepoint blob, and we can
cfang@1361 2431 // deopt at a poll point with the non standard control word. However, we should make
cfang@1361 2432 // sure the control word is correct after restore_result_registers.
cfang@1361 2433 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
cfang@1361 2434
duke@435 2435 // All of the register save area has been popped of the stack. Only the
duke@435 2436 // return address remains.
duke@435 2437
duke@435 2438 // Pop all the frames we must move/replace.
duke@435 2439 //
duke@435 2440 // Frame picture (youngest to oldest)
duke@435 2441 // 1: self-frame (no frame link)
duke@435 2442 // 2: deopting frame (no frame link)
duke@435 2443 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2444 //
duke@435 2445 // Note: by leaving the return address of self-frame on the stack
duke@435 2446 // and using the size of frame 2 to adjust the stack
duke@435 2447 // when we are done the return to frame 3 will still be on the stack.
duke@435 2448
duke@435 2449 // Pop deoptimized frame
never@739 2450 __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
duke@435 2451
duke@435 2452 // sp should be pointing at the return address to the caller (3)
duke@435 2453
duke@435 2454 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2455 if (UseStackBanging) {
duke@435 2456 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2457 __ bang_stack_size(rbx, rcx);
duke@435 2458 }
duke@435 2459
duke@435 2460 // Load array of frame pcs into ECX
never@739 2461 __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
never@739 2462
never@739 2463 __ pop(rsi); // trash the old pc
duke@435 2464
duke@435 2465 // Load array of frame sizes into ESI
never@739 2466 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2467
duke@435 2468 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2469
duke@435 2470 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2471 __ movl(counter, rbx);
duke@435 2472
duke@435 2473 // Pick up the initial fp we should save
bdelsart@3130 2474 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 2475
duke@435 2476 // Now adjust the caller's stack to make up for the extra locals
duke@435 2477 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2478 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2479 // value and not the "real" sp value.
duke@435 2480
duke@435 2481 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2482 __ movptr(sp_temp, rsp);
never@739 2483 __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2484 __ subptr(rsp, rbx);
duke@435 2485
duke@435 2486 // Push interpreter frames in a loop
duke@435 2487 Label loop;
duke@435 2488 __ bind(loop);
never@739 2489 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2490 #ifdef CC_INTERP
never@739 2491 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2492 #ifdef ASSERT
never@739 2493 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2494 __ push(0xDEADDEAD);
duke@435 2495 #else /* ASSERT */
never@739 2496 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2497 #endif /* ASSERT */
duke@435 2498 #else /* CC_INTERP */
never@739 2499 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2500 #endif /* CC_INTERP */
never@739 2501 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2502 __ enter(); // save old & set new rbp,
never@739 2503 __ subptr(rsp, rbx); // Prolog!
never@739 2504 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2505 #ifdef CC_INTERP
never@739 2506 __ movptr(Address(rbp,
duke@435 2507 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2508 rbx); // Make it walkable
duke@435 2509 #else /* CC_INTERP */
duke@435 2510 // This value is corrected by layout_activation_impl
xlu@947 2511 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
never@739 2512 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2513 #endif /* CC_INTERP */
never@739 2514 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2515 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2516 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2517 __ decrementl(counter); // decrement counter
duke@435 2518 __ jcc(Assembler::notZero, loop);
never@739 2519 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2520
duke@435 2521 // Re-push self-frame
duke@435 2522 __ enter(); // save old & set new rbp,
duke@435 2523
duke@435 2524 // Return address and rbp, are in place
duke@435 2525 // We'll push additional args later. Just allocate a full sized
duke@435 2526 // register save area
never@739 2527 __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
duke@435 2528
duke@435 2529 // Restore frame locals after moving the frame
never@739 2530 __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
never@739 2531 __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
duke@435 2532 __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local
duke@435 2533 if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2534 if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
duke@435 2535
duke@435 2536 // Set up the args to unpack_frame
duke@435 2537
duke@435 2538 __ pushl(unpack_kind); // get the unpack_kind value
duke@435 2539 __ get_thread(rcx);
never@739 2540 __ push(rcx);
duke@435 2541
duke@435 2542 // set last_Java_sp, last_Java_fp
duke@435 2543 __ set_last_Java_frame(rcx, noreg, rbp, NULL);
duke@435 2544
duke@435 2545 // Call C code. Need thread but NOT official VM entry
duke@435 2546 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2547 // restore return values to their stack-slots with the new SP.
duke@435 2548 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2549 // Set an oopmap for the call site
duke@435 2550 oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
duke@435 2551
duke@435 2552 // rax, contains the return result type
never@739 2553 __ push(rax);
duke@435 2554
duke@435 2555 __ get_thread(rcx);
duke@435 2556 __ reset_last_Java_frame(rcx, false, false);
duke@435 2557
duke@435 2558 // Collect return values
never@739 2559 __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
never@739 2560 __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
duke@435 2561
duke@435 2562 // Clear floating point stack before returning to interpreter
duke@435 2563 __ empty_FPU_stack();
duke@435 2564
duke@435 2565 // Check if we should push the float or double return value.
duke@435 2566 Label results_done, yes_double_value;
duke@435 2567 __ cmpl(Address(rsp, 0), T_DOUBLE);
duke@435 2568 __ jcc (Assembler::zero, yes_double_value);
duke@435 2569 __ cmpl(Address(rsp, 0), T_FLOAT);
duke@435 2570 __ jcc (Assembler::notZero, results_done);
duke@435 2571
duke@435 2572 // return float value as expected by interpreter
duke@435 2573 if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2574 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2575 __ jmp(results_done);
duke@435 2576
duke@435 2577 // return double value as expected by interpreter
duke@435 2578 __ bind(yes_double_value);
duke@435 2579 if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
duke@435 2580 else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
duke@435 2581
duke@435 2582 __ bind(results_done);
duke@435 2583
duke@435 2584 // Pop self-frame.
duke@435 2585 __ leave(); // Epilog!
duke@435 2586
duke@435 2587 // Jump to interpreter
duke@435 2588 __ ret(0);
duke@435 2589
duke@435 2590 // -------------
duke@435 2591 // make sure all code is generated
duke@435 2592 masm->flush();
duke@435 2593
duke@435 2594 _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
duke@435 2595 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
duke@435 2596 }
duke@435 2597
duke@435 2598
duke@435 2599 #ifdef COMPILER2
duke@435 2600 //------------------------------generate_uncommon_trap_blob--------------------
duke@435 2601 void SharedRuntime::generate_uncommon_trap_blob() {
duke@435 2602 // allocate space for the code
duke@435 2603 ResourceMark rm;
duke@435 2604 // setup code generation tools
duke@435 2605 CodeBuffer buffer("uncommon_trap_blob", 512, 512);
duke@435 2606 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2607
duke@435 2608 enum frame_layout {
duke@435 2609 arg0_off, // thread sp + 0 // Arg location for
duke@435 2610 arg1_off, // unloaded_class_index sp + 1 // calling C
duke@435 2611 // The frame sender code expects that rbp will be in the "natural" place and
duke@435 2612 // will override any oopMap setting for it. We must therefore force the layout
duke@435 2613 // so that it agrees with the frame sender code.
duke@435 2614 rbp_off, // callee saved register sp + 2
duke@435 2615 return_off, // slot for return address sp + 3
duke@435 2616 framesize
duke@435 2617 };
duke@435 2618
duke@435 2619 address start = __ pc();
duke@435 2620 // Push self-frame.
never@739 2621 __ subptr(rsp, return_off*wordSize); // Epilog!
duke@435 2622
duke@435 2623 // rbp, is an implicitly saved callee saved register (i.e. the calling
duke@435 2624 // convention will save restore it in prolog/epilog) Other than that
duke@435 2625 // there are no callee save registers no that adapter frames are gone.
never@739 2626 __ movptr(Address(rsp, rbp_off*wordSize), rbp);
duke@435 2627
duke@435 2628 // Clear the floating point exception stack
duke@435 2629 __ empty_FPU_stack();
duke@435 2630
duke@435 2631 // set last_Java_sp
duke@435 2632 __ get_thread(rdx);
duke@435 2633 __ set_last_Java_frame(rdx, noreg, noreg, NULL);
duke@435 2634
duke@435 2635 // Call C code. Need thread but NOT official VM entry
duke@435 2636 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2637 // capture callee-saved registers as well as return values.
never@739 2638 __ movptr(Address(rsp, arg0_off*wordSize), rdx);
duke@435 2639 // argument already in ECX
duke@435 2640 __ movl(Address(rsp, arg1_off*wordSize),rcx);
duke@435 2641 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
duke@435 2642
duke@435 2643 // Set an oopmap for the call site
duke@435 2644 OopMapSet *oop_maps = new OopMapSet();
duke@435 2645 OopMap* map = new OopMap( framesize, 0 );
duke@435 2646 // No oopMap for rbp, it is known implicitly
duke@435 2647
duke@435 2648 oop_maps->add_gc_map( __ pc()-start, map);
duke@435 2649
duke@435 2650 __ get_thread(rcx);
duke@435 2651
duke@435 2652 __ reset_last_Java_frame(rcx, false, false);
duke@435 2653
duke@435 2654 // Load UnrollBlock into EDI
never@739 2655 __ movptr(rdi, rax);
duke@435 2656
duke@435 2657 // Pop all the frames we must move/replace.
duke@435 2658 //
duke@435 2659 // Frame picture (youngest to oldest)
duke@435 2660 // 1: self-frame (no frame link)
duke@435 2661 // 2: deopting frame (no frame link)
duke@435 2662 // 3: caller of deopting frame (could be compiled/interpreted).
duke@435 2663
duke@435 2664 // Pop self-frame. We have no frame, and must rely only on EAX and ESP.
never@739 2665 __ addptr(rsp,(framesize-1)*wordSize); // Epilog!
duke@435 2666
duke@435 2667 // Pop deoptimized frame
never@739 2668 __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
never@739 2669 __ addptr(rsp, rcx);
duke@435 2670
duke@435 2671 // sp should be pointing at the return address to the caller (3)
duke@435 2672
duke@435 2673 // Stack bang to make sure there's enough room for these interpreter frames.
duke@435 2674 if (UseStackBanging) {
duke@435 2675 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
duke@435 2676 __ bang_stack_size(rbx, rcx);
duke@435 2677 }
duke@435 2678
duke@435 2679
duke@435 2680 // Load array of frame pcs into ECX
duke@435 2681 __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
duke@435 2682
never@739 2683 __ pop(rsi); // trash the pc
duke@435 2684
duke@435 2685 // Load array of frame sizes into ESI
never@739 2686 __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
duke@435 2687
duke@435 2688 Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
duke@435 2689
duke@435 2690 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
duke@435 2691 __ movl(counter, rbx);
duke@435 2692
duke@435 2693 // Pick up the initial fp we should save
bdelsart@3130 2694 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
duke@435 2695
duke@435 2696 // Now adjust the caller's stack to make up for the extra locals
duke@435 2697 // but record the original sp so that we can save it in the skeletal interpreter
duke@435 2698 // frame and the stack walking of interpreter_sender will get the unextended sp
duke@435 2699 // value and not the "real" sp value.
duke@435 2700
duke@435 2701 Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
never@739 2702 __ movptr(sp_temp, rsp);
never@739 2703 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
never@739 2704 __ subptr(rsp, rbx);
duke@435 2705
duke@435 2706 // Push interpreter frames in a loop
duke@435 2707 Label loop;
duke@435 2708 __ bind(loop);
never@739 2709 __ movptr(rbx, Address(rsi, 0)); // Load frame size
duke@435 2710 #ifdef CC_INTERP
never@739 2711 __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and
duke@435 2712 #ifdef ASSERT
never@739 2713 __ push(0xDEADDEAD); // Make a recognizable pattern
never@739 2714 __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...)
duke@435 2715 #else /* ASSERT */
never@739 2716 __ subptr(rsp, 2*wordSize); // skip the "static long no_param"
duke@435 2717 #endif /* ASSERT */
duke@435 2718 #else /* CC_INTERP */
never@739 2719 __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand
duke@435 2720 #endif /* CC_INTERP */
never@739 2721 __ pushptr(Address(rcx, 0)); // save return address
duke@435 2722 __ enter(); // save old & set new rbp,
never@739 2723 __ subptr(rsp, rbx); // Prolog!
never@739 2724 __ movptr(rbx, sp_temp); // sender's sp
duke@435 2725 #ifdef CC_INTERP
never@739 2726 __ movptr(Address(rbp,
duke@435 2727 -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
duke@435 2728 rbx); // Make it walkable
duke@435 2729 #else /* CC_INTERP */
duke@435 2730 // This value is corrected by layout_activation_impl
xlu@947 2731 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
never@739 2732 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
duke@435 2733 #endif /* CC_INTERP */
never@739 2734 __ movptr(sp_temp, rsp); // pass to next frame
never@739 2735 __ addptr(rsi, wordSize); // Bump array pointer (sizes)
never@739 2736 __ addptr(rcx, wordSize); // Bump array pointer (pcs)
never@739 2737 __ decrementl(counter); // decrement counter
duke@435 2738 __ jcc(Assembler::notZero, loop);
never@739 2739 __ pushptr(Address(rcx, 0)); // save final return address
duke@435 2740
duke@435 2741 // Re-push self-frame
duke@435 2742 __ enter(); // save old & set new rbp,
never@739 2743 __ subptr(rsp, (framesize-2) * wordSize); // Prolog!
duke@435 2744
duke@435 2745
duke@435 2746 // set last_Java_sp, last_Java_fp
duke@435 2747 __ get_thread(rdi);
duke@435 2748 __ set_last_Java_frame(rdi, noreg, rbp, NULL);
duke@435 2749
duke@435 2750 // Call C code. Need thread but NOT official VM entry
duke@435 2751 // crud. We cannot block on this call, no GC can happen. Call should
duke@435 2752 // restore return values to their stack-slots with the new SP.
never@739 2753 __ movptr(Address(rsp,arg0_off*wordSize),rdi);
duke@435 2754 __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
duke@435 2755 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
duke@435 2756 // Set an oopmap for the call site
duke@435 2757 oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
duke@435 2758
duke@435 2759 __ get_thread(rdi);
duke@435 2760 __ reset_last_Java_frame(rdi, true, false);
duke@435 2761
duke@435 2762 // Pop self-frame.
duke@435 2763 __ leave(); // Epilog!
duke@435 2764
duke@435 2765 // Jump to interpreter
duke@435 2766 __ ret(0);
duke@435 2767
duke@435 2768 // -------------
duke@435 2769 // make sure all code is generated
duke@435 2770 masm->flush();
duke@435 2771
duke@435 2772 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
duke@435 2773 }
duke@435 2774 #endif // COMPILER2
duke@435 2775
duke@435 2776 //------------------------------generate_handler_blob------
duke@435 2777 //
duke@435 2778 // Generate a special Compile2Runtime blob that saves all registers,
duke@435 2779 // setup oopmap, and calls safepoint code to stop the compiled code for
duke@435 2780 // a safepoint.
duke@435 2781 //
never@2950 2782 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, bool cause_return) {
duke@435 2783
duke@435 2784 // Account for thread arg in our frame
duke@435 2785 const int additional_words = 1;
duke@435 2786 int frame_size_in_words;
duke@435 2787
duke@435 2788 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2789
duke@435 2790 ResourceMark rm;
duke@435 2791 OopMapSet *oop_maps = new OopMapSet();
duke@435 2792 OopMap* map;
duke@435 2793
duke@435 2794 // allocate space for the code
duke@435 2795 // setup code generation tools
duke@435 2796 CodeBuffer buffer("handler_blob", 1024, 512);
duke@435 2797 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2798
duke@435 2799 const Register java_thread = rdi; // callee-saved for VC++
duke@435 2800 address start = __ pc();
duke@435 2801 address call_pc = NULL;
duke@435 2802
duke@435 2803 // If cause_return is true we are at a poll_return and there is
duke@435 2804 // the return address on the stack to the caller on the nmethod
duke@435 2805 // that is safepoint. We can leave this return on the stack and
duke@435 2806 // effectively complete the return and safepoint in the caller.
duke@435 2807 // Otherwise we push space for a return address that the safepoint
duke@435 2808 // handler will install later to make the stack walking sensible.
duke@435 2809 if( !cause_return )
never@739 2810 __ push(rbx); // Make room for return address (or push it again)
duke@435 2811
duke@435 2812 map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
duke@435 2813
duke@435 2814 // The following is basically a call_VM. However, we need the precise
duke@435 2815 // address of the call in order to generate an oopmap. Hence, we do all the
duke@435 2816 // work ourselves.
duke@435 2817
duke@435 2818 // Push thread argument and setup last_Java_sp
duke@435 2819 __ get_thread(java_thread);
never@739 2820 __ push(java_thread);
duke@435 2821 __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
duke@435 2822
duke@435 2823 // if this was not a poll_return then we need to correct the return address now.
duke@435 2824 if( !cause_return ) {
never@739 2825 __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
never@739 2826 __ movptr(Address(rbp, wordSize), rax);
duke@435 2827 }
duke@435 2828
duke@435 2829 // do the call
duke@435 2830 __ call(RuntimeAddress(call_ptr));
duke@435 2831
duke@435 2832 // Set an oopmap for the call site. This oopmap will map all
duke@435 2833 // oop-registers and debug-info registers as callee-saved. This
duke@435 2834 // will allow deoptimization at this safepoint to find all possible
duke@435 2835 // debug-info recordings, as well as let GC find all oops.
duke@435 2836
duke@435 2837 oop_maps->add_gc_map( __ pc() - start, map);
duke@435 2838
duke@435 2839 // Discard arg
never@739 2840 __ pop(rcx);
duke@435 2841
duke@435 2842 Label noException;
duke@435 2843
duke@435 2844 // Clear last_Java_sp again
duke@435 2845 __ get_thread(java_thread);
duke@435 2846 __ reset_last_Java_frame(java_thread, false, false);
duke@435 2847
never@739 2848 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2849 __ jcc(Assembler::equal, noException);
duke@435 2850
duke@435 2851 // Exception pending
duke@435 2852
duke@435 2853 RegisterSaver::restore_live_registers(masm);
duke@435 2854
duke@435 2855 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2856
duke@435 2857 __ bind(noException);
duke@435 2858
duke@435 2859 // Normal exit, register restoring and exit
duke@435 2860 RegisterSaver::restore_live_registers(masm);
duke@435 2861
duke@435 2862 __ ret(0);
duke@435 2863
duke@435 2864 // make sure all code is generated
duke@435 2865 masm->flush();
duke@435 2866
duke@435 2867 // Fill-out other meta info
duke@435 2868 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
duke@435 2869 }
duke@435 2870
duke@435 2871 //
duke@435 2872 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
duke@435 2873 //
duke@435 2874 // Generate a stub that calls into vm to find out the proper destination
duke@435 2875 // of a java call. All the argument registers are live at this point
duke@435 2876 // but since this is generic code we don't know what they are and the caller
duke@435 2877 // must do any gc of the args.
duke@435 2878 //
never@2950 2879 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
duke@435 2880 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
duke@435 2881
duke@435 2882 // allocate space for the code
duke@435 2883 ResourceMark rm;
duke@435 2884
duke@435 2885 CodeBuffer buffer(name, 1000, 512);
duke@435 2886 MacroAssembler* masm = new MacroAssembler(&buffer);
duke@435 2887
duke@435 2888 int frame_size_words;
duke@435 2889 enum frame_layout {
duke@435 2890 thread_off,
duke@435 2891 extra_words };
duke@435 2892
duke@435 2893 OopMapSet *oop_maps = new OopMapSet();
duke@435 2894 OopMap* map = NULL;
duke@435 2895
duke@435 2896 int start = __ offset();
duke@435 2897
duke@435 2898 map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
duke@435 2899
duke@435 2900 int frame_complete = __ offset();
duke@435 2901
duke@435 2902 const Register thread = rdi;
duke@435 2903 __ get_thread(rdi);
duke@435 2904
never@739 2905 __ push(thread);
duke@435 2906 __ set_last_Java_frame(thread, noreg, rbp, NULL);
duke@435 2907
duke@435 2908 __ call(RuntimeAddress(destination));
duke@435 2909
duke@435 2910
duke@435 2911 // Set an oopmap for the call site.
duke@435 2912 // We need this not only for callee-saved registers, but also for volatile
duke@435 2913 // registers that the compiler might be keeping live across a safepoint.
duke@435 2914
duke@435 2915 oop_maps->add_gc_map( __ offset() - start, map);
duke@435 2916
duke@435 2917 // rax, contains the address we are going to jump to assuming no exception got installed
duke@435 2918
never@739 2919 __ addptr(rsp, wordSize);
duke@435 2920
duke@435 2921 // clear last_Java_sp
duke@435 2922 __ reset_last_Java_frame(thread, true, false);
duke@435 2923 // check for pending exceptions
duke@435 2924 Label pending;
never@739 2925 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2926 __ jcc(Assembler::notEqual, pending);
duke@435 2927
duke@435 2928 // get the returned methodOop
never@739 2929 __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
never@739 2930 __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
never@739 2931
never@739 2932 __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
duke@435 2933
duke@435 2934 RegisterSaver::restore_live_registers(masm);
duke@435 2935
duke@435 2936 // We are back the the original state on entry and ready to go.
duke@435 2937
duke@435 2938 __ jmp(rax);
duke@435 2939
duke@435 2940 // Pending exception after the safepoint
duke@435 2941
duke@435 2942 __ bind(pending);
duke@435 2943
duke@435 2944 RegisterSaver::restore_live_registers(masm);
duke@435 2945
duke@435 2946 // exception pending => remove activation and forward to exception handler
duke@435 2947
duke@435 2948 __ get_thread(thread);
xlu@947 2949 __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
never@739 2950 __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
duke@435 2951 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2952
duke@435 2953 // -------------
duke@435 2954 // make sure all code is generated
duke@435 2955 masm->flush();
duke@435 2956
duke@435 2957 // return the blob
duke@435 2958 // frame_size_words or bytes??
duke@435 2959 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
duke@435 2960 }

mercurial