src/share/vm/runtime/synchronizer.cpp

Fri, 17 Mar 2017 03:39:23 -0700

author
kevinw
date
Fri, 17 Mar 2017 03:39:23 -0700
changeset 8729
402618d5afc9
parent 8189
c60b9a314312
child 8856
ac27a9c85bea
child 9838
ff1c3c1867b5
child 9858
b985cbb00e68
permissions
-rw-r--r--

8049717: expose L1_data_cache_line_size for diagnostic/sanity checks
Summary: Add support for VM_Version::L1_data_cache_line_size().
Reviewed-by: dsimms, kvn, dholmes

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/vmSymbols.hpp"
stefank@2314 27 #include "memory/resourceArea.hpp"
stefank@2314 28 #include "oops/markOop.hpp"
stefank@2314 29 #include "oops/oop.inline.hpp"
stefank@2314 30 #include "runtime/biasedLocking.hpp"
stefank@2314 31 #include "runtime/handles.inline.hpp"
stefank@2314 32 #include "runtime/interfaceSupport.hpp"
stefank@2314 33 #include "runtime/mutexLocker.hpp"
stefank@2314 34 #include "runtime/objectMonitor.hpp"
stefank@2314 35 #include "runtime/objectMonitor.inline.hpp"
stefank@2314 36 #include "runtime/osThread.hpp"
stefank@2314 37 #include "runtime/stubRoutines.hpp"
stefank@2314 38 #include "runtime/synchronizer.hpp"
stefank@4299 39 #include "runtime/thread.inline.hpp"
stefank@2314 40 #include "utilities/dtrace.hpp"
stefank@2314 41 #include "utilities/events.hpp"
stefank@2314 42 #include "utilities/preserveException.hpp"
stefank@2314 43 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 44 # include "os_linux.inline.hpp"
stefank@2314 45 #endif
stefank@2314 46 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 47 # include "os_solaris.inline.hpp"
stefank@2314 48 #endif
stefank@2314 49 #ifdef TARGET_OS_FAMILY_windows
stefank@2314 50 # include "os_windows.inline.hpp"
stefank@2314 51 #endif
never@3156 52 #ifdef TARGET_OS_FAMILY_bsd
never@3156 53 # include "os_bsd.inline.hpp"
never@3156 54 #endif
duke@435 55
goetz@6453 56 #if defined(__GNUC__) && !defined(PPC64)
duke@435 57 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
duke@435 58 #define ATTR __attribute__((noinline))
duke@435 59 #else
duke@435 60 #define ATTR
duke@435 61 #endif
duke@435 62
drchase@6680 63 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 64
duke@435 65 // The "core" versions of monitor enter and exit reside in this file.
duke@435 66 // The interpreter and compilers contain specialized transliterated
duke@435 67 // variants of the enter-exit fast-path operations. See i486.ad fast_lock(),
duke@435 68 // for instance. If you make changes here, make sure to modify the
duke@435 69 // interpreter, and both C1 and C2 fast-path inline locking code emission.
duke@435 70 //
duke@435 71 //
duke@435 72 // -----------------------------------------------------------------------------
duke@435 73
duke@435 74 #ifdef DTRACE_ENABLED
duke@435 75
duke@435 76 // Only bother with this argument setup if dtrace is available
duke@435 77 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly.
duke@435 78
coleenp@4037 79 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \
duke@435 80 char* bytes = NULL; \
duke@435 81 int len = 0; \
duke@435 82 jlong jtid = SharedRuntime::get_java_tid(thread); \
coleenp@4037 83 Symbol* klassname = ((oop)(obj))->klass()->name(); \
duke@435 84 if (klassname != NULL) { \
duke@435 85 bytes = (char*)klassname->bytes(); \
duke@435 86 len = klassname->utf8_length(); \
duke@435 87 }
duke@435 88
dcubed@3202 89 #ifndef USDT2
dcubed@3202 90 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
dcubed@3202 91 jlong, uintptr_t, char*, int, long);
dcubed@3202 92 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
dcubed@3202 93 jlong, uintptr_t, char*, int);
dcubed@3202 94
coleenp@4037 95 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
duke@435 96 { \
duke@435 97 if (DTraceMonitorProbes) { \
coleenp@4037 98 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
duke@435 99 HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid, \
duke@435 100 (monitor), bytes, len, (millis)); \
duke@435 101 } \
duke@435 102 }
duke@435 103
coleenp@4037 104 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
duke@435 105 { \
duke@435 106 if (DTraceMonitorProbes) { \
coleenp@4037 107 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
duke@435 108 HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid, \
duke@435 109 (uintptr_t)(monitor), bytes, len); \
duke@435 110 } \
duke@435 111 }
duke@435 112
dcubed@3202 113 #else /* USDT2 */
dcubed@3202 114
coleenp@4037 115 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \
dcubed@3202 116 { \
dcubed@3202 117 if (DTraceMonitorProbes) { \
coleenp@4037 118 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
dcubed@3202 119 HOTSPOT_MONITOR_WAIT(jtid, \
dcubed@3202 120 (uintptr_t)(monitor), bytes, len, (millis)); \
dcubed@3202 121 } \
dcubed@3202 122 }
dcubed@3202 123
sla@8189 124 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
dcubed@3202 125
coleenp@4037 126 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \
dcubed@3202 127 { \
dcubed@3202 128 if (DTraceMonitorProbes) { \
coleenp@4037 129 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \
dcubed@3202 130 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \
dcubed@3202 131 (uintptr_t)(monitor), bytes, len); \
dcubed@3202 132 } \
dcubed@3202 133 }
dcubed@3202 134
dcubed@3202 135 #endif /* USDT2 */
duke@435 136 #else // ndef DTRACE_ENABLED
duke@435 137
coleenp@4037 138 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;}
coleenp@4037 139 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;}
duke@435 140
duke@435 141 #endif // ndef DTRACE_ENABLED
duke@435 142
acorn@2233 143 // This exists only as a workaround of dtrace bug 6254741
acorn@2233 144 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
acorn@2233 145 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
acorn@2233 146 return 0;
acorn@2233 147 }
duke@435 148
acorn@2233 149 #define NINFLATIONLOCKS 256
acorn@2233 150 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
acorn@2233 151
acorn@2233 152 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
acorn@2233 153 ObjectMonitor * volatile ObjectSynchronizer::gFreeList = NULL ;
acorn@2233 154 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList = NULL ;
acorn@2233 155 int ObjectSynchronizer::gOmInUseCount = 0;
acorn@2233 156 static volatile intptr_t ListLock = 0 ; // protects global monitor free-list cache
acorn@2233 157 static volatile int MonitorFreeCount = 0 ; // # on gFreeList
acorn@2233 158 static volatile int MonitorPopulation = 0 ; // # Extant -- in circulation
hseigel@5784 159 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
acorn@2233 160
acorn@2233 161 // -----------------------------------------------------------------------------
acorn@2233 162 // Fast Monitor Enter/Exit
acorn@2233 163 // This the fast monitor enter. The interpreter and compiler use
acorn@2233 164 // some assembly copies of this code. Make sure update those code
acorn@2233 165 // if the following function is changed. The implementation is
acorn@2233 166 // extremely sensitive to race condition. Be careful.
acorn@2233 167
acorn@2233 168 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
acorn@2233 169 if (UseBiasedLocking) {
acorn@2233 170 if (!SafepointSynchronize::is_at_safepoint()) {
acorn@2233 171 BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
acorn@2233 172 if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
acorn@2233 173 return;
acorn@2233 174 }
acorn@2233 175 } else {
acorn@2233 176 assert(!attempt_rebias, "can not rebias toward VM thread");
acorn@2233 177 BiasedLocking::revoke_at_safepoint(obj);
acorn@2233 178 }
acorn@2233 179 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 180 }
acorn@2233 181
acorn@2233 182 slow_enter (obj, lock, THREAD) ;
acorn@2233 183 }
acorn@2233 184
acorn@2233 185 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
acorn@2233 186 assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
acorn@2233 187 // if displaced header is null, the previous enter is recursive enter, no-op
acorn@2233 188 markOop dhw = lock->displaced_header();
acorn@2233 189 markOop mark ;
acorn@2233 190 if (dhw == NULL) {
acorn@2233 191 // Recursive stack-lock.
acorn@2233 192 // Diagnostics -- Could be: stack-locked, inflating, inflated.
acorn@2233 193 mark = object->mark() ;
acorn@2233 194 assert (!mark->is_neutral(), "invariant") ;
acorn@2233 195 if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
acorn@2233 196 assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
acorn@2233 197 }
acorn@2233 198 if (mark->has_monitor()) {
acorn@2233 199 ObjectMonitor * m = mark->monitor() ;
acorn@2233 200 assert(((oop)(m->object()))->mark() == mark, "invariant") ;
acorn@2233 201 assert(m->is_entered(THREAD), "invariant") ;
acorn@2233 202 }
acorn@2233 203 return ;
duke@435 204 }
duke@435 205
acorn@2233 206 mark = object->mark() ;
acorn@2233 207
acorn@2233 208 // If the object is stack-locked by the current thread, try to
acorn@2233 209 // swing the displaced header from the box back to the mark.
acorn@2233 210 if (mark == (markOop) lock) {
acorn@2233 211 assert (dhw->is_neutral(), "invariant") ;
acorn@2233 212 if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
acorn@2233 213 TEVENT (fast_exit: release stacklock) ;
acorn@2233 214 return;
acorn@2233 215 }
duke@435 216 }
duke@435 217
sla@5237 218 ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;
acorn@2233 219 }
acorn@2233 220
acorn@2233 221 // -----------------------------------------------------------------------------
acorn@2233 222 // Interpreter/Compiler Slow Case
acorn@2233 223 // This routine is used to handle interpreter/compiler slow case
acorn@2233 224 // We don't need to use fast path here, because it must have been
acorn@2233 225 // failed in the interpreter/compiler code.
acorn@2233 226 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
acorn@2233 227 markOop mark = obj->mark();
acorn@2233 228 assert(!mark->has_bias_pattern(), "should not see bias pattern here");
acorn@2233 229
acorn@2233 230 if (mark->is_neutral()) {
acorn@2233 231 // Anticipate successful CAS -- the ST of the displaced mark must
acorn@2233 232 // be visible <= the ST performed by the CAS.
acorn@2233 233 lock->set_displaced_header(mark);
acorn@2233 234 if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
acorn@2233 235 TEVENT (slow_enter: release stacklock) ;
acorn@2233 236 return ;
acorn@2233 237 }
acorn@2233 238 // Fall through to inflate() ...
acorn@2233 239 } else
acorn@2233 240 if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
acorn@2233 241 assert(lock != mark->locker(), "must not re-lock the same lock");
acorn@2233 242 assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
acorn@2233 243 lock->set_displaced_header(NULL);
acorn@2233 244 return;
duke@435 245 }
duke@435 246
acorn@2233 247 #if 0
acorn@2233 248 // The following optimization isn't particularly useful.
acorn@2233 249 if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
acorn@2233 250 lock->set_displaced_header (NULL) ;
acorn@2233 251 return ;
acorn@2233 252 }
acorn@2233 253 #endif
duke@435 254
acorn@2233 255 // The object header will never be displaced to this lock,
acorn@2233 256 // so it does not matter what the value is, except that it
acorn@2233 257 // must be non-zero to avoid looking like a re-entrant lock,
acorn@2233 258 // and must not look locked either.
acorn@2233 259 lock->set_displaced_header(markOopDesc::unused_mark());
acorn@2233 260 ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
acorn@2233 261 }
duke@435 262
acorn@2233 263 // This routine is used to handle interpreter/compiler slow case
acorn@2233 264 // We don't need to use fast path here, because it must have
acorn@2233 265 // failed in the interpreter/compiler code. Simply use the heavy
acorn@2233 266 // weight monitor should be ok, unless someone find otherwise.
acorn@2233 267 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
acorn@2233 268 fast_exit (object, lock, THREAD) ;
acorn@2233 269 }
duke@435 270
acorn@2233 271 // -----------------------------------------------------------------------------
acorn@2233 272 // Class Loader support to workaround deadlocks on the class loader lock objects
acorn@2233 273 // Also used by GC
acorn@2233 274 // complete_exit()/reenter() are used to wait on a nested lock
acorn@2233 275 // i.e. to give up an outer lock completely and then re-enter
acorn@2233 276 // Used when holding nested locks - lock acquisition order: lock1 then lock2
acorn@2233 277 // 1) complete_exit lock1 - saving recursion count
acorn@2233 278 // 2) wait on lock2
acorn@2233 279 // 3) when notified on lock2, unlock lock2
acorn@2233 280 // 4) reenter lock1 with original recursion count
acorn@2233 281 // 5) lock lock2
acorn@2233 282 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
acorn@2233 283 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
acorn@2233 284 TEVENT (complete_exit) ;
acorn@2233 285 if (UseBiasedLocking) {
acorn@2233 286 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 287 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 288 }
duke@435 289
acorn@2233 290 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
duke@435 291
acorn@2233 292 return monitor->complete_exit(THREAD);
acorn@2233 293 }
acorn@2233 294
acorn@2233 295 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
acorn@2233 296 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
acorn@2233 297 TEVENT (reenter) ;
acorn@2233 298 if (UseBiasedLocking) {
acorn@2233 299 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 300 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 301 }
acorn@2233 302
acorn@2233 303 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
acorn@2233 304
acorn@2233 305 monitor->reenter(recursion, THREAD);
acorn@2233 306 }
acorn@2233 307 // -----------------------------------------------------------------------------
acorn@2233 308 // JNI locks on java objects
acorn@2233 309 // NOTE: must use heavy weight monitor to handle jni monitor enter
acorn@2233 310 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
acorn@2233 311 // the current locking is from JNI instead of Java code
acorn@2233 312 TEVENT (jni_enter) ;
acorn@2233 313 if (UseBiasedLocking) {
acorn@2233 314 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 315 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 316 }
acorn@2233 317 THREAD->set_current_pending_monitor_is_from_java(false);
acorn@2233 318 ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
acorn@2233 319 THREAD->set_current_pending_monitor_is_from_java(true);
acorn@2233 320 }
acorn@2233 321
acorn@2233 322 // NOTE: must use heavy weight monitor to handle jni monitor enter
acorn@2233 323 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
acorn@2233 324 if (UseBiasedLocking) {
acorn@2233 325 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 326 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 327 }
acorn@2233 328
acorn@2233 329 ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
acorn@2233 330 return monitor->try_enter(THREAD);
acorn@2233 331 }
acorn@2233 332
acorn@2233 333
acorn@2233 334 // NOTE: must use heavy weight monitor to handle jni monitor exit
acorn@2233 335 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
acorn@2233 336 TEVENT (jni_exit) ;
acorn@2233 337 if (UseBiasedLocking) {
dcubed@4470 338 Handle h_obj(THREAD, obj);
dcubed@4470 339 BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
dcubed@4470 340 obj = h_obj();
acorn@2233 341 }
acorn@2233 342 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 343
acorn@2233 344 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
acorn@2233 345 // If this thread has locked the object, exit the monitor. Note: can't use
acorn@2233 346 // monitor->check(CHECK); must exit even if an exception is pending.
acorn@2233 347 if (monitor->check(THREAD)) {
sla@5237 348 monitor->exit(true, THREAD);
acorn@2233 349 }
acorn@2233 350 }
acorn@2233 351
acorn@2233 352 // -----------------------------------------------------------------------------
acorn@2233 353 // Internal VM locks on java objects
acorn@2233 354 // standard constructor, allows locking failures
acorn@2233 355 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
acorn@2233 356 _dolock = doLock;
acorn@2233 357 _thread = thread;
acorn@2233 358 debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
acorn@2233 359 _obj = obj;
acorn@2233 360
acorn@2233 361 if (_dolock) {
acorn@2233 362 TEVENT (ObjectLocker) ;
acorn@2233 363
acorn@2233 364 ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
acorn@2233 365 }
acorn@2233 366 }
acorn@2233 367
acorn@2233 368 ObjectLocker::~ObjectLocker() {
acorn@2233 369 if (_dolock) {
acorn@2233 370 ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
acorn@2233 371 }
acorn@2233 372 }
acorn@2233 373
acorn@2233 374
acorn@2233 375 // -----------------------------------------------------------------------------
acorn@2233 376 // Wait/Notify/NotifyAll
acorn@2233 377 // NOTE: must use heavy weight monitor to handle wait()
acorn@2233 378 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
acorn@2233 379 if (UseBiasedLocking) {
acorn@2233 380 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 381 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 382 }
acorn@2233 383 if (millis < 0) {
acorn@2233 384 TEVENT (wait - throw IAX) ;
acorn@2233 385 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
acorn@2233 386 }
acorn@2233 387 ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
acorn@2233 388 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
acorn@2233 389 monitor->wait(millis, true, THREAD);
acorn@2233 390
acorn@2233 391 /* This dummy call is in place to get around dtrace bug 6254741. Once
acorn@2233 392 that's fixed we can uncomment the following line and remove the call */
acorn@2233 393 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
acorn@2233 394 dtrace_waited_probe(monitor, obj, THREAD);
acorn@2233 395 }
acorn@2233 396
acorn@2233 397 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
acorn@2233 398 if (UseBiasedLocking) {
acorn@2233 399 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 400 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 401 }
acorn@2233 402 if (millis < 0) {
acorn@2233 403 TEVENT (wait - throw IAX) ;
acorn@2233 404 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
acorn@2233 405 }
acorn@2233 406 ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
acorn@2233 407 }
acorn@2233 408
acorn@2233 409 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
acorn@2233 410 if (UseBiasedLocking) {
acorn@2233 411 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 412 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 413 }
acorn@2233 414
acorn@2233 415 markOop mark = obj->mark();
acorn@2233 416 if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
acorn@2233 417 return;
acorn@2233 418 }
acorn@2233 419 ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
acorn@2233 420 }
acorn@2233 421
acorn@2233 422 // NOTE: see comment of notify()
acorn@2233 423 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
acorn@2233 424 if (UseBiasedLocking) {
acorn@2233 425 BiasedLocking::revoke_and_rebias(obj, false, THREAD);
acorn@2233 426 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 427 }
acorn@2233 428
acorn@2233 429 markOop mark = obj->mark();
acorn@2233 430 if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
acorn@2233 431 return;
acorn@2233 432 }
acorn@2233 433 ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
acorn@2233 434 }
acorn@2233 435
acorn@2233 436 // -----------------------------------------------------------------------------
acorn@2233 437 // Hash Code handling
acorn@2233 438 //
duke@435 439 // Performance concern:
kevinw@8729 440 // OrderAccess::storestore() calls release() which at one time stored 0
kevinw@8729 441 // into the global volatile OrderAccess::dummy variable. This store was
kevinw@8729 442 // unnecessary for correctness. Many threads storing into a common location
kevinw@8729 443 // causes considerable cache migration or "sloshing" on large SMP systems.
kevinw@8729 444 // As such, I avoided using OrderAccess::storestore(). In some cases
kevinw@8729 445 // OrderAccess::fence() -- which incurs local latency on the executing
kevinw@8729 446 // processor -- is a better choice as it scales on SMP systems.
kevinw@8729 447 //
kevinw@8729 448 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
kevinw@8729 449 // a discussion of coherency costs. Note that all our current reference
kevinw@8729 450 // platforms provide strong ST-ST order, so the issue is moot on IA32,
kevinw@8729 451 // x64, and SPARC.
duke@435 452 //
duke@435 453 // As a general policy we use "volatile" to control compiler-based reordering
kevinw@8729 454 // and explicit fences (barriers) to control for architectural reordering
kevinw@8729 455 // performed by the CPU(s) or platform.
duke@435 456
duke@435 457 struct SharedGlobals {
duke@435 458 // These are highly shared mostly-read variables.
duke@435 459 // To avoid false-sharing they need to be the sole occupants of a $ line.
duke@435 460 double padPrefix [8];
duke@435 461 volatile int stwRandom ;
duke@435 462 volatile int stwCycle ;
duke@435 463
duke@435 464 // Hot RW variables -- Sequester to avoid false-sharing
duke@435 465 double padSuffix [16];
duke@435 466 volatile int hcSequence ;
duke@435 467 double padFinal [8] ;
duke@435 468 } ;
duke@435 469
duke@435 470 static SharedGlobals GVars ;
acorn@1942 471 static int MonitorScavengeThreshold = 1000000 ;
acorn@1942 472 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
duke@435 473
acorn@2233 474 static markOop ReadStableMark (oop obj) {
acorn@2233 475 markOop mark = obj->mark() ;
acorn@2233 476 if (!mark->is_being_inflated()) {
acorn@2233 477 return mark ; // normal fast-path return
acorn@2233 478 }
duke@435 479
acorn@2233 480 int its = 0 ;
acorn@2233 481 for (;;) {
acorn@2233 482 markOop mark = obj->mark() ;
acorn@2233 483 if (!mark->is_being_inflated()) {
acorn@2233 484 return mark ; // normal fast-path return
acorn@2233 485 }
duke@435 486
acorn@2233 487 // The object is being inflated by some other thread.
acorn@2233 488 // The caller of ReadStableMark() must wait for inflation to complete.
acorn@2233 489 // Avoid live-lock
acorn@2233 490 // TODO: consider calling SafepointSynchronize::do_call_back() while
acorn@2233 491 // spinning to see if there's a safepoint pending. If so, immediately
acorn@2233 492 // yielding or blocking would be appropriate. Avoid spinning while
acorn@2233 493 // there is a safepoint pending.
acorn@2233 494 // TODO: add inflation contention performance counters.
acorn@2233 495 // TODO: restrict the aggregate number of spinners.
duke@435 496
acorn@2233 497 ++its ;
acorn@2233 498 if (its > 10000 || !os::is_MP()) {
acorn@2233 499 if (its & 1) {
acorn@2233 500 os::NakedYield() ;
acorn@2233 501 TEVENT (Inflate: INFLATING - yield) ;
acorn@2233 502 } else {
acorn@2233 503 // Note that the following code attenuates the livelock problem but is not
acorn@2233 504 // a complete remedy. A more complete solution would require that the inflating
acorn@2233 505 // thread hold the associated inflation lock. The following code simply restricts
acorn@2233 506 // the number of spinners to at most one. We'll have N-2 threads blocked
acorn@2233 507 // on the inflationlock, 1 thread holding the inflation lock and using
acorn@2233 508 // a yield/park strategy, and 1 thread in the midst of inflation.
acorn@2233 509 // A more refined approach would be to change the encoding of INFLATING
acorn@2233 510 // to allow encapsulation of a native thread pointer. Threads waiting for
acorn@2233 511 // inflation to complete would use CAS to push themselves onto a singly linked
acorn@2233 512 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag
acorn@2233 513 // and calling park(). When inflation was complete the thread that accomplished inflation
acorn@2233 514 // would detach the list and set the markword to inflated with a single CAS and
acorn@2233 515 // then for each thread on the list, set the flag and unpark() the thread.
acorn@2233 516 // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
acorn@2233 517 // wakes at most one thread whereas we need to wake the entire list.
hseigel@5784 518 int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1) ;
acorn@2233 519 int YieldThenBlock = 0 ;
acorn@2233 520 assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
acorn@2233 521 assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
acorn@2233 522 Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
acorn@2233 523 while (obj->mark() == markOopDesc::INFLATING()) {
acorn@2233 524 // Beware: NakedYield() is advisory and has almost no effect on some platforms
acorn@2233 525 // so we periodically call Self->_ParkEvent->park(1).
acorn@2233 526 // We use a mixed spin/yield/block mechanism.
acorn@2233 527 if ((YieldThenBlock++) >= 16) {
acorn@2233 528 Thread::current()->_ParkEvent->park(1) ;
acorn@2233 529 } else {
acorn@2233 530 os::NakedYield() ;
acorn@2233 531 }
acorn@2233 532 }
acorn@2233 533 Thread::muxRelease (InflationLocks + ix ) ;
acorn@2233 534 TEVENT (Inflate: INFLATING - yield/park) ;
acorn@2233 535 }
acorn@2233 536 } else {
acorn@2233 537 SpinPause() ; // SMP-polite spinning
acorn@2233 538 }
acorn@2233 539 }
acorn@2233 540 }
duke@435 541
duke@435 542 // hashCode() generation :
duke@435 543 //
duke@435 544 // Possibilities:
duke@435 545 // * MD5Digest of {obj,stwRandom}
duke@435 546 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
duke@435 547 // * A DES- or AES-style SBox[] mechanism
duke@435 548 // * One of the Phi-based schemes, such as:
duke@435 549 // 2654435761 = 2^32 * Phi (golden ratio)
duke@435 550 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
duke@435 551 // * A variation of Marsaglia's shift-xor RNG scheme.
duke@435 552 // * (obj ^ stwRandom) is appealing, but can result
duke@435 553 // in undesirable regularity in the hashCode values of adjacent objects
duke@435 554 // (objects allocated back-to-back, in particular). This could potentially
duke@435 555 // result in hashtable collisions and reduced hashtable efficiency.
duke@435 556 // There are simple ways to "diffuse" the middle address bits over the
duke@435 557 // generated hashCode values:
duke@435 558 //
duke@435 559
duke@435 560 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
duke@435 561 intptr_t value = 0 ;
duke@435 562 if (hashCode == 0) {
duke@435 563 // This form uses an unguarded global Park-Miller RNG,
duke@435 564 // so it's possible for two threads to race and generate the same RNG.
duke@435 565 // On MP system we'll have lots of RW access to a global, so the
duke@435 566 // mechanism induces lots of coherency traffic.
duke@435 567 value = os::random() ;
duke@435 568 } else
duke@435 569 if (hashCode == 1) {
duke@435 570 // This variation has the property of being stable (idempotent)
duke@435 571 // between STW operations. This can be useful in some of the 1-0
duke@435 572 // synchronization schemes.
hseigel@5784 573 intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
duke@435 574 value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
duke@435 575 } else
duke@435 576 if (hashCode == 2) {
duke@435 577 value = 1 ; // for sensitivity testing
duke@435 578 } else
duke@435 579 if (hashCode == 3) {
duke@435 580 value = ++GVars.hcSequence ;
duke@435 581 } else
duke@435 582 if (hashCode == 4) {
hseigel@5784 583 value = cast_from_oop<intptr_t>(obj) ;
duke@435 584 } else {
duke@435 585 // Marsaglia's xor-shift scheme with thread-specific state
duke@435 586 // This is probably the best overall implementation -- we'll
duke@435 587 // likely make this the default in future releases.
duke@435 588 unsigned t = Self->_hashStateX ;
duke@435 589 t ^= (t << 11) ;
duke@435 590 Self->_hashStateX = Self->_hashStateY ;
duke@435 591 Self->_hashStateY = Self->_hashStateZ ;
duke@435 592 Self->_hashStateZ = Self->_hashStateW ;
duke@435 593 unsigned v = Self->_hashStateW ;
duke@435 594 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
duke@435 595 Self->_hashStateW = v ;
duke@435 596 value = v ;
duke@435 597 }
duke@435 598
duke@435 599 value &= markOopDesc::hash_mask;
duke@435 600 if (value == 0) value = 0xBAD ;
duke@435 601 assert (value != markOopDesc::no_hash, "invariant") ;
duke@435 602 TEVENT (hashCode: GENERATE) ;
duke@435 603 return value;
duke@435 604 }
acorn@2233 605 //
acorn@2233 606 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
acorn@2233 607 if (UseBiasedLocking) {
acorn@2233 608 // NOTE: many places throughout the JVM do not expect a safepoint
acorn@2233 609 // to be taken here, in particular most operations on perm gen
acorn@2233 610 // objects. However, we only ever bias Java instances and all of
acorn@2233 611 // the call sites of identity_hash that might revoke biases have
acorn@2233 612 // been checked to make sure they can handle a safepoint. The
acorn@2233 613 // added check of the bias pattern is to avoid useless calls to
acorn@2233 614 // thread-local storage.
acorn@2233 615 if (obj->mark()->has_bias_pattern()) {
acorn@2233 616 // Box and unbox the raw reference just in case we cause a STW safepoint.
acorn@2233 617 Handle hobj (Self, obj) ;
acorn@2233 618 // Relaxing assertion for bug 6320749.
acorn@2233 619 assert (Universe::verify_in_progress() ||
acorn@2233 620 !SafepointSynchronize::is_at_safepoint(),
acorn@2233 621 "biases should not be seen by VM thread here");
acorn@2233 622 BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
acorn@2233 623 obj = hobj() ;
acorn@2233 624 assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 625 }
acorn@2233 626 }
duke@435 627
acorn@2233 628 // hashCode() is a heap mutator ...
acorn@2233 629 // Relaxing assertion for bug 6320749.
acorn@2233 630 assert (Universe::verify_in_progress() ||
acorn@2233 631 !SafepointSynchronize::is_at_safepoint(), "invariant") ;
acorn@2233 632 assert (Universe::verify_in_progress() ||
acorn@2233 633 Self->is_Java_thread() , "invariant") ;
acorn@2233 634 assert (Universe::verify_in_progress() ||
acorn@2233 635 ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
acorn@2233 636
acorn@2233 637 ObjectMonitor* monitor = NULL;
acorn@2233 638 markOop temp, test;
acorn@2233 639 intptr_t hash;
acorn@2233 640 markOop mark = ReadStableMark (obj);
acorn@2233 641
acorn@2233 642 // object should remain ineligible for biased locking
acorn@2233 643 assert (!mark->has_bias_pattern(), "invariant") ;
acorn@2233 644
acorn@2233 645 if (mark->is_neutral()) {
acorn@2233 646 hash = mark->hash(); // this is a normal header
acorn@2233 647 if (hash) { // if it has hash, just return it
acorn@2233 648 return hash;
acorn@2233 649 }
acorn@2233 650 hash = get_next_hash(Self, obj); // allocate a new hash code
acorn@2233 651 temp = mark->copy_set_hash(hash); // merge the hash code into header
acorn@2233 652 // use (machine word version) atomic operation to install the hash
acorn@2233 653 test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
acorn@2233 654 if (test == mark) {
acorn@2233 655 return hash;
acorn@2233 656 }
acorn@2233 657 // If atomic operation failed, we must inflate the header
acorn@2233 658 // into heavy weight monitor. We could add more code here
acorn@2233 659 // for fast path, but it does not worth the complexity.
acorn@2233 660 } else if (mark->has_monitor()) {
acorn@2233 661 monitor = mark->monitor();
acorn@2233 662 temp = monitor->header();
acorn@2233 663 assert (temp->is_neutral(), "invariant") ;
acorn@2233 664 hash = temp->hash();
acorn@2233 665 if (hash) {
acorn@2233 666 return hash;
acorn@2233 667 }
acorn@2233 668 // Skip to the following code to reduce code size
acorn@2233 669 } else if (Self->is_lock_owned((address)mark->locker())) {
acorn@2233 670 temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
acorn@2233 671 assert (temp->is_neutral(), "invariant") ;
acorn@2233 672 hash = temp->hash(); // by current thread, check if the displaced
acorn@2233 673 if (hash) { // header contains hash code
acorn@2233 674 return hash;
acorn@2233 675 }
acorn@2233 676 // WARNING:
acorn@2233 677 // The displaced header is strictly immutable.
acorn@2233 678 // It can NOT be changed in ANY cases. So we have
acorn@2233 679 // to inflate the header into heavyweight monitor
acorn@2233 680 // even the current thread owns the lock. The reason
acorn@2233 681 // is the BasicLock (stack slot) will be asynchronously
acorn@2233 682 // read by other threads during the inflate() function.
acorn@2233 683 // Any change to stack may not propagate to other threads
acorn@2233 684 // correctly.
acorn@2233 685 }
acorn@2233 686
acorn@2233 687 // Inflate the monitor to set hash code
acorn@2233 688 monitor = ObjectSynchronizer::inflate(Self, obj);
acorn@2233 689 // Load displaced header and check it has hash code
acorn@2233 690 mark = monitor->header();
acorn@2233 691 assert (mark->is_neutral(), "invariant") ;
acorn@2233 692 hash = mark->hash();
acorn@2233 693 if (hash == 0) {
acorn@2233 694 hash = get_next_hash(Self, obj);
acorn@2233 695 temp = mark->copy_set_hash(hash); // merge hash code into header
acorn@2233 696 assert (temp->is_neutral(), "invariant") ;
acorn@2233 697 test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
acorn@2233 698 if (test != mark) {
acorn@2233 699 // The only update to the header in the monitor (outside GC)
acorn@2233 700 // is install the hash code. If someone add new usage of
acorn@2233 701 // displaced header, please update this code
acorn@2233 702 hash = test->hash();
acorn@2233 703 assert (test->is_neutral(), "invariant") ;
acorn@2233 704 assert (hash != 0, "Trivial unexpected object/monitor header usage.");
acorn@2233 705 }
acorn@2233 706 }
acorn@2233 707 // We finally get the hash
acorn@2233 708 return hash;
duke@435 709 }
duke@435 710
acorn@2233 711 // Deprecated -- use FastHashCode() instead.
duke@435 712
acorn@2233 713 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
acorn@2233 714 return FastHashCode (Thread::current(), obj()) ;
duke@435 715 }
duke@435 716
duke@435 717
acorn@2233 718 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
acorn@2233 719 Handle h_obj) {
acorn@2233 720 if (UseBiasedLocking) {
acorn@2233 721 BiasedLocking::revoke_and_rebias(h_obj, false, thread);
acorn@2233 722 assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 723 }
duke@435 724
acorn@2233 725 assert(thread == JavaThread::current(), "Can only be called on current thread");
acorn@2233 726 oop obj = h_obj();
duke@435 727
acorn@2233 728 markOop mark = ReadStableMark (obj) ;
acorn@2233 729
acorn@2233 730 // Uncontended case, header points to stack
acorn@2233 731 if (mark->has_locker()) {
acorn@2233 732 return thread->is_lock_owned((address)mark->locker());
acorn@2233 733 }
acorn@2233 734 // Contended case, header points to ObjectMonitor (tagged pointer)
acorn@2233 735 if (mark->has_monitor()) {
acorn@2233 736 ObjectMonitor* monitor = mark->monitor();
acorn@2233 737 return monitor->is_entered(thread) != 0 ;
acorn@2233 738 }
acorn@2233 739 // Unlocked case, header in place
acorn@2233 740 assert(mark->is_neutral(), "sanity check");
acorn@2233 741 return false;
acorn@2233 742 }
acorn@2233 743
acorn@2233 744 // Be aware of this method could revoke bias of the lock object.
acorn@2233 745 // This method querys the ownership of the lock handle specified by 'h_obj'.
acorn@2233 746 // If the current thread owns the lock, it returns owner_self. If no
acorn@2233 747 // thread owns the lock, it returns owner_none. Otherwise, it will return
acorn@2233 748 // ower_other.
acorn@2233 749 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
acorn@2233 750 (JavaThread *self, Handle h_obj) {
acorn@2233 751 // The caller must beware this method can revoke bias, and
acorn@2233 752 // revocation can result in a safepoint.
acorn@2233 753 assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
acorn@2233 754 assert (self->thread_state() != _thread_blocked , "invariant") ;
acorn@2233 755
acorn@2233 756 // Possible mark states: neutral, biased, stack-locked, inflated
acorn@2233 757
acorn@2233 758 if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
acorn@2233 759 // CASE: biased
acorn@2233 760 BiasedLocking::revoke_and_rebias(h_obj, false, self);
acorn@2233 761 assert(!h_obj->mark()->has_bias_pattern(),
acorn@2233 762 "biases should be revoked by now");
acorn@2233 763 }
acorn@2233 764
acorn@2233 765 assert(self == JavaThread::current(), "Can only be called on current thread");
acorn@2233 766 oop obj = h_obj();
acorn@2233 767 markOop mark = ReadStableMark (obj) ;
acorn@2233 768
acorn@2233 769 // CASE: stack-locked. Mark points to a BasicLock on the owner's stack.
acorn@2233 770 if (mark->has_locker()) {
acorn@2233 771 return self->is_lock_owned((address)mark->locker()) ?
acorn@2233 772 owner_self : owner_other;
acorn@2233 773 }
acorn@2233 774
acorn@2233 775 // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
acorn@2233 776 // The Object:ObjectMonitor relationship is stable as long as we're
acorn@2233 777 // not at a safepoint.
acorn@2233 778 if (mark->has_monitor()) {
acorn@2233 779 void * owner = mark->monitor()->_owner ;
acorn@2233 780 if (owner == NULL) return owner_none ;
acorn@2233 781 return (owner == self ||
acorn@2233 782 self->is_lock_owned((address)owner)) ? owner_self : owner_other;
acorn@2233 783 }
acorn@2233 784
acorn@2233 785 // CASE: neutral
acorn@2233 786 assert(mark->is_neutral(), "sanity check");
acorn@2233 787 return owner_none ; // it's unlocked
acorn@2233 788 }
acorn@2233 789
acorn@2233 790 // FIXME: jvmti should call this
acorn@2233 791 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
acorn@2233 792 if (UseBiasedLocking) {
acorn@2233 793 if (SafepointSynchronize::is_at_safepoint()) {
acorn@2233 794 BiasedLocking::revoke_at_safepoint(h_obj);
acorn@2233 795 } else {
acorn@2233 796 BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
acorn@2233 797 }
acorn@2233 798 assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
acorn@2233 799 }
acorn@2233 800
acorn@2233 801 oop obj = h_obj();
acorn@2233 802 address owner = NULL;
acorn@2233 803
acorn@2233 804 markOop mark = ReadStableMark (obj) ;
acorn@2233 805
acorn@2233 806 // Uncontended case, header points to stack
acorn@2233 807 if (mark->has_locker()) {
acorn@2233 808 owner = (address) mark->locker();
acorn@2233 809 }
acorn@2233 810
acorn@2233 811 // Contended case, header points to ObjectMonitor (tagged pointer)
acorn@2233 812 if (mark->has_monitor()) {
acorn@2233 813 ObjectMonitor* monitor = mark->monitor();
acorn@2233 814 assert(monitor != NULL, "monitor should be non-null");
acorn@2233 815 owner = (address) monitor->owner();
acorn@2233 816 }
acorn@2233 817
acorn@2233 818 if (owner != NULL) {
dcubed@4673 819 // owning_thread_from_monitor_owner() may also return NULL here
acorn@2233 820 return Threads::owning_thread_from_monitor_owner(owner, doLock);
acorn@2233 821 }
acorn@2233 822
acorn@2233 823 // Unlocked case, header in place
acorn@2233 824 // Cannot have assertion since this object may have been
acorn@2233 825 // locked by another thread when reaching here.
acorn@2233 826 // assert(mark->is_neutral(), "sanity check");
acorn@2233 827
acorn@2233 828 return NULL;
acorn@2233 829 }
acorn@2233 830 // Visitors ...
acorn@2233 831
acorn@2233 832 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
acorn@2233 833 ObjectMonitor* block = gBlockList;
acorn@2233 834 ObjectMonitor* mid;
acorn@2233 835 while (block) {
acorn@2233 836 assert(block->object() == CHAINMARKER, "must be a block header");
acorn@2233 837 for (int i = _BLOCKSIZE - 1; i > 0; i--) {
acorn@2233 838 mid = block + i;
acorn@2233 839 oop object = (oop) mid->object();
acorn@2233 840 if (object != NULL) {
acorn@2233 841 closure->do_monitor(mid);
acorn@2233 842 }
acorn@2233 843 }
acorn@2233 844 block = (ObjectMonitor*) block->FreeNext;
duke@435 845 }
duke@435 846 }
duke@435 847
acorn@2233 848 // Get the next block in the block list.
acorn@2233 849 static inline ObjectMonitor* next(ObjectMonitor* block) {
acorn@2233 850 assert(block->object() == CHAINMARKER, "must be a block header");
acorn@2233 851 block = block->FreeNext ;
acorn@2233 852 assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
acorn@2233 853 return block;
duke@435 854 }
duke@435 855
duke@435 856
acorn@2233 857 void ObjectSynchronizer::oops_do(OopClosure* f) {
acorn@2233 858 assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
acorn@2233 859 for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
acorn@2233 860 assert(block->object() == CHAINMARKER, "must be a block header");
acorn@2233 861 for (int i = 1; i < _BLOCKSIZE; i++) {
acorn@2233 862 ObjectMonitor* mid = &block[i];
acorn@2233 863 if (mid->object() != NULL) {
acorn@2233 864 f->do_oop((oop*)mid->object_addr());
duke@435 865 }
duke@435 866 }
duke@435 867 }
duke@435 868 }
duke@435 869
duke@435 870
acorn@2233 871 // -----------------------------------------------------------------------------
duke@435 872 // ObjectMonitor Lifecycle
duke@435 873 // -----------------------
duke@435 874 // Inflation unlinks monitors from the global gFreeList and
duke@435 875 // associates them with objects. Deflation -- which occurs at
duke@435 876 // STW-time -- disassociates idle monitors from objects. Such
duke@435 877 // scavenged monitors are returned to the gFreeList.
duke@435 878 //
duke@435 879 // The global list is protected by ListLock. All the critical sections
duke@435 880 // are short and operate in constant-time.
duke@435 881 //
duke@435 882 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
duke@435 883 //
duke@435 884 // Lifecycle:
duke@435 885 // -- unassigned and on the global free list
duke@435 886 // -- unassigned and on a thread's private omFreeList
duke@435 887 // -- assigned to an object. The object is inflated and the mark refers
duke@435 888 // to the objectmonitor.
duke@435 889 //
duke@435 890
duke@435 891
acorn@1942 892 // Constraining monitor pool growth via MonitorBound ...
acorn@1942 893 //
acorn@1942 894 // The monitor pool is grow-only. We scavenge at STW safepoint-time, but the
acorn@1942 895 // the rate of scavenging is driven primarily by GC. As such, we can find
acorn@1942 896 // an inordinate number of monitors in circulation.
acorn@1942 897 // To avoid that scenario we can artificially induce a STW safepoint
acorn@1942 898 // if the pool appears to be growing past some reasonable bound.
acorn@1942 899 // Generally we favor time in space-time tradeoffs, but as there's no
acorn@1942 900 // natural back-pressure on the # of extant monitors we need to impose some
acorn@1942 901 // type of limit. Beware that if MonitorBound is set to too low a value
acorn@1942 902 // we could just loop. In addition, if MonitorBound is set to a low value
acorn@1942 903 // we'll incur more safepoints, which are harmful to performance.
acorn@1942 904 // See also: GuaranteedSafepointInterval
acorn@1942 905 //
acorn@1942 906 // The current implementation uses asynchronous VM operations.
acorn@1942 907 //
acorn@1942 908
acorn@1942 909 static void InduceScavenge (Thread * Self, const char * Whence) {
acorn@1942 910 // Induce STW safepoint to trim monitors
acorn@1942 911 // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
acorn@1942 912 // More precisely, trigger an asynchronous STW safepoint as the number
acorn@1942 913 // of active monitors passes the specified threshold.
acorn@1942 914 // TODO: assert thread state is reasonable
acorn@1942 915
acorn@1942 916 if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
acorn@2233 917 if (ObjectMonitor::Knob_Verbose) {
acorn@1942 918 ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
acorn@1942 919 ::fflush(stdout) ;
acorn@1942 920 }
acorn@1942 921 // Induce a 'null' safepoint to scavenge monitors
acorn@1942 922 // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
acorn@1942 923 // to the VMthread and have a lifespan longer than that of this activation record.
acorn@1942 924 // The VMThread will delete the op when completed.
acorn@1942 925 VMThread::execute (new VM_ForceAsyncSafepoint()) ;
acorn@1942 926
acorn@2233 927 if (ObjectMonitor::Knob_Verbose) {
acorn@1942 928 ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
acorn@1942 929 ::fflush(stdout) ;
acorn@1942 930 }
acorn@1942 931 }
acorn@1942 932 }
acorn@1995 933 /* Too slow for general assert or debug
acorn@1995 934 void ObjectSynchronizer::verifyInUse (Thread *Self) {
acorn@1995 935 ObjectMonitor* mid;
acorn@1995 936 int inusetally = 0;
acorn@1995 937 for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
acorn@1995 938 inusetally ++;
acorn@1995 939 }
acorn@1995 940 assert(inusetally == Self->omInUseCount, "inuse count off");
acorn@1995 941
acorn@1995 942 int freetally = 0;
acorn@1995 943 for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
acorn@1995 944 freetally ++;
acorn@1995 945 }
acorn@1995 946 assert(freetally == Self->omFreeCount, "free count off");
acorn@1995 947 }
acorn@1995 948 */
duke@435 949 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
duke@435 950 // A large MAXPRIVATE value reduces both list lock contention
duke@435 951 // and list coherency traffic, but also tends to increase the
duke@435 952 // number of objectMonitors in circulation as well as the STW
duke@435 953 // scavenge costs. As usual, we lean toward time in space-time
duke@435 954 // tradeoffs.
duke@435 955 const int MAXPRIVATE = 1024 ;
duke@435 956 for (;;) {
duke@435 957 ObjectMonitor * m ;
duke@435 958
duke@435 959 // 1: try to allocate from the thread's local omFreeList.
duke@435 960 // Threads will attempt to allocate first from their local list, then
duke@435 961 // from the global list, and only after those attempts fail will the thread
duke@435 962 // attempt to instantiate new monitors. Thread-local free lists take
duke@435 963 // heat off the ListLock and improve allocation latency, as well as reducing
duke@435 964 // coherency traffic on the shared global list.
duke@435 965 m = Self->omFreeList ;
duke@435 966 if (m != NULL) {
duke@435 967 Self->omFreeList = m->FreeNext ;
duke@435 968 Self->omFreeCount -- ;
duke@435 969 // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
duke@435 970 guarantee (m->object() == NULL, "invariant") ;
acorn@1942 971 if (MonitorInUseLists) {
acorn@1942 972 m->FreeNext = Self->omInUseList;
acorn@1942 973 Self->omInUseList = m;
acorn@1942 974 Self->omInUseCount ++;
acorn@1995 975 // verifyInUse(Self);
acorn@1995 976 } else {
acorn@1995 977 m->FreeNext = NULL;
acorn@1942 978 }
duke@435 979 return m ;
duke@435 980 }
duke@435 981
duke@435 982 // 2: try to allocate from the global gFreeList
duke@435 983 // CONSIDER: use muxTry() instead of muxAcquire().
duke@435 984 // If the muxTry() fails then drop immediately into case 3.
duke@435 985 // If we're using thread-local free lists then try
duke@435 986 // to reprovision the caller's free list.
duke@435 987 if (gFreeList != NULL) {
duke@435 988 // Reprovision the thread's omFreeList.
duke@435 989 // Use bulk transfers to reduce the allocation rate and heat
duke@435 990 // on various locks.
duke@435 991 Thread::muxAcquire (&ListLock, "omAlloc") ;
duke@435 992 for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
acorn@1942 993 MonitorFreeCount --;
duke@435 994 ObjectMonitor * take = gFreeList ;
duke@435 995 gFreeList = take->FreeNext ;
duke@435 996 guarantee (take->object() == NULL, "invariant") ;
duke@435 997 guarantee (!take->is_busy(), "invariant") ;
duke@435 998 take->Recycle() ;
acorn@1995 999 omRelease (Self, take, false) ;
duke@435 1000 }
duke@435 1001 Thread::muxRelease (&ListLock) ;
duke@435 1002 Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
duke@435 1003 if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
duke@435 1004 TEVENT (omFirst - reprovision) ;
acorn@1942 1005
acorn@1942 1006 const int mx = MonitorBound ;
acorn@1942 1007 if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
acorn@1942 1008 // We can't safely induce a STW safepoint from omAlloc() as our thread
acorn@1942 1009 // state may not be appropriate for such activities and callers may hold
acorn@1942 1010 // naked oops, so instead we defer the action.
acorn@1942 1011 InduceScavenge (Self, "omAlloc") ;
acorn@1942 1012 }
acorn@1942 1013 continue;
duke@435 1014 }
duke@435 1015
duke@435 1016 // 3: allocate a block of new ObjectMonitors
duke@435 1017 // Both the local and global free lists are empty -- resort to malloc().
duke@435 1018 // In the current implementation objectMonitors are TSM - immortal.
duke@435 1019 assert (_BLOCKSIZE > 1, "invariant") ;
dcubed@4967 1020 ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
duke@435 1021
duke@435 1022 // NOTE: (almost) no way to recover if allocation failed.
duke@435 1023 // We might be able to induce a STW safepoint and scavenge enough
duke@435 1024 // objectMonitors to permit progress.
duke@435 1025 if (temp == NULL) {
ccheung@4993 1026 vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), OOM_MALLOC_ERROR,
ccheung@4993 1027 "Allocate ObjectMonitors");
duke@435 1028 }
duke@435 1029
duke@435 1030 // Format the block.
duke@435 1031 // initialize the linked list, each monitor points to its next
duke@435 1032 // forming the single linked free list, the very first monitor
duke@435 1033 // will points to next block, which forms the block list.
duke@435 1034 // The trick of using the 1st element in the block as gBlockList
duke@435 1035 // linkage should be reconsidered. A better implementation would
duke@435 1036 // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
duke@435 1037
duke@435 1038 for (int i = 1; i < _BLOCKSIZE ; i++) {
duke@435 1039 temp[i].FreeNext = &temp[i+1];
duke@435 1040 }
duke@435 1041
duke@435 1042 // terminate the last monitor as the end of list
duke@435 1043 temp[_BLOCKSIZE - 1].FreeNext = NULL ;
duke@435 1044
duke@435 1045 // Element [0] is reserved for global list linkage
duke@435 1046 temp[0].set_object(CHAINMARKER);
duke@435 1047
duke@435 1048 // Consider carving out this thread's current request from the
duke@435 1049 // block in hand. This avoids some lock traffic and redundant
duke@435 1050 // list activity.
duke@435 1051
duke@435 1052 // Acquire the ListLock to manipulate BlockList and FreeList.
duke@435 1053 // An Oyama-Taura-Yonezawa scheme might be more efficient.
duke@435 1054 Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
acorn@1942 1055 MonitorPopulation += _BLOCKSIZE-1;
acorn@1942 1056 MonitorFreeCount += _BLOCKSIZE-1;
duke@435 1057
duke@435 1058 // Add the new block to the list of extant blocks (gBlockList).
duke@435 1059 // The very first objectMonitor in a block is reserved and dedicated.
duke@435 1060 // It serves as blocklist "next" linkage.
duke@435 1061 temp[0].FreeNext = gBlockList;
duke@435 1062 gBlockList = temp;
duke@435 1063
duke@435 1064 // Add the new string of objectMonitors to the global free list
duke@435 1065 temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
duke@435 1066 gFreeList = temp + 1;
duke@435 1067 Thread::muxRelease (&ListLock) ;
duke@435 1068 TEVENT (Allocate block of monitors) ;
duke@435 1069 }
duke@435 1070 }
duke@435 1071
duke@435 1072 // Place "m" on the caller's private per-thread omFreeList.
duke@435 1073 // In practice there's no need to clamp or limit the number of
duke@435 1074 // monitors on a thread's omFreeList as the only time we'll call
duke@435 1075 // omRelease is to return a monitor to the free list after a CAS
duke@435 1076 // attempt failed. This doesn't allow unbounded #s of monitors to
duke@435 1077 // accumulate on a thread's free list.
duke@435 1078 //
duke@435 1079
acorn@1995 1080 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
duke@435 1081 guarantee (m->object() == NULL, "invariant") ;
acorn@1995 1082
acorn@1995 1083 // Remove from omInUseList
acorn@1995 1084 if (MonitorInUseLists && fromPerThreadAlloc) {
acorn@1995 1085 ObjectMonitor* curmidinuse = NULL;
acorn@1995 1086 for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
acorn@1995 1087 if (m == mid) {
acorn@1995 1088 // extract from per-thread in-use-list
acorn@1995 1089 if (mid == Self->omInUseList) {
acorn@1995 1090 Self->omInUseList = mid->FreeNext;
acorn@1995 1091 } else if (curmidinuse != NULL) {
acorn@1995 1092 curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
acorn@1995 1093 }
acorn@1995 1094 Self->omInUseCount --;
acorn@1995 1095 // verifyInUse(Self);
acorn@1995 1096 break;
acorn@1995 1097 } else {
acorn@1995 1098 curmidinuse = mid;
acorn@1995 1099 mid = mid->FreeNext;
acorn@1995 1100 }
acorn@1995 1101 }
acorn@1995 1102 }
acorn@1995 1103
acorn@1995 1104 // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
acorn@1995 1105 m->FreeNext = Self->omFreeList ;
acorn@1995 1106 Self->omFreeList = m ;
acorn@1995 1107 Self->omFreeCount ++ ;
duke@435 1108 }
duke@435 1109
duke@435 1110 // Return the monitors of a moribund thread's local free list to
duke@435 1111 // the global free list. Typically a thread calls omFlush() when
duke@435 1112 // it's dying. We could also consider having the VM thread steal
duke@435 1113 // monitors from threads that have not run java code over a few
duke@435 1114 // consecutive STW safepoints. Relatedly, we might decay
duke@435 1115 // omFreeProvision at STW safepoints.
duke@435 1116 //
acorn@1995 1117 // Also return the monitors of a moribund thread"s omInUseList to
acorn@1995 1118 // a global gOmInUseList under the global list lock so these
acorn@1995 1119 // will continue to be scanned.
acorn@1995 1120 //
duke@435 1121 // We currently call omFlush() from the Thread:: dtor _after the thread
duke@435 1122 // has been excised from the thread list and is no longer a mutator.
duke@435 1123 // That means that omFlush() can run concurrently with a safepoint and
duke@435 1124 // the scavenge operator. Calling omFlush() from JavaThread::exit() might
duke@435 1125 // be a better choice as we could safely reason that that the JVM is
duke@435 1126 // not at a safepoint at the time of the call, and thus there could
duke@435 1127 // be not inopportune interleavings between omFlush() and the scavenge
duke@435 1128 // operator.
duke@435 1129
duke@435 1130 void ObjectSynchronizer::omFlush (Thread * Self) {
duke@435 1131 ObjectMonitor * List = Self->omFreeList ; // Null-terminated SLL
duke@435 1132 Self->omFreeList = NULL ;
duke@435 1133 ObjectMonitor * Tail = NULL ;
acorn@1942 1134 int Tally = 0;
acorn@1995 1135 if (List != NULL) {
acorn@1995 1136 ObjectMonitor * s ;
acorn@1995 1137 for (s = List ; s != NULL ; s = s->FreeNext) {
acorn@1995 1138 Tally ++ ;
acorn@1995 1139 Tail = s ;
acorn@1995 1140 guarantee (s->object() == NULL, "invariant") ;
acorn@1995 1141 guarantee (!s->is_busy(), "invariant") ;
acorn@1995 1142 s->set_owner (NULL) ; // redundant but good hygiene
acorn@1995 1143 TEVENT (omFlush - Move one) ;
acorn@1995 1144 }
acorn@1995 1145 guarantee (Tail != NULL && List != NULL, "invariant") ;
duke@435 1146 }
duke@435 1147
acorn@1995 1148 ObjectMonitor * InUseList = Self->omInUseList;
acorn@1995 1149 ObjectMonitor * InUseTail = NULL ;
acorn@1995 1150 int InUseTally = 0;
acorn@1995 1151 if (InUseList != NULL) {
acorn@1995 1152 Self->omInUseList = NULL;
acorn@1995 1153 ObjectMonitor *curom;
acorn@1995 1154 for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
acorn@1995 1155 InUseTail = curom;
acorn@1995 1156 InUseTally++;
acorn@1995 1157 }
acorn@1995 1158 // TODO debug
acorn@1995 1159 assert(Self->omInUseCount == InUseTally, "inuse count off");
acorn@1995 1160 Self->omInUseCount = 0;
acorn@1995 1161 guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
acorn@1995 1162 }
acorn@1995 1163
duke@435 1164 Thread::muxAcquire (&ListLock, "omFlush") ;
acorn@1995 1165 if (Tail != NULL) {
acorn@1995 1166 Tail->FreeNext = gFreeList ;
acorn@1995 1167 gFreeList = List ;
acorn@1995 1168 MonitorFreeCount += Tally;
acorn@1995 1169 }
acorn@1995 1170
acorn@1995 1171 if (InUseTail != NULL) {
acorn@1995 1172 InUseTail->FreeNext = gOmInUseList;
acorn@1995 1173 gOmInUseList = InUseList;
acorn@1995 1174 gOmInUseCount += InUseTally;
acorn@1995 1175 }
acorn@1995 1176
duke@435 1177 Thread::muxRelease (&ListLock) ;
duke@435 1178 TEVENT (omFlush) ;
duke@435 1179 }
duke@435 1180
duke@435 1181 // Fast path code shared by multiple functions
duke@435 1182 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
duke@435 1183 markOop mark = obj->mark();
duke@435 1184 if (mark->has_monitor()) {
duke@435 1185 assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
duke@435 1186 assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
duke@435 1187 return mark->monitor();
duke@435 1188 }
duke@435 1189 return ObjectSynchronizer::inflate(Thread::current(), obj);
duke@435 1190 }
duke@435 1191
acorn@2233 1192
duke@435 1193 // Note that we could encounter some performance loss through false-sharing as
duke@435 1194 // multiple locks occupy the same $ line. Padding might be appropriate.
duke@435 1195
duke@435 1196
duke@435 1197 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
duke@435 1198 // Inflate mutates the heap ...
duke@435 1199 // Relaxing assertion for bug 6320749.
duke@435 1200 assert (Universe::verify_in_progress() ||
duke@435 1201 !SafepointSynchronize::is_at_safepoint(), "invariant") ;
duke@435 1202
duke@435 1203 for (;;) {
duke@435 1204 const markOop mark = object->mark() ;
duke@435 1205 assert (!mark->has_bias_pattern(), "invariant") ;
duke@435 1206
duke@435 1207 // The mark can be in one of the following states:
duke@435 1208 // * Inflated - just return
duke@435 1209 // * Stack-locked - coerce it to inflated
duke@435 1210 // * INFLATING - busy wait for conversion to complete
duke@435 1211 // * Neutral - aggressively inflate the object.
duke@435 1212 // * BIASED - Illegal. We should never see this
duke@435 1213
duke@435 1214 // CASE: inflated
duke@435 1215 if (mark->has_monitor()) {
duke@435 1216 ObjectMonitor * inf = mark->monitor() ;
duke@435 1217 assert (inf->header()->is_neutral(), "invariant");
duke@435 1218 assert (inf->object() == object, "invariant") ;
duke@435 1219 assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
duke@435 1220 return inf ;
duke@435 1221 }
duke@435 1222
duke@435 1223 // CASE: inflation in progress - inflating over a stack-lock.
duke@435 1224 // Some other thread is converting from stack-locked to inflated.
duke@435 1225 // Only that thread can complete inflation -- other threads must wait.
duke@435 1226 // The INFLATING value is transient.
duke@435 1227 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
duke@435 1228 // We could always eliminate polling by parking the thread on some auxiliary list.
duke@435 1229 if (mark == markOopDesc::INFLATING()) {
duke@435 1230 TEVENT (Inflate: spin while INFLATING) ;
duke@435 1231 ReadStableMark(object) ;
duke@435 1232 continue ;
duke@435 1233 }
duke@435 1234
duke@435 1235 // CASE: stack-locked
duke@435 1236 // Could be stack-locked either by this thread or by some other thread.
duke@435 1237 //
duke@435 1238 // Note that we allocate the objectmonitor speculatively, _before_ attempting
duke@435 1239 // to install INFLATING into the mark word. We originally installed INFLATING,
duke@435 1240 // allocated the objectmonitor, and then finally STed the address of the
duke@435 1241 // objectmonitor into the mark. This was correct, but artificially lengthened
duke@435 1242 // the interval in which INFLATED appeared in the mark, thus increasing
duke@435 1243 // the odds of inflation contention.
duke@435 1244 //
duke@435 1245 // We now use per-thread private objectmonitor free lists.
duke@435 1246 // These list are reprovisioned from the global free list outside the
duke@435 1247 // critical INFLATING...ST interval. A thread can transfer
duke@435 1248 // multiple objectmonitors en-mass from the global free list to its local free list.
duke@435 1249 // This reduces coherency traffic and lock contention on the global free list.
duke@435 1250 // Using such local free lists, it doesn't matter if the omAlloc() call appears
duke@435 1251 // before or after the CAS(INFLATING) operation.
duke@435 1252 // See the comments in omAlloc().
duke@435 1253
duke@435 1254 if (mark->has_locker()) {
duke@435 1255 ObjectMonitor * m = omAlloc (Self) ;
duke@435 1256 // Optimistically prepare the objectmonitor - anticipate successful CAS
duke@435 1257 // We do this before the CAS in order to minimize the length of time
duke@435 1258 // in which INFLATING appears in the mark.
duke@435 1259 m->Recycle();
duke@435 1260 m->_Responsible = NULL ;
duke@435 1261 m->OwnerIsThread = 0 ;
duke@435 1262 m->_recursions = 0 ;
acorn@2233 1263 m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ; // Consider: maintain by type/class
duke@435 1264
duke@435 1265 markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
duke@435 1266 if (cmp != mark) {
acorn@1995 1267 omRelease (Self, m, true) ;
duke@435 1268 continue ; // Interference -- just retry
duke@435 1269 }
duke@435 1270
duke@435 1271 // We've successfully installed INFLATING (0) into the mark-word.
duke@435 1272 // This is the only case where 0 will appear in a mark-work.
duke@435 1273 // Only the singular thread that successfully swings the mark-word
duke@435 1274 // to 0 can perform (or more precisely, complete) inflation.
duke@435 1275 //
duke@435 1276 // Why do we CAS a 0 into the mark-word instead of just CASing the
duke@435 1277 // mark-word from the stack-locked value directly to the new inflated state?
duke@435 1278 // Consider what happens when a thread unlocks a stack-locked object.
duke@435 1279 // It attempts to use CAS to swing the displaced header value from the
duke@435 1280 // on-stack basiclock back into the object header. Recall also that the
duke@435 1281 // header value (hashcode, etc) can reside in (a) the object header, or
duke@435 1282 // (b) a displaced header associated with the stack-lock, or (c) a displaced
duke@435 1283 // header in an objectMonitor. The inflate() routine must copy the header
duke@435 1284 // value from the basiclock on the owner's stack to the objectMonitor, all
duke@435 1285 // the while preserving the hashCode stability invariants. If the owner
duke@435 1286 // decides to release the lock while the value is 0, the unlock will fail
duke@435 1287 // and control will eventually pass from slow_exit() to inflate. The owner
duke@435 1288 // will then spin, waiting for the 0 value to disappear. Put another way,
duke@435 1289 // the 0 causes the owner to stall if the owner happens to try to
duke@435 1290 // drop the lock (restoring the header from the basiclock to the object)
duke@435 1291 // while inflation is in-progress. This protocol avoids races that might
duke@435 1292 // would otherwise permit hashCode values to change or "flicker" for an object.
duke@435 1293 // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
duke@435 1294 // 0 serves as a "BUSY" inflate-in-progress indicator.
duke@435 1295
duke@435 1296
duke@435 1297 // fetch the displaced mark from the owner's stack.
duke@435 1298 // The owner can't die or unwind past the lock while our INFLATING
duke@435 1299 // object is in the mark. Furthermore the owner can't complete
duke@435 1300 // an unlock on the object, either.
duke@435 1301 markOop dmw = mark->displaced_mark_helper() ;
duke@435 1302 assert (dmw->is_neutral(), "invariant") ;
duke@435 1303
duke@435 1304 // Setup monitor fields to proper values -- prepare the monitor
duke@435 1305 m->set_header(dmw) ;
duke@435 1306
duke@435 1307 // Optimization: if the mark->locker stack address is associated
duke@435 1308 // with this thread we could simply set m->_owner = Self and
xlu@1137 1309 // m->OwnerIsThread = 1. Note that a thread can inflate an object
duke@435 1310 // that it has stack-locked -- as might happen in wait() -- directly
duke@435 1311 // with CAS. That is, we can avoid the xchg-NULL .... ST idiom.
xlu@1137 1312 m->set_owner(mark->locker());
duke@435 1313 m->set_object(object);
duke@435 1314 // TODO-FIXME: assert BasicLock->dhw != 0.
duke@435 1315
duke@435 1316 // Must preserve store ordering. The monitor state must
duke@435 1317 // be stable at the time of publishing the monitor address.
duke@435 1318 guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
duke@435 1319 object->release_set_mark(markOopDesc::encode(m));
duke@435 1320
duke@435 1321 // Hopefully the performance counters are allocated on distinct cache lines
duke@435 1322 // to avoid false sharing on MP systems ...
acorn@2233 1323 if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
duke@435 1324 TEVENT(Inflate: overwrite stacklock) ;
duke@435 1325 if (TraceMonitorInflation) {
duke@435 1326 if (object->is_instance()) {
duke@435 1327 ResourceMark rm;
duke@435 1328 tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
hseigel@5784 1329 (void *) object, (intptr_t) object->mark(),
hseigel@4278 1330 object->klass()->external_name());
duke@435 1331 }
duke@435 1332 }
duke@435 1333 return m ;
duke@435 1334 }
duke@435 1335
duke@435 1336 // CASE: neutral
duke@435 1337 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
duke@435 1338 // If we know we're inflating for entry it's better to inflate by swinging a
duke@435 1339 // pre-locked objectMonitor pointer into the object header. A successful
duke@435 1340 // CAS inflates the object *and* confers ownership to the inflating thread.
duke@435 1341 // In the current implementation we use a 2-step mechanism where we CAS()
duke@435 1342 // to inflate and then CAS() again to try to swing _owner from NULL to Self.
duke@435 1343 // An inflateTry() method that we could call from fast_enter() and slow_enter()
duke@435 1344 // would be useful.
duke@435 1345
duke@435 1346 assert (mark->is_neutral(), "invariant");
duke@435 1347 ObjectMonitor * m = omAlloc (Self) ;
duke@435 1348 // prepare m for installation - set monitor to initial state
duke@435 1349 m->Recycle();
duke@435 1350 m->set_header(mark);
duke@435 1351 m->set_owner(NULL);
duke@435 1352 m->set_object(object);
duke@435 1353 m->OwnerIsThread = 1 ;
duke@435 1354 m->_recursions = 0 ;
duke@435 1355 m->_Responsible = NULL ;
acorn@2233 1356 m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ; // consider: keep metastats by type/class
duke@435 1357
duke@435 1358 if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
duke@435 1359 m->set_object (NULL) ;
duke@435 1360 m->set_owner (NULL) ;
duke@435 1361 m->OwnerIsThread = 0 ;
duke@435 1362 m->Recycle() ;
acorn@1995 1363 omRelease (Self, m, true) ;
duke@435 1364 m = NULL ;
duke@435 1365 continue ;
duke@435 1366 // interference - the markword changed - just retry.
duke@435 1367 // The state-transitions are one-way, so there's no chance of
duke@435 1368 // live-lock -- "Inflated" is an absorbing state.
duke@435 1369 }
duke@435 1370
duke@435 1371 // Hopefully the performance counters are allocated on distinct
duke@435 1372 // cache lines to avoid false sharing on MP systems ...
acorn@2233 1373 if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
duke@435 1374 TEVENT(Inflate: overwrite neutral) ;
duke@435 1375 if (TraceMonitorInflation) {
duke@435 1376 if (object->is_instance()) {
duke@435 1377 ResourceMark rm;
duke@435 1378 tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
hseigel@5784 1379 (void *) object, (intptr_t) object->mark(),
hseigel@4278 1380 object->klass()->external_name());
duke@435 1381 }
duke@435 1382 }
duke@435 1383 return m ;
duke@435 1384 }
duke@435 1385 }
duke@435 1386
acorn@2233 1387 // Note that we could encounter some performance loss through false-sharing as
acorn@2233 1388 // multiple locks occupy the same $ line. Padding might be appropriate.
duke@435 1389
duke@435 1390
duke@435 1391 // Deflate_idle_monitors() is called at all safepoints, immediately
duke@435 1392 // after all mutators are stopped, but before any objects have moved.
duke@435 1393 // It traverses the list of known monitors, deflating where possible.
duke@435 1394 // The scavenged monitor are returned to the monitor free list.
duke@435 1395 //
duke@435 1396 // Beware that we scavenge at *every* stop-the-world point.
duke@435 1397 // Having a large number of monitors in-circulation negatively
duke@435 1398 // impacts the performance of some applications (e.g., PointBase).
duke@435 1399 // Broadly, we want to minimize the # of monitors in circulation.
acorn@1942 1400 //
acorn@1942 1401 // We have added a flag, MonitorInUseLists, which creates a list
acorn@1942 1402 // of active monitors for each thread. deflate_idle_monitors()
acorn@1942 1403 // only scans the per-thread inuse lists. omAlloc() puts all
acorn@1942 1404 // assigned monitors on the per-thread list. deflate_idle_monitors()
acorn@1942 1405 // returns the non-busy monitors to the global free list.
acorn@1995 1406 // When a thread dies, omFlush() adds the list of active monitors for
acorn@1995 1407 // that thread to a global gOmInUseList acquiring the
acorn@1995 1408 // global list lock. deflate_idle_monitors() acquires the global
acorn@1995 1409 // list lock to scan for non-busy monitors to the global free list.
acorn@1942 1410 // An alternative could have used a single global inuse list. The
acorn@1942 1411 // downside would have been the additional cost of acquiring the global list lock
acorn@1942 1412 // for every omAlloc().
duke@435 1413 //
duke@435 1414 // Perversely, the heap size -- and thus the STW safepoint rate --
duke@435 1415 // typically drives the scavenge rate. Large heaps can mean infrequent GC,
duke@435 1416 // which in turn can mean large(r) numbers of objectmonitors in circulation.
duke@435 1417 // This is an unfortunate aspect of this design.
duke@435 1418 //
duke@435 1419
acorn@2233 1420 enum ManifestConstants {
acorn@2233 1421 ClearResponsibleAtSTW = 0,
acorn@2233 1422 MaximumRecheckInterval = 1000
acorn@2233 1423 } ;
acorn@1942 1424
acorn@1942 1425 // Deflate a single monitor if not in use
acorn@1942 1426 // Return true if deflated, false if in use
acorn@1942 1427 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
acorn@1942 1428 ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
acorn@1942 1429 bool deflated;
acorn@1942 1430 // Normal case ... The monitor is associated with obj.
acorn@1942 1431 guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
acorn@1942 1432 guarantee (mid == obj->mark()->monitor(), "invariant");
acorn@1942 1433 guarantee (mid->header()->is_neutral(), "invariant");
acorn@1942 1434
acorn@1942 1435 if (mid->is_busy()) {
acorn@1942 1436 if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
acorn@1942 1437 deflated = false;
acorn@1942 1438 } else {
acorn@1942 1439 // Deflate the monitor if it is no longer being used
acorn@1942 1440 // It's idle - scavenge and return to the global free list
acorn@1942 1441 // plain old deflation ...
acorn@1942 1442 TEVENT (deflate_idle_monitors - scavenge1) ;
acorn@1942 1443 if (TraceMonitorInflation) {
acorn@1942 1444 if (obj->is_instance()) {
acorn@1942 1445 ResourceMark rm;
acorn@1942 1446 tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
hseigel@5784 1447 (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
acorn@1942 1448 }
acorn@1942 1449 }
acorn@1942 1450
acorn@1942 1451 // Restore the header back to obj
acorn@1942 1452 obj->release_set_mark(mid->header());
acorn@1942 1453 mid->clear();
acorn@1942 1454
acorn@1942 1455 assert (mid->object() == NULL, "invariant") ;
acorn@1942 1456
acorn@1942 1457 // Move the object to the working free list defined by FreeHead,FreeTail.
acorn@1942 1458 if (*FreeHeadp == NULL) *FreeHeadp = mid;
acorn@1942 1459 if (*FreeTailp != NULL) {
acorn@1942 1460 ObjectMonitor * prevtail = *FreeTailp;
acorn@1995 1461 assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
acorn@1942 1462 prevtail->FreeNext = mid;
acorn@1942 1463 }
acorn@1942 1464 *FreeTailp = mid;
acorn@1942 1465 deflated = true;
acorn@1942 1466 }
acorn@1942 1467 return deflated;
acorn@1942 1468 }
acorn@1942 1469
acorn@1995 1470 // Caller acquires ListLock
acorn@1995 1471 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
acorn@1995 1472 ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
acorn@1995 1473 ObjectMonitor* mid;
acorn@1995 1474 ObjectMonitor* next;
acorn@1995 1475 ObjectMonitor* curmidinuse = NULL;
acorn@1995 1476 int deflatedcount = 0;
acorn@1995 1477
acorn@1995 1478 for (mid = *listheadp; mid != NULL; ) {
acorn@1995 1479 oop obj = (oop) mid->object();
acorn@1995 1480 bool deflated = false;
acorn@1995 1481 if (obj != NULL) {
acorn@1995 1482 deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
acorn@1995 1483 }
acorn@1995 1484 if (deflated) {
acorn@1995 1485 // extract from per-thread in-use-list
acorn@1995 1486 if (mid == *listheadp) {
acorn@1995 1487 *listheadp = mid->FreeNext;
acorn@1995 1488 } else if (curmidinuse != NULL) {
acorn@1995 1489 curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
acorn@1995 1490 }
acorn@1995 1491 next = mid->FreeNext;
acorn@1995 1492 mid->FreeNext = NULL; // This mid is current tail in the FreeHead list
acorn@1995 1493 mid = next;
acorn@1995 1494 deflatedcount++;
acorn@1995 1495 } else {
acorn@1995 1496 curmidinuse = mid;
acorn@1995 1497 mid = mid->FreeNext;
acorn@1995 1498 }
acorn@1995 1499 }
acorn@1995 1500 return deflatedcount;
acorn@1995 1501 }
acorn@1995 1502
duke@435 1503 void ObjectSynchronizer::deflate_idle_monitors() {
duke@435 1504 assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
duke@435 1505 int nInuse = 0 ; // currently associated with objects
duke@435 1506 int nInCirculation = 0 ; // extant
duke@435 1507 int nScavenged = 0 ; // reclaimed
acorn@1942 1508 bool deflated = false;
duke@435 1509
duke@435 1510 ObjectMonitor * FreeHead = NULL ; // Local SLL of scavenged monitors
duke@435 1511 ObjectMonitor * FreeTail = NULL ;
duke@435 1512
acorn@1942 1513 TEVENT (deflate_idle_monitors) ;
acorn@1942 1514 // Prevent omFlush from changing mids in Thread dtor's during deflation
acorn@1942 1515 // And in case the vm thread is acquiring a lock during a safepoint
acorn@1942 1516 // See e.g. 6320749
acorn@1942 1517 Thread::muxAcquire (&ListLock, "scavenge - return") ;
acorn@1942 1518
acorn@1942 1519 if (MonitorInUseLists) {
acorn@1995 1520 int inUse = 0;
acorn@1942 1521 for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
acorn@1995 1522 nInCirculation+= cur->omInUseCount;
acorn@1995 1523 int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
acorn@1995 1524 cur->omInUseCount-= deflatedcount;
acorn@1995 1525 // verifyInUse(cur);
acorn@1995 1526 nScavenged += deflatedcount;
acorn@1995 1527 nInuse += cur->omInUseCount;
acorn@1942 1528 }
acorn@1995 1529
acorn@1995 1530 // For moribund threads, scan gOmInUseList
acorn@1995 1531 if (gOmInUseList) {
acorn@1995 1532 nInCirculation += gOmInUseCount;
acorn@1995 1533 int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
acorn@1995 1534 gOmInUseCount-= deflatedcount;
acorn@1995 1535 nScavenged += deflatedcount;
acorn@1995 1536 nInuse += gOmInUseCount;
acorn@1995 1537 }
acorn@1995 1538
acorn@1942 1539 } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
duke@435 1540 // Iterate over all extant monitors - Scavenge all idle monitors.
duke@435 1541 assert(block->object() == CHAINMARKER, "must be a block header");
duke@435 1542 nInCirculation += _BLOCKSIZE ;
duke@435 1543 for (int i = 1 ; i < _BLOCKSIZE; i++) {
duke@435 1544 ObjectMonitor* mid = &block[i];
duke@435 1545 oop obj = (oop) mid->object();
duke@435 1546
duke@435 1547 if (obj == NULL) {
duke@435 1548 // The monitor is not associated with an object.
duke@435 1549 // The monitor should either be a thread-specific private
duke@435 1550 // free list or the global free list.
duke@435 1551 // obj == NULL IMPLIES mid->is_busy() == 0
duke@435 1552 guarantee (!mid->is_busy(), "invariant") ;
duke@435 1553 continue ;
duke@435 1554 }
acorn@1942 1555 deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
acorn@1942 1556
acorn@1942 1557 if (deflated) {
acorn@1942 1558 mid->FreeNext = NULL ;
acorn@1942 1559 nScavenged ++ ;
duke@435 1560 } else {
acorn@1942 1561 nInuse ++;
duke@435 1562 }
duke@435 1563 }
duke@435 1564 }
duke@435 1565
acorn@1942 1566 MonitorFreeCount += nScavenged;
acorn@1942 1567
acorn@1942 1568 // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
acorn@1942 1569
acorn@2233 1570 if (ObjectMonitor::Knob_Verbose) {
acorn@1942 1571 ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
acorn@1942 1572 nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
acorn@1942 1573 MonitorPopulation, MonitorFreeCount) ;
acorn@1942 1574 ::fflush(stdout) ;
acorn@1942 1575 }
acorn@1942 1576
acorn@1942 1577 ForceMonitorScavenge = 0; // Reset
acorn@1942 1578
duke@435 1579 // Move the scavenged monitors back to the global free list.
duke@435 1580 if (FreeHead != NULL) {
duke@435 1581 guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
duke@435 1582 assert (FreeTail->FreeNext == NULL, "invariant") ;
duke@435 1583 // constant-time list splice - prepend scavenged segment to gFreeList
duke@435 1584 FreeTail->FreeNext = gFreeList ;
duke@435 1585 gFreeList = FreeHead ;
duke@435 1586 }
acorn@1942 1587 Thread::muxRelease (&ListLock) ;
duke@435 1588
acorn@2233 1589 if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
acorn@2233 1590 if (ObjectMonitor::_sync_MonExtant != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
duke@435 1591
duke@435 1592 // TODO: Add objectMonitor leak detection.
duke@435 1593 // Audit/inventory the objectMonitors -- make sure they're all accounted for.
duke@435 1594 GVars.stwRandom = os::random() ;
duke@435 1595 GVars.stwCycle ++ ;
duke@435 1596 }
duke@435 1597
acorn@2233 1598 // Monitor cleanup on JavaThread::exit
duke@435 1599
acorn@2233 1600 // Iterate through monitor cache and attempt to release thread's monitors
acorn@2233 1601 // Gives up on a particular monitor if an exception occurs, but continues
acorn@2233 1602 // the overall iteration, swallowing the exception.
acorn@2233 1603 class ReleaseJavaMonitorsClosure: public MonitorClosure {
acorn@2233 1604 private:
acorn@2233 1605 TRAPS;
duke@435 1606
acorn@2233 1607 public:
acorn@2233 1608 ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
acorn@2233 1609 void do_monitor(ObjectMonitor* mid) {
acorn@2233 1610 if (mid->owner() == THREAD) {
acorn@2233 1611 (void)mid->complete_exit(CHECK);
duke@435 1612 }
duke@435 1613 }
acorn@2233 1614 };
acorn@2233 1615
acorn@2233 1616 // Release all inflated monitors owned by THREAD. Lightweight monitors are
acorn@2233 1617 // ignored. This is meant to be called during JNI thread detach which assumes
acorn@2233 1618 // all remaining monitors are heavyweight. All exceptions are swallowed.
acorn@2233 1619 // Scanning the extant monitor list can be time consuming.
acorn@2233 1620 // A simple optimization is to add a per-thread flag that indicates a thread
acorn@2233 1621 // called jni_monitorenter() during its lifetime.
acorn@2233 1622 //
acorn@2233 1623 // Instead of No_Savepoint_Verifier it might be cheaper to
acorn@2233 1624 // use an idiom of the form:
acorn@2233 1625 // auto int tmp = SafepointSynchronize::_safepoint_counter ;
acorn@2233 1626 // <code that must not run at safepoint>
acorn@2233 1627 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
acorn@2233 1628 // Since the tests are extremely cheap we could leave them enabled
acorn@2233 1629 // for normal product builds.
acorn@2233 1630
acorn@2233 1631 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
acorn@2233 1632 assert(THREAD == JavaThread::current(), "must be current Java thread");
acorn@2233 1633 No_Safepoint_Verifier nsv ;
acorn@2233 1634 ReleaseJavaMonitorsClosure rjmc(THREAD);
acorn@2233 1635 Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
acorn@2233 1636 ObjectSynchronizer::monitors_iterate(&rjmc);
acorn@2233 1637 Thread::muxRelease(&ListLock);
acorn@2233 1638 THREAD->clear_pending_exception();
duke@435 1639 }
duke@435 1640
duke@435 1641 //------------------------------------------------------------------------------
kevinw@8729 1642 // Debugging code
kevinw@8729 1643
kevinw@8729 1644 void ObjectSynchronizer::sanity_checks(const bool verbose,
kevinw@8729 1645 const uint cache_line_size,
kevinw@8729 1646 int *error_cnt_ptr,
kevinw@8729 1647 int *warning_cnt_ptr) {
kevinw@8729 1648 u_char *addr_begin = (u_char*)&GVars;
kevinw@8729 1649 u_char *addr_stwRandom = (u_char*)&GVars.stwRandom;
kevinw@8729 1650 u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
kevinw@8729 1651
kevinw@8729 1652 if (verbose) {
kevinw@8729 1653 tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
kevinw@8729 1654 sizeof(SharedGlobals));
kevinw@8729 1655 }
kevinw@8729 1656
kevinw@8729 1657 uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
kevinw@8729 1658 if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
kevinw@8729 1659
kevinw@8729 1660 uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
kevinw@8729 1661 if (verbose) {
kevinw@8729 1662 tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
kevinw@8729 1663 }
kevinw@8729 1664
kevinw@8729 1665 if (cache_line_size != 0) {
kevinw@8729 1666 // We were able to determine the L1 data cache line size so
kevinw@8729 1667 // do some cache line specific sanity checks
kevinw@8729 1668
kevinw@8729 1669 if (offset_stwRandom < cache_line_size) {
kevinw@8729 1670 tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
kevinw@8729 1671 "to the struct beginning than a cache line which permits "
kevinw@8729 1672 "false sharing.");
kevinw@8729 1673 (*warning_cnt_ptr)++;
kevinw@8729 1674 }
kevinw@8729 1675
kevinw@8729 1676 if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
kevinw@8729 1677 tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
kevinw@8729 1678 "SharedGlobals.hcSequence fields are closer than a cache "
kevinw@8729 1679 "line which permits false sharing.");
kevinw@8729 1680 (*warning_cnt_ptr)++;
kevinw@8729 1681 }
kevinw@8729 1682
kevinw@8729 1683 if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
kevinw@8729 1684 tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
kevinw@8729 1685 "to the struct end than a cache line which permits false "
kevinw@8729 1686 "sharing.");
kevinw@8729 1687 (*warning_cnt_ptr)++;
kevinw@8729 1688 }
kevinw@8729 1689 }
kevinw@8729 1690 }
duke@435 1691
duke@435 1692 #ifndef PRODUCT
duke@435 1693
duke@435 1694 // Verify all monitors in the monitor cache, the verification is weak.
duke@435 1695 void ObjectSynchronizer::verify() {
duke@435 1696 ObjectMonitor* block = gBlockList;
duke@435 1697 ObjectMonitor* mid;
duke@435 1698 while (block) {
duke@435 1699 assert(block->object() == CHAINMARKER, "must be a block header");
duke@435 1700 for (int i = 1; i < _BLOCKSIZE; i++) {
duke@435 1701 mid = block + i;
duke@435 1702 oop object = (oop) mid->object();
duke@435 1703 if (object != NULL) {
duke@435 1704 mid->verify();
duke@435 1705 }
duke@435 1706 }
duke@435 1707 block = (ObjectMonitor*) block->FreeNext;
duke@435 1708 }
duke@435 1709 }
duke@435 1710
duke@435 1711 // Check if monitor belongs to the monitor cache
duke@435 1712 // The list is grow-only so it's *relatively* safe to traverse
duke@435 1713 // the list of extant blocks without taking a lock.
duke@435 1714
duke@435 1715 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
duke@435 1716 ObjectMonitor* block = gBlockList;
duke@435 1717
duke@435 1718 while (block) {
duke@435 1719 assert(block->object() == CHAINMARKER, "must be a block header");
duke@435 1720 if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
duke@435 1721 address mon = (address) monitor;
duke@435 1722 address blk = (address) block;
duke@435 1723 size_t diff = mon - blk;
duke@435 1724 assert((diff % sizeof(ObjectMonitor)) == 0, "check");
duke@435 1725 return 1;
duke@435 1726 }
duke@435 1727 block = (ObjectMonitor*) block->FreeNext;
duke@435 1728 }
duke@435 1729 return 0;
duke@435 1730 }
duke@435 1731
duke@435 1732 #endif

mercurial