src/cpu/sparc/vm/stubGenerator_sparc.cpp

Thu, 07 Oct 2010 15:12:57 -0400

author
bobv
date
Thu, 07 Oct 2010 15:12:57 -0400
changeset 2223
3dc12ef8735e
parent 2149
065dd1ca3ab6
child 2199
75588558f1bf
permissions
-rw-r--r--

6989297: Integrate additional portability improvements
Reviewed-by: vladidan, dholmes

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_sparc.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp.
duke@435 31
duke@435 32 #define __ _masm->
duke@435 33
duke@435 34 #ifdef PRODUCT
duke@435 35 #define BLOCK_COMMENT(str) /* nothing */
duke@435 36 #else
duke@435 37 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 38 #endif
duke@435 39
duke@435 40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 41
duke@435 42 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 43 // any other way within this module.
duke@435 44
duke@435 45
duke@435 46 static const Register& Lstub_temp = L2;
duke@435 47
duke@435 48 // -------------------------------------------------------------------------------------------------------------------------
duke@435 49 // Stub Code definitions
duke@435 50
duke@435 51 static address handle_unsafe_access() {
duke@435 52 JavaThread* thread = JavaThread::current();
duke@435 53 address pc = thread->saved_exception_pc();
duke@435 54 address npc = thread->saved_exception_npc();
duke@435 55 // pc is the instruction which we must emulate
duke@435 56 // doing a no-op is fine: return garbage from the load
duke@435 57
duke@435 58 // request an async exception
duke@435 59 thread->set_pending_unsafe_access_error();
duke@435 60
duke@435 61 // return address of next instruction to execute
duke@435 62 return npc;
duke@435 63 }
duke@435 64
duke@435 65 class StubGenerator: public StubCodeGenerator {
duke@435 66 private:
duke@435 67
duke@435 68 #ifdef PRODUCT
duke@435 69 #define inc_counter_np(a,b,c) (0)
duke@435 70 #else
duke@435 71 #define inc_counter_np(counter, t1, t2) \
duke@435 72 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 73 __ inc_counter(&counter, t1, t2);
duke@435 74 #endif
duke@435 75
duke@435 76 //----------------------------------------------------------------------------------------------------
duke@435 77 // Call stubs are used to call Java from C
duke@435 78
duke@435 79 address generate_call_stub(address& return_pc) {
duke@435 80 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 81 address start = __ pc();
duke@435 82
duke@435 83 // Incoming arguments:
duke@435 84 //
duke@435 85 // o0 : call wrapper address
duke@435 86 // o1 : result (address)
duke@435 87 // o2 : result type
duke@435 88 // o3 : method
duke@435 89 // o4 : (interpreter) entry point
duke@435 90 // o5 : parameters (address)
duke@435 91 // [sp + 0x5c]: parameter size (in words)
duke@435 92 // [sp + 0x60]: thread
duke@435 93 //
duke@435 94 // +---------------+ <--- sp + 0
duke@435 95 // | |
duke@435 96 // . reg save area .
duke@435 97 // | |
duke@435 98 // +---------------+ <--- sp + 0x40
duke@435 99 // | |
duke@435 100 // . extra 7 slots .
duke@435 101 // | |
duke@435 102 // +---------------+ <--- sp + 0x5c
duke@435 103 // | param. size |
duke@435 104 // +---------------+ <--- sp + 0x60
duke@435 105 // | thread |
duke@435 106 // +---------------+
duke@435 107 // | |
duke@435 108
duke@435 109 // note: if the link argument position changes, adjust
duke@435 110 // the code in frame::entry_frame_call_wrapper()
duke@435 111
duke@435 112 const Argument link = Argument(0, false); // used only for GC
duke@435 113 const Argument result = Argument(1, false);
duke@435 114 const Argument result_type = Argument(2, false);
duke@435 115 const Argument method = Argument(3, false);
duke@435 116 const Argument entry_point = Argument(4, false);
duke@435 117 const Argument parameters = Argument(5, false);
duke@435 118 const Argument parameter_size = Argument(6, false);
duke@435 119 const Argument thread = Argument(7, false);
duke@435 120
duke@435 121 // setup thread register
duke@435 122 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 123 __ reinit_heapbase();
duke@435 124
duke@435 125 #ifdef ASSERT
duke@435 126 // make sure we have no pending exceptions
duke@435 127 { const Register t = G3_scratch;
duke@435 128 Label L;
duke@435 129 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
duke@435 130 __ br_null(t, false, Assembler::pt, L);
duke@435 131 __ delayed()->nop();
duke@435 132 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 133 __ bind(L);
duke@435 134 }
duke@435 135 #endif
duke@435 136
duke@435 137 // create activation frame & allocate space for parameters
duke@435 138 { const Register t = G3_scratch;
duke@435 139 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 140 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 141 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 142 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 143 __ neg(t); // negate so it can be used with save
duke@435 144 __ save(SP, t, SP); // setup new frame
duke@435 145 }
duke@435 146
duke@435 147 // +---------------+ <--- sp + 0
duke@435 148 // | |
duke@435 149 // . reg save area .
duke@435 150 // | |
duke@435 151 // +---------------+ <--- sp + 0x40
duke@435 152 // | |
duke@435 153 // . extra 7 slots .
duke@435 154 // | |
duke@435 155 // +---------------+ <--- sp + 0x5c
duke@435 156 // | empty slot | (only if parameter size is even)
duke@435 157 // +---------------+
duke@435 158 // | |
duke@435 159 // . parameters .
duke@435 160 // | |
duke@435 161 // +---------------+ <--- fp + 0
duke@435 162 // | |
duke@435 163 // . reg save area .
duke@435 164 // | |
duke@435 165 // +---------------+ <--- fp + 0x40
duke@435 166 // | |
duke@435 167 // . extra 7 slots .
duke@435 168 // | |
duke@435 169 // +---------------+ <--- fp + 0x5c
duke@435 170 // | param. size |
duke@435 171 // +---------------+ <--- fp + 0x60
duke@435 172 // | thread |
duke@435 173 // +---------------+
duke@435 174 // | |
duke@435 175
duke@435 176 // pass parameters if any
duke@435 177 BLOCK_COMMENT("pass parameters if any");
duke@435 178 { const Register src = parameters.as_in().as_register();
duke@435 179 const Register dst = Lentry_args;
duke@435 180 const Register tmp = G3_scratch;
duke@435 181 const Register cnt = G4_scratch;
duke@435 182
duke@435 183 // test if any parameters & setup of Lentry_args
duke@435 184 Label exit;
duke@435 185 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 186 __ add( FP, STACK_BIAS, dst );
duke@435 187 __ tst(cnt);
duke@435 188 __ br(Assembler::zero, false, Assembler::pn, exit);
duke@435 189 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 190
duke@435 191 // copy parameters if any
duke@435 192 Label loop;
duke@435 193 __ BIND(loop);
duke@435 194 // Store parameter value
duke@435 195 __ ld_ptr(src, 0, tmp);
duke@435 196 __ add(src, BytesPerWord, src);
twisti@1861 197 __ st_ptr(tmp, dst, 0);
duke@435 198 __ deccc(cnt);
duke@435 199 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 200 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 201
duke@435 202 // done
duke@435 203 __ BIND(exit);
duke@435 204 }
duke@435 205
duke@435 206 // setup parameters, method & call Java function
duke@435 207 #ifdef ASSERT
duke@435 208 // layout_activation_impl checks it's notion of saved SP against
duke@435 209 // this register, so if this changes update it as well.
duke@435 210 const Register saved_SP = Lscratch;
duke@435 211 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 212 #endif
duke@435 213
duke@435 214 // setup parameters
duke@435 215 const Register t = G3_scratch;
duke@435 216 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 217 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 218 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 219 #ifdef _LP64
duke@435 220 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 221 #endif
duke@435 222 __ mov(SP, O5_savedSP);
duke@435 223
duke@435 224
duke@435 225 // do the call
duke@435 226 //
duke@435 227 // the following register must be setup:
duke@435 228 //
duke@435 229 // G2_thread
duke@435 230 // G5_method
duke@435 231 // Gargs
duke@435 232 BLOCK_COMMENT("call Java function");
duke@435 233 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 234 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 235
duke@435 236 BLOCK_COMMENT("call_stub_return_address:");
duke@435 237 return_pc = __ pc();
duke@435 238
duke@435 239 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 240 // we can no longer assert of change of SP.
duke@435 241
duke@435 242 // store result depending on type
duke@435 243 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 244 // is treated as T_INT)
duke@435 245 { const Register addr = result .as_in().as_register();
duke@435 246 const Register type = result_type.as_in().as_register();
duke@435 247 Label is_long, is_float, is_double, is_object, exit;
duke@435 248 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 249 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 250 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 251 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 252 __ delayed()->nop();
duke@435 253
duke@435 254 // store int result
duke@435 255 __ st(O0, addr, G0);
duke@435 256
duke@435 257 __ BIND(exit);
duke@435 258 __ ret();
duke@435 259 __ delayed()->restore();
duke@435 260
duke@435 261 __ BIND(is_object);
duke@435 262 __ ba(false, exit);
duke@435 263 __ delayed()->st_ptr(O0, addr, G0);
duke@435 264
duke@435 265 __ BIND(is_float);
duke@435 266 __ ba(false, exit);
duke@435 267 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 268
duke@435 269 __ BIND(is_double);
duke@435 270 __ ba(false, exit);
duke@435 271 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 272
duke@435 273 __ BIND(is_long);
duke@435 274 #ifdef _LP64
duke@435 275 __ ba(false, exit);
duke@435 276 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 277 #else
duke@435 278 #if defined(COMPILER2)
duke@435 279 // All return values are where we want them, except for Longs. C2 returns
duke@435 280 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 281 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 282 // build we simply always use G1.
duke@435 283 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 284 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 285 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 286
duke@435 287 __ ba(false, exit);
duke@435 288 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 289 #else
duke@435 290 __ st(O1, addr, BytesPerInt);
duke@435 291 __ ba(false, exit);
duke@435 292 __ delayed()->st(O0, addr, G0);
duke@435 293 #endif /* COMPILER2 */
duke@435 294 #endif /* _LP64 */
duke@435 295 }
duke@435 296 return start;
duke@435 297 }
duke@435 298
duke@435 299
duke@435 300 //----------------------------------------------------------------------------------------------------
duke@435 301 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 302 // The exception is caught and transformed into a pending exception stored in
duke@435 303 // JavaThread that can be tested from within the VM.
duke@435 304 //
duke@435 305 // Oexception: exception oop
duke@435 306
duke@435 307 address generate_catch_exception() {
duke@435 308 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 309
duke@435 310 address start = __ pc();
duke@435 311 // verify that thread corresponds
duke@435 312 __ verify_thread();
duke@435 313
duke@435 314 const Register& temp_reg = Gtemp;
twisti@1162 315 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 316 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 317 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 318
duke@435 319 // set pending exception
duke@435 320 __ verify_oop(Oexception);
duke@435 321 __ st_ptr(Oexception, pending_exception_addr);
duke@435 322 __ set((intptr_t)__FILE__, temp_reg);
duke@435 323 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 324 __ set((intptr_t)__LINE__, temp_reg);
duke@435 325 __ st(temp_reg, exception_line_offset_addr);
duke@435 326
duke@435 327 // complete return to VM
duke@435 328 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 329
twisti@1162 330 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 331 __ jump_to(stub_ret, temp_reg);
duke@435 332 __ delayed()->nop();
duke@435 333
duke@435 334 return start;
duke@435 335 }
duke@435 336
duke@435 337
duke@435 338 //----------------------------------------------------------------------------------------------------
duke@435 339 // Continuation point for runtime calls returning with a pending exception
duke@435 340 // The pending exception check happened in the runtime or native call stub
duke@435 341 // The pending exception in Thread is converted into a Java-level exception
duke@435 342 //
duke@435 343 // Contract with Java-level exception handler: O0 = exception
duke@435 344 // O1 = throwing pc
duke@435 345
duke@435 346 address generate_forward_exception() {
duke@435 347 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 348 address start = __ pc();
duke@435 349
duke@435 350 // Upon entry, O7 has the return address returning into Java
duke@435 351 // (interpreted or compiled) code; i.e. the return address
duke@435 352 // becomes the throwing pc.
duke@435 353
duke@435 354 const Register& handler_reg = Gtemp;
duke@435 355
twisti@1162 356 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 357
duke@435 358 #ifdef ASSERT
duke@435 359 // make sure that this code is only executed if there is a pending exception
duke@435 360 { Label L;
duke@435 361 __ ld_ptr(exception_addr, Gtemp);
duke@435 362 __ br_notnull(Gtemp, false, Assembler::pt, L);
duke@435 363 __ delayed()->nop();
duke@435 364 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 365 __ bind(L);
duke@435 366 }
duke@435 367 #endif
duke@435 368
duke@435 369 // compute exception handler into handler_reg
duke@435 370 __ get_thread();
duke@435 371 __ ld_ptr(exception_addr, Oexception);
duke@435 372 __ verify_oop(Oexception);
duke@435 373 __ save_frame(0); // compensates for compiler weakness
duke@435 374 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 375 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 376 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 377 __ mov(O0, handler_reg);
duke@435 378 __ restore(); // compensates for compiler weakness
duke@435 379
duke@435 380 __ ld_ptr(exception_addr, Oexception);
duke@435 381 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 382
duke@435 383 #ifdef ASSERT
duke@435 384 // make sure exception is set
duke@435 385 { Label L;
duke@435 386 __ br_notnull(Oexception, false, Assembler::pt, L);
duke@435 387 __ delayed()->nop();
duke@435 388 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 389 __ bind(L);
duke@435 390 }
duke@435 391 #endif
duke@435 392 // jump to exception handler
duke@435 393 __ jmp(handler_reg, 0);
duke@435 394 // clear pending exception
duke@435 395 __ delayed()->st_ptr(G0, exception_addr);
duke@435 396
duke@435 397 return start;
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 //------------------------------------------------------------------------------------------------------------------------
duke@435 402 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 403 // the current activation. Fabricates an exception oop and initiates normal
duke@435 404 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 405 // (through the normal register window / RegisterMap handling).
duke@435 406 // If the compiler needs all registers to be preserved between the fault
duke@435 407 // point and the exception handler then it must assume responsibility for that in
duke@435 408 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 409 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 410 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 411 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 412 // so caller saved registers were assumed volatile in the compiler.
duke@435 413
duke@435 414 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 415 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 416 // macro within this method.
duke@435 417 #undef __
duke@435 418 #define __ masm->
duke@435 419
duke@435 420 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
duke@435 421 #ifdef ASSERT
duke@435 422 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 423 #else
duke@435 424 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 425 #endif /* ASSERT */
duke@435 426 int locs_size = 32;
duke@435 427
duke@435 428 CodeBuffer code(name, insts_size, locs_size);
duke@435 429 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 430
duke@435 431 __ verify_thread();
duke@435 432
duke@435 433 // This is an inlined and slightly modified version of call_VM
duke@435 434 // which has the ability to fetch the return PC out of thread-local storage
duke@435 435 __ assert_not_delayed();
duke@435 436
duke@435 437 // Note that we always push a frame because on the SPARC
duke@435 438 // architecture, for all of our implicit exception kinds at call
duke@435 439 // sites, the implicit exception is taken before the callee frame
duke@435 440 // is pushed.
duke@435 441 __ save_frame(0);
duke@435 442
duke@435 443 int frame_complete = __ offset();
duke@435 444
duke@435 445 if (restore_saved_exception_pc) {
twisti@1162 446 __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
duke@435 447 __ sub(I7, frame::pc_return_offset, I7);
duke@435 448 }
duke@435 449
duke@435 450 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 451 Register last_java_sp = SP;
duke@435 452 // 64-bit last_java_sp is biased!
duke@435 453 __ set_last_Java_frame(last_java_sp, G0);
duke@435 454 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 455 __ save_thread(noreg);
duke@435 456 // do the call
duke@435 457 BLOCK_COMMENT("call runtime_entry");
duke@435 458 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 459 if (!VerifyThread)
duke@435 460 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 461 else
duke@435 462 __ delayed()->nop(); // (thread already passed)
duke@435 463 __ restore_thread(noreg);
duke@435 464 __ reset_last_Java_frame();
duke@435 465
duke@435 466 // check for pending exceptions. use Gtemp as scratch register.
duke@435 467 #ifdef ASSERT
duke@435 468 Label L;
duke@435 469
twisti@1162 470 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 471 Register scratch_reg = Gtemp;
duke@435 472 __ ld_ptr(exception_addr, scratch_reg);
duke@435 473 __ br_notnull(scratch_reg, false, Assembler::pt, L);
duke@435 474 __ delayed()->nop();
duke@435 475 __ should_not_reach_here();
duke@435 476 __ bind(L);
duke@435 477 #endif // ASSERT
duke@435 478 BLOCK_COMMENT("call forward_exception_entry");
duke@435 479 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 480 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 481 __ delayed()->restore();
duke@435 482
duke@435 483 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 484 return stub->entry_point();
duke@435 485 }
duke@435 486
duke@435 487 #undef __
duke@435 488 #define __ _masm->
duke@435 489
duke@435 490
duke@435 491 // Generate a routine that sets all the registers so we
duke@435 492 // can tell if the stop routine prints them correctly.
duke@435 493 address generate_test_stop() {
duke@435 494 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 495 address start = __ pc();
duke@435 496
duke@435 497 int i;
duke@435 498
duke@435 499 __ save_frame(0);
duke@435 500
duke@435 501 static jfloat zero = 0.0, one = 1.0;
duke@435 502
duke@435 503 // put addr in L0, then load through L0 to F0
duke@435 504 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 505 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 506
duke@435 507 // use add to put 2..18 in F2..F18
duke@435 508 for ( i = 2; i <= 18; ++i ) {
duke@435 509 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 510 }
duke@435 511
duke@435 512 // Now put double 2 in F16, double 18 in F18
duke@435 513 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 514 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 515
duke@435 516 // use add to put 20..32 in F20..F32
duke@435 517 for (i = 20; i < 32; i += 2) {
duke@435 518 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 519 }
duke@435 520
duke@435 521 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 522 for ( i = 0; i < 8; ++i ) {
duke@435 523 if (i < 6) {
duke@435 524 __ set( i, as_iRegister(i));
duke@435 525 __ set(16 + i, as_oRegister(i));
duke@435 526 __ set(24 + i, as_gRegister(i));
duke@435 527 }
duke@435 528 __ set( 8 + i, as_lRegister(i));
duke@435 529 }
duke@435 530
duke@435 531 __ stop("testing stop");
duke@435 532
duke@435 533
duke@435 534 __ ret();
duke@435 535 __ delayed()->restore();
duke@435 536
duke@435 537 return start;
duke@435 538 }
duke@435 539
duke@435 540
duke@435 541 address generate_stop_subroutine() {
duke@435 542 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 543 address start = __ pc();
duke@435 544
duke@435 545 __ stop_subroutine();
duke@435 546
duke@435 547 return start;
duke@435 548 }
duke@435 549
duke@435 550 address generate_flush_callers_register_windows() {
duke@435 551 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 552 address start = __ pc();
duke@435 553
duke@435 554 __ flush_windows();
duke@435 555 __ retl(false);
duke@435 556 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 557 // The returned value must be a stack pointer whose register save area
duke@435 558 // is flushed, and will stay flushed while the caller executes.
duke@435 559
duke@435 560 return start;
duke@435 561 }
duke@435 562
duke@435 563 // Helper functions for v8 atomic operations.
duke@435 564 //
duke@435 565 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 566 if (mark_oop_reg == noreg) {
duke@435 567 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 568 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 569 } else {
duke@435 570 assert(scratch_reg != noreg, "just checking");
duke@435 571 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 572 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 573 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 574 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 575 }
duke@435 576 }
duke@435 577
duke@435 578 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 579
duke@435 580 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 581 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 582 // Initialize yield counter
duke@435 583 __ mov(G0,yield_reg);
duke@435 584
duke@435 585 __ BIND(retry);
duke@435 586 __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 587 __ br(Assembler::less, false, Assembler::pt, dontyield);
duke@435 588 __ delayed()->nop();
duke@435 589
duke@435 590 // This code can only be called from inside the VM, this
duke@435 591 // stub is only invoked from Atomic::add(). We do not
duke@435 592 // want to use call_VM, because _last_java_sp and such
duke@435 593 // must already be set.
duke@435 594 //
duke@435 595 // Save the regs and make space for a C call
duke@435 596 __ save(SP, -96, SP);
duke@435 597 __ save_all_globals_into_locals();
duke@435 598 BLOCK_COMMENT("call os::naked_sleep");
duke@435 599 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 600 __ delayed()->nop();
duke@435 601 __ restore_globals_from_locals();
duke@435 602 __ restore();
duke@435 603 // reset the counter
duke@435 604 __ mov(G0,yield_reg);
duke@435 605
duke@435 606 __ BIND(dontyield);
duke@435 607
duke@435 608 // try to get lock
duke@435 609 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 610
duke@435 611 // did we get the lock?
duke@435 612 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 613 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 614 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 615
duke@435 616 // yes, got lock. do the operation here.
duke@435 617 }
duke@435 618
duke@435 619 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 620 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 621 }
duke@435 622
duke@435 623 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 624 //
duke@435 625 // Arguments :
duke@435 626 //
duke@435 627 // exchange_value: O0
duke@435 628 // dest: O1
duke@435 629 //
duke@435 630 // Results:
duke@435 631 //
duke@435 632 // O0: the value previously stored in dest
duke@435 633 //
duke@435 634 address generate_atomic_xchg() {
duke@435 635 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 636 address start = __ pc();
duke@435 637
duke@435 638 if (UseCASForSwap) {
duke@435 639 // Use CAS instead of swap, just in case the MP hardware
duke@435 640 // prefers to work with just one kind of synch. instruction.
duke@435 641 Label retry;
duke@435 642 __ BIND(retry);
duke@435 643 __ mov(O0, O3); // scratch copy of exchange value
duke@435 644 __ ld(O1, 0, O2); // observe the previous value
duke@435 645 // try to replace O2 with O3
duke@435 646 __ cas_under_lock(O1, O2, O3,
duke@435 647 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 648 __ cmp(O2, O3);
duke@435 649 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 650 __ delayed()->nop();
duke@435 651
duke@435 652 __ retl(false);
duke@435 653 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 654
duke@435 655 } else {
duke@435 656 if (VM_Version::v9_instructions_work()) {
duke@435 657 __ retl(false);
duke@435 658 __ delayed()->swap(O1, 0, O0);
duke@435 659 } else {
duke@435 660 const Register& lock_reg = O2;
duke@435 661 const Register& lock_ptr_reg = O3;
duke@435 662 const Register& yield_reg = O4;
duke@435 663
duke@435 664 Label retry;
duke@435 665 Label dontyield;
duke@435 666
duke@435 667 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 668 // got the lock, do the swap
duke@435 669 __ swap(O1, 0, O0);
duke@435 670
duke@435 671 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 672 __ retl(false);
duke@435 673 __ delayed()->nop();
duke@435 674 }
duke@435 675 }
duke@435 676
duke@435 677 return start;
duke@435 678 }
duke@435 679
duke@435 680
duke@435 681 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 682 //
duke@435 683 // Arguments :
duke@435 684 //
duke@435 685 // exchange_value: O0
duke@435 686 // dest: O1
duke@435 687 // compare_value: O2
duke@435 688 //
duke@435 689 // Results:
duke@435 690 //
duke@435 691 // O0: the value previously stored in dest
duke@435 692 //
duke@435 693 // Overwrites (v8): O3,O4,O5
duke@435 694 //
duke@435 695 address generate_atomic_cmpxchg() {
duke@435 696 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 697 address start = __ pc();
duke@435 698
duke@435 699 // cmpxchg(dest, compare_value, exchange_value)
duke@435 700 __ cas_under_lock(O1, O2, O0,
duke@435 701 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 702 __ retl(false);
duke@435 703 __ delayed()->nop();
duke@435 704
duke@435 705 return start;
duke@435 706 }
duke@435 707
duke@435 708 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 709 //
duke@435 710 // Arguments :
duke@435 711 //
duke@435 712 // exchange_value: O1:O0
duke@435 713 // dest: O2
duke@435 714 // compare_value: O4:O3
duke@435 715 //
duke@435 716 // Results:
duke@435 717 //
duke@435 718 // O1:O0: the value previously stored in dest
duke@435 719 //
duke@435 720 // This only works on V9, on V8 we don't generate any
duke@435 721 // code and just return NULL.
duke@435 722 //
duke@435 723 // Overwrites: G1,G2,G3
duke@435 724 //
duke@435 725 address generate_atomic_cmpxchg_long() {
duke@435 726 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 727 address start = __ pc();
duke@435 728
duke@435 729 if (!VM_Version::supports_cx8())
duke@435 730 return NULL;;
duke@435 731 __ sllx(O0, 32, O0);
duke@435 732 __ srl(O1, 0, O1);
duke@435 733 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 734 __ sllx(O3, 32, O3);
duke@435 735 __ srl(O4, 0, O4);
duke@435 736 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 737 __ casx(O2, O3, O0);
duke@435 738 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 739 __ retl(false);
duke@435 740 __ delayed()->srlx(O0, 32, O0);
duke@435 741
duke@435 742 return start;
duke@435 743 }
duke@435 744
duke@435 745
duke@435 746 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 747 //
duke@435 748 // Arguments :
duke@435 749 //
duke@435 750 // add_value: O0 (e.g., +1 or -1)
duke@435 751 // dest: O1
duke@435 752 //
duke@435 753 // Results:
duke@435 754 //
duke@435 755 // O0: the new value stored in dest
duke@435 756 //
duke@435 757 // Overwrites (v9): O3
duke@435 758 // Overwrites (v8): O3,O4,O5
duke@435 759 //
duke@435 760 address generate_atomic_add() {
duke@435 761 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 762 address start = __ pc();
duke@435 763 __ BIND(_atomic_add_stub);
duke@435 764
duke@435 765 if (VM_Version::v9_instructions_work()) {
duke@435 766 Label(retry);
duke@435 767 __ BIND(retry);
duke@435 768
duke@435 769 __ lduw(O1, 0, O2);
duke@435 770 __ add(O0, O2, O3);
duke@435 771 __ cas(O1, O2, O3);
duke@435 772 __ cmp( O2, O3);
duke@435 773 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 774 __ delayed()->nop();
duke@435 775 __ retl(false);
duke@435 776 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 777 } else {
duke@435 778 const Register& lock_reg = O2;
duke@435 779 const Register& lock_ptr_reg = O3;
duke@435 780 const Register& value_reg = O4;
duke@435 781 const Register& yield_reg = O5;
duke@435 782
duke@435 783 Label(retry);
duke@435 784 Label(dontyield);
duke@435 785
duke@435 786 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 787 // got lock, do the increment
duke@435 788 __ ld(O1, 0, value_reg);
duke@435 789 __ add(O0, value_reg, value_reg);
duke@435 790 __ st(value_reg, O1, 0);
duke@435 791
duke@435 792 // %%% only for RMO and PSO
duke@435 793 __ membar(Assembler::StoreStore);
duke@435 794
duke@435 795 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 796
duke@435 797 __ retl(false);
duke@435 798 __ delayed()->mov(value_reg, O0);
duke@435 799 }
duke@435 800
duke@435 801 return start;
duke@435 802 }
duke@435 803 Label _atomic_add_stub; // called from other stubs
duke@435 804
duke@435 805
duke@435 806 //------------------------------------------------------------------------------------------------------------------------
duke@435 807 // The following routine generates a subroutine to throw an asynchronous
duke@435 808 // UnknownError when an unsafe access gets a fault that could not be
duke@435 809 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 810 //
duke@435 811 // Arguments :
duke@435 812 //
duke@435 813 // trapping PC: O7
duke@435 814 //
duke@435 815 // Results:
duke@435 816 // posts an asynchronous exception, skips the trapping instruction
duke@435 817 //
duke@435 818
duke@435 819 address generate_handler_for_unsafe_access() {
duke@435 820 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 821 address start = __ pc();
duke@435 822
duke@435 823 const int preserve_register_words = (64 * 2);
twisti@1162 824 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 825
duke@435 826 Register Lthread = L7_thread_cache;
duke@435 827 int i;
duke@435 828
duke@435 829 __ save_frame(0);
duke@435 830 __ mov(G1, L1);
duke@435 831 __ mov(G2, L2);
duke@435 832 __ mov(G3, L3);
duke@435 833 __ mov(G4, L4);
duke@435 834 __ mov(G5, L5);
duke@435 835 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 836 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 837 }
duke@435 838
duke@435 839 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 840 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 841 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 842 __ delayed()->nop();
duke@435 843
duke@435 844 __ mov(L1, G1);
duke@435 845 __ mov(L2, G2);
duke@435 846 __ mov(L3, G3);
duke@435 847 __ mov(L4, G4);
duke@435 848 __ mov(L5, G5);
duke@435 849 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 850 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 851 }
duke@435 852
duke@435 853 __ verify_thread();
duke@435 854
duke@435 855 __ jmp(O0, 0);
duke@435 856 __ delayed()->restore();
duke@435 857
duke@435 858 return start;
duke@435 859 }
duke@435 860
duke@435 861
duke@435 862 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 863 // Arguments :
duke@435 864 //
duke@435 865 // ret : O0, returned
duke@435 866 // icc/xcc: set as O0 (depending on wordSize)
duke@435 867 // sub : O1, argument, not changed
duke@435 868 // super: O2, argument, not changed
duke@435 869 // raddr: O7, blown by call
duke@435 870 address generate_partial_subtype_check() {
coleenp@548 871 __ align(CodeEntryAlignment);
duke@435 872 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 873 address start = __ pc();
jrose@1079 874 Label miss;
duke@435 875
duke@435 876 #if defined(COMPILER2) && !defined(_LP64)
duke@435 877 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 878 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 879 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 880 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 881 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 882 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 883 Register Rret = O0;
duke@435 884 Register Rsub = O1;
duke@435 885 Register Rsuper = O2;
duke@435 886 #else
duke@435 887 __ save_frame(0);
duke@435 888 Register Rret = I0;
duke@435 889 Register Rsub = I1;
duke@435 890 Register Rsuper = I2;
duke@435 891 #endif
duke@435 892
duke@435 893 Register L0_ary_len = L0;
duke@435 894 Register L1_ary_ptr = L1;
duke@435 895 Register L2_super = L2;
duke@435 896 Register L3_index = L3;
duke@435 897
jrose@1079 898 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 899 L0, L1, L2, L3,
jrose@1079 900 NULL, &miss);
jrose@1079 901
jrose@1079 902 // Match falls through here.
jrose@1079 903 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 904
duke@435 905 #if defined(COMPILER2) && !defined(_LP64)
duke@435 906 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 907 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 908 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 909 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 910 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 911 __ delayed()->add(SP,4*wordSize,SP);
duke@435 912 #else
duke@435 913 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 914 __ delayed()->restore();
duke@435 915 #endif
duke@435 916
duke@435 917 __ BIND(miss);
duke@435 918 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 919
duke@435 920 #if defined(COMPILER2) && !defined(_LP64)
duke@435 921 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 922 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 923 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 924 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 925 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 926 __ delayed()->add(SP,4*wordSize,SP);
duke@435 927 #else
duke@435 928 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 929 __ delayed()->restore();
duke@435 930 #endif
duke@435 931
duke@435 932 return start;
duke@435 933 }
duke@435 934
duke@435 935
duke@435 936 // Called from MacroAssembler::verify_oop
duke@435 937 //
duke@435 938 address generate_verify_oop_subroutine() {
duke@435 939 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 940
duke@435 941 address start = __ pc();
duke@435 942
duke@435 943 __ verify_oop_subroutine();
duke@435 944
duke@435 945 return start;
duke@435 946 }
duke@435 947
duke@435 948 static address disjoint_byte_copy_entry;
duke@435 949 static address disjoint_short_copy_entry;
duke@435 950 static address disjoint_int_copy_entry;
duke@435 951 static address disjoint_long_copy_entry;
duke@435 952 static address disjoint_oop_copy_entry;
duke@435 953
duke@435 954 static address byte_copy_entry;
duke@435 955 static address short_copy_entry;
duke@435 956 static address int_copy_entry;
duke@435 957 static address long_copy_entry;
duke@435 958 static address oop_copy_entry;
duke@435 959
duke@435 960 static address checkcast_copy_entry;
duke@435 961
duke@435 962 //
duke@435 963 // Verify that a register contains clean 32-bits positive value
duke@435 964 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 965 //
duke@435 966 // Input:
duke@435 967 // Rint - 32-bits value
duke@435 968 // Rtmp - scratch
duke@435 969 //
duke@435 970 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 971 #if defined(ASSERT) && defined(_LP64)
duke@435 972 __ signx(Rint, Rtmp);
duke@435 973 __ cmp(Rint, Rtmp);
duke@435 974 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 975 #endif
duke@435 976 }
duke@435 977
duke@435 978 //
duke@435 979 // Generate overlap test for array copy stubs
duke@435 980 //
duke@435 981 // Input:
duke@435 982 // O0 - array1
duke@435 983 // O1 - array2
duke@435 984 // O2 - element count
duke@435 985 //
duke@435 986 // Kills temps: O3, O4
duke@435 987 //
duke@435 988 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 989 assert(no_overlap_target != NULL, "must be generated");
duke@435 990 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 991 }
duke@435 992 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 993 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 994 }
duke@435 995 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 996 const Register from = O0;
duke@435 997 const Register to = O1;
duke@435 998 const Register count = O2;
duke@435 999 const Register to_from = O3; // to - from
duke@435 1000 const Register byte_count = O4; // count << log2_elem_size
duke@435 1001
duke@435 1002 __ subcc(to, from, to_from);
duke@435 1003 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1004 if (NOLp == NULL)
duke@435 1005 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1006 else
duke@435 1007 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1008 __ delayed()->cmp(to_from, byte_count);
duke@435 1009 if (NOLp == NULL)
tonyp@2010 1010 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1011 else
tonyp@2010 1012 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1013 __ delayed()->nop();
duke@435 1014 }
duke@435 1015
duke@435 1016 //
duke@435 1017 // Generate pre-write barrier for array.
duke@435 1018 //
duke@435 1019 // Input:
duke@435 1020 // addr - register containing starting address
duke@435 1021 // count - register containing element count
duke@435 1022 // tmp - scratch register
duke@435 1023 //
duke@435 1024 // The input registers are overwritten.
duke@435 1025 //
duke@435 1026 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1027 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1028 if (bs->has_write_ref_pre_barrier()) {
duke@435 1029 assert(bs->has_write_ref_array_pre_opt(),
duke@435 1030 "Else unsupported barrier set.");
duke@435 1031
duke@435 1032 __ save_frame(0);
duke@435 1033 // Save the necessary global regs... will be used after.
ysr@777 1034 if (addr->is_global()) {
ysr@777 1035 __ mov(addr, L0);
ysr@777 1036 }
ysr@777 1037 if (count->is_global()) {
ysr@777 1038 __ mov(count, L1);
ysr@777 1039 }
ysr@777 1040 __ mov(addr->after_save(), O0);
duke@435 1041 // Get the count into O1
duke@435 1042 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
ysr@777 1043 __ delayed()->mov(count->after_save(), O1);
ysr@777 1044 if (addr->is_global()) {
ysr@777 1045 __ mov(L0, addr);
ysr@777 1046 }
ysr@777 1047 if (count->is_global()) {
ysr@777 1048 __ mov(L1, count);
ysr@777 1049 }
duke@435 1050 __ restore();
duke@435 1051 }
duke@435 1052 }
duke@435 1053 //
duke@435 1054 // Generate post-write barrier for array.
duke@435 1055 //
duke@435 1056 // Input:
duke@435 1057 // addr - register containing starting address
duke@435 1058 // count - register containing element count
duke@435 1059 // tmp - scratch register
duke@435 1060 //
duke@435 1061 // The input registers are overwritten.
duke@435 1062 //
duke@435 1063 void gen_write_ref_array_post_barrier(Register addr, Register count,
duke@435 1064 Register tmp) {
duke@435 1065 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1066
duke@435 1067 switch (bs->kind()) {
duke@435 1068 case BarrierSet::G1SATBCT:
duke@435 1069 case BarrierSet::G1SATBCTLogging:
duke@435 1070 {
duke@435 1071 // Get some new fresh output registers.
duke@435 1072 __ save_frame(0);
ysr@777 1073 __ mov(addr->after_save(), O0);
duke@435 1074 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1075 __ delayed()->mov(count->after_save(), O1);
duke@435 1076 __ restore();
duke@435 1077 }
duke@435 1078 break;
duke@435 1079 case BarrierSet::CardTableModRef:
duke@435 1080 case BarrierSet::CardTableExtension:
duke@435 1081 {
duke@435 1082 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1083 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1084 assert_different_registers(addr, count, tmp);
duke@435 1085
duke@435 1086 Label L_loop;
duke@435 1087
coleenp@548 1088 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1089 __ sub(count, BytesPerHeapOop, count);
duke@435 1090 __ add(count, addr, count);
duke@435 1091 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1092 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1093 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1094 __ sub(count, addr, count);
twisti@1162 1095 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1096 __ set(rs, tmp);
duke@435 1097 __ BIND(L_loop);
twisti@1162 1098 __ stb(G0, tmp, addr);
duke@435 1099 __ subcc(count, 1, count);
duke@435 1100 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1101 __ delayed()->add(addr, 1, addr);
twisti@1162 1102 }
duke@435 1103 break;
duke@435 1104 case BarrierSet::ModRef:
duke@435 1105 break;
twisti@1162 1106 default:
duke@435 1107 ShouldNotReachHere();
duke@435 1108 }
duke@435 1109 }
duke@435 1110
duke@435 1111
duke@435 1112 // Copy big chunks forward with shift
duke@435 1113 //
duke@435 1114 // Inputs:
duke@435 1115 // from - source arrays
duke@435 1116 // to - destination array aligned to 8-bytes
duke@435 1117 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1118 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1119 // L_copy_bytes - copy exit label
duke@435 1120 //
duke@435 1121 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1122 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1123 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1124
duke@435 1125 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1126 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1127 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1128 __ delayed()->nop();
duke@435 1129
duke@435 1130 const Register left_shift = G1; // left shift bit counter
duke@435 1131 const Register right_shift = G5; // right shift bit counter
duke@435 1132
duke@435 1133 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1134 __ mov(64, right_shift);
duke@435 1135 __ sub(right_shift, left_shift, right_shift);
duke@435 1136
duke@435 1137 //
duke@435 1138 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1139 // to form 2 aligned 8-bytes chunks to store.
duke@435 1140 //
duke@435 1141 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1142 __ andn(from, 7, from); // Align address
duke@435 1143 __ ldx(from, 0, O3);
duke@435 1144 __ inc(from, 8);
kvn@1800 1145 __ align(OptoLoopAlignment);
duke@435 1146 __ BIND(L_loop);
duke@435 1147 __ ldx(from, 0, O4);
duke@435 1148 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1149 __ ldx(from, 8, G4);
duke@435 1150 __ inc(to, 16);
duke@435 1151 __ inc(from, 16);
duke@435 1152 __ sllx(O3, left_shift, O3);
duke@435 1153 __ srlx(O4, right_shift, G3);
duke@435 1154 __ bset(G3, O3);
duke@435 1155 __ stx(O3, to, -16);
duke@435 1156 __ sllx(O4, left_shift, O4);
duke@435 1157 __ srlx(G4, right_shift, G3);
duke@435 1158 __ bset(G3, O4);
duke@435 1159 __ stx(O4, to, -8);
duke@435 1160 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1161 __ delayed()->mov(G4, O3);
duke@435 1162
duke@435 1163 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1164 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1165 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1166
duke@435 1167 // copy 8 bytes, part of them already loaded in O3
duke@435 1168 __ ldx(from, 0, O4);
duke@435 1169 __ inc(to, 8);
duke@435 1170 __ inc(from, 8);
duke@435 1171 __ sllx(O3, left_shift, O3);
duke@435 1172 __ srlx(O4, right_shift, G3);
duke@435 1173 __ bset(O3, G3);
duke@435 1174 __ stx(G3, to, -8);
duke@435 1175
duke@435 1176 __ BIND(L_copy_last_bytes);
duke@435 1177 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1178 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1179 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1180
duke@435 1181 __ BIND(L_aligned_copy);
duke@435 1182 }
duke@435 1183
duke@435 1184 // Copy big chunks backward with shift
duke@435 1185 //
duke@435 1186 // Inputs:
duke@435 1187 // end_from - source arrays end address
duke@435 1188 // end_to - destination array end address aligned to 8-bytes
duke@435 1189 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1190 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1191 // L_aligned_copy - aligned copy exit label
duke@435 1192 // L_copy_bytes - copy exit label
duke@435 1193 //
duke@435 1194 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1195 Register count, int count_dec,
duke@435 1196 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1197 Label L_loop, L_copy_last_bytes;
duke@435 1198
duke@435 1199 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1200 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1201 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1202 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1203
duke@435 1204 const Register left_shift = G1; // left shift bit counter
duke@435 1205 const Register right_shift = G5; // right shift bit counter
duke@435 1206
duke@435 1207 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1208 __ mov(64, right_shift);
duke@435 1209 __ sub(right_shift, left_shift, right_shift);
duke@435 1210
duke@435 1211 //
duke@435 1212 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1213 // to form 2 aligned 8-bytes chunks to store.
duke@435 1214 //
duke@435 1215 __ andn(end_from, 7, end_from); // Align address
duke@435 1216 __ ldx(end_from, 0, O3);
kvn@1800 1217 __ align(OptoLoopAlignment);
duke@435 1218 __ BIND(L_loop);
duke@435 1219 __ ldx(end_from, -8, O4);
duke@435 1220 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1221 __ ldx(end_from, -16, G4);
duke@435 1222 __ dec(end_to, 16);
duke@435 1223 __ dec(end_from, 16);
duke@435 1224 __ srlx(O3, right_shift, O3);
duke@435 1225 __ sllx(O4, left_shift, G3);
duke@435 1226 __ bset(G3, O3);
duke@435 1227 __ stx(O3, end_to, 8);
duke@435 1228 __ srlx(O4, right_shift, O4);
duke@435 1229 __ sllx(G4, left_shift, G3);
duke@435 1230 __ bset(G3, O4);
duke@435 1231 __ stx(O4, end_to, 0);
duke@435 1232 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1233 __ delayed()->mov(G4, O3);
duke@435 1234
duke@435 1235 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1236 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1237 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1238
duke@435 1239 // copy 8 bytes, part of them already loaded in O3
duke@435 1240 __ ldx(end_from, -8, O4);
duke@435 1241 __ dec(end_to, 8);
duke@435 1242 __ dec(end_from, 8);
duke@435 1243 __ srlx(O3, right_shift, O3);
duke@435 1244 __ sllx(O4, left_shift, G3);
duke@435 1245 __ bset(O3, G3);
duke@435 1246 __ stx(G3, end_to, 0);
duke@435 1247
duke@435 1248 __ BIND(L_copy_last_bytes);
duke@435 1249 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1250 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1251 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1252 }
duke@435 1253
duke@435 1254 //
duke@435 1255 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1256 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1257 //
duke@435 1258 // Arguments for generated stub:
duke@435 1259 // from: O0
duke@435 1260 // to: O1
duke@435 1261 // count: O2 treated as signed
duke@435 1262 //
duke@435 1263 address generate_disjoint_byte_copy(bool aligned, const char * name) {
duke@435 1264 __ align(CodeEntryAlignment);
duke@435 1265 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1266 address start = __ pc();
duke@435 1267
duke@435 1268 Label L_skip_alignment, L_align;
duke@435 1269 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1270
duke@435 1271 const Register from = O0; // source array address
duke@435 1272 const Register to = O1; // destination array address
duke@435 1273 const Register count = O2; // elements count
duke@435 1274 const Register offset = O5; // offset from start of arrays
duke@435 1275 // O3, O4, G3, G4 are used as temp registers
duke@435 1276
duke@435 1277 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1278
duke@435 1279 if (!aligned) disjoint_byte_copy_entry = __ pc();
duke@435 1280 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1281 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1282
duke@435 1283 // for short arrays, just do single element copy
duke@435 1284 __ cmp(count, 23); // 16 + 7
duke@435 1285 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1286 __ delayed()->mov(G0, offset);
duke@435 1287
duke@435 1288 if (aligned) {
duke@435 1289 // 'aligned' == true when it is known statically during compilation
duke@435 1290 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1291 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1292 //
duke@435 1293 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1294 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1295 //
duke@435 1296 #ifndef _LP64
duke@435 1297 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1298 __ andcc(to, 7, G0);
duke@435 1299 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1300 __ delayed()->ld(from, 0, O3);
duke@435 1301 __ inc(from, 4);
duke@435 1302 __ inc(to, 4);
duke@435 1303 __ dec(count, 4);
duke@435 1304 __ st(O3, to, -4);
duke@435 1305 __ BIND(L_skip_alignment);
duke@435 1306 #endif
duke@435 1307 } else {
duke@435 1308 // copy bytes to align 'to' on 8 byte boundary
duke@435 1309 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1310 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1311 __ delayed()->neg(G1);
duke@435 1312 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1313 __ sub(count, G1, count);
duke@435 1314 __ BIND(L_align);
duke@435 1315 __ ldub(from, 0, O3);
duke@435 1316 __ deccc(G1);
duke@435 1317 __ inc(from);
duke@435 1318 __ stb(O3, to, 0);
duke@435 1319 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1320 __ delayed()->inc(to);
duke@435 1321 __ BIND(L_skip_alignment);
duke@435 1322 }
duke@435 1323 #ifdef _LP64
duke@435 1324 if (!aligned)
duke@435 1325 #endif
duke@435 1326 {
duke@435 1327 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1328 // the same alignment mod 8, otherwise fall through to the next
duke@435 1329 // code for aligned copy.
duke@435 1330 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1331 // Also jump over aligned copy after the copy with shift completed.
duke@435 1332
duke@435 1333 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1334 }
duke@435 1335
duke@435 1336 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1337 __ and3(count, 7, G4); // Save count
duke@435 1338 __ srl(count, 3, count);
duke@435 1339 generate_disjoint_long_copy_core(aligned);
duke@435 1340 __ mov(G4, count); // Restore count
duke@435 1341
duke@435 1342 // copy tailing bytes
duke@435 1343 __ BIND(L_copy_byte);
duke@435 1344 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1345 __ delayed()->nop();
kvn@1800 1346 __ align(OptoLoopAlignment);
duke@435 1347 __ BIND(L_copy_byte_loop);
duke@435 1348 __ ldub(from, offset, O3);
duke@435 1349 __ deccc(count);
duke@435 1350 __ stb(O3, to, offset);
duke@435 1351 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1352 __ delayed()->inc(offset);
duke@435 1353
duke@435 1354 __ BIND(L_exit);
duke@435 1355 // O3, O4 are used as temp registers
duke@435 1356 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1357 __ retl();
duke@435 1358 __ delayed()->mov(G0, O0); // return 0
duke@435 1359 return start;
duke@435 1360 }
duke@435 1361
duke@435 1362 //
duke@435 1363 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1364 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1365 //
duke@435 1366 // Arguments for generated stub:
duke@435 1367 // from: O0
duke@435 1368 // to: O1
duke@435 1369 // count: O2 treated as signed
duke@435 1370 //
duke@435 1371 address generate_conjoint_byte_copy(bool aligned, const char * name) {
duke@435 1372 // Do reverse copy.
duke@435 1373
duke@435 1374 __ align(CodeEntryAlignment);
duke@435 1375 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1376 address start = __ pc();
duke@435 1377 address nooverlap_target = aligned ?
duke@435 1378 StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
duke@435 1379 disjoint_byte_copy_entry;
duke@435 1380
duke@435 1381 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1382 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1383
duke@435 1384 const Register from = O0; // source array address
duke@435 1385 const Register to = O1; // destination array address
duke@435 1386 const Register count = O2; // elements count
duke@435 1387 const Register end_from = from; // source array end address
duke@435 1388 const Register end_to = to; // destination array end address
duke@435 1389
duke@435 1390 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1391
duke@435 1392 if (!aligned) byte_copy_entry = __ pc();
duke@435 1393 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1394 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1395
duke@435 1396 array_overlap_test(nooverlap_target, 0);
duke@435 1397
duke@435 1398 __ add(to, count, end_to); // offset after last copied element
duke@435 1399
duke@435 1400 // for short arrays, just do single element copy
duke@435 1401 __ cmp(count, 23); // 16 + 7
duke@435 1402 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1403 __ delayed()->add(from, count, end_from);
duke@435 1404
duke@435 1405 {
duke@435 1406 // Align end of arrays since they could be not aligned even
duke@435 1407 // when arrays itself are aligned.
duke@435 1408
duke@435 1409 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1410 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1411 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1412 __ delayed()->nop();
duke@435 1413 __ sub(count, G1, count);
duke@435 1414 __ BIND(L_align);
duke@435 1415 __ dec(end_from);
duke@435 1416 __ dec(end_to);
duke@435 1417 __ ldub(end_from, 0, O3);
duke@435 1418 __ deccc(G1);
duke@435 1419 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1420 __ delayed()->stb(O3, end_to, 0);
duke@435 1421 __ BIND(L_skip_alignment);
duke@435 1422 }
duke@435 1423 #ifdef _LP64
duke@435 1424 if (aligned) {
duke@435 1425 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1426 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1427 // in unaligned case.
duke@435 1428 __ dec(count, 16);
duke@435 1429 } else
duke@435 1430 #endif
duke@435 1431 {
duke@435 1432 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1433 // the same alignment mod 8, otherwise jump to the next
duke@435 1434 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1435 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1436 // Also jump over aligned copy after the copy with shift completed.
duke@435 1437
duke@435 1438 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1439 L_aligned_copy, L_copy_byte);
duke@435 1440 }
duke@435 1441 // copy 4 elements (16 bytes) at a time
kvn@1800 1442 __ align(OptoLoopAlignment);
duke@435 1443 __ BIND(L_aligned_copy);
duke@435 1444 __ dec(end_from, 16);
duke@435 1445 __ ldx(end_from, 8, O3);
duke@435 1446 __ ldx(end_from, 0, O4);
duke@435 1447 __ dec(end_to, 16);
duke@435 1448 __ deccc(count, 16);
duke@435 1449 __ stx(O3, end_to, 8);
duke@435 1450 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1451 __ delayed()->stx(O4, end_to, 0);
duke@435 1452 __ inc(count, 16);
duke@435 1453
duke@435 1454 // copy 1 element (2 bytes) at a time
duke@435 1455 __ BIND(L_copy_byte);
duke@435 1456 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1457 __ delayed()->nop();
kvn@1800 1458 __ align(OptoLoopAlignment);
duke@435 1459 __ BIND(L_copy_byte_loop);
duke@435 1460 __ dec(end_from);
duke@435 1461 __ dec(end_to);
duke@435 1462 __ ldub(end_from, 0, O4);
duke@435 1463 __ deccc(count);
duke@435 1464 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1465 __ delayed()->stb(O4, end_to, 0);
duke@435 1466
duke@435 1467 __ BIND(L_exit);
duke@435 1468 // O3, O4 are used as temp registers
duke@435 1469 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1470 __ retl();
duke@435 1471 __ delayed()->mov(G0, O0); // return 0
duke@435 1472 return start;
duke@435 1473 }
duke@435 1474
duke@435 1475 //
duke@435 1476 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1477 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1478 //
duke@435 1479 // Arguments for generated stub:
duke@435 1480 // from: O0
duke@435 1481 // to: O1
duke@435 1482 // count: O2 treated as signed
duke@435 1483 //
duke@435 1484 address generate_disjoint_short_copy(bool aligned, const char * name) {
duke@435 1485 __ align(CodeEntryAlignment);
duke@435 1486 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1487 address start = __ pc();
duke@435 1488
duke@435 1489 Label L_skip_alignment, L_skip_alignment2;
duke@435 1490 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1491
duke@435 1492 const Register from = O0; // source array address
duke@435 1493 const Register to = O1; // destination array address
duke@435 1494 const Register count = O2; // elements count
duke@435 1495 const Register offset = O5; // offset from start of arrays
duke@435 1496 // O3, O4, G3, G4 are used as temp registers
duke@435 1497
duke@435 1498 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1499
duke@435 1500 if (!aligned) disjoint_short_copy_entry = __ pc();
duke@435 1501 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1502 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1503
duke@435 1504 // for short arrays, just do single element copy
duke@435 1505 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1506 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1507 __ delayed()->mov(G0, offset);
duke@435 1508
duke@435 1509 if (aligned) {
duke@435 1510 // 'aligned' == true when it is known statically during compilation
duke@435 1511 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1512 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1513 //
duke@435 1514 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1515 // and 8 bytes - in 64-bits VM.
duke@435 1516 //
duke@435 1517 #ifndef _LP64
duke@435 1518 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1519 __ andcc(to, 7, G0);
duke@435 1520 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1521 __ delayed()->ld(from, 0, O3);
duke@435 1522 __ inc(from, 4);
duke@435 1523 __ inc(to, 4);
duke@435 1524 __ dec(count, 2);
duke@435 1525 __ st(O3, to, -4);
duke@435 1526 __ BIND(L_skip_alignment);
duke@435 1527 #endif
duke@435 1528 } else {
duke@435 1529 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1530 __ andcc(to, 3, G0);
duke@435 1531 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1532 __ delayed()->lduh(from, 0, O3);
duke@435 1533 __ inc(from, 2);
duke@435 1534 __ inc(to, 2);
duke@435 1535 __ dec(count);
duke@435 1536 __ sth(O3, to, -2);
duke@435 1537 __ BIND(L_skip_alignment);
duke@435 1538
duke@435 1539 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1540 __ andcc(to, 7, G0);
duke@435 1541 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1542 __ delayed()->lduh(from, 0, O3);
duke@435 1543 __ dec(count, 2);
duke@435 1544 __ lduh(from, 2, O4);
duke@435 1545 __ inc(from, 4);
duke@435 1546 __ inc(to, 4);
duke@435 1547 __ sth(O3, to, -4);
duke@435 1548 __ sth(O4, to, -2);
duke@435 1549 __ BIND(L_skip_alignment2);
duke@435 1550 }
duke@435 1551 #ifdef _LP64
duke@435 1552 if (!aligned)
duke@435 1553 #endif
duke@435 1554 {
duke@435 1555 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1556 // the same alignment mod 8, otherwise fall through to the next
duke@435 1557 // code for aligned copy.
duke@435 1558 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1559 // Also jump over aligned copy after the copy with shift completed.
duke@435 1560
duke@435 1561 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1562 }
duke@435 1563
duke@435 1564 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1565 __ and3(count, 3, G4); // Save
duke@435 1566 __ srl(count, 2, count);
duke@435 1567 generate_disjoint_long_copy_core(aligned);
duke@435 1568 __ mov(G4, count); // restore
duke@435 1569
duke@435 1570 // copy 1 element at a time
duke@435 1571 __ BIND(L_copy_2_bytes);
duke@435 1572 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1573 __ delayed()->nop();
kvn@1800 1574 __ align(OptoLoopAlignment);
duke@435 1575 __ BIND(L_copy_2_bytes_loop);
duke@435 1576 __ lduh(from, offset, O3);
duke@435 1577 __ deccc(count);
duke@435 1578 __ sth(O3, to, offset);
duke@435 1579 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1580 __ delayed()->inc(offset, 2);
duke@435 1581
duke@435 1582 __ BIND(L_exit);
duke@435 1583 // O3, O4 are used as temp registers
duke@435 1584 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1585 __ retl();
duke@435 1586 __ delayed()->mov(G0, O0); // return 0
duke@435 1587 return start;
duke@435 1588 }
duke@435 1589
duke@435 1590 //
never@2118 1591 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1592 // "to" address is assumed to be heapword aligned.
never@2118 1593 //
never@2118 1594 // Arguments for generated stub:
never@2118 1595 // to: O0
never@2118 1596 // value: O1
never@2118 1597 // count: O2 treated as signed
never@2118 1598 //
never@2118 1599 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1600 __ align(CodeEntryAlignment);
never@2118 1601 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1602 address start = __ pc();
never@2118 1603
never@2118 1604 const Register to = O0; // source array address
never@2118 1605 const Register value = O1; // fill value
never@2118 1606 const Register count = O2; // elements count
never@2118 1607 // O3 is used as a temp register
never@2118 1608
never@2118 1609 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1610
never@2118 1611 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1612 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1613
never@2118 1614 int shift = -1;
never@2118 1615 switch (t) {
never@2118 1616 case T_BYTE:
never@2118 1617 shift = 2;
never@2118 1618 break;
never@2118 1619 case T_SHORT:
never@2118 1620 shift = 1;
never@2118 1621 break;
never@2118 1622 case T_INT:
never@2118 1623 shift = 0;
never@2118 1624 break;
never@2118 1625 default: ShouldNotReachHere();
never@2118 1626 }
never@2118 1627
never@2118 1628 BLOCK_COMMENT("Entry:");
never@2118 1629
never@2118 1630 if (t == T_BYTE) {
never@2118 1631 // Zero extend value
never@2118 1632 __ and3(value, 0xff, value);
never@2118 1633 __ sllx(value, 8, O3);
never@2118 1634 __ or3(value, O3, value);
never@2118 1635 }
never@2118 1636 if (t == T_SHORT) {
never@2118 1637 // Zero extend value
never@2149 1638 __ sllx(value, 48, value);
never@2149 1639 __ srlx(value, 48, value);
never@2118 1640 }
never@2118 1641 if (t == T_BYTE || t == T_SHORT) {
never@2118 1642 __ sllx(value, 16, O3);
never@2118 1643 __ or3(value, O3, value);
never@2118 1644 }
never@2118 1645
never@2118 1646 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1647 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1648 __ delayed()->andcc(count, 1, G0);
never@2118 1649
never@2118 1650 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1651 // align source address at 4 bytes address boundary
never@2118 1652 if (t == T_BYTE) {
never@2118 1653 // One byte misalignment happens only for byte arrays
never@2118 1654 __ andcc(to, 1, G0);
never@2118 1655 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1656 __ delayed()->nop();
never@2118 1657 __ stb(value, to, 0);
never@2118 1658 __ inc(to, 1);
never@2118 1659 __ dec(count, 1);
never@2118 1660 __ BIND(L_skip_align1);
never@2118 1661 }
never@2118 1662 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1663 __ andcc(to, 2, G0);
never@2118 1664 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1665 __ delayed()->nop();
never@2118 1666 __ sth(value, to, 0);
never@2118 1667 __ inc(to, 2);
never@2118 1668 __ dec(count, 1 << (shift - 1));
never@2118 1669 __ BIND(L_skip_align2);
never@2118 1670 }
never@2118 1671 #ifdef _LP64
never@2118 1672 if (!aligned) {
never@2118 1673 #endif
never@2118 1674 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1675 __ andcc(to, 7, G0);
never@2118 1676 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1677 __ delayed()->nop();
never@2118 1678 __ stw(value, to, 0);
never@2118 1679 __ inc(to, 4);
never@2118 1680 __ dec(count, 1 << shift);
never@2118 1681 __ BIND(L_fill_32_bytes);
never@2118 1682 #ifdef _LP64
never@2118 1683 }
never@2118 1684 #endif
never@2118 1685
never@2118 1686 if (t == T_INT) {
never@2118 1687 // Zero extend value
never@2118 1688 __ srl(value, 0, value);
never@2118 1689 }
never@2118 1690 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1691 __ sllx(value, 32, O3);
never@2118 1692 __ or3(value, O3, value);
never@2118 1693 }
never@2118 1694
never@2137 1695 Label L_check_fill_8_bytes;
never@2137 1696 // Fill 32-byte chunks
never@2137 1697 __ subcc(count, 8 << shift, count);
never@2137 1698 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1699 __ delayed()->nop();
never@2137 1700
never@2149 1701 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1702 __ align(16);
never@2118 1703 __ BIND(L_fill_32_bytes_loop);
never@2118 1704
never@2118 1705 __ stx(value, to, 0);
never@2118 1706 __ stx(value, to, 8);
never@2118 1707 __ stx(value, to, 16);
never@2118 1708 __ stx(value, to, 24);
never@2118 1709
never@2118 1710 __ subcc(count, 8 << shift, count);
never@2118 1711 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1712 __ delayed()->add(to, 32, to);
never@2118 1713
never@2118 1714 __ BIND(L_check_fill_8_bytes);
never@2118 1715 __ addcc(count, 8 << shift, count);
never@2118 1716 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1717 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1718 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1719 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1720
never@2118 1721 //
never@2118 1722 // length is too short, just fill 8 bytes at a time
never@2118 1723 //
never@2118 1724 Label L_fill_8_bytes_loop;
never@2118 1725 __ BIND(L_fill_8_bytes_loop);
never@2118 1726 __ stx(value, to, 0);
never@2118 1727 __ subcc(count, 1 << (shift + 1), count);
never@2118 1728 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1729 __ delayed()->add(to, 8, to);
never@2118 1730
never@2118 1731 // fill trailing 4 bytes
never@2118 1732 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1733 if (t == T_INT) {
never@2149 1734 __ BIND(L_fill_elements);
never@2149 1735 }
never@2118 1736 __ BIND(L_fill_4_bytes);
never@2118 1737 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1738 if (t == T_BYTE || t == T_SHORT) {
never@2118 1739 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1740 } else {
never@2118 1741 __ delayed()->nop();
never@2118 1742 }
never@2118 1743 __ stw(value, to, 0);
never@2118 1744 if (t == T_BYTE || t == T_SHORT) {
never@2118 1745 __ inc(to, 4);
never@2118 1746 // fill trailing 2 bytes
never@2118 1747 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1748 __ BIND(L_fill_2_bytes);
never@2118 1749 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1750 __ delayed()->andcc(count, 1, count);
never@2118 1751 __ sth(value, to, 0);
never@2118 1752 if (t == T_BYTE) {
never@2118 1753 __ inc(to, 2);
never@2118 1754 // fill trailing byte
never@2118 1755 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1756 __ BIND(L_fill_byte);
never@2118 1757 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1758 __ delayed()->nop();
never@2118 1759 __ stb(value, to, 0);
never@2118 1760 } else {
never@2118 1761 __ BIND(L_fill_byte);
never@2118 1762 }
never@2118 1763 } else {
never@2118 1764 __ BIND(L_fill_2_bytes);
never@2118 1765 }
never@2118 1766 __ BIND(L_exit);
never@2118 1767 __ retl();
never@2149 1768 __ delayed()->nop();
never@2149 1769
never@2149 1770 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1771 if (t == T_BYTE) {
never@2149 1772 __ BIND(L_fill_elements);
never@2149 1773 Label L_fill_2, L_fill_4;
never@2149 1774 // in delay slot __ andcc(count, 1, G0);
never@2149 1775 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1776 __ delayed()->andcc(count, 2, G0);
never@2149 1777 __ stb(value, to, 0);
never@2149 1778 __ inc(to, 1);
never@2149 1779 __ BIND(L_fill_2);
never@2149 1780 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1781 __ delayed()->andcc(count, 4, G0);
never@2149 1782 __ stb(value, to, 0);
never@2149 1783 __ stb(value, to, 1);
never@2149 1784 __ inc(to, 2);
never@2149 1785 __ BIND(L_fill_4);
never@2149 1786 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1787 __ delayed()->nop();
never@2149 1788 __ stb(value, to, 0);
never@2149 1789 __ stb(value, to, 1);
never@2149 1790 __ stb(value, to, 2);
never@2149 1791 __ retl();
never@2149 1792 __ delayed()->stb(value, to, 3);
never@2149 1793 }
never@2149 1794
never@2149 1795 if (t == T_SHORT) {
never@2149 1796 Label L_fill_2;
never@2149 1797 __ BIND(L_fill_elements);
never@2149 1798 // in delay slot __ andcc(count, 1, G0);
never@2149 1799 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1800 __ delayed()->andcc(count, 2, G0);
never@2149 1801 __ sth(value, to, 0);
never@2149 1802 __ inc(to, 2);
never@2149 1803 __ BIND(L_fill_2);
never@2149 1804 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1805 __ delayed()->nop();
never@2149 1806 __ sth(value, to, 0);
never@2149 1807 __ retl();
never@2149 1808 __ delayed()->sth(value, to, 2);
never@2149 1809 }
never@2118 1810 return start;
never@2118 1811 }
never@2118 1812
never@2118 1813 //
duke@435 1814 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1815 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1816 //
duke@435 1817 // Arguments for generated stub:
duke@435 1818 // from: O0
duke@435 1819 // to: O1
duke@435 1820 // count: O2 treated as signed
duke@435 1821 //
duke@435 1822 address generate_conjoint_short_copy(bool aligned, const char * name) {
duke@435 1823 // Do reverse copy.
duke@435 1824
duke@435 1825 __ align(CodeEntryAlignment);
duke@435 1826 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1827 address start = __ pc();
duke@435 1828 address nooverlap_target = aligned ?
duke@435 1829 StubRoutines::arrayof_jshort_disjoint_arraycopy() :
duke@435 1830 disjoint_short_copy_entry;
duke@435 1831
duke@435 1832 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1833 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1834
duke@435 1835 const Register from = O0; // source array address
duke@435 1836 const Register to = O1; // destination array address
duke@435 1837 const Register count = O2; // elements count
duke@435 1838 const Register end_from = from; // source array end address
duke@435 1839 const Register end_to = to; // destination array end address
duke@435 1840
duke@435 1841 const Register byte_count = O3; // bytes count to copy
duke@435 1842
duke@435 1843 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1844
duke@435 1845 if (!aligned) short_copy_entry = __ pc();
duke@435 1846 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1847 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1848
duke@435 1849 array_overlap_test(nooverlap_target, 1);
duke@435 1850
duke@435 1851 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1852 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1853
duke@435 1854 // for short arrays, just do single element copy
duke@435 1855 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1856 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1857 __ delayed()->add(from, byte_count, end_from);
duke@435 1858
duke@435 1859 {
duke@435 1860 // Align end of arrays since they could be not aligned even
duke@435 1861 // when arrays itself are aligned.
duke@435 1862
duke@435 1863 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1864 __ andcc(end_to, 3, G0);
duke@435 1865 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1866 __ delayed()->lduh(end_from, -2, O3);
duke@435 1867 __ dec(end_from, 2);
duke@435 1868 __ dec(end_to, 2);
duke@435 1869 __ dec(count);
duke@435 1870 __ sth(O3, end_to, 0);
duke@435 1871 __ BIND(L_skip_alignment);
duke@435 1872
duke@435 1873 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1874 __ andcc(end_to, 7, G0);
duke@435 1875 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1876 __ delayed()->lduh(end_from, -2, O3);
duke@435 1877 __ dec(count, 2);
duke@435 1878 __ lduh(end_from, -4, O4);
duke@435 1879 __ dec(end_from, 4);
duke@435 1880 __ dec(end_to, 4);
duke@435 1881 __ sth(O3, end_to, 2);
duke@435 1882 __ sth(O4, end_to, 0);
duke@435 1883 __ BIND(L_skip_alignment2);
duke@435 1884 }
duke@435 1885 #ifdef _LP64
duke@435 1886 if (aligned) {
duke@435 1887 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1888 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1889 // in unaligned case.
duke@435 1890 __ dec(count, 8);
duke@435 1891 } else
duke@435 1892 #endif
duke@435 1893 {
duke@435 1894 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1895 // the same alignment mod 8, otherwise jump to the next
duke@435 1896 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1897 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1898 // Also jump over aligned copy after the copy with shift completed.
duke@435 1899
duke@435 1900 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1901 L_aligned_copy, L_copy_2_bytes);
duke@435 1902 }
duke@435 1903 // copy 4 elements (16 bytes) at a time
kvn@1800 1904 __ align(OptoLoopAlignment);
duke@435 1905 __ BIND(L_aligned_copy);
duke@435 1906 __ dec(end_from, 16);
duke@435 1907 __ ldx(end_from, 8, O3);
duke@435 1908 __ ldx(end_from, 0, O4);
duke@435 1909 __ dec(end_to, 16);
duke@435 1910 __ deccc(count, 8);
duke@435 1911 __ stx(O3, end_to, 8);
duke@435 1912 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1913 __ delayed()->stx(O4, end_to, 0);
duke@435 1914 __ inc(count, 8);
duke@435 1915
duke@435 1916 // copy 1 element (2 bytes) at a time
duke@435 1917 __ BIND(L_copy_2_bytes);
duke@435 1918 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1919 __ delayed()->nop();
duke@435 1920 __ BIND(L_copy_2_bytes_loop);
duke@435 1921 __ dec(end_from, 2);
duke@435 1922 __ dec(end_to, 2);
duke@435 1923 __ lduh(end_from, 0, O4);
duke@435 1924 __ deccc(count);
duke@435 1925 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1926 __ delayed()->sth(O4, end_to, 0);
duke@435 1927
duke@435 1928 __ BIND(L_exit);
duke@435 1929 // O3, O4 are used as temp registers
duke@435 1930 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1931 __ retl();
duke@435 1932 __ delayed()->mov(G0, O0); // return 0
duke@435 1933 return start;
duke@435 1934 }
duke@435 1935
duke@435 1936 //
duke@435 1937 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1938 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1939 // to be heapword aligned.
duke@435 1940 //
duke@435 1941 // Arguments:
duke@435 1942 // from: O0
duke@435 1943 // to: O1
duke@435 1944 // count: O2 treated as signed
duke@435 1945 //
duke@435 1946 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1947
duke@435 1948 Label L_skip_alignment, L_aligned_copy;
duke@435 1949 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1950
duke@435 1951 const Register from = O0; // source array address
duke@435 1952 const Register to = O1; // destination array address
duke@435 1953 const Register count = O2; // elements count
duke@435 1954 const Register offset = O5; // offset from start of arrays
duke@435 1955 // O3, O4, G3, G4 are used as temp registers
duke@435 1956
duke@435 1957 // 'aligned' == true when it is known statically during compilation
duke@435 1958 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1959 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1960 //
duke@435 1961 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1962 // and 8 bytes - in 64-bits VM.
duke@435 1963 //
duke@435 1964 #ifdef _LP64
duke@435 1965 if (!aligned)
duke@435 1966 #endif
duke@435 1967 {
duke@435 1968 // The next check could be put under 'ifndef' since the code in
duke@435 1969 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1970
duke@435 1971 // for short arrays, just do single element copy
duke@435 1972 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1973 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1974 __ delayed()->mov(G0, offset);
duke@435 1975
duke@435 1976 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1977 __ andcc(to, 7, G0);
duke@435 1978 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1979 __ delayed()->ld(from, 0, O3);
duke@435 1980 __ inc(from, 4);
duke@435 1981 __ inc(to, 4);
duke@435 1982 __ dec(count);
duke@435 1983 __ st(O3, to, -4);
duke@435 1984 __ BIND(L_skip_alignment);
duke@435 1985
duke@435 1986 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 1987 __ andcc(from, 7, G0);
duke@435 1988 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1989 __ delayed()->ld(from, 0, O3);
duke@435 1990
duke@435 1991 //
duke@435 1992 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1993 // to form 2 aligned 8-bytes chunks to store.
duke@435 1994 //
duke@435 1995 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 1996 // code is more optimal.
duke@435 1997
duke@435 1998 // copy with shift 4 elements (16 bytes) at a time
duke@435 1999 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 2000
kvn@1800 2001 __ align(OptoLoopAlignment);
duke@435 2002 __ BIND(L_copy_16_bytes);
duke@435 2003 __ ldx(from, 4, O4);
duke@435 2004 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 2005 __ ldx(from, 12, G4);
duke@435 2006 __ inc(to, 16);
duke@435 2007 __ inc(from, 16);
duke@435 2008 __ sllx(O3, 32, O3);
duke@435 2009 __ srlx(O4, 32, G3);
duke@435 2010 __ bset(G3, O3);
duke@435 2011 __ stx(O3, to, -16);
duke@435 2012 __ sllx(O4, 32, O4);
duke@435 2013 __ srlx(G4, 32, G3);
duke@435 2014 __ bset(G3, O4);
duke@435 2015 __ stx(O4, to, -8);
duke@435 2016 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2017 __ delayed()->mov(G4, O3);
duke@435 2018
duke@435 2019 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2020 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2021
duke@435 2022 __ BIND(L_aligned_copy);
duke@435 2023 }
duke@435 2024 // copy 4 elements (16 bytes) at a time
duke@435 2025 __ and3(count, 1, G4); // Save
duke@435 2026 __ srl(count, 1, count);
duke@435 2027 generate_disjoint_long_copy_core(aligned);
duke@435 2028 __ mov(G4, count); // Restore
duke@435 2029
duke@435 2030 // copy 1 element at a time
duke@435 2031 __ BIND(L_copy_4_bytes);
duke@435 2032 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2033 __ delayed()->nop();
duke@435 2034 __ BIND(L_copy_4_bytes_loop);
duke@435 2035 __ ld(from, offset, O3);
duke@435 2036 __ deccc(count);
duke@435 2037 __ st(O3, to, offset);
duke@435 2038 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2039 __ delayed()->inc(offset, 4);
duke@435 2040 __ BIND(L_exit);
duke@435 2041 }
duke@435 2042
duke@435 2043 //
duke@435 2044 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2045 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2046 //
duke@435 2047 // Arguments for generated stub:
duke@435 2048 // from: O0
duke@435 2049 // to: O1
duke@435 2050 // count: O2 treated as signed
duke@435 2051 //
duke@435 2052 address generate_disjoint_int_copy(bool aligned, const char * name) {
duke@435 2053 __ align(CodeEntryAlignment);
duke@435 2054 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2055 address start = __ pc();
duke@435 2056
duke@435 2057 const Register count = O2;
duke@435 2058 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2059
duke@435 2060 if (!aligned) disjoint_int_copy_entry = __ pc();
duke@435 2061 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2062 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2063
duke@435 2064 generate_disjoint_int_copy_core(aligned);
duke@435 2065
duke@435 2066 // O3, O4 are used as temp registers
duke@435 2067 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2068 __ retl();
duke@435 2069 __ delayed()->mov(G0, O0); // return 0
duke@435 2070 return start;
duke@435 2071 }
duke@435 2072
duke@435 2073 //
duke@435 2074 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2075 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2076 // to be heapword aligned.
duke@435 2077 //
duke@435 2078 // Arguments:
duke@435 2079 // from: O0
duke@435 2080 // to: O1
duke@435 2081 // count: O2 treated as signed
duke@435 2082 //
duke@435 2083 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2084 // Do reverse copy.
duke@435 2085
duke@435 2086 Label L_skip_alignment, L_aligned_copy;
duke@435 2087 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2088
duke@435 2089 const Register from = O0; // source array address
duke@435 2090 const Register to = O1; // destination array address
duke@435 2091 const Register count = O2; // elements count
duke@435 2092 const Register end_from = from; // source array end address
duke@435 2093 const Register end_to = to; // destination array end address
duke@435 2094 // O3, O4, O5, G3 are used as temp registers
duke@435 2095
duke@435 2096 const Register byte_count = O3; // bytes count to copy
duke@435 2097
duke@435 2098 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2099 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2100
duke@435 2101 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2102 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2103 __ delayed()->add(from, byte_count, end_from);
duke@435 2104
duke@435 2105 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2106 __ andcc(end_to, 7, G0);
duke@435 2107 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2108 __ delayed()->nop();
duke@435 2109 __ dec(count);
duke@435 2110 __ dec(end_from, 4);
duke@435 2111 __ dec(end_to, 4);
duke@435 2112 __ ld(end_from, 0, O4);
duke@435 2113 __ st(O4, end_to, 0);
duke@435 2114 __ BIND(L_skip_alignment);
duke@435 2115
duke@435 2116 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2117 __ andcc(end_from, 7, G0);
duke@435 2118 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2119 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2120
duke@435 2121 // copy with shift 4 elements (16 bytes) at a time
duke@435 2122 //
duke@435 2123 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2124 // to form 2 aligned 8-bytes chunks to store.
duke@435 2125 //
duke@435 2126 __ ldx(end_from, -4, O3);
kvn@1800 2127 __ align(OptoLoopAlignment);
duke@435 2128 __ BIND(L_copy_16_bytes);
duke@435 2129 __ ldx(end_from, -12, O4);
duke@435 2130 __ deccc(count, 4);
duke@435 2131 __ ldx(end_from, -20, O5);
duke@435 2132 __ dec(end_to, 16);
duke@435 2133 __ dec(end_from, 16);
duke@435 2134 __ srlx(O3, 32, O3);
duke@435 2135 __ sllx(O4, 32, G3);
duke@435 2136 __ bset(G3, O3);
duke@435 2137 __ stx(O3, end_to, 8);
duke@435 2138 __ srlx(O4, 32, O4);
duke@435 2139 __ sllx(O5, 32, G3);
duke@435 2140 __ bset(O4, G3);
duke@435 2141 __ stx(G3, end_to, 0);
duke@435 2142 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2143 __ delayed()->mov(O5, O3);
duke@435 2144
duke@435 2145 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2146 __ delayed()->inc(count, 4);
duke@435 2147
duke@435 2148 // copy 4 elements (16 bytes) at a time
kvn@1800 2149 __ align(OptoLoopAlignment);
duke@435 2150 __ BIND(L_aligned_copy);
duke@435 2151 __ dec(end_from, 16);
duke@435 2152 __ ldx(end_from, 8, O3);
duke@435 2153 __ ldx(end_from, 0, O4);
duke@435 2154 __ dec(end_to, 16);
duke@435 2155 __ deccc(count, 4);
duke@435 2156 __ stx(O3, end_to, 8);
duke@435 2157 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2158 __ delayed()->stx(O4, end_to, 0);
duke@435 2159 __ inc(count, 4);
duke@435 2160
duke@435 2161 // copy 1 element (4 bytes) at a time
duke@435 2162 __ BIND(L_copy_4_bytes);
duke@435 2163 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2164 __ delayed()->nop();
duke@435 2165 __ BIND(L_copy_4_bytes_loop);
duke@435 2166 __ dec(end_from, 4);
duke@435 2167 __ dec(end_to, 4);
duke@435 2168 __ ld(end_from, 0, O4);
duke@435 2169 __ deccc(count);
duke@435 2170 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2171 __ delayed()->st(O4, end_to, 0);
duke@435 2172 __ BIND(L_exit);
duke@435 2173 }
duke@435 2174
duke@435 2175 //
duke@435 2176 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2177 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2178 //
duke@435 2179 // Arguments for generated stub:
duke@435 2180 // from: O0
duke@435 2181 // to: O1
duke@435 2182 // count: O2 treated as signed
duke@435 2183 //
duke@435 2184 address generate_conjoint_int_copy(bool aligned, const char * name) {
duke@435 2185 __ align(CodeEntryAlignment);
duke@435 2186 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2187 address start = __ pc();
duke@435 2188
duke@435 2189 address nooverlap_target = aligned ?
duke@435 2190 StubRoutines::arrayof_jint_disjoint_arraycopy() :
duke@435 2191 disjoint_int_copy_entry;
duke@435 2192
duke@435 2193 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2194
duke@435 2195 if (!aligned) int_copy_entry = __ pc();
duke@435 2196 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2197 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2198
duke@435 2199 array_overlap_test(nooverlap_target, 2);
duke@435 2200
duke@435 2201 generate_conjoint_int_copy_core(aligned);
duke@435 2202
duke@435 2203 // O3, O4 are used as temp registers
duke@435 2204 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2205 __ retl();
duke@435 2206 __ delayed()->mov(G0, O0); // return 0
duke@435 2207 return start;
duke@435 2208 }
duke@435 2209
duke@435 2210 //
duke@435 2211 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2212 // "aligned" is ignored, because we must make the stronger
duke@435 2213 // assumption that both addresses are always 64-bit aligned.
duke@435 2214 //
duke@435 2215 // Arguments:
duke@435 2216 // from: O0
duke@435 2217 // to: O1
duke@435 2218 // count: O2 treated as signed
duke@435 2219 //
kvn@1799 2220 // count -= 2;
kvn@1799 2221 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2222 // if ( count > 6) { // >= 8 elements
kvn@1799 2223 // count -= 6; // original count - 8
kvn@1799 2224 // do {
kvn@1799 2225 // copy_8_elements;
kvn@1799 2226 // count -= 8;
kvn@1799 2227 // } while ( count >= 0 );
kvn@1799 2228 // count += 6;
kvn@1799 2229 // }
kvn@1799 2230 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2231 // do {
kvn@1799 2232 // copy_2_elements;
kvn@1799 2233 // } while ( (count=count-2) >= 0 );
kvn@1799 2234 // }
kvn@1799 2235 // }
kvn@1799 2236 // count += 2;
kvn@1799 2237 // if ( count != 0 ) { // 1 element left
kvn@1799 2238 // copy_1_element;
kvn@1799 2239 // }
kvn@1799 2240 //
duke@435 2241 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2242 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2243 const Register from = O0; // source array address
duke@435 2244 const Register to = O1; // destination array address
duke@435 2245 const Register count = O2; // elements count
duke@435 2246 const Register offset0 = O4; // element offset
duke@435 2247 const Register offset8 = O5; // next element offset
duke@435 2248
duke@435 2249 __ deccc(count, 2);
duke@435 2250 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2251 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2252 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2253
kvn@1799 2254 // Copy by 64 bytes chunks
kvn@1799 2255 Label L_copy_64_bytes;
kvn@1799 2256 const Register from64 = O3; // source address
kvn@1799 2257 const Register to64 = G3; // destination address
kvn@1799 2258 __ subcc(count, 6, O3);
kvn@1799 2259 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@1799 2260 __ delayed()->mov(to, to64);
kvn@1799 2261 // Now we can use O4(offset0), O5(offset8) as temps
kvn@1799 2262 __ mov(O3, count);
kvn@1799 2263 __ mov(from, from64);
kvn@1799 2264
kvn@1800 2265 __ align(OptoLoopAlignment);
kvn@1799 2266 __ BIND(L_copy_64_bytes);
kvn@1799 2267 for( int off = 0; off < 64; off += 16 ) {
kvn@1799 2268 __ ldx(from64, off+0, O4);
kvn@1799 2269 __ ldx(from64, off+8, O5);
kvn@1799 2270 __ stx(O4, to64, off+0);
kvn@1799 2271 __ stx(O5, to64, off+8);
kvn@1799 2272 }
kvn@1799 2273 __ deccc(count, 8);
kvn@1799 2274 __ inc(from64, 64);
kvn@1799 2275 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
kvn@1799 2276 __ delayed()->inc(to64, 64);
kvn@1799 2277
kvn@1799 2278 // Restore O4(offset0), O5(offset8)
kvn@1799 2279 __ sub(from64, from, offset0);
kvn@1799 2280 __ inccc(count, 6);
kvn@1799 2281 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2282 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2283
kvn@1799 2284 // Copy by 16 bytes chunks
kvn@1800 2285 __ align(OptoLoopAlignment);
duke@435 2286 __ BIND(L_copy_16_bytes);
duke@435 2287 __ ldx(from, offset0, O3);
duke@435 2288 __ ldx(from, offset8, G3);
duke@435 2289 __ deccc(count, 2);
duke@435 2290 __ stx(O3, to, offset0);
duke@435 2291 __ inc(offset0, 16);
duke@435 2292 __ stx(G3, to, offset8);
duke@435 2293 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2294 __ delayed()->inc(offset8, 16);
duke@435 2295
kvn@1799 2296 // Copy last 8 bytes
duke@435 2297 __ BIND(L_copy_8_bytes);
duke@435 2298 __ inccc(count, 2);
duke@435 2299 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2300 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2301 __ ldx(from, offset0, O3);
duke@435 2302 __ stx(O3, to, offset0);
duke@435 2303 __ BIND(L_exit);
duke@435 2304 }
duke@435 2305
duke@435 2306 //
duke@435 2307 // Generate stub for disjoint long copy.
duke@435 2308 // "aligned" is ignored, because we must make the stronger
duke@435 2309 // assumption that both addresses are always 64-bit aligned.
duke@435 2310 //
duke@435 2311 // Arguments for generated stub:
duke@435 2312 // from: O0
duke@435 2313 // to: O1
duke@435 2314 // count: O2 treated as signed
duke@435 2315 //
duke@435 2316 address generate_disjoint_long_copy(bool aligned, const char * name) {
duke@435 2317 __ align(CodeEntryAlignment);
duke@435 2318 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2319 address start = __ pc();
duke@435 2320
duke@435 2321 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2322
duke@435 2323 if (!aligned) disjoint_long_copy_entry = __ pc();
duke@435 2324 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2325 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2326
duke@435 2327 generate_disjoint_long_copy_core(aligned);
duke@435 2328
duke@435 2329 // O3, O4 are used as temp registers
duke@435 2330 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2331 __ retl();
duke@435 2332 __ delayed()->mov(G0, O0); // return 0
duke@435 2333 return start;
duke@435 2334 }
duke@435 2335
duke@435 2336 //
duke@435 2337 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2338 // "aligned" is ignored, because we must make the stronger
duke@435 2339 // assumption that both addresses are always 64-bit aligned.
duke@435 2340 //
duke@435 2341 // Arguments:
duke@435 2342 // from: O0
duke@435 2343 // to: O1
duke@435 2344 // count: O2 treated as signed
duke@435 2345 //
duke@435 2346 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2347 // Do reverse copy.
duke@435 2348 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2349 const Register from = O0; // source array address
duke@435 2350 const Register to = O1; // destination array address
duke@435 2351 const Register count = O2; // elements count
duke@435 2352 const Register offset8 = O4; // element offset
duke@435 2353 const Register offset0 = O5; // previous element offset
duke@435 2354
duke@435 2355 __ subcc(count, 1, count);
duke@435 2356 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2357 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2358 __ sub(offset8, 8, offset0);
kvn@1800 2359 __ align(OptoLoopAlignment);
duke@435 2360 __ BIND(L_copy_16_bytes);
duke@435 2361 __ ldx(from, offset8, O2);
duke@435 2362 __ ldx(from, offset0, O3);
duke@435 2363 __ stx(O2, to, offset8);
duke@435 2364 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2365 __ stx(O3, to, offset0);
duke@435 2366 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2367 __ delayed()->dec(offset0, 16);
duke@435 2368
duke@435 2369 __ BIND(L_copy_8_bytes);
duke@435 2370 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2371 __ delayed()->nop();
duke@435 2372 __ ldx(from, 0, O3);
duke@435 2373 __ stx(O3, to, 0);
duke@435 2374 __ BIND(L_exit);
duke@435 2375 }
duke@435 2376
duke@435 2377 // Generate stub for conjoint long copy.
duke@435 2378 // "aligned" is ignored, because we must make the stronger
duke@435 2379 // assumption that both addresses are always 64-bit aligned.
duke@435 2380 //
duke@435 2381 // Arguments for generated stub:
duke@435 2382 // from: O0
duke@435 2383 // to: O1
duke@435 2384 // count: O2 treated as signed
duke@435 2385 //
duke@435 2386 address generate_conjoint_long_copy(bool aligned, const char * name) {
duke@435 2387 __ align(CodeEntryAlignment);
duke@435 2388 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2389 address start = __ pc();
duke@435 2390
duke@435 2391 assert(!aligned, "usage");
duke@435 2392 address nooverlap_target = disjoint_long_copy_entry;
duke@435 2393
duke@435 2394 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2395
duke@435 2396 if (!aligned) long_copy_entry = __ pc();
duke@435 2397 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2398 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2399
duke@435 2400 array_overlap_test(nooverlap_target, 3);
duke@435 2401
duke@435 2402 generate_conjoint_long_copy_core(aligned);
duke@435 2403
duke@435 2404 // O3, O4 are used as temp registers
duke@435 2405 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2406 __ retl();
duke@435 2407 __ delayed()->mov(G0, O0); // return 0
duke@435 2408 return start;
duke@435 2409 }
duke@435 2410
duke@435 2411 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2412 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2413 //
duke@435 2414 // Arguments for generated stub:
duke@435 2415 // from: O0
duke@435 2416 // to: O1
duke@435 2417 // count: O2 treated as signed
duke@435 2418 //
duke@435 2419 address generate_disjoint_oop_copy(bool aligned, const char * name) {
duke@435 2420
duke@435 2421 const Register from = O0; // source array address
duke@435 2422 const Register to = O1; // destination array address
duke@435 2423 const Register count = O2; // elements count
duke@435 2424
duke@435 2425 __ align(CodeEntryAlignment);
duke@435 2426 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2427 address start = __ pc();
duke@435 2428
duke@435 2429 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2430
duke@435 2431 if (!aligned) disjoint_oop_copy_entry = __ pc();
duke@435 2432 // caller can pass a 64-bit byte count here
duke@435 2433 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2434
duke@435 2435 // save arguments for barrier generation
duke@435 2436 __ mov(to, G1);
duke@435 2437 __ mov(count, G5);
duke@435 2438 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2439 #ifdef _LP64
coleenp@548 2440 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2441 if (UseCompressedOops) {
coleenp@548 2442 generate_disjoint_int_copy_core(aligned);
coleenp@548 2443 } else {
coleenp@548 2444 generate_disjoint_long_copy_core(aligned);
coleenp@548 2445 }
duke@435 2446 #else
duke@435 2447 generate_disjoint_int_copy_core(aligned);
duke@435 2448 #endif
duke@435 2449 // O0 is used as temp register
duke@435 2450 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2451
duke@435 2452 // O3, O4 are used as temp registers
duke@435 2453 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2454 __ retl();
duke@435 2455 __ delayed()->mov(G0, O0); // return 0
duke@435 2456 return start;
duke@435 2457 }
duke@435 2458
duke@435 2459 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2460 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2461 //
duke@435 2462 // Arguments for generated stub:
duke@435 2463 // from: O0
duke@435 2464 // to: O1
duke@435 2465 // count: O2 treated as signed
duke@435 2466 //
duke@435 2467 address generate_conjoint_oop_copy(bool aligned, const char * name) {
duke@435 2468
duke@435 2469 const Register from = O0; // source array address
duke@435 2470 const Register to = O1; // destination array address
duke@435 2471 const Register count = O2; // elements count
duke@435 2472
duke@435 2473 __ align(CodeEntryAlignment);
duke@435 2474 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2475 address start = __ pc();
duke@435 2476
duke@435 2477 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2478
duke@435 2479 if (!aligned) oop_copy_entry = __ pc();
duke@435 2480 // caller can pass a 64-bit byte count here
duke@435 2481 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2482
duke@435 2483 // save arguments for barrier generation
duke@435 2484 __ mov(to, G1);
duke@435 2485 __ mov(count, G5);
duke@435 2486
duke@435 2487 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2488
duke@435 2489 address nooverlap_target = aligned ?
duke@435 2490 StubRoutines::arrayof_oop_disjoint_arraycopy() :
duke@435 2491 disjoint_oop_copy_entry;
duke@435 2492
coleenp@548 2493 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2494
duke@435 2495 #ifdef _LP64
coleenp@548 2496 if (UseCompressedOops) {
coleenp@548 2497 generate_conjoint_int_copy_core(aligned);
coleenp@548 2498 } else {
coleenp@548 2499 generate_conjoint_long_copy_core(aligned);
coleenp@548 2500 }
duke@435 2501 #else
duke@435 2502 generate_conjoint_int_copy_core(aligned);
duke@435 2503 #endif
duke@435 2504
duke@435 2505 // O0 is used as temp register
duke@435 2506 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2507
duke@435 2508 // O3, O4 are used as temp registers
duke@435 2509 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2510 __ retl();
duke@435 2511 __ delayed()->mov(G0, O0); // return 0
duke@435 2512 return start;
duke@435 2513 }
duke@435 2514
duke@435 2515
duke@435 2516 // Helper for generating a dynamic type check.
duke@435 2517 // Smashes only the given temp registers.
duke@435 2518 void generate_type_check(Register sub_klass,
duke@435 2519 Register super_check_offset,
duke@435 2520 Register super_klass,
duke@435 2521 Register temp,
jrose@1079 2522 Label& L_success) {
duke@435 2523 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2524
duke@435 2525 BLOCK_COMMENT("type_check:");
duke@435 2526
jrose@1079 2527 Label L_miss, L_pop_to_miss;
duke@435 2528
duke@435 2529 assert_clean_int(super_check_offset, temp);
duke@435 2530
jrose@1079 2531 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2532 &L_success, &L_miss, NULL,
jrose@1079 2533 super_check_offset);
jrose@1079 2534
jrose@1079 2535 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2536 __ save_frame(0);
jrose@1079 2537 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2538 super_klass->after_save(),
jrose@1079 2539 L0, L1, L2, L4,
jrose@1079 2540 NULL, &L_pop_to_miss);
jrose@1079 2541 __ ba(false, L_success);
jrose@1079 2542 __ delayed()->restore();
jrose@1079 2543
jrose@1079 2544 __ bind(L_pop_to_miss);
duke@435 2545 __ restore();
duke@435 2546
duke@435 2547 // Fall through on failure!
duke@435 2548 __ BIND(L_miss);
duke@435 2549 }
duke@435 2550
duke@435 2551
duke@435 2552 // Generate stub for checked oop copy.
duke@435 2553 //
duke@435 2554 // Arguments for generated stub:
duke@435 2555 // from: O0
duke@435 2556 // to: O1
duke@435 2557 // count: O2 treated as signed
duke@435 2558 // ckoff: O3 (super_check_offset)
duke@435 2559 // ckval: O4 (super_klass)
duke@435 2560 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2561 //
duke@435 2562 address generate_checkcast_copy(const char* name) {
duke@435 2563
duke@435 2564 const Register O0_from = O0; // source array address
duke@435 2565 const Register O1_to = O1; // destination array address
duke@435 2566 const Register O2_count = O2; // elements count
duke@435 2567 const Register O3_ckoff = O3; // super_check_offset
duke@435 2568 const Register O4_ckval = O4; // super_klass
duke@435 2569
duke@435 2570 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2571 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2572 const Register G3_oop = G3; // actual oop copied
duke@435 2573 const Register G4_klass = G4; // oop._klass
duke@435 2574 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2575
duke@435 2576 __ align(CodeEntryAlignment);
duke@435 2577 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2578 address start = __ pc();
duke@435 2579
ysr@777 2580 gen_write_ref_array_pre_barrier(O1, O2);
duke@435 2581
duke@435 2582 #ifdef ASSERT
jrose@1079 2583 // We sometimes save a frame (see generate_type_check below).
duke@435 2584 // If this will cause trouble, let's fail now instead of later.
duke@435 2585 __ save_frame(0);
duke@435 2586 __ restore();
duke@435 2587 #endif
duke@435 2588
duke@435 2589 #ifdef ASSERT
duke@435 2590 // caller guarantees that the arrays really are different
duke@435 2591 // otherwise, we would have to make conjoint checks
duke@435 2592 { Label L;
duke@435 2593 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2594 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2595 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2596 __ stop("checkcast_copy within a single array");
duke@435 2597 __ bind(L);
duke@435 2598 __ mov(G1, O3);
duke@435 2599 __ mov(G4, O4);
duke@435 2600 }
duke@435 2601 #endif //ASSERT
duke@435 2602
duke@435 2603 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
duke@435 2604
duke@435 2605 checkcast_copy_entry = __ pc();
duke@435 2606 // caller can pass a 64-bit byte count here (from generic stub)
duke@435 2607 BLOCK_COMMENT("Entry:");
duke@435 2608
duke@435 2609 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2610 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2611 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2612 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2613
duke@435 2614 // Empty array: Nothing to do.
duke@435 2615 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2616 __ retl();
duke@435 2617 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2618
duke@435 2619 // ======== begin loop ========
duke@435 2620 // (Loop is rotated; its entry is load_element.)
duke@435 2621 // Loop variables:
duke@435 2622 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2623 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2624 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2625 __ align(OptoLoopAlignment);
duke@435 2626
jrose@1079 2627 __ BIND(store_element);
jrose@1079 2628 __ deccc(G1_remain); // decrement the count
coleenp@548 2629 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2630 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2631 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2632 __ delayed()->set(0, O0); // return -1 on success
duke@435 2633
duke@435 2634 // ======== loop entry is here ========
jrose@1079 2635 __ BIND(load_element);
coleenp@548 2636 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
duke@435 2637 __ br_null(G3_oop, true, Assembler::pt, store_element);
jrose@1079 2638 __ delayed()->nop();
duke@435 2639
coleenp@548 2640 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2641
duke@435 2642 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2643 // branch to this on success:
jrose@1079 2644 store_element);
duke@435 2645 // ======== end loop ========
duke@435 2646
duke@435 2647 // It was a real error; we must depend on the caller to finish the job.
duke@435 2648 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2649 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2650 // and report their number to the caller.
jrose@1079 2651 __ BIND(fail);
duke@435 2652 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2653 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2654 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2655
jrose@1079 2656 __ BIND(do_card_marks);
duke@435 2657 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2658
jrose@1079 2659 __ BIND(done);
duke@435 2660 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2661 __ retl();
duke@435 2662 __ delayed()->nop(); // return value in 00
duke@435 2663
duke@435 2664 return start;
duke@435 2665 }
duke@435 2666
duke@435 2667
duke@435 2668 // Generate 'unsafe' array copy stub
duke@435 2669 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2670 // size_t argument instead of an element count.
duke@435 2671 //
duke@435 2672 // Arguments for generated stub:
duke@435 2673 // from: O0
duke@435 2674 // to: O1
duke@435 2675 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2676 //
duke@435 2677 // Examines the alignment of the operands and dispatches
duke@435 2678 // to a long, int, short, or byte copy loop.
duke@435 2679 //
duke@435 2680 address generate_unsafe_copy(const char* name) {
duke@435 2681
duke@435 2682 const Register O0_from = O0; // source array address
duke@435 2683 const Register O1_to = O1; // destination array address
duke@435 2684 const Register O2_count = O2; // elements count
duke@435 2685
duke@435 2686 const Register G1_bits = G1; // test copy of low bits
duke@435 2687
duke@435 2688 __ align(CodeEntryAlignment);
duke@435 2689 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2690 address start = __ pc();
duke@435 2691
duke@435 2692 // bump this on entry, not on exit:
duke@435 2693 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2694
duke@435 2695 __ or3(O0_from, O1_to, G1_bits);
duke@435 2696 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2697
duke@435 2698 __ btst(BytesPerLong-1, G1_bits);
duke@435 2699 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2700 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2701 // scale the count on the way out:
duke@435 2702 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2703
duke@435 2704 __ btst(BytesPerInt-1, G1_bits);
duke@435 2705 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2706 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2707 // scale the count on the way out:
duke@435 2708 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2709
duke@435 2710 __ btst(BytesPerShort-1, G1_bits);
duke@435 2711 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2712 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2713 // scale the count on the way out:
duke@435 2714 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2715
duke@435 2716 __ br(Assembler::always, false, Assembler::pt,
duke@435 2717 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2718 __ delayed()->nop();
duke@435 2719
duke@435 2720 return start;
duke@435 2721 }
duke@435 2722
duke@435 2723
duke@435 2724 // Perform range checks on the proposed arraycopy.
duke@435 2725 // Kills the two temps, but nothing else.
duke@435 2726 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2727 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2728 Register src_pos, // source position (O1)
duke@435 2729 Register dst, // destination array oo (O2)
duke@435 2730 Register dst_pos, // destination position (O3)
duke@435 2731 Register length, // length of copy (O4)
duke@435 2732 Register temp1, Register temp2,
duke@435 2733 Label& L_failed) {
duke@435 2734 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2735
duke@435 2736 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2737
duke@435 2738 const Register array_length = temp1; // scratch
duke@435 2739 const Register end_pos = temp2; // scratch
duke@435 2740
duke@435 2741 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2742 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2743 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2744 __ cmp(end_pos, array_length);
duke@435 2745 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2746
duke@435 2747 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2748 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2749 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2750 __ cmp(end_pos, array_length);
duke@435 2751 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2752
duke@435 2753 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2754 // Move with sign extension can be used since they are positive.
duke@435 2755 __ delayed()->signx(src_pos, src_pos);
duke@435 2756 __ signx(dst_pos, dst_pos);
duke@435 2757
duke@435 2758 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2759 }
duke@435 2760
duke@435 2761
duke@435 2762 //
duke@435 2763 // Generate generic array copy stubs
duke@435 2764 //
duke@435 2765 // Input:
duke@435 2766 // O0 - src oop
duke@435 2767 // O1 - src_pos
duke@435 2768 // O2 - dst oop
duke@435 2769 // O3 - dst_pos
duke@435 2770 // O4 - element count
duke@435 2771 //
duke@435 2772 // Output:
duke@435 2773 // O0 == 0 - success
duke@435 2774 // O0 == -1 - need to call System.arraycopy
duke@435 2775 //
duke@435 2776 address generate_generic_copy(const char *name) {
duke@435 2777
duke@435 2778 Label L_failed, L_objArray;
duke@435 2779
duke@435 2780 // Input registers
duke@435 2781 const Register src = O0; // source array oop
duke@435 2782 const Register src_pos = O1; // source position
duke@435 2783 const Register dst = O2; // destination array oop
duke@435 2784 const Register dst_pos = O3; // destination position
duke@435 2785 const Register length = O4; // elements count
duke@435 2786
duke@435 2787 // registers used as temp
duke@435 2788 const Register G3_src_klass = G3; // source array klass
duke@435 2789 const Register G4_dst_klass = G4; // destination array klass
duke@435 2790 const Register G5_lh = G5; // layout handler
duke@435 2791 const Register O5_temp = O5;
duke@435 2792
duke@435 2793 __ align(CodeEntryAlignment);
duke@435 2794 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2795 address start = __ pc();
duke@435 2796
duke@435 2797 // bump this on entry, not on exit:
duke@435 2798 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2799
duke@435 2800 // In principle, the int arguments could be dirty.
duke@435 2801 //assert_clean_int(src_pos, G1);
duke@435 2802 //assert_clean_int(dst_pos, G1);
duke@435 2803 //assert_clean_int(length, G1);
duke@435 2804
duke@435 2805 //-----------------------------------------------------------------------
duke@435 2806 // Assembler stubs will be used for this call to arraycopy
duke@435 2807 // if the following conditions are met:
duke@435 2808 //
duke@435 2809 // (1) src and dst must not be null.
duke@435 2810 // (2) src_pos must not be negative.
duke@435 2811 // (3) dst_pos must not be negative.
duke@435 2812 // (4) length must not be negative.
duke@435 2813 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2814 // (6) src and dst should be arrays.
duke@435 2815 // (7) src_pos + length must not exceed length of src.
duke@435 2816 // (8) dst_pos + length must not exceed length of dst.
duke@435 2817 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2818
duke@435 2819 // if (src == NULL) return -1;
duke@435 2820 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2821
duke@435 2822 // if (src_pos < 0) return -1;
duke@435 2823 __ delayed()->tst(src_pos);
duke@435 2824 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2825 __ delayed()->nop();
duke@435 2826
duke@435 2827 // if (dst == NULL) return -1;
duke@435 2828 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2829
duke@435 2830 // if (dst_pos < 0) return -1;
duke@435 2831 __ delayed()->tst(dst_pos);
duke@435 2832 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2833
duke@435 2834 // if (length < 0) return -1;
duke@435 2835 __ delayed()->tst(length);
duke@435 2836 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2837
duke@435 2838 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2839 // get src->klass()
coleenp@548 2840 if (UseCompressedOops) {
coleenp@548 2841 __ delayed()->nop(); // ??? not good
coleenp@548 2842 __ load_klass(src, G3_src_klass);
coleenp@548 2843 } else {
coleenp@548 2844 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2845 }
duke@435 2846
duke@435 2847 #ifdef ASSERT
duke@435 2848 // assert(src->klass() != NULL);
duke@435 2849 BLOCK_COMMENT("assert klasses not null");
duke@435 2850 { Label L_a, L_b;
duke@435 2851 __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
coleenp@548 2852 __ delayed()->nop();
duke@435 2853 __ bind(L_a);
duke@435 2854 __ stop("broken null klass");
duke@435 2855 __ bind(L_b);
coleenp@548 2856 __ load_klass(dst, G4_dst_klass);
duke@435 2857 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2858 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2859 BLOCK_COMMENT("assert done");
duke@435 2860 }
duke@435 2861 #endif
duke@435 2862
duke@435 2863 // Load layout helper
duke@435 2864 //
duke@435 2865 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2866 // 32 30 24 16 8 2 0
duke@435 2867 //
duke@435 2868 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2869 //
duke@435 2870
duke@435 2871 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2872 Klass::layout_helper_offset_in_bytes();
duke@435 2873
duke@435 2874 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2875 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2876
coleenp@548 2877 if (UseCompressedOops) {
coleenp@548 2878 __ load_klass(dst, G4_dst_klass);
coleenp@548 2879 }
duke@435 2880 // Handle objArrays completely differently...
duke@435 2881 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2882 __ set(objArray_lh, O5_temp);
duke@435 2883 __ cmp(G5_lh, O5_temp);
duke@435 2884 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 2885 if (UseCompressedOops) {
coleenp@548 2886 __ delayed()->nop();
coleenp@548 2887 } else {
coleenp@548 2888 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2889 }
duke@435 2890
duke@435 2891 // if (src->klass() != dst->klass()) return -1;
duke@435 2892 __ cmp(G3_src_klass, G4_dst_klass);
duke@435 2893 __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2894 __ delayed()->nop();
duke@435 2895
duke@435 2896 // if (!src->is_Array()) return -1;
duke@435 2897 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2898 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2899
duke@435 2900 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2901 #ifdef ASSERT
duke@435 2902 __ delayed()->nop();
duke@435 2903 { Label L;
duke@435 2904 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2905 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2906 __ cmp(G5_lh, O5_temp);
duke@435 2907 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2908 __ delayed()->nop();
duke@435 2909 __ stop("must be a primitive array");
duke@435 2910 __ bind(L);
duke@435 2911 }
duke@435 2912 #else
duke@435 2913 __ delayed(); // match next insn to prev branch
duke@435 2914 #endif
duke@435 2915
duke@435 2916 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2917 O5_temp, G4_dst_klass, L_failed);
duke@435 2918
duke@435 2919 // typeArrayKlass
duke@435 2920 //
duke@435 2921 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2922 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2923 //
duke@435 2924
duke@435 2925 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2926 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2927
duke@435 2928 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2929 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2930 __ add(src, G4_offset, src); // src array offset
duke@435 2931 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2932 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2933
duke@435 2934 // next registers should be set before the jump to corresponding stub
duke@435 2935 const Register from = O0; // source array address
duke@435 2936 const Register to = O1; // destination array address
duke@435 2937 const Register count = O2; // elements count
duke@435 2938
duke@435 2939 // 'from', 'to', 'count' registers should be set in this order
duke@435 2940 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2941
duke@435 2942 BLOCK_COMMENT("scale indexes to element size");
duke@435 2943 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2944 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2945 __ add(src, src_pos, from); // src_addr
duke@435 2946 __ add(dst, dst_pos, to); // dst_addr
duke@435 2947
duke@435 2948 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2949 __ cmp(G3_elsize, 0);
duke@435 2950 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
duke@435 2951 __ delayed()->signx(length, count); // length
duke@435 2952
duke@435 2953 __ cmp(G3_elsize, LogBytesPerShort);
duke@435 2954 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
duke@435 2955 __ delayed()->signx(length, count); // length
duke@435 2956
duke@435 2957 __ cmp(G3_elsize, LogBytesPerInt);
duke@435 2958 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
duke@435 2959 __ delayed()->signx(length, count); // length
duke@435 2960 #ifdef ASSERT
duke@435 2961 { Label L;
duke@435 2962 __ cmp(G3_elsize, LogBytesPerLong);
duke@435 2963 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 2964 __ delayed()->nop();
duke@435 2965 __ stop("must be long copy, but elsize is wrong");
duke@435 2966 __ bind(L);
duke@435 2967 }
duke@435 2968 #endif
duke@435 2969 __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
duke@435 2970 __ delayed()->signx(length, count); // length
duke@435 2971
duke@435 2972 // objArrayKlass
duke@435 2973 __ BIND(L_objArray);
duke@435 2974 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 2975
duke@435 2976 Label L_plain_copy, L_checkcast_copy;
duke@435 2977 // test array classes for subtyping
duke@435 2978 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 2979 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 2980 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 2981
duke@435 2982 // Identically typed arrays can be copied without element-wise checks.
duke@435 2983 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2984 O5_temp, G5_lh, L_failed);
duke@435 2985
duke@435 2986 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2987 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2988 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2989 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2990 __ add(src, src_pos, from); // src_addr
duke@435 2991 __ add(dst, dst_pos, to); // dst_addr
duke@435 2992 __ BIND(L_plain_copy);
duke@435 2993 __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
duke@435 2994 __ delayed()->signx(length, count); // length
duke@435 2995
duke@435 2996 __ BIND(L_checkcast_copy);
duke@435 2997 // live at this point: G3_src_klass, G4_dst_klass
duke@435 2998 {
duke@435 2999 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3000 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3001 __ cmp(G5_lh, O5_temp);
duke@435 3002 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3003
duke@435 3004 // It is safe to examine both src.length and dst.length.
duke@435 3005 __ delayed(); // match next insn to prev branch
duke@435 3006 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3007 O5_temp, G5_lh, L_failed);
duke@435 3008
duke@435 3009 // Marshal the base address arguments now, freeing registers.
duke@435 3010 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3011 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3012 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3013 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3014 __ add(src, src_pos, from); // src_addr
duke@435 3015 __ add(dst, dst_pos, to); // dst_addr
duke@435 3016 __ signx(length, count); // length (reloaded)
duke@435 3017
duke@435 3018 Register sco_temp = O3; // this register is free now
duke@435 3019 assert_different_registers(from, to, count, sco_temp,
duke@435 3020 G4_dst_klass, G3_src_klass);
duke@435 3021
duke@435 3022 // Generate the type check.
duke@435 3023 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3024 Klass::super_check_offset_offset_in_bytes());
duke@435 3025 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3026 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3027 O5_temp, L_plain_copy);
duke@435 3028
duke@435 3029 // Fetch destination element klass from the objArrayKlass header.
duke@435 3030 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3031 objArrayKlass::element_klass_offset_in_bytes());
duke@435 3032
duke@435 3033 // the checkcast_copy loop needs two extra arguments:
duke@435 3034 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3035 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3036
duke@435 3037 __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
duke@435 3038 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3039 }
duke@435 3040
duke@435 3041 __ BIND(L_failed);
duke@435 3042 __ retl();
duke@435 3043 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3044 return start;
duke@435 3045 }
duke@435 3046
duke@435 3047 void generate_arraycopy_stubs() {
duke@435 3048
duke@435 3049 // Note: the disjoint stubs must be generated first, some of
duke@435 3050 // the conjoint stubs use them.
duke@435 3051 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 3052 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 3053 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
duke@435 3054 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
duke@435 3055 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
duke@435 3056 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
duke@435 3057 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
duke@435 3058 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
duke@435 3059 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
duke@435 3060 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
duke@435 3061
duke@435 3062 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 3063 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 3064 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
duke@435 3065 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
duke@435 3066 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy");
duke@435 3067 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
duke@435 3068 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
duke@435 3069 #ifdef _LP64
duke@435 3070 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
duke@435 3071 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
duke@435 3072 #else
duke@435 3073 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 3074 #endif
duke@435 3075 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 3076 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 3077
duke@435 3078 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 3079 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 3080 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
never@2118 3081
never@2118 3082 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3083 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3084 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3085 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3086 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3087 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
duke@435 3088 }
duke@435 3089
duke@435 3090 void generate_initial() {
duke@435 3091 // Generates all stubs and initializes the entry points
duke@435 3092
duke@435 3093 //------------------------------------------------------------------------------------------------------------------------
duke@435 3094 // entry points that exist in all platforms
duke@435 3095 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 3096 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 3097 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3098
duke@435 3099 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3100 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3101
duke@435 3102 //------------------------------------------------------------------------------------------------------------------------
duke@435 3103 // entry points that are platform specific
duke@435 3104 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 3105
duke@435 3106 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 3107 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 3108
duke@435 3109 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 3110 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3111 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3112 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3113 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 3114 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 3115 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3116 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 3117 #endif // COMPILER2 !=> _LP64
duke@435 3118 }
duke@435 3119
duke@435 3120
duke@435 3121 void generate_all() {
duke@435 3122 // Generates all stubs and initializes the entry points
duke@435 3123
kvn@1077 3124 // Generate partial_subtype_check first here since its code depends on
kvn@1077 3125 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 3126 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 3127 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 3128 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 3129 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 3130 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 3131 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 3132 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 3133 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 3134
duke@435 3135 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3136 generate_handler_for_unsafe_access();
duke@435 3137
duke@435 3138 // support for verify_oop (must happen after universe_init)
duke@435 3139 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 3140
duke@435 3141 // arraycopy stubs used by compilers
duke@435 3142 generate_arraycopy_stubs();
never@1609 3143
never@1609 3144 // Don't initialize the platform math functions since sparc
never@1609 3145 // doesn't have intrinsics for these operations.
duke@435 3146 }
duke@435 3147
duke@435 3148
duke@435 3149 public:
duke@435 3150 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3151 // replace the standard masm with a special one:
duke@435 3152 _masm = new MacroAssembler(code);
duke@435 3153
duke@435 3154 _stub_count = !all ? 0x100 : 0x200;
duke@435 3155 if (all) {
duke@435 3156 generate_all();
duke@435 3157 } else {
duke@435 3158 generate_initial();
duke@435 3159 }
duke@435 3160
duke@435 3161 // make sure this stub is available for all local calls
duke@435 3162 if (_atomic_add_stub.is_unbound()) {
duke@435 3163 // generate a second time, if necessary
duke@435 3164 (void) generate_atomic_add();
duke@435 3165 }
duke@435 3166 }
duke@435 3167
duke@435 3168
duke@435 3169 private:
duke@435 3170 int _stub_count;
duke@435 3171 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3172 # ifdef ASSERT
duke@435 3173 // put extra information in the stub code, to make it more readable
duke@435 3174 #ifdef _LP64
duke@435 3175 // Write the high part of the address
duke@435 3176 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3177 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3178 #endif
duke@435 3179 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3180 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3181 # endif
duke@435 3182 align(true);
duke@435 3183 }
duke@435 3184
duke@435 3185 void align(bool at_header = false) {
duke@435 3186 // %%%%% move this constant somewhere else
duke@435 3187 // UltraSPARC cache line size is 8 instructions:
duke@435 3188 const unsigned int icache_line_size = 32;
duke@435 3189 const unsigned int icache_half_line_size = 16;
duke@435 3190
duke@435 3191 if (at_header) {
duke@435 3192 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3193 __ emit_data(0, relocInfo::none);
duke@435 3194 }
duke@435 3195 } else {
duke@435 3196 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3197 __ nop();
duke@435 3198 }
duke@435 3199 }
duke@435 3200 }
duke@435 3201
duke@435 3202 }; // end class declaration
duke@435 3203
duke@435 3204
duke@435 3205 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 3206 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 3207 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 3208 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 3209 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 3210
duke@435 3211 address StubGenerator::byte_copy_entry = NULL;
duke@435 3212 address StubGenerator::short_copy_entry = NULL;
duke@435 3213 address StubGenerator::int_copy_entry = NULL;
duke@435 3214 address StubGenerator::long_copy_entry = NULL;
duke@435 3215 address StubGenerator::oop_copy_entry = NULL;
duke@435 3216
duke@435 3217 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 3218
duke@435 3219 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3220 StubGenerator g(code, all);
duke@435 3221 }

mercurial