src/share/vm/memory/cardTableModRefBS.cpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6680
78bbf4d43a14
child 7051
1f1d373cd044
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

duke@435 1 /*
drchase@6680 2 * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "memory/allocation.inline.hpp"
stefank@2314 27 #include "memory/cardTableModRefBS.hpp"
stefank@2314 28 #include "memory/cardTableRS.hpp"
stefank@2314 29 #include "memory/sharedHeap.hpp"
stefank@2314 30 #include "memory/space.hpp"
stefank@2314 31 #include "memory/space.inline.hpp"
stefank@2314 32 #include "memory/universe.hpp"
stefank@2314 33 #include "runtime/java.hpp"
stefank@2314 34 #include "runtime/mutexLocker.hpp"
stefank@2314 35 #include "runtime/virtualspace.hpp"
zgu@3900 36 #include "services/memTracker.hpp"
jprovino@4542 37 #include "utilities/macros.hpp"
stefank@2314 38 #ifdef COMPILER1
stefank@2314 39 #include "c1/c1_LIR.hpp"
stefank@2314 40 #include "c1/c1_LIRGenerator.hpp"
stefank@2314 41 #endif
stefank@2314 42
duke@435 43 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 44 // enumerate ref fields that have been modified (since the last
duke@435 45 // enumeration.)
duke@435 46
duke@435 47 size_t CardTableModRefBS::cards_required(size_t covered_words)
duke@435 48 {
duke@435 49 // Add one for a guard card, used to detect errors.
duke@435 50 const size_t words = align_size_up(covered_words, card_size_in_words);
duke@435 51 return words / card_size_in_words + 1;
duke@435 52 }
duke@435 53
duke@435 54 size_t CardTableModRefBS::compute_byte_map_size()
duke@435 55 {
duke@435 56 assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
duke@435 57 "unitialized, check declaration order");
duke@435 58 assert(_page_size != 0, "unitialized, check declaration order");
duke@435 59 const size_t granularity = os::vm_allocation_granularity();
duke@435 60 return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
duke@435 61 }
duke@435 62
duke@435 63 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
duke@435 64 int max_covered_regions):
duke@435 65 ModRefBarrierSet(max_covered_regions),
duke@435 66 _whole_heap(whole_heap),
duke@435 67 _guard_index(cards_required(whole_heap.word_size()) - 1),
duke@435 68 _last_valid_index(_guard_index - 1),
jcoomes@456 69 _page_size(os::vm_page_size()),
duke@435 70 _byte_map_size(compute_byte_map_size())
duke@435 71 {
duke@435 72 _kind = BarrierSet::CardTableModRef;
duke@435 73
duke@435 74 HeapWord* low_bound = _whole_heap.start();
duke@435 75 HeapWord* high_bound = _whole_heap.end();
duke@435 76 assert((uintptr_t(low_bound) & (card_size - 1)) == 0, "heap must start at card boundary");
duke@435 77 assert((uintptr_t(high_bound) & (card_size - 1)) == 0, "heap must end at card boundary");
duke@435 78
duke@435 79 assert(card_size <= 512, "card_size must be less than 512"); // why?
duke@435 80
dcubed@4967 81 _covered = new MemRegion[max_covered_regions];
dcubed@4967 82 _committed = new MemRegion[max_covered_regions];
minqi@5103 83 if (_covered == NULL || _committed == NULL) {
duke@435 84 vm_exit_during_initialization("couldn't alloc card table covered region set.");
duke@435 85 }
minqi@5103 86
dcubed@4967 87 _cur_covered_regions = 0;
duke@435 88 const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
duke@435 89 MAX2(_page_size, (size_t) os::vm_allocation_granularity());
duke@435 90 ReservedSpace heap_rs(_byte_map_size, rs_align, false);
zgu@3900 91
zgu@3900 92 MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
zgu@3900 93
duke@435 94 os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
duke@435 95 _page_size, heap_rs.base(), heap_rs.size());
duke@435 96 if (!heap_rs.is_reserved()) {
duke@435 97 vm_exit_during_initialization("Could not reserve enough space for the "
duke@435 98 "card marking array");
duke@435 99 }
duke@435 100
duke@435 101 // The assember store_check code will do an unsigned shift of the oop,
duke@435 102 // then add it to byte_map_base, i.e.
duke@435 103 //
duke@435 104 // _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
duke@435 105 _byte_map = (jbyte*) heap_rs.base();
duke@435 106 byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
duke@435 107 assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
duke@435 108 assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
duke@435 109
duke@435 110 jbyte* guard_card = &_byte_map[_guard_index];
duke@435 111 uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
duke@435 112 _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
dcubed@5255 113 os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
dcubed@5255 114 !ExecMem, "card table last card");
duke@435 115 *guard_card = last_card;
duke@435 116
duke@435 117 _lowest_non_clean =
zgu@3900 118 NEW_C_HEAP_ARRAY(CardArr, max_covered_regions, mtGC);
duke@435 119 _lowest_non_clean_chunk_size =
zgu@3900 120 NEW_C_HEAP_ARRAY(size_t, max_covered_regions, mtGC);
duke@435 121 _lowest_non_clean_base_chunk_index =
zgu@3900 122 NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions, mtGC);
duke@435 123 _last_LNC_resizing_collection =
zgu@3900 124 NEW_C_HEAP_ARRAY(int, max_covered_regions, mtGC);
duke@435 125 if (_lowest_non_clean == NULL
duke@435 126 || _lowest_non_clean_chunk_size == NULL
duke@435 127 || _lowest_non_clean_base_chunk_index == NULL
duke@435 128 || _last_LNC_resizing_collection == NULL)
duke@435 129 vm_exit_during_initialization("couldn't allocate an LNC array.");
minqi@5103 130 for (int i = 0; i < max_covered_regions; i++) {
duke@435 131 _lowest_non_clean[i] = NULL;
duke@435 132 _lowest_non_clean_chunk_size[i] = 0;
duke@435 133 _last_LNC_resizing_collection[i] = -1;
duke@435 134 }
duke@435 135
duke@435 136 if (TraceCardTableModRefBS) {
duke@435 137 gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
duke@435 138 gclog_or_tty->print_cr(" "
duke@435 139 " &_byte_map[0]: " INTPTR_FORMAT
duke@435 140 " &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
drchase@6680 141 p2i(&_byte_map[0]),
drchase@6680 142 p2i(&_byte_map[_last_valid_index]));
duke@435 143 gclog_or_tty->print_cr(" "
duke@435 144 " byte_map_base: " INTPTR_FORMAT,
drchase@6680 145 p2i(byte_map_base));
duke@435 146 }
duke@435 147 }
duke@435 148
minqi@5103 149 CardTableModRefBS::~CardTableModRefBS() {
minqi@5103 150 if (_covered) {
minqi@5103 151 delete[] _covered;
minqi@5103 152 _covered = NULL;
minqi@5103 153 }
minqi@5103 154 if (_committed) {
minqi@5103 155 delete[] _committed;
minqi@5103 156 _committed = NULL;
minqi@5103 157 }
minqi@5103 158 if (_lowest_non_clean) {
minqi@5103 159 FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean, mtGC);
minqi@5103 160 _lowest_non_clean = NULL;
minqi@5103 161 }
minqi@5103 162 if (_lowest_non_clean_chunk_size) {
minqi@5103 163 FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size, mtGC);
minqi@5103 164 _lowest_non_clean_chunk_size = NULL;
minqi@5103 165 }
minqi@5103 166 if (_lowest_non_clean_base_chunk_index) {
minqi@5103 167 FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index, mtGC);
minqi@5103 168 _lowest_non_clean_base_chunk_index = NULL;
minqi@5103 169 }
minqi@5103 170 if (_last_LNC_resizing_collection) {
minqi@5103 171 FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection, mtGC);
minqi@5103 172 _last_LNC_resizing_collection = NULL;
minqi@5103 173 }
minqi@5103 174 }
minqi@5103 175
duke@435 176 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
duke@435 177 int i;
duke@435 178 for (i = 0; i < _cur_covered_regions; i++) {
duke@435 179 if (_covered[i].start() == base) return i;
duke@435 180 if (_covered[i].start() > base) break;
duke@435 181 }
duke@435 182 // If we didn't find it, create a new one.
duke@435 183 assert(_cur_covered_regions < _max_covered_regions,
duke@435 184 "too many covered regions");
duke@435 185 // Move the ones above up, to maintain sorted order.
duke@435 186 for (int j = _cur_covered_regions; j > i; j--) {
duke@435 187 _covered[j] = _covered[j-1];
duke@435 188 _committed[j] = _committed[j-1];
duke@435 189 }
duke@435 190 int res = i;
duke@435 191 _cur_covered_regions++;
duke@435 192 _covered[res].set_start(base);
duke@435 193 _covered[res].set_word_size(0);
duke@435 194 jbyte* ct_start = byte_for(base);
duke@435 195 uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
duke@435 196 _committed[res].set_start((HeapWord*)ct_start_aligned);
duke@435 197 _committed[res].set_word_size(0);
duke@435 198 return res;
duke@435 199 }
duke@435 200
duke@435 201 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
duke@435 202 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 203 if (_covered[i].contains(addr)) {
duke@435 204 return i;
duke@435 205 }
duke@435 206 }
duke@435 207 assert(0, "address outside of heap?");
duke@435 208 return -1;
duke@435 209 }
duke@435 210
duke@435 211 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
duke@435 212 HeapWord* max_end = NULL;
duke@435 213 for (int j = 0; j < ind; j++) {
duke@435 214 HeapWord* this_end = _committed[j].end();
duke@435 215 if (this_end > max_end) max_end = this_end;
duke@435 216 }
duke@435 217 return max_end;
duke@435 218 }
duke@435 219
duke@435 220 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
duke@435 221 MemRegion mr) const {
duke@435 222 MemRegion result = mr;
duke@435 223 for (int r = 0; r < _cur_covered_regions; r += 1) {
duke@435 224 if (r != self) {
duke@435 225 result = result.minus(_committed[r]);
duke@435 226 }
duke@435 227 }
duke@435 228 // Never include the guard page.
duke@435 229 result = result.minus(_guard_region);
duke@435 230 return result;
duke@435 231 }
duke@435 232
duke@435 233 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
duke@435 234 // We don't change the start of a region, only the end.
duke@435 235 assert(_whole_heap.contains(new_region),
duke@435 236 "attempt to cover area not in reserved area");
duke@435 237 debug_only(verify_guard();)
jmasa@643 238 // collided is true if the expansion would push into another committed region
jmasa@643 239 debug_only(bool collided = false;)
jmasa@441 240 int const ind = find_covering_region_by_base(new_region.start());
jmasa@441 241 MemRegion const old_region = _covered[ind];
duke@435 242 assert(old_region.start() == new_region.start(), "just checking");
duke@435 243 if (new_region.word_size() != old_region.word_size()) {
duke@435 244 // Commit new or uncommit old pages, if necessary.
duke@435 245 MemRegion cur_committed = _committed[ind];
duke@435 246 // Extend the end of this _commited region
duke@435 247 // to cover the end of any lower _committed regions.
duke@435 248 // This forms overlapping regions, but never interior regions.
jmasa@441 249 HeapWord* const max_prev_end = largest_prev_committed_end(ind);
duke@435 250 if (max_prev_end > cur_committed.end()) {
duke@435 251 cur_committed.set_end(max_prev_end);
duke@435 252 }
duke@435 253 // Align the end up to a page size (starts are already aligned).
jmasa@441 254 jbyte* const new_end = byte_after(new_region.last());
jmasa@643 255 HeapWord* new_end_aligned =
jmasa@441 256 (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
duke@435 257 assert(new_end_aligned >= (HeapWord*) new_end,
duke@435 258 "align up, but less");
jmasa@1016 259 // Check the other regions (excludes "ind") to ensure that
jmasa@1016 260 // the new_end_aligned does not intrude onto the committed
jmasa@1016 261 // space of another region.
jmasa@643 262 int ri = 0;
jmasa@643 263 for (ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 264 if (ri != ind) {
jmasa@643 265 if (_committed[ri].contains(new_end_aligned)) {
jmasa@1016 266 // The prior check included in the assert
jmasa@1016 267 // (new_end_aligned >= _committed[ri].start())
jmasa@1016 268 // is redundant with the "contains" test.
jmasa@1016 269 // Any region containing the new end
jmasa@1016 270 // should start at or beyond the region found (ind)
jmasa@1016 271 // for the new end (committed regions are not expected to
jmasa@1016 272 // be proper subsets of other committed regions).
jmasa@1016 273 assert(_committed[ri].start() >= _committed[ind].start(),
jmasa@643 274 "New end of committed region is inconsistent");
jmasa@643 275 new_end_aligned = _committed[ri].start();
jmasa@1016 276 // new_end_aligned can be equal to the start of its
jmasa@1016 277 // committed region (i.e., of "ind") if a second
jmasa@1016 278 // region following "ind" also start at the same location
jmasa@1016 279 // as "ind".
jmasa@1016 280 assert(new_end_aligned >= _committed[ind].start(),
jmasa@643 281 "New end of committed region is before start");
jmasa@643 282 debug_only(collided = true;)
jmasa@643 283 // Should only collide with 1 region
jmasa@643 284 break;
jmasa@643 285 }
jmasa@643 286 }
jmasa@643 287 }
jmasa@643 288 #ifdef ASSERT
jmasa@643 289 for (++ri; ri < _cur_covered_regions; ri++) {
jmasa@643 290 assert(!_committed[ri].contains(new_end_aligned),
jmasa@643 291 "New end of committed region is in a second committed region");
jmasa@643 292 }
jmasa@643 293 #endif
duke@435 294 // The guard page is always committed and should not be committed over.
jmasa@1322 295 // "guarded" is used for assertion checking below and recalls the fact
jmasa@1322 296 // that the would-be end of the new committed region would have
jmasa@1322 297 // penetrated the guard page.
jmasa@1322 298 HeapWord* new_end_for_commit = new_end_aligned;
jmasa@1322 299
jmasa@1322 300 DEBUG_ONLY(bool guarded = false;)
jmasa@1322 301 if (new_end_for_commit > _guard_region.start()) {
jmasa@1322 302 new_end_for_commit = _guard_region.start();
jmasa@1322 303 DEBUG_ONLY(guarded = true;)
jmasa@1322 304 }
jmasa@643 305
duke@435 306 if (new_end_for_commit > cur_committed.end()) {
duke@435 307 // Must commit new pages.
jmasa@441 308 MemRegion const new_committed =
duke@435 309 MemRegion(cur_committed.end(), new_end_for_commit);
duke@435 310
duke@435 311 assert(!new_committed.is_empty(), "Region should not be empty here");
dcubed@5255 312 os::commit_memory_or_exit((char*)new_committed.start(),
dcubed@5255 313 new_committed.byte_size(), _page_size,
dcubed@5255 314 !ExecMem, "card table expansion");
duke@435 315 // Use new_end_aligned (as opposed to new_end_for_commit) because
duke@435 316 // the cur_committed region may include the guard region.
duke@435 317 } else if (new_end_aligned < cur_committed.end()) {
duke@435 318 // Must uncommit pages.
jmasa@441 319 MemRegion const uncommit_region =
duke@435 320 committed_unique_to_self(ind, MemRegion(new_end_aligned,
duke@435 321 cur_committed.end()));
duke@435 322 if (!uncommit_region.is_empty()) {
jmasa@1967 323 // It is not safe to uncommit cards if the boundary between
jmasa@1967 324 // the generations is moving. A shrink can uncommit cards
jmasa@1967 325 // owned by generation A but being used by generation B.
jmasa@1967 326 if (!UseAdaptiveGCBoundary) {
jmasa@1967 327 if (!os::uncommit_memory((char*)uncommit_region.start(),
jmasa@1967 328 uncommit_region.byte_size())) {
jmasa@1967 329 assert(false, "Card table contraction failed");
jmasa@1967 330 // The call failed so don't change the end of the
jmasa@1967 331 // committed region. This is better than taking the
jmasa@1967 332 // VM down.
jmasa@1967 333 new_end_aligned = _committed[ind].end();
jmasa@1967 334 }
jmasa@1967 335 } else {
jmasa@643 336 new_end_aligned = _committed[ind].end();
duke@435 337 }
duke@435 338 }
duke@435 339 }
duke@435 340 // In any case, we can reset the end of the current committed entry.
duke@435 341 _committed[ind].set_end(new_end_aligned);
duke@435 342
jmasa@1967 343 #ifdef ASSERT
jmasa@1967 344 // Check that the last card in the new region is committed according
jmasa@1967 345 // to the tables.
jmasa@1967 346 bool covered = false;
jmasa@1967 347 for (int cr = 0; cr < _cur_covered_regions; cr++) {
jmasa@1967 348 if (_committed[cr].contains(new_end - 1)) {
jmasa@1967 349 covered = true;
jmasa@1967 350 break;
jmasa@1967 351 }
jmasa@1967 352 }
jmasa@1967 353 assert(covered, "Card for end of new region not committed");
jmasa@1967 354 #endif
jmasa@1967 355
duke@435 356 // The default of 0 is not necessarily clean cards.
duke@435 357 jbyte* entry;
duke@435 358 if (old_region.last() < _whole_heap.start()) {
duke@435 359 entry = byte_for(_whole_heap.start());
duke@435 360 } else {
duke@435 361 entry = byte_after(old_region.last());
duke@435 362 }
swamyv@924 363 assert(index_for(new_region.last()) < _guard_index,
duke@435 364 "The guard card will be overwritten");
jmasa@643 365 // This line commented out cleans the newly expanded region and
jmasa@643 366 // not the aligned up expanded region.
jmasa@643 367 // jbyte* const end = byte_after(new_region.last());
jmasa@643 368 jbyte* const end = (jbyte*) new_end_for_commit;
jmasa@1322 369 assert((end >= byte_after(new_region.last())) || collided || guarded,
jmasa@643 370 "Expect to be beyond new region unless impacting another region");
duke@435 371 // do nothing if we resized downward.
jmasa@643 372 #ifdef ASSERT
jmasa@643 373 for (int ri = 0; ri < _cur_covered_regions; ri++) {
jmasa@643 374 if (ri != ind) {
jmasa@643 375 // The end of the new committed region should not
jmasa@643 376 // be in any existing region unless it matches
jmasa@643 377 // the start of the next region.
jmasa@643 378 assert(!_committed[ri].contains(end) ||
jmasa@643 379 (_committed[ri].start() == (HeapWord*) end),
jmasa@643 380 "Overlapping committed regions");
jmasa@643 381 }
jmasa@643 382 }
jmasa@643 383 #endif
duke@435 384 if (entry < end) {
duke@435 385 memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
duke@435 386 }
duke@435 387 }
duke@435 388 // In any case, the covered size changes.
duke@435 389 _covered[ind].set_word_size(new_region.word_size());
duke@435 390 if (TraceCardTableModRefBS) {
duke@435 391 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 392 gclog_or_tty->print_cr(" "
duke@435 393 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 394 " _covered[%d].last(): " INTPTR_FORMAT,
drchase@6680 395 ind, p2i(_covered[ind].start()),
drchase@6680 396 ind, p2i(_covered[ind].last()));
duke@435 397 gclog_or_tty->print_cr(" "
duke@435 398 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 399 " _committed[%d].last(): " INTPTR_FORMAT,
drchase@6680 400 ind, p2i(_committed[ind].start()),
drchase@6680 401 ind, p2i(_committed[ind].last()));
duke@435 402 gclog_or_tty->print_cr(" "
duke@435 403 " byte_for(start): " INTPTR_FORMAT
duke@435 404 " byte_for(last): " INTPTR_FORMAT,
drchase@6680 405 p2i(byte_for(_covered[ind].start())),
drchase@6680 406 p2i(byte_for(_covered[ind].last())));
duke@435 407 gclog_or_tty->print_cr(" "
duke@435 408 " addr_for(start): " INTPTR_FORMAT
duke@435 409 " addr_for(last): " INTPTR_FORMAT,
drchase@6680 410 p2i(addr_for((jbyte*) _committed[ind].start())),
drchase@6680 411 p2i(addr_for((jbyte*) _committed[ind].last())));
duke@435 412 }
jmasa@1967 413 // Touch the last card of the covered region to show that it
jmasa@1967 414 // is committed (or SEGV).
ccheung@5259 415 debug_only((void) (*byte_for(_covered[ind].last()));)
duke@435 416 debug_only(verify_guard();)
duke@435 417 }
duke@435 418
duke@435 419 // Note that these versions are precise! The scanning code has to handle the
duke@435 420 // fact that the write barrier may be either precise or imprecise.
duke@435 421
goetz@6493 422 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
goetz@6493 423 inline_write_ref_field(field, newVal, release);
duke@435 424 }
duke@435 425
iveresov@1051 426
ysr@2819 427 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
ysr@2819 428 MemRegion mr,
ysr@2889 429 OopsInGenClosure* cl,
ysr@2889 430 CardTableRS* ct) {
duke@435 431 if (!mr.is_empty()) {
stefank@6992 432 // Caller (process_roots()) claims that all GC threads
jmasa@3294 433 // execute this call. With UseDynamicNumberOfGCThreads now all
jmasa@3294 434 // active GC threads execute this call. The number of active GC
jmasa@3294 435 // threads needs to be passed to par_non_clean_card_iterate_work()
jmasa@3294 436 // to get proper partitioning and termination.
jmasa@3294 437 //
jmasa@3294 438 // This is an example of where n_par_threads() is used instead
jmasa@3294 439 // of workers()->active_workers(). n_par_threads can be set to 0 to
jmasa@3294 440 // turn off parallelism. For example when this code is called as
stefank@6992 441 // part of verification and SharedHeap::process_roots() is being
jmasa@3294 442 // used, then n_par_threads() may have been set to 0. active_workers
jmasa@3294 443 // is not overloaded with the meaning that it is a switch to disable
jmasa@3294 444 // parallelism and so keeps the meaning of the number of
jmasa@3294 445 // active gc workers. If parallelism has not been shut off by
jmasa@3294 446 // setting n_par_threads to 0, then n_par_threads should be
jmasa@3294 447 // equal to active_workers. When a different mechanism for shutting
jmasa@3294 448 // off parallelism is used, then active_workers can be used in
jmasa@3294 449 // place of n_par_threads.
jmasa@3294 450 // This is an example of a path where n_par_threads is
jmasa@3294 451 // set to 0 to turn off parallism.
jmasa@3294 452 // [7] CardTableModRefBS::non_clean_card_iterate()
jmasa@3294 453 // [8] CardTableRS::younger_refs_in_space_iterate()
jmasa@3294 454 // [9] Generation::younger_refs_in_space_iterate()
jmasa@3294 455 // [10] OneContigSpaceCardGeneration::younger_refs_iterate()
jmasa@3294 456 // [11] CompactingPermGenGen::younger_refs_iterate()
jmasa@3294 457 // [12] CardTableRS::younger_refs_iterate()
jmasa@3294 458 // [13] SharedHeap::process_strong_roots()
jmasa@3294 459 // [14] G1CollectedHeap::verify()
jmasa@3294 460 // [15] Universe::verify()
jmasa@3294 461 // [16] G1CollectedHeap::do_collection_pause_at_safepoint()
jmasa@3294 462 //
jmasa@3294 463 int n_threads = SharedHeap::heap()->n_par_threads();
jmasa@3294 464 bool is_par = n_threads > 0;
jmasa@3294 465 if (is_par) {
jprovino@4542 466 #if INCLUDE_ALL_GCS
jmasa@3294 467 assert(SharedHeap::heap()->n_par_threads() ==
jmasa@3294 468 SharedHeap::heap()->workers()->active_workers(), "Mismatch");
ysr@2889 469 non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
jprovino@4542 470 #else // INCLUDE_ALL_GCS
duke@435 471 fatal("Parallel gc not supported here.");
jprovino@4542 472 #endif // INCLUDE_ALL_GCS
duke@435 473 } else {
ysr@2819 474 // We do not call the non_clean_card_iterate_serial() version below because
ysr@2819 475 // we want to clear the cards (which non_clean_card_iterate_serial() does not
ysr@2889 476 // do for us): clear_cl here does the work of finding contiguous dirty ranges
ysr@2889 477 // of cards to process and clear.
ysr@2889 478
ysr@2889 479 DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
ysr@2889 480 cl->gen_boundary());
ysr@2889 481 ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
ysr@2889 482
ysr@2889 483 clear_cl.do_MemRegion(mr);
duke@435 484 }
duke@435 485 }
duke@435 486 }
duke@435 487
ysr@2819 488 // The iterator itself is not MT-aware, but
ysr@2819 489 // MT-aware callers and closures can use this to
ysr@2819 490 // accomplish dirty card iteration in parallel. The
ysr@2819 491 // iterator itself does not clear the dirty cards, or
ysr@2819 492 // change their values in any manner.
ysr@2819 493 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
ysr@2819 494 MemRegionClosure* cl) {
jmasa@3294 495 bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
jmasa@3294 496 assert(!is_par ||
jmasa@3294 497 (SharedHeap::heap()->n_par_threads() ==
jmasa@3294 498 SharedHeap::heap()->workers()->active_workers()), "Mismatch");
duke@435 499 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 500 MemRegion mri = mr.intersection(_covered[i]);
duke@435 501 if (mri.word_size() > 0) {
duke@435 502 jbyte* cur_entry = byte_for(mri.last());
duke@435 503 jbyte* limit = byte_for(mri.start());
duke@435 504 while (cur_entry >= limit) {
duke@435 505 jbyte* next_entry = cur_entry - 1;
duke@435 506 if (*cur_entry != clean_card) {
duke@435 507 size_t non_clean_cards = 1;
duke@435 508 // Should the next card be included in this range of dirty cards.
duke@435 509 while (next_entry >= limit && *next_entry != clean_card) {
duke@435 510 non_clean_cards++;
duke@435 511 cur_entry = next_entry;
duke@435 512 next_entry--;
duke@435 513 }
duke@435 514 // The memory region may not be on a card boundary. So that
duke@435 515 // objects beyond the end of the region are not processed, make
duke@435 516 // cur_cards precise with regard to the end of the memory region.
duke@435 517 MemRegion cur_cards(addr_for(cur_entry),
duke@435 518 non_clean_cards * card_size_in_words);
duke@435 519 MemRegion dirty_region = cur_cards.intersection(mri);
duke@435 520 cl->do_MemRegion(dirty_region);
duke@435 521 }
duke@435 522 cur_entry = next_entry;
duke@435 523 }
duke@435 524 }
duke@435 525 }
duke@435 526 }
duke@435 527
duke@435 528 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
ysr@1526 529 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 530 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 531 jbyte* cur = byte_for(mr.start());
duke@435 532 jbyte* last = byte_after(mr.last());
duke@435 533 while (cur < last) {
duke@435 534 *cur = dirty_card;
duke@435 535 cur++;
duke@435 536 }
duke@435 537 }
duke@435 538
ysr@777 539 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
ysr@1526 540 assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
ysr@1526 541 assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
duke@435 542 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 543 MemRegion mri = mr.intersection(_covered[i]);
duke@435 544 if (!mri.is_empty()) dirty_MemRegion(mri);
duke@435 545 }
duke@435 546 }
duke@435 547
duke@435 548 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
duke@435 549 // Be conservative: only clean cards entirely contained within the
duke@435 550 // region.
duke@435 551 jbyte* cur;
duke@435 552 if (mr.start() == _whole_heap.start()) {
duke@435 553 cur = byte_for(mr.start());
duke@435 554 } else {
duke@435 555 assert(mr.start() > _whole_heap.start(), "mr is not covered.");
duke@435 556 cur = byte_after(mr.start() - 1);
duke@435 557 }
duke@435 558 jbyte* last = byte_after(mr.last());
duke@435 559 memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
duke@435 560 }
duke@435 561
duke@435 562 void CardTableModRefBS::clear(MemRegion mr) {
duke@435 563 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 564 MemRegion mri = mr.intersection(_covered[i]);
duke@435 565 if (!mri.is_empty()) clear_MemRegion(mri);
duke@435 566 }
duke@435 567 }
duke@435 568
ysr@777 569 void CardTableModRefBS::dirty(MemRegion mr) {
ysr@777 570 jbyte* first = byte_for(mr.start());
ysr@777 571 jbyte* last = byte_after(mr.last());
ysr@777 572 memset(first, dirty_card, last-first);
ysr@777 573 }
ysr@777 574
ysr@2788 575 // Unlike several other card table methods, dirty_card_iterate()
ysr@2788 576 // iterates over dirty cards ranges in increasing address order.
duke@435 577 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
duke@435 578 MemRegionClosure* cl) {
duke@435 579 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 580 MemRegion mri = mr.intersection(_covered[i]);
duke@435 581 if (!mri.is_empty()) {
duke@435 582 jbyte *cur_entry, *next_entry, *limit;
duke@435 583 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 584 cur_entry <= limit;
duke@435 585 cur_entry = next_entry) {
duke@435 586 next_entry = cur_entry + 1;
duke@435 587 if (*cur_entry == dirty_card) {
duke@435 588 size_t dirty_cards;
duke@435 589 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 590 for (dirty_cards = 1;
duke@435 591 next_entry <= limit && *next_entry == dirty_card;
duke@435 592 dirty_cards++, next_entry++);
duke@435 593 MemRegion cur_cards(addr_for(cur_entry),
duke@435 594 dirty_cards*card_size_in_words);
duke@435 595 cl->do_MemRegion(cur_cards);
duke@435 596 }
duke@435 597 }
duke@435 598 }
duke@435 599 }
duke@435 600 }
duke@435 601
ysr@777 602 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
ysr@777 603 bool reset,
ysr@777 604 int reset_val) {
duke@435 605 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 606 MemRegion mri = mr.intersection(_covered[i]);
duke@435 607 if (!mri.is_empty()) {
duke@435 608 jbyte* cur_entry, *next_entry, *limit;
duke@435 609 for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
duke@435 610 cur_entry <= limit;
duke@435 611 cur_entry = next_entry) {
duke@435 612 next_entry = cur_entry + 1;
duke@435 613 if (*cur_entry == dirty_card) {
duke@435 614 size_t dirty_cards;
duke@435 615 // Accumulate maximal dirty card range, starting at cur_entry
duke@435 616 for (dirty_cards = 1;
duke@435 617 next_entry <= limit && *next_entry == dirty_card;
duke@435 618 dirty_cards++, next_entry++);
duke@435 619 MemRegion cur_cards(addr_for(cur_entry),
duke@435 620 dirty_cards*card_size_in_words);
ysr@777 621 if (reset) {
ysr@777 622 for (size_t i = 0; i < dirty_cards; i++) {
ysr@777 623 cur_entry[i] = reset_val;
ysr@777 624 }
duke@435 625 }
duke@435 626 return cur_cards;
duke@435 627 }
duke@435 628 }
duke@435 629 }
duke@435 630 }
duke@435 631 return MemRegion(mr.end(), mr.end());
duke@435 632 }
duke@435 633
duke@435 634 uintx CardTableModRefBS::ct_max_alignment_constraint() {
duke@435 635 return card_size * os::vm_page_size();
duke@435 636 }
duke@435 637
duke@435 638 void CardTableModRefBS::verify_guard() {
duke@435 639 // For product build verification
duke@435 640 guarantee(_byte_map[_guard_index] == last_card,
duke@435 641 "card table guard has been modified");
duke@435 642 }
duke@435 643
duke@435 644 void CardTableModRefBS::verify() {
duke@435 645 verify_guard();
duke@435 646 }
duke@435 647
duke@435 648 #ifndef PRODUCT
tonyp@2849 649 void CardTableModRefBS::verify_region(MemRegion mr,
tonyp@2849 650 jbyte val, bool val_equals) {
tonyp@2849 651 jbyte* start = byte_for(mr.start());
tonyp@2849 652 jbyte* end = byte_for(mr.last());
tonyp@2849 653 bool failures = false;
tonyp@2849 654 for (jbyte* curr = start; curr <= end; ++curr) {
tonyp@2849 655 jbyte curr_val = *curr;
tonyp@2849 656 bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
tonyp@2849 657 if (failed) {
tonyp@2849 658 if (!failures) {
tonyp@2849 659 tty->cr();
drchase@6680 660 tty->print_cr("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
tonyp@2849 661 tty->print_cr("== %sexpecting value: %d",
tonyp@2849 662 (val_equals) ? "" : "not ", val);
tonyp@2849 663 failures = true;
tonyp@2849 664 }
tonyp@2849 665 tty->print_cr("== card "PTR_FORMAT" ["PTR_FORMAT","PTR_FORMAT"], "
drchase@6680 666 "val: %d", p2i(curr), p2i(addr_for(curr)),
drchase@6680 667 p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
tonyp@2849 668 (int) curr_val);
tonyp@2849 669 }
duke@435 670 }
tonyp@2849 671 guarantee(!failures, "there should not have been any failures");
duke@435 672 }
apetrusenko@1375 673
tonyp@2849 674 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
tonyp@2849 675 verify_region(mr, dirty_card, false /* val_equals */);
tonyp@2849 676 }
apetrusenko@1375 677
apetrusenko@1375 678 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
tonyp@2849 679 verify_region(mr, dirty_card, true /* val_equals */);
apetrusenko@1375 680 }
duke@435 681 #endif
duke@435 682
never@3687 683 void CardTableModRefBS::print_on(outputStream* st) const {
never@3687 684 st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
drchase@6680 685 p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
never@3687 686 }
never@3687 687
duke@435 688 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
duke@435 689 return
duke@435 690 CardTableModRefBS::card_will_be_scanned(cv) ||
duke@435 691 _rs->is_prev_nonclean_card_val(cv);
duke@435 692 };
duke@435 693
duke@435 694 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
duke@435 695 return
duke@435 696 cv != clean_card &&
duke@435 697 (CardTableModRefBS::card_may_have_been_dirty(cv) ||
duke@435 698 CardTableRS::youngergen_may_have_been_dirty(cv));
duke@435 699 };

mercurial