src/share/vm/opto/connode.cpp

Tue, 24 Jun 2008 16:00:14 -0700

author
never
date
Tue, 24 Jun 2008 16:00:14 -0700
changeset 657
2a1a77d3458f
parent 656
1e026f8da827
child 670
9c2ecc2ffb12
permissions
-rw-r--r--

6718676: putback for 6604014 is incomplete
Reviewed-by: kvn, jrose

duke@435 1 /*
duke@435 2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Optimization - Graph Style
duke@435 26
duke@435 27 #include "incls/_precompiled.incl"
duke@435 28 #include "incls/_connode.cpp.incl"
duke@435 29
duke@435 30 //=============================================================================
duke@435 31 //------------------------------hash-------------------------------------------
duke@435 32 uint ConNode::hash() const {
duke@435 33 return (uintptr_t)in(TypeFunc::Control) + _type->hash();
duke@435 34 }
duke@435 35
duke@435 36 //------------------------------make-------------------------------------------
duke@435 37 ConNode *ConNode::make( Compile* C, const Type *t ) {
duke@435 38 switch( t->basic_type() ) {
duke@435 39 case T_INT: return new (C, 1) ConINode( t->is_int() );
duke@435 40 case T_LONG: return new (C, 1) ConLNode( t->is_long() );
duke@435 41 case T_FLOAT: return new (C, 1) ConFNode( t->is_float_constant() );
duke@435 42 case T_DOUBLE: return new (C, 1) ConDNode( t->is_double_constant() );
duke@435 43 case T_VOID: return new (C, 1) ConNode ( Type::TOP );
duke@435 44 case T_OBJECT: return new (C, 1) ConPNode( t->is_oopptr() );
kvn@599 45 case T_ARRAY: return new (C, 1) ConPNode( t->is_aryptr() );
duke@435 46 case T_ADDRESS: return new (C, 1) ConPNode( t->is_ptr() );
kvn@603 47 case T_NARROWOOP: return new (C, 1) ConNNode( t->is_narrowoop() );
duke@435 48 // Expected cases: TypePtr::NULL_PTR, any is_rawptr()
duke@435 49 // Also seen: AnyPtr(TopPTR *+top); from command line:
duke@435 50 // r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
duke@435 51 // %%%% Stop using TypePtr::NULL_PTR to represent nulls: use either TypeRawPtr::NULL_PTR
duke@435 52 // or else TypeOopPtr::NULL_PTR. Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
duke@435 53 }
duke@435 54 ShouldNotReachHere();
duke@435 55 return NULL;
duke@435 56 }
duke@435 57
duke@435 58 //=============================================================================
duke@435 59 /*
duke@435 60 The major change is for CMoveP and StrComp. They have related but slightly
duke@435 61 different problems. They both take in TWO oops which are both null-checked
duke@435 62 independently before the using Node. After CCP removes the CastPP's they need
duke@435 63 to pick up the guarding test edge - in this case TWO control edges. I tried
duke@435 64 various solutions, all have problems:
duke@435 65
duke@435 66 (1) Do nothing. This leads to a bug where we hoist a Load from a CMoveP or a
duke@435 67 StrComp above a guarding null check. I've seen both cases in normal -Xcomp
duke@435 68 testing.
duke@435 69
duke@435 70 (2) Plug the control edge from 1 of the 2 oops in. Apparent problem here is
duke@435 71 to figure out which test post-dominates. The real problem is that it doesn't
duke@435 72 matter which one you pick. After you pick up, the dominating-test elider in
duke@435 73 IGVN can remove the test and allow you to hoist up to the dominating test on
duke@435 74 the choosen oop bypassing the test on the not-choosen oop. Seen in testing.
duke@435 75 Oops.
duke@435 76
duke@435 77 (3) Leave the CastPP's in. This makes the graph more accurate in some sense;
duke@435 78 we get to keep around the knowledge that an oop is not-null after some test.
duke@435 79 Alas, the CastPP's interfere with GVN (some values are the regular oop, some
duke@435 80 are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
duke@435 81 This cost us 10% on SpecJVM, even when I removed some of the more trivial
duke@435 82 cases in the optimizer. Removing more useless Phi's started allowing Loads to
duke@435 83 illegally float above null checks. I gave up on this approach.
duke@435 84
duke@435 85 (4) Add BOTH control edges to both tests. Alas, too much code knows that
duke@435 86 control edges are in slot-zero ONLY. Many quick asserts fail; no way to do
duke@435 87 this one. Note that I really want to allow the CMoveP to float and add both
duke@435 88 control edges to the dependent Load op - meaning I can select early but I
duke@435 89 cannot Load until I pass both tests.
duke@435 90
duke@435 91 (5) Do not hoist CMoveP and StrComp. To this end I added the v-call
duke@435 92 depends_only_on_test(). No obvious performance loss on Spec, but we are
duke@435 93 clearly conservative on CMoveP (also so on StrComp but that's unlikely to
duke@435 94 matter ever).
duke@435 95
duke@435 96 */
duke@435 97
duke@435 98
duke@435 99 //------------------------------Ideal------------------------------------------
duke@435 100 // Return a node which is more "ideal" than the current node.
duke@435 101 // Move constants to the right.
duke@435 102 Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 103 if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
duke@435 104 assert( !phase->eqv(in(Condition), this) &&
duke@435 105 !phase->eqv(in(IfFalse), this) &&
duke@435 106 !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
duke@435 107 if( phase->type(in(Condition)) == Type::TOP )
duke@435 108 return NULL; // return NULL when Condition is dead
duke@435 109
duke@435 110 if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
duke@435 111 if( in(Condition)->is_Bool() ) {
duke@435 112 BoolNode* b = in(Condition)->as_Bool();
duke@435 113 BoolNode* b2 = b->negate(phase);
duke@435 114 return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
duke@435 115 }
duke@435 116 }
duke@435 117 return NULL;
duke@435 118 }
duke@435 119
duke@435 120 //------------------------------is_cmove_id------------------------------------
duke@435 121 // Helper function to check for CMOVE identity. Shared with PhiNode::Identity
duke@435 122 Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
duke@435 123 // Check for Cmp'ing and CMove'ing same values
duke@435 124 if( (phase->eqv(cmp->in(1),f) &&
duke@435 125 phase->eqv(cmp->in(2),t)) ||
duke@435 126 // Swapped Cmp is OK
duke@435 127 (phase->eqv(cmp->in(2),f) &&
duke@435 128 phase->eqv(cmp->in(1),t)) ) {
duke@435 129 // Check for "(t==f)?t:f;" and replace with "f"
duke@435 130 if( b->_test._test == BoolTest::eq )
duke@435 131 return f;
duke@435 132 // Allow the inverted case as well
duke@435 133 // Check for "(t!=f)?t:f;" and replace with "t"
duke@435 134 if( b->_test._test == BoolTest::ne )
duke@435 135 return t;
duke@435 136 }
duke@435 137 return NULL;
duke@435 138 }
duke@435 139
duke@435 140 //------------------------------Identity---------------------------------------
duke@435 141 // Conditional-move is an identity if both inputs are the same, or the test
duke@435 142 // true or false.
duke@435 143 Node *CMoveNode::Identity( PhaseTransform *phase ) {
duke@435 144 if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
duke@435 145 return in(IfFalse); // Then it doesn't matter
duke@435 146 if( phase->type(in(Condition)) == TypeInt::ZERO )
duke@435 147 return in(IfFalse); // Always pick left(false) input
duke@435 148 if( phase->type(in(Condition)) == TypeInt::ONE )
duke@435 149 return in(IfTrue); // Always pick right(true) input
duke@435 150
duke@435 151 // Check for CMove'ing a constant after comparing against the constant.
duke@435 152 // Happens all the time now, since if we compare equality vs a constant in
duke@435 153 // the parser, we "know" the variable is constant on one path and we force
duke@435 154 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
duke@435 155 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
duke@435 156 // general in that we don't need constants.
duke@435 157 if( in(Condition)->is_Bool() ) {
duke@435 158 BoolNode *b = in(Condition)->as_Bool();
duke@435 159 Node *cmp = b->in(1);
duke@435 160 if( cmp->is_Cmp() ) {
duke@435 161 Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
duke@435 162 if( id ) return id;
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166 return this;
duke@435 167 }
duke@435 168
duke@435 169 //------------------------------Value------------------------------------------
duke@435 170 // Result is the meet of inputs
duke@435 171 const Type *CMoveNode::Value( PhaseTransform *phase ) const {
duke@435 172 if( phase->type(in(Condition)) == Type::TOP )
duke@435 173 return Type::TOP;
duke@435 174 return phase->type(in(IfFalse))->meet(phase->type(in(IfTrue)));
duke@435 175 }
duke@435 176
duke@435 177 //------------------------------make-------------------------------------------
duke@435 178 // Make a correctly-flavored CMove. Since _type is directly determined
duke@435 179 // from the inputs we do not need to specify it here.
duke@435 180 CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
duke@435 181 switch( t->basic_type() ) {
duke@435 182 case T_INT: return new (C, 4) CMoveINode( bol, left, right, t->is_int() );
duke@435 183 case T_FLOAT: return new (C, 4) CMoveFNode( bol, left, right, t );
duke@435 184 case T_DOUBLE: return new (C, 4) CMoveDNode( bol, left, right, t );
duke@435 185 case T_LONG: return new (C, 4) CMoveLNode( bol, left, right, t->is_long() );
duke@435 186 case T_OBJECT: return new (C, 4) CMovePNode( c, bol, left, right, t->is_oopptr() );
duke@435 187 case T_ADDRESS: return new (C, 4) CMovePNode( c, bol, left, right, t->is_ptr() );
kvn@599 188 case T_NARROWOOP: return new (C, 4) CMoveNNode( c, bol, left, right, t );
duke@435 189 default:
duke@435 190 ShouldNotReachHere();
duke@435 191 return NULL;
duke@435 192 }
duke@435 193 }
duke@435 194
duke@435 195 //=============================================================================
duke@435 196 //------------------------------Ideal------------------------------------------
duke@435 197 // Return a node which is more "ideal" than the current node.
duke@435 198 // Check for conversions to boolean
duke@435 199 Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 200 // Try generic ideal's first
duke@435 201 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 202 if( x ) return x;
duke@435 203
duke@435 204 // If zero is on the left (false-case, no-move-case) it must mean another
duke@435 205 // constant is on the right (otherwise the shared CMove::Ideal code would
duke@435 206 // have moved the constant to the right). This situation is bad for Intel
duke@435 207 // and a don't-care for Sparc. It's bad for Intel because the zero has to
duke@435 208 // be manifested in a register with a XOR which kills flags, which are live
duke@435 209 // on input to the CMoveI, leading to a situation which causes excessive
duke@435 210 // spilling on Intel. For Sparc, if the zero in on the left the Sparc will
duke@435 211 // zero a register via G0 and conditionally-move the other constant. If the
duke@435 212 // zero is on the right, the Sparc will load the first constant with a
duke@435 213 // 13-bit set-lo and conditionally move G0. See bug 4677505.
duke@435 214 if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
duke@435 215 if( in(Condition)->is_Bool() ) {
duke@435 216 BoolNode* b = in(Condition)->as_Bool();
duke@435 217 BoolNode* b2 = b->negate(phase);
duke@435 218 return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
duke@435 219 }
duke@435 220 }
duke@435 221
duke@435 222 // Now check for booleans
duke@435 223 int flip = 0;
duke@435 224
duke@435 225 // Check for picking from zero/one
duke@435 226 if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
duke@435 227 flip = 1 - flip;
duke@435 228 } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
duke@435 229 } else return NULL;
duke@435 230
duke@435 231 // Check for eq/ne test
duke@435 232 if( !in(1)->is_Bool() ) return NULL;
duke@435 233 BoolNode *bol = in(1)->as_Bool();
duke@435 234 if( bol->_test._test == BoolTest::eq ) {
duke@435 235 } else if( bol->_test._test == BoolTest::ne ) {
duke@435 236 flip = 1-flip;
duke@435 237 } else return NULL;
duke@435 238
duke@435 239 // Check for vs 0 or 1
duke@435 240 if( !bol->in(1)->is_Cmp() ) return NULL;
duke@435 241 const CmpNode *cmp = bol->in(1)->as_Cmp();
duke@435 242 if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
duke@435 243 } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
duke@435 244 // Allow cmp-vs-1 if the other input is bounded by 0-1
duke@435 245 if( phase->type(cmp->in(1)) != TypeInt::BOOL )
duke@435 246 return NULL;
duke@435 247 flip = 1 - flip;
duke@435 248 } else return NULL;
duke@435 249
duke@435 250 // Convert to a bool (flipped)
duke@435 251 // Build int->bool conversion
duke@435 252 #ifndef PRODUCT
duke@435 253 if( PrintOpto ) tty->print_cr("CMOV to I2B");
duke@435 254 #endif
duke@435 255 Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
duke@435 256 if( flip )
duke@435 257 n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
duke@435 258
duke@435 259 return n;
duke@435 260 }
duke@435 261
duke@435 262 //=============================================================================
duke@435 263 //------------------------------Ideal------------------------------------------
duke@435 264 // Return a node which is more "ideal" than the current node.
duke@435 265 // Check for absolute value
duke@435 266 Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 267 // Try generic ideal's first
duke@435 268 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 269 if( x ) return x;
duke@435 270
duke@435 271 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 272 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 273
duke@435 274 // Find the Bool
duke@435 275 if( !in(1)->is_Bool() ) return NULL;
duke@435 276 BoolNode *bol = in(1)->as_Bool();
duke@435 277 // Check bool sense
duke@435 278 switch( bol->_test._test ) {
duke@435 279 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
duke@435 280 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
duke@435 281 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
duke@435 282 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
duke@435 283 default: return NULL; break;
duke@435 284 }
duke@435 285
duke@435 286 // Find zero input of CmpF; the other input is being abs'd
duke@435 287 Node *cmpf = bol->in(1);
duke@435 288 if( cmpf->Opcode() != Op_CmpF ) return NULL;
duke@435 289 Node *X = NULL;
duke@435 290 bool flip = false;
duke@435 291 if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
duke@435 292 X = cmpf->in(3 - cmp_zero_idx);
duke@435 293 } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
duke@435 294 // The test is inverted, we should invert the result...
duke@435 295 X = cmpf->in(cmp_zero_idx);
duke@435 296 flip = true;
duke@435 297 } else {
duke@435 298 return NULL;
duke@435 299 }
duke@435 300
duke@435 301 // If X is found on the appropriate phi input, find the subtract on the other
duke@435 302 if( X != in(phi_x_idx) ) return NULL;
duke@435 303 int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
duke@435 304 Node *sub = in(phi_sub_idx);
duke@435 305
duke@435 306 // Allow only SubF(0,X) and fail out for all others; NegF is not OK
duke@435 307 if( sub->Opcode() != Op_SubF ||
duke@435 308 sub->in(2) != X ||
duke@435 309 phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;
duke@435 310
duke@435 311 Node *abs = new (phase->C, 2) AbsFNode( X );
duke@435 312 if( flip )
duke@435 313 abs = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(abs));
duke@435 314
duke@435 315 return abs;
duke@435 316 }
duke@435 317
duke@435 318 //=============================================================================
duke@435 319 //------------------------------Ideal------------------------------------------
duke@435 320 // Return a node which is more "ideal" than the current node.
duke@435 321 // Check for absolute value
duke@435 322 Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 323 // Try generic ideal's first
duke@435 324 Node *x = CMoveNode::Ideal(phase, can_reshape);
duke@435 325 if( x ) return x;
duke@435 326
duke@435 327 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 328 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 329
duke@435 330 // Find the Bool
duke@435 331 if( !in(1)->is_Bool() ) return NULL;
duke@435 332 BoolNode *bol = in(1)->as_Bool();
duke@435 333 // Check bool sense
duke@435 334 switch( bol->_test._test ) {
duke@435 335 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue; break;
duke@435 336 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
duke@435 337 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue; break;
duke@435 338 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
duke@435 339 default: return NULL; break;
duke@435 340 }
duke@435 341
duke@435 342 // Find zero input of CmpD; the other input is being abs'd
duke@435 343 Node *cmpd = bol->in(1);
duke@435 344 if( cmpd->Opcode() != Op_CmpD ) return NULL;
duke@435 345 Node *X = NULL;
duke@435 346 bool flip = false;
duke@435 347 if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
duke@435 348 X = cmpd->in(3 - cmp_zero_idx);
duke@435 349 } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
duke@435 350 // The test is inverted, we should invert the result...
duke@435 351 X = cmpd->in(cmp_zero_idx);
duke@435 352 flip = true;
duke@435 353 } else {
duke@435 354 return NULL;
duke@435 355 }
duke@435 356
duke@435 357 // If X is found on the appropriate phi input, find the subtract on the other
duke@435 358 if( X != in(phi_x_idx) ) return NULL;
duke@435 359 int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
duke@435 360 Node *sub = in(phi_sub_idx);
duke@435 361
duke@435 362 // Allow only SubD(0,X) and fail out for all others; NegD is not OK
duke@435 363 if( sub->Opcode() != Op_SubD ||
duke@435 364 sub->in(2) != X ||
duke@435 365 phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;
duke@435 366
duke@435 367 Node *abs = new (phase->C, 2) AbsDNode( X );
duke@435 368 if( flip )
duke@435 369 abs = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(abs));
duke@435 370
duke@435 371 return abs;
duke@435 372 }
duke@435 373
duke@435 374
duke@435 375 //=============================================================================
duke@435 376 // If input is already higher or equal to cast type, then this is an identity.
duke@435 377 Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
duke@435 378 return phase->type(in(1))->higher_equal(_type) ? in(1) : this;
duke@435 379 }
duke@435 380
duke@435 381 //------------------------------Value------------------------------------------
duke@435 382 // Take 'join' of input and cast-up type
duke@435 383 const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
duke@435 384 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 385 const Type* ft = phase->type(in(1))->filter(_type);
duke@435 386
duke@435 387 #ifdef ASSERT
duke@435 388 // Previous versions of this function had some special case logic,
duke@435 389 // which is no longer necessary. Make sure of the required effects.
duke@435 390 switch (Opcode()) {
duke@435 391 case Op_CastII:
duke@435 392 {
duke@435 393 const Type* t1 = phase->type(in(1));
duke@435 394 if( t1 == Type::TOP ) assert(ft == Type::TOP, "special case #1");
duke@435 395 const Type* rt = t1->join(_type);
duke@435 396 if (rt->empty()) assert(ft == Type::TOP, "special case #2");
duke@435 397 break;
duke@435 398 }
duke@435 399 case Op_CastPP:
duke@435 400 if (phase->type(in(1)) == TypePtr::NULL_PTR &&
duke@435 401 _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
duke@435 402 assert(ft == Type::TOP, "special case #3");
duke@435 403 break;
duke@435 404 }
duke@435 405 #endif //ASSERT
duke@435 406
duke@435 407 return ft;
duke@435 408 }
duke@435 409
duke@435 410 //------------------------------Ideal------------------------------------------
duke@435 411 // Return a node which is more "ideal" than the current node. Strip out
duke@435 412 // control copies
duke@435 413 Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 414 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 415 }
duke@435 416
duke@435 417 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 418 // Throw away cast after constant propagation
duke@435 419 Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
duke@435 420 const Type *t = ccp->type(in(1));
duke@435 421 ccp->hash_delete(this);
duke@435 422 set_type(t); // Turn into ID function
duke@435 423 ccp->hash_insert(this);
duke@435 424 return this;
duke@435 425 }
duke@435 426
duke@435 427
duke@435 428 //=============================================================================
duke@435 429
duke@435 430 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 431 // If not converting int->oop, throw away cast after constant propagation
duke@435 432 Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
duke@435 433 const Type *t = ccp->type(in(1));
duke@435 434 if (!t->isa_oop_ptr()) {
duke@435 435 return NULL; // do not transform raw pointers
duke@435 436 }
duke@435 437 return ConstraintCastNode::Ideal_DU_postCCP(ccp);
duke@435 438 }
duke@435 439
duke@435 440
duke@435 441
duke@435 442 //=============================================================================
duke@435 443 //------------------------------Identity---------------------------------------
duke@435 444 // If input is already higher or equal to cast type, then this is an identity.
duke@435 445 Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
duke@435 446 // Toned down to rescue meeting at a Phi 3 different oops all implementing
duke@435 447 // the same interface. CompileTheWorld starting at 502, kd12rc1.zip.
duke@435 448 return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
duke@435 449 }
duke@435 450
duke@435 451 // Determine whether "n" is a node which can cause an alias of one of its inputs. Node types
duke@435 452 // which can create aliases are: CheckCastPP, Phi, and any store (if there is also a load from
duke@435 453 // the location.)
duke@435 454 // Note: this checks for aliases created in this compilation, not ones which may
duke@435 455 // be potentially created at call sites.
duke@435 456 static bool can_cause_alias(Node *n, PhaseTransform *phase) {
duke@435 457 bool possible_alias = false;
duke@435 458
duke@435 459 if (n->is_Store()) {
duke@435 460 possible_alias = !n->as_Store()->value_never_loaded(phase);
duke@435 461 } else {
duke@435 462 int opc = n->Opcode();
duke@435 463 possible_alias = n->is_Phi() ||
duke@435 464 opc == Op_CheckCastPP ||
duke@435 465 opc == Op_StorePConditional ||
coleenp@548 466 opc == Op_CompareAndSwapP ||
coleenp@548 467 opc == Op_CompareAndSwapN;
duke@435 468 }
duke@435 469 return possible_alias;
duke@435 470 }
duke@435 471
duke@435 472 //------------------------------Value------------------------------------------
duke@435 473 // Take 'join' of input and cast-up type, unless working with an Interface
duke@435 474 const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
duke@435 475 if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 476
duke@435 477 const Type *inn = phase->type(in(1));
duke@435 478 if( inn == Type::TOP ) return Type::TOP; // No information yet
duke@435 479
duke@435 480 const TypePtr *in_type = inn->isa_ptr();
duke@435 481 const TypePtr *my_type = _type->isa_ptr();
duke@435 482 const Type *result = _type;
duke@435 483 if( in_type != NULL && my_type != NULL ) {
duke@435 484 TypePtr::PTR in_ptr = in_type->ptr();
duke@435 485 if( in_ptr == TypePtr::Null ) {
duke@435 486 result = in_type;
duke@435 487 } else if( in_ptr == TypePtr::Constant ) {
duke@435 488 // Casting a constant oop to an interface?
duke@435 489 // (i.e., a String to a Comparable?)
duke@435 490 // Then return the interface.
duke@435 491 const TypeOopPtr *jptr = my_type->isa_oopptr();
duke@435 492 assert( jptr, "" );
duke@435 493 result = (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
duke@435 494 ? my_type->cast_to_ptr_type( TypePtr::NotNull )
duke@435 495 : in_type;
duke@435 496 } else {
duke@435 497 result = my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
duke@435 498 }
duke@435 499 }
duke@435 500 return result;
duke@435 501
duke@435 502 // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
duke@435 503 // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!
duke@435 504
duke@435 505 //
duke@435 506 // Remove this code after overnight run indicates no performance
duke@435 507 // loss from not performing JOIN at CheckCastPPNode
duke@435 508 //
duke@435 509 // const TypeInstPtr *in_oop = in->isa_instptr();
duke@435 510 // const TypeInstPtr *my_oop = _type->isa_instptr();
duke@435 511 // // If either input is an 'interface', return destination type
duke@435 512 // assert (in_oop == NULL || in_oop->klass() != NULL, "");
duke@435 513 // assert (my_oop == NULL || my_oop->klass() != NULL, "");
duke@435 514 // if( (in_oop && in_oop->klass()->klass_part()->is_interface())
duke@435 515 // ||(my_oop && my_oop->klass()->klass_part()->is_interface()) ) {
duke@435 516 // TypePtr::PTR in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
duke@435 517 // // Preserve cast away nullness for interfaces
duke@435 518 // if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
duke@435 519 // return my_oop->cast_to_ptr_type(TypePtr::NotNull);
duke@435 520 // }
duke@435 521 // return _type;
duke@435 522 // }
duke@435 523 //
duke@435 524 // // Neither the input nor the destination type is an interface,
duke@435 525 //
duke@435 526 // // history: JOIN used to cause weird corner case bugs
duke@435 527 // // return (in == TypeOopPtr::NULL_PTR) ? in : _type;
duke@435 528 // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
duke@435 529 // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
duke@435 530 // const Type *join = in->join(_type);
duke@435 531 // // Check if join preserved NotNull'ness for pointers
duke@435 532 // if( join->isa_ptr() && _type->isa_ptr() ) {
duke@435 533 // TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
duke@435 534 // TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
duke@435 535 // // If there isn't any NotNull'ness to preserve
duke@435 536 // // OR if join preserved NotNull'ness then return it
duke@435 537 // if( type_ptr == TypePtr::BotPTR || type_ptr == TypePtr::Null ||
duke@435 538 // join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
duke@435 539 // return join;
duke@435 540 // }
duke@435 541 // // ELSE return same old type as before
duke@435 542 // return _type;
duke@435 543 // }
duke@435 544 // // Not joining two pointers
duke@435 545 // return join;
duke@435 546 }
duke@435 547
duke@435 548 //------------------------------Ideal------------------------------------------
duke@435 549 // Return a node which is more "ideal" than the current node. Strip out
duke@435 550 // control copies
duke@435 551 Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 552 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 553 }
duke@435 554
coleenp@548 555
coleenp@548 556 Node* DecodeNNode::Identity(PhaseTransform* phase) {
coleenp@548 557 const Type *t = phase->type( in(1) );
coleenp@548 558 if( t == Type::TOP ) return in(1);
coleenp@548 559
kvn@603 560 if (in(1)->is_EncodeP()) {
coleenp@548 561 // (DecodeN (EncodeP p)) -> p
coleenp@548 562 return in(1)->in(1);
coleenp@548 563 }
coleenp@548 564 return this;
coleenp@548 565 }
coleenp@548 566
kvn@559 567 const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
kvn@651 568 const Type *t = phase->type( in(1) );
kvn@651 569 if (t == Type::TOP) return Type::TOP;
kvn@651 570 if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
kvn@651 571
kvn@651 572 assert(t->isa_narrowoop(), "only narrowoop here");
kvn@656 573 return t->make_ptr();
kvn@559 574 }
kvn@559 575
coleenp@548 576 Node* EncodePNode::Identity(PhaseTransform* phase) {
coleenp@548 577 const Type *t = phase->type( in(1) );
coleenp@548 578 if( t == Type::TOP ) return in(1);
coleenp@548 579
kvn@603 580 if (in(1)->is_DecodeN()) {
coleenp@548 581 // (EncodeP (DecodeN p)) -> p
coleenp@548 582 return in(1)->in(1);
coleenp@548 583 }
coleenp@548 584 return this;
coleenp@548 585 }
coleenp@548 586
kvn@559 587 const Type *EncodePNode::Value( PhaseTransform *phase ) const {
kvn@651 588 const Type *t = phase->type( in(1) );
kvn@651 589 if (t == Type::TOP) return Type::TOP;
kvn@651 590 if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
kvn@651 591
kvn@651 592 assert(t->isa_oopptr(), "only oopptr here");
kvn@656 593 return t->make_narrowoop();
kvn@559 594 }
coleenp@548 595
coleenp@548 596
kvn@598 597 Node *EncodePNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
kvn@598 598 return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
kvn@598 599 }
coleenp@548 600
duke@435 601 //=============================================================================
duke@435 602 //------------------------------Identity---------------------------------------
duke@435 603 Node *Conv2BNode::Identity( PhaseTransform *phase ) {
duke@435 604 const Type *t = phase->type( in(1) );
duke@435 605 if( t == Type::TOP ) return in(1);
duke@435 606 if( t == TypeInt::ZERO ) return in(1);
duke@435 607 if( t == TypeInt::ONE ) return in(1);
duke@435 608 if( t == TypeInt::BOOL ) return in(1);
duke@435 609 return this;
duke@435 610 }
duke@435 611
duke@435 612 //------------------------------Value------------------------------------------
duke@435 613 const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
duke@435 614 const Type *t = phase->type( in(1) );
duke@435 615 if( t == Type::TOP ) return Type::TOP;
duke@435 616 if( t == TypeInt::ZERO ) return TypeInt::ZERO;
duke@435 617 if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
duke@435 618 const TypePtr *tp = t->isa_ptr();
duke@435 619 if( tp != NULL ) {
duke@435 620 if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
duke@435 621 if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
duke@435 622 if (tp->ptr() == TypePtr::NotNull) return TypeInt::ONE;
duke@435 623 return TypeInt::BOOL;
duke@435 624 }
duke@435 625 if (t->base() != Type::Int) return TypeInt::BOOL;
duke@435 626 const TypeInt *ti = t->is_int();
duke@435 627 if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
duke@435 628 return TypeInt::BOOL;
duke@435 629 }
duke@435 630
duke@435 631
duke@435 632 // The conversions operations are all Alpha sorted. Please keep it that way!
duke@435 633 //=============================================================================
duke@435 634 //------------------------------Value------------------------------------------
duke@435 635 const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
duke@435 636 const Type *t = phase->type( in(1) );
duke@435 637 if( t == Type::TOP ) return Type::TOP;
duke@435 638 if( t == Type::DOUBLE ) return Type::FLOAT;
duke@435 639 const TypeD *td = t->is_double_constant();
duke@435 640 return TypeF::make( (float)td->getd() );
duke@435 641 }
duke@435 642
duke@435 643 //------------------------------Identity---------------------------------------
duke@435 644 // Float's can be converted to doubles with no loss of bits. Hence
duke@435 645 // converting a float to a double and back to a float is a NOP.
duke@435 646 Node *ConvD2FNode::Identity(PhaseTransform *phase) {
duke@435 647 return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
duke@435 648 }
duke@435 649
duke@435 650 //=============================================================================
duke@435 651 //------------------------------Value------------------------------------------
duke@435 652 const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
duke@435 653 const Type *t = phase->type( in(1) );
duke@435 654 if( t == Type::TOP ) return Type::TOP;
duke@435 655 if( t == Type::DOUBLE ) return TypeInt::INT;
duke@435 656 const TypeD *td = t->is_double_constant();
duke@435 657 return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
duke@435 658 }
duke@435 659
duke@435 660 //------------------------------Ideal------------------------------------------
duke@435 661 // If converting to an int type, skip any rounding nodes
duke@435 662 Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 663 if( in(1)->Opcode() == Op_RoundDouble )
duke@435 664 set_req(1,in(1)->in(1));
duke@435 665 return NULL;
duke@435 666 }
duke@435 667
duke@435 668 //------------------------------Identity---------------------------------------
duke@435 669 // Int's can be converted to doubles with no loss of bits. Hence
duke@435 670 // converting an integer to a double and back to an integer is a NOP.
duke@435 671 Node *ConvD2INode::Identity(PhaseTransform *phase) {
duke@435 672 return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
duke@435 673 }
duke@435 674
duke@435 675 //=============================================================================
duke@435 676 //------------------------------Value------------------------------------------
duke@435 677 const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
duke@435 678 const Type *t = phase->type( in(1) );
duke@435 679 if( t == Type::TOP ) return Type::TOP;
duke@435 680 if( t == Type::DOUBLE ) return TypeLong::LONG;
duke@435 681 const TypeD *td = t->is_double_constant();
duke@435 682 return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
duke@435 683 }
duke@435 684
duke@435 685 //------------------------------Identity---------------------------------------
duke@435 686 Node *ConvD2LNode::Identity(PhaseTransform *phase) {
duke@435 687 // Remove ConvD2L->ConvL2D->ConvD2L sequences.
duke@435 688 if( in(1) ->Opcode() == Op_ConvL2D &&
duke@435 689 in(1)->in(1)->Opcode() == Op_ConvD2L )
duke@435 690 return in(1)->in(1);
duke@435 691 return this;
duke@435 692 }
duke@435 693
duke@435 694 //------------------------------Ideal------------------------------------------
duke@435 695 // If converting to an int type, skip any rounding nodes
duke@435 696 Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 697 if( in(1)->Opcode() == Op_RoundDouble )
duke@435 698 set_req(1,in(1)->in(1));
duke@435 699 return NULL;
duke@435 700 }
duke@435 701
duke@435 702 //=============================================================================
duke@435 703 //------------------------------Value------------------------------------------
duke@435 704 const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
duke@435 705 const Type *t = phase->type( in(1) );
duke@435 706 if( t == Type::TOP ) return Type::TOP;
duke@435 707 if( t == Type::FLOAT ) return Type::DOUBLE;
duke@435 708 const TypeF *tf = t->is_float_constant();
duke@435 709 #ifndef IA64
duke@435 710 return TypeD::make( (double)tf->getf() );
duke@435 711 #else
duke@435 712 float x = tf->getf();
duke@435 713 return TypeD::make( (x == 0.0f) ? (double)x : (double)x + ia64_double_zero );
duke@435 714 #endif
duke@435 715 }
duke@435 716
duke@435 717 //=============================================================================
duke@435 718 //------------------------------Value------------------------------------------
duke@435 719 const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
duke@435 720 const Type *t = phase->type( in(1) );
duke@435 721 if( t == Type::TOP ) return Type::TOP;
duke@435 722 if( t == Type::FLOAT ) return TypeInt::INT;
duke@435 723 const TypeF *tf = t->is_float_constant();
duke@435 724 return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
duke@435 725 }
duke@435 726
duke@435 727 //------------------------------Identity---------------------------------------
duke@435 728 Node *ConvF2INode::Identity(PhaseTransform *phase) {
duke@435 729 // Remove ConvF2I->ConvI2F->ConvF2I sequences.
duke@435 730 if( in(1) ->Opcode() == Op_ConvI2F &&
duke@435 731 in(1)->in(1)->Opcode() == Op_ConvF2I )
duke@435 732 return in(1)->in(1);
duke@435 733 return this;
duke@435 734 }
duke@435 735
duke@435 736 //------------------------------Ideal------------------------------------------
duke@435 737 // If converting to an int type, skip any rounding nodes
duke@435 738 Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 739 if( in(1)->Opcode() == Op_RoundFloat )
duke@435 740 set_req(1,in(1)->in(1));
duke@435 741 return NULL;
duke@435 742 }
duke@435 743
duke@435 744 //=============================================================================
duke@435 745 //------------------------------Value------------------------------------------
duke@435 746 const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
duke@435 747 const Type *t = phase->type( in(1) );
duke@435 748 if( t == Type::TOP ) return Type::TOP;
duke@435 749 if( t == Type::FLOAT ) return TypeLong::LONG;
duke@435 750 const TypeF *tf = t->is_float_constant();
duke@435 751 return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
duke@435 752 }
duke@435 753
duke@435 754 //------------------------------Identity---------------------------------------
duke@435 755 Node *ConvF2LNode::Identity(PhaseTransform *phase) {
duke@435 756 // Remove ConvF2L->ConvL2F->ConvF2L sequences.
duke@435 757 if( in(1) ->Opcode() == Op_ConvL2F &&
duke@435 758 in(1)->in(1)->Opcode() == Op_ConvF2L )
duke@435 759 return in(1)->in(1);
duke@435 760 return this;
duke@435 761 }
duke@435 762
duke@435 763 //------------------------------Ideal------------------------------------------
duke@435 764 // If converting to an int type, skip any rounding nodes
duke@435 765 Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 766 if( in(1)->Opcode() == Op_RoundFloat )
duke@435 767 set_req(1,in(1)->in(1));
duke@435 768 return NULL;
duke@435 769 }
duke@435 770
duke@435 771 //=============================================================================
duke@435 772 //------------------------------Value------------------------------------------
duke@435 773 const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
duke@435 774 const Type *t = phase->type( in(1) );
duke@435 775 if( t == Type::TOP ) return Type::TOP;
duke@435 776 const TypeInt *ti = t->is_int();
duke@435 777 if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
duke@435 778 return bottom_type();
duke@435 779 }
duke@435 780
duke@435 781 //=============================================================================
duke@435 782 //------------------------------Value------------------------------------------
duke@435 783 const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
duke@435 784 const Type *t = phase->type( in(1) );
duke@435 785 if( t == Type::TOP ) return Type::TOP;
duke@435 786 const TypeInt *ti = t->is_int();
duke@435 787 if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
duke@435 788 return bottom_type();
duke@435 789 }
duke@435 790
duke@435 791 //------------------------------Identity---------------------------------------
duke@435 792 Node *ConvI2FNode::Identity(PhaseTransform *phase) {
duke@435 793 // Remove ConvI2F->ConvF2I->ConvI2F sequences.
duke@435 794 if( in(1) ->Opcode() == Op_ConvF2I &&
duke@435 795 in(1)->in(1)->Opcode() == Op_ConvI2F )
duke@435 796 return in(1)->in(1);
duke@435 797 return this;
duke@435 798 }
duke@435 799
duke@435 800 //=============================================================================
duke@435 801 //------------------------------Value------------------------------------------
duke@435 802 const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
duke@435 803 const Type *t = phase->type( in(1) );
duke@435 804 if( t == Type::TOP ) return Type::TOP;
duke@435 805 const TypeInt *ti = t->is_int();
duke@435 806 const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
duke@435 807 // Join my declared type against my incoming type.
duke@435 808 tl = tl->filter(_type);
duke@435 809 return tl;
duke@435 810 }
duke@435 811
duke@435 812 #ifdef _LP64
duke@435 813 static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
duke@435 814 jlong lo2, jlong hi2) {
duke@435 815 // Two ranges overlap iff one range's low point falls in the other range.
duke@435 816 return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
duke@435 817 }
duke@435 818 #endif
duke@435 819
duke@435 820 //------------------------------Ideal------------------------------------------
duke@435 821 Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 822 const TypeLong* this_type = this->type()->is_long();
duke@435 823 Node* this_changed = NULL;
duke@435 824
duke@435 825 // If _major_progress, then more loop optimizations follow. Do NOT
duke@435 826 // remove this node's type assertion until no more loop ops can happen.
duke@435 827 // The progress bit is set in the major loop optimizations THEN comes the
duke@435 828 // call to IterGVN and any chance of hitting this code. Cf. Opaque1Node.
duke@435 829 if (can_reshape && !phase->C->major_progress()) {
duke@435 830 const TypeInt* in_type = phase->type(in(1))->isa_int();
duke@435 831 if (in_type != NULL && this_type != NULL &&
duke@435 832 (in_type->_lo != this_type->_lo ||
duke@435 833 in_type->_hi != this_type->_hi)) {
duke@435 834 // Although this WORSENS the type, it increases GVN opportunities,
duke@435 835 // because I2L nodes with the same input will common up, regardless
duke@435 836 // of slightly differing type assertions. Such slight differences
duke@435 837 // arise routinely as a result of loop unrolling, so this is a
duke@435 838 // post-unrolling graph cleanup. Choose a type which depends only
duke@435 839 // on my input. (Exception: Keep a range assertion of >=0 or <0.)
duke@435 840 jlong lo1 = this_type->_lo;
duke@435 841 jlong hi1 = this_type->_hi;
duke@435 842 int w1 = this_type->_widen;
duke@435 843 if (lo1 != (jint)lo1 ||
duke@435 844 hi1 != (jint)hi1 ||
duke@435 845 lo1 > hi1) {
duke@435 846 // Overflow leads to wraparound, wraparound leads to range saturation.
duke@435 847 lo1 = min_jint; hi1 = max_jint;
duke@435 848 } else if (lo1 >= 0) {
duke@435 849 // Keep a range assertion of >=0.
duke@435 850 lo1 = 0; hi1 = max_jint;
duke@435 851 } else if (hi1 < 0) {
duke@435 852 // Keep a range assertion of <0.
duke@435 853 lo1 = min_jint; hi1 = -1;
duke@435 854 } else {
duke@435 855 lo1 = min_jint; hi1 = max_jint;
duke@435 856 }
duke@435 857 const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
duke@435 858 MIN2((jlong)in_type->_hi, hi1),
duke@435 859 MAX2((int)in_type->_widen, w1));
duke@435 860 if (wtype != type()) {
duke@435 861 set_type(wtype);
duke@435 862 // Note: this_type still has old type value, for the logic below.
duke@435 863 this_changed = this;
duke@435 864 }
duke@435 865 }
duke@435 866 }
duke@435 867
duke@435 868 #ifdef _LP64
duke@435 869 // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
duke@435 870 // but only if x and y have subranges that cannot cause 32-bit overflow,
duke@435 871 // under the assumption that x+y is in my own subrange this->type().
duke@435 872
duke@435 873 // This assumption is based on a constraint (i.e., type assertion)
duke@435 874 // established in Parse::array_addressing or perhaps elsewhere.
duke@435 875 // This constraint has been adjoined to the "natural" type of
duke@435 876 // the incoming argument in(0). We know (because of runtime
duke@435 877 // checks) - that the result value I2L(x+y) is in the joined range.
duke@435 878 // Hence we can restrict the incoming terms (x, y) to values such
duke@435 879 // that their sum also lands in that range.
duke@435 880
duke@435 881 // This optimization is useful only on 64-bit systems, where we hope
duke@435 882 // the addition will end up subsumed in an addressing mode.
duke@435 883 // It is necessary to do this when optimizing an unrolled array
duke@435 884 // copy loop such as x[i++] = y[i++].
duke@435 885
duke@435 886 // On 32-bit systems, it's better to perform as much 32-bit math as
duke@435 887 // possible before the I2L conversion, because 32-bit math is cheaper.
duke@435 888 // There's no common reason to "leak" a constant offset through the I2L.
duke@435 889 // Addressing arithmetic will not absorb it as part of a 64-bit AddL.
duke@435 890
duke@435 891 Node* z = in(1);
duke@435 892 int op = z->Opcode();
duke@435 893 if (op == Op_AddI || op == Op_SubI) {
duke@435 894 Node* x = z->in(1);
duke@435 895 Node* y = z->in(2);
duke@435 896 assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
duke@435 897 if (phase->type(x) == Type::TOP) return this_changed;
duke@435 898 if (phase->type(y) == Type::TOP) return this_changed;
duke@435 899 const TypeInt* tx = phase->type(x)->is_int();
duke@435 900 const TypeInt* ty = phase->type(y)->is_int();
duke@435 901 const TypeLong* tz = this_type;
duke@435 902 jlong xlo = tx->_lo;
duke@435 903 jlong xhi = tx->_hi;
duke@435 904 jlong ylo = ty->_lo;
duke@435 905 jlong yhi = ty->_hi;
duke@435 906 jlong zlo = tz->_lo;
duke@435 907 jlong zhi = tz->_hi;
duke@435 908 jlong vbit = CONST64(1) << BitsPerInt;
duke@435 909 int widen = MAX2(tx->_widen, ty->_widen);
duke@435 910 if (op == Op_SubI) {
duke@435 911 jlong ylo0 = ylo;
duke@435 912 ylo = -yhi;
duke@435 913 yhi = -ylo0;
duke@435 914 }
duke@435 915 // See if x+y can cause positive overflow into z+2**32
duke@435 916 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
duke@435 917 return this_changed;
duke@435 918 }
duke@435 919 // See if x+y can cause negative overflow into z-2**32
duke@435 920 if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
duke@435 921 return this_changed;
duke@435 922 }
duke@435 923 // Now it's always safe to assume x+y does not overflow.
duke@435 924 // This is true even if some pairs x,y might cause overflow, as long
duke@435 925 // as that overflow value cannot fall into [zlo,zhi].
duke@435 926
duke@435 927 // Confident that the arithmetic is "as if infinite precision",
duke@435 928 // we can now use z's range to put constraints on those of x and y.
duke@435 929 // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
duke@435 930 // more "restricted" range by intersecting [xlo,xhi] with the
duke@435 931 // range obtained by subtracting y's range from the asserted range
duke@435 932 // of the I2L conversion. Here's the interval arithmetic algebra:
duke@435 933 // x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
duke@435 934 // => x in [zlo-yhi, zhi-ylo]
duke@435 935 // => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
duke@435 936 // => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
duke@435 937 jlong rxlo = MAX2(xlo, zlo - yhi);
duke@435 938 jlong rxhi = MIN2(xhi, zhi - ylo);
duke@435 939 // And similarly, x changing place with y:
duke@435 940 jlong rylo = MAX2(ylo, zlo - xhi);
duke@435 941 jlong ryhi = MIN2(yhi, zhi - xlo);
duke@435 942 if (rxlo > rxhi || rylo > ryhi) {
duke@435 943 return this_changed; // x or y is dying; don't mess w/ it
duke@435 944 }
duke@435 945 if (op == Op_SubI) {
duke@435 946 jlong rylo0 = rylo;
duke@435 947 rylo = -ryhi;
duke@435 948 ryhi = -rylo0;
duke@435 949 }
duke@435 950
duke@435 951 Node* cx = phase->transform( new (phase->C, 2) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
duke@435 952 Node* cy = phase->transform( new (phase->C, 2) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
duke@435 953 switch (op) {
duke@435 954 case Op_AddI: return new (phase->C, 3) AddLNode(cx, cy);
duke@435 955 case Op_SubI: return new (phase->C, 3) SubLNode(cx, cy);
duke@435 956 default: ShouldNotReachHere();
duke@435 957 }
duke@435 958 }
duke@435 959 #endif //_LP64
duke@435 960
duke@435 961 return this_changed;
duke@435 962 }
duke@435 963
duke@435 964 //=============================================================================
duke@435 965 //------------------------------Value------------------------------------------
duke@435 966 const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
duke@435 967 const Type *t = phase->type( in(1) );
duke@435 968 if( t == Type::TOP ) return Type::TOP;
duke@435 969 const TypeLong *tl = t->is_long();
duke@435 970 if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
duke@435 971 return bottom_type();
duke@435 972 }
duke@435 973
duke@435 974 //=============================================================================
duke@435 975 //------------------------------Value------------------------------------------
duke@435 976 const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
duke@435 977 const Type *t = phase->type( in(1) );
duke@435 978 if( t == Type::TOP ) return Type::TOP;
duke@435 979 const TypeLong *tl = t->is_long();
duke@435 980 if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
duke@435 981 return bottom_type();
duke@435 982 }
duke@435 983
duke@435 984 //=============================================================================
duke@435 985 //----------------------------Identity-----------------------------------------
duke@435 986 Node *ConvL2INode::Identity( PhaseTransform *phase ) {
duke@435 987 // Convert L2I(I2L(x)) => x
duke@435 988 if (in(1)->Opcode() == Op_ConvI2L) return in(1)->in(1);
duke@435 989 return this;
duke@435 990 }
duke@435 991
duke@435 992 //------------------------------Value------------------------------------------
duke@435 993 const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
duke@435 994 const Type *t = phase->type( in(1) );
duke@435 995 if( t == Type::TOP ) return Type::TOP;
duke@435 996 const TypeLong *tl = t->is_long();
duke@435 997 if (tl->is_con())
duke@435 998 // Easy case.
duke@435 999 return TypeInt::make((jint)tl->get_con());
duke@435 1000 return bottom_type();
duke@435 1001 }
duke@435 1002
duke@435 1003 //------------------------------Ideal------------------------------------------
duke@435 1004 // Return a node which is more "ideal" than the current node.
duke@435 1005 // Blow off prior masking to int
duke@435 1006 Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1007 Node *andl = in(1);
duke@435 1008 uint andl_op = andl->Opcode();
duke@435 1009 if( andl_op == Op_AndL ) {
duke@435 1010 // Blow off prior masking to int
duke@435 1011 if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
duke@435 1012 set_req(1,andl->in(1));
duke@435 1013 return this;
duke@435 1014 }
duke@435 1015 }
duke@435 1016
duke@435 1017 // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
duke@435 1018 // This replaces an 'AddL' with an 'AddI'.
duke@435 1019 if( andl_op == Op_AddL ) {
duke@435 1020 // Don't do this for nodes which have more than one user since
duke@435 1021 // we'll end up computing the long add anyway.
duke@435 1022 if (andl->outcnt() > 1) return NULL;
duke@435 1023
duke@435 1024 Node* x = andl->in(1);
duke@435 1025 Node* y = andl->in(2);
duke@435 1026 assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
duke@435 1027 if (phase->type(x) == Type::TOP) return NULL;
duke@435 1028 if (phase->type(y) == Type::TOP) return NULL;
duke@435 1029 Node *add1 = phase->transform(new (phase->C, 2) ConvL2INode(x));
duke@435 1030 Node *add2 = phase->transform(new (phase->C, 2) ConvL2INode(y));
duke@435 1031 return new (phase->C, 3) AddINode(add1,add2);
duke@435 1032 }
duke@435 1033
kvn@471 1034 // Disable optimization: LoadL->ConvL2I ==> LoadI.
kvn@471 1035 // It causes problems (sizes of Load and Store nodes do not match)
kvn@471 1036 // in objects initialization code and Escape Analysis.
duke@435 1037 return NULL;
duke@435 1038 }
duke@435 1039
duke@435 1040 //=============================================================================
duke@435 1041 //------------------------------Value------------------------------------------
duke@435 1042 const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
duke@435 1043 const Type* t = phase->type(in(1));
duke@435 1044 if (t->base() == Type_X && t->singleton()) {
duke@435 1045 uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
duke@435 1046 if (bits == 0) return TypePtr::NULL_PTR;
duke@435 1047 return TypeRawPtr::make((address) bits);
duke@435 1048 }
duke@435 1049 return CastX2PNode::bottom_type();
duke@435 1050 }
duke@435 1051
duke@435 1052 //------------------------------Idealize---------------------------------------
duke@435 1053 static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
duke@435 1054 if (t == Type::TOP) return false;
duke@435 1055 const TypeX* tl = t->is_intptr_t();
duke@435 1056 jint lo = min_jint;
duke@435 1057 jint hi = max_jint;
duke@435 1058 if (but_not_min_int) ++lo; // caller wants to negate the value w/o overflow
duke@435 1059 return (tl->_lo >= lo) && (tl->_hi <= hi);
duke@435 1060 }
duke@435 1061
duke@435 1062 static inline Node* addP_of_X2P(PhaseGVN *phase,
duke@435 1063 Node* base,
duke@435 1064 Node* dispX,
duke@435 1065 bool negate = false) {
duke@435 1066 if (negate) {
duke@435 1067 dispX = new (phase->C, 3) SubXNode(phase->MakeConX(0), phase->transform(dispX));
duke@435 1068 }
duke@435 1069 return new (phase->C, 4) AddPNode(phase->C->top(),
duke@435 1070 phase->transform(new (phase->C, 2) CastX2PNode(base)),
duke@435 1071 phase->transform(dispX));
duke@435 1072 }
duke@435 1073
duke@435 1074 Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1075 // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
duke@435 1076 int op = in(1)->Opcode();
duke@435 1077 Node* x;
duke@435 1078 Node* y;
duke@435 1079 switch (op) {
duke@435 1080 case Op_SubX:
duke@435 1081 x = in(1)->in(1);
duke@435 1082 y = in(1)->in(2);
duke@435 1083 if (fits_in_int(phase->type(y), true)) {
duke@435 1084 return addP_of_X2P(phase, x, y, true);
duke@435 1085 }
duke@435 1086 break;
duke@435 1087 case Op_AddX:
duke@435 1088 x = in(1)->in(1);
duke@435 1089 y = in(1)->in(2);
duke@435 1090 if (fits_in_int(phase->type(y))) {
duke@435 1091 return addP_of_X2P(phase, x, y);
duke@435 1092 }
duke@435 1093 if (fits_in_int(phase->type(x))) {
duke@435 1094 return addP_of_X2P(phase, y, x);
duke@435 1095 }
duke@435 1096 break;
duke@435 1097 }
duke@435 1098 return NULL;
duke@435 1099 }
duke@435 1100
duke@435 1101 //------------------------------Identity---------------------------------------
duke@435 1102 Node *CastX2PNode::Identity( PhaseTransform *phase ) {
duke@435 1103 if (in(1)->Opcode() == Op_CastP2X) return in(1)->in(1);
duke@435 1104 return this;
duke@435 1105 }
duke@435 1106
duke@435 1107 //=============================================================================
duke@435 1108 //------------------------------Value------------------------------------------
duke@435 1109 const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
duke@435 1110 const Type* t = phase->type(in(1));
duke@435 1111 if (t->base() == Type::RawPtr && t->singleton()) {
duke@435 1112 uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
duke@435 1113 return TypeX::make(bits);
duke@435 1114 }
duke@435 1115 return CastP2XNode::bottom_type();
duke@435 1116 }
duke@435 1117
duke@435 1118 Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1119 return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
duke@435 1120 }
duke@435 1121
duke@435 1122 //------------------------------Identity---------------------------------------
duke@435 1123 Node *CastP2XNode::Identity( PhaseTransform *phase ) {
duke@435 1124 if (in(1)->Opcode() == Op_CastX2P) return in(1)->in(1);
duke@435 1125 return this;
duke@435 1126 }
duke@435 1127
duke@435 1128
duke@435 1129 //=============================================================================
duke@435 1130 //------------------------------Identity---------------------------------------
duke@435 1131 // Remove redundant roundings
duke@435 1132 Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
duke@435 1133 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
duke@435 1134 // Do not round constants
duke@435 1135 if (phase->type(in(1))->base() == Type::FloatCon) return in(1);
duke@435 1136 int op = in(1)->Opcode();
duke@435 1137 // Redundant rounding
duke@435 1138 if( op == Op_RoundFloat ) return in(1);
duke@435 1139 // Already rounded
duke@435 1140 if( op == Op_Parm ) return in(1);
duke@435 1141 if( op == Op_LoadF ) return in(1);
duke@435 1142 return this;
duke@435 1143 }
duke@435 1144
duke@435 1145 //------------------------------Value------------------------------------------
duke@435 1146 const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
duke@435 1147 return phase->type( in(1) );
duke@435 1148 }
duke@435 1149
duke@435 1150 //=============================================================================
duke@435 1151 //------------------------------Identity---------------------------------------
duke@435 1152 // Remove redundant roundings. Incoming arguments are already rounded.
duke@435 1153 Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
duke@435 1154 assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
duke@435 1155 // Do not round constants
duke@435 1156 if (phase->type(in(1))->base() == Type::DoubleCon) return in(1);
duke@435 1157 int op = in(1)->Opcode();
duke@435 1158 // Redundant rounding
duke@435 1159 if( op == Op_RoundDouble ) return in(1);
duke@435 1160 // Already rounded
duke@435 1161 if( op == Op_Parm ) return in(1);
duke@435 1162 if( op == Op_LoadD ) return in(1);
duke@435 1163 if( op == Op_ConvF2D ) return in(1);
duke@435 1164 if( op == Op_ConvI2D ) return in(1);
duke@435 1165 return this;
duke@435 1166 }
duke@435 1167
duke@435 1168 //------------------------------Value------------------------------------------
duke@435 1169 const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
duke@435 1170 return phase->type( in(1) );
duke@435 1171 }
duke@435 1172
duke@435 1173
duke@435 1174 //=============================================================================
duke@435 1175 // Do not allow value-numbering
duke@435 1176 uint Opaque1Node::hash() const { return NO_HASH; }
duke@435 1177 uint Opaque1Node::cmp( const Node &n ) const {
duke@435 1178 return (&n == this); // Always fail except on self
duke@435 1179 }
duke@435 1180
duke@435 1181 //------------------------------Identity---------------------------------------
duke@435 1182 // If _major_progress, then more loop optimizations follow. Do NOT remove
duke@435 1183 // the opaque Node until no more loop ops can happen. Note the timing of
duke@435 1184 // _major_progress; it's set in the major loop optimizations THEN comes the
duke@435 1185 // call to IterGVN and any chance of hitting this code. Hence there's no
duke@435 1186 // phase-ordering problem with stripping Opaque1 in IGVN followed by some
duke@435 1187 // more loop optimizations that require it.
duke@435 1188 Node *Opaque1Node::Identity( PhaseTransform *phase ) {
duke@435 1189 return phase->C->major_progress() ? this : in(1);
duke@435 1190 }
duke@435 1191
duke@435 1192 //=============================================================================
duke@435 1193 // A node to prevent unwanted optimizations. Allows constant folding. Stops
duke@435 1194 // value-numbering, most Ideal calls or Identity functions. This Node is
duke@435 1195 // specifically designed to prevent the pre-increment value of a loop trip
duke@435 1196 // counter from being live out of the bottom of the loop (hence causing the
duke@435 1197 // pre- and post-increment values both being live and thus requiring an extra
duke@435 1198 // temp register and an extra move). If we "accidentally" optimize through
duke@435 1199 // this kind of a Node, we'll get slightly pessimal, but correct, code. Thus
duke@435 1200 // it's OK to be slightly sloppy on optimizations here.
duke@435 1201
duke@435 1202 // Do not allow value-numbering
duke@435 1203 uint Opaque2Node::hash() const { return NO_HASH; }
duke@435 1204 uint Opaque2Node::cmp( const Node &n ) const {
duke@435 1205 return (&n == this); // Always fail except on self
duke@435 1206 }
duke@435 1207
duke@435 1208
duke@435 1209 //------------------------------Value------------------------------------------
duke@435 1210 const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
duke@435 1211 const Type *t = phase->type( in(1) );
duke@435 1212 if( t == Type::TOP ) return Type::TOP;
duke@435 1213 const TypeLong *tl = t->is_long();
duke@435 1214 if( !tl->is_con() ) return bottom_type();
duke@435 1215 JavaValue v;
duke@435 1216 v.set_jlong(tl->get_con());
duke@435 1217 return TypeD::make( v.get_jdouble() );
duke@435 1218 }
duke@435 1219
duke@435 1220 //------------------------------Value------------------------------------------
duke@435 1221 const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
duke@435 1222 const Type *t = phase->type( in(1) );
duke@435 1223 if( t == Type::TOP ) return Type::TOP;
duke@435 1224 const TypeInt *ti = t->is_int();
duke@435 1225 if( !ti->is_con() ) return bottom_type();
duke@435 1226 JavaValue v;
duke@435 1227 v.set_jint(ti->get_con());
duke@435 1228 return TypeF::make( v.get_jfloat() );
duke@435 1229 }
duke@435 1230
duke@435 1231 //------------------------------Value------------------------------------------
duke@435 1232 const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
duke@435 1233 const Type *t = phase->type( in(1) );
duke@435 1234 if( t == Type::TOP ) return Type::TOP;
duke@435 1235 if( t == Type::FLOAT ) return TypeInt::INT;
duke@435 1236 const TypeF *tf = t->is_float_constant();
duke@435 1237 JavaValue v;
duke@435 1238 v.set_jfloat(tf->getf());
duke@435 1239 return TypeInt::make( v.get_jint() );
duke@435 1240 }
duke@435 1241
duke@435 1242 //------------------------------Value------------------------------------------
duke@435 1243 const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
duke@435 1244 const Type *t = phase->type( in(1) );
duke@435 1245 if( t == Type::TOP ) return Type::TOP;
duke@435 1246 if( t == Type::DOUBLE ) return TypeLong::LONG;
duke@435 1247 const TypeD *td = t->is_double_constant();
duke@435 1248 JavaValue v;
duke@435 1249 v.set_jdouble(td->getd());
duke@435 1250 return TypeLong::make( v.get_jlong() );
duke@435 1251 }

mercurial