src/share/vm/opto/output.cpp

Tue, 24 Jun 2008 10:43:29 -0700

author
kvn
date
Tue, 24 Jun 2008 10:43:29 -0700
changeset 656
1e026f8da827
parent 598
885ed790ecf0
child 631
d1605aabd0a1
child 657
2a1a77d3458f
permissions
-rw-r--r--

6710487: More than half of JDI Regression tests hang with COOPs in -Xcomp mode
Summary: Remove DecodeNNode::decode() and EncodePNode::encode() methods.
Reviewed-by: rasbold, never

duke@435 1 /*
duke@435 2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_output.cpp.incl"
duke@435 27
duke@435 28 extern uint size_java_to_interp();
duke@435 29 extern uint reloc_java_to_interp();
duke@435 30 extern uint size_exception_handler();
duke@435 31 extern uint size_deopt_handler();
duke@435 32
duke@435 33 #ifndef PRODUCT
duke@435 34 #define DEBUG_ARG(x) , x
duke@435 35 #else
duke@435 36 #define DEBUG_ARG(x)
duke@435 37 #endif
duke@435 38
duke@435 39 extern int emit_exception_handler(CodeBuffer &cbuf);
duke@435 40 extern int emit_deopt_handler(CodeBuffer &cbuf);
duke@435 41
duke@435 42 //------------------------------Output-----------------------------------------
duke@435 43 // Convert Nodes to instruction bits and pass off to the VM
duke@435 44 void Compile::Output() {
duke@435 45 // RootNode goes
duke@435 46 assert( _cfg->_broot->_nodes.size() == 0, "" );
duke@435 47
duke@435 48 // Initialize the space for the BufferBlob used to find and verify
duke@435 49 // instruction size in MachNode::emit_size()
duke@435 50 init_scratch_buffer_blob();
kvn@598 51 if (failing()) return; // Out of memory
duke@435 52
duke@435 53 // Make sure I can find the Start Node
duke@435 54 Block_Array& bbs = _cfg->_bbs;
duke@435 55 Block *entry = _cfg->_blocks[1];
duke@435 56 Block *broot = _cfg->_broot;
duke@435 57
duke@435 58 const StartNode *start = entry->_nodes[0]->as_Start();
duke@435 59
duke@435 60 // Replace StartNode with prolog
duke@435 61 MachPrologNode *prolog = new (this) MachPrologNode();
duke@435 62 entry->_nodes.map( 0, prolog );
duke@435 63 bbs.map( prolog->_idx, entry );
duke@435 64 bbs.map( start->_idx, NULL ); // start is no longer in any block
duke@435 65
duke@435 66 // Virtual methods need an unverified entry point
duke@435 67
duke@435 68 if( is_osr_compilation() ) {
duke@435 69 if( PoisonOSREntry ) {
duke@435 70 // TODO: Should use a ShouldNotReachHereNode...
duke@435 71 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
duke@435 72 }
duke@435 73 } else {
duke@435 74 if( _method && !_method->flags().is_static() ) {
duke@435 75 // Insert unvalidated entry point
duke@435 76 _cfg->insert( broot, 0, new (this) MachUEPNode() );
duke@435 77 }
duke@435 78
duke@435 79 }
duke@435 80
duke@435 81
duke@435 82 // Break before main entry point
duke@435 83 if( (_method && _method->break_at_execute())
duke@435 84 #ifndef PRODUCT
duke@435 85 ||(OptoBreakpoint && is_method_compilation())
duke@435 86 ||(OptoBreakpointOSR && is_osr_compilation())
duke@435 87 ||(OptoBreakpointC2R && !_method)
duke@435 88 #endif
duke@435 89 ) {
duke@435 90 // checking for _method means that OptoBreakpoint does not apply to
duke@435 91 // runtime stubs or frame converters
duke@435 92 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
duke@435 93 }
duke@435 94
duke@435 95 // Insert epilogs before every return
duke@435 96 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 97 Block *b = _cfg->_blocks[i];
duke@435 98 if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
duke@435 99 Node *m = b->end();
duke@435 100 if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
duke@435 101 MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
duke@435 102 b->add_inst( epilog );
duke@435 103 bbs.map(epilog->_idx, b);
duke@435 104 //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
duke@435 105 }
duke@435 106 }
duke@435 107 }
duke@435 108
duke@435 109 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 110 if ( ZapDeadCompiledLocals ) Insert_zap_nodes();
duke@435 111 # endif
duke@435 112
duke@435 113 ScheduleAndBundle();
duke@435 114
duke@435 115 #ifndef PRODUCT
duke@435 116 if (trace_opto_output()) {
duke@435 117 tty->print("\n---- After ScheduleAndBundle ----\n");
duke@435 118 for (uint i = 0; i < _cfg->_num_blocks; i++) {
duke@435 119 tty->print("\nBB#%03d:\n", i);
duke@435 120 Block *bb = _cfg->_blocks[i];
duke@435 121 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 122 Node *n = bb->_nodes[j];
duke@435 123 OptoReg::Name reg = _regalloc->get_reg_first(n);
duke@435 124 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
duke@435 125 n->dump();
duke@435 126 }
duke@435 127 }
duke@435 128 }
duke@435 129 #endif
duke@435 130
duke@435 131 if (failing()) return;
duke@435 132
duke@435 133 BuildOopMaps();
duke@435 134
duke@435 135 if (failing()) return;
duke@435 136
duke@435 137 Fill_buffer();
duke@435 138 }
duke@435 139
duke@435 140 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
duke@435 141 // Determine if we need to generate a stack overflow check.
duke@435 142 // Do it if the method is not a stub function and
duke@435 143 // has java calls or has frame size > vm_page_size/8.
duke@435 144 return (stub_function() == NULL &&
duke@435 145 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
duke@435 146 }
duke@435 147
duke@435 148 bool Compile::need_register_stack_bang() const {
duke@435 149 // Determine if we need to generate a register stack overflow check.
duke@435 150 // This is only used on architectures which have split register
duke@435 151 // and memory stacks (ie. IA64).
duke@435 152 // Bang if the method is not a stub function and has java calls
duke@435 153 return (stub_function() == NULL && has_java_calls());
duke@435 154 }
duke@435 155
duke@435 156 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 157
duke@435 158
duke@435 159 // In order to catch compiler oop-map bugs, we have implemented
duke@435 160 // a debugging mode called ZapDeadCompilerLocals.
duke@435 161 // This mode causes the compiler to insert a call to a runtime routine,
duke@435 162 // "zap_dead_locals", right before each place in compiled code
duke@435 163 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
duke@435 164 // The runtime routine checks that locations mapped as oops are really
duke@435 165 // oops, that locations mapped as values do not look like oops,
duke@435 166 // and that locations mapped as dead are not used later
duke@435 167 // (by zapping them to an invalid address).
duke@435 168
duke@435 169 int Compile::_CompiledZap_count = 0;
duke@435 170
duke@435 171 void Compile::Insert_zap_nodes() {
duke@435 172 bool skip = false;
duke@435 173
duke@435 174
duke@435 175 // Dink with static counts because code code without the extra
duke@435 176 // runtime calls is MUCH faster for debugging purposes
duke@435 177
duke@435 178 if ( CompileZapFirst == 0 ) ; // nothing special
duke@435 179 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
duke@435 180 else if ( CompileZapFirst == CompiledZap_count() )
duke@435 181 warning("starting zap compilation after skipping");
duke@435 182
duke@435 183 if ( CompileZapLast == -1 ) ; // nothing special
duke@435 184 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
duke@435 185 else if ( CompileZapLast == CompiledZap_count() )
duke@435 186 warning("about to compile last zap");
duke@435 187
duke@435 188 ++_CompiledZap_count; // counts skipped zaps, too
duke@435 189
duke@435 190 if ( skip ) return;
duke@435 191
duke@435 192
duke@435 193 if ( _method == NULL )
duke@435 194 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
duke@435 195
duke@435 196 // Insert call to zap runtime stub before every node with an oop map
duke@435 197 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 198 Block *b = _cfg->_blocks[i];
duke@435 199 for ( uint j = 0; j < b->_nodes.size(); ++j ) {
duke@435 200 Node *n = b->_nodes[j];
duke@435 201
duke@435 202 // Determining if we should insert a zap-a-lot node in output.
duke@435 203 // We do that for all nodes that has oopmap info, except for calls
duke@435 204 // to allocation. Calls to allocation passes in the old top-of-eden pointer
duke@435 205 // and expect the C code to reset it. Hence, there can be no safepoints between
duke@435 206 // the inlined-allocation and the call to new_Java, etc.
duke@435 207 // We also cannot zap monitor calls, as they must hold the microlock
duke@435 208 // during the call to Zap, which also wants to grab the microlock.
duke@435 209 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
duke@435 210 if ( insert ) { // it is MachSafePoint
duke@435 211 if ( !n->is_MachCall() ) {
duke@435 212 insert = false;
duke@435 213 } else if ( n->is_MachCall() ) {
duke@435 214 MachCallNode* call = n->as_MachCall();
duke@435 215 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
duke@435 216 call->entry_point() == OptoRuntime::new_array_Java() ||
duke@435 217 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
duke@435 218 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
duke@435 219 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
duke@435 220 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
duke@435 221 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
duke@435 222 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
duke@435 223 ) {
duke@435 224 insert = false;
duke@435 225 }
duke@435 226 }
duke@435 227 if (insert) {
duke@435 228 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
duke@435 229 b->_nodes.insert( j, zap );
duke@435 230 _cfg->_bbs.map( zap->_idx, b );
duke@435 231 ++j;
duke@435 232 }
duke@435 233 }
duke@435 234 }
duke@435 235 }
duke@435 236 }
duke@435 237
duke@435 238
duke@435 239 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
duke@435 240 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
duke@435 241 CallStaticJavaNode* ideal_node =
duke@435 242 new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
duke@435 243 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
duke@435 244 "call zap dead locals stub", 0, TypePtr::BOTTOM);
duke@435 245 // We need to copy the OopMap from the site we're zapping at.
duke@435 246 // We have to make a copy, because the zap site might not be
duke@435 247 // a call site, and zap_dead is a call site.
duke@435 248 OopMap* clone = node_to_check->oop_map()->deep_copy();
duke@435 249
duke@435 250 // Add the cloned OopMap to the zap node
duke@435 251 ideal_node->set_oop_map(clone);
duke@435 252 return _matcher->match_sfpt(ideal_node);
duke@435 253 }
duke@435 254
duke@435 255 //------------------------------is_node_getting_a_safepoint--------------------
duke@435 256 bool Compile::is_node_getting_a_safepoint( Node* n) {
duke@435 257 // This code duplicates the logic prior to the call of add_safepoint
duke@435 258 // below in this file.
duke@435 259 if( n->is_MachSafePoint() ) return true;
duke@435 260 return false;
duke@435 261 }
duke@435 262
duke@435 263 # endif // ENABLE_ZAP_DEAD_LOCALS
duke@435 264
duke@435 265 //------------------------------compute_loop_first_inst_sizes------------------
duke@435 266 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
duke@435 267 // of a loop. When aligning a loop we need to provide enough instructions
duke@435 268 // in cpu's fetch buffer to feed decoders. The loop alignment could be
duke@435 269 // avoided if we have enough instructions in fetch buffer at the head of a loop.
duke@435 270 // By default, the size is set to 999999 by Block's constructor so that
duke@435 271 // a loop will be aligned if the size is not reset here.
duke@435 272 //
duke@435 273 // Note: Mach instructions could contain several HW instructions
duke@435 274 // so the size is estimated only.
duke@435 275 //
duke@435 276 void Compile::compute_loop_first_inst_sizes() {
duke@435 277 // The next condition is used to gate the loop alignment optimization.
duke@435 278 // Don't aligned a loop if there are enough instructions at the head of a loop
duke@435 279 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
duke@435 280 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
duke@435 281 // equal to 11 bytes which is the largest address NOP instruction.
duke@435 282 if( MaxLoopPad < OptoLoopAlignment-1 ) {
duke@435 283 uint last_block = _cfg->_num_blocks-1;
duke@435 284 for( uint i=1; i <= last_block; i++ ) {
duke@435 285 Block *b = _cfg->_blocks[i];
duke@435 286 // Check the first loop's block which requires an alignment.
duke@435 287 if( b->head()->is_Loop() &&
duke@435 288 b->code_alignment() > (uint)relocInfo::addr_unit() ) {
duke@435 289 uint sum_size = 0;
duke@435 290 uint inst_cnt = NumberOfLoopInstrToAlign;
duke@435 291 inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
duke@435 292 _regalloc);
duke@435 293 // Check the next fallthrough block if first loop's block does not have
duke@435 294 // enough instructions.
duke@435 295 if( inst_cnt > 0 && i < last_block ) {
duke@435 296 // First, check if the first loop's block contains whole loop.
duke@435 297 // LoopNode::LoopBackControl == 2.
duke@435 298 Block *bx = _cfg->_bbs[b->pred(2)->_idx];
duke@435 299 // Skip connector blocks (with limit in case of irreducible loops).
duke@435 300 int search_limit = 16;
duke@435 301 while( bx->is_connector() && search_limit-- > 0) {
duke@435 302 bx = _cfg->_bbs[bx->pred(1)->_idx];
duke@435 303 }
duke@435 304 if( bx != b ) { // loop body is in several blocks.
duke@435 305 Block *nb = NULL;
duke@435 306 while( inst_cnt > 0 && i < last_block && nb != bx &&
duke@435 307 !_cfg->_blocks[i+1]->head()->is_Loop() ) {
duke@435 308 i++;
duke@435 309 nb = _cfg->_blocks[i];
duke@435 310 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt,
duke@435 311 _regalloc);
duke@435 312 } // while( inst_cnt > 0 && i < last_block )
duke@435 313 } // if( bx != b )
duke@435 314 } // if( inst_cnt > 0 && i < last_block )
duke@435 315 b->set_first_inst_size(sum_size);
duke@435 316 } // f( b->head()->is_Loop() )
duke@435 317 } // for( i <= last_block )
duke@435 318 } // if( MaxLoopPad < OptoLoopAlignment-1 )
duke@435 319 }
duke@435 320
duke@435 321 //----------------------Shorten_branches---------------------------------------
duke@435 322 // The architecture description provides short branch variants for some long
duke@435 323 // branch instructions. Replace eligible long branches with short branches.
duke@435 324 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
duke@435 325
duke@435 326 // fill in the nop array for bundling computations
duke@435 327 MachNode *_nop_list[Bundle::_nop_count];
duke@435 328 Bundle::initialize_nops(_nop_list, this);
duke@435 329
duke@435 330 // ------------------
duke@435 331 // Compute size of each block, method size, and relocation information size
duke@435 332 uint *jmp_end = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
duke@435 333 uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
duke@435 334 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
duke@435 335 blk_starts[0] = 0;
duke@435 336
duke@435 337 // Initialize the sizes to 0
duke@435 338 code_size = 0; // Size in bytes of generated code
duke@435 339 stub_size = 0; // Size in bytes of all stub entries
duke@435 340 // Size in bytes of all relocation entries, including those in local stubs.
duke@435 341 // Start with 2-bytes of reloc info for the unvalidated entry point
duke@435 342 reloc_size = 1; // Number of relocation entries
duke@435 343 const_size = 0; // size of fp constants in words
duke@435 344
duke@435 345 // Make three passes. The first computes pessimistic blk_starts,
duke@435 346 // relative jmp_end, reloc_size and const_size information.
duke@435 347 // The second performs short branch substitution using the pessimistic
duke@435 348 // sizing. The third inserts nops where needed.
duke@435 349
duke@435 350 Node *nj; // tmp
duke@435 351
duke@435 352 // Step one, perform a pessimistic sizing pass.
duke@435 353 uint i;
duke@435 354 uint min_offset_from_last_call = 1; // init to a positive value
duke@435 355 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 356 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 357 Block *b = _cfg->_blocks[i];
duke@435 358
duke@435 359 // Sum all instruction sizes to compute block size
duke@435 360 uint last_inst = b->_nodes.size();
duke@435 361 uint blk_size = 0;
duke@435 362 for( uint j = 0; j<last_inst; j++ ) {
duke@435 363 nj = b->_nodes[j];
duke@435 364 uint inst_size = nj->size(_regalloc);
duke@435 365 blk_size += inst_size;
duke@435 366 // Handle machine instruction nodes
duke@435 367 if( nj->is_Mach() ) {
duke@435 368 MachNode *mach = nj->as_Mach();
duke@435 369 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
duke@435 370 reloc_size += mach->reloc();
duke@435 371 const_size += mach->const_size();
duke@435 372 if( mach->is_MachCall() ) {
duke@435 373 MachCallNode *mcall = mach->as_MachCall();
duke@435 374 // This destination address is NOT PC-relative
duke@435 375
duke@435 376 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 377
duke@435 378 if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
duke@435 379 stub_size += size_java_to_interp();
duke@435 380 reloc_size += reloc_java_to_interp();
duke@435 381 }
duke@435 382 } else if (mach->is_MachSafePoint()) {
duke@435 383 // If call/safepoint are adjacent, account for possible
duke@435 384 // nop to disambiguate the two safepoints.
duke@435 385 if (min_offset_from_last_call == 0) {
duke@435 386 blk_size += nop_size;
duke@435 387 }
duke@435 388 }
duke@435 389 }
duke@435 390 min_offset_from_last_call += inst_size;
duke@435 391 // Remember end of call offset
duke@435 392 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
duke@435 393 min_offset_from_last_call = 0;
duke@435 394 }
duke@435 395 }
duke@435 396
duke@435 397 // During short branch replacement, we store the relative (to blk_starts)
duke@435 398 // end of jump in jmp_end, rather than the absolute end of jump. This
duke@435 399 // is so that we do not need to recompute sizes of all nodes when we compute
duke@435 400 // correct blk_starts in our next sizing pass.
duke@435 401 jmp_end[i] = blk_size;
duke@435 402 DEBUG_ONLY( jmp_target[i] = 0; )
duke@435 403
duke@435 404 // When the next block starts a loop, we may insert pad NOP
duke@435 405 // instructions. Since we cannot know our future alignment,
duke@435 406 // assume the worst.
duke@435 407 if( i<_cfg->_num_blocks-1 ) {
duke@435 408 Block *nb = _cfg->_blocks[i+1];
duke@435 409 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
duke@435 410 if( max_loop_pad > 0 ) {
duke@435 411 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
duke@435 412 blk_size += max_loop_pad;
duke@435 413 }
duke@435 414 }
duke@435 415
duke@435 416 // Save block size; update total method size
duke@435 417 blk_starts[i+1] = blk_starts[i]+blk_size;
duke@435 418 }
duke@435 419
duke@435 420 // Step two, replace eligible long jumps.
duke@435 421
duke@435 422 // Note: this will only get the long branches within short branch
duke@435 423 // range. Another pass might detect more branches that became
duke@435 424 // candidates because the shortening in the first pass exposed
duke@435 425 // more opportunities. Unfortunately, this would require
duke@435 426 // recomputing the starting and ending positions for the blocks
duke@435 427 for( i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 428 Block *b = _cfg->_blocks[i];
duke@435 429
duke@435 430 int j;
duke@435 431 // Find the branch; ignore trailing NOPs.
duke@435 432 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 433 nj = b->_nodes[j];
duke@435 434 if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 435 break;
duke@435 436 }
duke@435 437
duke@435 438 if (j >= 0) {
duke@435 439 if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
duke@435 440 MachNode *mach = nj->as_Mach();
duke@435 441 // This requires the TRUE branch target be in succs[0]
duke@435 442 uint bnum = b->non_connector_successor(0)->_pre_order;
duke@435 443 uintptr_t target = blk_starts[bnum];
duke@435 444 if( mach->is_pc_relative() ) {
duke@435 445 int offset = target-(blk_starts[i] + jmp_end[i]);
duke@435 446 if (_matcher->is_short_branch_offset(offset)) {
duke@435 447 // We've got a winner. Replace this branch.
duke@435 448 MachNode *replacement = mach->short_branch_version(this);
duke@435 449 b->_nodes.map(j, replacement);
duke@435 450
duke@435 451 // Update the jmp_end size to save time in our
duke@435 452 // next pass.
duke@435 453 jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
duke@435 454 DEBUG_ONLY( jmp_target[i] = bnum; );
duke@435 455 }
duke@435 456 } else {
duke@435 457 #ifndef PRODUCT
duke@435 458 mach->dump(3);
duke@435 459 #endif
duke@435 460 Unimplemented();
duke@435 461 }
duke@435 462 }
duke@435 463 }
duke@435 464 }
duke@435 465
duke@435 466 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
duke@435 467 // of a loop. It is used to determine the padding for loop alignment.
duke@435 468 compute_loop_first_inst_sizes();
duke@435 469
duke@435 470 // Step 3, compute the offsets of all the labels
duke@435 471 uint last_call_adr = max_uint;
duke@435 472 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 473 // copy the offset of the beginning to the corresponding label
duke@435 474 assert(labels[i].is_unused(), "cannot patch at this point");
duke@435 475 labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
duke@435 476
duke@435 477 // insert padding for any instructions that need it
duke@435 478 Block *b = _cfg->_blocks[i];
duke@435 479 uint last_inst = b->_nodes.size();
duke@435 480 uint adr = blk_starts[i];
duke@435 481 for( uint j = 0; j<last_inst; j++ ) {
duke@435 482 nj = b->_nodes[j];
duke@435 483 if( nj->is_Mach() ) {
duke@435 484 int padding = nj->as_Mach()->compute_padding(adr);
duke@435 485 // If call/safepoint are adjacent insert a nop (5010568)
duke@435 486 if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
duke@435 487 adr == last_call_adr ) {
duke@435 488 padding = nop_size;
duke@435 489 }
duke@435 490 if(padding > 0) {
duke@435 491 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
duke@435 492 int nops_cnt = padding / nop_size;
duke@435 493 MachNode *nop = new (this) MachNopNode(nops_cnt);
duke@435 494 b->_nodes.insert(j++, nop);
duke@435 495 _cfg->_bbs.map( nop->_idx, b );
duke@435 496 adr += padding;
duke@435 497 last_inst++;
duke@435 498 }
duke@435 499 }
duke@435 500 adr += nj->size(_regalloc);
duke@435 501
duke@435 502 // Remember end of call offset
duke@435 503 if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
duke@435 504 last_call_adr = adr;
duke@435 505 }
duke@435 506 }
duke@435 507
duke@435 508 if ( i != _cfg->_num_blocks-1) {
duke@435 509 // Get the size of the block
duke@435 510 uint blk_size = adr - blk_starts[i];
duke@435 511
duke@435 512 // When the next block starts a loop, we may insert pad NOP
duke@435 513 // instructions.
duke@435 514 Block *nb = _cfg->_blocks[i+1];
duke@435 515 int current_offset = blk_starts[i] + blk_size;
duke@435 516 current_offset += nb->alignment_padding(current_offset);
duke@435 517 // Save block size; update total method size
duke@435 518 blk_starts[i+1] = current_offset;
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 #ifdef ASSERT
duke@435 523 for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
duke@435 524 if( jmp_target[i] != 0 ) {
duke@435 525 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
duke@435 526 if (!_matcher->is_short_branch_offset(offset)) {
duke@435 527 tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
duke@435 528 }
duke@435 529 assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
duke@435 530 }
duke@435 531 }
duke@435 532 #endif
duke@435 533
duke@435 534 // ------------------
duke@435 535 // Compute size for code buffer
duke@435 536 code_size = blk_starts[i-1] + jmp_end[i-1];
duke@435 537
duke@435 538 // Relocation records
duke@435 539 reloc_size += 1; // Relo entry for exception handler
duke@435 540
duke@435 541 // Adjust reloc_size to number of record of relocation info
duke@435 542 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
duke@435 543 // a relocation index.
duke@435 544 // The CodeBuffer will expand the locs array if this estimate is too low.
duke@435 545 reloc_size *= 10 / sizeof(relocInfo);
duke@435 546
duke@435 547 // Adjust const_size to number of bytes
duke@435 548 const_size *= 2*jintSize; // both float and double take two words per entry
duke@435 549
duke@435 550 }
duke@435 551
duke@435 552 //------------------------------FillLocArray-----------------------------------
duke@435 553 // Create a bit of debug info and append it to the array. The mapping is from
duke@435 554 // Java local or expression stack to constant, register or stack-slot. For
duke@435 555 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
duke@435 556 // entry has been taken care of and caller should skip it).
duke@435 557 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
duke@435 558 // This should never have accepted Bad before
duke@435 559 assert(OptoReg::is_valid(regnum), "location must be valid");
duke@435 560 return (OptoReg::is_reg(regnum))
duke@435 561 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
duke@435 562 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
duke@435 563 }
duke@435 564
kvn@498 565
kvn@498 566 ObjectValue*
kvn@498 567 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
kvn@498 568 for (int i = 0; i < objs->length(); i++) {
kvn@498 569 assert(objs->at(i)->is_object(), "corrupt object cache");
kvn@498 570 ObjectValue* sv = (ObjectValue*) objs->at(i);
kvn@498 571 if (sv->id() == id) {
kvn@498 572 return sv;
kvn@498 573 }
kvn@498 574 }
kvn@498 575 // Otherwise..
kvn@498 576 return NULL;
kvn@498 577 }
kvn@498 578
kvn@498 579 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
kvn@498 580 ObjectValue* sv ) {
kvn@498 581 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
kvn@498 582 objs->append(sv);
kvn@498 583 }
kvn@498 584
kvn@498 585
kvn@498 586 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
kvn@498 587 GrowableArray<ScopeValue*> *array,
kvn@498 588 GrowableArray<ScopeValue*> *objs ) {
duke@435 589 assert( local, "use _top instead of null" );
duke@435 590 if (array->length() != idx) {
duke@435 591 assert(array->length() == idx + 1, "Unexpected array count");
duke@435 592 // Old functionality:
duke@435 593 // return
duke@435 594 // New functionality:
duke@435 595 // Assert if the local is not top. In product mode let the new node
duke@435 596 // override the old entry.
duke@435 597 assert(local == top(), "LocArray collision");
duke@435 598 if (local == top()) {
duke@435 599 return;
duke@435 600 }
duke@435 601 array->pop();
duke@435 602 }
duke@435 603 const Type *t = local->bottom_type();
duke@435 604
kvn@498 605 // Is it a safepoint scalar object node?
kvn@498 606 if (local->is_SafePointScalarObject()) {
kvn@498 607 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
kvn@498 608
kvn@498 609 ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 610 if (sv == NULL) {
kvn@498 611 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 612 assert(cik->is_instance_klass() ||
kvn@498 613 cik->is_array_klass(), "Not supported allocation.");
kvn@498 614 sv = new ObjectValue(spobj->_idx,
kvn@498 615 new ConstantOopWriteValue(cik->encoding()));
kvn@498 616 Compile::set_sv_for_object_node(objs, sv);
kvn@498 617
kvn@498 618 uint first_ind = spobj->first_index();
kvn@498 619 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 620 Node* fld_node = sfpt->in(first_ind+i);
kvn@498 621 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
kvn@498 622 }
kvn@498 623 }
kvn@498 624 array->append(sv);
kvn@498 625 return;
kvn@498 626 }
kvn@498 627
duke@435 628 // Grab the register number for the local
duke@435 629 OptoReg::Name regnum = _regalloc->get_reg_first(local);
duke@435 630 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
duke@435 631 // Record the double as two float registers.
duke@435 632 // The register mask for such a value always specifies two adjacent
duke@435 633 // float registers, with the lower register number even.
duke@435 634 // Normally, the allocation of high and low words to these registers
duke@435 635 // is irrelevant, because nearly all operations on register pairs
duke@435 636 // (e.g., StoreD) treat them as a single unit.
duke@435 637 // Here, we assume in addition that the words in these two registers
duke@435 638 // stored "naturally" (by operations like StoreD and double stores
duke@435 639 // within the interpreter) such that the lower-numbered register
duke@435 640 // is written to the lower memory address. This may seem like
duke@435 641 // a machine dependency, but it is not--it is a requirement on
duke@435 642 // the author of the <arch>.ad file to ensure that, for every
duke@435 643 // even/odd double-register pair to which a double may be allocated,
duke@435 644 // the word in the even single-register is stored to the first
duke@435 645 // memory word. (Note that register numbers are completely
duke@435 646 // arbitrary, and are not tied to any machine-level encodings.)
duke@435 647 #ifdef _LP64
duke@435 648 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
duke@435 649 array->append(new ConstantIntValue(0));
duke@435 650 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
duke@435 651 } else if ( t->base() == Type::Long ) {
duke@435 652 array->append(new ConstantIntValue(0));
duke@435 653 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 654 } else if ( t->base() == Type::RawPtr ) {
duke@435 655 // jsr/ret return address which must be restored into a the full
duke@435 656 // width 64-bit stack slot.
duke@435 657 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 658 }
duke@435 659 #else //_LP64
duke@435 660 #ifdef SPARC
duke@435 661 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
duke@435 662 // For SPARC we have to swap high and low words for
duke@435 663 // long values stored in a single-register (g0-g7).
duke@435 664 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 665 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 666 } else
duke@435 667 #endif //SPARC
duke@435 668 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
duke@435 669 // Repack the double/long as two jints.
duke@435 670 // The convention the interpreter uses is that the second local
duke@435 671 // holds the first raw word of the native double representation.
duke@435 672 // This is actually reasonable, since locals and stack arrays
duke@435 673 // grow downwards in all implementations.
duke@435 674 // (If, on some machine, the interpreter's Java locals or stack
duke@435 675 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 676 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 677 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 678 }
duke@435 679 #endif //_LP64
duke@435 680 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
duke@435 681 OptoReg::is_reg(regnum) ) {
duke@435 682 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
duke@435 683 ? Location::float_in_dbl : Location::normal ));
duke@435 684 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
duke@435 685 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
duke@435 686 ? Location::int_in_long : Location::normal ));
duke@435 687 } else {
duke@435 688 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
duke@435 689 }
duke@435 690 return;
duke@435 691 }
duke@435 692
duke@435 693 // No register. It must be constant data.
duke@435 694 switch (t->base()) {
duke@435 695 case Type::Half: // Second half of a double
duke@435 696 ShouldNotReachHere(); // Caller should skip 2nd halves
duke@435 697 break;
duke@435 698 case Type::AnyPtr:
duke@435 699 array->append(new ConstantOopWriteValue(NULL));
duke@435 700 break;
duke@435 701 case Type::AryPtr:
duke@435 702 case Type::InstPtr:
duke@435 703 case Type::KlassPtr: // fall through
duke@435 704 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
duke@435 705 break;
duke@435 706 case Type::Int:
duke@435 707 array->append(new ConstantIntValue(t->is_int()->get_con()));
duke@435 708 break;
duke@435 709 case Type::RawPtr:
duke@435 710 // A return address (T_ADDRESS).
duke@435 711 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
duke@435 712 #ifdef _LP64
duke@435 713 // Must be restored to the full-width 64-bit stack slot.
duke@435 714 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
duke@435 715 #else
duke@435 716 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
duke@435 717 #endif
duke@435 718 break;
duke@435 719 case Type::FloatCon: {
duke@435 720 float f = t->is_float_constant()->getf();
duke@435 721 array->append(new ConstantIntValue(jint_cast(f)));
duke@435 722 break;
duke@435 723 }
duke@435 724 case Type::DoubleCon: {
duke@435 725 jdouble d = t->is_double_constant()->getd();
duke@435 726 #ifdef _LP64
duke@435 727 array->append(new ConstantIntValue(0));
duke@435 728 array->append(new ConstantDoubleValue(d));
duke@435 729 #else
duke@435 730 // Repack the double as two jints.
duke@435 731 // The convention the interpreter uses is that the second local
duke@435 732 // holds the first raw word of the native double representation.
duke@435 733 // This is actually reasonable, since locals and stack arrays
duke@435 734 // grow downwards in all implementations.
duke@435 735 // (If, on some machine, the interpreter's Java locals or stack
duke@435 736 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 737 jint *dp = (jint*)&d;
duke@435 738 array->append(new ConstantIntValue(dp[1]));
duke@435 739 array->append(new ConstantIntValue(dp[0]));
duke@435 740 #endif
duke@435 741 break;
duke@435 742 }
duke@435 743 case Type::Long: {
duke@435 744 jlong d = t->is_long()->get_con();
duke@435 745 #ifdef _LP64
duke@435 746 array->append(new ConstantIntValue(0));
duke@435 747 array->append(new ConstantLongValue(d));
duke@435 748 #else
duke@435 749 // Repack the long as two jints.
duke@435 750 // The convention the interpreter uses is that the second local
duke@435 751 // holds the first raw word of the native double representation.
duke@435 752 // This is actually reasonable, since locals and stack arrays
duke@435 753 // grow downwards in all implementations.
duke@435 754 // (If, on some machine, the interpreter's Java locals or stack
duke@435 755 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 756 jint *dp = (jint*)&d;
duke@435 757 array->append(new ConstantIntValue(dp[1]));
duke@435 758 array->append(new ConstantIntValue(dp[0]));
duke@435 759 #endif
duke@435 760 break;
duke@435 761 }
duke@435 762 case Type::Top: // Add an illegal value here
duke@435 763 array->append(new LocationValue(Location()));
duke@435 764 break;
duke@435 765 default:
duke@435 766 ShouldNotReachHere();
duke@435 767 break;
duke@435 768 }
duke@435 769 }
duke@435 770
duke@435 771 // Determine if this node starts a bundle
duke@435 772 bool Compile::starts_bundle(const Node *n) const {
duke@435 773 return (_node_bundling_limit > n->_idx &&
duke@435 774 _node_bundling_base[n->_idx].starts_bundle());
duke@435 775 }
duke@435 776
duke@435 777 //--------------------------Process_OopMap_Node--------------------------------
duke@435 778 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
duke@435 779
duke@435 780 // Handle special safepoint nodes for synchronization
duke@435 781 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 782 MachCallNode *mcall;
duke@435 783
duke@435 784 #ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 785 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
duke@435 786 #endif
duke@435 787
duke@435 788 int safepoint_pc_offset = current_offset;
duke@435 789
duke@435 790 // Add the safepoint in the DebugInfoRecorder
duke@435 791 if( !mach->is_MachCall() ) {
duke@435 792 mcall = NULL;
duke@435 793 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
duke@435 794 } else {
duke@435 795 mcall = mach->as_MachCall();
duke@435 796 safepoint_pc_offset += mcall->ret_addr_offset();
duke@435 797 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
duke@435 798 }
duke@435 799
duke@435 800 // Loop over the JVMState list to add scope information
duke@435 801 // Do not skip safepoints with a NULL method, they need monitor info
duke@435 802 JVMState* youngest_jvms = sfn->jvms();
duke@435 803 int max_depth = youngest_jvms->depth();
duke@435 804
kvn@498 805 // Allocate the object pool for scalar-replaced objects -- the map from
kvn@498 806 // small-integer keys (which can be recorded in the local and ostack
kvn@498 807 // arrays) to descriptions of the object state.
kvn@498 808 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
kvn@498 809
duke@435 810 // Visit scopes from oldest to youngest.
duke@435 811 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 812 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 813 int idx;
duke@435 814 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 815 // Safepoints that do not have method() set only provide oop-map and monitor info
duke@435 816 // to support GC; these do not support deoptimization.
duke@435 817 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
duke@435 818 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
duke@435 819 int num_mon = jvms->nof_monitors();
duke@435 820 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
duke@435 821 "JVMS local count must match that of the method");
duke@435 822
duke@435 823 // Add Local and Expression Stack Information
duke@435 824
duke@435 825 // Insert locals into the locarray
duke@435 826 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
duke@435 827 for( idx = 0; idx < num_locs; idx++ ) {
kvn@498 828 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
duke@435 829 }
duke@435 830
duke@435 831 // Insert expression stack entries into the exparray
duke@435 832 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
duke@435 833 for( idx = 0; idx < num_exps; idx++ ) {
kvn@498 834 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
duke@435 835 }
duke@435 836
duke@435 837 // Add in mappings of the monitors
duke@435 838 assert( !method ||
duke@435 839 !method->is_synchronized() ||
duke@435 840 method->is_native() ||
duke@435 841 num_mon > 0 ||
duke@435 842 !GenerateSynchronizationCode,
duke@435 843 "monitors must always exist for synchronized methods");
duke@435 844
duke@435 845 // Build the growable array of ScopeValues for exp stack
duke@435 846 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
duke@435 847
duke@435 848 // Loop over monitors and insert into array
duke@435 849 for(idx = 0; idx < num_mon; idx++) {
duke@435 850 // Grab the node that defines this monitor
duke@435 851 Node* box_node;
duke@435 852 Node* obj_node;
duke@435 853 box_node = sfn->monitor_box(jvms, idx);
duke@435 854 obj_node = sfn->monitor_obj(jvms, idx);
duke@435 855
duke@435 856 // Create ScopeValue for object
duke@435 857 ScopeValue *scval = NULL;
kvn@498 858
kvn@498 859 if( obj_node->is_SafePointScalarObject() ) {
kvn@498 860 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
kvn@498 861 scval = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 862 if (scval == NULL) {
kvn@498 863 const Type *t = obj_node->bottom_type();
kvn@498 864 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 865 assert(cik->is_instance_klass() ||
kvn@498 866 cik->is_array_klass(), "Not supported allocation.");
kvn@498 867 ObjectValue* sv = new ObjectValue(spobj->_idx,
kvn@498 868 new ConstantOopWriteValue(cik->encoding()));
kvn@498 869 Compile::set_sv_for_object_node(objs, sv);
kvn@498 870
kvn@498 871 uint first_ind = spobj->first_index();
kvn@498 872 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 873 Node* fld_node = sfn->in(first_ind+i);
kvn@498 874 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
kvn@498 875 }
kvn@498 876 scval = sv;
kvn@498 877 }
kvn@498 878 } else if( !obj_node->is_Con() ) {
duke@435 879 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
duke@435 880 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
duke@435 881 } else {
duke@435 882 scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
duke@435 883 }
duke@435 884
duke@435 885 OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
kvn@501 886 Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
kvn@501 887 monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
duke@435 888 }
duke@435 889
kvn@498 890 // We dump the object pool first, since deoptimization reads it in first.
kvn@498 891 debug_info()->dump_object_pool(objs);
kvn@498 892
duke@435 893 // Build first class objects to pass to scope
duke@435 894 DebugToken *locvals = debug_info()->create_scope_values(locarray);
duke@435 895 DebugToken *expvals = debug_info()->create_scope_values(exparray);
duke@435 896 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
duke@435 897
duke@435 898 // Make method available for all Safepoints
duke@435 899 ciMethod* scope_method = method ? method : _method;
duke@435 900 // Describe the scope here
duke@435 901 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
kvn@498 902 // Now we can describe the scope.
duke@435 903 debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
duke@435 904 } // End jvms loop
duke@435 905
duke@435 906 // Mark the end of the scope set.
duke@435 907 debug_info()->end_safepoint(safepoint_pc_offset);
duke@435 908 }
duke@435 909
duke@435 910
duke@435 911
duke@435 912 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
duke@435 913 class NonSafepointEmitter {
duke@435 914 Compile* C;
duke@435 915 JVMState* _pending_jvms;
duke@435 916 int _pending_offset;
duke@435 917
duke@435 918 void emit_non_safepoint();
duke@435 919
duke@435 920 public:
duke@435 921 NonSafepointEmitter(Compile* compile) {
duke@435 922 this->C = compile;
duke@435 923 _pending_jvms = NULL;
duke@435 924 _pending_offset = 0;
duke@435 925 }
duke@435 926
duke@435 927 void observe_instruction(Node* n, int pc_offset) {
duke@435 928 if (!C->debug_info()->recording_non_safepoints()) return;
duke@435 929
duke@435 930 Node_Notes* nn = C->node_notes_at(n->_idx);
duke@435 931 if (nn == NULL || nn->jvms() == NULL) return;
duke@435 932 if (_pending_jvms != NULL &&
duke@435 933 _pending_jvms->same_calls_as(nn->jvms())) {
duke@435 934 // Repeated JVMS? Stretch it up here.
duke@435 935 _pending_offset = pc_offset;
duke@435 936 } else {
duke@435 937 if (_pending_jvms != NULL &&
duke@435 938 _pending_offset < pc_offset) {
duke@435 939 emit_non_safepoint();
duke@435 940 }
duke@435 941 _pending_jvms = NULL;
duke@435 942 if (pc_offset > C->debug_info()->last_pc_offset()) {
duke@435 943 // This is the only way _pending_jvms can become non-NULL:
duke@435 944 _pending_jvms = nn->jvms();
duke@435 945 _pending_offset = pc_offset;
duke@435 946 }
duke@435 947 }
duke@435 948 }
duke@435 949
duke@435 950 // Stay out of the way of real safepoints:
duke@435 951 void observe_safepoint(JVMState* jvms, int pc_offset) {
duke@435 952 if (_pending_jvms != NULL &&
duke@435 953 !_pending_jvms->same_calls_as(jvms) &&
duke@435 954 _pending_offset < pc_offset) {
duke@435 955 emit_non_safepoint();
duke@435 956 }
duke@435 957 _pending_jvms = NULL;
duke@435 958 }
duke@435 959
duke@435 960 void flush_at_end() {
duke@435 961 if (_pending_jvms != NULL) {
duke@435 962 emit_non_safepoint();
duke@435 963 }
duke@435 964 _pending_jvms = NULL;
duke@435 965 }
duke@435 966 };
duke@435 967
duke@435 968 void NonSafepointEmitter::emit_non_safepoint() {
duke@435 969 JVMState* youngest_jvms = _pending_jvms;
duke@435 970 int pc_offset = _pending_offset;
duke@435 971
duke@435 972 // Clear it now:
duke@435 973 _pending_jvms = NULL;
duke@435 974
duke@435 975 DebugInformationRecorder* debug_info = C->debug_info();
duke@435 976 assert(debug_info->recording_non_safepoints(), "sanity");
duke@435 977
duke@435 978 debug_info->add_non_safepoint(pc_offset);
duke@435 979 int max_depth = youngest_jvms->depth();
duke@435 980
duke@435 981 // Visit scopes from oldest to youngest.
duke@435 982 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 983 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 984 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 985 debug_info->describe_scope(pc_offset, method, jvms->bci());
duke@435 986 }
duke@435 987
duke@435 988 // Mark the end of the scope set.
duke@435 989 debug_info->end_non_safepoint(pc_offset);
duke@435 990 }
duke@435 991
duke@435 992
duke@435 993
duke@435 994 // helper for Fill_buffer bailout logic
duke@435 995 static void turn_off_compiler(Compile* C) {
duke@435 996 if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
duke@435 997 // Do not turn off compilation if a single giant method has
duke@435 998 // blown the code cache size.
duke@435 999 C->record_failure("excessive request to CodeCache");
duke@435 1000 } else {
kvn@463 1001 // Let CompilerBroker disable further compilations.
duke@435 1002 C->record_failure("CodeCache is full");
duke@435 1003 }
duke@435 1004 }
duke@435 1005
duke@435 1006
duke@435 1007 //------------------------------Fill_buffer------------------------------------
duke@435 1008 void Compile::Fill_buffer() {
duke@435 1009
duke@435 1010 // Set the initially allocated size
duke@435 1011 int code_req = initial_code_capacity;
duke@435 1012 int locs_req = initial_locs_capacity;
duke@435 1013 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
duke@435 1014 int const_req = initial_const_capacity;
duke@435 1015 bool labels_not_set = true;
duke@435 1016
duke@435 1017 int pad_req = NativeCall::instruction_size;
duke@435 1018 // The extra spacing after the code is necessary on some platforms.
duke@435 1019 // Sometimes we need to patch in a jump after the last instruction,
duke@435 1020 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
duke@435 1021
duke@435 1022 uint i;
duke@435 1023 // Compute the byte offset where we can store the deopt pc.
duke@435 1024 if (fixed_slots() != 0) {
duke@435 1025 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
duke@435 1026 }
duke@435 1027
duke@435 1028 // Compute prolog code size
duke@435 1029 _method_size = 0;
duke@435 1030 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
duke@435 1031 #ifdef IA64
duke@435 1032 if (save_argument_registers()) {
duke@435 1033 // 4815101: this is a stub with implicit and unknown precision fp args.
duke@435 1034 // The usual spill mechanism can only generate stfd's in this case, which
duke@435 1035 // doesn't work if the fp reg to spill contains a single-precision denorm.
duke@435 1036 // Instead, we hack around the normal spill mechanism using stfspill's and
duke@435 1037 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
duke@435 1038 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
duke@435 1039 //
duke@435 1040 // If we ever implement 16-byte 'registers' == stack slots, we can
duke@435 1041 // get rid of this hack and have SpillCopy generate stfspill/ldffill
duke@435 1042 // instead of stfd/stfs/ldfd/ldfs.
duke@435 1043 _frame_slots += 8*(16/BytesPerInt);
duke@435 1044 }
duke@435 1045 #endif
duke@435 1046 assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
duke@435 1047
duke@435 1048 // Create an array of unused labels, one for each basic block
duke@435 1049 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
duke@435 1050
duke@435 1051 for( i=0; i <= _cfg->_num_blocks; i++ ) {
duke@435 1052 blk_labels[i].init();
duke@435 1053 }
duke@435 1054
duke@435 1055 // If this machine supports different size branch offsets, then pre-compute
duke@435 1056 // the length of the blocks
duke@435 1057 if( _matcher->is_short_branch_offset(0) ) {
duke@435 1058 Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
duke@435 1059 labels_not_set = false;
duke@435 1060 }
duke@435 1061
duke@435 1062 // nmethod and CodeBuffer count stubs & constants as part of method's code.
duke@435 1063 int exception_handler_req = size_exception_handler();
duke@435 1064 int deopt_handler_req = size_deopt_handler();
duke@435 1065 exception_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1066 deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1067 stub_req += MAX_stubs_size; // ensure per-stub margin
duke@435 1068 code_req += MAX_inst_size; // ensure per-instruction margin
duke@435 1069 if (StressCodeBuffers)
duke@435 1070 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
duke@435 1071 int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
duke@435 1072 CodeBuffer* cb = code_buffer();
duke@435 1073 cb->initialize(total_req, locs_req);
duke@435 1074
duke@435 1075 // Have we run out of code space?
duke@435 1076 if (cb->blob() == NULL) {
duke@435 1077 turn_off_compiler(this);
duke@435 1078 return;
duke@435 1079 }
duke@435 1080 // Configure the code buffer.
duke@435 1081 cb->initialize_consts_size(const_req);
duke@435 1082 cb->initialize_stubs_size(stub_req);
duke@435 1083 cb->initialize_oop_recorder(env()->oop_recorder());
duke@435 1084
duke@435 1085 // fill in the nop array for bundling computations
duke@435 1086 MachNode *_nop_list[Bundle::_nop_count];
duke@435 1087 Bundle::initialize_nops(_nop_list, this);
duke@435 1088
duke@435 1089 // Create oopmap set.
duke@435 1090 _oop_map_set = new OopMapSet();
duke@435 1091
duke@435 1092 // !!!!! This preserves old handling of oopmaps for now
duke@435 1093 debug_info()->set_oopmaps(_oop_map_set);
duke@435 1094
duke@435 1095 // Count and start of implicit null check instructions
duke@435 1096 uint inct_cnt = 0;
duke@435 1097 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
duke@435 1098
duke@435 1099 // Count and start of calls
duke@435 1100 uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
duke@435 1101
duke@435 1102 uint return_offset = 0;
duke@435 1103 MachNode *nop = new (this) MachNopNode();
duke@435 1104
duke@435 1105 int previous_offset = 0;
duke@435 1106 int current_offset = 0;
duke@435 1107 int last_call_offset = -1;
duke@435 1108
duke@435 1109 // Create an array of unused labels, one for each basic block, if printing is enabled
duke@435 1110 #ifndef PRODUCT
duke@435 1111 int *node_offsets = NULL;
duke@435 1112 uint node_offset_limit = unique();
duke@435 1113
duke@435 1114
duke@435 1115 if ( print_assembly() )
duke@435 1116 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
duke@435 1117 #endif
duke@435 1118
duke@435 1119 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
duke@435 1120
duke@435 1121 // ------------------
duke@435 1122 // Now fill in the code buffer
duke@435 1123 Node *delay_slot = NULL;
duke@435 1124
duke@435 1125 for( i=0; i < _cfg->_num_blocks; i++ ) {
duke@435 1126 Block *b = _cfg->_blocks[i];
duke@435 1127
duke@435 1128 Node *head = b->head();
duke@435 1129
duke@435 1130 // If this block needs to start aligned (i.e, can be reached other
duke@435 1131 // than by falling-thru from the previous block), then force the
duke@435 1132 // start of a new bundle.
duke@435 1133 if( Pipeline::requires_bundling() && starts_bundle(head) )
duke@435 1134 cb->flush_bundle(true);
duke@435 1135
duke@435 1136 // Define the label at the beginning of the basic block
duke@435 1137 if( labels_not_set )
duke@435 1138 MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
duke@435 1139
duke@435 1140 else
duke@435 1141 assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
duke@435 1142 "label position does not match code offset" );
duke@435 1143
duke@435 1144 uint last_inst = b->_nodes.size();
duke@435 1145
duke@435 1146 // Emit block normally, except for last instruction.
duke@435 1147 // Emit means "dump code bits into code buffer".
duke@435 1148 for( uint j = 0; j<last_inst; j++ ) {
duke@435 1149
duke@435 1150 // Get the node
duke@435 1151 Node* n = b->_nodes[j];
duke@435 1152
duke@435 1153 // See if delay slots are supported
duke@435 1154 if (valid_bundle_info(n) &&
duke@435 1155 node_bundling(n)->used_in_unconditional_delay()) {
duke@435 1156 assert(delay_slot == NULL, "no use of delay slot node");
duke@435 1157 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
duke@435 1158
duke@435 1159 delay_slot = n;
duke@435 1160 continue;
duke@435 1161 }
duke@435 1162
duke@435 1163 // If this starts a new instruction group, then flush the current one
duke@435 1164 // (but allow split bundles)
duke@435 1165 if( Pipeline::requires_bundling() && starts_bundle(n) )
duke@435 1166 cb->flush_bundle(false);
duke@435 1167
duke@435 1168 // The following logic is duplicated in the code ifdeffed for
duke@435 1169 // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file. It
duke@435 1170 // should be factored out. Or maybe dispersed to the nodes?
duke@435 1171
duke@435 1172 // Special handling for SafePoint/Call Nodes
duke@435 1173 bool is_mcall = false;
duke@435 1174 if( n->is_Mach() ) {
duke@435 1175 MachNode *mach = n->as_Mach();
duke@435 1176 is_mcall = n->is_MachCall();
duke@435 1177 bool is_sfn = n->is_MachSafePoint();
duke@435 1178
duke@435 1179 // If this requires all previous instructions be flushed, then do so
duke@435 1180 if( is_sfn || is_mcall || mach->alignment_required() != 1) {
duke@435 1181 cb->flush_bundle(true);
duke@435 1182 current_offset = cb->code_size();
duke@435 1183 }
duke@435 1184
duke@435 1185 // align the instruction if necessary
duke@435 1186 int nop_size = nop->size(_regalloc);
duke@435 1187 int padding = mach->compute_padding(current_offset);
duke@435 1188 // Make sure safepoint node for polling is distinct from a call's
duke@435 1189 // return by adding a nop if needed.
duke@435 1190 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
duke@435 1191 padding = nop_size;
duke@435 1192 }
duke@435 1193 assert( labels_not_set || padding == 0, "instruction should already be aligned")
duke@435 1194
duke@435 1195 if(padding > 0) {
duke@435 1196 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
duke@435 1197 int nops_cnt = padding / nop_size;
duke@435 1198 MachNode *nop = new (this) MachNopNode(nops_cnt);
duke@435 1199 b->_nodes.insert(j++, nop);
duke@435 1200 last_inst++;
duke@435 1201 _cfg->_bbs.map( nop->_idx, b );
duke@435 1202 nop->emit(*cb, _regalloc);
duke@435 1203 cb->flush_bundle(true);
duke@435 1204 current_offset = cb->code_size();
duke@435 1205 }
duke@435 1206
duke@435 1207 // Remember the start of the last call in a basic block
duke@435 1208 if (is_mcall) {
duke@435 1209 MachCallNode *mcall = mach->as_MachCall();
duke@435 1210
duke@435 1211 // This destination address is NOT PC-relative
duke@435 1212 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 1213
duke@435 1214 // Save the return address
duke@435 1215 call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
duke@435 1216
duke@435 1217 if (!mcall->is_safepoint_node()) {
duke@435 1218 is_mcall = false;
duke@435 1219 is_sfn = false;
duke@435 1220 }
duke@435 1221 }
duke@435 1222
duke@435 1223 // sfn will be valid whenever mcall is valid now because of inheritance
duke@435 1224 if( is_sfn || is_mcall ) {
duke@435 1225
duke@435 1226 // Handle special safepoint nodes for synchronization
duke@435 1227 if( !is_mcall ) {
duke@435 1228 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 1229 // !!!!! Stubs only need an oopmap right now, so bail out
duke@435 1230 if( sfn->jvms()->method() == NULL) {
duke@435 1231 // Write the oopmap directly to the code blob??!!
duke@435 1232 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1233 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
duke@435 1234 # endif
duke@435 1235 continue;
duke@435 1236 }
duke@435 1237 } // End synchronization
duke@435 1238
duke@435 1239 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1240 current_offset);
duke@435 1241 Process_OopMap_Node(mach, current_offset);
duke@435 1242 } // End if safepoint
duke@435 1243
duke@435 1244 // If this is a null check, then add the start of the previous instruction to the list
duke@435 1245 else if( mach->is_MachNullCheck() ) {
duke@435 1246 inct_starts[inct_cnt++] = previous_offset;
duke@435 1247 }
duke@435 1248
duke@435 1249 // If this is a branch, then fill in the label with the target BB's label
duke@435 1250 else if ( mach->is_Branch() ) {
duke@435 1251
duke@435 1252 if ( mach->ideal_Opcode() == Op_Jump ) {
duke@435 1253 for (uint h = 0; h < b->_num_succs; h++ ) {
duke@435 1254 Block* succs_block = b->_succs[h];
duke@435 1255 for (uint j = 1; j < succs_block->num_preds(); j++) {
duke@435 1256 Node* jpn = succs_block->pred(j);
duke@435 1257 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
duke@435 1258 uint block_num = succs_block->non_connector()->_pre_order;
duke@435 1259 Label *blkLabel = &blk_labels[block_num];
duke@435 1260 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
duke@435 1261 }
duke@435 1262 }
duke@435 1263 }
duke@435 1264 } else {
duke@435 1265 // For Branchs
duke@435 1266 // This requires the TRUE branch target be in succs[0]
duke@435 1267 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1268 mach->label_set( blk_labels[block_num], block_num );
duke@435 1269 }
duke@435 1270 }
duke@435 1271
duke@435 1272 #ifdef ASSERT
duke@435 1273 // Check that oop-store preceeds the card-mark
duke@435 1274 else if( mach->ideal_Opcode() == Op_StoreCM ) {
duke@435 1275 uint storeCM_idx = j;
duke@435 1276 Node *oop_store = mach->in(mach->_cnt); // First precedence edge
duke@435 1277 assert( oop_store != NULL, "storeCM expects a precedence edge");
duke@435 1278 uint i4;
duke@435 1279 for( i4 = 0; i4 < last_inst; ++i4 ) {
duke@435 1280 if( b->_nodes[i4] == oop_store ) break;
duke@435 1281 }
duke@435 1282 // Note: This test can provide a false failure if other precedence
duke@435 1283 // edges have been added to the storeCMNode.
duke@435 1284 assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
duke@435 1285 }
duke@435 1286 #endif
duke@435 1287
duke@435 1288 else if( !n->is_Proj() ) {
duke@435 1289 // Remember the begining of the previous instruction, in case
duke@435 1290 // it's followed by a flag-kill and a null-check. Happens on
duke@435 1291 // Intel all the time, with add-to-memory kind of opcodes.
duke@435 1292 previous_offset = current_offset;
duke@435 1293 }
duke@435 1294 }
duke@435 1295
duke@435 1296 // Verify that there is sufficient space remaining
duke@435 1297 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
duke@435 1298 if (cb->blob() == NULL) {
duke@435 1299 turn_off_compiler(this);
duke@435 1300 return;
duke@435 1301 }
duke@435 1302
duke@435 1303 // Save the offset for the listing
duke@435 1304 #ifndef PRODUCT
duke@435 1305 if( node_offsets && n->_idx < node_offset_limit )
duke@435 1306 node_offsets[n->_idx] = cb->code_size();
duke@435 1307 #endif
duke@435 1308
duke@435 1309 // "Normal" instruction case
duke@435 1310 n->emit(*cb, _regalloc);
duke@435 1311 current_offset = cb->code_size();
duke@435 1312 non_safepoints.observe_instruction(n, current_offset);
duke@435 1313
duke@435 1314 // mcall is last "call" that can be a safepoint
duke@435 1315 // record it so we can see if a poll will directly follow it
duke@435 1316 // in which case we'll need a pad to make the PcDesc sites unique
duke@435 1317 // see 5010568. This can be slightly inaccurate but conservative
duke@435 1318 // in the case that return address is not actually at current_offset.
duke@435 1319 // This is a small price to pay.
duke@435 1320
duke@435 1321 if (is_mcall) {
duke@435 1322 last_call_offset = current_offset;
duke@435 1323 }
duke@435 1324
duke@435 1325 // See if this instruction has a delay slot
duke@435 1326 if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1327 assert(delay_slot != NULL, "expecting delay slot node");
duke@435 1328
duke@435 1329 // Back up 1 instruction
duke@435 1330 cb->set_code_end(
duke@435 1331 cb->code_end()-Pipeline::instr_unit_size());
duke@435 1332
duke@435 1333 // Save the offset for the listing
duke@435 1334 #ifndef PRODUCT
duke@435 1335 if( node_offsets && delay_slot->_idx < node_offset_limit )
duke@435 1336 node_offsets[delay_slot->_idx] = cb->code_size();
duke@435 1337 #endif
duke@435 1338
duke@435 1339 // Support a SafePoint in the delay slot
duke@435 1340 if( delay_slot->is_MachSafePoint() ) {
duke@435 1341 MachNode *mach = delay_slot->as_Mach();
duke@435 1342 // !!!!! Stubs only need an oopmap right now, so bail out
duke@435 1343 if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
duke@435 1344 // Write the oopmap directly to the code blob??!!
duke@435 1345 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1346 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
duke@435 1347 # endif
duke@435 1348 delay_slot = NULL;
duke@435 1349 continue;
duke@435 1350 }
duke@435 1351
duke@435 1352 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
duke@435 1353 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1354 adjusted_offset);
duke@435 1355 // Generate an OopMap entry
duke@435 1356 Process_OopMap_Node(mach, adjusted_offset);
duke@435 1357 }
duke@435 1358
duke@435 1359 // Insert the delay slot instruction
duke@435 1360 delay_slot->emit(*cb, _regalloc);
duke@435 1361
duke@435 1362 // Don't reuse it
duke@435 1363 delay_slot = NULL;
duke@435 1364 }
duke@435 1365
duke@435 1366 } // End for all instructions in block
duke@435 1367
duke@435 1368 // If the next block _starts_ a loop, pad this block out to align
duke@435 1369 // the loop start a little. Helps prevent pipe stalls at loop starts
duke@435 1370 int nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 1371 if( i<_cfg->_num_blocks-1 ) {
duke@435 1372 Block *nb = _cfg->_blocks[i+1];
duke@435 1373 uint padding = nb->alignment_padding(current_offset);
duke@435 1374 if( padding > 0 ) {
duke@435 1375 MachNode *nop = new (this) MachNopNode(padding / nop_size);
duke@435 1376 b->_nodes.insert( b->_nodes.size(), nop );
duke@435 1377 _cfg->_bbs.map( nop->_idx, b );
duke@435 1378 nop->emit(*cb, _regalloc);
duke@435 1379 current_offset = cb->code_size();
duke@435 1380 }
duke@435 1381 }
duke@435 1382
duke@435 1383 } // End of for all blocks
duke@435 1384
duke@435 1385 non_safepoints.flush_at_end();
duke@435 1386
duke@435 1387 // Offset too large?
duke@435 1388 if (failing()) return;
duke@435 1389
duke@435 1390 // Define a pseudo-label at the end of the code
duke@435 1391 MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
duke@435 1392
duke@435 1393 // Compute the size of the first block
duke@435 1394 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
duke@435 1395
duke@435 1396 assert(cb->code_size() < 500000, "method is unreasonably large");
duke@435 1397
duke@435 1398 // ------------------
duke@435 1399
duke@435 1400 #ifndef PRODUCT
duke@435 1401 // Information on the size of the method, without the extraneous code
duke@435 1402 Scheduling::increment_method_size(cb->code_size());
duke@435 1403 #endif
duke@435 1404
duke@435 1405 // ------------------
duke@435 1406 // Fill in exception table entries.
duke@435 1407 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
duke@435 1408
duke@435 1409 // Only java methods have exception handlers and deopt handlers
duke@435 1410 if (_method) {
duke@435 1411 // Emit the exception handler code.
duke@435 1412 _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
duke@435 1413 // Emit the deopt handler code.
duke@435 1414 _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
duke@435 1415 }
duke@435 1416
duke@435 1417 // One last check for failed CodeBuffer::expand:
duke@435 1418 if (cb->blob() == NULL) {
duke@435 1419 turn_off_compiler(this);
duke@435 1420 return;
duke@435 1421 }
duke@435 1422
duke@435 1423 #ifndef PRODUCT
duke@435 1424 // Dump the assembly code, including basic-block numbers
duke@435 1425 if (print_assembly()) {
duke@435 1426 ttyLocker ttyl; // keep the following output all in one block
duke@435 1427 if (!VMThread::should_terminate()) { // test this under the tty lock
duke@435 1428 // This output goes directly to the tty, not the compiler log.
duke@435 1429 // To enable tools to match it up with the compilation activity,
duke@435 1430 // be sure to tag this tty output with the compile ID.
duke@435 1431 if (xtty != NULL) {
duke@435 1432 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
duke@435 1433 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 1434 "");
duke@435 1435 }
duke@435 1436 if (method() != NULL) {
duke@435 1437 method()->print_oop();
duke@435 1438 print_codes();
duke@435 1439 }
duke@435 1440 dump_asm(node_offsets, node_offset_limit);
duke@435 1441 if (xtty != NULL) {
duke@435 1442 xtty->tail("opto_assembly");
duke@435 1443 }
duke@435 1444 }
duke@435 1445 }
duke@435 1446 #endif
duke@435 1447
duke@435 1448 }
duke@435 1449
duke@435 1450 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
duke@435 1451 _inc_table.set_size(cnt);
duke@435 1452
duke@435 1453 uint inct_cnt = 0;
duke@435 1454 for( uint i=0; i<_cfg->_num_blocks; i++ ) {
duke@435 1455 Block *b = _cfg->_blocks[i];
duke@435 1456 Node *n = NULL;
duke@435 1457 int j;
duke@435 1458
duke@435 1459 // Find the branch; ignore trailing NOPs.
duke@435 1460 for( j = b->_nodes.size()-1; j>=0; j-- ) {
duke@435 1461 n = b->_nodes[j];
duke@435 1462 if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
duke@435 1463 break;
duke@435 1464 }
duke@435 1465
duke@435 1466 // If we didn't find anything, continue
duke@435 1467 if( j < 0 ) continue;
duke@435 1468
duke@435 1469 // Compute ExceptionHandlerTable subtable entry and add it
duke@435 1470 // (skip empty blocks)
duke@435 1471 if( n->is_Catch() ) {
duke@435 1472
duke@435 1473 // Get the offset of the return from the call
duke@435 1474 uint call_return = call_returns[b->_pre_order];
duke@435 1475 #ifdef ASSERT
duke@435 1476 assert( call_return > 0, "no call seen for this basic block" );
duke@435 1477 while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
duke@435 1478 assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
duke@435 1479 #endif
duke@435 1480 // last instruction is a CatchNode, find it's CatchProjNodes
duke@435 1481 int nof_succs = b->_num_succs;
duke@435 1482 // allocate space
duke@435 1483 GrowableArray<intptr_t> handler_bcis(nof_succs);
duke@435 1484 GrowableArray<intptr_t> handler_pcos(nof_succs);
duke@435 1485 // iterate through all successors
duke@435 1486 for (int j = 0; j < nof_succs; j++) {
duke@435 1487 Block* s = b->_succs[j];
duke@435 1488 bool found_p = false;
duke@435 1489 for( uint k = 1; k < s->num_preds(); k++ ) {
duke@435 1490 Node *pk = s->pred(k);
duke@435 1491 if( pk->is_CatchProj() && pk->in(0) == n ) {
duke@435 1492 const CatchProjNode* p = pk->as_CatchProj();
duke@435 1493 found_p = true;
duke@435 1494 // add the corresponding handler bci & pco information
duke@435 1495 if( p->_con != CatchProjNode::fall_through_index ) {
duke@435 1496 // p leads to an exception handler (and is not fall through)
duke@435 1497 assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
duke@435 1498 // no duplicates, please
duke@435 1499 if( !handler_bcis.contains(p->handler_bci()) ) {
duke@435 1500 uint block_num = s->non_connector()->_pre_order;
duke@435 1501 handler_bcis.append(p->handler_bci());
duke@435 1502 handler_pcos.append(blk_labels[block_num].loc_pos());
duke@435 1503 }
duke@435 1504 }
duke@435 1505 }
duke@435 1506 }
duke@435 1507 assert(found_p, "no matching predecessor found");
duke@435 1508 // Note: Due to empty block removal, one block may have
duke@435 1509 // several CatchProj inputs, from the same Catch.
duke@435 1510 }
duke@435 1511
duke@435 1512 // Set the offset of the return from the call
duke@435 1513 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
duke@435 1514 continue;
duke@435 1515 }
duke@435 1516
duke@435 1517 // Handle implicit null exception table updates
duke@435 1518 if( n->is_MachNullCheck() ) {
duke@435 1519 uint block_num = b->non_connector_successor(0)->_pre_order;
duke@435 1520 _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
duke@435 1521 continue;
duke@435 1522 }
duke@435 1523 } // End of for all blocks fill in exception table entries
duke@435 1524 }
duke@435 1525
duke@435 1526 // Static Variables
duke@435 1527 #ifndef PRODUCT
duke@435 1528 uint Scheduling::_total_nop_size = 0;
duke@435 1529 uint Scheduling::_total_method_size = 0;
duke@435 1530 uint Scheduling::_total_branches = 0;
duke@435 1531 uint Scheduling::_total_unconditional_delays = 0;
duke@435 1532 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
duke@435 1533 #endif
duke@435 1534
duke@435 1535 // Initializer for class Scheduling
duke@435 1536
duke@435 1537 Scheduling::Scheduling(Arena *arena, Compile &compile)
duke@435 1538 : _arena(arena),
duke@435 1539 _cfg(compile.cfg()),
duke@435 1540 _bbs(compile.cfg()->_bbs),
duke@435 1541 _regalloc(compile.regalloc()),
duke@435 1542 _reg_node(arena),
duke@435 1543 _bundle_instr_count(0),
duke@435 1544 _bundle_cycle_number(0),
duke@435 1545 _scheduled(arena),
duke@435 1546 _available(arena),
duke@435 1547 _next_node(NULL),
duke@435 1548 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
duke@435 1549 _pinch_free_list(arena)
duke@435 1550 #ifndef PRODUCT
duke@435 1551 , _branches(0)
duke@435 1552 , _unconditional_delays(0)
duke@435 1553 #endif
duke@435 1554 {
duke@435 1555 // Create a MachNopNode
duke@435 1556 _nop = new (&compile) MachNopNode();
duke@435 1557
duke@435 1558 // Now that the nops are in the array, save the count
duke@435 1559 // (but allow entries for the nops)
duke@435 1560 _node_bundling_limit = compile.unique();
duke@435 1561 uint node_max = _regalloc->node_regs_max_index();
duke@435 1562
duke@435 1563 compile.set_node_bundling_limit(_node_bundling_limit);
duke@435 1564
duke@435 1565 // This one is persistant within the Compile class
duke@435 1566 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
duke@435 1567
duke@435 1568 // Allocate space for fixed-size arrays
duke@435 1569 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1570 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
duke@435 1571 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1572
duke@435 1573 // Clear the arrays
duke@435 1574 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
duke@435 1575 memset(_node_latency, 0, node_max * sizeof(unsigned short));
duke@435 1576 memset(_uses, 0, node_max * sizeof(short));
duke@435 1577 memset(_current_latency, 0, node_max * sizeof(unsigned short));
duke@435 1578
duke@435 1579 // Clear the bundling information
duke@435 1580 memcpy(_bundle_use_elements,
duke@435 1581 Pipeline_Use::elaborated_elements,
duke@435 1582 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1583
duke@435 1584 // Get the last node
duke@435 1585 Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
duke@435 1586
duke@435 1587 _next_node = bb->_nodes[bb->_nodes.size()-1];
duke@435 1588 }
duke@435 1589
duke@435 1590 #ifndef PRODUCT
duke@435 1591 // Scheduling destructor
duke@435 1592 Scheduling::~Scheduling() {
duke@435 1593 _total_branches += _branches;
duke@435 1594 _total_unconditional_delays += _unconditional_delays;
duke@435 1595 }
duke@435 1596 #endif
duke@435 1597
duke@435 1598 // Step ahead "i" cycles
duke@435 1599 void Scheduling::step(uint i) {
duke@435 1600
duke@435 1601 Bundle *bundle = node_bundling(_next_node);
duke@435 1602 bundle->set_starts_bundle();
duke@435 1603
duke@435 1604 // Update the bundle record, but leave the flags information alone
duke@435 1605 if (_bundle_instr_count > 0) {
duke@435 1606 bundle->set_instr_count(_bundle_instr_count);
duke@435 1607 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1608 }
duke@435 1609
duke@435 1610 // Update the state information
duke@435 1611 _bundle_instr_count = 0;
duke@435 1612 _bundle_cycle_number += i;
duke@435 1613 _bundle_use.step(i);
duke@435 1614 }
duke@435 1615
duke@435 1616 void Scheduling::step_and_clear() {
duke@435 1617 Bundle *bundle = node_bundling(_next_node);
duke@435 1618 bundle->set_starts_bundle();
duke@435 1619
duke@435 1620 // Update the bundle record
duke@435 1621 if (_bundle_instr_count > 0) {
duke@435 1622 bundle->set_instr_count(_bundle_instr_count);
duke@435 1623 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1624
duke@435 1625 _bundle_cycle_number += 1;
duke@435 1626 }
duke@435 1627
duke@435 1628 // Clear the bundling information
duke@435 1629 _bundle_instr_count = 0;
duke@435 1630 _bundle_use.reset();
duke@435 1631
duke@435 1632 memcpy(_bundle_use_elements,
duke@435 1633 Pipeline_Use::elaborated_elements,
duke@435 1634 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1635 }
duke@435 1636
duke@435 1637 //------------------------------ScheduleAndBundle------------------------------
duke@435 1638 // Perform instruction scheduling and bundling over the sequence of
duke@435 1639 // instructions in backwards order.
duke@435 1640 void Compile::ScheduleAndBundle() {
duke@435 1641
duke@435 1642 // Don't optimize this if it isn't a method
duke@435 1643 if (!_method)
duke@435 1644 return;
duke@435 1645
duke@435 1646 // Don't optimize this if scheduling is disabled
duke@435 1647 if (!do_scheduling())
duke@435 1648 return;
duke@435 1649
duke@435 1650 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
duke@435 1651
duke@435 1652 // Create a data structure for all the scheduling information
duke@435 1653 Scheduling scheduling(Thread::current()->resource_area(), *this);
duke@435 1654
duke@435 1655 // Walk backwards over each basic block, computing the needed alignment
duke@435 1656 // Walk over all the basic blocks
duke@435 1657 scheduling.DoScheduling();
duke@435 1658 }
duke@435 1659
duke@435 1660 //------------------------------ComputeLocalLatenciesForward-------------------
duke@435 1661 // Compute the latency of all the instructions. This is fairly simple,
duke@435 1662 // because we already have a legal ordering. Walk over the instructions
duke@435 1663 // from first to last, and compute the latency of the instruction based
duke@435 1664 // on the latency of the preceeding instruction(s).
duke@435 1665 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
duke@435 1666 #ifndef PRODUCT
duke@435 1667 if (_cfg->C->trace_opto_output())
duke@435 1668 tty->print("# -> ComputeLocalLatenciesForward\n");
duke@435 1669 #endif
duke@435 1670
duke@435 1671 // Walk over all the schedulable instructions
duke@435 1672 for( uint j=_bb_start; j < _bb_end; j++ ) {
duke@435 1673
duke@435 1674 // This is a kludge, forcing all latency calculations to start at 1.
duke@435 1675 // Used to allow latency 0 to force an instruction to the beginning
duke@435 1676 // of the bb
duke@435 1677 uint latency = 1;
duke@435 1678 Node *use = bb->_nodes[j];
duke@435 1679 uint nlen = use->len();
duke@435 1680
duke@435 1681 // Walk over all the inputs
duke@435 1682 for ( uint k=0; k < nlen; k++ ) {
duke@435 1683 Node *def = use->in(k);
duke@435 1684 if (!def)
duke@435 1685 continue;
duke@435 1686
duke@435 1687 uint l = _node_latency[def->_idx] + use->latency(k);
duke@435 1688 if (latency < l)
duke@435 1689 latency = l;
duke@435 1690 }
duke@435 1691
duke@435 1692 _node_latency[use->_idx] = latency;
duke@435 1693
duke@435 1694 #ifndef PRODUCT
duke@435 1695 if (_cfg->C->trace_opto_output()) {
duke@435 1696 tty->print("# latency %4d: ", latency);
duke@435 1697 use->dump();
duke@435 1698 }
duke@435 1699 #endif
duke@435 1700 }
duke@435 1701
duke@435 1702 #ifndef PRODUCT
duke@435 1703 if (_cfg->C->trace_opto_output())
duke@435 1704 tty->print("# <- ComputeLocalLatenciesForward\n");
duke@435 1705 #endif
duke@435 1706
duke@435 1707 } // end ComputeLocalLatenciesForward
duke@435 1708
duke@435 1709 // See if this node fits into the present instruction bundle
duke@435 1710 bool Scheduling::NodeFitsInBundle(Node *n) {
duke@435 1711 uint n_idx = n->_idx;
duke@435 1712
duke@435 1713 // If this is the unconditional delay instruction, then it fits
duke@435 1714 if (n == _unconditional_delay_slot) {
duke@435 1715 #ifndef PRODUCT
duke@435 1716 if (_cfg->C->trace_opto_output())
duke@435 1717 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
duke@435 1718 #endif
duke@435 1719 return (true);
duke@435 1720 }
duke@435 1721
duke@435 1722 // If the node cannot be scheduled this cycle, skip it
duke@435 1723 if (_current_latency[n_idx] > _bundle_cycle_number) {
duke@435 1724 #ifndef PRODUCT
duke@435 1725 if (_cfg->C->trace_opto_output())
duke@435 1726 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
duke@435 1727 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
duke@435 1728 #endif
duke@435 1729 return (false);
duke@435 1730 }
duke@435 1731
duke@435 1732 const Pipeline *node_pipeline = n->pipeline();
duke@435 1733
duke@435 1734 uint instruction_count = node_pipeline->instructionCount();
duke@435 1735 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 1736 instruction_count = 0;
duke@435 1737 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 1738 instruction_count++;
duke@435 1739
duke@435 1740 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
duke@435 1741 #ifndef PRODUCT
duke@435 1742 if (_cfg->C->trace_opto_output())
duke@435 1743 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
duke@435 1744 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
duke@435 1745 #endif
duke@435 1746 return (false);
duke@435 1747 }
duke@435 1748
duke@435 1749 // Don't allow non-machine nodes to be handled this way
duke@435 1750 if (!n->is_Mach() && instruction_count == 0)
duke@435 1751 return (false);
duke@435 1752
duke@435 1753 // See if there is any overlap
duke@435 1754 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
duke@435 1755
duke@435 1756 if (delay > 0) {
duke@435 1757 #ifndef PRODUCT
duke@435 1758 if (_cfg->C->trace_opto_output())
duke@435 1759 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
duke@435 1760 #endif
duke@435 1761 return false;
duke@435 1762 }
duke@435 1763
duke@435 1764 #ifndef PRODUCT
duke@435 1765 if (_cfg->C->trace_opto_output())
duke@435 1766 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
duke@435 1767 #endif
duke@435 1768
duke@435 1769 return true;
duke@435 1770 }
duke@435 1771
duke@435 1772 Node * Scheduling::ChooseNodeToBundle() {
duke@435 1773 uint siz = _available.size();
duke@435 1774
duke@435 1775 if (siz == 0) {
duke@435 1776
duke@435 1777 #ifndef PRODUCT
duke@435 1778 if (_cfg->C->trace_opto_output())
duke@435 1779 tty->print("# ChooseNodeToBundle: NULL\n");
duke@435 1780 #endif
duke@435 1781 return (NULL);
duke@435 1782 }
duke@435 1783
duke@435 1784 // Fast path, if only 1 instruction in the bundle
duke@435 1785 if (siz == 1) {
duke@435 1786 #ifndef PRODUCT
duke@435 1787 if (_cfg->C->trace_opto_output()) {
duke@435 1788 tty->print("# ChooseNodeToBundle (only 1): ");
duke@435 1789 _available[0]->dump();
duke@435 1790 }
duke@435 1791 #endif
duke@435 1792 return (_available[0]);
duke@435 1793 }
duke@435 1794
duke@435 1795 // Don't bother, if the bundle is already full
duke@435 1796 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
duke@435 1797 for ( uint i = 0; i < siz; i++ ) {
duke@435 1798 Node *n = _available[i];
duke@435 1799
duke@435 1800 // Skip projections, we'll handle them another way
duke@435 1801 if (n->is_Proj())
duke@435 1802 continue;
duke@435 1803
duke@435 1804 // This presupposed that instructions are inserted into the
duke@435 1805 // available list in a legality order; i.e. instructions that
duke@435 1806 // must be inserted first are at the head of the list
duke@435 1807 if (NodeFitsInBundle(n)) {
duke@435 1808 #ifndef PRODUCT
duke@435 1809 if (_cfg->C->trace_opto_output()) {
duke@435 1810 tty->print("# ChooseNodeToBundle: ");
duke@435 1811 n->dump();
duke@435 1812 }
duke@435 1813 #endif
duke@435 1814 return (n);
duke@435 1815 }
duke@435 1816 }
duke@435 1817 }
duke@435 1818
duke@435 1819 // Nothing fits in this bundle, choose the highest priority
duke@435 1820 #ifndef PRODUCT
duke@435 1821 if (_cfg->C->trace_opto_output()) {
duke@435 1822 tty->print("# ChooseNodeToBundle: ");
duke@435 1823 _available[0]->dump();
duke@435 1824 }
duke@435 1825 #endif
duke@435 1826
duke@435 1827 return _available[0];
duke@435 1828 }
duke@435 1829
duke@435 1830 //------------------------------AddNodeToAvailableList-------------------------
duke@435 1831 void Scheduling::AddNodeToAvailableList(Node *n) {
duke@435 1832 assert( !n->is_Proj(), "projections never directly made available" );
duke@435 1833 #ifndef PRODUCT
duke@435 1834 if (_cfg->C->trace_opto_output()) {
duke@435 1835 tty->print("# AddNodeToAvailableList: ");
duke@435 1836 n->dump();
duke@435 1837 }
duke@435 1838 #endif
duke@435 1839
duke@435 1840 int latency = _current_latency[n->_idx];
duke@435 1841
duke@435 1842 // Insert in latency order (insertion sort)
duke@435 1843 uint i;
duke@435 1844 for ( i=0; i < _available.size(); i++ )
duke@435 1845 if (_current_latency[_available[i]->_idx] > latency)
duke@435 1846 break;
duke@435 1847
duke@435 1848 // Special Check for compares following branches
duke@435 1849 if( n->is_Mach() && _scheduled.size() > 0 ) {
duke@435 1850 int op = n->as_Mach()->ideal_Opcode();
duke@435 1851 Node *last = _scheduled[0];
duke@435 1852 if( last->is_MachIf() && last->in(1) == n &&
duke@435 1853 ( op == Op_CmpI ||
duke@435 1854 op == Op_CmpU ||
duke@435 1855 op == Op_CmpP ||
duke@435 1856 op == Op_CmpF ||
duke@435 1857 op == Op_CmpD ||
duke@435 1858 op == Op_CmpL ) ) {
duke@435 1859
duke@435 1860 // Recalculate position, moving to front of same latency
duke@435 1861 for ( i=0 ; i < _available.size(); i++ )
duke@435 1862 if (_current_latency[_available[i]->_idx] >= latency)
duke@435 1863 break;
duke@435 1864 }
duke@435 1865 }
duke@435 1866
duke@435 1867 // Insert the node in the available list
duke@435 1868 _available.insert(i, n);
duke@435 1869
duke@435 1870 #ifndef PRODUCT
duke@435 1871 if (_cfg->C->trace_opto_output())
duke@435 1872 dump_available();
duke@435 1873 #endif
duke@435 1874 }
duke@435 1875
duke@435 1876 //------------------------------DecrementUseCounts-----------------------------
duke@435 1877 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
duke@435 1878 for ( uint i=0; i < n->len(); i++ ) {
duke@435 1879 Node *def = n->in(i);
duke@435 1880 if (!def) continue;
duke@435 1881 if( def->is_Proj() ) // If this is a machine projection, then
duke@435 1882 def = def->in(0); // propagate usage thru to the base instruction
duke@435 1883
duke@435 1884 if( _bbs[def->_idx] != bb ) // Ignore if not block-local
duke@435 1885 continue;
duke@435 1886
duke@435 1887 // Compute the latency
duke@435 1888 uint l = _bundle_cycle_number + n->latency(i);
duke@435 1889 if (_current_latency[def->_idx] < l)
duke@435 1890 _current_latency[def->_idx] = l;
duke@435 1891
duke@435 1892 // If this does not have uses then schedule it
duke@435 1893 if ((--_uses[def->_idx]) == 0)
duke@435 1894 AddNodeToAvailableList(def);
duke@435 1895 }
duke@435 1896 }
duke@435 1897
duke@435 1898 //------------------------------AddNodeToBundle--------------------------------
duke@435 1899 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
duke@435 1900 #ifndef PRODUCT
duke@435 1901 if (_cfg->C->trace_opto_output()) {
duke@435 1902 tty->print("# AddNodeToBundle: ");
duke@435 1903 n->dump();
duke@435 1904 }
duke@435 1905 #endif
duke@435 1906
duke@435 1907 // Remove this from the available list
duke@435 1908 uint i;
duke@435 1909 for (i = 0; i < _available.size(); i++)
duke@435 1910 if (_available[i] == n)
duke@435 1911 break;
duke@435 1912 assert(i < _available.size(), "entry in _available list not found");
duke@435 1913 _available.remove(i);
duke@435 1914
duke@435 1915 // See if this fits in the current bundle
duke@435 1916 const Pipeline *node_pipeline = n->pipeline();
duke@435 1917 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
duke@435 1918
duke@435 1919 // Check for instructions to be placed in the delay slot. We
duke@435 1920 // do this before we actually schedule the current instruction,
duke@435 1921 // because the delay slot follows the current instruction.
duke@435 1922 if (Pipeline::_branch_has_delay_slot &&
duke@435 1923 node_pipeline->hasBranchDelay() &&
duke@435 1924 !_unconditional_delay_slot) {
duke@435 1925
duke@435 1926 uint siz = _available.size();
duke@435 1927
duke@435 1928 // Conditional branches can support an instruction that
duke@435 1929 // is unconditionally executed and not dependant by the
duke@435 1930 // branch, OR a conditionally executed instruction if
duke@435 1931 // the branch is taken. In practice, this means that
duke@435 1932 // the first instruction at the branch target is
duke@435 1933 // copied to the delay slot, and the branch goes to
duke@435 1934 // the instruction after that at the branch target
duke@435 1935 if ( n->is_Mach() && n->is_Branch() ) {
duke@435 1936
duke@435 1937 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
duke@435 1938 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
duke@435 1939
duke@435 1940 #ifndef PRODUCT
duke@435 1941 _branches++;
duke@435 1942 #endif
duke@435 1943
duke@435 1944 // At least 1 instruction is on the available list
duke@435 1945 // that is not dependant on the branch
duke@435 1946 for (uint i = 0; i < siz; i++) {
duke@435 1947 Node *d = _available[i];
duke@435 1948 const Pipeline *avail_pipeline = d->pipeline();
duke@435 1949
duke@435 1950 // Don't allow safepoints in the branch shadow, that will
duke@435 1951 // cause a number of difficulties
duke@435 1952 if ( avail_pipeline->instructionCount() == 1 &&
duke@435 1953 !avail_pipeline->hasMultipleBundles() &&
duke@435 1954 !avail_pipeline->hasBranchDelay() &&
duke@435 1955 Pipeline::instr_has_unit_size() &&
duke@435 1956 d->size(_regalloc) == Pipeline::instr_unit_size() &&
duke@435 1957 NodeFitsInBundle(d) &&
duke@435 1958 !node_bundling(d)->used_in_delay()) {
duke@435 1959
duke@435 1960 if (d->is_Mach() && !d->is_MachSafePoint()) {
duke@435 1961 // A node that fits in the delay slot was found, so we need to
duke@435 1962 // set the appropriate bits in the bundle pipeline information so
duke@435 1963 // that it correctly indicates resource usage. Later, when we
duke@435 1964 // attempt to add this instruction to the bundle, we will skip
duke@435 1965 // setting the resource usage.
duke@435 1966 _unconditional_delay_slot = d;
duke@435 1967 node_bundling(n)->set_use_unconditional_delay();
duke@435 1968 node_bundling(d)->set_used_in_unconditional_delay();
duke@435 1969 _bundle_use.add_usage(avail_pipeline->resourceUse());
duke@435 1970 _current_latency[d->_idx] = _bundle_cycle_number;
duke@435 1971 _next_node = d;
duke@435 1972 ++_bundle_instr_count;
duke@435 1973 #ifndef PRODUCT
duke@435 1974 _unconditional_delays++;
duke@435 1975 #endif
duke@435 1976 break;
duke@435 1977 }
duke@435 1978 }
duke@435 1979 }
duke@435 1980 }
duke@435 1981
duke@435 1982 // No delay slot, add a nop to the usage
duke@435 1983 if (!_unconditional_delay_slot) {
duke@435 1984 // See if adding an instruction in the delay slot will overflow
duke@435 1985 // the bundle.
duke@435 1986 if (!NodeFitsInBundle(_nop)) {
duke@435 1987 #ifndef PRODUCT
duke@435 1988 if (_cfg->C->trace_opto_output())
duke@435 1989 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
duke@435 1990 #endif
duke@435 1991 step(1);
duke@435 1992 }
duke@435 1993
duke@435 1994 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
duke@435 1995 _next_node = _nop;
duke@435 1996 ++_bundle_instr_count;
duke@435 1997 }
duke@435 1998
duke@435 1999 // See if the instruction in the delay slot requires a
duke@435 2000 // step of the bundles
duke@435 2001 if (!NodeFitsInBundle(n)) {
duke@435 2002 #ifndef PRODUCT
duke@435 2003 if (_cfg->C->trace_opto_output())
duke@435 2004 tty->print("# *** STEP(branch won't fit) ***\n");
duke@435 2005 #endif
duke@435 2006 // Update the state information
duke@435 2007 _bundle_instr_count = 0;
duke@435 2008 _bundle_cycle_number += 1;
duke@435 2009 _bundle_use.step(1);
duke@435 2010 }
duke@435 2011 }
duke@435 2012
duke@435 2013 // Get the number of instructions
duke@435 2014 uint instruction_count = node_pipeline->instructionCount();
duke@435 2015 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 2016 instruction_count = 0;
duke@435 2017
duke@435 2018 // Compute the latency information
duke@435 2019 uint delay = 0;
duke@435 2020
duke@435 2021 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
duke@435 2022 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
duke@435 2023 if (relative_latency < 0)
duke@435 2024 relative_latency = 0;
duke@435 2025
duke@435 2026 delay = _bundle_use.full_latency(relative_latency, node_usage);
duke@435 2027
duke@435 2028 // Does not fit in this bundle, start a new one
duke@435 2029 if (delay > 0) {
duke@435 2030 step(delay);
duke@435 2031
duke@435 2032 #ifndef PRODUCT
duke@435 2033 if (_cfg->C->trace_opto_output())
duke@435 2034 tty->print("# *** STEP(%d) ***\n", delay);
duke@435 2035 #endif
duke@435 2036 }
duke@435 2037 }
duke@435 2038
duke@435 2039 // If this was placed in the delay slot, ignore it
duke@435 2040 if (n != _unconditional_delay_slot) {
duke@435 2041
duke@435 2042 if (delay == 0) {
duke@435 2043 if (node_pipeline->hasMultipleBundles()) {
duke@435 2044 #ifndef PRODUCT
duke@435 2045 if (_cfg->C->trace_opto_output())
duke@435 2046 tty->print("# *** STEP(multiple instructions) ***\n");
duke@435 2047 #endif
duke@435 2048 step(1);
duke@435 2049 }
duke@435 2050
duke@435 2051 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
duke@435 2052 #ifndef PRODUCT
duke@435 2053 if (_cfg->C->trace_opto_output())
duke@435 2054 tty->print("# *** STEP(%d >= %d instructions) ***\n",
duke@435 2055 instruction_count + _bundle_instr_count,
duke@435 2056 Pipeline::_max_instrs_per_cycle);
duke@435 2057 #endif
duke@435 2058 step(1);
duke@435 2059 }
duke@435 2060 }
duke@435 2061
duke@435 2062 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 2063 _bundle_instr_count++;
duke@435 2064
duke@435 2065 // Set the node's latency
duke@435 2066 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2067
duke@435 2068 // Now merge the functional unit information
duke@435 2069 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
duke@435 2070 _bundle_use.add_usage(node_usage);
duke@435 2071
duke@435 2072 // Increment the number of instructions in this bundle
duke@435 2073 _bundle_instr_count += instruction_count;
duke@435 2074
duke@435 2075 // Remember this node for later
duke@435 2076 if (n->is_Mach())
duke@435 2077 _next_node = n;
duke@435 2078 }
duke@435 2079
duke@435 2080 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
duke@435 2081 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
duke@435 2082 // 'Schedule' them (basically ignore in the schedule) but do not insert them
duke@435 2083 // into the block. All other scheduled nodes get put in the schedule here.
duke@435 2084 int op = n->Opcode();
duke@435 2085 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
duke@435 2086 (op != Op_Node && // Not an unused antidepedence node and
duke@435 2087 // not an unallocated boxlock
duke@435 2088 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
duke@435 2089
duke@435 2090 // Push any trailing projections
duke@435 2091 if( bb->_nodes[bb->_nodes.size()-1] != n ) {
duke@435 2092 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2093 Node *foi = n->fast_out(i);
duke@435 2094 if( foi->is_Proj() )
duke@435 2095 _scheduled.push(foi);
duke@435 2096 }
duke@435 2097 }
duke@435 2098
duke@435 2099 // Put the instruction in the schedule list
duke@435 2100 _scheduled.push(n);
duke@435 2101 }
duke@435 2102
duke@435 2103 #ifndef PRODUCT
duke@435 2104 if (_cfg->C->trace_opto_output())
duke@435 2105 dump_available();
duke@435 2106 #endif
duke@435 2107
duke@435 2108 // Walk all the definitions, decrementing use counts, and
duke@435 2109 // if a definition has a 0 use count, place it in the available list.
duke@435 2110 DecrementUseCounts(n,bb);
duke@435 2111 }
duke@435 2112
duke@435 2113 //------------------------------ComputeUseCount--------------------------------
duke@435 2114 // This method sets the use count within a basic block. We will ignore all
duke@435 2115 // uses outside the current basic block. As we are doing a backwards walk,
duke@435 2116 // any node we reach that has a use count of 0 may be scheduled. This also
duke@435 2117 // avoids the problem of cyclic references from phi nodes, as long as phi
duke@435 2118 // nodes are at the front of the basic block. This method also initializes
duke@435 2119 // the available list to the set of instructions that have no uses within this
duke@435 2120 // basic block.
duke@435 2121 void Scheduling::ComputeUseCount(const Block *bb) {
duke@435 2122 #ifndef PRODUCT
duke@435 2123 if (_cfg->C->trace_opto_output())
duke@435 2124 tty->print("# -> ComputeUseCount\n");
duke@435 2125 #endif
duke@435 2126
duke@435 2127 // Clear the list of available and scheduled instructions, just in case
duke@435 2128 _available.clear();
duke@435 2129 _scheduled.clear();
duke@435 2130
duke@435 2131 // No delay slot specified
duke@435 2132 _unconditional_delay_slot = NULL;
duke@435 2133
duke@435 2134 #ifdef ASSERT
duke@435 2135 for( uint i=0; i < bb->_nodes.size(); i++ )
duke@435 2136 assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
duke@435 2137 #endif
duke@435 2138
duke@435 2139 // Force the _uses count to never go to zero for unscheduable pieces
duke@435 2140 // of the block
duke@435 2141 for( uint k = 0; k < _bb_start; k++ )
duke@435 2142 _uses[bb->_nodes[k]->_idx] = 1;
duke@435 2143 for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
duke@435 2144 _uses[bb->_nodes[l]->_idx] = 1;
duke@435 2145
duke@435 2146 // Iterate backwards over the instructions in the block. Don't count the
duke@435 2147 // branch projections at end or the block header instructions.
duke@435 2148 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
duke@435 2149 Node *n = bb->_nodes[j];
duke@435 2150 if( n->is_Proj() ) continue; // Projections handled another way
duke@435 2151
duke@435 2152 // Account for all uses
duke@435 2153 for ( uint k = 0; k < n->len(); k++ ) {
duke@435 2154 Node *inp = n->in(k);
duke@435 2155 if (!inp) continue;
duke@435 2156 assert(inp != n, "no cycles allowed" );
duke@435 2157 if( _bbs[inp->_idx] == bb ) { // Block-local use?
duke@435 2158 if( inp->is_Proj() ) // Skip through Proj's
duke@435 2159 inp = inp->in(0);
duke@435 2160 ++_uses[inp->_idx]; // Count 1 block-local use
duke@435 2161 }
duke@435 2162 }
duke@435 2163
duke@435 2164 // If this instruction has a 0 use count, then it is available
duke@435 2165 if (!_uses[n->_idx]) {
duke@435 2166 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2167 AddNodeToAvailableList(n);
duke@435 2168 }
duke@435 2169
duke@435 2170 #ifndef PRODUCT
duke@435 2171 if (_cfg->C->trace_opto_output()) {
duke@435 2172 tty->print("# uses: %3d: ", _uses[n->_idx]);
duke@435 2173 n->dump();
duke@435 2174 }
duke@435 2175 #endif
duke@435 2176 }
duke@435 2177
duke@435 2178 #ifndef PRODUCT
duke@435 2179 if (_cfg->C->trace_opto_output())
duke@435 2180 tty->print("# <- ComputeUseCount\n");
duke@435 2181 #endif
duke@435 2182 }
duke@435 2183
duke@435 2184 // This routine performs scheduling on each basic block in reverse order,
duke@435 2185 // using instruction latencies and taking into account function unit
duke@435 2186 // availability.
duke@435 2187 void Scheduling::DoScheduling() {
duke@435 2188 #ifndef PRODUCT
duke@435 2189 if (_cfg->C->trace_opto_output())
duke@435 2190 tty->print("# -> DoScheduling\n");
duke@435 2191 #endif
duke@435 2192
duke@435 2193 Block *succ_bb = NULL;
duke@435 2194 Block *bb;
duke@435 2195
duke@435 2196 // Walk over all the basic blocks in reverse order
duke@435 2197 for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
duke@435 2198 bb = _cfg->_blocks[i];
duke@435 2199
duke@435 2200 #ifndef PRODUCT
duke@435 2201 if (_cfg->C->trace_opto_output()) {
duke@435 2202 tty->print("# Schedule BB#%03d (initial)\n", i);
duke@435 2203 for (uint j = 0; j < bb->_nodes.size(); j++)
duke@435 2204 bb->_nodes[j]->dump();
duke@435 2205 }
duke@435 2206 #endif
duke@435 2207
duke@435 2208 // On the head node, skip processing
duke@435 2209 if( bb == _cfg->_broot )
duke@435 2210 continue;
duke@435 2211
duke@435 2212 // Skip empty, connector blocks
duke@435 2213 if (bb->is_connector())
duke@435 2214 continue;
duke@435 2215
duke@435 2216 // If the following block is not the sole successor of
duke@435 2217 // this one, then reset the pipeline information
duke@435 2218 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
duke@435 2219 #ifndef PRODUCT
duke@435 2220 if (_cfg->C->trace_opto_output()) {
duke@435 2221 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
duke@435 2222 _next_node->_idx, _bundle_instr_count);
duke@435 2223 }
duke@435 2224 #endif
duke@435 2225 step_and_clear();
duke@435 2226 }
duke@435 2227
duke@435 2228 // Leave untouched the starting instruction, any Phis, a CreateEx node
duke@435 2229 // or Top. bb->_nodes[_bb_start] is the first schedulable instruction.
duke@435 2230 _bb_end = bb->_nodes.size()-1;
duke@435 2231 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
duke@435 2232 Node *n = bb->_nodes[_bb_start];
duke@435 2233 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
duke@435 2234 // Also, MachIdealNodes do not get scheduled
duke@435 2235 if( !n->is_Mach() ) continue; // Skip non-machine nodes
duke@435 2236 MachNode *mach = n->as_Mach();
duke@435 2237 int iop = mach->ideal_Opcode();
duke@435 2238 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
duke@435 2239 if( iop == Op_Con ) continue; // Do not schedule Top
duke@435 2240 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
duke@435 2241 mach->pipeline() == MachNode::pipeline_class() &&
duke@435 2242 !n->is_SpillCopy() ) // Breakpoints, Prolog, etc
duke@435 2243 continue;
duke@435 2244 break; // Funny loop structure to be sure...
duke@435 2245 }
duke@435 2246 // Compute last "interesting" instruction in block - last instruction we
duke@435 2247 // might schedule. _bb_end points just after last schedulable inst. We
duke@435 2248 // normally schedule conditional branches (despite them being forced last
duke@435 2249 // in the block), because they have delay slots we can fill. Calls all
duke@435 2250 // have their delay slots filled in the template expansions, so we don't
duke@435 2251 // bother scheduling them.
duke@435 2252 Node *last = bb->_nodes[_bb_end];
duke@435 2253 if( last->is_Catch() ||
duke@435 2254 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
duke@435 2255 // There must be a prior call. Skip it.
duke@435 2256 while( !bb->_nodes[--_bb_end]->is_Call() ) {
duke@435 2257 assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
duke@435 2258 }
duke@435 2259 } else if( last->is_MachNullCheck() ) {
duke@435 2260 // Backup so the last null-checked memory instruction is
duke@435 2261 // outside the schedulable range. Skip over the nullcheck,
duke@435 2262 // projection, and the memory nodes.
duke@435 2263 Node *mem = last->in(1);
duke@435 2264 do {
duke@435 2265 _bb_end--;
duke@435 2266 } while (mem != bb->_nodes[_bb_end]);
duke@435 2267 } else {
duke@435 2268 // Set _bb_end to point after last schedulable inst.
duke@435 2269 _bb_end++;
duke@435 2270 }
duke@435 2271
duke@435 2272 assert( _bb_start <= _bb_end, "inverted block ends" );
duke@435 2273
duke@435 2274 // Compute the register antidependencies for the basic block
duke@435 2275 ComputeRegisterAntidependencies(bb);
duke@435 2276 if (_cfg->C->failing()) return; // too many D-U pinch points
duke@435 2277
duke@435 2278 // Compute intra-bb latencies for the nodes
duke@435 2279 ComputeLocalLatenciesForward(bb);
duke@435 2280
duke@435 2281 // Compute the usage within the block, and set the list of all nodes
duke@435 2282 // in the block that have no uses within the block.
duke@435 2283 ComputeUseCount(bb);
duke@435 2284
duke@435 2285 // Schedule the remaining instructions in the block
duke@435 2286 while ( _available.size() > 0 ) {
duke@435 2287 Node *n = ChooseNodeToBundle();
duke@435 2288 AddNodeToBundle(n,bb);
duke@435 2289 }
duke@435 2290
duke@435 2291 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
duke@435 2292 #ifdef ASSERT
duke@435 2293 for( uint l = _bb_start; l < _bb_end; l++ ) {
duke@435 2294 Node *n = bb->_nodes[l];
duke@435 2295 uint m;
duke@435 2296 for( m = 0; m < _bb_end-_bb_start; m++ )
duke@435 2297 if( _scheduled[m] == n )
duke@435 2298 break;
duke@435 2299 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
duke@435 2300 }
duke@435 2301 #endif
duke@435 2302
duke@435 2303 // Now copy the instructions (in reverse order) back to the block
duke@435 2304 for ( uint k = _bb_start; k < _bb_end; k++ )
duke@435 2305 bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
duke@435 2306
duke@435 2307 #ifndef PRODUCT
duke@435 2308 if (_cfg->C->trace_opto_output()) {
duke@435 2309 tty->print("# Schedule BB#%03d (final)\n", i);
duke@435 2310 uint current = 0;
duke@435 2311 for (uint j = 0; j < bb->_nodes.size(); j++) {
duke@435 2312 Node *n = bb->_nodes[j];
duke@435 2313 if( valid_bundle_info(n) ) {
duke@435 2314 Bundle *bundle = node_bundling(n);
duke@435 2315 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
duke@435 2316 tty->print("*** Bundle: ");
duke@435 2317 bundle->dump();
duke@435 2318 }
duke@435 2319 n->dump();
duke@435 2320 }
duke@435 2321 }
duke@435 2322 }
duke@435 2323 #endif
duke@435 2324 #ifdef ASSERT
duke@435 2325 verify_good_schedule(bb,"after block local scheduling");
duke@435 2326 #endif
duke@435 2327 }
duke@435 2328
duke@435 2329 #ifndef PRODUCT
duke@435 2330 if (_cfg->C->trace_opto_output())
duke@435 2331 tty->print("# <- DoScheduling\n");
duke@435 2332 #endif
duke@435 2333
duke@435 2334 // Record final node-bundling array location
duke@435 2335 _regalloc->C->set_node_bundling_base(_node_bundling_base);
duke@435 2336
duke@435 2337 } // end DoScheduling
duke@435 2338
duke@435 2339 //------------------------------verify_good_schedule---------------------------
duke@435 2340 // Verify that no live-range used in the block is killed in the block by a
duke@435 2341 // wrong DEF. This doesn't verify live-ranges that span blocks.
duke@435 2342
duke@435 2343 // Check for edge existence. Used to avoid adding redundant precedence edges.
duke@435 2344 static bool edge_from_to( Node *from, Node *to ) {
duke@435 2345 for( uint i=0; i<from->len(); i++ )
duke@435 2346 if( from->in(i) == to )
duke@435 2347 return true;
duke@435 2348 return false;
duke@435 2349 }
duke@435 2350
duke@435 2351 #ifdef ASSERT
duke@435 2352 //------------------------------verify_do_def----------------------------------
duke@435 2353 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
duke@435 2354 // Check for bad kills
duke@435 2355 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
duke@435 2356 Node *prior_use = _reg_node[def];
duke@435 2357 if( prior_use && !edge_from_to(prior_use,n) ) {
duke@435 2358 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
duke@435 2359 n->dump();
duke@435 2360 tty->print_cr("...");
duke@435 2361 prior_use->dump();
duke@435 2362 assert_msg(edge_from_to(prior_use,n),msg);
duke@435 2363 }
duke@435 2364 _reg_node.map(def,NULL); // Kill live USEs
duke@435 2365 }
duke@435 2366 }
duke@435 2367
duke@435 2368 //------------------------------verify_good_schedule---------------------------
duke@435 2369 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
duke@435 2370
duke@435 2371 // Zap to something reasonable for the verify code
duke@435 2372 _reg_node.clear();
duke@435 2373
duke@435 2374 // Walk over the block backwards. Check to make sure each DEF doesn't
duke@435 2375 // kill a live value (other than the one it's supposed to). Add each
duke@435 2376 // USE to the live set.
duke@435 2377 for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
duke@435 2378 Node *n = b->_nodes[i];
duke@435 2379 int n_op = n->Opcode();
duke@435 2380 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2381 // Fat-proj kills a slew of registers
duke@435 2382 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2383 while( rm.is_NotEmpty() ) {
duke@435 2384 OptoReg::Name kill = rm.find_first_elem();
duke@435 2385 rm.Remove(kill);
duke@435 2386 verify_do_def( n, kill, msg );
duke@435 2387 }
duke@435 2388 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
duke@435 2389 // Get DEF'd registers the normal way
duke@435 2390 verify_do_def( n, _regalloc->get_reg_first(n), msg );
duke@435 2391 verify_do_def( n, _regalloc->get_reg_second(n), msg );
duke@435 2392 }
duke@435 2393
duke@435 2394 // Now make all USEs live
duke@435 2395 for( uint i=1; i<n->req(); i++ ) {
duke@435 2396 Node *def = n->in(i);
duke@435 2397 assert(def != 0, "input edge required");
duke@435 2398 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
duke@435 2399 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
duke@435 2400 if( OptoReg::is_valid(reg_lo) ) {
duke@435 2401 assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
duke@435 2402 _reg_node.map(reg_lo,n);
duke@435 2403 }
duke@435 2404 if( OptoReg::is_valid(reg_hi) ) {
duke@435 2405 assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
duke@435 2406 _reg_node.map(reg_hi,n);
duke@435 2407 }
duke@435 2408 }
duke@435 2409
duke@435 2410 }
duke@435 2411
duke@435 2412 // Zap to something reasonable for the Antidependence code
duke@435 2413 _reg_node.clear();
duke@435 2414 }
duke@435 2415 #endif
duke@435 2416
duke@435 2417 // Conditionally add precedence edges. Avoid putting edges on Projs.
duke@435 2418 static void add_prec_edge_from_to( Node *from, Node *to ) {
duke@435 2419 if( from->is_Proj() ) { // Put precedence edge on Proj's input
duke@435 2420 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
duke@435 2421 from = from->in(0);
duke@435 2422 }
duke@435 2423 if( from != to && // No cycles (for things like LD L0,[L0+4] )
duke@435 2424 !edge_from_to( from, to ) ) // Avoid duplicate edge
duke@435 2425 from->add_prec(to);
duke@435 2426 }
duke@435 2427
duke@435 2428 //------------------------------anti_do_def------------------------------------
duke@435 2429 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
duke@435 2430 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
duke@435 2431 return;
duke@435 2432
duke@435 2433 Node *pinch = _reg_node[def_reg]; // Get pinch point
duke@435 2434 if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
duke@435 2435 is_def ) { // Check for a true def (not a kill)
duke@435 2436 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
duke@435 2437 return;
duke@435 2438 }
duke@435 2439
duke@435 2440 Node *kill = def; // Rename 'def' to more descriptive 'kill'
duke@435 2441 debug_only( def = (Node*)0xdeadbeef; )
duke@435 2442
duke@435 2443 // After some number of kills there _may_ be a later def
duke@435 2444 Node *later_def = NULL;
duke@435 2445
duke@435 2446 // Finding a kill requires a real pinch-point.
duke@435 2447 // Check for not already having a pinch-point.
duke@435 2448 // Pinch points are Op_Node's.
duke@435 2449 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
duke@435 2450 later_def = pinch; // Must be def/kill as optimistic pinch-point
duke@435 2451 if ( _pinch_free_list.size() > 0) {
duke@435 2452 pinch = _pinch_free_list.pop();
duke@435 2453 } else {
duke@435 2454 pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
duke@435 2455 }
duke@435 2456 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
duke@435 2457 _cfg->C->record_method_not_compilable("too many D-U pinch points");
duke@435 2458 return;
duke@435 2459 }
duke@435 2460 _bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init)
duke@435 2461 _reg_node.map(def_reg,pinch); // Record pinch-point
duke@435 2462 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
duke@435 2463 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
duke@435 2464 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
duke@435 2465 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
duke@435 2466 later_def = NULL; // and no later def
duke@435 2467 }
duke@435 2468 pinch->set_req(0,later_def); // Hook later def so we can find it
duke@435 2469 } else { // Else have valid pinch point
duke@435 2470 if( pinch->in(0) ) // If there is a later-def
duke@435 2471 later_def = pinch->in(0); // Get it
duke@435 2472 }
duke@435 2473
duke@435 2474 // Add output-dependence edge from later def to kill
duke@435 2475 if( later_def ) // If there is some original def
duke@435 2476 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
duke@435 2477
duke@435 2478 // See if current kill is also a use, and so is forced to be the pinch-point.
duke@435 2479 if( pinch->Opcode() == Op_Node ) {
duke@435 2480 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
duke@435 2481 for( uint i=1; i<uses->req(); i++ ) {
duke@435 2482 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
duke@435 2483 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
duke@435 2484 // Yes, found a use/kill pinch-point
duke@435 2485 pinch->set_req(0,NULL); //
duke@435 2486 pinch->replace_by(kill); // Move anti-dep edges up
duke@435 2487 pinch = kill;
duke@435 2488 _reg_node.map(def_reg,pinch);
duke@435 2489 return;
duke@435 2490 }
duke@435 2491 }
duke@435 2492 }
duke@435 2493
duke@435 2494 // Add edge from kill to pinch-point
duke@435 2495 add_prec_edge_from_to(kill,pinch);
duke@435 2496 }
duke@435 2497
duke@435 2498 //------------------------------anti_do_use------------------------------------
duke@435 2499 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
duke@435 2500 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
duke@435 2501 return;
duke@435 2502 Node *pinch = _reg_node[use_reg]; // Get pinch point
duke@435 2503 // Check for no later def_reg/kill in block
duke@435 2504 if( pinch && _bbs[pinch->_idx] == b &&
duke@435 2505 // Use has to be block-local as well
duke@435 2506 _bbs[use->_idx] == b ) {
duke@435 2507 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
duke@435 2508 pinch->req() == 1 ) { // pinch not yet in block?
duke@435 2509 pinch->del_req(0); // yank pointer to later-def, also set flag
duke@435 2510 // Insert the pinch-point in the block just after the last use
duke@435 2511 b->_nodes.insert(b->find_node(use)+1,pinch);
duke@435 2512 _bb_end++; // Increase size scheduled region in block
duke@435 2513 }
duke@435 2514
duke@435 2515 add_prec_edge_from_to(pinch,use);
duke@435 2516 }
duke@435 2517 }
duke@435 2518
duke@435 2519 //------------------------------ComputeRegisterAntidependences-----------------
duke@435 2520 // We insert antidependences between the reads and following write of
duke@435 2521 // allocated registers to prevent illegal code motion. Hopefully, the
duke@435 2522 // number of added references should be fairly small, especially as we
duke@435 2523 // are only adding references within the current basic block.
duke@435 2524 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
duke@435 2525
duke@435 2526 #ifdef ASSERT
duke@435 2527 verify_good_schedule(b,"before block local scheduling");
duke@435 2528 #endif
duke@435 2529
duke@435 2530 // A valid schedule, for each register independently, is an endless cycle
duke@435 2531 // of: a def, then some uses (connected to the def by true dependencies),
duke@435 2532 // then some kills (defs with no uses), finally the cycle repeats with a new
duke@435 2533 // def. The uses are allowed to float relative to each other, as are the
duke@435 2534 // kills. No use is allowed to slide past a kill (or def). This requires
duke@435 2535 // antidependencies between all uses of a single def and all kills that
duke@435 2536 // follow, up to the next def. More edges are redundant, because later defs
duke@435 2537 // & kills are already serialized with true or antidependencies. To keep
duke@435 2538 // the edge count down, we add a 'pinch point' node if there's more than
duke@435 2539 // one use or more than one kill/def.
duke@435 2540
duke@435 2541 // We add dependencies in one bottom-up pass.
duke@435 2542
duke@435 2543 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
duke@435 2544
duke@435 2545 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
duke@435 2546 // register. If not, we record the DEF/KILL in _reg_node, the
duke@435 2547 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
duke@435 2548 // "pinch point", a new Node that's in the graph but not in the block.
duke@435 2549 // We put edges from the prior and current DEF/KILLs to the pinch point.
duke@435 2550 // We put the pinch point in _reg_node. If there's already a pinch point
duke@435 2551 // we merely add an edge from the current DEF/KILL to the pinch point.
duke@435 2552
duke@435 2553 // After doing the DEF/KILLs, we handle USEs. For each used register, we
duke@435 2554 // put an edge from the pinch point to the USE.
duke@435 2555
duke@435 2556 // To be expedient, the _reg_node array is pre-allocated for the whole
duke@435 2557 // compilation. _reg_node is lazily initialized; it either contains a NULL,
duke@435 2558 // or a valid def/kill/pinch-point, or a leftover node from some prior
duke@435 2559 // block. Leftover node from some prior block is treated like a NULL (no
duke@435 2560 // prior def, so no anti-dependence needed). Valid def is distinguished by
duke@435 2561 // it being in the current block.
duke@435 2562 bool fat_proj_seen = false;
duke@435 2563 uint last_safept = _bb_end-1;
duke@435 2564 Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
duke@435 2565 Node* last_safept_node = end_node;
duke@435 2566 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
duke@435 2567 Node *n = b->_nodes[i];
duke@435 2568 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
duke@435 2569 if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2570 // Fat-proj kills a slew of registers
duke@435 2571 // This can add edges to 'n' and obscure whether or not it was a def,
duke@435 2572 // hence the is_def flag.
duke@435 2573 fat_proj_seen = true;
duke@435 2574 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2575 while( rm.is_NotEmpty() ) {
duke@435 2576 OptoReg::Name kill = rm.find_first_elem();
duke@435 2577 rm.Remove(kill);
duke@435 2578 anti_do_def( b, n, kill, is_def );
duke@435 2579 }
duke@435 2580 } else {
duke@435 2581 // Get DEF'd registers the normal way
duke@435 2582 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
duke@435 2583 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
duke@435 2584 }
duke@435 2585
duke@435 2586 // Check each register used by this instruction for a following DEF/KILL
duke@435 2587 // that must occur afterward and requires an anti-dependence edge.
duke@435 2588 for( uint j=0; j<n->req(); j++ ) {
duke@435 2589 Node *def = n->in(j);
duke@435 2590 if( def ) {
duke@435 2591 assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
duke@435 2592 anti_do_use( b, n, _regalloc->get_reg_first(def) );
duke@435 2593 anti_do_use( b, n, _regalloc->get_reg_second(def) );
duke@435 2594 }
duke@435 2595 }
duke@435 2596 // Do not allow defs of new derived values to float above GC
duke@435 2597 // points unless the base is definitely available at the GC point.
duke@435 2598
duke@435 2599 Node *m = b->_nodes[i];
duke@435 2600
duke@435 2601 // Add precedence edge from following safepoint to use of derived pointer
duke@435 2602 if( last_safept_node != end_node &&
duke@435 2603 m != last_safept_node) {
duke@435 2604 for (uint k = 1; k < m->req(); k++) {
duke@435 2605 const Type *t = m->in(k)->bottom_type();
duke@435 2606 if( t->isa_oop_ptr() &&
duke@435 2607 t->is_ptr()->offset() != 0 ) {
duke@435 2608 last_safept_node->add_prec( m );
duke@435 2609 break;
duke@435 2610 }
duke@435 2611 }
duke@435 2612 }
duke@435 2613
duke@435 2614 if( n->jvms() ) { // Precedence edge from derived to safept
duke@435 2615 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
duke@435 2616 if( b->_nodes[last_safept] != last_safept_node ) {
duke@435 2617 last_safept = b->find_node(last_safept_node);
duke@435 2618 }
duke@435 2619 for( uint j=last_safept; j > i; j-- ) {
duke@435 2620 Node *mach = b->_nodes[j];
duke@435 2621 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
duke@435 2622 mach->add_prec( n );
duke@435 2623 }
duke@435 2624 last_safept = i;
duke@435 2625 last_safept_node = m;
duke@435 2626 }
duke@435 2627 }
duke@435 2628
duke@435 2629 if (fat_proj_seen) {
duke@435 2630 // Garbage collect pinch nodes that were not consumed.
duke@435 2631 // They are usually created by a fat kill MachProj for a call.
duke@435 2632 garbage_collect_pinch_nodes();
duke@435 2633 }
duke@435 2634 }
duke@435 2635
duke@435 2636 //------------------------------garbage_collect_pinch_nodes-------------------------------
duke@435 2637
duke@435 2638 // Garbage collect pinch nodes for reuse by other blocks.
duke@435 2639 //
duke@435 2640 // The block scheduler's insertion of anti-dependence
duke@435 2641 // edges creates many pinch nodes when the block contains
duke@435 2642 // 2 or more Calls. A pinch node is used to prevent a
duke@435 2643 // combinatorial explosion of edges. If a set of kills for a
duke@435 2644 // register is anti-dependent on a set of uses (or defs), rather
duke@435 2645 // than adding an edge in the graph between each pair of kill
duke@435 2646 // and use (or def), a pinch is inserted between them:
duke@435 2647 //
duke@435 2648 // use1 use2 use3
duke@435 2649 // \ | /
duke@435 2650 // \ | /
duke@435 2651 // pinch
duke@435 2652 // / | \
duke@435 2653 // / | \
duke@435 2654 // kill1 kill2 kill3
duke@435 2655 //
duke@435 2656 // One pinch node is created per register killed when
duke@435 2657 // the second call is encountered during a backwards pass
duke@435 2658 // over the block. Most of these pinch nodes are never
duke@435 2659 // wired into the graph because the register is never
duke@435 2660 // used or def'ed in the block.
duke@435 2661 //
duke@435 2662 void Scheduling::garbage_collect_pinch_nodes() {
duke@435 2663 #ifndef PRODUCT
duke@435 2664 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
duke@435 2665 #endif
duke@435 2666 int trace_cnt = 0;
duke@435 2667 for (uint k = 0; k < _reg_node.Size(); k++) {
duke@435 2668 Node* pinch = _reg_node[k];
duke@435 2669 if (pinch != NULL && pinch->Opcode() == Op_Node &&
duke@435 2670 // no predecence input edges
duke@435 2671 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
duke@435 2672 cleanup_pinch(pinch);
duke@435 2673 _pinch_free_list.push(pinch);
duke@435 2674 _reg_node.map(k, NULL);
duke@435 2675 #ifndef PRODUCT
duke@435 2676 if (_cfg->C->trace_opto_output()) {
duke@435 2677 trace_cnt++;
duke@435 2678 if (trace_cnt > 40) {
duke@435 2679 tty->print("\n");
duke@435 2680 trace_cnt = 0;
duke@435 2681 }
duke@435 2682 tty->print(" %d", pinch->_idx);
duke@435 2683 }
duke@435 2684 #endif
duke@435 2685 }
duke@435 2686 }
duke@435 2687 #ifndef PRODUCT
duke@435 2688 if (_cfg->C->trace_opto_output()) tty->print("\n");
duke@435 2689 #endif
duke@435 2690 }
duke@435 2691
duke@435 2692 // Clean up a pinch node for reuse.
duke@435 2693 void Scheduling::cleanup_pinch( Node *pinch ) {
duke@435 2694 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
duke@435 2695
duke@435 2696 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
duke@435 2697 Node* use = pinch->last_out(i);
duke@435 2698 uint uses_found = 0;
duke@435 2699 for (uint j = use->req(); j < use->len(); j++) {
duke@435 2700 if (use->in(j) == pinch) {
duke@435 2701 use->rm_prec(j);
duke@435 2702 uses_found++;
duke@435 2703 }
duke@435 2704 }
duke@435 2705 assert(uses_found > 0, "must be a precedence edge");
duke@435 2706 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 2707 }
duke@435 2708 // May have a later_def entry
duke@435 2709 pinch->set_req(0, NULL);
duke@435 2710 }
duke@435 2711
duke@435 2712 //------------------------------print_statistics-------------------------------
duke@435 2713 #ifndef PRODUCT
duke@435 2714
duke@435 2715 void Scheduling::dump_available() const {
duke@435 2716 tty->print("#Availist ");
duke@435 2717 for (uint i = 0; i < _available.size(); i++)
duke@435 2718 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
duke@435 2719 tty->cr();
duke@435 2720 }
duke@435 2721
duke@435 2722 // Print Scheduling Statistics
duke@435 2723 void Scheduling::print_statistics() {
duke@435 2724 // Print the size added by nops for bundling
duke@435 2725 tty->print("Nops added %d bytes to total of %d bytes",
duke@435 2726 _total_nop_size, _total_method_size);
duke@435 2727 if (_total_method_size > 0)
duke@435 2728 tty->print(", for %.2f%%",
duke@435 2729 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
duke@435 2730 tty->print("\n");
duke@435 2731
duke@435 2732 // Print the number of branch shadows filled
duke@435 2733 if (Pipeline::_branch_has_delay_slot) {
duke@435 2734 tty->print("Of %d branches, %d had unconditional delay slots filled",
duke@435 2735 _total_branches, _total_unconditional_delays);
duke@435 2736 if (_total_branches > 0)
duke@435 2737 tty->print(", for %.2f%%",
duke@435 2738 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
duke@435 2739 tty->print("\n");
duke@435 2740 }
duke@435 2741
duke@435 2742 uint total_instructions = 0, total_bundles = 0;
duke@435 2743
duke@435 2744 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
duke@435 2745 uint bundle_count = _total_instructions_per_bundle[i];
duke@435 2746 total_instructions += bundle_count * i;
duke@435 2747 total_bundles += bundle_count;
duke@435 2748 }
duke@435 2749
duke@435 2750 if (total_bundles > 0)
duke@435 2751 tty->print("Average ILP (excluding nops) is %.2f\n",
duke@435 2752 ((double)total_instructions) / ((double)total_bundles));
duke@435 2753 }
duke@435 2754 #endif

mercurial