src/share/vm/memory/genCollectedHeap.cpp

Tue, 03 Mar 2020 12:57:23 +0000

author
andrew
date
Tue, 03 Mar 2020 12:57:23 +0000
changeset 9896
1b8c45b8216a
parent 9787
9f28a4cac6d9
parent 9858
b985cbb00e68
child 9931
fd44df5e3bc3
permissions
-rw-r--r--

Merge

duke@435 1 /*
cvarming@9661 2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/symbolTable.hpp"
stefank@2314 27 #include "classfile/systemDictionary.hpp"
stefank@2314 28 #include "classfile/vmSymbols.hpp"
mgerdin@7975 29 #include "code/codeCache.hpp"
stefank@2314 30 #include "code/icBuffer.hpp"
stefank@2314 31 #include "gc_implementation/shared/collectorCounters.hpp"
brutisso@6904 32 #include "gc_implementation/shared/gcTrace.hpp"
sla@5237 33 #include "gc_implementation/shared/gcTraceTime.hpp"
stefank@2314 34 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 35 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 36 #include "memory/filemap.hpp"
stefank@2314 37 #include "memory/gcLocker.inline.hpp"
stefank@2314 38 #include "memory/genCollectedHeap.hpp"
stefank@2314 39 #include "memory/genOopClosures.inline.hpp"
stefank@2314 40 #include "memory/generation.inline.hpp"
stefank@2314 41 #include "memory/generationSpec.hpp"
stefank@2314 42 #include "memory/resourceArea.hpp"
stefank@2314 43 #include "memory/sharedHeap.hpp"
stefank@2314 44 #include "memory/space.hpp"
stefank@2314 45 #include "oops/oop.inline.hpp"
stefank@2314 46 #include "oops/oop.inline2.hpp"
stefank@2314 47 #include "runtime/biasedLocking.hpp"
stefank@2314 48 #include "runtime/fprofiler.hpp"
stefank@2314 49 #include "runtime/handles.hpp"
stefank@2314 50 #include "runtime/handles.inline.hpp"
stefank@2314 51 #include "runtime/java.hpp"
stefank@2314 52 #include "runtime/vmThread.hpp"
mgerdin@7975 53 #include "services/management.hpp"
stefank@2314 54 #include "services/memoryService.hpp"
stefank@2314 55 #include "utilities/vmError.hpp"
stefank@2314 56 #include "utilities/workgroup.hpp"
jprovino@4542 57 #include "utilities/macros.hpp"
jprovino@4542 58 #if INCLUDE_ALL_GCS
stefank@2314 59 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
stefank@2314 60 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
jprovino@4542 61 #endif // INCLUDE_ALL_GCS
apetushkov@9858 62 #if INCLUDE_JFR
apetushkov@9858 63 #include "jfr/jfr.hpp"
apetushkov@9858 64 #endif // INCLUDE_JFR
duke@435 65
duke@435 66 GenCollectedHeap* GenCollectedHeap::_gch;
duke@435 67 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
duke@435 68
stefank@6992 69 // The set of potentially parallel tasks in root scanning.
stefank@6992 70 enum GCH_strong_roots_tasks {
mgerdin@7975 71 GCH_PS_Universe_oops_do,
mgerdin@7975 72 GCH_PS_JNIHandles_oops_do,
mgerdin@7975 73 GCH_PS_ObjectSynchronizer_oops_do,
mgerdin@7975 74 GCH_PS_FlatProfiler_oops_do,
mgerdin@7975 75 GCH_PS_Management_oops_do,
mgerdin@7975 76 GCH_PS_SystemDictionary_oops_do,
mgerdin@7975 77 GCH_PS_ClassLoaderDataGraph_oops_do,
mgerdin@7975 78 GCH_PS_jvmti_oops_do,
mgerdin@7975 79 GCH_PS_CodeCache_oops_do,
duke@435 80 GCH_PS_younger_gens,
duke@435 81 // Leave this one last.
duke@435 82 GCH_PS_NumElements
duke@435 83 };
duke@435 84
duke@435 85 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
duke@435 86 SharedHeap(policy),
duke@435 87 _gen_policy(policy),
mgerdin@7975 88 _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
duke@435 89 _full_collections_completed(0)
duke@435 90 {
duke@435 91 assert(policy != NULL, "Sanity check");
duke@435 92 }
duke@435 93
duke@435 94 jint GenCollectedHeap::initialize() {
ysr@1601 95 CollectedHeap::pre_initialize();
ysr@1601 96
duke@435 97 int i;
duke@435 98 _n_gens = gen_policy()->number_of_generations();
duke@435 99
duke@435 100 // While there are no constraints in the GC code that HeapWordSize
duke@435 101 // be any particular value, there are multiple other areas in the
duke@435 102 // system which believe this to be true (e.g. oop->object_size in some
duke@435 103 // cases incorrectly returns the size in wordSize units rather than
duke@435 104 // HeapWordSize).
duke@435 105 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
duke@435 106
duke@435 107 // The heap must be at least as aligned as generations.
stefank@5578 108 size_t gen_alignment = Generation::GenGrain;
duke@435 109
duke@435 110 _gen_specs = gen_policy()->generations();
duke@435 111
duke@435 112 // Make sure the sizes are all aligned.
duke@435 113 for (i = 0; i < _n_gens; i++) {
stefank@5578 114 _gen_specs[i]->align(gen_alignment);
duke@435 115 }
duke@435 116
duke@435 117 // Allocate space for the heap.
duke@435 118
duke@435 119 char* heap_address;
duke@435 120 size_t total_reserved = 0;
duke@435 121 int n_covered_regions = 0;
stefank@5578 122 ReservedSpace heap_rs;
duke@435 123
jwilhelm@6085 124 size_t heap_alignment = collector_policy()->heap_alignment();
stefank@5578 125
stefank@5578 126 heap_address = allocate(heap_alignment, &total_reserved,
duke@435 127 &n_covered_regions, &heap_rs);
duke@435 128
duke@435 129 if (!heap_rs.is_reserved()) {
duke@435 130 vm_shutdown_during_initialization(
duke@435 131 "Could not reserve enough space for object heap");
duke@435 132 return JNI_ENOMEM;
duke@435 133 }
duke@435 134
duke@435 135 _reserved = MemRegion((HeapWord*)heap_rs.base(),
duke@435 136 (HeapWord*)(heap_rs.base() + heap_rs.size()));
duke@435 137
duke@435 138 // It is important to do this in a way such that concurrent readers can't
duke@435 139 // temporarily think somethings in the heap. (Seen this happen in asserts.)
duke@435 140 _reserved.set_word_size(0);
duke@435 141 _reserved.set_start((HeapWord*)heap_rs.base());
coleenp@4037 142 size_t actual_heap_size = heap_rs.size();
duke@435 143 _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
duke@435 144
duke@435 145 _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
duke@435 146 set_barrier_set(rem_set()->bs());
ysr@1601 147
duke@435 148 _gch = this;
duke@435 149
duke@435 150 for (i = 0; i < _n_gens; i++) {
coleenp@4037 151 ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
duke@435 152 _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
duke@435 153 heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
duke@435 154 }
ysr@2243 155 clear_incremental_collection_failed();
duke@435 156
jprovino@4542 157 #if INCLUDE_ALL_GCS
duke@435 158 // If we are running CMS, create the collector responsible
duke@435 159 // for collecting the CMS generations.
duke@435 160 if (collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 161 bool success = create_cms_collector();
duke@435 162 if (!success) return JNI_ENOMEM;
duke@435 163 }
jprovino@4542 164 #endif // INCLUDE_ALL_GCS
duke@435 165
duke@435 166 return JNI_OK;
duke@435 167 }
duke@435 168
duke@435 169
duke@435 170 char* GenCollectedHeap::allocate(size_t alignment,
duke@435 171 size_t* _total_reserved,
duke@435 172 int* _n_covered_regions,
duke@435 173 ReservedSpace* heap_rs){
duke@435 174 const char overflow_msg[] = "The size of the object heap + VM data exceeds "
duke@435 175 "the maximum representable size";
duke@435 176
duke@435 177 // Now figure out the total size.
duke@435 178 size_t total_reserved = 0;
duke@435 179 int n_covered_regions = 0;
duke@435 180 const size_t pageSize = UseLargePages ?
duke@435 181 os::large_page_size() : os::vm_page_size();
duke@435 182
stefank@5578 183 assert(alignment % pageSize == 0, "Must be");
stefank@5578 184
duke@435 185 for (int i = 0; i < _n_gens; i++) {
duke@435 186 total_reserved += _gen_specs[i]->max_size();
duke@435 187 if (total_reserved < _gen_specs[i]->max_size()) {
duke@435 188 vm_exit_during_initialization(overflow_msg);
duke@435 189 }
duke@435 190 n_covered_regions += _gen_specs[i]->n_covered_regions();
duke@435 191 }
stefank@5578 192 assert(total_reserved % alignment == 0,
stefank@5578 193 err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
stefank@5578 194 SIZE_FORMAT, total_reserved, alignment));
duke@435 195
coleenp@4037 196 // Needed until the cardtable is fixed to have the right number
coleenp@4037 197 // of covered regions.
coleenp@4037 198 n_covered_regions += 2;
duke@435 199
stefank@5578 200 *_total_reserved = total_reserved;
stefank@5578 201 *_n_covered_regions = n_covered_regions;
duke@435 202
coleenp@4037 203 *heap_rs = Universe::reserve_heap(total_reserved, alignment);
coleenp@4037 204 return heap_rs->base();
duke@435 205 }
duke@435 206
duke@435 207
duke@435 208 void GenCollectedHeap::post_initialize() {
duke@435 209 SharedHeap::post_initialize();
duke@435 210 TwoGenerationCollectorPolicy *policy =
duke@435 211 (TwoGenerationCollectorPolicy *)collector_policy();
duke@435 212 guarantee(policy->is_two_generation_policy(), "Illegal policy type");
duke@435 213 DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
duke@435 214 assert(def_new_gen->kind() == Generation::DefNew ||
duke@435 215 def_new_gen->kind() == Generation::ParNew ||
duke@435 216 def_new_gen->kind() == Generation::ASParNew,
duke@435 217 "Wrong generation kind");
duke@435 218
duke@435 219 Generation* old_gen = get_gen(1);
duke@435 220 assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
duke@435 221 old_gen->kind() == Generation::ASConcurrentMarkSweep ||
duke@435 222 old_gen->kind() == Generation::MarkSweepCompact,
duke@435 223 "Wrong generation kind");
duke@435 224
duke@435 225 policy->initialize_size_policy(def_new_gen->eden()->capacity(),
duke@435 226 old_gen->capacity(),
duke@435 227 def_new_gen->from()->capacity());
duke@435 228 policy->initialize_gc_policy_counters();
duke@435 229 }
duke@435 230
duke@435 231 void GenCollectedHeap::ref_processing_init() {
duke@435 232 SharedHeap::ref_processing_init();
duke@435 233 for (int i = 0; i < _n_gens; i++) {
duke@435 234 _gens[i]->ref_processor_init();
duke@435 235 }
duke@435 236 }
duke@435 237
duke@435 238 size_t GenCollectedHeap::capacity() const {
duke@435 239 size_t res = 0;
duke@435 240 for (int i = 0; i < _n_gens; i++) {
duke@435 241 res += _gens[i]->capacity();
duke@435 242 }
duke@435 243 return res;
duke@435 244 }
duke@435 245
duke@435 246 size_t GenCollectedHeap::used() const {
duke@435 247 size_t res = 0;
duke@435 248 for (int i = 0; i < _n_gens; i++) {
duke@435 249 res += _gens[i]->used();
duke@435 250 }
duke@435 251 return res;
duke@435 252 }
duke@435 253
coleenp@4037 254 // Save the "used_region" for generations level and lower.
coleenp@4037 255 void GenCollectedHeap::save_used_regions(int level) {
duke@435 256 assert(level < _n_gens, "Illegal level parameter");
duke@435 257 for (int i = level; i >= 0; i--) {
duke@435 258 _gens[i]->save_used_region();
duke@435 259 }
duke@435 260 }
duke@435 261
duke@435 262 size_t GenCollectedHeap::max_capacity() const {
duke@435 263 size_t res = 0;
duke@435 264 for (int i = 0; i < _n_gens; i++) {
duke@435 265 res += _gens[i]->max_capacity();
duke@435 266 }
duke@435 267 return res;
duke@435 268 }
duke@435 269
duke@435 270 // Update the _full_collections_completed counter
duke@435 271 // at the end of a stop-world full GC.
duke@435 272 unsigned int GenCollectedHeap::update_full_collections_completed() {
duke@435 273 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
duke@435 274 assert(_full_collections_completed <= _total_full_collections,
duke@435 275 "Can't complete more collections than were started");
duke@435 276 _full_collections_completed = _total_full_collections;
duke@435 277 ml.notify_all();
duke@435 278 return _full_collections_completed;
duke@435 279 }
duke@435 280
duke@435 281 // Update the _full_collections_completed counter, as appropriate,
duke@435 282 // at the end of a concurrent GC cycle. Note the conditional update
duke@435 283 // below to allow this method to be called by a concurrent collector
duke@435 284 // without synchronizing in any manner with the VM thread (which
duke@435 285 // may already have initiated a STW full collection "concurrently").
duke@435 286 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
duke@435 287 MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
duke@435 288 assert((_full_collections_completed <= _total_full_collections) &&
duke@435 289 (count <= _total_full_collections),
duke@435 290 "Can't complete more collections than were started");
duke@435 291 if (count > _full_collections_completed) {
duke@435 292 _full_collections_completed = count;
duke@435 293 ml.notify_all();
duke@435 294 }
duke@435 295 return _full_collections_completed;
duke@435 296 }
duke@435 297
duke@435 298
duke@435 299 #ifndef PRODUCT
duke@435 300 // Override of memory state checking method in CollectedHeap:
duke@435 301 // Some collectors (CMS for example) can't have badHeapWordVal written
duke@435 302 // in the first two words of an object. (For instance , in the case of
duke@435 303 // CMS these words hold state used to synchronize between certain
duke@435 304 // (concurrent) GC steps and direct allocating mutators.)
duke@435 305 // The skip_header_HeapWords() method below, allows us to skip
duke@435 306 // over the requisite number of HeapWord's. Note that (for
duke@435 307 // generational collectors) this means that those many words are
duke@435 308 // skipped in each object, irrespective of the generation in which
duke@435 309 // that object lives. The resultant loss of precision seems to be
duke@435 310 // harmless and the pain of avoiding that imprecision appears somewhat
duke@435 311 // higher than we are prepared to pay for such rudimentary debugging
duke@435 312 // support.
duke@435 313 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
duke@435 314 size_t size) {
duke@435 315 if (CheckMemoryInitialization && ZapUnusedHeapArea) {
duke@435 316 // We are asked to check a size in HeapWords,
duke@435 317 // but the memory is mangled in juint words.
duke@435 318 juint* start = (juint*) (addr + skip_header_HeapWords());
duke@435 319 juint* end = (juint*) (addr + size);
duke@435 320 for (juint* slot = start; slot < end; slot += 1) {
duke@435 321 assert(*slot == badHeapWordVal,
duke@435 322 "Found non badHeapWordValue in pre-allocation check");
duke@435 323 }
duke@435 324 }
duke@435 325 }
duke@435 326 #endif
duke@435 327
duke@435 328 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
duke@435 329 bool is_tlab,
duke@435 330 bool first_only) {
duke@435 331 HeapWord* res;
duke@435 332 for (int i = 0; i < _n_gens; i++) {
duke@435 333 if (_gens[i]->should_allocate(size, is_tlab)) {
duke@435 334 res = _gens[i]->allocate(size, is_tlab);
duke@435 335 if (res != NULL) return res;
duke@435 336 else if (first_only) break;
duke@435 337 }
duke@435 338 }
duke@435 339 // Otherwise...
duke@435 340 return NULL;
duke@435 341 }
duke@435 342
duke@435 343 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
duke@435 344 bool* gc_overhead_limit_was_exceeded) {
duke@435 345 return collector_policy()->mem_allocate_work(size,
tonyp@2971 346 false /* is_tlab */,
duke@435 347 gc_overhead_limit_was_exceeded);
duke@435 348 }
duke@435 349
duke@435 350 bool GenCollectedHeap::must_clear_all_soft_refs() {
duke@435 351 return _gc_cause == GCCause::_last_ditch_collection;
duke@435 352 }
duke@435 353
duke@435 354 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
ysr@1875 355 return UseConcMarkSweepGC &&
ysr@1875 356 ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
ysr@1875 357 (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
duke@435 358 }
duke@435 359
duke@435 360 void GenCollectedHeap::do_collection(bool full,
duke@435 361 bool clear_all_soft_refs,
duke@435 362 size_t size,
duke@435 363 bool is_tlab,
duke@435 364 int max_level) {
duke@435 365 bool prepared_for_verification = false;
duke@435 366 ResourceMark rm;
duke@435 367 DEBUG_ONLY(Thread* my_thread = Thread::current();)
duke@435 368
duke@435 369 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
duke@435 370 assert(my_thread->is_VM_thread() ||
duke@435 371 my_thread->is_ConcurrentGC_thread(),
duke@435 372 "incorrect thread type capability");
jmasa@1822 373 assert(Heap_lock->is_locked(),
jmasa@1822 374 "the requesting thread should have the Heap_lock");
duke@435 375 guarantee(!is_gc_active(), "collection is not reentrant");
duke@435 376 assert(max_level < n_gens(), "sanity check");
duke@435 377
duke@435 378 if (GC_locker::check_active_before_gc()) {
duke@435 379 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
duke@435 380 }
duke@435 381
jmasa@1822 382 const bool do_clear_all_soft_refs = clear_all_soft_refs ||
jmasa@1822 383 collector_policy()->should_clear_all_soft_refs();
jmasa@1822 384
jmasa@1822 385 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
jmasa@1822 386
ehelin@6609 387 const size_t metadata_prev_used = MetaspaceAux::used_bytes();
duke@435 388
never@3499 389 print_heap_before_gc();
duke@435 390
duke@435 391 {
duke@435 392 FlagSetting fl(_is_gc_active, true);
duke@435 393
duke@435 394 bool complete = full && (max_level == (n_gens()-1));
brutisso@3767 395 const char* gc_cause_prefix = complete ? "Full GC" : "GC";
duke@435 396 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
brutisso@6904 397 // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
brutisso@6904 398 // so we can assume here that the next GC id is what we want.
brutisso@6904 399 GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
duke@435 400
duke@435 401 gc_prologue(complete);
duke@435 402 increment_total_collections(complete);
duke@435 403
duke@435 404 size_t gch_prev_used = used();
duke@435 405
duke@435 406 int starting_level = 0;
duke@435 407 if (full) {
duke@435 408 // Search for the oldest generation which will collect all younger
duke@435 409 // generations, and start collection loop there.
duke@435 410 for (int i = max_level; i >= 0; i--) {
duke@435 411 if (_gens[i]->full_collects_younger_generations()) {
duke@435 412 starting_level = i;
duke@435 413 break;
duke@435 414 }
duke@435 415 }
duke@435 416 }
duke@435 417
duke@435 418 bool must_restore_marks_for_biased_locking = false;
duke@435 419
duke@435 420 int max_level_collected = starting_level;
duke@435 421 for (int i = starting_level; i <= max_level; i++) {
duke@435 422 if (_gens[i]->should_collect(full, size, is_tlab)) {
dcubed@1315 423 if (i == n_gens() - 1) { // a major collection is to happen
dcubed@1315 424 if (!complete) {
dcubed@1315 425 // The full_collections increment was missed above.
dcubed@1315 426 increment_total_full_collections();
dcubed@1315 427 }
sla@5237 428 pre_full_gc_dump(NULL); // do any pre full gc dumps
dcubed@1315 429 }
duke@435 430 // Timer for individual generations. Last argument is false: no CR
sla@5237 431 // FIXME: We should try to start the timing earlier to cover more of the GC pause
brutisso@6904 432 // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
brutisso@6904 433 // so we can assume here that the next GC id is what we want.
brutisso@6904 434 GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL, GCId::peek());
duke@435 435 TraceCollectorStats tcs(_gens[i]->counters());
fparain@2888 436 TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
duke@435 437
duke@435 438 size_t prev_used = _gens[i]->used();
duke@435 439 _gens[i]->stat_record()->invocations++;
duke@435 440 _gens[i]->stat_record()->accumulated_time.start();
duke@435 441
jmasa@698 442 // Must be done anew before each collection because
jmasa@698 443 // a previous collection will do mangling and will
jmasa@698 444 // change top of some spaces.
jmasa@698 445 record_gen_tops_before_GC();
jmasa@698 446
duke@435 447 if (PrintGC && Verbose) {
duke@435 448 gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
duke@435 449 i,
duke@435 450 _gens[i]->stat_record()->invocations,
duke@435 451 size*HeapWordSize);
duke@435 452 }
duke@435 453
duke@435 454 if (VerifyBeforeGC && i >= VerifyGCLevel &&
duke@435 455 total_collections() >= VerifyGCStartAt) {
duke@435 456 HandleMark hm; // Discard invalid handles created during verification
duke@435 457 if (!prepared_for_verification) {
duke@435 458 prepare_for_verify();
duke@435 459 prepared_for_verification = true;
duke@435 460 }
stefank@5018 461 Universe::verify(" VerifyBeforeGC:");
duke@435 462 }
duke@435 463 COMPILER2_PRESENT(DerivedPointerTable::clear());
duke@435 464
duke@435 465 if (!must_restore_marks_for_biased_locking &&
duke@435 466 _gens[i]->performs_in_place_marking()) {
duke@435 467 // We perform this mark word preservation work lazily
duke@435 468 // because it's only at this point that we know whether we
duke@435 469 // absolutely have to do it; we want to avoid doing it for
duke@435 470 // scavenge-only collections where it's unnecessary
duke@435 471 must_restore_marks_for_biased_locking = true;
duke@435 472 BiasedLocking::preserve_marks();
duke@435 473 }
duke@435 474
duke@435 475 // Do collection work
duke@435 476 {
duke@435 477 // Note on ref discovery: For what appear to be historical reasons,
duke@435 478 // GCH enables and disabled (by enqueing) refs discovery.
duke@435 479 // In the future this should be moved into the generation's
duke@435 480 // collect method so that ref discovery and enqueueing concerns
duke@435 481 // are local to a generation. The collect method could return
duke@435 482 // an appropriate indication in the case that notification on
duke@435 483 // the ref lock was needed. This will make the treatment of
duke@435 484 // weak refs more uniform (and indeed remove such concerns
duke@435 485 // from GCH). XXX
duke@435 486
duke@435 487 HandleMark hm; // Discard invalid handles created during gc
duke@435 488 save_marks(); // save marks for all gens
duke@435 489 // We want to discover references, but not process them yet.
duke@435 490 // This mode is disabled in process_discovered_references if the
duke@435 491 // generation does some collection work, or in
duke@435 492 // enqueue_discovered_references if the generation returns
duke@435 493 // without doing any work.
duke@435 494 ReferenceProcessor* rp = _gens[i]->ref_processor();
duke@435 495 // If the discovery of ("weak") refs in this generation is
duke@435 496 // atomic wrt other collectors in this configuration, we
duke@435 497 // are guaranteed to have empty discovered ref lists.
duke@435 498 if (rp->discovery_is_atomic()) {
johnc@3175 499 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
jmasa@1822 500 rp->setup_policy(do_clear_all_soft_refs);
duke@435 501 } else {
ysr@888 502 // collect() below will enable discovery as appropriate
duke@435 503 }
jmasa@1822 504 _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
duke@435 505 if (!rp->enqueuing_is_done()) {
duke@435 506 rp->enqueue_discovered_references();
duke@435 507 } else {
duke@435 508 rp->set_enqueuing_is_done(false);
duke@435 509 }
duke@435 510 rp->verify_no_references_recorded();
duke@435 511 }
duke@435 512 max_level_collected = i;
duke@435 513
duke@435 514 // Determine if allocation request was met.
duke@435 515 if (size > 0) {
duke@435 516 if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
duke@435 517 if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
duke@435 518 size = 0;
duke@435 519 }
duke@435 520 }
duke@435 521 }
duke@435 522
duke@435 523 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
duke@435 524
duke@435 525 _gens[i]->stat_record()->accumulated_time.stop();
duke@435 526
duke@435 527 update_gc_stats(i, full);
duke@435 528
duke@435 529 if (VerifyAfterGC && i >= VerifyGCLevel &&
duke@435 530 total_collections() >= VerifyGCStartAt) {
duke@435 531 HandleMark hm; // Discard invalid handles created during verification
stefank@5018 532 Universe::verify(" VerifyAfterGC:");
duke@435 533 }
duke@435 534
duke@435 535 if (PrintGCDetails) {
duke@435 536 gclog_or_tty->print(":");
duke@435 537 _gens[i]->print_heap_change(prev_used);
duke@435 538 }
duke@435 539 }
duke@435 540 }
duke@435 541
duke@435 542 // Update "complete" boolean wrt what actually transpired --
duke@435 543 // for instance, a promotion failure could have led to
duke@435 544 // a whole heap collection.
duke@435 545 complete = complete || (max_level_collected == n_gens() - 1);
duke@435 546
ysr@1050 547 if (complete) { // We did a "major" collection
sla@5237 548 // FIXME: See comment at pre_full_gc_dump call
sla@5237 549 post_full_gc_dump(NULL); // do any post full gc dumps
ysr@1050 550 }
ysr@1050 551
duke@435 552 if (PrintGCDetails) {
duke@435 553 print_heap_change(gch_prev_used);
duke@435 554
coleenp@4037 555 // Print metaspace info for full GC with PrintGCDetails flag.
duke@435 556 if (complete) {
coleenp@4037 557 MetaspaceAux::print_metaspace_change(metadata_prev_used);
duke@435 558 }
duke@435 559 }
duke@435 560
duke@435 561 for (int j = max_level_collected; j >= 0; j -= 1) {
duke@435 562 // Adjust generation sizes.
duke@435 563 _gens[j]->compute_new_size();
duke@435 564 }
duke@435 565
duke@435 566 if (complete) {
mgerdin@4784 567 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
mgerdin@4784 568 ClassLoaderDataGraph::purge();
jmasa@5015 569 MetaspaceAux::verify_metrics();
coleenp@4037 570 // Resize the metaspace capacity after full collections
coleenp@4037 571 MetaspaceGC::compute_new_size();
duke@435 572 update_full_collections_completed();
duke@435 573 }
duke@435 574
duke@435 575 // Track memory usage and detect low memory after GC finishes
duke@435 576 MemoryService::track_memory_usage();
duke@435 577
duke@435 578 gc_epilogue(complete);
duke@435 579
duke@435 580 if (must_restore_marks_for_biased_locking) {
duke@435 581 BiasedLocking::restore_marks();
duke@435 582 }
duke@435 583 }
duke@435 584
duke@435 585 AdaptiveSizePolicy* sp = gen_policy()->size_policy();
duke@435 586 AdaptiveSizePolicyOutput(sp, total_collections());
duke@435 587
never@3499 588 print_heap_after_gc();
duke@435 589
jmasa@981 590 #ifdef TRACESPINNING
jmasa@981 591 ParallelTaskTerminator::print_termination_counts();
jmasa@981 592 #endif
duke@435 593 }
duke@435 594
duke@435 595 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
duke@435 596 return collector_policy()->satisfy_failed_allocation(size, is_tlab);
duke@435 597 }
duke@435 598
jmasa@3357 599 void GenCollectedHeap::set_par_threads(uint t) {
duke@435 600 SharedHeap::set_par_threads(t);
mgerdin@7975 601 set_n_termination(t);
duke@435 602 }
duke@435 603
mgerdin@7975 604 void GenCollectedHeap::set_n_termination(uint t) {
mgerdin@7975 605 _process_strong_tasks->set_n_threads(t);
mgerdin@7975 606 }
mgerdin@7975 607
mgerdin@7975 608 #ifdef ASSERT
mgerdin@7975 609 class AssertNonScavengableClosure: public OopClosure {
mgerdin@7975 610 public:
mgerdin@7975 611 virtual void do_oop(oop* p) {
mgerdin@7975 612 assert(!Universe::heap()->is_in_partial_collection(*p),
mgerdin@7975 613 "Referent should not be scavengable."); }
mgerdin@7975 614 virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
mgerdin@7975 615 };
mgerdin@7975 616 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
mgerdin@7975 617 #endif
mgerdin@7975 618
mgerdin@7975 619 void GenCollectedHeap::process_roots(bool activate_scope,
mgerdin@7975 620 ScanningOption so,
mgerdin@7975 621 OopClosure* strong_roots,
mgerdin@7975 622 OopClosure* weak_roots,
mgerdin@7975 623 CLDClosure* strong_cld_closure,
mgerdin@7975 624 CLDClosure* weak_cld_closure,
cvarming@9661 625 CodeBlobToOopClosure* code_roots) {
mgerdin@7975 626 StrongRootsScope srs(this, activate_scope);
jrose@1424 627
stefank@6992 628 // General roots.
mgerdin@7975 629 assert(_strong_roots_parity != 0, "must have called prologue code");
mgerdin@7975 630 assert(code_roots != NULL, "code root closure should always be set");
mgerdin@7975 631 // _n_termination for _process_strong_tasks should be set up stream
mgerdin@7975 632 // in a method not running in a GC worker. Otherwise the GC worker
mgerdin@7975 633 // could be trying to change the termination condition while the task
mgerdin@7975 634 // is executing in another GC worker.
mgerdin@7975 635
mgerdin@7975 636 if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
mgerdin@7975 637 ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
mgerdin@7975 638 }
mgerdin@7975 639
mgerdin@7975 640 // Some CLDs contained in the thread frames should be considered strong.
mgerdin@7975 641 // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
mgerdin@7975 642 CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
mgerdin@7975 643 // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
cvarming@9661 644 CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
mgerdin@7975 645
mgerdin@7975 646 Threads::possibly_parallel_oops_do(strong_roots, roots_from_clds_p, roots_from_code_p);
mgerdin@7975 647
mgerdin@7975 648 if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
mgerdin@7975 649 Universe::oops_do(strong_roots);
mgerdin@7975 650 }
mgerdin@7975 651 // Global (strong) JNI handles
mgerdin@7975 652 if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
mgerdin@7975 653 JNIHandles::oops_do(strong_roots);
mgerdin@7975 654 }
mgerdin@7975 655
mgerdin@7975 656 if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
mgerdin@7975 657 ObjectSynchronizer::oops_do(strong_roots);
mgerdin@7975 658 }
mgerdin@7975 659 if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
mgerdin@7975 660 FlatProfiler::oops_do(strong_roots);
mgerdin@7975 661 }
mgerdin@7975 662 if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
mgerdin@7975 663 Management::oops_do(strong_roots);
mgerdin@7975 664 }
mgerdin@7975 665 if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
mgerdin@7975 666 JvmtiExport::oops_do(strong_roots);
mgerdin@7975 667 }
mgerdin@7975 668
mgerdin@7975 669 if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
mgerdin@7975 670 SystemDictionary::roots_oops_do(strong_roots, weak_roots);
mgerdin@7975 671 }
mgerdin@7975 672
mgerdin@7975 673 // All threads execute the following. A specific chunk of buckets
mgerdin@7975 674 // from the StringTable are the individual tasks.
mgerdin@7975 675 if (weak_roots != NULL) {
mgerdin@7975 676 if (CollectedHeap::use_parallel_gc_threads()) {
mgerdin@7975 677 StringTable::possibly_parallel_oops_do(weak_roots);
mgerdin@7975 678 } else {
mgerdin@7975 679 StringTable::oops_do(weak_roots);
mgerdin@7975 680 }
mgerdin@7975 681 }
mgerdin@7975 682
mgerdin@7975 683 if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
mgerdin@7975 684 if (so & SO_ScavengeCodeCache) {
mgerdin@7975 685 assert(code_roots != NULL, "must supply closure for code cache");
mgerdin@7975 686
mgerdin@7975 687 // We only visit parts of the CodeCache when scavenging.
mgerdin@7975 688 CodeCache::scavenge_root_nmethods_do(code_roots);
mgerdin@7975 689 }
mgerdin@7975 690 if (so & SO_AllCodeCache) {
mgerdin@7975 691 assert(code_roots != NULL, "must supply closure for code cache");
mgerdin@7975 692
mgerdin@7975 693 // CMSCollector uses this to do intermediate-strength collections.
mgerdin@7975 694 // We scan the entire code cache, since CodeCache::do_unloading is not called.
mgerdin@7975 695 CodeCache::blobs_do(code_roots);
mgerdin@7975 696 }
mgerdin@7975 697 // Verify that the code cache contents are not subject to
mgerdin@7975 698 // movement by a scavenging collection.
mgerdin@7975 699 DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
mgerdin@7975 700 DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
mgerdin@7975 701 }
mgerdin@7975 702
mgerdin@7975 703 }
mgerdin@7975 704
mgerdin@7975 705 void GenCollectedHeap::gen_process_roots(int level,
mgerdin@7975 706 bool younger_gens_as_roots,
mgerdin@7975 707 bool activate_scope,
mgerdin@7975 708 ScanningOption so,
mgerdin@7975 709 bool only_strong_roots,
mgerdin@7975 710 OopsInGenClosure* not_older_gens,
mgerdin@7975 711 OopsInGenClosure* older_gens,
mgerdin@7975 712 CLDClosure* cld_closure) {
mgerdin@7975 713 const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
mgerdin@7975 714
mgerdin@7975 715 bool is_moving_collection = false;
mgerdin@7975 716 if (level == 0 || is_adjust_phase) {
mgerdin@7975 717 // young collections are always moving
mgerdin@7975 718 is_moving_collection = true;
mgerdin@7975 719 }
mgerdin@7975 720
mgerdin@7975 721 MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
mgerdin@7975 722 OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
mgerdin@7975 723 CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
mgerdin@7975 724
mgerdin@7975 725 process_roots(activate_scope, so,
mgerdin@7975 726 not_older_gens, weak_roots,
mgerdin@7975 727 cld_closure, weak_cld_closure,
mgerdin@7975 728 &mark_code_closure);
duke@435 729
duke@435 730 if (younger_gens_as_roots) {
mgerdin@7975 731 if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
duke@435 732 for (int i = 0; i < level; i++) {
duke@435 733 not_older_gens->set_generation(_gens[i]);
duke@435 734 _gens[i]->oop_iterate(not_older_gens);
duke@435 735 }
duke@435 736 not_older_gens->reset_generation();
duke@435 737 }
duke@435 738 }
duke@435 739 // When collection is parallel, all threads get to cooperate to do
duke@435 740 // older-gen scanning.
duke@435 741 for (int i = level+1; i < _n_gens; i++) {
duke@435 742 older_gens->set_generation(_gens[i]);
duke@435 743 rem_set()->younger_refs_iterate(_gens[i], older_gens);
duke@435 744 older_gens->reset_generation();
duke@435 745 }
duke@435 746
mgerdin@7975 747 _process_strong_tasks->all_tasks_completed();
stefank@6992 748 }
stefank@6992 749
stefank@6992 750
stefank@6971 751 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
stefank@9665 752 JNIHandles::weak_oops_do(root_closure);
apetushkov@9858 753 JFR_ONLY(Jfr::weak_oops_do(root_closure));
duke@435 754 for (int i = 0; i < _n_gens; i++) {
duke@435 755 _gens[i]->ref_processor()->weak_oops_do(root_closure);
duke@435 756 }
duke@435 757 }
duke@435 758
duke@435 759 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
duke@435 760 void GenCollectedHeap:: \
duke@435 761 oop_since_save_marks_iterate(int level, \
duke@435 762 OopClosureType* cur, \
duke@435 763 OopClosureType* older) { \
duke@435 764 _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur); \
duke@435 765 for (int i = level+1; i < n_gens(); i++) { \
duke@435 766 _gens[i]->oop_since_save_marks_iterate##nv_suffix(older); \
duke@435 767 } \
duke@435 768 }
duke@435 769
duke@435 770 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
duke@435 771
duke@435 772 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
duke@435 773
duke@435 774 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
duke@435 775 for (int i = level; i < _n_gens; i++) {
duke@435 776 if (!_gens[i]->no_allocs_since_save_marks()) return false;
duke@435 777 }
coleenp@4037 778 return true;
duke@435 779 }
duke@435 780
duke@435 781 bool GenCollectedHeap::supports_inline_contig_alloc() const {
duke@435 782 return _gens[0]->supports_inline_contig_alloc();
duke@435 783 }
duke@435 784
duke@435 785 HeapWord** GenCollectedHeap::top_addr() const {
duke@435 786 return _gens[0]->top_addr();
duke@435 787 }
duke@435 788
duke@435 789 HeapWord** GenCollectedHeap::end_addr() const {
duke@435 790 return _gens[0]->end_addr();
duke@435 791 }
duke@435 792
duke@435 793 // public collection interfaces
duke@435 794
duke@435 795 void GenCollectedHeap::collect(GCCause::Cause cause) {
duke@435 796 if (should_do_concurrent_full_gc(cause)) {
jprovino@4542 797 #if INCLUDE_ALL_GCS
duke@435 798 // mostly concurrent full collection
duke@435 799 collect_mostly_concurrent(cause);
jprovino@4542 800 #else // INCLUDE_ALL_GCS
duke@435 801 ShouldNotReachHere();
jprovino@4542 802 #endif // INCLUDE_ALL_GCS
kbarrett@9787 803 } else if ((cause == GCCause::_wb_young_gc) ||
kbarrett@9787 804 (cause == GCCause::_gc_locker)) {
kbarrett@9787 805 // minor collection for WhiteBox or GCLocker.
kbarrett@9787 806 // _gc_locker collections upgraded by GCLockerInvokesConcurrent
kbarrett@9787 807 // are handled above and never discarded.
tschatzl@7071 808 collect(cause, 0);
duke@435 809 } else {
duke@435 810 #ifdef ASSERT
tschatzl@7071 811 if (cause == GCCause::_scavenge_alot) {
tschatzl@7071 812 // minor collection only
tschatzl@7071 813 collect(cause, 0);
tschatzl@7071 814 } else {
tschatzl@7071 815 // Stop-the-world full collection
tschatzl@7071 816 collect(cause, n_gens() - 1);
tschatzl@7071 817 }
duke@435 818 #else
duke@435 819 // Stop-the-world full collection
duke@435 820 collect(cause, n_gens() - 1);
duke@435 821 #endif
duke@435 822 }
duke@435 823 }
duke@435 824
duke@435 825 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
duke@435 826 // The caller doesn't have the Heap_lock
duke@435 827 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
duke@435 828 MutexLocker ml(Heap_lock);
duke@435 829 collect_locked(cause, max_level);
duke@435 830 }
duke@435 831
duke@435 832 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
duke@435 833 // The caller has the Heap_lock
duke@435 834 assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
duke@435 835 collect_locked(cause, n_gens() - 1);
duke@435 836 }
duke@435 837
duke@435 838 // this is the private collection interface
duke@435 839 // The Heap_lock is expected to be held on entry.
duke@435 840
duke@435 841 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
duke@435 842 // Read the GC count while holding the Heap_lock
duke@435 843 unsigned int gc_count_before = total_collections();
duke@435 844 unsigned int full_gc_count_before = total_full_collections();
kbarrett@9787 845
kbarrett@9787 846 if (GC_locker::should_discard(cause, gc_count_before)) {
kbarrett@9787 847 return;
kbarrett@9787 848 }
kbarrett@9787 849
duke@435 850 {
duke@435 851 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
duke@435 852 VM_GenCollectFull op(gc_count_before, full_gc_count_before,
duke@435 853 cause, max_level);
duke@435 854 VMThread::execute(&op);
duke@435 855 }
duke@435 856 }
duke@435 857
jprovino@4542 858 #if INCLUDE_ALL_GCS
duke@435 859 bool GenCollectedHeap::create_cms_collector() {
duke@435 860
duke@435 861 assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
coleenp@4037 862 (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
duke@435 863 "Unexpected generation kinds");
duke@435 864 // Skip two header words in the block content verification
duke@435 865 NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
duke@435 866 CMSCollector* collector = new CMSCollector(
duke@435 867 (ConcurrentMarkSweepGeneration*)_gens[1],
duke@435 868 _rem_set->as_CardTableRS(),
duke@435 869 (ConcurrentMarkSweepPolicy*) collector_policy());
duke@435 870
duke@435 871 if (collector == NULL || !collector->completed_initialization()) {
duke@435 872 if (collector) {
duke@435 873 delete collector; // Be nice in embedded situation
duke@435 874 }
duke@435 875 vm_shutdown_during_initialization("Could not create CMS collector");
duke@435 876 return false;
duke@435 877 }
duke@435 878 return true; // success
duke@435 879 }
duke@435 880
duke@435 881 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
duke@435 882 assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
duke@435 883
duke@435 884 MutexLocker ml(Heap_lock);
duke@435 885 // Read the GC counts while holding the Heap_lock
duke@435 886 unsigned int full_gc_count_before = total_full_collections();
duke@435 887 unsigned int gc_count_before = total_collections();
duke@435 888 {
duke@435 889 MutexUnlocker mu(Heap_lock);
duke@435 890 VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
duke@435 891 VMThread::execute(&op);
duke@435 892 }
duke@435 893 }
jprovino@4542 894 #endif // INCLUDE_ALL_GCS
duke@435 895
coleenp@4037 896 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
coleenp@4037 897 do_full_collection(clear_all_soft_refs, _n_gens - 1);
coleenp@4037 898 }
duke@435 899
duke@435 900 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
duke@435 901 int max_level) {
duke@435 902
duke@435 903 do_collection(true /* full */,
duke@435 904 clear_all_soft_refs /* clear_all_soft_refs */,
duke@435 905 0 /* size */,
duke@435 906 false /* is_tlab */,
kbarrett@9787 907 max_level /* max_level */);
duke@435 908 // Hack XXX FIX ME !!!
duke@435 909 // A scavenge may not have been attempted, or may have
duke@435 910 // been attempted and failed, because the old gen was too full
kbarrett@9787 911 if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
duke@435 912 if (PrintGCDetails) {
duke@435 913 gclog_or_tty->print_cr("GC locker: Trying a full collection "
duke@435 914 "because scavenge failed");
duke@435 915 }
duke@435 916 // This time allow the old gen to be collected as well
duke@435 917 do_collection(true /* full */,
duke@435 918 clear_all_soft_refs /* clear_all_soft_refs */,
duke@435 919 0 /* size */,
duke@435 920 false /* is_tlab */,
duke@435 921 n_gens() - 1 /* max_level */);
duke@435 922 }
duke@435 923 }
duke@435 924
jmasa@2909 925 bool GenCollectedHeap::is_in_young(oop p) {
jmasa@2909 926 bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
jmasa@2909 927 assert(result == _gens[0]->is_in_reserved(p),
drchase@6680 928 err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, p2i((void*)p)));
jmasa@2909 929 return result;
jmasa@2909 930 }
jmasa@2909 931
stefank@3335 932 // Returns "TRUE" iff "p" points into the committed areas of the heap.
duke@435 933 bool GenCollectedHeap::is_in(const void* p) const {
duke@435 934 #ifndef ASSERT
johnc@4899 935 guarantee(VerifyBeforeGC ||
johnc@4899 936 VerifyDuringGC ||
johnc@4899 937 VerifyBeforeExit ||
johnc@4899 938 VerifyDuringStartup ||
johnc@4899 939 PrintAssembly ||
johnc@4899 940 tty->count() != 0 || // already printing
johnc@4899 941 VerifyAfterGC ||
bobv@2036 942 VMError::fatal_error_in_progress(), "too expensive");
bobv@2036 943
duke@435 944 #endif
duke@435 945 // This might be sped up with a cache of the last generation that
duke@435 946 // answered yes.
duke@435 947 for (int i = 0; i < _n_gens; i++) {
duke@435 948 if (_gens[i]->is_in(p)) return true;
duke@435 949 }
duke@435 950 // Otherwise...
duke@435 951 return false;
duke@435 952 }
duke@435 953
jmasa@2909 954 #ifdef ASSERT
jmasa@2909 955 // Don't implement this by using is_in_young(). This method is used
jmasa@2909 956 // in some cases to check that is_in_young() is correct.
jmasa@2909 957 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
jmasa@2909 958 assert(is_in_reserved(p) || p == NULL,
jmasa@2909 959 "Does not work if address is non-null and outside of the heap");
jmasa@2909 960 return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
duke@435 961 }
jmasa@2909 962 #endif
duke@435 963
coleenp@4037 964 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
duke@435 965 for (int i = 0; i < _n_gens; i++) {
duke@435 966 _gens[i]->oop_iterate(cl);
duke@435 967 }
duke@435 968 }
duke@435 969
duke@435 970 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
duke@435 971 for (int i = 0; i < _n_gens; i++) {
duke@435 972 _gens[i]->object_iterate(cl);
duke@435 973 }
duke@435 974 }
duke@435 975
jmasa@952 976 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
jmasa@952 977 for (int i = 0; i < _n_gens; i++) {
jmasa@952 978 _gens[i]->safe_object_iterate(cl);
jmasa@952 979 }
jmasa@952 980 }
jmasa@952 981
duke@435 982 Space* GenCollectedHeap::space_containing(const void* addr) const {
duke@435 983 for (int i = 0; i < _n_gens; i++) {
duke@435 984 Space* res = _gens[i]->space_containing(addr);
duke@435 985 if (res != NULL) return res;
duke@435 986 }
duke@435 987 // Otherwise...
duke@435 988 assert(false, "Could not find containing space");
duke@435 989 return NULL;
duke@435 990 }
duke@435 991
duke@435 992
duke@435 993 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
duke@435 994 assert(is_in_reserved(addr), "block_start of address outside of heap");
duke@435 995 for (int i = 0; i < _n_gens; i++) {
duke@435 996 if (_gens[i]->is_in_reserved(addr)) {
duke@435 997 assert(_gens[i]->is_in(addr),
duke@435 998 "addr should be in allocated part of generation");
duke@435 999 return _gens[i]->block_start(addr);
duke@435 1000 }
duke@435 1001 }
duke@435 1002 assert(false, "Some generation should contain the address");
duke@435 1003 return NULL;
duke@435 1004 }
duke@435 1005
duke@435 1006 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
duke@435 1007 assert(is_in_reserved(addr), "block_size of address outside of heap");
duke@435 1008 for (int i = 0; i < _n_gens; i++) {
duke@435 1009 if (_gens[i]->is_in_reserved(addr)) {
duke@435 1010 assert(_gens[i]->is_in(addr),
duke@435 1011 "addr should be in allocated part of generation");
duke@435 1012 return _gens[i]->block_size(addr);
duke@435 1013 }
duke@435 1014 }
duke@435 1015 assert(false, "Some generation should contain the address");
duke@435 1016 return 0;
duke@435 1017 }
duke@435 1018
duke@435 1019 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
duke@435 1020 assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
duke@435 1021 assert(block_start(addr) == addr, "addr must be a block start");
duke@435 1022 for (int i = 0; i < _n_gens; i++) {
duke@435 1023 if (_gens[i]->is_in_reserved(addr)) {
duke@435 1024 return _gens[i]->block_is_obj(addr);
duke@435 1025 }
duke@435 1026 }
duke@435 1027 assert(false, "Some generation should contain the address");
duke@435 1028 return false;
duke@435 1029 }
duke@435 1030
duke@435 1031 bool GenCollectedHeap::supports_tlab_allocation() const {
duke@435 1032 for (int i = 0; i < _n_gens; i += 1) {
duke@435 1033 if (_gens[i]->supports_tlab_allocation()) {
duke@435 1034 return true;
duke@435 1035 }
duke@435 1036 }
duke@435 1037 return false;
duke@435 1038 }
duke@435 1039
duke@435 1040 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
duke@435 1041 size_t result = 0;
duke@435 1042 for (int i = 0; i < _n_gens; i += 1) {
duke@435 1043 if (_gens[i]->supports_tlab_allocation()) {
duke@435 1044 result += _gens[i]->tlab_capacity();
duke@435 1045 }
duke@435 1046 }
duke@435 1047 return result;
duke@435 1048 }
duke@435 1049
brutisso@6376 1050 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
brutisso@6376 1051 size_t result = 0;
brutisso@6376 1052 for (int i = 0; i < _n_gens; i += 1) {
brutisso@6376 1053 if (_gens[i]->supports_tlab_allocation()) {
brutisso@6376 1054 result += _gens[i]->tlab_used();
brutisso@6376 1055 }
brutisso@6376 1056 }
brutisso@6376 1057 return result;
brutisso@6376 1058 }
brutisso@6376 1059
duke@435 1060 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
duke@435 1061 size_t result = 0;
duke@435 1062 for (int i = 0; i < _n_gens; i += 1) {
duke@435 1063 if (_gens[i]->supports_tlab_allocation()) {
duke@435 1064 result += _gens[i]->unsafe_max_tlab_alloc();
duke@435 1065 }
duke@435 1066 }
duke@435 1067 return result;
duke@435 1068 }
duke@435 1069
duke@435 1070 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
duke@435 1071 bool gc_overhead_limit_was_exceeded;
tonyp@2971 1072 return collector_policy()->mem_allocate_work(size /* size */,
tonyp@2971 1073 true /* is_tlab */,
tonyp@2971 1074 &gc_overhead_limit_was_exceeded);
duke@435 1075 }
duke@435 1076
duke@435 1077 // Requires "*prev_ptr" to be non-NULL. Deletes and a block of minimal size
duke@435 1078 // from the list headed by "*prev_ptr".
duke@435 1079 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
duke@435 1080 bool first = true;
duke@435 1081 size_t min_size = 0; // "first" makes this conceptually infinite.
duke@435 1082 ScratchBlock **smallest_ptr, *smallest;
duke@435 1083 ScratchBlock *cur = *prev_ptr;
duke@435 1084 while (cur) {
duke@435 1085 assert(*prev_ptr == cur, "just checking");
duke@435 1086 if (first || cur->num_words < min_size) {
duke@435 1087 smallest_ptr = prev_ptr;
duke@435 1088 smallest = cur;
duke@435 1089 min_size = smallest->num_words;
duke@435 1090 first = false;
duke@435 1091 }
duke@435 1092 prev_ptr = &cur->next;
duke@435 1093 cur = cur->next;
duke@435 1094 }
duke@435 1095 smallest = *smallest_ptr;
duke@435 1096 *smallest_ptr = smallest->next;
duke@435 1097 return smallest;
duke@435 1098 }
duke@435 1099
duke@435 1100 // Sort the scratch block list headed by res into decreasing size order,
duke@435 1101 // and set "res" to the result.
duke@435 1102 static void sort_scratch_list(ScratchBlock*& list) {
duke@435 1103 ScratchBlock* sorted = NULL;
duke@435 1104 ScratchBlock* unsorted = list;
duke@435 1105 while (unsorted) {
duke@435 1106 ScratchBlock *smallest = removeSmallestScratch(&unsorted);
duke@435 1107 smallest->next = sorted;
duke@435 1108 sorted = smallest;
duke@435 1109 }
duke@435 1110 list = sorted;
duke@435 1111 }
duke@435 1112
duke@435 1113 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
duke@435 1114 size_t max_alloc_words) {
duke@435 1115 ScratchBlock* res = NULL;
duke@435 1116 for (int i = 0; i < _n_gens; i++) {
duke@435 1117 _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
duke@435 1118 }
duke@435 1119 sort_scratch_list(res);
duke@435 1120 return res;
duke@435 1121 }
duke@435 1122
jmasa@698 1123 void GenCollectedHeap::release_scratch() {
jmasa@698 1124 for (int i = 0; i < _n_gens; i++) {
jmasa@698 1125 _gens[i]->reset_scratch();
jmasa@698 1126 }
jmasa@698 1127 }
jmasa@698 1128
duke@435 1129 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
duke@435 1130 void do_generation(Generation* gen) {
duke@435 1131 gen->prepare_for_verify();
duke@435 1132 }
duke@435 1133 };
duke@435 1134
duke@435 1135 void GenCollectedHeap::prepare_for_verify() {
duke@435 1136 ensure_parsability(false); // no need to retire TLABs
duke@435 1137 GenPrepareForVerifyClosure blk;
duke@435 1138 generation_iterate(&blk, false);
duke@435 1139 }
duke@435 1140
duke@435 1141
duke@435 1142 void GenCollectedHeap::generation_iterate(GenClosure* cl,
duke@435 1143 bool old_to_young) {
duke@435 1144 if (old_to_young) {
duke@435 1145 for (int i = _n_gens-1; i >= 0; i--) {
duke@435 1146 cl->do_generation(_gens[i]);
duke@435 1147 }
duke@435 1148 } else {
duke@435 1149 for (int i = 0; i < _n_gens; i++) {
duke@435 1150 cl->do_generation(_gens[i]);
duke@435 1151 }
duke@435 1152 }
duke@435 1153 }
duke@435 1154
duke@435 1155 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
duke@435 1156 for (int i = 0; i < _n_gens; i++) {
duke@435 1157 _gens[i]->space_iterate(cl, true);
duke@435 1158 }
duke@435 1159 }
duke@435 1160
duke@435 1161 bool GenCollectedHeap::is_maximal_no_gc() const {
coleenp@4037 1162 for (int i = 0; i < _n_gens; i++) {
duke@435 1163 if (!_gens[i]->is_maximal_no_gc()) {
duke@435 1164 return false;
duke@435 1165 }
duke@435 1166 }
duke@435 1167 return true;
duke@435 1168 }
duke@435 1169
duke@435 1170 void GenCollectedHeap::save_marks() {
duke@435 1171 for (int i = 0; i < _n_gens; i++) {
duke@435 1172 _gens[i]->save_marks();
duke@435 1173 }
duke@435 1174 }
duke@435 1175
duke@435 1176 GenCollectedHeap* GenCollectedHeap::heap() {
duke@435 1177 assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
duke@435 1178 assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
duke@435 1179 return _gch;
duke@435 1180 }
duke@435 1181
duke@435 1182
duke@435 1183 void GenCollectedHeap::prepare_for_compaction() {
brutisso@5516 1184 guarantee(_n_gens = 2, "Wrong number of generations");
brutisso@5516 1185 Generation* old_gen = _gens[1];
duke@435 1186 // Start by compacting into same gen.
tschatzl@7009 1187 CompactPoint cp(old_gen);
brutisso@5516 1188 old_gen->prepare_for_compaction(&cp);
brutisso@5516 1189 Generation* young_gen = _gens[0];
brutisso@5516 1190 young_gen->prepare_for_compaction(&cp);
duke@435 1191 }
duke@435 1192
duke@435 1193 GCStats* GenCollectedHeap::gc_stats(int level) const {
duke@435 1194 return _gens[level]->gc_stats();
duke@435 1195 }
duke@435 1196
brutisso@3711 1197 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
duke@435 1198 for (int i = _n_gens-1; i >= 0; i--) {
duke@435 1199 Generation* g = _gens[i];
duke@435 1200 if (!silent) {
drchase@6680 1201 gclog_or_tty->print("%s", g->name());
duke@435 1202 gclog_or_tty->print(" ");
duke@435 1203 }
brutisso@3711 1204 g->verify();
duke@435 1205 }
duke@435 1206 if (!silent) {
duke@435 1207 gclog_or_tty->print("remset ");
duke@435 1208 }
duke@435 1209 rem_set()->verify();
duke@435 1210 }
duke@435 1211
duke@435 1212 void GenCollectedHeap::print_on(outputStream* st) const {
duke@435 1213 for (int i = 0; i < _n_gens; i++) {
duke@435 1214 _gens[i]->print_on(st);
duke@435 1215 }
coleenp@4037 1216 MetaspaceAux::print_on(st);
duke@435 1217 }
duke@435 1218
duke@435 1219 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
duke@435 1220 if (workers() != NULL) {
duke@435 1221 workers()->threads_do(tc);
duke@435 1222 }
jprovino@4542 1223 #if INCLUDE_ALL_GCS
duke@435 1224 if (UseConcMarkSweepGC) {
duke@435 1225 ConcurrentMarkSweepThread::threads_do(tc);
duke@435 1226 }
jprovino@4542 1227 #endif // INCLUDE_ALL_GCS
duke@435 1228 }
duke@435 1229
duke@435 1230 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
jprovino@4542 1231 #if INCLUDE_ALL_GCS
duke@435 1232 if (UseParNewGC) {
duke@435 1233 workers()->print_worker_threads_on(st);
duke@435 1234 }
duke@435 1235 if (UseConcMarkSweepGC) {
duke@435 1236 ConcurrentMarkSweepThread::print_all_on(st);
duke@435 1237 }
jprovino@4542 1238 #endif // INCLUDE_ALL_GCS
duke@435 1239 }
duke@435 1240
stefank@4904 1241 void GenCollectedHeap::print_on_error(outputStream* st) const {
stefank@4904 1242 this->CollectedHeap::print_on_error(st);
stefank@4904 1243
stefank@4904 1244 #if INCLUDE_ALL_GCS
stefank@4904 1245 if (UseConcMarkSweepGC) {
stefank@4904 1246 st->cr();
stefank@4904 1247 CMSCollector::print_on_error(st);
stefank@4904 1248 }
stefank@4904 1249 #endif // INCLUDE_ALL_GCS
stefank@4904 1250 }
stefank@4904 1251
duke@435 1252 void GenCollectedHeap::print_tracing_info() const {
duke@435 1253 if (TraceGen0Time) {
duke@435 1254 get_gen(0)->print_summary_info();
duke@435 1255 }
duke@435 1256 if (TraceGen1Time) {
duke@435 1257 get_gen(1)->print_summary_info();
duke@435 1258 }
duke@435 1259 }
duke@435 1260
duke@435 1261 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
duke@435 1262 if (PrintGCDetails && Verbose) {
duke@435 1263 gclog_or_tty->print(" " SIZE_FORMAT
duke@435 1264 "->" SIZE_FORMAT
duke@435 1265 "(" SIZE_FORMAT ")",
duke@435 1266 prev_used, used(), capacity());
duke@435 1267 } else {
duke@435 1268 gclog_or_tty->print(" " SIZE_FORMAT "K"
duke@435 1269 "->" SIZE_FORMAT "K"
duke@435 1270 "(" SIZE_FORMAT "K)",
duke@435 1271 prev_used / K, used() / K, capacity() / K);
duke@435 1272 }
duke@435 1273 }
duke@435 1274
duke@435 1275 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
duke@435 1276 private:
duke@435 1277 bool _full;
duke@435 1278 public:
duke@435 1279 void do_generation(Generation* gen) {
duke@435 1280 gen->gc_prologue(_full);
duke@435 1281 }
duke@435 1282 GenGCPrologueClosure(bool full) : _full(full) {};
duke@435 1283 };
duke@435 1284
duke@435 1285 void GenCollectedHeap::gc_prologue(bool full) {
duke@435 1286 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
duke@435 1287
duke@435 1288 always_do_update_barrier = false;
duke@435 1289 // Fill TLAB's and such
duke@435 1290 CollectedHeap::accumulate_statistics_all_tlabs();
duke@435 1291 ensure_parsability(true); // retire TLABs
duke@435 1292
duke@435 1293 // Walk generations
duke@435 1294 GenGCPrologueClosure blk(full);
duke@435 1295 generation_iterate(&blk, false); // not old-to-young.
duke@435 1296 };
duke@435 1297
duke@435 1298 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
duke@435 1299 private:
duke@435 1300 bool _full;
duke@435 1301 public:
duke@435 1302 void do_generation(Generation* gen) {
duke@435 1303 gen->gc_epilogue(_full);
duke@435 1304 }
duke@435 1305 GenGCEpilogueClosure(bool full) : _full(full) {};
duke@435 1306 };
duke@435 1307
duke@435 1308 void GenCollectedHeap::gc_epilogue(bool full) {
duke@435 1309 #ifdef COMPILER2
duke@435 1310 assert(DerivedPointerTable::is_empty(), "derived pointer present");
duke@435 1311 size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
duke@435 1312 guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
duke@435 1313 #endif /* COMPILER2 */
duke@435 1314
duke@435 1315 resize_all_tlabs();
duke@435 1316
duke@435 1317 GenGCEpilogueClosure blk(full);
duke@435 1318 generation_iterate(&blk, false); // not old-to-young.
duke@435 1319
jcoomes@2996 1320 if (!CleanChunkPoolAsync) {
jcoomes@2996 1321 Chunk::clean_chunk_pool();
jcoomes@2996 1322 }
jcoomes@2996 1323
coleenp@4037 1324 MetaspaceCounters::update_performance_counters();
ehelin@5531 1325 CompressedClassSpaceCounters::update_performance_counters();
coleenp@4037 1326
duke@435 1327 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 1328 };
duke@435 1329
jmasa@698 1330 #ifndef PRODUCT
jmasa@698 1331 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
jmasa@698 1332 private:
jmasa@698 1333 public:
jmasa@698 1334 void do_generation(Generation* gen) {
jmasa@698 1335 gen->record_spaces_top();
jmasa@698 1336 }
jmasa@698 1337 };
jmasa@698 1338
jmasa@698 1339 void GenCollectedHeap::record_gen_tops_before_GC() {
jmasa@698 1340 if (ZapUnusedHeapArea) {
jmasa@698 1341 GenGCSaveTopsBeforeGCClosure blk;
jmasa@698 1342 generation_iterate(&blk, false); // not old-to-young.
jmasa@698 1343 }
jmasa@698 1344 }
jmasa@698 1345 #endif // not PRODUCT
jmasa@698 1346
duke@435 1347 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
duke@435 1348 public:
duke@435 1349 void do_generation(Generation* gen) {
duke@435 1350 gen->ensure_parsability();
duke@435 1351 }
duke@435 1352 };
duke@435 1353
duke@435 1354 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
duke@435 1355 CollectedHeap::ensure_parsability(retire_tlabs);
duke@435 1356 GenEnsureParsabilityClosure ep_cl;
duke@435 1357 generation_iterate(&ep_cl, false);
duke@435 1358 }
duke@435 1359
brutisso@5516 1360 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
duke@435 1361 oop obj,
coleenp@548 1362 size_t obj_size) {
brutisso@5516 1363 guarantee(old_gen->level() == 1, "We only get here with an old generation");
duke@435 1364 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
duke@435 1365 HeapWord* result = NULL;
duke@435 1366
brutisso@5516 1367 result = old_gen->expand_and_allocate(obj_size, false);
duke@435 1368
duke@435 1369 if (result != NULL) {
duke@435 1370 Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
duke@435 1371 }
duke@435 1372 return oop(result);
duke@435 1373 }
duke@435 1374
duke@435 1375 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
duke@435 1376 jlong _time; // in ms
duke@435 1377 jlong _now; // in ms
duke@435 1378
duke@435 1379 public:
duke@435 1380 GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
duke@435 1381
duke@435 1382 jlong time() { return _time; }
duke@435 1383
duke@435 1384 void do_generation(Generation* gen) {
duke@435 1385 _time = MIN2(_time, gen->time_of_last_gc(_now));
duke@435 1386 }
duke@435 1387 };
duke@435 1388
duke@435 1389 jlong GenCollectedHeap::millis_since_last_gc() {
johnc@3339 1390 // We need a monotonically non-deccreasing time in ms but
johnc@3339 1391 // os::javaTimeMillis() does not guarantee monotonicity.
johnc@3339 1392 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
duke@435 1393 GenTimeOfLastGCClosure tolgc_cl(now);
duke@435 1394 // iterate over generations getting the oldest
duke@435 1395 // time that a generation was collected
duke@435 1396 generation_iterate(&tolgc_cl, false);
johnc@3339 1397
johnc@3339 1398 // javaTimeNanos() is guaranteed to be monotonically non-decreasing
johnc@3339 1399 // provided the underlying platform provides such a time source
johnc@3339 1400 // (and it is bug free). So we still have to guard against getting
johnc@3339 1401 // back a time later than 'now'.
duke@435 1402 jlong retVal = now - tolgc_cl.time();
duke@435 1403 if (retVal < 0) {
drchase@6680 1404 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
duke@435 1405 return 0;
duke@435 1406 }
duke@435 1407 return retVal;
duke@435 1408 }

mercurial