src/share/vm/memory/generation.hpp

Wed, 09 Jul 2008 15:08:55 -0700

author
jmasa
date
Wed, 09 Jul 2008 15:08:55 -0700
changeset 698
12eea04c8b06
parent 548
ba764ed4b6f2
child 704
850fdf70db2b
permissions
-rw-r--r--

6672698: mangle_unused_area() should not remangle the entire heap at each collection.
Summary: Maintain a high water mark for the allocations in a space and mangle only up to that high water mark.
Reviewed-by: ysr, apetrusenko

duke@435 1 /*
duke@435 2 * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // A Generation models a heap area for similarly-aged objects.
duke@435 26 // It will contain one ore more spaces holding the actual objects.
duke@435 27 //
duke@435 28 // The Generation class hierarchy:
duke@435 29 //
duke@435 30 // Generation - abstract base class
duke@435 31 // - DefNewGeneration - allocation area (copy collected)
duke@435 32 // - ParNewGeneration - a DefNewGeneration that is collected by
duke@435 33 // several threads
duke@435 34 // - CardGeneration - abstract class adding offset array behavior
duke@435 35 // - OneContigSpaceCardGeneration - abstract class holding a single
duke@435 36 // contiguous space with card marking
duke@435 37 // - TenuredGeneration - tenured (old object) space (markSweepCompact)
duke@435 38 // - CompactingPermGenGen - reflective object area (klasses, methods, symbols, ...)
duke@435 39 // - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
duke@435 40 // (Detlefs-Printezis refinement of
duke@435 41 // Boehm-Demers-Schenker)
duke@435 42 //
duke@435 43 // The system configurations currently allowed are:
duke@435 44 //
duke@435 45 // DefNewGeneration + TenuredGeneration + PermGeneration
duke@435 46 // DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
duke@435 47 //
duke@435 48 // ParNewGeneration + TenuredGeneration + PermGeneration
duke@435 49 // ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
duke@435 50 //
duke@435 51
duke@435 52 class DefNewGeneration;
duke@435 53 class GenerationSpec;
duke@435 54 class CompactibleSpace;
duke@435 55 class ContiguousSpace;
duke@435 56 class CompactPoint;
duke@435 57 class OopsInGenClosure;
duke@435 58 class OopClosure;
duke@435 59 class ScanClosure;
duke@435 60 class FastScanClosure;
duke@435 61 class GenCollectedHeap;
duke@435 62 class GenRemSet;
duke@435 63 class GCStats;
duke@435 64
duke@435 65 // A "ScratchBlock" represents a block of memory in one generation usable by
duke@435 66 // another. It represents "num_words" free words, starting at and including
duke@435 67 // the address of "this".
duke@435 68 struct ScratchBlock {
duke@435 69 ScratchBlock* next;
duke@435 70 size_t num_words;
duke@435 71 HeapWord scratch_space[1]; // Actually, of size "num_words-2" (assuming
duke@435 72 // first two fields are word-sized.)
duke@435 73 };
duke@435 74
duke@435 75
duke@435 76 class Generation: public CHeapObj {
duke@435 77 friend class VMStructs;
duke@435 78 private:
duke@435 79 jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
duke@435 80 MemRegion _prev_used_region; // for collectors that want to "remember" a value for
duke@435 81 // used region at some specific point during collection.
duke@435 82
duke@435 83 protected:
duke@435 84 // Minimum and maximum addresses for memory reserved (not necessarily
duke@435 85 // committed) for generation.
duke@435 86 // Used by card marking code. Must not overlap with address ranges of
duke@435 87 // other generations.
duke@435 88 MemRegion _reserved;
duke@435 89
duke@435 90 // Memory area reserved for generation
duke@435 91 VirtualSpace _virtual_space;
duke@435 92
duke@435 93 // Level in the generation hierarchy.
duke@435 94 int _level;
duke@435 95
duke@435 96 // ("Weak") Reference processing support
duke@435 97 ReferenceProcessor* _ref_processor;
duke@435 98
duke@435 99 // Performance Counters
duke@435 100 CollectorCounters* _gc_counters;
duke@435 101
duke@435 102 // Statistics for garbage collection
duke@435 103 GCStats* _gc_stats;
duke@435 104
duke@435 105 // Returns the next generation in the configuration, or else NULL if this
duke@435 106 // is the highest generation.
duke@435 107 Generation* next_gen() const;
duke@435 108
duke@435 109 // Initialize the generation.
duke@435 110 Generation(ReservedSpace rs, size_t initial_byte_size, int level);
duke@435 111
duke@435 112 // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
duke@435 113 // "sp" that point into younger generations.
duke@435 114 // The iteration is only over objects allocated at the start of the
duke@435 115 // iterations; objects allocated as a result of applying the closure are
duke@435 116 // not included.
duke@435 117 void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
duke@435 118
duke@435 119 public:
duke@435 120 // The set of possible generation kinds.
duke@435 121 enum Name {
duke@435 122 ASParNew,
duke@435 123 ASConcurrentMarkSweep,
duke@435 124 DefNew,
duke@435 125 ParNew,
duke@435 126 MarkSweepCompact,
duke@435 127 ConcurrentMarkSweep,
duke@435 128 Other
duke@435 129 };
duke@435 130
duke@435 131 enum SomePublicConstants {
duke@435 132 // Generations are GenGrain-aligned and have size that are multiples of
duke@435 133 // GenGrain.
duke@435 134 LogOfGenGrain = 16,
duke@435 135 GenGrain = 1 << LogOfGenGrain
duke@435 136 };
duke@435 137
duke@435 138 // allocate and initialize ("weak") refs processing support
duke@435 139 virtual void ref_processor_init();
duke@435 140 void set_ref_processor(ReferenceProcessor* rp) {
duke@435 141 assert(_ref_processor == NULL, "clobbering existing _ref_processor");
duke@435 142 _ref_processor = rp;
duke@435 143 }
duke@435 144
duke@435 145 virtual Generation::Name kind() { return Generation::Other; }
duke@435 146 GenerationSpec* spec();
duke@435 147
duke@435 148 // This properly belongs in the collector, but for now this
duke@435 149 // will do.
duke@435 150 virtual bool refs_discovery_is_atomic() const { return true; }
duke@435 151 virtual bool refs_discovery_is_mt() const { return false; }
duke@435 152
duke@435 153 // Space enquiries (results in bytes)
duke@435 154 virtual size_t capacity() const = 0; // The maximum number of object bytes the
duke@435 155 // generation can currently hold.
duke@435 156 virtual size_t used() const = 0; // The number of used bytes in the gen.
duke@435 157 virtual size_t free() const = 0; // The number of free bytes in the gen.
duke@435 158
duke@435 159 // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
duke@435 160 // Returns the total number of bytes available in a generation
duke@435 161 // for the allocation of objects.
duke@435 162 virtual size_t max_capacity() const;
duke@435 163
duke@435 164 // If this is a young generation, the maximum number of bytes that can be
duke@435 165 // allocated in this generation before a GC is triggered.
duke@435 166 virtual size_t capacity_before_gc() const { return 0; }
duke@435 167
duke@435 168 // The largest number of contiguous free bytes in the generation,
duke@435 169 // including expansion (Assumes called at a safepoint.)
duke@435 170 virtual size_t contiguous_available() const = 0;
duke@435 171 // The largest number of contiguous free bytes in this or any higher generation.
duke@435 172 virtual size_t max_contiguous_available() const;
duke@435 173
duke@435 174 // Returns true if promotions of the specified amount can
duke@435 175 // be attempted safely (without a vm failure).
duke@435 176 // Promotion of the full amount is not guaranteed but
duke@435 177 // can be attempted.
duke@435 178 // younger_handles_promotion_failure
duke@435 179 // is true if the younger generation handles a promotion
duke@435 180 // failure.
duke@435 181 virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
duke@435 182 bool younger_handles_promotion_failure) const;
duke@435 183
duke@435 184 // Return an estimate of the maximum allocation that could be performed
duke@435 185 // in the generation without triggering any collection or expansion
duke@435 186 // activity. It is "unsafe" because no locks are taken; the result
duke@435 187 // should be treated as an approximation, not a guarantee, for use in
duke@435 188 // heuristic resizing decisions.
duke@435 189 virtual size_t unsafe_max_alloc_nogc() const = 0;
duke@435 190
duke@435 191 // Returns true if this generation cannot be expanded further
duke@435 192 // without a GC. Override as appropriate.
duke@435 193 virtual bool is_maximal_no_gc() const {
duke@435 194 return _virtual_space.uncommitted_size() == 0;
duke@435 195 }
duke@435 196
duke@435 197 MemRegion reserved() const { return _reserved; }
duke@435 198
duke@435 199 // Returns a region guaranteed to contain all the objects in the
duke@435 200 // generation.
duke@435 201 virtual MemRegion used_region() const { return _reserved; }
duke@435 202
duke@435 203 MemRegion prev_used_region() const { return _prev_used_region; }
duke@435 204 virtual void save_used_region() { _prev_used_region = used_region(); }
duke@435 205
duke@435 206 // Returns "TRUE" iff "p" points into an allocated object in the generation.
duke@435 207 // For some kinds of generations, this may be an expensive operation.
duke@435 208 // To avoid performance problems stemming from its inadvertent use in
duke@435 209 // product jvm's, we restrict its use to assertion checking or
duke@435 210 // verification only.
duke@435 211 virtual bool is_in(const void* p) const;
duke@435 212
duke@435 213 /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
duke@435 214 bool is_in_reserved(const void* p) const {
duke@435 215 return _reserved.contains(p);
duke@435 216 }
duke@435 217
duke@435 218 // Check that the generation kind is DefNewGeneration or a sub
duke@435 219 // class of DefNewGeneration and return a DefNewGeneration*
duke@435 220 DefNewGeneration* as_DefNewGeneration();
duke@435 221
duke@435 222 // If some space in the generation contains the given "addr", return a
duke@435 223 // pointer to that space, else return "NULL".
duke@435 224 virtual Space* space_containing(const void* addr) const;
duke@435 225
duke@435 226 // Iteration - do not use for time critical operations
duke@435 227 virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
duke@435 228
duke@435 229 // Returns the first space, if any, in the generation that can participate
duke@435 230 // in compaction, or else "NULL".
duke@435 231 virtual CompactibleSpace* first_compaction_space() const = 0;
duke@435 232
duke@435 233 // Returns "true" iff this generation should be used to allocate an
duke@435 234 // object of the given size. Young generations might
duke@435 235 // wish to exclude very large objects, for example, since, if allocated
duke@435 236 // often, they would greatly increase the frequency of young-gen
duke@435 237 // collection.
duke@435 238 virtual bool should_allocate(size_t word_size, bool is_tlab) {
duke@435 239 bool result = false;
duke@435 240 size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
duke@435 241 if (!is_tlab || supports_tlab_allocation()) {
duke@435 242 result = (word_size > 0) && (word_size < overflow_limit);
duke@435 243 }
duke@435 244 return result;
duke@435 245 }
duke@435 246
duke@435 247 // Allocate and returns a block of the requested size, or returns "NULL".
duke@435 248 // Assumes the caller has done any necessary locking.
duke@435 249 virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
duke@435 250
duke@435 251 // Like "allocate", but performs any necessary locking internally.
duke@435 252 virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
duke@435 253
duke@435 254 // A 'younger' gen has reached an allocation limit, and uses this to notify
duke@435 255 // the next older gen. The return value is a new limit, or NULL if none. The
duke@435 256 // caller must do the necessary locking.
duke@435 257 virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
duke@435 258 size_t word_size) {
duke@435 259 return NULL;
duke@435 260 }
duke@435 261
duke@435 262 // Some generation may offer a region for shared, contiguous allocation,
duke@435 263 // via inlined code (by exporting the address of the top and end fields
duke@435 264 // defining the extent of the contiguous allocation region.)
duke@435 265
duke@435 266 // This function returns "true" iff the heap supports this kind of
duke@435 267 // allocation. (More precisely, this means the style of allocation that
duke@435 268 // increments *top_addr()" with a CAS.) (Default is "no".)
duke@435 269 // A generation that supports this allocation style must use lock-free
duke@435 270 // allocation for *all* allocation, since there are times when lock free
duke@435 271 // allocation will be concurrent with plain "allocate" calls.
duke@435 272 virtual bool supports_inline_contig_alloc() const { return false; }
duke@435 273
duke@435 274 // These functions return the addresses of the fields that define the
duke@435 275 // boundaries of the contiguous allocation area. (These fields should be
duke@435 276 // physicall near to one another.)
duke@435 277 virtual HeapWord** top_addr() const { return NULL; }
duke@435 278 virtual HeapWord** end_addr() const { return NULL; }
duke@435 279
duke@435 280 // Thread-local allocation buffers
duke@435 281 virtual bool supports_tlab_allocation() const { return false; }
duke@435 282 virtual size_t tlab_capacity() const {
duke@435 283 guarantee(false, "Generation doesn't support thread local allocation buffers");
duke@435 284 return 0;
duke@435 285 }
duke@435 286 virtual size_t unsafe_max_tlab_alloc() const {
duke@435 287 guarantee(false, "Generation doesn't support thread local allocation buffers");
duke@435 288 return 0;
duke@435 289 }
duke@435 290
duke@435 291 // "obj" is the address of an object in a younger generation. Allocate space
duke@435 292 // for "obj" in the current (or some higher) generation, and copy "obj" into
duke@435 293 // the newly allocated space, if possible, returning the result (or NULL if
duke@435 294 // the allocation failed).
duke@435 295 //
duke@435 296 // The "obj_size" argument is just obj->size(), passed along so the caller can
duke@435 297 // avoid repeating the virtual call to retrieve it.
coleenp@548 298 virtual oop promote(oop obj, size_t obj_size);
duke@435 299
duke@435 300 // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
duke@435 301 // object "obj", whose original mark word was "m", and whose size is
duke@435 302 // "word_sz". If possible, allocate space for "obj", copy obj into it
duke@435 303 // (taking care to copy "m" into the mark word when done, since the mark
duke@435 304 // word of "obj" may have been overwritten with a forwarding pointer, and
duke@435 305 // also taking care to copy the klass pointer *last*. Returns the new
duke@435 306 // object if successful, or else NULL.
duke@435 307 virtual oop par_promote(int thread_num,
duke@435 308 oop obj, markOop m, size_t word_sz);
duke@435 309
duke@435 310 // Undo, if possible, the most recent par_promote_alloc allocation by
duke@435 311 // "thread_num" ("obj", of "word_sz").
duke@435 312 virtual void par_promote_alloc_undo(int thread_num,
duke@435 313 HeapWord* obj, size_t word_sz);
duke@435 314
duke@435 315 // Informs the current generation that all par_promote_alloc's in the
duke@435 316 // collection have been completed; any supporting data structures can be
duke@435 317 // reset. Default is to do nothing.
duke@435 318 virtual void par_promote_alloc_done(int thread_num) {}
duke@435 319
duke@435 320 // Informs the current generation that all oop_since_save_marks_iterates
duke@435 321 // performed by "thread_num" in the current collection, if any, have been
duke@435 322 // completed; any supporting data structures can be reset. Default is to
duke@435 323 // do nothing.
duke@435 324 virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
duke@435 325
duke@435 326 // This generation will collect all younger generations
duke@435 327 // during a full collection.
duke@435 328 virtual bool full_collects_younger_generations() const { return false; }
duke@435 329
duke@435 330 // This generation does in-place marking, meaning that mark words
duke@435 331 // are mutated during the marking phase and presumably reinitialized
duke@435 332 // to a canonical value after the GC. This is currently used by the
duke@435 333 // biased locking implementation to determine whether additional
duke@435 334 // work is required during the GC prologue and epilogue.
duke@435 335 virtual bool performs_in_place_marking() const { return true; }
duke@435 336
duke@435 337 // Returns "true" iff collect() should subsequently be called on this
duke@435 338 // this generation. See comment below.
duke@435 339 // This is a generic implementation which can be overridden.
duke@435 340 //
duke@435 341 // Note: in the current (1.4) implementation, when genCollectedHeap's
duke@435 342 // incremental_collection_will_fail flag is set, all allocations are
duke@435 343 // slow path (the only fast-path place to allocate is DefNew, which
duke@435 344 // will be full if the flag is set).
duke@435 345 // Thus, older generations which collect younger generations should
duke@435 346 // test this flag and collect if it is set.
duke@435 347 virtual bool should_collect(bool full,
duke@435 348 size_t word_size,
duke@435 349 bool is_tlab) {
duke@435 350 return (full || should_allocate(word_size, is_tlab));
duke@435 351 }
duke@435 352
duke@435 353 // Perform a garbage collection.
duke@435 354 // If full is true attempt a full garbage collection of this generation.
duke@435 355 // Otherwise, attempting to (at least) free enough space to support an
duke@435 356 // allocation of the given "word_size".
duke@435 357 virtual void collect(bool full,
duke@435 358 bool clear_all_soft_refs,
duke@435 359 size_t word_size,
duke@435 360 bool is_tlab) = 0;
duke@435 361
duke@435 362 // Perform a heap collection, attempting to create (at least) enough
duke@435 363 // space to support an allocation of the given "word_size". If
duke@435 364 // successful, perform the allocation and return the resulting
duke@435 365 // "oop" (initializing the allocated block). If the allocation is
duke@435 366 // still unsuccessful, return "NULL".
duke@435 367 virtual HeapWord* expand_and_allocate(size_t word_size,
duke@435 368 bool is_tlab,
duke@435 369 bool parallel = false) = 0;
duke@435 370
duke@435 371 // Some generations may require some cleanup or preparation actions before
duke@435 372 // allowing a collection. The default is to do nothing.
duke@435 373 virtual void gc_prologue(bool full) {};
duke@435 374
duke@435 375 // Some generations may require some cleanup actions after a collection.
duke@435 376 // The default is to do nothing.
duke@435 377 virtual void gc_epilogue(bool full) {};
duke@435 378
jmasa@698 379 // Save the high water marks for the used space in a generation.
jmasa@698 380 virtual void record_spaces_top() {};
jmasa@698 381
duke@435 382 // Some generations may need to be "fixed-up" after some allocation
duke@435 383 // activity to make them parsable again. The default is to do nothing.
duke@435 384 virtual void ensure_parsability() {};
duke@435 385
duke@435 386 // Time (in ms) when we were last collected or now if a collection is
duke@435 387 // in progress.
duke@435 388 virtual jlong time_of_last_gc(jlong now) {
duke@435 389 // XXX See note in genCollectedHeap::millis_since_last_gc()
duke@435 390 NOT_PRODUCT(
duke@435 391 if (now < _time_of_last_gc) {
duke@435 392 warning("time warp: %d to %d", _time_of_last_gc, now);
duke@435 393 }
duke@435 394 )
duke@435 395 return _time_of_last_gc;
duke@435 396 }
duke@435 397
duke@435 398 virtual void update_time_of_last_gc(jlong now) {
duke@435 399 _time_of_last_gc = now;
duke@435 400 }
duke@435 401
duke@435 402 // Generations may keep statistics about collection. This
duke@435 403 // method updates those statistics. current_level is
duke@435 404 // the level of the collection that has most recently
duke@435 405 // occurred. This allows the generation to decide what
duke@435 406 // statistics are valid to collect. For example, the
duke@435 407 // generation can decide to gather the amount of promoted data
duke@435 408 // if the collection of the younger generations has completed.
duke@435 409 GCStats* gc_stats() const { return _gc_stats; }
duke@435 410 virtual void update_gc_stats(int current_level, bool full) {}
duke@435 411
duke@435 412 // Mark sweep support phase2
duke@435 413 virtual void prepare_for_compaction(CompactPoint* cp);
duke@435 414 // Mark sweep support phase3
duke@435 415 virtual void pre_adjust_pointers() {ShouldNotReachHere();}
duke@435 416 virtual void adjust_pointers();
duke@435 417 // Mark sweep support phase4
duke@435 418 virtual void compact();
duke@435 419 virtual void post_compact() {ShouldNotReachHere();}
duke@435 420
duke@435 421 // Support for CMS's rescan. In this general form we return a pointer
duke@435 422 // to an abstract object that can be used, based on specific previously
duke@435 423 // decided protocols, to exchange information between generations,
duke@435 424 // information that may be useful for speeding up certain types of
duke@435 425 // garbage collectors. A NULL value indicates to the client that
duke@435 426 // no data recording is expected by the provider. The data-recorder is
duke@435 427 // expected to be GC worker thread-local, with the worker index
duke@435 428 // indicated by "thr_num".
duke@435 429 virtual void* get_data_recorder(int thr_num) { return NULL; }
duke@435 430
duke@435 431 // Some generations may require some cleanup actions before allowing
duke@435 432 // a verification.
duke@435 433 virtual void prepare_for_verify() {};
duke@435 434
duke@435 435 // Accessing "marks".
duke@435 436
duke@435 437 // This function gives a generation a chance to note a point between
duke@435 438 // collections. For example, a contiguous generation might note the
duke@435 439 // beginning allocation point post-collection, which might allow some later
duke@435 440 // operations to be optimized.
duke@435 441 virtual void save_marks() {}
duke@435 442
duke@435 443 // This function allows generations to initialize any "saved marks". That
duke@435 444 // is, should only be called when the generation is empty.
duke@435 445 virtual void reset_saved_marks() {}
duke@435 446
duke@435 447 // This function is "true" iff any no allocations have occurred in the
duke@435 448 // generation since the last call to "save_marks".
duke@435 449 virtual bool no_allocs_since_save_marks() = 0;
duke@435 450
duke@435 451 // Apply "cl->apply" to (the addresses of) all reference fields in objects
duke@435 452 // allocated in the current generation since the last call to "save_marks".
duke@435 453 // If more objects are allocated in this generation as a result of applying
duke@435 454 // the closure, iterates over reference fields in those objects as well.
duke@435 455 // Calls "save_marks" at the end of the iteration.
duke@435 456 // General signature...
duke@435 457 virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
duke@435 458 // ...and specializations for de-virtualization. (The general
duke@435 459 // implemention of the _nv versions call the virtual version.
duke@435 460 // Note that the _nv suffix is not really semantically necessary,
duke@435 461 // but it avoids some not-so-useful warnings on Solaris.)
duke@435 462 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 463 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
duke@435 464 oop_since_save_marks_iterate_v((OopsInGenClosure*)cl); \
duke@435 465 }
duke@435 466 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
duke@435 467
duke@435 468 #undef Generation_SINCE_SAVE_MARKS_DECL
duke@435 469
duke@435 470 // The "requestor" generation is performing some garbage collection
duke@435 471 // action for which it would be useful to have scratch space. If
duke@435 472 // the target is not the requestor, no gc actions will be required
duke@435 473 // of the target. The requestor promises to allocate no more than
duke@435 474 // "max_alloc_words" in the target generation (via promotion say,
duke@435 475 // if the requestor is a young generation and the target is older).
duke@435 476 // If the target generation can provide any scratch space, it adds
duke@435 477 // it to "list", leaving "list" pointing to the head of the
duke@435 478 // augmented list. The default is to offer no space.
duke@435 479 virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
duke@435 480 size_t max_alloc_words) {}
duke@435 481
jmasa@698 482 // Give each generation an opportunity to do clean up for any
jmasa@698 483 // contributed scratch.
jmasa@698 484 virtual void reset_scratch() {};
jmasa@698 485
duke@435 486 // When an older generation has been collected, and perhaps resized,
duke@435 487 // this method will be invoked on all younger generations (from older to
duke@435 488 // younger), allowing them to resize themselves as appropriate.
duke@435 489 virtual void compute_new_size() = 0;
duke@435 490
duke@435 491 // Printing
duke@435 492 virtual const char* name() const = 0;
duke@435 493 virtual const char* short_name() const = 0;
duke@435 494
duke@435 495 int level() const { return _level; }
duke@435 496
duke@435 497 // Attributes
duke@435 498
duke@435 499 // True iff the given generation may only be the youngest generation.
duke@435 500 virtual bool must_be_youngest() const = 0;
duke@435 501 // True iff the given generation may only be the oldest generation.
duke@435 502 virtual bool must_be_oldest() const = 0;
duke@435 503
duke@435 504 // Reference Processing accessor
duke@435 505 ReferenceProcessor* const ref_processor() { return _ref_processor; }
duke@435 506
duke@435 507 // Iteration.
duke@435 508
duke@435 509 // Iterate over all the ref-containing fields of all objects in the
duke@435 510 // generation, calling "cl.do_oop" on each.
duke@435 511 virtual void oop_iterate(OopClosure* cl);
duke@435 512
duke@435 513 // Same as above, restricted to the intersection of a memory region and
duke@435 514 // the generation.
duke@435 515 virtual void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 516
duke@435 517 // Iterate over all objects in the generation, calling "cl.do_object" on
duke@435 518 // each.
duke@435 519 virtual void object_iterate(ObjectClosure* cl);
duke@435 520
duke@435 521 // Iterate over all objects allocated in the generation since the last
duke@435 522 // collection, calling "cl.do_object" on each. The generation must have
duke@435 523 // been initialized properly to support this function, or else this call
duke@435 524 // will fail.
duke@435 525 virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
duke@435 526
duke@435 527 // Apply "cl->do_oop" to (the address of) all and only all the ref fields
duke@435 528 // in the current generation that contain pointers to objects in younger
duke@435 529 // generations. Objects allocated since the last "save_marks" call are
duke@435 530 // excluded.
duke@435 531 virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
duke@435 532
duke@435 533 // Inform a generation that it longer contains references to objects
duke@435 534 // in any younger generation. [e.g. Because younger gens are empty,
duke@435 535 // clear the card table.]
duke@435 536 virtual void clear_remembered_set() { }
duke@435 537
duke@435 538 // Inform a generation that some of its objects have moved. [e.g. The
duke@435 539 // generation's spaces were compacted, invalidating the card table.]
duke@435 540 virtual void invalidate_remembered_set() { }
duke@435 541
duke@435 542 // Block abstraction.
duke@435 543
duke@435 544 // Returns the address of the start of the "block" that contains the
duke@435 545 // address "addr". We say "blocks" instead of "object" since some heaps
duke@435 546 // may not pack objects densely; a chunk may either be an object or a
duke@435 547 // non-object.
duke@435 548 virtual HeapWord* block_start(const void* addr) const;
duke@435 549
duke@435 550 // Requires "addr" to be the start of a chunk, and returns its size.
duke@435 551 // "addr + size" is required to be the start of a new chunk, or the end
duke@435 552 // of the active area of the heap.
duke@435 553 virtual size_t block_size(const HeapWord* addr) const ;
duke@435 554
duke@435 555 // Requires "addr" to be the start of a block, and returns "TRUE" iff
duke@435 556 // the block is an object.
duke@435 557 virtual bool block_is_obj(const HeapWord* addr) const;
duke@435 558
duke@435 559
duke@435 560 // PrintGC, PrintGCDetails support
duke@435 561 void print_heap_change(size_t prev_used) const;
duke@435 562
duke@435 563 // PrintHeapAtGC support
duke@435 564 virtual void print() const;
duke@435 565 virtual void print_on(outputStream* st) const;
duke@435 566
duke@435 567 virtual void verify(bool allow_dirty) = 0;
duke@435 568
duke@435 569 struct StatRecord {
duke@435 570 int invocations;
duke@435 571 elapsedTimer accumulated_time;
duke@435 572 StatRecord() :
duke@435 573 invocations(0),
duke@435 574 accumulated_time(elapsedTimer()) {}
duke@435 575 };
duke@435 576 private:
duke@435 577 StatRecord _stat_record;
duke@435 578 public:
duke@435 579 StatRecord* stat_record() { return &_stat_record; }
duke@435 580
duke@435 581 virtual void print_summary_info();
duke@435 582 virtual void print_summary_info_on(outputStream* st);
duke@435 583
duke@435 584 // Performance Counter support
duke@435 585 virtual void update_counters() = 0;
duke@435 586 virtual CollectorCounters* counters() { return _gc_counters; }
duke@435 587 };
duke@435 588
duke@435 589 // Class CardGeneration is a generation that is covered by a card table,
duke@435 590 // and uses a card-size block-offset array to implement block_start.
duke@435 591
duke@435 592 // class BlockOffsetArray;
duke@435 593 // class BlockOffsetArrayContigSpace;
duke@435 594 class BlockOffsetSharedArray;
duke@435 595
duke@435 596 class CardGeneration: public Generation {
duke@435 597 friend class VMStructs;
duke@435 598 protected:
duke@435 599 // This is shared with other generations.
duke@435 600 GenRemSet* _rs;
duke@435 601 // This is local to this generation.
duke@435 602 BlockOffsetSharedArray* _bts;
duke@435 603
duke@435 604 CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
duke@435 605 GenRemSet* remset);
duke@435 606
duke@435 607 public:
duke@435 608
duke@435 609 virtual void clear_remembered_set();
duke@435 610
duke@435 611 virtual void invalidate_remembered_set();
duke@435 612
duke@435 613 virtual void prepare_for_verify();
duke@435 614 };
duke@435 615
duke@435 616 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
duke@435 617 // contiguous space.
duke@435 618 //
duke@435 619 // Garbage collection is performed using mark-compact.
duke@435 620
duke@435 621 class OneContigSpaceCardGeneration: public CardGeneration {
duke@435 622 friend class VMStructs;
duke@435 623 // Abstractly, this is a subtype that gets access to protected fields.
duke@435 624 friend class CompactingPermGen;
duke@435 625 friend class VM_PopulateDumpSharedSpace;
duke@435 626
duke@435 627 protected:
duke@435 628 size_t _min_heap_delta_bytes; // Minimum amount to expand.
duke@435 629 ContiguousSpace* _the_space; // actual space holding objects
duke@435 630 WaterMark _last_gc; // watermark between objects allocated before
duke@435 631 // and after last GC.
duke@435 632
duke@435 633 // Grow generation with specified size (returns false if unable to grow)
duke@435 634 bool grow_by(size_t bytes);
duke@435 635 // Grow generation to reserved size.
duke@435 636 bool grow_to_reserved();
duke@435 637 // Shrink generation with specified size (returns false if unable to shrink)
duke@435 638 void shrink_by(size_t bytes);
duke@435 639
duke@435 640 // Allocation failure
duke@435 641 void expand(size_t bytes, size_t expand_bytes);
duke@435 642 void shrink(size_t bytes);
duke@435 643
duke@435 644 // Accessing spaces
duke@435 645 ContiguousSpace* the_space() const { return _the_space; }
duke@435 646
duke@435 647 public:
duke@435 648 OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
duke@435 649 size_t min_heap_delta_bytes,
duke@435 650 int level, GenRemSet* remset,
duke@435 651 ContiguousSpace* space) :
duke@435 652 CardGeneration(rs, initial_byte_size, level, remset),
duke@435 653 _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
duke@435 654 {}
duke@435 655
duke@435 656 inline bool is_in(const void* p) const;
duke@435 657
duke@435 658 // Space enquiries
duke@435 659 size_t capacity() const;
duke@435 660 size_t used() const;
duke@435 661 size_t free() const;
duke@435 662
duke@435 663 MemRegion used_region() const;
duke@435 664
duke@435 665 size_t unsafe_max_alloc_nogc() const;
duke@435 666 size_t contiguous_available() const;
duke@435 667
duke@435 668 // Iteration
duke@435 669 void object_iterate(ObjectClosure* blk);
duke@435 670 void space_iterate(SpaceClosure* blk, bool usedOnly = false);
duke@435 671 void object_iterate_since_last_GC(ObjectClosure* cl);
duke@435 672
duke@435 673 void younger_refs_iterate(OopsInGenClosure* blk);
duke@435 674
duke@435 675 inline CompactibleSpace* first_compaction_space() const;
duke@435 676
duke@435 677 virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
duke@435 678 virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
duke@435 679
duke@435 680 // Accessing marks
duke@435 681 inline WaterMark top_mark();
duke@435 682 inline WaterMark bottom_mark();
duke@435 683
duke@435 684 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 685 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
duke@435 686 OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
duke@435 687 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
duke@435 688
duke@435 689 void save_marks();
duke@435 690 void reset_saved_marks();
duke@435 691 bool no_allocs_since_save_marks();
duke@435 692
duke@435 693 inline size_t block_size(const HeapWord* addr) const;
duke@435 694
duke@435 695 inline bool block_is_obj(const HeapWord* addr) const;
duke@435 696
duke@435 697 virtual void collect(bool full,
duke@435 698 bool clear_all_soft_refs,
duke@435 699 size_t size,
duke@435 700 bool is_tlab);
duke@435 701 HeapWord* expand_and_allocate(size_t size,
duke@435 702 bool is_tlab,
duke@435 703 bool parallel = false);
duke@435 704
duke@435 705 virtual void prepare_for_verify();
duke@435 706
duke@435 707 virtual void gc_epilogue(bool full);
duke@435 708
jmasa@698 709 virtual void record_spaces_top();
jmasa@698 710
duke@435 711 virtual void verify(bool allow_dirty);
duke@435 712 virtual void print_on(outputStream* st) const;
duke@435 713 };

mercurial