src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1907
c18cbe5936b8
child 2262
1e9a9d2e6509
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // do not include precompiled header file
duke@435 26 # include "incls/_os_linux_x86.cpp.incl"
duke@435 27
duke@435 28 // put OS-includes here
duke@435 29 # include <sys/types.h>
duke@435 30 # include <sys/mman.h>
duke@435 31 # include <pthread.h>
duke@435 32 # include <signal.h>
duke@435 33 # include <errno.h>
duke@435 34 # include <dlfcn.h>
duke@435 35 # include <stdlib.h>
duke@435 36 # include <stdio.h>
duke@435 37 # include <unistd.h>
duke@435 38 # include <sys/resource.h>
duke@435 39 # include <pthread.h>
duke@435 40 # include <sys/stat.h>
duke@435 41 # include <sys/time.h>
duke@435 42 # include <sys/utsname.h>
duke@435 43 # include <sys/socket.h>
duke@435 44 # include <sys/wait.h>
duke@435 45 # include <pwd.h>
duke@435 46 # include <poll.h>
duke@435 47 # include <ucontext.h>
duke@435 48 # include <fpu_control.h>
duke@435 49
duke@435 50 #ifdef AMD64
duke@435 51 #define REG_SP REG_RSP
duke@435 52 #define REG_PC REG_RIP
duke@435 53 #define REG_FP REG_RBP
duke@435 54 #define SPELL_REG_SP "rsp"
duke@435 55 #define SPELL_REG_FP "rbp"
duke@435 56 #else
duke@435 57 #define REG_SP REG_UESP
duke@435 58 #define REG_PC REG_EIP
duke@435 59 #define REG_FP REG_EBP
duke@435 60 #define SPELL_REG_SP "esp"
duke@435 61 #define SPELL_REG_FP "ebp"
duke@435 62 #endif // AMD64
duke@435 63
duke@435 64 address os::current_stack_pointer() {
dcubed@485 65 #ifdef SPARC_WORKS
dcubed@485 66 register void *esp;
dcubed@485 67 __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
dcubed@485 68 return (address) ((char*)esp + sizeof(long)*2);
dcubed@485 69 #else
duke@435 70 register void *esp __asm__ (SPELL_REG_SP);
duke@435 71 return (address) esp;
dcubed@485 72 #endif
duke@435 73 }
duke@435 74
duke@435 75 char* os::non_memory_address_word() {
duke@435 76 // Must never look like an address returned by reserve_memory,
duke@435 77 // even in its subfields (as defined by the CPU immediate fields,
duke@435 78 // if the CPU splits constants across multiple instructions).
duke@435 79
duke@435 80 return (char*) -1;
duke@435 81 }
duke@435 82
duke@435 83 void os::initialize_thread() {
duke@435 84 // Nothing to do.
duke@435 85 }
duke@435 86
duke@435 87 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
duke@435 88 return (address)uc->uc_mcontext.gregs[REG_PC];
duke@435 89 }
duke@435 90
duke@435 91 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
duke@435 92 return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
duke@435 93 }
duke@435 94
duke@435 95 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
duke@435 96 return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
duke@435 97 }
duke@435 98
duke@435 99 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
duke@435 100 // is currently interrupted by SIGPROF.
duke@435 101 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
duke@435 102 // frames. Currently we don't do that on Linux, so it's the same as
duke@435 103 // os::fetch_frame_from_context().
duke@435 104 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
duke@435 105 ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
duke@435 106
duke@435 107 assert(thread != NULL, "just checking");
duke@435 108 assert(ret_sp != NULL, "just checking");
duke@435 109 assert(ret_fp != NULL, "just checking");
duke@435 110
duke@435 111 return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
duke@435 112 }
duke@435 113
duke@435 114 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
duke@435 115 intptr_t** ret_sp, intptr_t** ret_fp) {
duke@435 116
duke@435 117 ExtendedPC epc;
duke@435 118 ucontext_t* uc = (ucontext_t*)ucVoid;
duke@435 119
duke@435 120 if (uc != NULL) {
duke@435 121 epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
duke@435 122 if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
duke@435 123 if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
duke@435 124 } else {
duke@435 125 // construct empty ExtendedPC for return value checking
duke@435 126 epc = ExtendedPC(NULL);
duke@435 127 if (ret_sp) *ret_sp = (intptr_t *)NULL;
duke@435 128 if (ret_fp) *ret_fp = (intptr_t *)NULL;
duke@435 129 }
duke@435 130
duke@435 131 return epc;
duke@435 132 }
duke@435 133
duke@435 134 frame os::fetch_frame_from_context(void* ucVoid) {
duke@435 135 intptr_t* sp;
duke@435 136 intptr_t* fp;
duke@435 137 ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
duke@435 138 return frame(sp, fp, epc.pc());
duke@435 139 }
duke@435 140
duke@435 141 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
duke@435 142 // turned off by -fomit-frame-pointer,
duke@435 143 frame os::get_sender_for_C_frame(frame* fr) {
duke@435 144 return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
duke@435 145 }
duke@435 146
duke@435 147 intptr_t* _get_previous_fp() {
dcubed@485 148 #ifdef SPARC_WORKS
dcubed@485 149 register intptr_t **ebp;
dcubed@485 150 __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
dcubed@485 151 #else
duke@435 152 register intptr_t **ebp __asm__ (SPELL_REG_FP);
dcubed@485 153 #endif
duke@435 154 return (intptr_t*) *ebp; // we want what it points to.
duke@435 155 }
duke@435 156
duke@435 157
duke@435 158 frame os::current_frame() {
duke@435 159 intptr_t* fp = _get_previous_fp();
duke@435 160 frame myframe((intptr_t*)os::current_stack_pointer(),
duke@435 161 (intptr_t*)fp,
duke@435 162 CAST_FROM_FN_PTR(address, os::current_frame));
duke@435 163 if (os::is_first_C_frame(&myframe)) {
duke@435 164 // stack is not walkable
duke@435 165 return frame(NULL, NULL, NULL);
duke@435 166 } else {
duke@435 167 return os::get_sender_for_C_frame(&myframe);
duke@435 168 }
duke@435 169 }
duke@435 170
duke@435 171 // Utility functions
duke@435 172
duke@435 173 // From IA32 System Programming Guide
duke@435 174 enum {
duke@435 175 trap_page_fault = 0xE
duke@435 176 };
duke@435 177
duke@435 178 extern "C" void Fetch32PFI () ;
duke@435 179 extern "C" void Fetch32Resume () ;
duke@435 180 #ifdef AMD64
duke@435 181 extern "C" void FetchNPFI () ;
duke@435 182 extern "C" void FetchNResume () ;
duke@435 183 #endif // AMD64
duke@435 184
duke@435 185 extern "C" int
duke@435 186 JVM_handle_linux_signal(int sig,
duke@435 187 siginfo_t* info,
duke@435 188 void* ucVoid,
duke@435 189 int abort_if_unrecognized) {
duke@435 190 ucontext_t* uc = (ucontext_t*) ucVoid;
duke@435 191
duke@435 192 Thread* t = ThreadLocalStorage::get_thread_slow();
duke@435 193
duke@435 194 SignalHandlerMark shm(t);
duke@435 195
duke@435 196 // Note: it's not uncommon that JNI code uses signal/sigset to install
duke@435 197 // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
duke@435 198 // or have a SIGILL handler when detecting CPU type). When that happens,
duke@435 199 // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
duke@435 200 // avoid unnecessary crash when libjsig is not preloaded, try handle signals
duke@435 201 // that do not require siginfo/ucontext first.
duke@435 202
duke@435 203 if (sig == SIGPIPE || sig == SIGXFSZ) {
duke@435 204 // allow chained handler to go first
duke@435 205 if (os::Linux::chained_handler(sig, info, ucVoid)) {
duke@435 206 return true;
duke@435 207 } else {
duke@435 208 if (PrintMiscellaneous && (WizardMode || Verbose)) {
duke@435 209 char buf[64];
duke@435 210 warning("Ignoring %s - see bugs 4229104 or 646499219",
duke@435 211 os::exception_name(sig, buf, sizeof(buf)));
duke@435 212 }
duke@435 213 return true;
duke@435 214 }
duke@435 215 }
duke@435 216
duke@435 217 JavaThread* thread = NULL;
duke@435 218 VMThread* vmthread = NULL;
duke@435 219 if (os::Linux::signal_handlers_are_installed) {
duke@435 220 if (t != NULL ){
duke@435 221 if(t->is_Java_thread()) {
duke@435 222 thread = (JavaThread*)t;
duke@435 223 }
duke@435 224 else if(t->is_VM_thread()){
duke@435 225 vmthread = (VMThread *)t;
duke@435 226 }
duke@435 227 }
duke@435 228 }
duke@435 229 /*
duke@435 230 NOTE: does not seem to work on linux.
duke@435 231 if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
duke@435 232 // can't decode this kind of signal
duke@435 233 info = NULL;
duke@435 234 } else {
duke@435 235 assert(sig == info->si_signo, "bad siginfo");
duke@435 236 }
duke@435 237 */
duke@435 238 // decide if this trap can be handled by a stub
duke@435 239 address stub = NULL;
duke@435 240
duke@435 241 address pc = NULL;
duke@435 242
duke@435 243 //%note os_trap_1
duke@435 244 if (info != NULL && uc != NULL && thread != NULL) {
duke@435 245 pc = (address) os::Linux::ucontext_get_pc(uc);
duke@435 246
duke@435 247 if (pc == (address) Fetch32PFI) {
duke@435 248 uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
duke@435 249 return 1 ;
duke@435 250 }
duke@435 251 #ifdef AMD64
duke@435 252 if (pc == (address) FetchNPFI) {
duke@435 253 uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
duke@435 254 return 1 ;
duke@435 255 }
duke@435 256 #endif // AMD64
duke@435 257
duke@435 258 // Handle ALL stack overflow variations here
duke@435 259 if (sig == SIGSEGV) {
duke@435 260 address addr = (address) info->si_addr;
duke@435 261
duke@435 262 // check if fault address is within thread stack
duke@435 263 if (addr < thread->stack_base() &&
duke@435 264 addr >= thread->stack_base() - thread->stack_size()) {
duke@435 265 // stack overflow
duke@435 266 if (thread->in_stack_yellow_zone(addr)) {
duke@435 267 thread->disable_stack_yellow_zone();
duke@435 268 if (thread->thread_state() == _thread_in_Java) {
duke@435 269 // Throw a stack overflow exception. Guard pages will be reenabled
duke@435 270 // while unwinding the stack.
duke@435 271 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
duke@435 272 } else {
duke@435 273 // Thread was in the vm or native code. Return and try to finish.
duke@435 274 return 1;
duke@435 275 }
duke@435 276 } else if (thread->in_stack_red_zone(addr)) {
duke@435 277 // Fatal red zone violation. Disable the guard pages and fall through
duke@435 278 // to handle_unexpected_exception way down below.
duke@435 279 thread->disable_stack_red_zone();
duke@435 280 tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
duke@435 281 } else {
duke@435 282 // Accessing stack address below sp may cause SEGV if current
duke@435 283 // thread has MAP_GROWSDOWN stack. This should only happen when
duke@435 284 // current thread was created by user code with MAP_GROWSDOWN flag
duke@435 285 // and then attached to VM. See notes in os_linux.cpp.
duke@435 286 if (thread->osthread()->expanding_stack() == 0) {
duke@435 287 thread->osthread()->set_expanding_stack();
duke@435 288 if (os::Linux::manually_expand_stack(thread, addr)) {
duke@435 289 thread->osthread()->clear_expanding_stack();
duke@435 290 return 1;
duke@435 291 }
duke@435 292 thread->osthread()->clear_expanding_stack();
duke@435 293 } else {
duke@435 294 fatal("recursive segv. expanding stack.");
duke@435 295 }
duke@435 296 }
duke@435 297 }
duke@435 298 }
duke@435 299
duke@435 300 if (thread->thread_state() == _thread_in_Java) {
duke@435 301 // Java thread running in Java code => find exception handler if any
duke@435 302 // a fault inside compiled code, the interpreter, or a stub
duke@435 303
duke@435 304 if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
duke@435 305 stub = SharedRuntime::get_poll_stub(pc);
duke@435 306 } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
duke@435 307 // BugId 4454115: A read from a MappedByteBuffer can fault
duke@435 308 // here if the underlying file has been truncated.
duke@435 309 // Do not crash the VM in such a case.
duke@435 310 CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
duke@435 311 nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
duke@435 312 if (nm != NULL && nm->has_unsafe_access()) {
duke@435 313 stub = StubRoutines::handler_for_unsafe_access();
duke@435 314 }
duke@435 315 }
duke@435 316 else
duke@435 317
duke@435 318 #ifdef AMD64
duke@435 319 if (sig == SIGFPE &&
duke@435 320 (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
duke@435 321 stub =
duke@435 322 SharedRuntime::
duke@435 323 continuation_for_implicit_exception(thread,
duke@435 324 pc,
duke@435 325 SharedRuntime::
duke@435 326 IMPLICIT_DIVIDE_BY_ZERO);
duke@435 327 #else
duke@435 328 if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
duke@435 329 // HACK: si_code does not work on linux 2.2.12-20!!!
duke@435 330 int op = pc[0];
duke@435 331 if (op == 0xDB) {
duke@435 332 // FIST
duke@435 333 // TODO: The encoding of D2I in i486.ad can cause an exception
duke@435 334 // prior to the fist instruction if there was an invalid operation
duke@435 335 // pending. We want to dismiss that exception. From the win_32
duke@435 336 // side it also seems that if it really was the fist causing
duke@435 337 // the exception that we do the d2i by hand with different
duke@435 338 // rounding. Seems kind of weird.
duke@435 339 // NOTE: that we take the exception at the NEXT floating point instruction.
duke@435 340 assert(pc[0] == 0xDB, "not a FIST opcode");
duke@435 341 assert(pc[1] == 0x14, "not a FIST opcode");
duke@435 342 assert(pc[2] == 0x24, "not a FIST opcode");
duke@435 343 return true;
duke@435 344 } else if (op == 0xF7) {
duke@435 345 // IDIV
duke@435 346 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
duke@435 347 } else {
duke@435 348 // TODO: handle more cases if we are using other x86 instructions
duke@435 349 // that can generate SIGFPE signal on linux.
duke@435 350 tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
duke@435 351 fatal("please update this code.");
duke@435 352 }
duke@435 353 #endif // AMD64
duke@435 354 } else if (sig == SIGSEGV &&
duke@435 355 !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
duke@435 356 // Determination of interpreter/vtable stub/compiled code null exception
duke@435 357 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
duke@435 358 }
duke@435 359 } else if (thread->thread_state() == _thread_in_vm &&
duke@435 360 sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
duke@435 361 thread->doing_unsafe_access()) {
duke@435 362 stub = StubRoutines::handler_for_unsafe_access();
duke@435 363 }
duke@435 364
duke@435 365 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
duke@435 366 // and the heap gets shrunk before the field access.
duke@435 367 if ((sig == SIGSEGV) || (sig == SIGBUS)) {
duke@435 368 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 369 if (addr != (address)-1) {
duke@435 370 stub = addr;
duke@435 371 }
duke@435 372 }
duke@435 373
duke@435 374 // Check to see if we caught the safepoint code in the
duke@435 375 // process of write protecting the memory serialization page.
duke@435 376 // It write enables the page immediately after protecting it
duke@435 377 // so we can just return to retry the write.
duke@435 378 if ((sig == SIGSEGV) &&
duke@435 379 os::is_memory_serialize_page(thread, (address) info->si_addr)) {
duke@435 380 // Block current thread until the memory serialize page permission restored.
duke@435 381 os::block_on_serialize_page_trap();
duke@435 382 return true;
duke@435 383 }
duke@435 384 }
duke@435 385
duke@435 386 #ifndef AMD64
duke@435 387 // Execution protection violation
duke@435 388 //
duke@435 389 // This should be kept as the last step in the triage. We don't
duke@435 390 // have a dedicated trap number for a no-execute fault, so be
duke@435 391 // conservative and allow other handlers the first shot.
duke@435 392 //
duke@435 393 // Note: We don't test that info->si_code == SEGV_ACCERR here.
duke@435 394 // this si_code is so generic that it is almost meaningless; and
duke@435 395 // the si_code for this condition may change in the future.
duke@435 396 // Furthermore, a false-positive should be harmless.
duke@435 397 if (UnguardOnExecutionViolation > 0 &&
duke@435 398 (sig == SIGSEGV || sig == SIGBUS) &&
duke@435 399 uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
duke@435 400 int page_size = os::vm_page_size();
duke@435 401 address addr = (address) info->si_addr;
duke@435 402 address pc = os::Linux::ucontext_get_pc(uc);
duke@435 403 // Make sure the pc and the faulting address are sane.
duke@435 404 //
duke@435 405 // If an instruction spans a page boundary, and the page containing
duke@435 406 // the beginning of the instruction is executable but the following
duke@435 407 // page is not, the pc and the faulting address might be slightly
duke@435 408 // different - we still want to unguard the 2nd page in this case.
duke@435 409 //
duke@435 410 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 411 bool pc_is_near_addr =
duke@435 412 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 413 bool instr_spans_page_boundary =
duke@435 414 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 415 (intptr_t) page_size) > 0);
duke@435 416
duke@435 417 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 418 static volatile address last_addr =
duke@435 419 (address) os::non_memory_address_word();
duke@435 420
duke@435 421 // In conservative mode, don't unguard unless the address is in the VM
duke@435 422 if (addr != last_addr &&
duke@435 423 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 424
coleenp@912 425 // Set memory to RWX and retry
duke@435 426 address page_start =
duke@435 427 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 428 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 429 os::MEM_PROT_RWX);
duke@435 430
duke@435 431 if (PrintMiscellaneous && Verbose) {
duke@435 432 char buf[256];
duke@435 433 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 434 "at " INTPTR_FORMAT
duke@435 435 ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
duke@435 436 page_start, (res ? "success" : "failed"), errno);
duke@435 437 tty->print_raw_cr(buf);
duke@435 438 }
duke@435 439 stub = pc;
duke@435 440
duke@435 441 // Set last_addr so if we fault again at the same address, we don't end
duke@435 442 // up in an endless loop.
duke@435 443 //
duke@435 444 // There are two potential complications here. Two threads trapping at
duke@435 445 // the same address at the same time could cause one of the threads to
duke@435 446 // think it already unguarded, and abort the VM. Likely very rare.
duke@435 447 //
duke@435 448 // The other race involves two threads alternately trapping at
duke@435 449 // different addresses and failing to unguard the page, resulting in
duke@435 450 // an endless loop. This condition is probably even more unlikely than
duke@435 451 // the first.
duke@435 452 //
duke@435 453 // Although both cases could be avoided by using locks or thread local
duke@435 454 // last_addr, these solutions are unnecessary complication: this
duke@435 455 // handler is a best-effort safety net, not a complete solution. It is
duke@435 456 // disabled by default and should only be used as a workaround in case
duke@435 457 // we missed any no-execute-unsafe VM code.
duke@435 458
duke@435 459 last_addr = addr;
duke@435 460 }
duke@435 461 }
duke@435 462 }
duke@435 463 #endif // !AMD64
duke@435 464
duke@435 465 if (stub != NULL) {
duke@435 466 // save all thread context in case we need to restore it
duke@435 467 if (thread != NULL) thread->set_saved_exception_pc(pc);
duke@435 468
duke@435 469 uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
duke@435 470 return true;
duke@435 471 }
duke@435 472
duke@435 473 // signal-chaining
duke@435 474 if (os::Linux::chained_handler(sig, info, ucVoid)) {
duke@435 475 return true;
duke@435 476 }
duke@435 477
duke@435 478 if (!abort_if_unrecognized) {
duke@435 479 // caller wants another chance, so give it to him
duke@435 480 return false;
duke@435 481 }
duke@435 482
duke@435 483 if (pc == NULL && uc != NULL) {
duke@435 484 pc = os::Linux::ucontext_get_pc(uc);
duke@435 485 }
duke@435 486
duke@435 487 // unmask current signal
duke@435 488 sigset_t newset;
duke@435 489 sigemptyset(&newset);
duke@435 490 sigaddset(&newset, sig);
duke@435 491 sigprocmask(SIG_UNBLOCK, &newset, NULL);
duke@435 492
duke@435 493 VMError err(t, sig, pc, info, ucVoid);
duke@435 494 err.report_and_die();
duke@435 495
duke@435 496 ShouldNotReachHere();
duke@435 497 }
duke@435 498
duke@435 499 void os::Linux::init_thread_fpu_state(void) {
duke@435 500 #ifndef AMD64
duke@435 501 // set fpu to 53 bit precision
duke@435 502 set_fpu_control_word(0x27f);
duke@435 503 #endif // !AMD64
duke@435 504 }
duke@435 505
duke@435 506 int os::Linux::get_fpu_control_word(void) {
duke@435 507 #ifdef AMD64
duke@435 508 return 0;
duke@435 509 #else
duke@435 510 int fpu_control;
duke@435 511 _FPU_GETCW(fpu_control);
duke@435 512 return fpu_control & 0xffff;
duke@435 513 #endif // AMD64
duke@435 514 }
duke@435 515
duke@435 516 void os::Linux::set_fpu_control_word(int fpu_control) {
duke@435 517 #ifndef AMD64
duke@435 518 _FPU_SETCW(fpu_control);
duke@435 519 #endif // !AMD64
duke@435 520 }
duke@435 521
duke@435 522 // Check that the linux kernel version is 2.4 or higher since earlier
duke@435 523 // versions do not support SSE without patches.
duke@435 524 bool os::supports_sse() {
duke@435 525 #ifdef AMD64
duke@435 526 return true;
duke@435 527 #else
duke@435 528 struct utsname uts;
duke@435 529 if( uname(&uts) != 0 ) return false; // uname fails?
duke@435 530 char *minor_string;
duke@435 531 int major = strtol(uts.release,&minor_string,10);
duke@435 532 int minor = strtol(minor_string+1,NULL,10);
duke@435 533 bool result = (major > 2 || (major==2 && minor >= 4));
duke@435 534 #ifndef PRODUCT
duke@435 535 if (PrintMiscellaneous && Verbose) {
duke@435 536 tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
duke@435 537 major,minor, result ? "DOES" : "does NOT");
duke@435 538 }
duke@435 539 #endif
duke@435 540 return result;
duke@435 541 #endif // AMD64
duke@435 542 }
duke@435 543
duke@435 544 bool os::is_allocatable(size_t bytes) {
duke@435 545 #ifdef AMD64
duke@435 546 // unused on amd64?
duke@435 547 return true;
duke@435 548 #else
duke@435 549
duke@435 550 if (bytes < 2 * G) {
duke@435 551 return true;
duke@435 552 }
duke@435 553
duke@435 554 char* addr = reserve_memory(bytes, NULL);
duke@435 555
duke@435 556 if (addr != NULL) {
duke@435 557 release_memory(addr, bytes);
duke@435 558 }
duke@435 559
duke@435 560 return addr != NULL;
duke@435 561 #endif // AMD64
duke@435 562 }
duke@435 563
duke@435 564 ////////////////////////////////////////////////////////////////////////////////
duke@435 565 // thread stack
duke@435 566
duke@435 567 #ifdef AMD64
duke@435 568 size_t os::Linux::min_stack_allowed = 64 * K;
duke@435 569
duke@435 570 // amd64: pthread on amd64 is always in floating stack mode
duke@435 571 bool os::Linux::supports_variable_stack_size() { return true; }
duke@435 572 #else
duke@435 573 size_t os::Linux::min_stack_allowed = (48 DEBUG_ONLY(+4))*K;
duke@435 574
dcubed@485 575 #ifdef __GNUC__
duke@435 576 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
dcubed@485 577 #endif
duke@435 578
duke@435 579 // Test if pthread library can support variable thread stack size. LinuxThreads
duke@435 580 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
duke@435 581 // in floating stack mode and NPTL support variable stack size.
duke@435 582 bool os::Linux::supports_variable_stack_size() {
duke@435 583 if (os::Linux::is_NPTL()) {
duke@435 584 // NPTL, yes
duke@435 585 return true;
duke@435 586
duke@435 587 } else {
duke@435 588 // Note: We can't control default stack size when creating a thread.
duke@435 589 // If we use non-default stack size (pthread_attr_setstacksize), both
duke@435 590 // floating stack and non-floating stack LinuxThreads will return the
duke@435 591 // same value. This makes it impossible to implement this function by
duke@435 592 // detecting thread stack size directly.
duke@435 593 //
duke@435 594 // An alternative approach is to check %gs. Fixed-stack LinuxThreads
duke@435 595 // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
duke@435 596 // %gs (either as LDT selector or GDT selector, depending on kernel)
duke@435 597 // to access thread specific data.
duke@435 598 //
duke@435 599 // Note that %gs is a reserved glibc register since early 2001, so
duke@435 600 // applications are not allowed to change its value (Ulrich Drepper from
duke@435 601 // Redhat confirmed that all known offenders have been modified to use
duke@435 602 // either %fs or TSD). In the worst case scenario, when VM is embedded in
duke@435 603 // a native application that plays with %gs, we might see non-zero %gs
duke@435 604 // even LinuxThreads is running in fixed stack mode. As the result, we'll
duke@435 605 // return true and skip _thread_safety_check(), so we may not be able to
duke@435 606 // detect stack-heap collisions. But otherwise it's harmless.
duke@435 607 //
dcubed@485 608 #ifdef __GNUC__
duke@435 609 return (GET_GS() != 0);
dcubed@485 610 #else
dcubed@485 611 return false;
dcubed@485 612 #endif
duke@435 613 }
duke@435 614 }
duke@435 615 #endif // AMD64
duke@435 616
duke@435 617 // return default stack size for thr_type
duke@435 618 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
duke@435 619 // default stack size (compiler thread needs larger stack)
duke@435 620 #ifdef AMD64
duke@435 621 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
duke@435 622 #else
duke@435 623 size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
duke@435 624 #endif // AMD64
duke@435 625 return s;
duke@435 626 }
duke@435 627
duke@435 628 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
duke@435 629 // Creating guard page is very expensive. Java thread has HotSpot
duke@435 630 // guard page, only enable glibc guard page for non-Java threads.
duke@435 631 return (thr_type == java_thread ? 0 : page_size());
duke@435 632 }
duke@435 633
duke@435 634 // Java thread:
duke@435 635 //
duke@435 636 // Low memory addresses
duke@435 637 // +------------------------+
duke@435 638 // | |\ JavaThread created by VM does not have glibc
duke@435 639 // | glibc guard page | - guard, attached Java thread usually has
duke@435 640 // | |/ 1 page glibc guard.
duke@435 641 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
duke@435 642 // | |\
duke@435 643 // | HotSpot Guard Pages | - red and yellow pages
duke@435 644 // | |/
duke@435 645 // +------------------------+ JavaThread::stack_yellow_zone_base()
duke@435 646 // | |\
duke@435 647 // | Normal Stack | -
duke@435 648 // | |/
duke@435 649 // P2 +------------------------+ Thread::stack_base()
duke@435 650 //
duke@435 651 // Non-Java thread:
duke@435 652 //
duke@435 653 // Low memory addresses
duke@435 654 // +------------------------+
duke@435 655 // | |\
duke@435 656 // | glibc guard page | - usually 1 page
duke@435 657 // | |/
duke@435 658 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
duke@435 659 // | |\
duke@435 660 // | Normal Stack | -
duke@435 661 // | |/
duke@435 662 // P2 +------------------------+ Thread::stack_base()
duke@435 663 //
duke@435 664 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
duke@435 665 // pthread_attr_getstack()
duke@435 666
duke@435 667 static void current_stack_region(address * bottom, size_t * size) {
duke@435 668 if (os::Linux::is_initial_thread()) {
duke@435 669 // initial thread needs special handling because pthread_getattr_np()
duke@435 670 // may return bogus value.
duke@435 671 *bottom = os::Linux::initial_thread_stack_bottom();
duke@435 672 *size = os::Linux::initial_thread_stack_size();
duke@435 673 } else {
duke@435 674 pthread_attr_t attr;
duke@435 675
duke@435 676 int rslt = pthread_getattr_np(pthread_self(), &attr);
duke@435 677
duke@435 678 // JVM needs to know exact stack location, abort if it fails
duke@435 679 if (rslt != 0) {
duke@435 680 if (rslt == ENOMEM) {
duke@435 681 vm_exit_out_of_memory(0, "pthread_getattr_np");
duke@435 682 } else {
jcoomes@1845 683 fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
duke@435 684 }
duke@435 685 }
duke@435 686
duke@435 687 if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
duke@435 688 fatal("Can not locate current stack attributes!");
duke@435 689 }
duke@435 690
duke@435 691 pthread_attr_destroy(&attr);
duke@435 692
duke@435 693 }
duke@435 694 assert(os::current_stack_pointer() >= *bottom &&
duke@435 695 os::current_stack_pointer() < *bottom + *size, "just checking");
duke@435 696 }
duke@435 697
duke@435 698 address os::current_stack_base() {
duke@435 699 address bottom;
duke@435 700 size_t size;
duke@435 701 current_stack_region(&bottom, &size);
duke@435 702 return (bottom + size);
duke@435 703 }
duke@435 704
duke@435 705 size_t os::current_stack_size() {
duke@435 706 // stack size includes normal stack and HotSpot guard pages
duke@435 707 address bottom;
duke@435 708 size_t size;
duke@435 709 current_stack_region(&bottom, &size);
duke@435 710 return size;
duke@435 711 }
duke@435 712
duke@435 713 /////////////////////////////////////////////////////////////////////////////
duke@435 714 // helper functions for fatal error handler
duke@435 715
duke@435 716 void os::print_context(outputStream *st, void *context) {
duke@435 717 if (context == NULL) return;
duke@435 718
duke@435 719 ucontext_t *uc = (ucontext_t*)context;
duke@435 720 st->print_cr("Registers:");
bobv@2036 721
bobv@2036 722 // this is horrendously verbose but the layout of the registers in the
bobv@2036 723 // context does not match how we defined our abstract Register set, so
bobv@2036 724 // we can't just iterate through the gregs area
bobv@2036 725
duke@435 726 #ifdef AMD64
duke@435 727 st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
duke@435 728 st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
duke@435 729 st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
duke@435 730 st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
duke@435 731 st->cr();
duke@435 732 st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
duke@435 733 st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
duke@435 734 st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
duke@435 735 st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
duke@435 736 st->cr();
duke@435 737 st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
duke@435 738 st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
duke@435 739 st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
duke@435 740 st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
duke@435 741 st->cr();
duke@435 742 st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
duke@435 743 st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
duke@435 744 st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
duke@435 745 st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
duke@435 746 st->cr();
duke@435 747 st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
duke@435 748 st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
duke@435 749 st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
duke@435 750 st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
duke@435 751 st->cr();
duke@435 752 st->print(" TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
bobv@2036 753
bobv@2036 754 st->cr();
bobv@2036 755 st->cr();
bobv@2036 756
bobv@2036 757 st->print_cr("Register to memory mapping:");
bobv@2036 758 st->cr();
bobv@2036 759
bobv@2036 760 // this is only for the "general purpose" registers
bobv@2036 761
bobv@2036 762 st->print_cr("RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
bobv@2036 763 print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
bobv@2036 764 st->cr();
bobv@2036 765 st->print_cr("RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
bobv@2036 766 print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
bobv@2036 767 st->cr();
bobv@2036 768 st->print_cr("RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
bobv@2036 769 print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
bobv@2036 770 st->cr();
bobv@2036 771 st->print_cr("RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
bobv@2036 772 print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
bobv@2036 773 st->cr();
bobv@2036 774 st->print_cr("RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
bobv@2036 775 print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
bobv@2036 776 st->cr();
bobv@2036 777 st->print_cr("RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
bobv@2036 778 print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
bobv@2036 779 st->cr();
bobv@2036 780 st->print_cr("RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
bobv@2036 781 print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
bobv@2036 782 st->cr();
bobv@2036 783 st->print_cr("RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
bobv@2036 784 print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
bobv@2036 785 st->cr();
bobv@2036 786 st->print_cr("R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
bobv@2036 787 print_location(st, uc->uc_mcontext.gregs[REG_R8]);
bobv@2036 788 st->cr();
bobv@2036 789 st->print_cr("R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
bobv@2036 790 print_location(st, uc->uc_mcontext.gregs[REG_R9]);
bobv@2036 791 st->cr();
bobv@2036 792 st->print_cr("R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
bobv@2036 793 print_location(st, uc->uc_mcontext.gregs[REG_R10]);
bobv@2036 794 st->cr();
bobv@2036 795 st->print_cr("R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
bobv@2036 796 print_location(st, uc->uc_mcontext.gregs[REG_R11]);
bobv@2036 797 st->cr();
bobv@2036 798 st->print_cr("R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
bobv@2036 799 print_location(st, uc->uc_mcontext.gregs[REG_R12]);
bobv@2036 800 st->cr();
bobv@2036 801 st->print_cr("R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
bobv@2036 802 print_location(st, uc->uc_mcontext.gregs[REG_R13]);
bobv@2036 803 st->cr();
bobv@2036 804 st->print_cr("R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
bobv@2036 805 print_location(st, uc->uc_mcontext.gregs[REG_R14]);
bobv@2036 806 st->cr();
bobv@2036 807 st->print_cr("R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
bobv@2036 808 print_location(st, uc->uc_mcontext.gregs[REG_R15]);
bobv@2036 809
duke@435 810 #else
duke@435 811 st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
duke@435 812 st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
duke@435 813 st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
duke@435 814 st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
duke@435 815 st->cr();
duke@435 816 st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
duke@435 817 st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
duke@435 818 st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
duke@435 819 st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
duke@435 820 st->cr();
duke@435 821 st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
duke@435 822 st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
duke@435 823 st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
bobv@2036 824
bobv@2036 825 st->cr();
bobv@2036 826 st->cr();
bobv@2036 827
bobv@2036 828 st->print_cr("Register to memory mapping:");
bobv@2036 829 st->cr();
bobv@2036 830
bobv@2036 831 // this is only for the "general purpose" registers
bobv@2036 832
bobv@2036 833 st->print_cr("EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
bobv@2036 834 print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
bobv@2036 835 st->cr();
bobv@2036 836 st->print_cr("EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
bobv@2036 837 print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
bobv@2036 838 st->cr();
bobv@2036 839 st->print_cr("ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
bobv@2036 840 print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
bobv@2036 841 st->cr();
bobv@2036 842 st->print_cr("EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
bobv@2036 843 print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
bobv@2036 844 st->cr();
bobv@2036 845 st->print_cr("ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESP]);
bobv@2036 846 print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
bobv@2036 847 st->cr();
bobv@2036 848 st->print_cr("EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
bobv@2036 849 print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
bobv@2036 850 st->cr();
bobv@2036 851 st->print_cr("ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
bobv@2036 852 print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
bobv@2036 853 st->cr();
bobv@2036 854 st->print_cr("EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
bobv@2036 855 print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
bobv@2036 856
duke@435 857 #endif // AMD64
duke@435 858 st->cr();
duke@435 859 st->cr();
duke@435 860
duke@435 861 intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
duke@435 862 st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
duke@435 863 print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
duke@435 864 st->cr();
duke@435 865
duke@435 866 // Note: it may be unsafe to inspect memory near pc. For example, pc may
duke@435 867 // point to garbage if entry point in an nmethod is corrupted. Leave
duke@435 868 // this at the end, and hope for the best.
duke@435 869 address pc = os::Linux::ucontext_get_pc(uc);
duke@435 870 st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
duke@435 871 print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
duke@435 872 }
duke@435 873
duke@435 874 void os::setup_fpu() {
duke@435 875 #ifndef AMD64
duke@435 876 address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
duke@435 877 __asm__ volatile ( "fldcw (%0)" :
duke@435 878 : "r" (fpu_cntrl) : "memory");
duke@435 879 #endif // !AMD64
duke@435 880 }

mercurial