src/share/vm/opto/vectornode.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 993
3b5ac9e7e6ea
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@1014 2 * Copyright 2007-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 */
duke@435 23
duke@435 24 #include "incls/_precompiled.incl"
duke@435 25 #include "incls/_vectornode.cpp.incl"
duke@435 26
duke@435 27 //------------------------------VectorNode--------------------------------------
duke@435 28
duke@435 29 // Return vector type for an element type and vector length.
duke@435 30 const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
duke@435 31 assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
duke@435 32 switch(elt_bt) {
duke@435 33 case T_BOOLEAN:
duke@435 34 case T_BYTE:
duke@435 35 switch(len) {
duke@435 36 case 2: return TypeInt::CHAR;
duke@435 37 case 4: return TypeInt::INT;
duke@435 38 case 8: return TypeLong::LONG;
duke@435 39 }
duke@435 40 break;
duke@435 41 case T_CHAR:
duke@435 42 case T_SHORT:
duke@435 43 switch(len) {
duke@435 44 case 2: return TypeInt::INT;
duke@435 45 case 4: return TypeLong::LONG;
duke@435 46 }
duke@435 47 break;
duke@435 48 case T_INT:
duke@435 49 switch(len) {
duke@435 50 case 2: return TypeLong::LONG;
duke@435 51 }
duke@435 52 break;
duke@435 53 case T_LONG:
duke@435 54 break;
duke@435 55 case T_FLOAT:
duke@435 56 switch(len) {
duke@435 57 case 2: return Type::DOUBLE;
duke@435 58 }
duke@435 59 break;
duke@435 60 case T_DOUBLE:
duke@435 61 break;
duke@435 62 }
duke@435 63 ShouldNotReachHere();
duke@435 64 return NULL;
duke@435 65 }
duke@435 66
duke@435 67 // Scalar promotion
duke@435 68 VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
duke@435 69 BasicType bt = opd_t->array_element_basic_type();
duke@435 70 assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
duke@435 71 switch (bt) {
duke@435 72 case T_BOOLEAN:
duke@435 73 case T_BYTE:
duke@435 74 if (vlen == 16) return new (C, 2) Replicate16BNode(s);
duke@435 75 if (vlen == 8) return new (C, 2) Replicate8BNode(s);
duke@435 76 if (vlen == 4) return new (C, 2) Replicate4BNode(s);
duke@435 77 break;
duke@435 78 case T_CHAR:
duke@435 79 if (vlen == 8) return new (C, 2) Replicate8CNode(s);
duke@435 80 if (vlen == 4) return new (C, 2) Replicate4CNode(s);
duke@435 81 if (vlen == 2) return new (C, 2) Replicate2CNode(s);
duke@435 82 break;
duke@435 83 case T_SHORT:
duke@435 84 if (vlen == 8) return new (C, 2) Replicate8SNode(s);
duke@435 85 if (vlen == 4) return new (C, 2) Replicate4SNode(s);
duke@435 86 if (vlen == 2) return new (C, 2) Replicate2SNode(s);
duke@435 87 break;
duke@435 88 case T_INT:
duke@435 89 if (vlen == 4) return new (C, 2) Replicate4INode(s);
duke@435 90 if (vlen == 2) return new (C, 2) Replicate2INode(s);
duke@435 91 break;
duke@435 92 case T_LONG:
duke@435 93 if (vlen == 2) return new (C, 2) Replicate2LNode(s);
duke@435 94 break;
duke@435 95 case T_FLOAT:
duke@435 96 if (vlen == 4) return new (C, 2) Replicate4FNode(s);
duke@435 97 if (vlen == 2) return new (C, 2) Replicate2FNode(s);
duke@435 98 break;
duke@435 99 case T_DOUBLE:
duke@435 100 if (vlen == 2) return new (C, 2) Replicate2DNode(s);
duke@435 101 break;
duke@435 102 }
duke@435 103 ShouldNotReachHere();
duke@435 104 return NULL;
duke@435 105 }
duke@435 106
duke@435 107 // Return initial Pack node. Additional operands added with add_opd() calls.
duke@435 108 PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
duke@435 109 BasicType bt = opd_t->array_element_basic_type();
duke@435 110 switch (bt) {
duke@435 111 case T_BOOLEAN:
duke@435 112 case T_BYTE:
duke@435 113 return new (C, 2) PackBNode(s);
duke@435 114 case T_CHAR:
duke@435 115 return new (C, 2) PackCNode(s);
duke@435 116 case T_SHORT:
duke@435 117 return new (C, 2) PackSNode(s);
duke@435 118 case T_INT:
duke@435 119 return new (C, 2) PackINode(s);
duke@435 120 case T_LONG:
duke@435 121 return new (C, 2) PackLNode(s);
duke@435 122 case T_FLOAT:
duke@435 123 return new (C, 2) PackFNode(s);
duke@435 124 case T_DOUBLE:
duke@435 125 return new (C, 2) PackDNode(s);
duke@435 126 }
duke@435 127 ShouldNotReachHere();
duke@435 128 return NULL;
duke@435 129 }
duke@435 130
duke@435 131 // Create a binary tree form for Packs. [lo, hi) (half-open) range
duke@435 132 Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
duke@435 133 int ct = hi - lo;
duke@435 134 assert(is_power_of_2(ct), "power of 2");
duke@435 135 int mid = lo + ct/2;
duke@435 136 Node* n1 = ct == 2 ? in(lo) : binaryTreePack(C, lo, mid);
duke@435 137 Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
kvn@464 138 int rslt_bsize = ct * type2aelembytes(elt_basic_type());
duke@435 139 if (bottom_type()->is_floatingpoint()) {
duke@435 140 switch (rslt_bsize) {
duke@435 141 case 8: return new (C, 3) PackFNode(n1, n2);
duke@435 142 case 16: return new (C, 3) PackDNode(n1, n2);
duke@435 143 }
duke@435 144 } else {
duke@435 145 assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
duke@435 146 switch (rslt_bsize) {
duke@435 147 case 2: return new (C, 3) Pack2x1BNode(n1, n2);
duke@435 148 case 4: return new (C, 3) Pack2x2BNode(n1, n2);
duke@435 149 case 8: return new (C, 3) PackINode(n1, n2);
duke@435 150 case 16: return new (C, 3) PackLNode(n1, n2);
duke@435 151 }
duke@435 152 }
duke@435 153 ShouldNotReachHere();
duke@435 154 return NULL;
duke@435 155 }
duke@435 156
duke@435 157 // Return the vector operator for the specified scalar operation
duke@435 158 // and vector length. One use is to check if the code generator
duke@435 159 // supports the vector operation.
duke@435 160 int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
duke@435 161 BasicType bt = opd_t->array_element_basic_type();
duke@435 162 if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
duke@435 163 return 0; // unimplemented
duke@435 164 switch (sopc) {
duke@435 165 case Op_AddI:
duke@435 166 switch (bt) {
duke@435 167 case T_BOOLEAN:
duke@435 168 case T_BYTE: return Op_AddVB;
duke@435 169 case T_CHAR: return Op_AddVC;
duke@435 170 case T_SHORT: return Op_AddVS;
duke@435 171 case T_INT: return Op_AddVI;
duke@435 172 }
duke@435 173 ShouldNotReachHere();
duke@435 174 case Op_AddL:
duke@435 175 assert(bt == T_LONG, "must be");
duke@435 176 return Op_AddVL;
duke@435 177 case Op_AddF:
duke@435 178 assert(bt == T_FLOAT, "must be");
duke@435 179 return Op_AddVF;
duke@435 180 case Op_AddD:
duke@435 181 assert(bt == T_DOUBLE, "must be");
duke@435 182 return Op_AddVD;
duke@435 183 case Op_SubI:
duke@435 184 switch (bt) {
duke@435 185 case T_BOOLEAN:
duke@435 186 case T_BYTE: return Op_SubVB;
duke@435 187 case T_CHAR: return Op_SubVC;
duke@435 188 case T_SHORT: return Op_SubVS;
duke@435 189 case T_INT: return Op_SubVI;
duke@435 190 }
duke@435 191 ShouldNotReachHere();
duke@435 192 case Op_SubL:
duke@435 193 assert(bt == T_LONG, "must be");
duke@435 194 return Op_SubVL;
duke@435 195 case Op_SubF:
duke@435 196 assert(bt == T_FLOAT, "must be");
duke@435 197 return Op_SubVF;
duke@435 198 case Op_SubD:
duke@435 199 assert(bt == T_DOUBLE, "must be");
duke@435 200 return Op_SubVD;
duke@435 201 case Op_MulF:
duke@435 202 assert(bt == T_FLOAT, "must be");
duke@435 203 return Op_MulVF;
duke@435 204 case Op_MulD:
duke@435 205 assert(bt == T_DOUBLE, "must be");
duke@435 206 return Op_MulVD;
duke@435 207 case Op_DivF:
duke@435 208 assert(bt == T_FLOAT, "must be");
duke@435 209 return Op_DivVF;
duke@435 210 case Op_DivD:
duke@435 211 assert(bt == T_DOUBLE, "must be");
duke@435 212 return Op_DivVD;
duke@435 213 case Op_LShiftI:
duke@435 214 switch (bt) {
duke@435 215 case T_BOOLEAN:
duke@435 216 case T_BYTE: return Op_LShiftVB;
duke@435 217 case T_CHAR: return Op_LShiftVC;
duke@435 218 case T_SHORT: return Op_LShiftVS;
duke@435 219 case T_INT: return Op_LShiftVI;
duke@435 220 }
duke@435 221 ShouldNotReachHere();
duke@435 222 case Op_URShiftI:
duke@435 223 switch (bt) {
duke@435 224 case T_BOOLEAN:
duke@435 225 case T_BYTE: return Op_URShiftVB;
duke@435 226 case T_CHAR: return Op_URShiftVC;
duke@435 227 case T_SHORT: return Op_URShiftVS;
duke@435 228 case T_INT: return Op_URShiftVI;
duke@435 229 }
duke@435 230 ShouldNotReachHere();
duke@435 231 case Op_AndI:
duke@435 232 case Op_AndL:
duke@435 233 return Op_AndV;
duke@435 234 case Op_OrI:
duke@435 235 case Op_OrL:
duke@435 236 return Op_OrV;
duke@435 237 case Op_XorI:
duke@435 238 case Op_XorL:
duke@435 239 return Op_XorV;
duke@435 240
duke@435 241 case Op_LoadB:
twisti@993 242 case Op_LoadUS:
duke@435 243 case Op_LoadS:
duke@435 244 case Op_LoadI:
duke@435 245 case Op_LoadL:
duke@435 246 case Op_LoadF:
duke@435 247 case Op_LoadD:
duke@435 248 return VectorLoadNode::opcode(sopc, vlen);
duke@435 249
duke@435 250 case Op_StoreB:
duke@435 251 case Op_StoreC:
duke@435 252 case Op_StoreI:
duke@435 253 case Op_StoreL:
duke@435 254 case Op_StoreF:
duke@435 255 case Op_StoreD:
duke@435 256 return VectorStoreNode::opcode(sopc, vlen);
duke@435 257 }
duke@435 258 return 0; // Unimplemented
duke@435 259 }
duke@435 260
duke@435 261 // Helper for above.
duke@435 262 int VectorLoadNode::opcode(int sopc, uint vlen) {
duke@435 263 switch (sopc) {
duke@435 264 case Op_LoadB:
duke@435 265 switch (vlen) {
duke@435 266 case 2: return 0; // Unimplemented
duke@435 267 case 4: return Op_Load4B;
duke@435 268 case 8: return Op_Load8B;
duke@435 269 case 16: return Op_Load16B;
duke@435 270 }
duke@435 271 break;
twisti@993 272 case Op_LoadUS:
duke@435 273 switch (vlen) {
duke@435 274 case 2: return Op_Load2C;
duke@435 275 case 4: return Op_Load4C;
duke@435 276 case 8: return Op_Load8C;
duke@435 277 }
duke@435 278 break;
duke@435 279 case Op_LoadS:
duke@435 280 switch (vlen) {
duke@435 281 case 2: return Op_Load2S;
duke@435 282 case 4: return Op_Load4S;
duke@435 283 case 8: return Op_Load8S;
duke@435 284 }
duke@435 285 break;
duke@435 286 case Op_LoadI:
duke@435 287 switch (vlen) {
duke@435 288 case 2: return Op_Load2I;
duke@435 289 case 4: return Op_Load4I;
duke@435 290 }
duke@435 291 break;
duke@435 292 case Op_LoadL:
duke@435 293 if (vlen == 2) return Op_Load2L;
duke@435 294 break;
duke@435 295 case Op_LoadF:
duke@435 296 switch (vlen) {
duke@435 297 case 2: return Op_Load2F;
duke@435 298 case 4: return Op_Load4F;
duke@435 299 }
duke@435 300 break;
duke@435 301 case Op_LoadD:
duke@435 302 if (vlen == 2) return Op_Load2D;
duke@435 303 break;
duke@435 304 }
duke@435 305 return 0; // Unimplemented
duke@435 306 }
duke@435 307
duke@435 308 // Helper for above
duke@435 309 int VectorStoreNode::opcode(int sopc, uint vlen) {
duke@435 310 switch (sopc) {
duke@435 311 case Op_StoreB:
duke@435 312 switch (vlen) {
duke@435 313 case 2: return 0; // Unimplemented
duke@435 314 case 4: return Op_Store4B;
duke@435 315 case 8: return Op_Store8B;
duke@435 316 case 16: return Op_Store16B;
duke@435 317 }
duke@435 318 break;
duke@435 319 case Op_StoreC:
duke@435 320 switch (vlen) {
duke@435 321 case 2: return Op_Store2C;
duke@435 322 case 4: return Op_Store4C;
duke@435 323 case 8: return Op_Store8C;
duke@435 324 }
duke@435 325 break;
duke@435 326 case Op_StoreI:
duke@435 327 switch (vlen) {
duke@435 328 case 2: return Op_Store2I;
duke@435 329 case 4: return Op_Store4I;
duke@435 330 }
duke@435 331 break;
duke@435 332 case Op_StoreL:
duke@435 333 if (vlen == 2) return Op_Store2L;
duke@435 334 break;
duke@435 335 case Op_StoreF:
duke@435 336 switch (vlen) {
duke@435 337 case 2: return Op_Store2F;
duke@435 338 case 4: return Op_Store4F;
duke@435 339 }
duke@435 340 break;
duke@435 341 case Op_StoreD:
duke@435 342 if (vlen == 2) return Op_Store2D;
duke@435 343 break;
duke@435 344 }
duke@435 345 return 0; // Unimplemented
duke@435 346 }
duke@435 347
duke@435 348 // Return the vector version of a scalar operation node.
duke@435 349 VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
duke@435 350 int vopc = opcode(sopc, vlen, opd_t);
duke@435 351
duke@435 352 switch (vopc) {
duke@435 353 case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
duke@435 354 case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
duke@435 355 case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
duke@435 356 case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
duke@435 357 case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
duke@435 358 case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
duke@435 359 case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);
duke@435 360
duke@435 361 case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
duke@435 362 case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
duke@435 363 case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
duke@435 364 case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
duke@435 365 case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
duke@435 366 case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
duke@435 367 case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);
duke@435 368
duke@435 369 case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
duke@435 370 case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);
duke@435 371
duke@435 372 case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
duke@435 373 case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);
duke@435 374
duke@435 375 case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
duke@435 376 case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
duke@435 377 case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
duke@435 378 case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);
duke@435 379
duke@435 380 case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
duke@435 381 case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
duke@435 382 case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
duke@435 383 case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);
duke@435 384
duke@435 385 case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
duke@435 386 case Op_OrV: return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
duke@435 387 case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
duke@435 388 }
duke@435 389 ShouldNotReachHere();
duke@435 390 return NULL;
duke@435 391 }
duke@435 392
duke@435 393 // Return the vector version of a scalar load node.
duke@435 394 VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
duke@435 395 Node* adr, const TypePtr* atyp, uint vlen) {
duke@435 396 int vopc = opcode(opc, vlen);
duke@435 397
duke@435 398 switch(vopc) {
duke@435 399 case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
duke@435 400 case Op_Load8B: return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
duke@435 401 case Op_Load4B: return new (C, 3) Load4BNode(ctl, mem, adr, atyp);
duke@435 402
duke@435 403 case Op_Load8C: return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
duke@435 404 case Op_Load4C: return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
duke@435 405 case Op_Load2C: return new (C, 3) Load2CNode(ctl, mem, adr, atyp);
duke@435 406
duke@435 407 case Op_Load8S: return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
duke@435 408 case Op_Load4S: return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
duke@435 409 case Op_Load2S: return new (C, 3) Load2SNode(ctl, mem, adr, atyp);
duke@435 410
duke@435 411 case Op_Load4I: return new (C, 3) Load4INode(ctl, mem, adr, atyp);
duke@435 412 case Op_Load2I: return new (C, 3) Load2INode(ctl, mem, adr, atyp);
duke@435 413
duke@435 414 case Op_Load2L: return new (C, 3) Load2LNode(ctl, mem, adr, atyp);
duke@435 415
duke@435 416 case Op_Load4F: return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
duke@435 417 case Op_Load2F: return new (C, 3) Load2FNode(ctl, mem, adr, atyp);
duke@435 418
duke@435 419 case Op_Load2D: return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
duke@435 420 }
duke@435 421 ShouldNotReachHere();
duke@435 422 return NULL;
duke@435 423 }
duke@435 424
duke@435 425 // Return the vector version of a scalar store node.
duke@435 426 VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
duke@435 427 Node* adr, const TypePtr* atyp, VectorNode* val,
duke@435 428 uint vlen) {
duke@435 429 int vopc = opcode(opc, vlen);
duke@435 430
duke@435 431 switch(vopc) {
duke@435 432 case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
duke@435 433 case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
duke@435 434 case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);
duke@435 435
duke@435 436 case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
duke@435 437 case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
duke@435 438 case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);
duke@435 439
duke@435 440 case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
duke@435 441 case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);
duke@435 442
duke@435 443 case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);
duke@435 444
duke@435 445 case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
duke@435 446 case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);
duke@435 447
duke@435 448 case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
duke@435 449 }
duke@435 450 ShouldNotReachHere();
duke@435 451 return NULL;
duke@435 452 }
duke@435 453
duke@435 454 // Extract a scalar element of vector.
duke@435 455 Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
duke@435 456 BasicType bt = opd_t->array_element_basic_type();
duke@435 457 assert(position < VectorNode::max_vlen(bt), "pos in range");
duke@435 458 ConINode* pos = ConINode::make(C, (int)position);
duke@435 459 switch (bt) {
duke@435 460 case T_BOOLEAN:
duke@435 461 case T_BYTE:
duke@435 462 return new (C, 3) ExtractBNode(v, pos);
duke@435 463 case T_CHAR:
duke@435 464 return new (C, 3) ExtractCNode(v, pos);
duke@435 465 case T_SHORT:
duke@435 466 return new (C, 3) ExtractSNode(v, pos);
duke@435 467 case T_INT:
duke@435 468 return new (C, 3) ExtractINode(v, pos);
duke@435 469 case T_LONG:
duke@435 470 return new (C, 3) ExtractLNode(v, pos);
duke@435 471 case T_FLOAT:
duke@435 472 return new (C, 3) ExtractFNode(v, pos);
duke@435 473 case T_DOUBLE:
duke@435 474 return new (C, 3) ExtractDNode(v, pos);
duke@435 475 }
duke@435 476 ShouldNotReachHere();
duke@435 477 return NULL;
duke@435 478 }

mercurial