src/share/vm/opto/cfgnode.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 990
35ae4dd6c27c
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@1014 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_cfgnode.cpp.incl"
duke@435 31
duke@435 32 //=============================================================================
duke@435 33 //------------------------------Value------------------------------------------
duke@435 34 // Compute the type of the RegionNode.
duke@435 35 const Type *RegionNode::Value( PhaseTransform *phase ) const {
duke@435 36 for( uint i=1; i<req(); ++i ) { // For all paths in
duke@435 37 Node *n = in(i); // Get Control source
duke@435 38 if( !n ) continue; // Missing inputs are TOP
duke@435 39 if( phase->type(n) == Type::CONTROL )
duke@435 40 return Type::CONTROL;
duke@435 41 }
duke@435 42 return Type::TOP; // All paths dead? Then so are we
duke@435 43 }
duke@435 44
duke@435 45 //------------------------------Identity---------------------------------------
duke@435 46 // Check for Region being Identity.
duke@435 47 Node *RegionNode::Identity( PhaseTransform *phase ) {
duke@435 48 // Cannot have Region be an identity, even if it has only 1 input.
duke@435 49 // Phi users cannot have their Region input folded away for them,
duke@435 50 // since they need to select the proper data input
duke@435 51 return this;
duke@435 52 }
duke@435 53
duke@435 54 //------------------------------merge_region-----------------------------------
duke@435 55 // If a Region flows into a Region, merge into one big happy merge. This is
duke@435 56 // hard to do if there is stuff that has to happen
duke@435 57 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
duke@435 58 if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
duke@435 59 return NULL;
duke@435 60 Node *progress = NULL; // Progress flag
duke@435 61 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 62
duke@435 63 uint rreq = region->req();
duke@435 64 for( uint i = 1; i < rreq; i++ ) {
duke@435 65 Node *r = region->in(i);
duke@435 66 if( r && r->Opcode() == Op_Region && // Found a region?
duke@435 67 r->in(0) == r && // Not already collapsed?
duke@435 68 r != region && // Avoid stupid situations
duke@435 69 r->outcnt() == 2 ) { // Self user and 'region' user only?
duke@435 70 assert(!r->as_Region()->has_phi(), "no phi users");
duke@435 71 if( !progress ) { // No progress
duke@435 72 if (region->has_phi()) {
duke@435 73 return NULL; // Only flatten if no Phi users
duke@435 74 // igvn->hash_delete( phi );
duke@435 75 }
duke@435 76 igvn->hash_delete( region );
duke@435 77 progress = region; // Making progress
duke@435 78 }
duke@435 79 igvn->hash_delete( r );
duke@435 80
duke@435 81 // Append inputs to 'r' onto 'region'
duke@435 82 for( uint j = 1; j < r->req(); j++ ) {
duke@435 83 // Move an input from 'r' to 'region'
duke@435 84 region->add_req(r->in(j));
duke@435 85 r->set_req(j, phase->C->top());
duke@435 86 // Update phis of 'region'
duke@435 87 //for( uint k = 0; k < max; k++ ) {
duke@435 88 // Node *phi = region->out(k);
duke@435 89 // if( phi->is_Phi() ) {
duke@435 90 // phi->add_req(phi->in(i));
duke@435 91 // }
duke@435 92 //}
duke@435 93
duke@435 94 rreq++; // One more input to Region
duke@435 95 } // Found a region to merge into Region
duke@435 96 // Clobber pointer to the now dead 'r'
duke@435 97 region->set_req(i, phase->C->top());
duke@435 98 }
duke@435 99 }
duke@435 100
duke@435 101 return progress;
duke@435 102 }
duke@435 103
duke@435 104
duke@435 105
duke@435 106 //--------------------------------has_phi--------------------------------------
duke@435 107 // Helper function: Return any PhiNode that uses this region or NULL
duke@435 108 PhiNode* RegionNode::has_phi() const {
duke@435 109 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
duke@435 110 Node* phi = fast_out(i);
duke@435 111 if (phi->is_Phi()) { // Check for Phi users
duke@435 112 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
duke@435 113 return phi->as_Phi(); // this one is good enough
duke@435 114 }
duke@435 115 }
duke@435 116
duke@435 117 return NULL;
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 //-----------------------------has_unique_phi----------------------------------
duke@435 122 // Helper function: Return the only PhiNode that uses this region or NULL
duke@435 123 PhiNode* RegionNode::has_unique_phi() const {
duke@435 124 // Check that only one use is a Phi
duke@435 125 PhiNode* only_phi = NULL;
duke@435 126 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
duke@435 127 Node* phi = fast_out(i);
duke@435 128 if (phi->is_Phi()) { // Check for Phi users
duke@435 129 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
duke@435 130 if (only_phi == NULL) {
duke@435 131 only_phi = phi->as_Phi();
duke@435 132 } else {
duke@435 133 return NULL; // multiple phis
duke@435 134 }
duke@435 135 }
duke@435 136 }
duke@435 137
duke@435 138 return only_phi;
duke@435 139 }
duke@435 140
duke@435 141
duke@435 142 //------------------------------check_phi_clipping-----------------------------
duke@435 143 // Helper function for RegionNode's identification of FP clipping
duke@435 144 // Check inputs to the Phi
duke@435 145 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
duke@435 146 min = NULL;
duke@435 147 max = NULL;
duke@435 148 val = NULL;
duke@435 149 min_idx = 0;
duke@435 150 max_idx = 0;
duke@435 151 val_idx = 0;
duke@435 152 uint phi_max = phi->req();
duke@435 153 if( phi_max == 4 ) {
duke@435 154 for( uint j = 1; j < phi_max; ++j ) {
duke@435 155 Node *n = phi->in(j);
duke@435 156 int opcode = n->Opcode();
duke@435 157 switch( opcode ) {
duke@435 158 case Op_ConI:
duke@435 159 {
duke@435 160 if( min == NULL ) {
duke@435 161 min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
duke@435 162 min_idx = j;
duke@435 163 } else {
duke@435 164 max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
duke@435 165 max_idx = j;
duke@435 166 if( min->get_int() > max->get_int() ) {
duke@435 167 // Swap min and max
duke@435 168 ConNode *temp;
duke@435 169 uint temp_idx;
duke@435 170 temp = min; min = max; max = temp;
duke@435 171 temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
duke@435 172 }
duke@435 173 }
duke@435 174 }
duke@435 175 break;
duke@435 176 default:
duke@435 177 {
duke@435 178 val = n;
duke@435 179 val_idx = j;
duke@435 180 }
duke@435 181 break;
duke@435 182 }
duke@435 183 }
duke@435 184 }
duke@435 185 return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
duke@435 186 }
duke@435 187
duke@435 188
duke@435 189 //------------------------------check_if_clipping------------------------------
duke@435 190 // Helper function for RegionNode's identification of FP clipping
duke@435 191 // Check that inputs to Region come from two IfNodes,
duke@435 192 //
duke@435 193 // If
duke@435 194 // False True
duke@435 195 // If |
duke@435 196 // False True |
duke@435 197 // | | |
duke@435 198 // RegionNode_inputs
duke@435 199 //
duke@435 200 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
duke@435 201 top_if = NULL;
duke@435 202 bot_if = NULL;
duke@435 203
duke@435 204 // Check control structure above RegionNode for (if ( if ) )
duke@435 205 Node *in1 = region->in(1);
duke@435 206 Node *in2 = region->in(2);
duke@435 207 Node *in3 = region->in(3);
duke@435 208 // Check that all inputs are projections
duke@435 209 if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
duke@435 210 Node *in10 = in1->in(0);
duke@435 211 Node *in20 = in2->in(0);
duke@435 212 Node *in30 = in3->in(0);
duke@435 213 // Check that #1 and #2 are ifTrue and ifFalse from same If
duke@435 214 if( in10 != NULL && in10->is_If() &&
duke@435 215 in20 != NULL && in20->is_If() &&
duke@435 216 in30 != NULL && in30->is_If() && in10 == in20 &&
duke@435 217 (in1->Opcode() != in2->Opcode()) ) {
duke@435 218 Node *in100 = in10->in(0);
duke@435 219 Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
duke@435 220 // Check that control for in10 comes from other branch of IF from in3
duke@435 221 if( in1000 != NULL && in1000->is_If() &&
duke@435 222 in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
duke@435 223 // Control pattern checks
duke@435 224 top_if = (IfNode*)in1000;
duke@435 225 bot_if = (IfNode*)in10;
duke@435 226 }
duke@435 227 }
duke@435 228 }
duke@435 229
duke@435 230 return (top_if != NULL);
duke@435 231 }
duke@435 232
duke@435 233
duke@435 234 //------------------------------check_convf2i_clipping-------------------------
duke@435 235 // Helper function for RegionNode's identification of FP clipping
duke@435 236 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
duke@435 237 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
duke@435 238 convf2i = NULL;
duke@435 239
duke@435 240 // Check for the RShiftNode
duke@435 241 Node *rshift = phi->in(idx);
duke@435 242 assert( rshift, "Previous checks ensure phi input is present");
duke@435 243 if( rshift->Opcode() != Op_RShiftI ) { return false; }
duke@435 244
duke@435 245 // Check for the LShiftNode
duke@435 246 Node *lshift = rshift->in(1);
duke@435 247 assert( lshift, "Previous checks ensure phi input is present");
duke@435 248 if( lshift->Opcode() != Op_LShiftI ) { return false; }
duke@435 249
duke@435 250 // Check for the ConvF2INode
duke@435 251 Node *conv = lshift->in(1);
duke@435 252 if( conv->Opcode() != Op_ConvF2I ) { return false; }
duke@435 253
duke@435 254 // Check that shift amounts are only to get sign bits set after F2I
duke@435 255 jint max_cutoff = max->get_int();
duke@435 256 jint min_cutoff = min->get_int();
duke@435 257 jint left_shift = lshift->in(2)->get_int();
duke@435 258 jint right_shift = rshift->in(2)->get_int();
duke@435 259 jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
duke@435 260 if( left_shift != right_shift ||
duke@435 261 0 > left_shift || left_shift >= BitsPerJavaInteger ||
duke@435 262 max_post_shift < max_cutoff ||
duke@435 263 max_post_shift < -min_cutoff ) {
duke@435 264 // Shifts are necessary but current transformation eliminates them
duke@435 265 return false;
duke@435 266 }
duke@435 267
duke@435 268 // OK to return the result of ConvF2I without shifting
duke@435 269 convf2i = (ConvF2INode*)conv;
duke@435 270 return true;
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 //------------------------------check_compare_clipping-------------------------
duke@435 275 // Helper function for RegionNode's identification of FP clipping
duke@435 276 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
duke@435 277 Node *i1 = iff->in(1);
duke@435 278 if ( !i1->is_Bool() ) { return false; }
duke@435 279 BoolNode *bool1 = i1->as_Bool();
duke@435 280 if( less_than && bool1->_test._test != BoolTest::le ) { return false; }
duke@435 281 else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
duke@435 282 const Node *cmpF = bool1->in(1);
duke@435 283 if( cmpF->Opcode() != Op_CmpF ) { return false; }
duke@435 284 // Test that the float value being compared against
duke@435 285 // is equivalent to the int value used as a limit
duke@435 286 Node *nodef = cmpF->in(2);
duke@435 287 if( nodef->Opcode() != Op_ConF ) { return false; }
duke@435 288 jfloat conf = nodef->getf();
duke@435 289 jint coni = limit->get_int();
duke@435 290 if( ((int)conf) != coni ) { return false; }
duke@435 291 input = cmpF->in(1);
duke@435 292 return true;
duke@435 293 }
duke@435 294
duke@435 295 //------------------------------is_unreachable_region--------------------------
duke@435 296 // Find if the Region node is reachable from the root.
duke@435 297 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
duke@435 298 assert(req() == 2, "");
duke@435 299
duke@435 300 // First, cut the simple case of fallthrough region when NONE of
duke@435 301 // region's phis references itself directly or through a data node.
duke@435 302 uint max = outcnt();
duke@435 303 uint i;
duke@435 304 for (i = 0; i < max; i++) {
duke@435 305 Node* phi = raw_out(i);
duke@435 306 if (phi != NULL && phi->is_Phi()) {
duke@435 307 assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
duke@435 308 if (phi->outcnt() == 0)
duke@435 309 continue; // Safe case - no loops
duke@435 310 if (phi->outcnt() == 1) {
duke@435 311 Node* u = phi->raw_out(0);
duke@435 312 // Skip if only one use is an other Phi or Call or Uncommon trap.
duke@435 313 // It is safe to consider this case as fallthrough.
duke@435 314 if (u != NULL && (u->is_Phi() || u->is_CFG()))
duke@435 315 continue;
duke@435 316 }
duke@435 317 // Check when phi references itself directly or through an other node.
duke@435 318 if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
duke@435 319 break; // Found possible unsafe data loop.
duke@435 320 }
duke@435 321 }
duke@435 322 if (i >= max)
duke@435 323 return false; // An unsafe case was NOT found - don't need graph walk.
duke@435 324
duke@435 325 // Unsafe case - check if the Region node is reachable from root.
duke@435 326 ResourceMark rm;
duke@435 327
duke@435 328 Arena *a = Thread::current()->resource_area();
duke@435 329 Node_List nstack(a);
duke@435 330 VectorSet visited(a);
duke@435 331
duke@435 332 // Mark all control nodes reachable from root outputs
duke@435 333 Node *n = (Node*)phase->C->root();
duke@435 334 nstack.push(n);
duke@435 335 visited.set(n->_idx);
duke@435 336 while (nstack.size() != 0) {
duke@435 337 n = nstack.pop();
duke@435 338 uint max = n->outcnt();
duke@435 339 for (uint i = 0; i < max; i++) {
duke@435 340 Node* m = n->raw_out(i);
duke@435 341 if (m != NULL && m->is_CFG()) {
duke@435 342 if (phase->eqv(m, this)) {
duke@435 343 return false; // We reached the Region node - it is not dead.
duke@435 344 }
duke@435 345 if (!visited.test_set(m->_idx))
duke@435 346 nstack.push(m);
duke@435 347 }
duke@435 348 }
duke@435 349 }
duke@435 350
duke@435 351 return true; // The Region node is unreachable - it is dead.
duke@435 352 }
duke@435 353
duke@435 354 //------------------------------Ideal------------------------------------------
duke@435 355 // Return a node which is more "ideal" than the current node. Must preserve
duke@435 356 // the CFG, but we can still strip out dead paths.
duke@435 357 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 358 if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy
duke@435 359 assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
duke@435 360
duke@435 361 // Check for RegionNode with no Phi users and both inputs come from either
duke@435 362 // arm of the same IF. If found, then the control-flow split is useless.
duke@435 363 bool has_phis = false;
duke@435 364 if (can_reshape) { // Need DU info to check for Phi users
duke@435 365 has_phis = (has_phi() != NULL); // Cache result
duke@435 366 if (!has_phis) { // No Phi users? Nothing merging?
duke@435 367 for (uint i = 1; i < req()-1; i++) {
duke@435 368 Node *if1 = in(i);
duke@435 369 if( !if1 ) continue;
duke@435 370 Node *iff = if1->in(0);
duke@435 371 if( !iff || !iff->is_If() ) continue;
duke@435 372 for( uint j=i+1; j<req(); j++ ) {
duke@435 373 if( in(j) && in(j)->in(0) == iff &&
duke@435 374 if1->Opcode() != in(j)->Opcode() ) {
duke@435 375 // Add the IF Projections to the worklist. They (and the IF itself)
duke@435 376 // will be eliminated if dead.
duke@435 377 phase->is_IterGVN()->add_users_to_worklist(iff);
duke@435 378 set_req(i, iff->in(0));// Skip around the useless IF diamond
duke@435 379 set_req(j, NULL);
duke@435 380 return this; // Record progress
duke@435 381 }
duke@435 382 }
duke@435 383 }
duke@435 384 }
duke@435 385 }
duke@435 386
duke@435 387 // Remove TOP or NULL input paths. If only 1 input path remains, this Region
duke@435 388 // degrades to a copy.
duke@435 389 bool add_to_worklist = false;
duke@435 390 int cnt = 0; // Count of values merging
duke@435 391 DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
duke@435 392 int del_it = 0; // The last input path we delete
duke@435 393 // For all inputs...
duke@435 394 for( uint i=1; i<req(); ++i ){// For all paths in
duke@435 395 Node *n = in(i); // Get the input
duke@435 396 if( n != NULL ) {
duke@435 397 // Remove useless control copy inputs
duke@435 398 if( n->is_Region() && n->as_Region()->is_copy() ) {
duke@435 399 set_req(i, n->nonnull_req());
duke@435 400 i--;
duke@435 401 continue;
duke@435 402 }
duke@435 403 if( n->is_Proj() ) { // Remove useless rethrows
duke@435 404 Node *call = n->in(0);
duke@435 405 if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
duke@435 406 set_req(i, call->in(0));
duke@435 407 i--;
duke@435 408 continue;
duke@435 409 }
duke@435 410 }
duke@435 411 if( phase->type(n) == Type::TOP ) {
duke@435 412 set_req(i, NULL); // Ignore TOP inputs
duke@435 413 i--;
duke@435 414 continue;
duke@435 415 }
duke@435 416 cnt++; // One more value merging
duke@435 417
duke@435 418 } else if (can_reshape) { // Else found dead path with DU info
duke@435 419 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 420 del_req(i); // Yank path from self
duke@435 421 del_it = i;
duke@435 422 uint max = outcnt();
duke@435 423 DUIterator j;
duke@435 424 bool progress = true;
duke@435 425 while(progress) { // Need to establish property over all users
duke@435 426 progress = false;
duke@435 427 for (j = outs(); has_out(j); j++) {
duke@435 428 Node *n = out(j);
duke@435 429 if( n->req() != req() && n->is_Phi() ) {
duke@435 430 assert( n->in(0) == this, "" );
duke@435 431 igvn->hash_delete(n); // Yank from hash before hacking edges
duke@435 432 n->set_req_X(i,NULL,igvn);// Correct DU info
duke@435 433 n->del_req(i); // Yank path from Phis
duke@435 434 if( max != outcnt() ) {
duke@435 435 progress = true;
duke@435 436 j = refresh_out_pos(j);
duke@435 437 max = outcnt();
duke@435 438 }
duke@435 439 }
duke@435 440 }
duke@435 441 }
duke@435 442 add_to_worklist = true;
duke@435 443 i--;
duke@435 444 }
duke@435 445 }
duke@435 446
duke@435 447 if (can_reshape && cnt == 1) {
duke@435 448 // Is it dead loop?
duke@435 449 // If it is LoopNopde it had 2 (+1 itself) inputs and
duke@435 450 // one of them was cut. The loop is dead if it was EntryContol.
duke@435 451 assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
duke@435 452 if (this->is_Loop() && del_it == LoopNode::EntryControl ||
duke@435 453 !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
duke@435 454 // Yes, the region will be removed during the next step below.
duke@435 455 // Cut the backedge input and remove phis since no data paths left.
duke@435 456 // We don't cut outputs to other nodes here since we need to put them
duke@435 457 // on the worklist.
duke@435 458 del_req(1);
duke@435 459 cnt = 0;
duke@435 460 assert( req() == 1, "no more inputs expected" );
duke@435 461 uint max = outcnt();
duke@435 462 bool progress = true;
duke@435 463 Node *top = phase->C->top();
duke@435 464 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 465 DUIterator j;
duke@435 466 while(progress) {
duke@435 467 progress = false;
duke@435 468 for (j = outs(); has_out(j); j++) {
duke@435 469 Node *n = out(j);
duke@435 470 if( n->is_Phi() ) {
duke@435 471 assert( igvn->eqv(n->in(0), this), "" );
duke@435 472 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
duke@435 473 // Break dead loop data path.
duke@435 474 // Eagerly replace phis with top to avoid phis copies generation.
duke@435 475 igvn->add_users_to_worklist(n);
duke@435 476 igvn->hash_delete(n); // Yank from hash before hacking edges
duke@435 477 igvn->subsume_node(n, top);
duke@435 478 if( max != outcnt() ) {
duke@435 479 progress = true;
duke@435 480 j = refresh_out_pos(j);
duke@435 481 max = outcnt();
duke@435 482 }
duke@435 483 }
duke@435 484 }
duke@435 485 }
duke@435 486 add_to_worklist = true;
duke@435 487 }
duke@435 488 }
duke@435 489 if (add_to_worklist) {
duke@435 490 phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
duke@435 491 }
duke@435 492
duke@435 493 if( cnt <= 1 ) { // Only 1 path in?
duke@435 494 set_req(0, NULL); // Null control input for region copy
duke@435 495 if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
duke@435 496 // No inputs or all inputs are NULL.
duke@435 497 return NULL;
duke@435 498 } else if (can_reshape) { // Optimization phase - remove the node
duke@435 499 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 500 Node *parent_ctrl;
duke@435 501 if( cnt == 0 ) {
duke@435 502 assert( req() == 1, "no inputs expected" );
duke@435 503 // During IGVN phase such region will be subsumed by TOP node
duke@435 504 // so region's phis will have TOP as control node.
duke@435 505 // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
duke@435 506 // Also set other user's input to top.
duke@435 507 parent_ctrl = phase->C->top();
duke@435 508 } else {
duke@435 509 // The fallthrough case since we already checked dead loops above.
duke@435 510 parent_ctrl = in(1);
duke@435 511 assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
duke@435 512 assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
duke@435 513 }
duke@435 514 if (!add_to_worklist)
duke@435 515 igvn->add_users_to_worklist(this); // Check for further allowed opts
duke@435 516 for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
duke@435 517 Node* n = last_out(i);
duke@435 518 igvn->hash_delete(n); // Remove from worklist before modifying edges
duke@435 519 if( n->is_Phi() ) { // Collapse all Phis
duke@435 520 // Eagerly replace phis to avoid copies generation.
duke@435 521 igvn->add_users_to_worklist(n);
duke@435 522 igvn->hash_delete(n); // Yank from hash before hacking edges
duke@435 523 if( cnt == 0 ) {
duke@435 524 assert( n->req() == 1, "No data inputs expected" );
duke@435 525 igvn->subsume_node(n, parent_ctrl); // replaced by top
duke@435 526 } else {
duke@435 527 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
duke@435 528 Node* in1 = n->in(1); // replaced by unique input
duke@435 529 if( n->as_Phi()->is_unsafe_data_reference(in1) )
duke@435 530 in1 = phase->C->top(); // replaced by top
duke@435 531 igvn->subsume_node(n, in1);
duke@435 532 }
duke@435 533 }
duke@435 534 else if( n->is_Region() ) { // Update all incoming edges
duke@435 535 assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
duke@435 536 uint uses_found = 0;
duke@435 537 for( uint k=1; k < n->req(); k++ ) {
duke@435 538 if( n->in(k) == this ) {
duke@435 539 n->set_req(k, parent_ctrl);
duke@435 540 uses_found++;
duke@435 541 }
duke@435 542 }
duke@435 543 if( uses_found > 1 ) { // (--i) done at the end of the loop.
duke@435 544 i -= (uses_found - 1);
duke@435 545 }
duke@435 546 }
duke@435 547 else {
duke@435 548 assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
duke@435 549 n->set_req(0, parent_ctrl);
duke@435 550 }
duke@435 551 #ifdef ASSERT
duke@435 552 for( uint k=0; k < n->req(); k++ ) {
duke@435 553 assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
duke@435 554 }
duke@435 555 #endif
duke@435 556 }
duke@435 557 // Remove the RegionNode itself from DefUse info
duke@435 558 igvn->remove_dead_node(this);
duke@435 559 return NULL;
duke@435 560 }
duke@435 561 return this; // Record progress
duke@435 562 }
duke@435 563
duke@435 564
duke@435 565 // If a Region flows into a Region, merge into one big happy merge.
duke@435 566 if (can_reshape) {
duke@435 567 Node *m = merge_region(this, phase);
duke@435 568 if (m != NULL) return m;
duke@435 569 }
duke@435 570
duke@435 571 // Check if this region is the root of a clipping idiom on floats
duke@435 572 if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
duke@435 573 // Check that only one use is a Phi and that it simplifies to two constants +
duke@435 574 PhiNode* phi = has_unique_phi();
duke@435 575 if (phi != NULL) { // One Phi user
duke@435 576 // Check inputs to the Phi
duke@435 577 ConNode *min;
duke@435 578 ConNode *max;
duke@435 579 Node *val;
duke@435 580 uint min_idx;
duke@435 581 uint max_idx;
duke@435 582 uint val_idx;
duke@435 583 if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) {
duke@435 584 IfNode *top_if;
duke@435 585 IfNode *bot_if;
duke@435 586 if( check_if_clipping( this, bot_if, top_if ) ) {
duke@435 587 // Control pattern checks, now verify compares
duke@435 588 Node *top_in = NULL; // value being compared against
duke@435 589 Node *bot_in = NULL;
duke@435 590 if( check_compare_clipping( true, bot_if, min, bot_in ) &&
duke@435 591 check_compare_clipping( false, top_if, max, top_in ) ) {
duke@435 592 if( bot_in == top_in ) {
duke@435 593 PhaseIterGVN *gvn = phase->is_IterGVN();
duke@435 594 assert( gvn != NULL, "Only had DefUse info in IterGVN");
duke@435 595 // Only remaining check is that bot_in == top_in == (Phi's val + mods)
duke@435 596
duke@435 597 // Check for the ConvF2INode
duke@435 598 ConvF2INode *convf2i;
duke@435 599 if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
duke@435 600 convf2i->in(1) == bot_in ) {
duke@435 601 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
duke@435 602 // max test
duke@435 603 Node *cmp = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
duke@435 604 Node *boo = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
duke@435 605 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
duke@435 606 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
duke@435 607 Node *ifF = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
duke@435 608 // min test
duke@435 609 cmp = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
duke@435 610 boo = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
duke@435 611 iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
duke@435 612 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
duke@435 613 ifF = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
duke@435 614 // update input edges to region node
duke@435 615 set_req_X( min_idx, if_min, gvn );
duke@435 616 set_req_X( max_idx, if_max, gvn );
duke@435 617 set_req_X( val_idx, ifF, gvn );
duke@435 618 // remove unnecessary 'LShiftI; RShiftI' idiom
duke@435 619 gvn->hash_delete(phi);
duke@435 620 phi->set_req_X( val_idx, convf2i, gvn );
duke@435 621 gvn->hash_find_insert(phi);
duke@435 622 // Return transformed region node
duke@435 623 return this;
duke@435 624 }
duke@435 625 }
duke@435 626 }
duke@435 627 }
duke@435 628 }
duke@435 629 }
duke@435 630 }
duke@435 631
duke@435 632 return NULL;
duke@435 633 }
duke@435 634
duke@435 635
duke@435 636
duke@435 637 const RegMask &RegionNode::out_RegMask() const {
duke@435 638 return RegMask::Empty;
duke@435 639 }
duke@435 640
duke@435 641 // Find the one non-null required input. RegionNode only
duke@435 642 Node *Node::nonnull_req() const {
duke@435 643 assert( is_Region(), "" );
duke@435 644 for( uint i = 1; i < _cnt; i++ )
duke@435 645 if( in(i) )
duke@435 646 return in(i);
duke@435 647 ShouldNotReachHere();
duke@435 648 return NULL;
duke@435 649 }
duke@435 650
duke@435 651
duke@435 652 //=============================================================================
duke@435 653 // note that these functions assume that the _adr_type field is flattened
duke@435 654 uint PhiNode::hash() const {
duke@435 655 const Type* at = _adr_type;
duke@435 656 return TypeNode::hash() + (at ? at->hash() : 0);
duke@435 657 }
duke@435 658 uint PhiNode::cmp( const Node &n ) const {
duke@435 659 return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
duke@435 660 }
duke@435 661 static inline
duke@435 662 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
duke@435 663 if (at == NULL || at == TypePtr::BOTTOM) return at;
duke@435 664 return Compile::current()->alias_type(at)->adr_type();
duke@435 665 }
duke@435 666
duke@435 667 //----------------------------make---------------------------------------------
duke@435 668 // create a new phi with edges matching r and set (initially) to x
duke@435 669 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
duke@435 670 uint preds = r->req(); // Number of predecessor paths
duke@435 671 assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
duke@435 672 PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
duke@435 673 for (uint j = 1; j < preds; j++) {
duke@435 674 // Fill in all inputs, except those which the region does not yet have
duke@435 675 if (r->in(j) != NULL)
duke@435 676 p->init_req(j, x);
duke@435 677 }
duke@435 678 return p;
duke@435 679 }
duke@435 680 PhiNode* PhiNode::make(Node* r, Node* x) {
duke@435 681 const Type* t = x->bottom_type();
duke@435 682 const TypePtr* at = NULL;
duke@435 683 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
duke@435 684 return make(r, x, t, at);
duke@435 685 }
duke@435 686 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
duke@435 687 const Type* t = x->bottom_type();
duke@435 688 const TypePtr* at = NULL;
duke@435 689 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
duke@435 690 return new (Compile::current(), r->req()) PhiNode(r, t, at);
duke@435 691 }
duke@435 692
duke@435 693
duke@435 694 //------------------------slice_memory-----------------------------------------
duke@435 695 // create a new phi with narrowed memory type
duke@435 696 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
duke@435 697 PhiNode* mem = (PhiNode*) clone();
duke@435 698 *(const TypePtr**)&mem->_adr_type = adr_type;
duke@435 699 // convert self-loops, or else we get a bad graph
duke@435 700 for (uint i = 1; i < req(); i++) {
duke@435 701 if ((const Node*)in(i) == this) mem->set_req(i, mem);
duke@435 702 }
duke@435 703 mem->verify_adr_type();
duke@435 704 return mem;
duke@435 705 }
duke@435 706
kvn@509 707 //------------------------split_out_instance-----------------------------------
kvn@509 708 // Split out an instance type from a bottom phi.
kvn@509 709 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
kvn@598 710 const TypeOopPtr *t_oop = at->isa_oopptr();
kvn@658 711 assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
kvn@598 712 const TypePtr *t = adr_type();
kvn@598 713 assert(type() == Type::MEMORY &&
kvn@598 714 (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 715 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 716 t->is_oopptr()->cast_to_exactness(true)
kvn@682 717 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 718 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
kvn@598 719 "bottom or raw memory required");
kvn@509 720
kvn@509 721 // Check if an appropriate node already exists.
kvn@509 722 Node *region = in(0);
kvn@509 723 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@509 724 Node* use = region->fast_out(k);
kvn@509 725 if( use->is_Phi()) {
kvn@509 726 PhiNode *phi2 = use->as_Phi();
kvn@509 727 if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
kvn@509 728 return phi2;
kvn@509 729 }
kvn@509 730 }
kvn@509 731 }
kvn@509 732 Compile *C = igvn->C;
kvn@509 733 Arena *a = Thread::current()->resource_area();
kvn@509 734 Node_Array node_map = new Node_Array(a);
kvn@509 735 Node_Stack stack(a, C->unique() >> 4);
kvn@509 736 PhiNode *nphi = slice_memory(at);
kvn@509 737 igvn->register_new_node_with_optimizer( nphi );
kvn@509 738 node_map.map(_idx, nphi);
kvn@509 739 stack.push((Node *)this, 1);
kvn@509 740 while(!stack.is_empty()) {
kvn@509 741 PhiNode *ophi = stack.node()->as_Phi();
kvn@509 742 uint i = stack.index();
kvn@509 743 assert(i >= 1, "not control edge");
kvn@509 744 stack.pop();
kvn@509 745 nphi = node_map[ophi->_idx]->as_Phi();
kvn@509 746 for (; i < ophi->req(); i++) {
kvn@509 747 Node *in = ophi->in(i);
kvn@509 748 if (in == NULL || igvn->type(in) == Type::TOP)
kvn@509 749 continue;
kvn@509 750 Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
kvn@509 751 PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
kvn@509 752 if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
kvn@509 753 opt = node_map[optphi->_idx];
kvn@509 754 if (opt == NULL) {
kvn@509 755 stack.push(ophi, i);
kvn@509 756 nphi = optphi->slice_memory(at);
kvn@509 757 igvn->register_new_node_with_optimizer( nphi );
kvn@509 758 node_map.map(optphi->_idx, nphi);
kvn@509 759 ophi = optphi;
kvn@509 760 i = 0; // will get incremented at top of loop
kvn@509 761 continue;
kvn@509 762 }
kvn@509 763 }
kvn@509 764 nphi->set_req(i, opt);
kvn@509 765 }
kvn@509 766 }
kvn@509 767 return nphi;
kvn@509 768 }
kvn@509 769
duke@435 770 //------------------------verify_adr_type--------------------------------------
duke@435 771 #ifdef ASSERT
duke@435 772 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
duke@435 773 if (visited.test_set(_idx)) return; //already visited
duke@435 774
duke@435 775 // recheck constructor invariants:
duke@435 776 verify_adr_type(false);
duke@435 777
duke@435 778 // recheck local phi/phi consistency:
duke@435 779 assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
duke@435 780 "adr_type must be consistent across phi nest");
duke@435 781
duke@435 782 // walk around
duke@435 783 for (uint i = 1; i < req(); i++) {
duke@435 784 Node* n = in(i);
duke@435 785 if (n == NULL) continue;
duke@435 786 const Node* np = in(i);
duke@435 787 if (np->is_Phi()) {
duke@435 788 np->as_Phi()->verify_adr_type(visited, at);
duke@435 789 } else if (n->bottom_type() == Type::TOP
duke@435 790 || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
duke@435 791 // ignore top inputs
duke@435 792 } else {
duke@435 793 const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
duke@435 794 // recheck phi/non-phi consistency at leaves:
duke@435 795 assert((nat != NULL) == (at != NULL), "");
duke@435 796 assert(nat == at || nat == TypePtr::BOTTOM,
duke@435 797 "adr_type must be consistent at leaves of phi nest");
duke@435 798 }
duke@435 799 }
duke@435 800 }
duke@435 801
duke@435 802 // Verify a whole nest of phis rooted at this one.
duke@435 803 void PhiNode::verify_adr_type(bool recursive) const {
duke@435 804 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 805 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 806
duke@435 807 assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
duke@435 808
duke@435 809 if (!VerifyAliases) return; // verify thoroughly only if requested
duke@435 810
duke@435 811 assert(_adr_type == flatten_phi_adr_type(_adr_type),
duke@435 812 "Phi::adr_type must be pre-normalized");
duke@435 813
duke@435 814 if (recursive) {
duke@435 815 VectorSet visited(Thread::current()->resource_area());
duke@435 816 verify_adr_type(visited, _adr_type);
duke@435 817 }
duke@435 818 }
duke@435 819 #endif
duke@435 820
duke@435 821
duke@435 822 //------------------------------Value------------------------------------------
duke@435 823 // Compute the type of the PhiNode
duke@435 824 const Type *PhiNode::Value( PhaseTransform *phase ) const {
duke@435 825 Node *r = in(0); // RegionNode
duke@435 826 if( !r ) // Copy or dead
duke@435 827 return in(1) ? phase->type(in(1)) : Type::TOP;
duke@435 828
duke@435 829 // Note: During parsing, phis are often transformed before their regions.
duke@435 830 // This means we have to use type_or_null to defend against untyped regions.
duke@435 831 if( phase->type_or_null(r) == Type::TOP ) // Dead code?
duke@435 832 return Type::TOP;
duke@435 833
duke@435 834 // Check for trip-counted loop. If so, be smarter.
duke@435 835 CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
duke@435 836 if( l && l->can_be_counted_loop(phase) &&
duke@435 837 ((const Node*)l->phi() == this) ) { // Trip counted loop!
duke@435 838 // protect against init_trip() or limit() returning NULL
duke@435 839 const Node *init = l->init_trip();
duke@435 840 const Node *limit = l->limit();
duke@435 841 if( init != NULL && limit != NULL && l->stride_is_con() ) {
duke@435 842 const TypeInt *lo = init ->bottom_type()->isa_int();
duke@435 843 const TypeInt *hi = limit->bottom_type()->isa_int();
duke@435 844 if( lo && hi ) { // Dying loops might have TOP here
duke@435 845 int stride = l->stride_con();
duke@435 846 if( stride < 0 ) { // Down-counter loop
duke@435 847 const TypeInt *tmp = lo; lo = hi; hi = tmp;
duke@435 848 stride = -stride;
duke@435 849 }
duke@435 850 if( lo->_hi < hi->_lo ) // Reversed endpoints are well defined :-(
duke@435 851 return TypeInt::make(lo->_lo,hi->_hi,3);
duke@435 852 }
duke@435 853 }
duke@435 854 }
duke@435 855
duke@435 856 // Until we have harmony between classes and interfaces in the type
duke@435 857 // lattice, we must tread carefully around phis which implicitly
duke@435 858 // convert the one to the other.
kvn@656 859 const TypePtr* ttp = _type->make_ptr();
kvn@656 860 const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
never@990 861 const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
duke@435 862 bool is_intf = false;
duke@435 863 if (ttip != NULL) {
duke@435 864 ciKlass* k = ttip->klass();
duke@435 865 if (k->is_loaded() && k->is_interface())
duke@435 866 is_intf = true;
duke@435 867 }
never@990 868 if (ttkp != NULL) {
never@990 869 ciKlass* k = ttkp->klass();
never@990 870 if (k->is_loaded() && k->is_interface())
never@990 871 is_intf = true;
never@990 872 }
duke@435 873
duke@435 874 // Default case: merge all inputs
duke@435 875 const Type *t = Type::TOP; // Merged type starting value
duke@435 876 for (uint i = 1; i < req(); ++i) {// For all paths in
duke@435 877 // Reachable control path?
duke@435 878 if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
duke@435 879 const Type* ti = phase->type(in(i));
duke@435 880 // We assume that each input of an interface-valued Phi is a true
duke@435 881 // subtype of that interface. This might not be true of the meet
duke@435 882 // of all the input types. The lattice is not distributive in
duke@435 883 // such cases. Ward off asserts in type.cpp by refusing to do
duke@435 884 // meets between interfaces and proper classes.
kvn@656 885 const TypePtr* tip = ti->make_ptr();
kvn@656 886 const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
duke@435 887 if (tiip) {
duke@435 888 bool ti_is_intf = false;
duke@435 889 ciKlass* k = tiip->klass();
duke@435 890 if (k->is_loaded() && k->is_interface())
duke@435 891 ti_is_intf = true;
duke@435 892 if (is_intf != ti_is_intf)
duke@435 893 { t = _type; break; }
duke@435 894 }
duke@435 895 t = t->meet(ti);
duke@435 896 }
duke@435 897 }
duke@435 898
duke@435 899 // The worst-case type (from ciTypeFlow) should be consistent with "t".
duke@435 900 // That is, we expect that "t->higher_equal(_type)" holds true.
duke@435 901 // There are various exceptions:
duke@435 902 // - Inputs which are phis might in fact be widened unnecessarily.
duke@435 903 // For example, an input might be a widened int while the phi is a short.
duke@435 904 // - Inputs might be BotPtrs but this phi is dependent on a null check,
duke@435 905 // and postCCP has removed the cast which encodes the result of the check.
duke@435 906 // - The type of this phi is an interface, and the inputs are classes.
duke@435 907 // - Value calls on inputs might produce fuzzy results.
duke@435 908 // (Occurrences of this case suggest improvements to Value methods.)
duke@435 909 //
duke@435 910 // It is not possible to see Type::BOTTOM values as phi inputs,
duke@435 911 // because the ciTypeFlow pre-pass produces verifier-quality types.
duke@435 912 const Type* ft = t->filter(_type); // Worst case type
duke@435 913
duke@435 914 #ifdef ASSERT
duke@435 915 // The following logic has been moved into TypeOopPtr::filter.
duke@435 916 const Type* jt = t->join(_type);
duke@435 917 if( jt->empty() ) { // Emptied out???
duke@435 918
duke@435 919 // Check for evil case of 't' being a class and '_type' expecting an
duke@435 920 // interface. This can happen because the bytecodes do not contain
duke@435 921 // enough type info to distinguish a Java-level interface variable
duke@435 922 // from a Java-level object variable. If we meet 2 classes which
duke@435 923 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 924 // doesn't implement I, we have no way to tell if the result should
duke@435 925 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 926 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 927 // uplift the type.
duke@435 928 if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
duke@435 929 { assert(ft == _type, ""); } // Uplift to interface
never@990 930 else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
never@990 931 { assert(ft == _type, ""); } // Uplift to interface
duke@435 932 // Otherwise it's something stupid like non-overlapping int ranges
duke@435 933 // found on dying counted loops.
duke@435 934 else
duke@435 935 { assert(ft == Type::TOP, ""); } // Canonical empty value
duke@435 936 }
duke@435 937
duke@435 938 else {
duke@435 939
duke@435 940 // If we have an interface-typed Phi and we narrow to a class type, the join
duke@435 941 // should report back the class. However, if we have a J/L/Object
duke@435 942 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 943 // join report an interface back out. This isn't possible but happens
duke@435 944 // because the type system doesn't interact well with interfaces.
kvn@656 945 const TypePtr *jtp = jt->make_ptr();
kvn@656 946 const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
never@990 947 const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
duke@435 948 if( jtip && ttip ) {
duke@435 949 if( jtip->is_loaded() && jtip->klass()->is_interface() &&
coleenp@548 950 ttip->is_loaded() && !ttip->klass()->is_interface() ) {
duke@435 951 // Happens in a CTW of rt.jar, 320-341, no extra flags
coleenp@548 952 assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
kvn@656 953 ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
coleenp@548 954 jt = ft;
coleenp@548 955 }
duke@435 956 }
never@990 957 if( jtkp && ttkp ) {
never@990 958 if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
never@990 959 ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
never@990 960 assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
never@990 961 ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
never@990 962 jt = ft;
never@990 963 }
never@990 964 }
duke@435 965 if (jt != ft && jt->base() == ft->base()) {
duke@435 966 if (jt->isa_int() &&
duke@435 967 jt->is_int()->_lo == ft->is_int()->_lo &&
duke@435 968 jt->is_int()->_hi == ft->is_int()->_hi)
duke@435 969 jt = ft;
duke@435 970 if (jt->isa_long() &&
duke@435 971 jt->is_long()->_lo == ft->is_long()->_lo &&
duke@435 972 jt->is_long()->_hi == ft->is_long()->_hi)
duke@435 973 jt = ft;
duke@435 974 }
duke@435 975 if (jt != ft) {
duke@435 976 tty->print("merge type: "); t->dump(); tty->cr();
duke@435 977 tty->print("kill type: "); _type->dump(); tty->cr();
duke@435 978 tty->print("join type: "); jt->dump(); tty->cr();
duke@435 979 tty->print("filter type: "); ft->dump(); tty->cr();
duke@435 980 }
duke@435 981 assert(jt == ft, "");
duke@435 982 }
duke@435 983 #endif //ASSERT
duke@435 984
duke@435 985 // Deal with conversion problems found in data loops.
duke@435 986 ft = phase->saturate(ft, phase->type_or_null(this), _type);
duke@435 987
duke@435 988 return ft;
duke@435 989 }
duke@435 990
duke@435 991
duke@435 992 //------------------------------is_diamond_phi---------------------------------
duke@435 993 // Does this Phi represent a simple well-shaped diamond merge? Return the
duke@435 994 // index of the true path or 0 otherwise.
duke@435 995 int PhiNode::is_diamond_phi() const {
duke@435 996 // Check for a 2-path merge
duke@435 997 Node *region = in(0);
duke@435 998 if( !region ) return 0;
duke@435 999 if( region->req() != 3 ) return 0;
duke@435 1000 if( req() != 3 ) return 0;
duke@435 1001 // Check that both paths come from the same If
duke@435 1002 Node *ifp1 = region->in(1);
duke@435 1003 Node *ifp2 = region->in(2);
duke@435 1004 if( !ifp1 || !ifp2 ) return 0;
duke@435 1005 Node *iff = ifp1->in(0);
duke@435 1006 if( !iff || !iff->is_If() ) return 0;
duke@435 1007 if( iff != ifp2->in(0) ) return 0;
duke@435 1008 // Check for a proper bool/cmp
duke@435 1009 const Node *b = iff->in(1);
duke@435 1010 if( !b->is_Bool() ) return 0;
duke@435 1011 const Node *cmp = b->in(1);
duke@435 1012 if( !cmp->is_Cmp() ) return 0;
duke@435 1013
duke@435 1014 // Check for branching opposite expected
duke@435 1015 if( ifp2->Opcode() == Op_IfTrue ) {
duke@435 1016 assert( ifp1->Opcode() == Op_IfFalse, "" );
duke@435 1017 return 2;
duke@435 1018 } else {
duke@435 1019 assert( ifp1->Opcode() == Op_IfTrue, "" );
duke@435 1020 return 1;
duke@435 1021 }
duke@435 1022 }
duke@435 1023
duke@435 1024 //----------------------------check_cmove_id-----------------------------------
duke@435 1025 // Check for CMove'ing a constant after comparing against the constant.
duke@435 1026 // Happens all the time now, since if we compare equality vs a constant in
duke@435 1027 // the parser, we "know" the variable is constant on one path and we force
duke@435 1028 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
duke@435 1029 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
duke@435 1030 // general in that we don't need constants. Since CMove's are only inserted
duke@435 1031 // in very special circumstances, we do it here on generic Phi's.
duke@435 1032 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
duke@435 1033 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1034
duke@435 1035 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1036 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1037 Node* region = in(0);
duke@435 1038 Node* iff = region->in(1)->in(0);
duke@435 1039 BoolNode* b = iff->in(1)->as_Bool();
duke@435 1040 Node* cmp = b->in(1);
duke@435 1041 Node* tval = in(true_path);
duke@435 1042 Node* fval = in(3-true_path);
duke@435 1043 Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
duke@435 1044 if (id == NULL)
duke@435 1045 return NULL;
duke@435 1046
duke@435 1047 // Either value might be a cast that depends on a branch of 'iff'.
duke@435 1048 // Since the 'id' value will float free of the diamond, either
duke@435 1049 // decast or return failure.
duke@435 1050 Node* ctl = id->in(0);
duke@435 1051 if (ctl != NULL && ctl->in(0) == iff) {
duke@435 1052 if (id->is_ConstraintCast()) {
duke@435 1053 return id->in(1);
duke@435 1054 } else {
duke@435 1055 // Don't know how to disentangle this value.
duke@435 1056 return NULL;
duke@435 1057 }
duke@435 1058 }
duke@435 1059
duke@435 1060 return id;
duke@435 1061 }
duke@435 1062
duke@435 1063 //------------------------------Identity---------------------------------------
duke@435 1064 // Check for Region being Identity.
duke@435 1065 Node *PhiNode::Identity( PhaseTransform *phase ) {
duke@435 1066 // Check for no merging going on
duke@435 1067 // (There used to be special-case code here when this->region->is_Loop.
duke@435 1068 // It would check for a tributary phi on the backedge that the main phi
duke@435 1069 // trivially, perhaps with a single cast. The unique_input method
duke@435 1070 // does all this and more, by reducing such tributaries to 'this'.)
duke@435 1071 Node* uin = unique_input(phase);
duke@435 1072 if (uin != NULL) {
duke@435 1073 return uin;
duke@435 1074 }
duke@435 1075
duke@435 1076 int true_path = is_diamond_phi();
duke@435 1077 if (true_path != 0) {
duke@435 1078 Node* id = is_cmove_id(phase, true_path);
duke@435 1079 if (id != NULL) return id;
duke@435 1080 }
duke@435 1081
duke@435 1082 return this; // No identity
duke@435 1083 }
duke@435 1084
duke@435 1085 //-----------------------------unique_input------------------------------------
duke@435 1086 // Find the unique value, discounting top, self-loops, and casts.
duke@435 1087 // Return top if there are no inputs, and self if there are multiple.
duke@435 1088 Node* PhiNode::unique_input(PhaseTransform* phase) {
duke@435 1089 // 1) One unique direct input, or
duke@435 1090 // 2) some of the inputs have an intervening ConstraintCast and
duke@435 1091 // the type of input is the same or sharper (more specific)
duke@435 1092 // than the phi's type.
duke@435 1093 // 3) an input is a self loop
duke@435 1094 //
duke@435 1095 // 1) input or 2) input or 3) input __
duke@435 1096 // / \ / \ \ / \
duke@435 1097 // \ / | cast phi cast
duke@435 1098 // phi \ / / \ /
duke@435 1099 // phi / --
duke@435 1100
duke@435 1101 Node* r = in(0); // RegionNode
duke@435 1102 if (r == NULL) return in(1); // Already degraded to a Copy
duke@435 1103 Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
duke@435 1104 Node* direct_input = NULL; // The unique direct input
duke@435 1105
duke@435 1106 for (uint i = 1, cnt = req(); i < cnt; ++i) {
duke@435 1107 Node* rc = r->in(i);
duke@435 1108 if (rc == NULL || phase->type(rc) == Type::TOP)
duke@435 1109 continue; // ignore unreachable control path
duke@435 1110 Node* n = in(i);
kvn@682 1111 if (n == NULL)
kvn@682 1112 continue;
duke@435 1113 Node* un = n->uncast();
duke@435 1114 if (un == NULL || un == this || phase->type(un) == Type::TOP) {
duke@435 1115 continue; // ignore if top, or in(i) and "this" are in a data cycle
duke@435 1116 }
duke@435 1117 // Check for a unique uncasted input
duke@435 1118 if (uncasted_input == NULL) {
duke@435 1119 uncasted_input = un;
duke@435 1120 } else if (uncasted_input != un) {
duke@435 1121 uncasted_input = NodeSentinel; // no unique uncasted input
duke@435 1122 }
duke@435 1123 // Check for a unique direct input
duke@435 1124 if (direct_input == NULL) {
duke@435 1125 direct_input = n;
duke@435 1126 } else if (direct_input != n) {
duke@435 1127 direct_input = NodeSentinel; // no unique direct input
duke@435 1128 }
duke@435 1129 }
duke@435 1130 if (direct_input == NULL) {
duke@435 1131 return phase->C->top(); // no inputs
duke@435 1132 }
duke@435 1133 assert(uncasted_input != NULL,"");
duke@435 1134
duke@435 1135 if (direct_input != NodeSentinel) {
duke@435 1136 return direct_input; // one unique direct input
duke@435 1137 }
duke@435 1138 if (uncasted_input != NodeSentinel &&
duke@435 1139 phase->type(uncasted_input)->higher_equal(type())) {
duke@435 1140 return uncasted_input; // one unique uncasted input
duke@435 1141 }
duke@435 1142
duke@435 1143 // Nothing.
duke@435 1144 return NULL;
duke@435 1145 }
duke@435 1146
duke@435 1147 //------------------------------is_x2logic-------------------------------------
duke@435 1148 // Check for simple convert-to-boolean pattern
duke@435 1149 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
duke@435 1150 // Convert Phi to an ConvIB.
duke@435 1151 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
duke@435 1152 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1153 // Convert the true/false index into an expected 0/1 return.
duke@435 1154 // Map 2->0 and 1->1.
duke@435 1155 int flipped = 2-true_path;
duke@435 1156
duke@435 1157 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1158 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1159 Node *region = phi->in(0);
duke@435 1160 Node *iff = region->in(1)->in(0);
duke@435 1161 BoolNode *b = (BoolNode*)iff->in(1);
duke@435 1162 const CmpNode *cmp = (CmpNode*)b->in(1);
duke@435 1163
duke@435 1164 Node *zero = phi->in(1);
duke@435 1165 Node *one = phi->in(2);
duke@435 1166 const Type *tzero = phase->type( zero );
duke@435 1167 const Type *tone = phase->type( one );
duke@435 1168
duke@435 1169 // Check for compare vs 0
duke@435 1170 const Type *tcmp = phase->type(cmp->in(2));
duke@435 1171 if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
duke@435 1172 // Allow cmp-vs-1 if the other input is bounded by 0-1
duke@435 1173 if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
duke@435 1174 return NULL;
duke@435 1175 flipped = 1-flipped; // Test is vs 1 instead of 0!
duke@435 1176 }
duke@435 1177
duke@435 1178 // Check for setting zero/one opposite expected
duke@435 1179 if( tzero == TypeInt::ZERO ) {
duke@435 1180 if( tone == TypeInt::ONE ) {
duke@435 1181 } else return NULL;
duke@435 1182 } else if( tzero == TypeInt::ONE ) {
duke@435 1183 if( tone == TypeInt::ZERO ) {
duke@435 1184 flipped = 1-flipped;
duke@435 1185 } else return NULL;
duke@435 1186 } else return NULL;
duke@435 1187
duke@435 1188 // Check for boolean test backwards
duke@435 1189 if( b->_test._test == BoolTest::ne ) {
duke@435 1190 } else if( b->_test._test == BoolTest::eq ) {
duke@435 1191 flipped = 1-flipped;
duke@435 1192 } else return NULL;
duke@435 1193
duke@435 1194 // Build int->bool conversion
duke@435 1195 Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
duke@435 1196 if( flipped )
duke@435 1197 n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
duke@435 1198
duke@435 1199 return n;
duke@435 1200 }
duke@435 1201
duke@435 1202 //------------------------------is_cond_add------------------------------------
duke@435 1203 // Check for simple conditional add pattern: "(P < Q) ? X+Y : X;"
duke@435 1204 // To be profitable the control flow has to disappear; there can be no other
duke@435 1205 // values merging here. We replace the test-and-branch with:
duke@435 1206 // "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by
duke@435 1207 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
duke@435 1208 // Then convert Y to 0-or-Y and finally add.
duke@435 1209 // This is a key transform for SpecJava _201_compress.
duke@435 1210 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
duke@435 1211 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1212
duke@435 1213 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1214 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1215 RegionNode *region = (RegionNode*)phi->in(0);
duke@435 1216 Node *iff = region->in(1)->in(0);
duke@435 1217 BoolNode* b = iff->in(1)->as_Bool();
duke@435 1218 const CmpNode *cmp = (CmpNode*)b->in(1);
duke@435 1219
duke@435 1220 // Make sure only merging this one phi here
duke@435 1221 if (region->has_unique_phi() != phi) return NULL;
duke@435 1222
duke@435 1223 // Make sure each arm of the diamond has exactly one output, which we assume
duke@435 1224 // is the region. Otherwise, the control flow won't disappear.
duke@435 1225 if (region->in(1)->outcnt() != 1) return NULL;
duke@435 1226 if (region->in(2)->outcnt() != 1) return NULL;
duke@435 1227
duke@435 1228 // Check for "(P < Q)" of type signed int
duke@435 1229 if (b->_test._test != BoolTest::lt) return NULL;
duke@435 1230 if (cmp->Opcode() != Op_CmpI) return NULL;
duke@435 1231
duke@435 1232 Node *p = cmp->in(1);
duke@435 1233 Node *q = cmp->in(2);
duke@435 1234 Node *n1 = phi->in( true_path);
duke@435 1235 Node *n2 = phi->in(3-true_path);
duke@435 1236
duke@435 1237 int op = n1->Opcode();
duke@435 1238 if( op != Op_AddI // Need zero as additive identity
duke@435 1239 /*&&op != Op_SubI &&
duke@435 1240 op != Op_AddP &&
duke@435 1241 op != Op_XorI &&
duke@435 1242 op != Op_OrI*/ )
duke@435 1243 return NULL;
duke@435 1244
duke@435 1245 Node *x = n2;
duke@435 1246 Node *y = n1->in(1);
duke@435 1247 if( n2 == n1->in(1) ) {
duke@435 1248 y = n1->in(2);
duke@435 1249 } else if( n2 == n1->in(1) ) {
duke@435 1250 } else return NULL;
duke@435 1251
duke@435 1252 // Not so profitable if compare and add are constants
duke@435 1253 if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
duke@435 1254 return NULL;
duke@435 1255
duke@435 1256 Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
duke@435 1257 Node *j_and = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
duke@435 1258 return new (phase->C, 3) AddINode(j_and,x);
duke@435 1259 }
duke@435 1260
duke@435 1261 //------------------------------is_absolute------------------------------------
duke@435 1262 // Check for absolute value.
duke@435 1263 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
duke@435 1264 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1265
duke@435 1266 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 1267 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 1268
duke@435 1269 // ABS ends with the merge of 2 control flow paths.
duke@435 1270 // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
duke@435 1271 int false_path = 3 - true_path;
duke@435 1272
duke@435 1273 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1274 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1275 BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
duke@435 1276
duke@435 1277 // Check bool sense
duke@435 1278 switch( bol->_test._test ) {
duke@435 1279 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break;
duke@435 1280 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
duke@435 1281 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break;
duke@435 1282 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
duke@435 1283 default: return NULL; break;
duke@435 1284 }
duke@435 1285
duke@435 1286 // Test is next
duke@435 1287 Node *cmp = bol->in(1);
duke@435 1288 const Type *tzero = NULL;
duke@435 1289 switch( cmp->Opcode() ) {
duke@435 1290 case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS
duke@435 1291 case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS
duke@435 1292 default: return NULL;
duke@435 1293 }
duke@435 1294
duke@435 1295 // Find zero input of compare; the other input is being abs'd
duke@435 1296 Node *x = NULL;
duke@435 1297 bool flip = false;
duke@435 1298 if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
duke@435 1299 x = cmp->in(3 - cmp_zero_idx);
duke@435 1300 } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
duke@435 1301 // The test is inverted, we should invert the result...
duke@435 1302 x = cmp->in(cmp_zero_idx);
duke@435 1303 flip = true;
duke@435 1304 } else {
duke@435 1305 return NULL;
duke@435 1306 }
duke@435 1307
duke@435 1308 // Next get the 2 pieces being selected, one is the original value
duke@435 1309 // and the other is the negated value.
duke@435 1310 if( phi_root->in(phi_x_idx) != x ) return NULL;
duke@435 1311
duke@435 1312 // Check other phi input for subtract node
duke@435 1313 Node *sub = phi_root->in(3 - phi_x_idx);
duke@435 1314
duke@435 1315 // Allow only Sub(0,X) and fail out for all others; Neg is not OK
duke@435 1316 if( tzero == TypeF::ZERO ) {
duke@435 1317 if( sub->Opcode() != Op_SubF ||
duke@435 1318 sub->in(2) != x ||
duke@435 1319 phase->type(sub->in(1)) != tzero ) return NULL;
duke@435 1320 x = new (phase->C, 2) AbsFNode(x);
duke@435 1321 if (flip) {
duke@435 1322 x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
duke@435 1323 }
duke@435 1324 } else {
duke@435 1325 if( sub->Opcode() != Op_SubD ||
duke@435 1326 sub->in(2) != x ||
duke@435 1327 phase->type(sub->in(1)) != tzero ) return NULL;
duke@435 1328 x = new (phase->C, 2) AbsDNode(x);
duke@435 1329 if (flip) {
duke@435 1330 x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
duke@435 1331 }
duke@435 1332 }
duke@435 1333
duke@435 1334 return x;
duke@435 1335 }
duke@435 1336
duke@435 1337 //------------------------------split_once-------------------------------------
duke@435 1338 // Helper for split_flow_path
duke@435 1339 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
duke@435 1340 igvn->hash_delete(n); // Remove from hash before hacking edges
duke@435 1341
duke@435 1342 uint j = 1;
duke@435 1343 for( uint i = phi->req()-1; i > 0; i-- ) {
duke@435 1344 if( phi->in(i) == val ) { // Found a path with val?
duke@435 1345 // Add to NEW Region/Phi, no DU info
duke@435 1346 newn->set_req( j++, n->in(i) );
duke@435 1347 // Remove from OLD Region/Phi
duke@435 1348 n->del_req(i);
duke@435 1349 }
duke@435 1350 }
duke@435 1351
duke@435 1352 // Register the new node but do not transform it. Cannot transform until the
duke@435 1353 // entire Region/Phi conglerate has been hacked as a single huge transform.
duke@435 1354 igvn->register_new_node_with_optimizer( newn );
duke@435 1355 // Now I can point to the new node.
duke@435 1356 n->add_req(newn);
duke@435 1357 igvn->_worklist.push(n);
duke@435 1358 }
duke@435 1359
duke@435 1360 //------------------------------split_flow_path--------------------------------
duke@435 1361 // Check for merging identical values and split flow paths
duke@435 1362 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
duke@435 1363 BasicType bt = phi->type()->basic_type();
duke@435 1364 if( bt == T_ILLEGAL || type2size[bt] <= 0 )
duke@435 1365 return NULL; // Bail out on funny non-value stuff
duke@435 1366 if( phi->req() <= 3 ) // Need at least 2 matched inputs and a
duke@435 1367 return NULL; // third unequal input to be worth doing
duke@435 1368
duke@435 1369 // Scan for a constant
duke@435 1370 uint i;
duke@435 1371 for( i = 1; i < phi->req()-1; i++ ) {
duke@435 1372 Node *n = phi->in(i);
duke@435 1373 if( !n ) return NULL;
duke@435 1374 if( phase->type(n) == Type::TOP ) return NULL;
kvn@598 1375 if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
duke@435 1376 break;
duke@435 1377 }
duke@435 1378 if( i >= phi->req() ) // Only split for constants
duke@435 1379 return NULL;
duke@435 1380
duke@435 1381 Node *val = phi->in(i); // Constant to split for
duke@435 1382 uint hit = 0; // Number of times it occurs
duke@435 1383
duke@435 1384 for( ; i < phi->req(); i++ ){ // Count occurances of constant
duke@435 1385 Node *n = phi->in(i);
duke@435 1386 if( !n ) return NULL;
duke@435 1387 if( phase->type(n) == Type::TOP ) return NULL;
duke@435 1388 if( phi->in(i) == val )
duke@435 1389 hit++;
duke@435 1390 }
duke@435 1391
duke@435 1392 if( hit <= 1 || // Make sure we find 2 or more
duke@435 1393 hit == phi->req()-1 ) // and not ALL the same value
duke@435 1394 return NULL;
duke@435 1395
duke@435 1396 // Now start splitting out the flow paths that merge the same value.
duke@435 1397 // Split first the RegionNode.
duke@435 1398 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 1399 Node *r = phi->region();
duke@435 1400 RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
duke@435 1401 split_once(igvn, phi, val, r, newr);
duke@435 1402
duke@435 1403 // Now split all other Phis than this one
duke@435 1404 for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
duke@435 1405 Node* phi2 = r->fast_out(k);
duke@435 1406 if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
duke@435 1407 PhiNode *newphi = PhiNode::make_blank(newr, phi2);
duke@435 1408 split_once(igvn, phi, val, phi2, newphi);
duke@435 1409 }
duke@435 1410 }
duke@435 1411
duke@435 1412 // Clean up this guy
duke@435 1413 igvn->hash_delete(phi);
duke@435 1414 for( i = phi->req()-1; i > 0; i-- ) {
duke@435 1415 if( phi->in(i) == val ) {
duke@435 1416 phi->del_req(i);
duke@435 1417 }
duke@435 1418 }
duke@435 1419 phi->add_req(val);
duke@435 1420
duke@435 1421 return phi;
duke@435 1422 }
duke@435 1423
duke@435 1424 //=============================================================================
duke@435 1425 //------------------------------simple_data_loop_check-------------------------
duke@435 1426 // Try to determing if the phi node in a simple safe/unsafe data loop.
duke@435 1427 // Returns:
duke@435 1428 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
duke@435 1429 // Safe - safe case when the phi and it's inputs reference only safe data
duke@435 1430 // nodes;
duke@435 1431 // Unsafe - the phi and it's inputs reference unsafe data nodes but there
duke@435 1432 // is no reference back to the phi - need a graph walk
duke@435 1433 // to determine if it is in a loop;
duke@435 1434 // UnsafeLoop - unsafe case when the phi references itself directly or through
duke@435 1435 // unsafe data node.
duke@435 1436 // Note: a safe data node is a node which could/never reference itself during
duke@435 1437 // GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
duke@435 1438 // I mark Phi nodes as safe node not only because they can reference itself
duke@435 1439 // but also to prevent mistaking the fallthrough case inside an outer loop
duke@435 1440 // as dead loop when the phi references itselfs through an other phi.
duke@435 1441 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
duke@435 1442 // It is unsafe loop if the phi node references itself directly.
duke@435 1443 if (in == (Node*)this)
duke@435 1444 return UnsafeLoop; // Unsafe loop
duke@435 1445 // Unsafe loop if the phi node references itself through an unsafe data node.
duke@435 1446 // Exclude cases with null inputs or data nodes which could reference
duke@435 1447 // itself (safe for dead loops).
duke@435 1448 if (in != NULL && !in->is_dead_loop_safe()) {
duke@435 1449 // Check inputs of phi's inputs also.
duke@435 1450 // It is much less expensive then full graph walk.
duke@435 1451 uint cnt = in->req();
kvn@561 1452 uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1;
kvn@561 1453 for (; i < cnt; ++i) {
duke@435 1454 Node* m = in->in(i);
duke@435 1455 if (m == (Node*)this)
duke@435 1456 return UnsafeLoop; // Unsafe loop
duke@435 1457 if (m != NULL && !m->is_dead_loop_safe()) {
duke@435 1458 // Check the most common case (about 30% of all cases):
duke@435 1459 // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
duke@435 1460 Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
duke@435 1461 if (m1 == (Node*)this)
duke@435 1462 return UnsafeLoop; // Unsafe loop
duke@435 1463 if (m1 != NULL && m1 == m->in(2) &&
duke@435 1464 m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
duke@435 1465 continue; // Safe case
duke@435 1466 }
duke@435 1467 // The phi references an unsafe node - need full analysis.
duke@435 1468 return Unsafe;
duke@435 1469 }
duke@435 1470 }
duke@435 1471 }
duke@435 1472 return Safe; // Safe case - we can optimize the phi node.
duke@435 1473 }
duke@435 1474
duke@435 1475 //------------------------------is_unsafe_data_reference-----------------------
duke@435 1476 // If phi can be reached through the data input - it is data loop.
duke@435 1477 bool PhiNode::is_unsafe_data_reference(Node *in) const {
duke@435 1478 assert(req() > 1, "");
duke@435 1479 // First, check simple cases when phi references itself directly or
duke@435 1480 // through an other node.
duke@435 1481 LoopSafety safety = simple_data_loop_check(in);
duke@435 1482 if (safety == UnsafeLoop)
duke@435 1483 return true; // phi references itself - unsafe loop
duke@435 1484 else if (safety == Safe)
duke@435 1485 return false; // Safe case - phi could be replaced with the unique input.
duke@435 1486
duke@435 1487 // Unsafe case when we should go through data graph to determine
duke@435 1488 // if the phi references itself.
duke@435 1489
duke@435 1490 ResourceMark rm;
duke@435 1491
duke@435 1492 Arena *a = Thread::current()->resource_area();
duke@435 1493 Node_List nstack(a);
duke@435 1494 VectorSet visited(a);
duke@435 1495
duke@435 1496 nstack.push(in); // Start with unique input.
duke@435 1497 visited.set(in->_idx);
duke@435 1498 while (nstack.size() != 0) {
duke@435 1499 Node* n = nstack.pop();
duke@435 1500 uint cnt = n->req();
kvn@561 1501 uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
kvn@561 1502 for (; i < cnt; i++) {
duke@435 1503 Node* m = n->in(i);
duke@435 1504 if (m == (Node*)this) {
duke@435 1505 return true; // Data loop
duke@435 1506 }
duke@435 1507 if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
duke@435 1508 if (!visited.test_set(m->_idx))
duke@435 1509 nstack.push(m);
duke@435 1510 }
duke@435 1511 }
duke@435 1512 }
duke@435 1513 return false; // The phi is not reachable from its inputs
duke@435 1514 }
duke@435 1515
duke@435 1516
duke@435 1517 //------------------------------Ideal------------------------------------------
duke@435 1518 // Return a node which is more "ideal" than the current node. Must preserve
duke@435 1519 // the CFG, but we can still strip out dead paths.
duke@435 1520 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1521 // The next should never happen after 6297035 fix.
duke@435 1522 if( is_copy() ) // Already degraded to a Copy ?
duke@435 1523 return NULL; // No change
duke@435 1524
duke@435 1525 Node *r = in(0); // RegionNode
duke@435 1526 assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
duke@435 1527
duke@435 1528 // Note: During parsing, phis are often transformed before their regions.
duke@435 1529 // This means we have to use type_or_null to defend against untyped regions.
duke@435 1530 if( phase->type_or_null(r) == Type::TOP ) // Dead code?
duke@435 1531 return NULL; // No change
duke@435 1532
duke@435 1533 Node *top = phase->C->top();
duke@435 1534
duke@435 1535 // The are 2 situations when only one valid phi's input is left
duke@435 1536 // (in addition to Region input).
duke@435 1537 // One: region is not loop - replace phi with this input.
duke@435 1538 // Two: region is loop - replace phi with top since this data path is dead
duke@435 1539 // and we need to break the dead data loop.
duke@435 1540 Node* progress = NULL; // Record if any progress made
duke@435 1541 for( uint j = 1; j < req(); ++j ){ // For all paths in
duke@435 1542 // Check unreachable control paths
duke@435 1543 Node* rc = r->in(j);
duke@435 1544 Node* n = in(j); // Get the input
duke@435 1545 if (rc == NULL || phase->type(rc) == Type::TOP) {
duke@435 1546 if (n != top) { // Not already top?
duke@435 1547 set_req(j, top); // Nuke it down
duke@435 1548 progress = this; // Record progress
duke@435 1549 }
duke@435 1550 }
duke@435 1551 }
duke@435 1552
duke@435 1553 Node* uin = unique_input(phase);
duke@435 1554 if (uin == top) { // Simplest case: no alive inputs.
duke@435 1555 if (can_reshape) // IGVN transformation
duke@435 1556 return top;
duke@435 1557 else
duke@435 1558 return NULL; // Identity will return TOP
duke@435 1559 } else if (uin != NULL) {
duke@435 1560 // Only one not-NULL unique input path is left.
duke@435 1561 // Determine if this input is backedge of a loop.
duke@435 1562 // (Skip new phis which have no uses and dead regions).
duke@435 1563 if( outcnt() > 0 && r->in(0) != NULL ) {
duke@435 1564 // First, take the short cut when we know it is a loop and
duke@435 1565 // the EntryControl data path is dead.
duke@435 1566 assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
duke@435 1567 // Then, check if there is a data loop when phi references itself directly
duke@435 1568 // or through other data nodes.
duke@435 1569 if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
duke@435 1570 !r->is_Loop() && is_unsafe_data_reference(uin) ) {
duke@435 1571 // Break this data loop to avoid creation of a dead loop.
duke@435 1572 if (can_reshape) {
duke@435 1573 return top;
duke@435 1574 } else {
duke@435 1575 // We can't return top if we are in Parse phase - cut inputs only
duke@435 1576 // let Identity to handle the case.
duke@435 1577 replace_edge(uin, top);
duke@435 1578 return NULL;
duke@435 1579 }
duke@435 1580 }
duke@435 1581 }
duke@435 1582
duke@435 1583 // One unique input.
duke@435 1584 debug_only(Node* ident = Identity(phase));
duke@435 1585 // The unique input must eventually be detected by the Identity call.
duke@435 1586 #ifdef ASSERT
duke@435 1587 if (ident != uin && !ident->is_top()) {
duke@435 1588 // print this output before failing assert
duke@435 1589 r->dump(3);
duke@435 1590 this->dump(3);
duke@435 1591 ident->dump();
duke@435 1592 uin->dump();
duke@435 1593 }
duke@435 1594 #endif
duke@435 1595 assert(ident == uin || ident->is_top(), "Identity must clean this up");
duke@435 1596 return NULL;
duke@435 1597 }
duke@435 1598
duke@435 1599
duke@435 1600 Node* opt = NULL;
duke@435 1601 int true_path = is_diamond_phi();
duke@435 1602 if( true_path != 0 ) {
duke@435 1603 // Check for CMove'ing identity. If it would be unsafe,
duke@435 1604 // handle it here. In the safe case, let Identity handle it.
duke@435 1605 Node* unsafe_id = is_cmove_id(phase, true_path);
duke@435 1606 if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
duke@435 1607 opt = unsafe_id;
duke@435 1608
duke@435 1609 // Check for simple convert-to-boolean pattern
duke@435 1610 if( opt == NULL )
duke@435 1611 opt = is_x2logic(phase, this, true_path);
duke@435 1612
duke@435 1613 // Check for absolute value
duke@435 1614 if( opt == NULL )
duke@435 1615 opt = is_absolute(phase, this, true_path);
duke@435 1616
duke@435 1617 // Check for conditional add
duke@435 1618 if( opt == NULL && can_reshape )
duke@435 1619 opt = is_cond_add(phase, this, true_path);
duke@435 1620
duke@435 1621 // These 4 optimizations could subsume the phi:
duke@435 1622 // have to check for a dead data loop creation.
duke@435 1623 if( opt != NULL ) {
duke@435 1624 if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
duke@435 1625 // Found dead loop.
duke@435 1626 if( can_reshape )
duke@435 1627 return top;
duke@435 1628 // We can't return top if we are in Parse phase - cut inputs only
duke@435 1629 // to stop further optimizations for this phi. Identity will return TOP.
duke@435 1630 assert(req() == 3, "only diamond merge phi here");
duke@435 1631 set_req(1, top);
duke@435 1632 set_req(2, top);
duke@435 1633 return NULL;
duke@435 1634 } else {
duke@435 1635 return opt;
duke@435 1636 }
duke@435 1637 }
duke@435 1638 }
duke@435 1639
duke@435 1640 // Check for merging identical values and split flow paths
duke@435 1641 if (can_reshape) {
duke@435 1642 opt = split_flow_path(phase, this);
duke@435 1643 // This optimization only modifies phi - don't need to check for dead loop.
duke@435 1644 assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
duke@435 1645 if (opt != NULL) return opt;
duke@435 1646 }
duke@435 1647
duke@435 1648 // Split phis through memory merges, so that the memory merges will go away.
duke@435 1649 // Piggy-back this transformation on the search for a unique input....
duke@435 1650 // It will be as if the merged memory is the unique value of the phi.
duke@435 1651 // (Do not attempt this optimization unless parsing is complete.
duke@435 1652 // It would make the parser's memory-merge logic sick.)
duke@435 1653 // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
duke@435 1654 if (progress == NULL && can_reshape && type() == Type::MEMORY) {
duke@435 1655 // see if this phi should be sliced
duke@435 1656 uint merge_width = 0;
duke@435 1657 bool saw_self = false;
duke@435 1658 for( uint i=1; i<req(); ++i ) {// For all paths in
duke@435 1659 Node *ii = in(i);
duke@435 1660 if (ii->is_MergeMem()) {
duke@435 1661 MergeMemNode* n = ii->as_MergeMem();
duke@435 1662 merge_width = MAX2(merge_width, n->req());
duke@435 1663 saw_self = saw_self || phase->eqv(n->base_memory(), this);
duke@435 1664 }
duke@435 1665 }
duke@435 1666
duke@435 1667 // This restriction is temporarily necessary to ensure termination:
duke@435 1668 if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0;
duke@435 1669
duke@435 1670 if (merge_width > Compile::AliasIdxRaw) {
duke@435 1671 // found at least one non-empty MergeMem
duke@435 1672 const TypePtr* at = adr_type();
duke@435 1673 if (at != TypePtr::BOTTOM) {
duke@435 1674 // Patch the existing phi to select an input from the merge:
duke@435 1675 // Phi:AT1(...MergeMem(m0, m1, m2)...) into
duke@435 1676 // Phi:AT1(...m1...)
duke@435 1677 int alias_idx = phase->C->get_alias_index(at);
duke@435 1678 for (uint i=1; i<req(); ++i) {
duke@435 1679 Node *ii = in(i);
duke@435 1680 if (ii->is_MergeMem()) {
duke@435 1681 MergeMemNode* n = ii->as_MergeMem();
duke@435 1682 // compress paths and change unreachable cycles to TOP
duke@435 1683 // If not, we can update the input infinitely along a MergeMem cycle
duke@435 1684 // Equivalent code is in MemNode::Ideal_common
never@802 1685 Node *m = phase->transform(n);
never@802 1686 if (outcnt() == 0) { // Above transform() may kill us!
never@802 1687 progress = phase->C->top();
never@802 1688 break;
never@802 1689 }
duke@435 1690 // If tranformed to a MergeMem, get the desired slice
duke@435 1691 // Otherwise the returned node represents memory for every slice
duke@435 1692 Node *new_mem = (m->is_MergeMem()) ?
duke@435 1693 m->as_MergeMem()->memory_at(alias_idx) : m;
duke@435 1694 // Update input if it is progress over what we have now
duke@435 1695 if (new_mem != ii) {
duke@435 1696 set_req(i, new_mem);
duke@435 1697 progress = this;
duke@435 1698 }
duke@435 1699 }
duke@435 1700 }
duke@435 1701 } else {
duke@435 1702 // We know that at least one MergeMem->base_memory() == this
duke@435 1703 // (saw_self == true). If all other inputs also references this phi
duke@435 1704 // (directly or through data nodes) - it is dead loop.
duke@435 1705 bool saw_safe_input = false;
duke@435 1706 for (uint j = 1; j < req(); ++j) {
duke@435 1707 Node *n = in(j);
duke@435 1708 if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
duke@435 1709 continue; // skip known cases
duke@435 1710 if (!is_unsafe_data_reference(n)) {
duke@435 1711 saw_safe_input = true; // found safe input
duke@435 1712 break;
duke@435 1713 }
duke@435 1714 }
duke@435 1715 if (!saw_safe_input)
duke@435 1716 return top; // all inputs reference back to this phi - dead loop
duke@435 1717
duke@435 1718 // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
duke@435 1719 // MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
duke@435 1720 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 1721 Node* hook = new (phase->C, 1) Node(1);
duke@435 1722 PhiNode* new_base = (PhiNode*) clone();
duke@435 1723 // Must eagerly register phis, since they participate in loops.
duke@435 1724 if (igvn) {
duke@435 1725 igvn->register_new_node_with_optimizer(new_base);
duke@435 1726 hook->add_req(new_base);
duke@435 1727 }
duke@435 1728 MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
duke@435 1729 for (uint i = 1; i < req(); ++i) {
duke@435 1730 Node *ii = in(i);
duke@435 1731 if (ii->is_MergeMem()) {
duke@435 1732 MergeMemNode* n = ii->as_MergeMem();
duke@435 1733 for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
duke@435 1734 // If we have not seen this slice yet, make a phi for it.
duke@435 1735 bool made_new_phi = false;
duke@435 1736 if (mms.is_empty()) {
duke@435 1737 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
duke@435 1738 made_new_phi = true;
duke@435 1739 if (igvn) {
duke@435 1740 igvn->register_new_node_with_optimizer(new_phi);
duke@435 1741 hook->add_req(new_phi);
duke@435 1742 }
duke@435 1743 mms.set_memory(new_phi);
duke@435 1744 }
duke@435 1745 Node* phi = mms.memory();
duke@435 1746 assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
duke@435 1747 phi->set_req(i, mms.memory2());
duke@435 1748 }
duke@435 1749 }
duke@435 1750 }
duke@435 1751 // Distribute all self-loops.
duke@435 1752 { // (Extra braces to hide mms.)
duke@435 1753 for (MergeMemStream mms(result); mms.next_non_empty(); ) {
duke@435 1754 Node* phi = mms.memory();
duke@435 1755 for (uint i = 1; i < req(); ++i) {
duke@435 1756 if (phi->in(i) == this) phi->set_req(i, phi);
duke@435 1757 }
duke@435 1758 }
duke@435 1759 }
duke@435 1760 // now transform the new nodes, and return the mergemem
duke@435 1761 for (MergeMemStream mms(result); mms.next_non_empty(); ) {
duke@435 1762 Node* phi = mms.memory();
duke@435 1763 mms.set_memory(phase->transform(phi));
duke@435 1764 }
duke@435 1765 if (igvn) { // Unhook.
duke@435 1766 igvn->hash_delete(hook);
duke@435 1767 for (uint i = 1; i < hook->req(); i++) {
duke@435 1768 hook->set_req(i, NULL);
duke@435 1769 }
duke@435 1770 }
duke@435 1771 // Replace self with the result.
duke@435 1772 return result;
duke@435 1773 }
duke@435 1774 }
kvn@509 1775 //
kvn@509 1776 // Other optimizations on the memory chain
kvn@509 1777 //
kvn@509 1778 const TypePtr* at = adr_type();
kvn@509 1779 for( uint i=1; i<req(); ++i ) {// For all paths in
kvn@509 1780 Node *ii = in(i);
kvn@509 1781 Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
kvn@509 1782 if (ii != new_in ) {
kvn@509 1783 set_req(i, new_in);
kvn@509 1784 progress = this;
kvn@509 1785 }
kvn@509 1786 }
duke@435 1787 }
duke@435 1788
kvn@803 1789 #ifdef _LP64
kvn@803 1790 // Push DecodeN down through phi.
kvn@803 1791 // The rest of phi graph will transform by split EncodeP node though phis up.
kvn@803 1792 if (UseCompressedOops && can_reshape && progress == NULL) {
kvn@803 1793 bool may_push = true;
kvn@803 1794 bool has_decodeN = false;
kvn@803 1795 Node* in_decodeN = NULL;
kvn@803 1796 for (uint i=1; i<req(); ++i) {// For all paths in
kvn@803 1797 Node *ii = in(i);
kvn@803 1798 if (ii->is_DecodeN() && ii->bottom_type() == bottom_type()) {
kvn@803 1799 has_decodeN = true;
kvn@803 1800 in_decodeN = ii->in(1);
kvn@803 1801 } else if (!ii->is_Phi()) {
kvn@803 1802 may_push = false;
kvn@803 1803 }
kvn@803 1804 }
kvn@803 1805
kvn@803 1806 if (has_decodeN && may_push) {
kvn@803 1807 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@803 1808 // Note: in_decodeN is used only to define the type of new phi here.
kvn@803 1809 PhiNode *new_phi = PhiNode::make_blank(in(0), in_decodeN);
kvn@803 1810 uint orig_cnt = req();
kvn@803 1811 for (uint i=1; i<req(); ++i) {// For all paths in
kvn@803 1812 Node *ii = in(i);
kvn@803 1813 Node* new_ii = NULL;
kvn@803 1814 if (ii->is_DecodeN()) {
kvn@803 1815 assert(ii->bottom_type() == bottom_type(), "sanity");
kvn@803 1816 new_ii = ii->in(1);
kvn@803 1817 } else {
kvn@803 1818 assert(ii->is_Phi(), "sanity");
kvn@803 1819 if (ii->as_Phi() == this) {
kvn@803 1820 new_ii = new_phi;
kvn@803 1821 } else {
kvn@803 1822 new_ii = new (phase->C, 2) EncodePNode(ii, in_decodeN->bottom_type());
kvn@803 1823 igvn->register_new_node_with_optimizer(new_ii);
kvn@803 1824 }
kvn@803 1825 }
kvn@803 1826 new_phi->set_req(i, new_ii);
kvn@803 1827 }
kvn@803 1828 igvn->register_new_node_with_optimizer(new_phi, this);
kvn@803 1829 progress = new (phase->C, 2) DecodeNNode(new_phi, bottom_type());
kvn@803 1830 }
kvn@803 1831 }
kvn@803 1832 #endif
kvn@803 1833
duke@435 1834 return progress; // Return any progress
duke@435 1835 }
duke@435 1836
kvn@835 1837 //------------------------------is_tripcount-----------------------------------
kvn@835 1838 bool PhiNode::is_tripcount() const {
kvn@835 1839 return (in(0) != NULL && in(0)->is_CountedLoop() &&
kvn@835 1840 in(0)->as_CountedLoop()->phi() == this);
kvn@835 1841 }
kvn@835 1842
duke@435 1843 //------------------------------out_RegMask------------------------------------
duke@435 1844 const RegMask &PhiNode::in_RegMask(uint i) const {
duke@435 1845 return i ? out_RegMask() : RegMask::Empty;
duke@435 1846 }
duke@435 1847
duke@435 1848 const RegMask &PhiNode::out_RegMask() const {
duke@435 1849 uint ideal_reg = Matcher::base2reg[_type->base()];
duke@435 1850 assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
duke@435 1851 if( ideal_reg == 0 ) return RegMask::Empty;
duke@435 1852 return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
duke@435 1853 }
duke@435 1854
duke@435 1855 #ifndef PRODUCT
duke@435 1856 void PhiNode::dump_spec(outputStream *st) const {
duke@435 1857 TypeNode::dump_spec(st);
kvn@835 1858 if (is_tripcount()) {
duke@435 1859 st->print(" #tripcount");
duke@435 1860 }
duke@435 1861 }
duke@435 1862 #endif
duke@435 1863
duke@435 1864
duke@435 1865 //=============================================================================
duke@435 1866 const Type *GotoNode::Value( PhaseTransform *phase ) const {
duke@435 1867 // If the input is reachable, then we are executed.
duke@435 1868 // If the input is not reachable, then we are not executed.
duke@435 1869 return phase->type(in(0));
duke@435 1870 }
duke@435 1871
duke@435 1872 Node *GotoNode::Identity( PhaseTransform *phase ) {
duke@435 1873 return in(0); // Simple copy of incoming control
duke@435 1874 }
duke@435 1875
duke@435 1876 const RegMask &GotoNode::out_RegMask() const {
duke@435 1877 return RegMask::Empty;
duke@435 1878 }
duke@435 1879
duke@435 1880 //=============================================================================
duke@435 1881 const RegMask &JumpNode::out_RegMask() const {
duke@435 1882 return RegMask::Empty;
duke@435 1883 }
duke@435 1884
duke@435 1885 //=============================================================================
duke@435 1886 const RegMask &JProjNode::out_RegMask() const {
duke@435 1887 return RegMask::Empty;
duke@435 1888 }
duke@435 1889
duke@435 1890 //=============================================================================
duke@435 1891 const RegMask &CProjNode::out_RegMask() const {
duke@435 1892 return RegMask::Empty;
duke@435 1893 }
duke@435 1894
duke@435 1895
duke@435 1896
duke@435 1897 //=============================================================================
duke@435 1898
duke@435 1899 uint PCTableNode::hash() const { return Node::hash() + _size; }
duke@435 1900 uint PCTableNode::cmp( const Node &n ) const
duke@435 1901 { return _size == ((PCTableNode&)n)._size; }
duke@435 1902
duke@435 1903 const Type *PCTableNode::bottom_type() const {
duke@435 1904 const Type** f = TypeTuple::fields(_size);
duke@435 1905 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
duke@435 1906 return TypeTuple::make(_size, f);
duke@435 1907 }
duke@435 1908
duke@435 1909 //------------------------------Value------------------------------------------
duke@435 1910 // Compute the type of the PCTableNode. If reachable it is a tuple of
duke@435 1911 // Control, otherwise the table targets are not reachable
duke@435 1912 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
duke@435 1913 if( phase->type(in(0)) == Type::CONTROL )
duke@435 1914 return bottom_type();
duke@435 1915 return Type::TOP; // All paths dead? Then so are we
duke@435 1916 }
duke@435 1917
duke@435 1918 //------------------------------Ideal------------------------------------------
duke@435 1919 // Return a node which is more "ideal" than the current node. Strip out
duke@435 1920 // control copies
duke@435 1921 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1922 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 1923 }
duke@435 1924
duke@435 1925 //=============================================================================
duke@435 1926 uint JumpProjNode::hash() const {
duke@435 1927 return Node::hash() + _dest_bci;
duke@435 1928 }
duke@435 1929
duke@435 1930 uint JumpProjNode::cmp( const Node &n ) const {
duke@435 1931 return ProjNode::cmp(n) &&
duke@435 1932 _dest_bci == ((JumpProjNode&)n)._dest_bci;
duke@435 1933 }
duke@435 1934
duke@435 1935 #ifndef PRODUCT
duke@435 1936 void JumpProjNode::dump_spec(outputStream *st) const {
duke@435 1937 ProjNode::dump_spec(st);
duke@435 1938 st->print("@bci %d ",_dest_bci);
duke@435 1939 }
duke@435 1940 #endif
duke@435 1941
duke@435 1942 //=============================================================================
duke@435 1943 //------------------------------Value------------------------------------------
duke@435 1944 // Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot
duke@435 1945 // have the default "fall_through_index" path.
duke@435 1946 const Type *CatchNode::Value( PhaseTransform *phase ) const {
duke@435 1947 // Unreachable? Then so are all paths from here.
duke@435 1948 if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 1949 // First assume all paths are reachable
duke@435 1950 const Type** f = TypeTuple::fields(_size);
duke@435 1951 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
duke@435 1952 // Identify cases that will always throw an exception
duke@435 1953 // () rethrow call
duke@435 1954 // () virtual or interface call with NULL receiver
duke@435 1955 // () call is a check cast with incompatible arguments
duke@435 1956 if( in(1)->is_Proj() ) {
duke@435 1957 Node *i10 = in(1)->in(0);
duke@435 1958 if( i10->is_Call() ) {
duke@435 1959 CallNode *call = i10->as_Call();
duke@435 1960 // Rethrows always throw exceptions, never return
duke@435 1961 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
duke@435 1962 f[CatchProjNode::fall_through_index] = Type::TOP;
duke@435 1963 } else if( call->req() > TypeFunc::Parms ) {
duke@435 1964 const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
duke@435 1965 // Check for null reciever to virtual or interface calls
duke@435 1966 if( call->is_CallDynamicJava() &&
duke@435 1967 arg0->higher_equal(TypePtr::NULL_PTR) ) {
duke@435 1968 f[CatchProjNode::fall_through_index] = Type::TOP;
duke@435 1969 }
duke@435 1970 } // End of if not a runtime stub
duke@435 1971 } // End of if have call above me
duke@435 1972 } // End of slot 1 is not a projection
duke@435 1973 return TypeTuple::make(_size, f);
duke@435 1974 }
duke@435 1975
duke@435 1976 //=============================================================================
duke@435 1977 uint CatchProjNode::hash() const {
duke@435 1978 return Node::hash() + _handler_bci;
duke@435 1979 }
duke@435 1980
duke@435 1981
duke@435 1982 uint CatchProjNode::cmp( const Node &n ) const {
duke@435 1983 return ProjNode::cmp(n) &&
duke@435 1984 _handler_bci == ((CatchProjNode&)n)._handler_bci;
duke@435 1985 }
duke@435 1986
duke@435 1987
duke@435 1988 //------------------------------Identity---------------------------------------
duke@435 1989 // If only 1 target is possible, choose it if it is the main control
duke@435 1990 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
duke@435 1991 // If my value is control and no other value is, then treat as ID
duke@435 1992 const TypeTuple *t = phase->type(in(0))->is_tuple();
duke@435 1993 if (t->field_at(_con) != Type::CONTROL) return this;
duke@435 1994 // If we remove the last CatchProj and elide the Catch/CatchProj, then we
duke@435 1995 // also remove any exception table entry. Thus we must know the call
duke@435 1996 // feeding the Catch will not really throw an exception. This is ok for
duke@435 1997 // the main fall-thru control (happens when we know a call can never throw
duke@435 1998 // an exception) or for "rethrow", because a further optimnization will
duke@435 1999 // yank the rethrow (happens when we inline a function that can throw an
duke@435 2000 // exception and the caller has no handler). Not legal, e.g., for passing
duke@435 2001 // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
duke@435 2002 // These cases MUST throw an exception via the runtime system, so the VM
duke@435 2003 // will be looking for a table entry.
duke@435 2004 Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode
duke@435 2005 CallNode *call;
duke@435 2006 if (_con != TypeFunc::Control && // Bail out if not the main control.
duke@435 2007 !(proj->is_Proj() && // AND NOT a rethrow
duke@435 2008 proj->in(0)->is_Call() &&
duke@435 2009 (call = proj->in(0)->as_Call()) &&
duke@435 2010 call->entry_point() == OptoRuntime::rethrow_stub()))
duke@435 2011 return this;
duke@435 2012
duke@435 2013 // Search for any other path being control
duke@435 2014 for (uint i = 0; i < t->cnt(); i++) {
duke@435 2015 if (i != _con && t->field_at(i) == Type::CONTROL)
duke@435 2016 return this;
duke@435 2017 }
duke@435 2018 // Only my path is possible; I am identity on control to the jump
duke@435 2019 return in(0)->in(0);
duke@435 2020 }
duke@435 2021
duke@435 2022
duke@435 2023 #ifndef PRODUCT
duke@435 2024 void CatchProjNode::dump_spec(outputStream *st) const {
duke@435 2025 ProjNode::dump_spec(st);
duke@435 2026 st->print("@bci %d ",_handler_bci);
duke@435 2027 }
duke@435 2028 #endif
duke@435 2029
duke@435 2030 //=============================================================================
duke@435 2031 //------------------------------Identity---------------------------------------
duke@435 2032 // Check for CreateEx being Identity.
duke@435 2033 Node *CreateExNode::Identity( PhaseTransform *phase ) {
duke@435 2034 if( phase->type(in(1)) == Type::TOP ) return in(1);
duke@435 2035 if( phase->type(in(0)) == Type::TOP ) return in(0);
duke@435 2036 // We only come from CatchProj, unless the CatchProj goes away.
duke@435 2037 // If the CatchProj is optimized away, then we just carry the
duke@435 2038 // exception oop through.
duke@435 2039 CallNode *call = in(1)->in(0)->as_Call();
duke@435 2040
duke@435 2041 return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
duke@435 2042 ? this
duke@435 2043 : call->in(TypeFunc::Parms);
duke@435 2044 }
duke@435 2045
duke@435 2046 //=============================================================================
never@562 2047 //------------------------------Value------------------------------------------
never@562 2048 // Check for being unreachable.
never@562 2049 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
never@562 2050 if (!in(0) || in(0)->is_top()) return Type::TOP;
never@562 2051 return bottom_type();
never@562 2052 }
never@562 2053
never@562 2054 //------------------------------Ideal------------------------------------------
never@562 2055 // Check for no longer being part of a loop
never@562 2056 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
never@562 2057 if (can_reshape && !in(0)->is_Loop()) {
never@562 2058 // Dead code elimination can sometimes delete this projection so
never@562 2059 // if it's not there, there's nothing to do.
never@562 2060 Node* fallthru = proj_out(0);
never@562 2061 if (fallthru != NULL) {
never@562 2062 phase->is_IterGVN()->subsume_node(fallthru, in(0));
never@562 2063 }
never@562 2064 return phase->C->top();
never@562 2065 }
never@562 2066 return NULL;
never@562 2067 }
never@562 2068
duke@435 2069 #ifndef PRODUCT
duke@435 2070 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
duke@435 2071 st->print("%s", Name());
duke@435 2072 }
duke@435 2073 #endif

mercurial