src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 931
b27c885f75f9
child 1376
8b46c4d82093
child 1424
148e5441d916
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@1014 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class ParallelScavengeHeap;
duke@435 26 class PSAdaptiveSizePolicy;
duke@435 27 class PSYoungGen;
duke@435 28 class PSOldGen;
duke@435 29 class PSPermGen;
duke@435 30 class ParCompactionManager;
duke@435 31 class ParallelTaskTerminator;
duke@435 32 class PSParallelCompact;
duke@435 33 class GCTaskManager;
duke@435 34 class GCTaskQueue;
duke@435 35 class PreGCValues;
duke@435 36 class MoveAndUpdateClosure;
duke@435 37 class RefProcTaskExecutor;
duke@435 38
jcoomes@917 39 // The SplitInfo class holds the information needed to 'split' a source region
jcoomes@917 40 // so that the live data can be copied to two destination *spaces*. Normally,
jcoomes@917 41 // all the live data in a region is copied to a single destination space (e.g.,
jcoomes@917 42 // everything live in a region in eden is copied entirely into the old gen).
jcoomes@917 43 // However, when the heap is nearly full, all the live data in eden may not fit
jcoomes@917 44 // into the old gen. Copying only some of the regions from eden to old gen
jcoomes@917 45 // requires finding a region that does not contain a partial object (i.e., no
jcoomes@917 46 // live object crosses the region boundary) somewhere near the last object that
jcoomes@917 47 // does fit into the old gen. Since it's not always possible to find such a
jcoomes@917 48 // region, splitting is necessary for predictable behavior.
jcoomes@917 49 //
jcoomes@917 50 // A region is always split at the end of the partial object. This avoids
jcoomes@917 51 // additional tests when calculating the new location of a pointer, which is a
jcoomes@917 52 // very hot code path. The partial object and everything to its left will be
jcoomes@917 53 // copied to another space (call it dest_space_1). The live data to the right
jcoomes@917 54 // of the partial object will be copied either within the space itself, or to a
jcoomes@917 55 // different destination space (distinct from dest_space_1).
jcoomes@917 56 //
jcoomes@917 57 // Split points are identified during the summary phase, when region
jcoomes@917 58 // destinations are computed: data about the split, including the
jcoomes@917 59 // partial_object_size, is recorded in a SplitInfo record and the
jcoomes@917 60 // partial_object_size field in the summary data is set to zero. The zeroing is
jcoomes@917 61 // possible (and necessary) since the partial object will move to a different
jcoomes@917 62 // destination space than anything to its right, thus the partial object should
jcoomes@917 63 // not affect the locations of any objects to its right.
jcoomes@917 64 //
jcoomes@917 65 // The recorded data is used during the compaction phase, but only rarely: when
jcoomes@917 66 // the partial object on the split region will be copied across a destination
jcoomes@917 67 // region boundary. This test is made once each time a region is filled, and is
jcoomes@917 68 // a simple address comparison, so the overhead is negligible (see
jcoomes@917 69 // PSParallelCompact::first_src_addr()).
jcoomes@917 70 //
jcoomes@917 71 // Notes:
jcoomes@917 72 //
jcoomes@917 73 // Only regions with partial objects are split; a region without a partial
jcoomes@917 74 // object does not need any extra bookkeeping.
jcoomes@917 75 //
jcoomes@917 76 // At most one region is split per space, so the amount of data required is
jcoomes@917 77 // constant.
jcoomes@917 78 //
jcoomes@917 79 // A region is split only when the destination space would overflow. Once that
jcoomes@917 80 // happens, the destination space is abandoned and no other data (even from
jcoomes@917 81 // other source spaces) is targeted to that destination space. Abandoning the
jcoomes@917 82 // destination space may leave a somewhat large unused area at the end, if a
jcoomes@917 83 // large object caused the overflow.
jcoomes@917 84 //
jcoomes@917 85 // Future work:
jcoomes@917 86 //
jcoomes@917 87 // More bookkeeping would be required to continue to use the destination space.
jcoomes@917 88 // The most general solution would allow data from regions in two different
jcoomes@917 89 // source spaces to be "joined" in a single destination region. At the very
jcoomes@917 90 // least, additional code would be required in next_src_region() to detect the
jcoomes@917 91 // join and skip to an out-of-order source region. If the join region was also
jcoomes@917 92 // the last destination region to which a split region was copied (the most
jcoomes@917 93 // likely case), then additional work would be needed to get fill_region() to
jcoomes@917 94 // stop iteration and switch to a new source region at the right point. Basic
jcoomes@917 95 // idea would be to use a fake value for the top of the source space. It is
jcoomes@917 96 // doable, if a bit tricky.
jcoomes@917 97 //
jcoomes@917 98 // A simpler (but less general) solution would fill the remainder of the
jcoomes@917 99 // destination region with a dummy object and continue filling the next
jcoomes@917 100 // destination region.
jcoomes@917 101
jcoomes@917 102 class SplitInfo
jcoomes@917 103 {
jcoomes@917 104 public:
jcoomes@917 105 // Return true if this split info is valid (i.e., if a split has been
jcoomes@917 106 // recorded). The very first region cannot have a partial object and thus is
jcoomes@917 107 // never split, so 0 is the 'invalid' value.
jcoomes@917 108 bool is_valid() const { return _src_region_idx > 0; }
jcoomes@917 109
jcoomes@917 110 // Return true if this split holds data for the specified source region.
jcoomes@917 111 inline bool is_split(size_t source_region) const;
jcoomes@917 112
jcoomes@917 113 // The index of the split region, the size of the partial object on that
jcoomes@917 114 // region and the destination of the partial object.
jcoomes@917 115 size_t src_region_idx() const { return _src_region_idx; }
jcoomes@917 116 size_t partial_obj_size() const { return _partial_obj_size; }
jcoomes@917 117 HeapWord* destination() const { return _destination; }
jcoomes@917 118
jcoomes@917 119 // The destination count of the partial object referenced by this split
jcoomes@917 120 // (either 1 or 2). This must be added to the destination count of the
jcoomes@917 121 // remainder of the source region.
jcoomes@917 122 unsigned int destination_count() const { return _destination_count; }
jcoomes@917 123
jcoomes@917 124 // If a word within the partial object will be written to the first word of a
jcoomes@917 125 // destination region, this is the address of the destination region;
jcoomes@917 126 // otherwise this is NULL.
jcoomes@917 127 HeapWord* dest_region_addr() const { return _dest_region_addr; }
jcoomes@917 128
jcoomes@917 129 // If a word within the partial object will be written to the first word of a
jcoomes@917 130 // destination region, this is the address of that word within the partial
jcoomes@917 131 // object; otherwise this is NULL.
jcoomes@917 132 HeapWord* first_src_addr() const { return _first_src_addr; }
jcoomes@917 133
jcoomes@917 134 // Record the data necessary to split the region src_region_idx.
jcoomes@917 135 void record(size_t src_region_idx, size_t partial_obj_size,
jcoomes@917 136 HeapWord* destination);
jcoomes@917 137
jcoomes@917 138 void clear();
jcoomes@917 139
jcoomes@917 140 DEBUG_ONLY(void verify_clear();)
jcoomes@917 141
jcoomes@917 142 private:
jcoomes@917 143 size_t _src_region_idx;
jcoomes@917 144 size_t _partial_obj_size;
jcoomes@917 145 HeapWord* _destination;
jcoomes@917 146 unsigned int _destination_count;
jcoomes@917 147 HeapWord* _dest_region_addr;
jcoomes@917 148 HeapWord* _first_src_addr;
jcoomes@917 149 };
jcoomes@917 150
jcoomes@917 151 inline bool SplitInfo::is_split(size_t region_idx) const
jcoomes@917 152 {
jcoomes@917 153 return _src_region_idx == region_idx && is_valid();
jcoomes@917 154 }
jcoomes@917 155
duke@435 156 class SpaceInfo
duke@435 157 {
duke@435 158 public:
duke@435 159 MutableSpace* space() const { return _space; }
duke@435 160
duke@435 161 // Where the free space will start after the collection. Valid only after the
duke@435 162 // summary phase completes.
duke@435 163 HeapWord* new_top() const { return _new_top; }
duke@435 164
duke@435 165 // Allows new_top to be set.
duke@435 166 HeapWord** new_top_addr() { return &_new_top; }
duke@435 167
duke@435 168 // Where the smallest allowable dense prefix ends (used only for perm gen).
duke@435 169 HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
duke@435 170
duke@435 171 // Where the dense prefix ends, or the compacted region begins.
duke@435 172 HeapWord* dense_prefix() const { return _dense_prefix; }
duke@435 173
duke@435 174 // The start array for the (generation containing the) space, or NULL if there
duke@435 175 // is no start array.
duke@435 176 ObjectStartArray* start_array() const { return _start_array; }
duke@435 177
jcoomes@917 178 SplitInfo& split_info() { return _split_info; }
jcoomes@917 179
duke@435 180 void set_space(MutableSpace* s) { _space = s; }
duke@435 181 void set_new_top(HeapWord* addr) { _new_top = addr; }
duke@435 182 void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
duke@435 183 void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
duke@435 184 void set_start_array(ObjectStartArray* s) { _start_array = s; }
duke@435 185
jcoomes@917 186 void publish_new_top() const { _space->set_top(_new_top); }
jcoomes@917 187
duke@435 188 private:
duke@435 189 MutableSpace* _space;
duke@435 190 HeapWord* _new_top;
duke@435 191 HeapWord* _min_dense_prefix;
duke@435 192 HeapWord* _dense_prefix;
duke@435 193 ObjectStartArray* _start_array;
jcoomes@917 194 SplitInfo _split_info;
duke@435 195 };
duke@435 196
duke@435 197 class ParallelCompactData
duke@435 198 {
duke@435 199 public:
duke@435 200 // Sizes are in HeapWords, unless indicated otherwise.
jcoomes@810 201 static const size_t Log2RegionSize;
jcoomes@810 202 static const size_t RegionSize;
jcoomes@810 203 static const size_t RegionSizeBytes;
duke@435 204
jcoomes@810 205 // Mask for the bits in a size_t to get an offset within a region.
jcoomes@810 206 static const size_t RegionSizeOffsetMask;
jcoomes@810 207 // Mask for the bits in a pointer to get an offset within a region.
jcoomes@810 208 static const size_t RegionAddrOffsetMask;
jcoomes@810 209 // Mask for the bits in a pointer to get the address of the start of a region.
jcoomes@810 210 static const size_t RegionAddrMask;
duke@435 211
jcoomes@810 212 class RegionData
duke@435 213 {
duke@435 214 public:
jcoomes@810 215 // Destination address of the region.
duke@435 216 HeapWord* destination() const { return _destination; }
duke@435 217
jcoomes@810 218 // The first region containing data destined for this region.
jcoomes@810 219 size_t source_region() const { return _source_region; }
duke@435 220
jcoomes@810 221 // The object (if any) starting in this region and ending in a different
jcoomes@810 222 // region that could not be updated during the main (parallel) compaction
duke@435 223 // phase. This is different from _partial_obj_addr, which is an object that
jcoomes@810 224 // extends onto a source region. However, the two uses do not overlap in
duke@435 225 // time, so the same field is used to save space.
duke@435 226 HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
duke@435 227
jcoomes@810 228 // The starting address of the partial object extending onto the region.
duke@435 229 HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
duke@435 230
jcoomes@810 231 // Size of the partial object extending onto the region (words).
duke@435 232 size_t partial_obj_size() const { return _partial_obj_size; }
duke@435 233
jcoomes@810 234 // Size of live data that lies within this region due to objects that start
jcoomes@810 235 // in this region (words). This does not include the partial object
jcoomes@810 236 // extending onto the region (if any), or the part of an object that extends
jcoomes@810 237 // onto the next region (if any).
duke@435 238 size_t live_obj_size() const { return _dc_and_los & los_mask; }
duke@435 239
jcoomes@810 240 // Total live data that lies within the region (words).
duke@435 241 size_t data_size() const { return partial_obj_size() + live_obj_size(); }
duke@435 242
jcoomes@810 243 // The destination_count is the number of other regions to which data from
jcoomes@810 244 // this region will be copied. At the end of the summary phase, the valid
duke@435 245 // values of destination_count are
duke@435 246 //
jcoomes@810 247 // 0 - data from the region will be compacted completely into itself, or the
jcoomes@810 248 // region is empty. The region can be claimed and then filled.
jcoomes@810 249 // 1 - data from the region will be compacted into 1 other region; some
jcoomes@810 250 // data from the region may also be compacted into the region itself.
jcoomes@810 251 // 2 - data from the region will be copied to 2 other regions.
duke@435 252 //
jcoomes@810 253 // During compaction as regions are emptied, the destination_count is
duke@435 254 // decremented (atomically) and when it reaches 0, it can be claimed and
duke@435 255 // then filled.
duke@435 256 //
jcoomes@810 257 // A region is claimed for processing by atomically changing the
jcoomes@810 258 // destination_count to the claimed value (dc_claimed). After a region has
duke@435 259 // been filled, the destination_count should be set to the completed value
duke@435 260 // (dc_completed).
duke@435 261 inline uint destination_count() const;
duke@435 262 inline uint destination_count_raw() const;
duke@435 263
jcoomes@810 264 // The location of the java heap data that corresponds to this region.
duke@435 265 inline HeapWord* data_location() const;
duke@435 266
jcoomes@810 267 // The highest address referenced by objects in this region.
duke@435 268 inline HeapWord* highest_ref() const;
duke@435 269
jcoomes@810 270 // Whether this region is available to be claimed, has been claimed, or has
duke@435 271 // been completed.
duke@435 272 //
jcoomes@810 273 // Minor subtlety: claimed() returns true if the region is marked
jcoomes@810 274 // completed(), which is desirable since a region must be claimed before it
duke@435 275 // can be completed.
duke@435 276 bool available() const { return _dc_and_los < dc_one; }
duke@435 277 bool claimed() const { return _dc_and_los >= dc_claimed; }
duke@435 278 bool completed() const { return _dc_and_los >= dc_completed; }
duke@435 279
duke@435 280 // These are not atomic.
duke@435 281 void set_destination(HeapWord* addr) { _destination = addr; }
jcoomes@810 282 void set_source_region(size_t region) { _source_region = region; }
duke@435 283 void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 284 void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
duke@435 285 void set_partial_obj_size(size_t words) {
jcoomes@810 286 _partial_obj_size = (region_sz_t) words;
duke@435 287 }
duke@435 288
duke@435 289 inline void set_destination_count(uint count);
duke@435 290 inline void set_live_obj_size(size_t words);
duke@435 291 inline void set_data_location(HeapWord* addr);
duke@435 292 inline void set_completed();
duke@435 293 inline bool claim_unsafe();
duke@435 294
duke@435 295 // These are atomic.
duke@435 296 inline void add_live_obj(size_t words);
duke@435 297 inline void set_highest_ref(HeapWord* addr);
duke@435 298 inline void decrement_destination_count();
duke@435 299 inline bool claim();
duke@435 300
duke@435 301 private:
jcoomes@810 302 // The type used to represent object sizes within a region.
jcoomes@810 303 typedef uint region_sz_t;
duke@435 304
duke@435 305 // Constants for manipulating the _dc_and_los field, which holds both the
duke@435 306 // destination count and live obj size. The live obj size lives at the
duke@435 307 // least significant end so no masking is necessary when adding.
jcoomes@810 308 static const region_sz_t dc_shift; // Shift amount.
jcoomes@810 309 static const region_sz_t dc_mask; // Mask for destination count.
jcoomes@810 310 static const region_sz_t dc_one; // 1, shifted appropriately.
jcoomes@810 311 static const region_sz_t dc_claimed; // Region has been claimed.
jcoomes@810 312 static const region_sz_t dc_completed; // Region has been completed.
jcoomes@810 313 static const region_sz_t los_mask; // Mask for live obj size.
duke@435 314
jcoomes@810 315 HeapWord* _destination;
jcoomes@810 316 size_t _source_region;
jcoomes@810 317 HeapWord* _partial_obj_addr;
jcoomes@810 318 region_sz_t _partial_obj_size;
jcoomes@810 319 region_sz_t volatile _dc_and_los;
duke@435 320 #ifdef ASSERT
duke@435 321 // These enable optimizations that are only partially implemented. Use
duke@435 322 // debug builds to prevent the code fragments from breaking.
jcoomes@810 323 HeapWord* _data_location;
jcoomes@810 324 HeapWord* _highest_ref;
duke@435 325 #endif // #ifdef ASSERT
duke@435 326
duke@435 327 #ifdef ASSERT
duke@435 328 public:
jcoomes@810 329 uint _pushed; // 0 until region is pushed onto a worker's stack
duke@435 330 private:
duke@435 331 #endif
duke@435 332 };
duke@435 333
duke@435 334 public:
duke@435 335 ParallelCompactData();
duke@435 336 bool initialize(MemRegion covered_region);
duke@435 337
jcoomes@810 338 size_t region_count() const { return _region_count; }
duke@435 339
jcoomes@810 340 // Convert region indices to/from RegionData pointers.
jcoomes@810 341 inline RegionData* region(size_t region_idx) const;
jcoomes@810 342 inline size_t region(const RegionData* const region_ptr) const;
duke@435 343
jcoomes@810 344 // Returns true if the given address is contained within the region
jcoomes@810 345 bool region_contains(size_t region_index, HeapWord* addr);
duke@435 346
duke@435 347 void add_obj(HeapWord* addr, size_t len);
duke@435 348 void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
duke@435 349
jcoomes@810 350 // Fill in the regions covering [beg, end) so that no data moves; i.e., the
jcoomes@810 351 // destination of region n is simply the start of region n. The argument beg
jcoomes@810 352 // must be region-aligned; end need not be.
duke@435 353 void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
duke@435 354
jcoomes@917 355 HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
jcoomes@917 356 HeapWord* destination, HeapWord* target_end,
jcoomes@917 357 HeapWord** target_next);
jcoomes@917 358 bool summarize(SplitInfo& split_info,
duke@435 359 HeapWord* source_beg, HeapWord* source_end,
jcoomes@917 360 HeapWord** source_next,
jcoomes@917 361 HeapWord* target_beg, HeapWord* target_end,
jcoomes@917 362 HeapWord** target_next);
duke@435 363
duke@435 364 void clear();
jcoomes@810 365 void clear_range(size_t beg_region, size_t end_region);
duke@435 366 void clear_range(HeapWord* beg, HeapWord* end) {
jcoomes@810 367 clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
duke@435 368 }
duke@435 369
jcoomes@810 370 // Return the number of words between addr and the start of the region
duke@435 371 // containing addr.
jcoomes@810 372 inline size_t region_offset(const HeapWord* addr) const;
duke@435 373
jcoomes@810 374 // Convert addresses to/from a region index or region pointer.
jcoomes@810 375 inline size_t addr_to_region_idx(const HeapWord* addr) const;
jcoomes@810 376 inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
jcoomes@810 377 inline HeapWord* region_to_addr(size_t region) const;
jcoomes@810 378 inline HeapWord* region_to_addr(size_t region, size_t offset) const;
jcoomes@810 379 inline HeapWord* region_to_addr(const RegionData* region) const;
duke@435 380
jcoomes@810 381 inline HeapWord* region_align_down(HeapWord* addr) const;
jcoomes@810 382 inline HeapWord* region_align_up(HeapWord* addr) const;
jcoomes@810 383 inline bool is_region_aligned(HeapWord* addr) const;
duke@435 384
duke@435 385 // Return the address one past the end of the partial object.
jcoomes@810 386 HeapWord* partial_obj_end(size_t region_idx) const;
duke@435 387
duke@435 388 // Return the new location of the object p after the
duke@435 389 // the compaction.
duke@435 390 HeapWord* calc_new_pointer(HeapWord* addr);
duke@435 391
duke@435 392 HeapWord* calc_new_pointer(oop p) {
duke@435 393 return calc_new_pointer((HeapWord*) p);
duke@435 394 }
duke@435 395
duke@435 396 // Return the updated address for the given klass
duke@435 397 klassOop calc_new_klass(klassOop);
duke@435 398
duke@435 399 #ifdef ASSERT
duke@435 400 void verify_clear(const PSVirtualSpace* vspace);
duke@435 401 void verify_clear();
duke@435 402 #endif // #ifdef ASSERT
duke@435 403
duke@435 404 private:
jcoomes@810 405 bool initialize_region_data(size_t region_size);
duke@435 406 PSVirtualSpace* create_vspace(size_t count, size_t element_size);
duke@435 407
duke@435 408 private:
duke@435 409 HeapWord* _region_start;
duke@435 410 #ifdef ASSERT
duke@435 411 HeapWord* _region_end;
duke@435 412 #endif // #ifdef ASSERT
duke@435 413
jcoomes@810 414 PSVirtualSpace* _region_vspace;
jcoomes@810 415 RegionData* _region_data;
jcoomes@810 416 size_t _region_count;
duke@435 417 };
duke@435 418
duke@435 419 inline uint
jcoomes@810 420 ParallelCompactData::RegionData::destination_count_raw() const
duke@435 421 {
duke@435 422 return _dc_and_los & dc_mask;
duke@435 423 }
duke@435 424
duke@435 425 inline uint
jcoomes@810 426 ParallelCompactData::RegionData::destination_count() const
duke@435 427 {
duke@435 428 return destination_count_raw() >> dc_shift;
duke@435 429 }
duke@435 430
duke@435 431 inline void
jcoomes@810 432 ParallelCompactData::RegionData::set_destination_count(uint count)
duke@435 433 {
duke@435 434 assert(count <= (dc_completed >> dc_shift), "count too large");
jcoomes@810 435 const region_sz_t live_sz = (region_sz_t) live_obj_size();
duke@435 436 _dc_and_los = (count << dc_shift) | live_sz;
duke@435 437 }
duke@435 438
jcoomes@810 439 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
duke@435 440 {
duke@435 441 assert(words <= los_mask, "would overflow");
jcoomes@810 442 _dc_and_los = destination_count_raw() | (region_sz_t)words;
duke@435 443 }
duke@435 444
jcoomes@810 445 inline void ParallelCompactData::RegionData::decrement_destination_count()
duke@435 446 {
duke@435 447 assert(_dc_and_los < dc_claimed, "already claimed");
duke@435 448 assert(_dc_and_los >= dc_one, "count would go negative");
duke@435 449 Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
duke@435 450 }
duke@435 451
jcoomes@810 452 inline HeapWord* ParallelCompactData::RegionData::data_location() const
duke@435 453 {
duke@435 454 DEBUG_ONLY(return _data_location;)
duke@435 455 NOT_DEBUG(return NULL;)
duke@435 456 }
duke@435 457
jcoomes@810 458 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
duke@435 459 {
duke@435 460 DEBUG_ONLY(return _highest_ref;)
duke@435 461 NOT_DEBUG(return NULL;)
duke@435 462 }
duke@435 463
jcoomes@810 464 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
duke@435 465 {
duke@435 466 DEBUG_ONLY(_data_location = addr;)
duke@435 467 }
duke@435 468
jcoomes@810 469 inline void ParallelCompactData::RegionData::set_completed()
duke@435 470 {
duke@435 471 assert(claimed(), "must be claimed first");
jcoomes@810 472 _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
duke@435 473 }
duke@435 474
jcoomes@810 475 // MT-unsafe claiming of a region. Should only be used during single threaded
duke@435 476 // execution.
jcoomes@810 477 inline bool ParallelCompactData::RegionData::claim_unsafe()
duke@435 478 {
duke@435 479 if (available()) {
duke@435 480 _dc_and_los |= dc_claimed;
duke@435 481 return true;
duke@435 482 }
duke@435 483 return false;
duke@435 484 }
duke@435 485
jcoomes@810 486 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
duke@435 487 {
duke@435 488 assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
duke@435 489 Atomic::add((int) words, (volatile int*) &_dc_and_los);
duke@435 490 }
duke@435 491
jcoomes@810 492 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
duke@435 493 {
duke@435 494 #ifdef ASSERT
duke@435 495 HeapWord* tmp = _highest_ref;
duke@435 496 while (addr > tmp) {
duke@435 497 tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
duke@435 498 }
duke@435 499 #endif // #ifdef ASSERT
duke@435 500 }
duke@435 501
jcoomes@810 502 inline bool ParallelCompactData::RegionData::claim()
duke@435 503 {
duke@435 504 const int los = (int) live_obj_size();
duke@435 505 const int old = Atomic::cmpxchg(dc_claimed | los,
duke@435 506 (volatile int*) &_dc_and_los, los);
duke@435 507 return old == los;
duke@435 508 }
duke@435 509
jcoomes@810 510 inline ParallelCompactData::RegionData*
jcoomes@810 511 ParallelCompactData::region(size_t region_idx) const
duke@435 512 {
jcoomes@810 513 assert(region_idx <= region_count(), "bad arg");
jcoomes@810 514 return _region_data + region_idx;
duke@435 515 }
duke@435 516
duke@435 517 inline size_t
jcoomes@810 518 ParallelCompactData::region(const RegionData* const region_ptr) const
duke@435 519 {
jcoomes@810 520 assert(region_ptr >= _region_data, "bad arg");
jcoomes@810 521 assert(region_ptr <= _region_data + region_count(), "bad arg");
jcoomes@810 522 return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
duke@435 523 }
duke@435 524
duke@435 525 inline size_t
jcoomes@810 526 ParallelCompactData::region_offset(const HeapWord* addr) const
duke@435 527 {
duke@435 528 assert(addr >= _region_start, "bad addr");
duke@435 529 assert(addr <= _region_end, "bad addr");
jcoomes@810 530 return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
duke@435 531 }
duke@435 532
duke@435 533 inline size_t
jcoomes@810 534 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
duke@435 535 {
duke@435 536 assert(addr >= _region_start, "bad addr");
duke@435 537 assert(addr <= _region_end, "bad addr");
jcoomes@810 538 return pointer_delta(addr, _region_start) >> Log2RegionSize;
duke@435 539 }
duke@435 540
jcoomes@810 541 inline ParallelCompactData::RegionData*
jcoomes@810 542 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
duke@435 543 {
jcoomes@810 544 return region(addr_to_region_idx(addr));
duke@435 545 }
duke@435 546
duke@435 547 inline HeapWord*
jcoomes@810 548 ParallelCompactData::region_to_addr(size_t region) const
duke@435 549 {
jcoomes@810 550 assert(region <= _region_count, "region out of range");
jcoomes@810 551 return _region_start + (region << Log2RegionSize);
duke@435 552 }
duke@435 553
duke@435 554 inline HeapWord*
jcoomes@810 555 ParallelCompactData::region_to_addr(const RegionData* region) const
duke@435 556 {
jcoomes@810 557 return region_to_addr(pointer_delta(region, _region_data,
jcoomes@810 558 sizeof(RegionData)));
duke@435 559 }
duke@435 560
duke@435 561 inline HeapWord*
jcoomes@810 562 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
duke@435 563 {
jcoomes@810 564 assert(region <= _region_count, "region out of range");
jcoomes@810 565 assert(offset < RegionSize, "offset too big"); // This may be too strict.
jcoomes@810 566 return region_to_addr(region) + offset;
duke@435 567 }
duke@435 568
duke@435 569 inline HeapWord*
jcoomes@810 570 ParallelCompactData::region_align_down(HeapWord* addr) const
duke@435 571 {
duke@435 572 assert(addr >= _region_start, "bad addr");
jcoomes@810 573 assert(addr < _region_end + RegionSize, "bad addr");
jcoomes@810 574 return (HeapWord*)(size_t(addr) & RegionAddrMask);
duke@435 575 }
duke@435 576
duke@435 577 inline HeapWord*
jcoomes@810 578 ParallelCompactData::region_align_up(HeapWord* addr) const
duke@435 579 {
duke@435 580 assert(addr >= _region_start, "bad addr");
duke@435 581 assert(addr <= _region_end, "bad addr");
jcoomes@810 582 return region_align_down(addr + RegionSizeOffsetMask);
duke@435 583 }
duke@435 584
duke@435 585 inline bool
jcoomes@810 586 ParallelCompactData::is_region_aligned(HeapWord* addr) const
duke@435 587 {
jcoomes@810 588 return region_offset(addr) == 0;
duke@435 589 }
duke@435 590
duke@435 591 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
duke@435 592 // do_addr() method.
duke@435 593 //
duke@435 594 // The closure is initialized with the number of heap words to process
duke@435 595 // (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
duke@435 596 // methods in subclasses should update the total as words are processed. Since
duke@435 597 // only one subclass actually uses this mechanism to terminate iteration, the
duke@435 598 // default initial value is > 0. The implementation is here and not in the
duke@435 599 // single subclass that uses it to avoid making is_full() virtual, and thus
duke@435 600 // adding a virtual call per live object.
duke@435 601
duke@435 602 class ParMarkBitMapClosure: public StackObj {
duke@435 603 public:
duke@435 604 typedef ParMarkBitMap::idx_t idx_t;
duke@435 605 typedef ParMarkBitMap::IterationStatus IterationStatus;
duke@435 606
duke@435 607 public:
duke@435 608 inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
duke@435 609 size_t words = max_uintx);
duke@435 610
duke@435 611 inline ParCompactionManager* compaction_manager() const;
duke@435 612 inline ParMarkBitMap* bitmap() const;
duke@435 613 inline size_t words_remaining() const;
duke@435 614 inline bool is_full() const;
duke@435 615 inline HeapWord* source() const;
duke@435 616
duke@435 617 inline void set_source(HeapWord* addr);
duke@435 618
duke@435 619 virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
duke@435 620
duke@435 621 protected:
duke@435 622 inline void decrement_words_remaining(size_t words);
duke@435 623
duke@435 624 private:
duke@435 625 ParMarkBitMap* const _bitmap;
duke@435 626 ParCompactionManager* const _compaction_manager;
duke@435 627 DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
duke@435 628 size_t _words_remaining; // Words left to copy.
duke@435 629
duke@435 630 protected:
duke@435 631 HeapWord* _source; // Next addr that would be read.
duke@435 632 };
duke@435 633
duke@435 634 inline
duke@435 635 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
duke@435 636 ParCompactionManager* cm,
duke@435 637 size_t words):
duke@435 638 _bitmap(bitmap), _compaction_manager(cm)
duke@435 639 #ifdef ASSERT
duke@435 640 , _initial_words_remaining(words)
duke@435 641 #endif
duke@435 642 {
duke@435 643 _words_remaining = words;
duke@435 644 _source = NULL;
duke@435 645 }
duke@435 646
duke@435 647 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
duke@435 648 return _compaction_manager;
duke@435 649 }
duke@435 650
duke@435 651 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
duke@435 652 return _bitmap;
duke@435 653 }
duke@435 654
duke@435 655 inline size_t ParMarkBitMapClosure::words_remaining() const {
duke@435 656 return _words_remaining;
duke@435 657 }
duke@435 658
duke@435 659 inline bool ParMarkBitMapClosure::is_full() const {
duke@435 660 return words_remaining() == 0;
duke@435 661 }
duke@435 662
duke@435 663 inline HeapWord* ParMarkBitMapClosure::source() const {
duke@435 664 return _source;
duke@435 665 }
duke@435 666
duke@435 667 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
duke@435 668 _source = addr;
duke@435 669 }
duke@435 670
duke@435 671 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
duke@435 672 assert(_words_remaining >= words, "processed too many words");
duke@435 673 _words_remaining -= words;
duke@435 674 }
duke@435 675
jcoomes@810 676 // The UseParallelOldGC collector is a stop-the-world garbage collector that
jcoomes@810 677 // does parts of the collection using parallel threads. The collection includes
jcoomes@810 678 // the tenured generation and the young generation. The permanent generation is
jcoomes@810 679 // collected at the same time as the other two generations but the permanent
jcoomes@810 680 // generation is collect by a single GC thread. The permanent generation is
jcoomes@810 681 // collected serially because of the requirement that during the processing of a
jcoomes@810 682 // klass AAA, any objects reference by AAA must already have been processed.
jcoomes@810 683 // This requirement is enforced by a left (lower address) to right (higher
jcoomes@810 684 // address) sliding compaction.
jmasa@698 685 //
jmasa@698 686 // There are four phases of the collection.
jmasa@698 687 //
jmasa@698 688 // - marking phase
jmasa@698 689 // - summary phase
jmasa@698 690 // - compacting phase
jmasa@698 691 // - clean up phase
jmasa@698 692 //
jmasa@698 693 // Roughly speaking these phases correspond, respectively, to
jmasa@698 694 // - mark all the live objects
jmasa@698 695 // - calculate the destination of each object at the end of the collection
jmasa@698 696 // - move the objects to their destination
jmasa@698 697 // - update some references and reinitialize some variables
jmasa@698 698 //
jcoomes@810 699 // These three phases are invoked in PSParallelCompact::invoke_no_policy(). The
jcoomes@810 700 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
jcoomes@810 701 // complete marking of the heap. The summary phase is implemented in
jcoomes@810 702 // PSParallelCompact::summary_phase(). The move and update phase is implemented
jcoomes@810 703 // in PSParallelCompact::compact().
jmasa@698 704 //
jcoomes@810 705 // A space that is being collected is divided into regions and with each region
jcoomes@810 706 // is associated an object of type ParallelCompactData. Each region is of a
jcoomes@810 707 // fixed size and typically will contain more than 1 object and may have parts
jcoomes@810 708 // of objects at the front and back of the region.
jmasa@698 709 //
jcoomes@810 710 // region -----+---------------------+----------
jmasa@698 711 // objects covered [ AAA )[ BBB )[ CCC )[ DDD )
jmasa@698 712 //
jcoomes@810 713 // The marking phase does a complete marking of all live objects in the heap.
jcoomes@810 714 // The marking also compiles the size of the data for all live objects covered
jcoomes@810 715 // by the region. This size includes the part of any live object spanning onto
jcoomes@810 716 // the region (part of AAA if it is live) from the front, all live objects
jcoomes@810 717 // contained in the region (BBB and/or CCC if they are live), and the part of
jcoomes@810 718 // any live objects covered by the region that extends off the region (part of
jcoomes@810 719 // DDD if it is live). The marking phase uses multiple GC threads and marking
jcoomes@810 720 // is done in a bit array of type ParMarkBitMap. The marking of the bit map is
jcoomes@810 721 // done atomically as is the accumulation of the size of the live objects
jcoomes@810 722 // covered by a region.
jmasa@698 723 //
jcoomes@810 724 // The summary phase calculates the total live data to the left of each region
jcoomes@810 725 // XXX. Based on that total and the bottom of the space, it can calculate the
jcoomes@810 726 // starting location of the live data in XXX. The summary phase calculates for
jcoomes@810 727 // each region XXX quantites such as
jmasa@698 728 //
jcoomes@810 729 // - the amount of live data at the beginning of a region from an object
jcoomes@810 730 // entering the region.
jcoomes@810 731 // - the location of the first live data on the region
jcoomes@810 732 // - a count of the number of regions receiving live data from XXX.
jmasa@698 733 //
jmasa@698 734 // See ParallelCompactData for precise details. The summary phase also
jcoomes@810 735 // calculates the dense prefix for the compaction. The dense prefix is a
jcoomes@810 736 // portion at the beginning of the space that is not moved. The objects in the
jcoomes@810 737 // dense prefix do need to have their object references updated. See method
jcoomes@810 738 // summarize_dense_prefix().
jmasa@698 739 //
jmasa@698 740 // The summary phase is done using 1 GC thread.
jmasa@698 741 //
jcoomes@810 742 // The compaction phase moves objects to their new location and updates all
jcoomes@810 743 // references in the object.
jmasa@698 744 //
jcoomes@810 745 // A current exception is that objects that cross a region boundary are moved
jcoomes@810 746 // but do not have their references updated. References are not updated because
jcoomes@810 747 // it cannot easily be determined if the klass pointer KKK for the object AAA
jcoomes@810 748 // has been updated. KKK likely resides in a region to the left of the region
jcoomes@810 749 // containing AAA. These AAA's have there references updated at the end in a
jcoomes@810 750 // clean up phase. See the method PSParallelCompact::update_deferred_objects().
jcoomes@810 751 // An alternate strategy is being investigated for this deferral of updating.
jmasa@698 752 //
jcoomes@810 753 // Compaction is done on a region basis. A region that is ready to be filled is
jcoomes@810 754 // put on a ready list and GC threads take region off the list and fill them. A
jcoomes@810 755 // region is ready to be filled if it empty of live objects. Such a region may
jcoomes@810 756 // have been initially empty (only contained dead objects) or may have had all
jcoomes@810 757 // its live objects copied out already. A region that compacts into itself is
jcoomes@810 758 // also ready for filling. The ready list is initially filled with empty
jcoomes@810 759 // regions and regions compacting into themselves. There is always at least 1
jcoomes@810 760 // region that can be put on the ready list. The regions are atomically added
jcoomes@810 761 // and removed from the ready list.
jcoomes@810 762
duke@435 763 class PSParallelCompact : AllStatic {
duke@435 764 public:
duke@435 765 // Convenient access to type names.
duke@435 766 typedef ParMarkBitMap::idx_t idx_t;
jcoomes@810 767 typedef ParallelCompactData::RegionData RegionData;
duke@435 768
duke@435 769 typedef enum {
duke@435 770 perm_space_id, old_space_id, eden_space_id,
duke@435 771 from_space_id, to_space_id, last_space_id
duke@435 772 } SpaceId;
duke@435 773
duke@435 774 public:
coleenp@548 775 // Inline closure decls
duke@435 776 //
duke@435 777 class IsAliveClosure: public BoolObjectClosure {
duke@435 778 public:
coleenp@548 779 virtual void do_object(oop p);
coleenp@548 780 virtual bool do_object_b(oop p);
duke@435 781 };
duke@435 782
duke@435 783 class KeepAliveClosure: public OopClosure {
coleenp@548 784 private:
coleenp@548 785 ParCompactionManager* _compaction_manager;
coleenp@548 786 protected:
coleenp@548 787 template <class T> inline void do_oop_work(T* p);
coleenp@548 788 public:
coleenp@548 789 KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 790 virtual void do_oop(oop* p);
coleenp@548 791 virtual void do_oop(narrowOop* p);
coleenp@548 792 };
coleenp@548 793
coleenp@548 794 // Current unused
coleenp@548 795 class FollowRootClosure: public OopsInGenClosure {
coleenp@548 796 private:
duke@435 797 ParCompactionManager* _compaction_manager;
duke@435 798 public:
coleenp@548 799 FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 800 virtual void do_oop(oop* p);
coleenp@548 801 virtual void do_oop(narrowOop* p);
duke@435 802 virtual const bool do_nmethods() const { return true; }
duke@435 803 };
duke@435 804
duke@435 805 class FollowStackClosure: public VoidClosure {
coleenp@548 806 private:
duke@435 807 ParCompactionManager* _compaction_manager;
duke@435 808 public:
coleenp@548 809 FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 810 virtual void do_void();
duke@435 811 };
duke@435 812
duke@435 813 class AdjustPointerClosure: public OopsInGenClosure {
coleenp@548 814 private:
duke@435 815 bool _is_root;
duke@435 816 public:
coleenp@548 817 AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
coleenp@548 818 virtual void do_oop(oop* p);
coleenp@548 819 virtual void do_oop(narrowOop* p);
duke@435 820 };
duke@435 821
duke@435 822 // Closure for verifying update of pointers. Does not
duke@435 823 // have any side effects.
duke@435 824 class VerifyUpdateClosure: public ParMarkBitMapClosure {
duke@435 825 const MutableSpace* _space; // Is this ever used?
duke@435 826
duke@435 827 public:
duke@435 828 VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
duke@435 829 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
duke@435 830 { }
duke@435 831
duke@435 832 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 833
duke@435 834 const MutableSpace* space() { return _space; }
duke@435 835 };
duke@435 836
duke@435 837 // Closure for updating objects altered for debug checking
duke@435 838 class ResetObjectsClosure: public ParMarkBitMapClosure {
duke@435 839 public:
duke@435 840 ResetObjectsClosure(ParCompactionManager* cm):
duke@435 841 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
duke@435 842 { }
duke@435 843
duke@435 844 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 845 };
duke@435 846
duke@435 847 friend class KeepAliveClosure;
duke@435 848 friend class FollowStackClosure;
duke@435 849 friend class AdjustPointerClosure;
duke@435 850 friend class FollowRootClosure;
duke@435 851 friend class instanceKlassKlass;
duke@435 852 friend class RefProcTaskProxy;
duke@435 853
duke@435 854 private:
duke@435 855 static elapsedTimer _accumulated_time;
duke@435 856 static unsigned int _total_invocations;
duke@435 857 static unsigned int _maximum_compaction_gc_num;
duke@435 858 static jlong _time_of_last_gc; // ms
duke@435 859 static CollectorCounters* _counters;
duke@435 860 static ParMarkBitMap _mark_bitmap;
duke@435 861 static ParallelCompactData _summary_data;
duke@435 862 static IsAliveClosure _is_alive_closure;
duke@435 863 static SpaceInfo _space_info[last_space_id];
duke@435 864 static bool _print_phases;
duke@435 865 static AdjustPointerClosure _adjust_root_pointer_closure;
duke@435 866 static AdjustPointerClosure _adjust_pointer_closure;
duke@435 867
duke@435 868 // Reference processing (used in ...follow_contents)
duke@435 869 static ReferenceProcessor* _ref_processor;
duke@435 870
duke@435 871 // Updated location of intArrayKlassObj.
duke@435 872 static klassOop _updated_int_array_klass_obj;
duke@435 873
duke@435 874 // Values computed at initialization and used by dead_wood_limiter().
duke@435 875 static double _dwl_mean;
duke@435 876 static double _dwl_std_dev;
duke@435 877 static double _dwl_first_term;
duke@435 878 static double _dwl_adjustment;
duke@435 879 #ifdef ASSERT
duke@435 880 static bool _dwl_initialized;
duke@435 881 #endif // #ifdef ASSERT
duke@435 882
duke@435 883 private:
duke@435 884 // Closure accessors
coleenp@548 885 static OopClosure* adjust_pointer_closure() { return (OopClosure*)&_adjust_pointer_closure; }
duke@435 886 static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
coleenp@548 887 static BoolObjectClosure* is_alive_closure() { return (BoolObjectClosure*)&_is_alive_closure; }
duke@435 888
duke@435 889 static void initialize_space_info();
duke@435 890
duke@435 891 // Return true if details about individual phases should be printed.
duke@435 892 static inline bool print_phases();
duke@435 893
duke@435 894 // Clear the marking bitmap and summary data that cover the specified space.
duke@435 895 static void clear_data_covering_space(SpaceId id);
duke@435 896
duke@435 897 static void pre_compact(PreGCValues* pre_gc_values);
duke@435 898 static void post_compact();
duke@435 899
duke@435 900 // Mark live objects
duke@435 901 static void marking_phase(ParCompactionManager* cm,
duke@435 902 bool maximum_heap_compaction);
duke@435 903 static void follow_stack(ParCompactionManager* cm);
duke@435 904 static void follow_weak_klass_links(ParCompactionManager* cm);
duke@435 905
coleenp@548 906 template <class T> static inline void adjust_pointer(T* p, bool is_root);
duke@435 907 static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
duke@435 908
coleenp@548 909 template <class T>
coleenp@548 910 static inline void follow_root(ParCompactionManager* cm, T* p);
duke@435 911
duke@435 912 // Compute the dense prefix for the designated space. This is an experimental
duke@435 913 // implementation currently not used in production.
duke@435 914 static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
duke@435 915 bool maximum_compaction);
duke@435 916
duke@435 917 // Methods used to compute the dense prefix.
duke@435 918
duke@435 919 // Compute the value of the normal distribution at x = density. The mean and
duke@435 920 // standard deviation are values saved by initialize_dead_wood_limiter().
duke@435 921 static inline double normal_distribution(double density);
duke@435 922
duke@435 923 // Initialize the static vars used by dead_wood_limiter().
duke@435 924 static void initialize_dead_wood_limiter();
duke@435 925
duke@435 926 // Return the percentage of space that can be treated as "dead wood" (i.e.,
duke@435 927 // not reclaimed).
duke@435 928 static double dead_wood_limiter(double density, size_t min_percent);
duke@435 929
jcoomes@810 930 // Find the first (left-most) region in the range [beg, end) that has at least
duke@435 931 // dead_words of dead space to the left. The argument beg must be the first
jcoomes@810 932 // region in the space that is not completely live.
jcoomes@810 933 static RegionData* dead_wood_limit_region(const RegionData* beg,
jcoomes@810 934 const RegionData* end,
jcoomes@810 935 size_t dead_words);
duke@435 936
jcoomes@810 937 // Return a pointer to the first region in the range [beg, end) that is not
duke@435 938 // completely full.
jcoomes@810 939 static RegionData* first_dead_space_region(const RegionData* beg,
jcoomes@810 940 const RegionData* end);
duke@435 941
duke@435 942 // Return a value indicating the benefit or 'yield' if the compacted region
duke@435 943 // were to start (or equivalently if the dense prefix were to end) at the
jcoomes@810 944 // candidate region. Higher values are better.
duke@435 945 //
duke@435 946 // The value is based on the amount of space reclaimed vs. the costs of (a)
duke@435 947 // updating references in the dense prefix plus (b) copying objects and
duke@435 948 // updating references in the compacted region.
jcoomes@810 949 static inline double reclaimed_ratio(const RegionData* const candidate,
duke@435 950 HeapWord* const bottom,
duke@435 951 HeapWord* const top,
duke@435 952 HeapWord* const new_top);
duke@435 953
duke@435 954 // Compute the dense prefix for the designated space.
duke@435 955 static HeapWord* compute_dense_prefix(const SpaceId id,
duke@435 956 bool maximum_compaction);
duke@435 957
jcoomes@810 958 // Return true if dead space crosses onto the specified Region; bit must be
jcoomes@810 959 // the bit index corresponding to the first word of the Region.
jcoomes@810 960 static inline bool dead_space_crosses_boundary(const RegionData* region,
duke@435 961 idx_t bit);
duke@435 962
duke@435 963 // Summary phase utility routine to fill dead space (if any) at the dense
duke@435 964 // prefix boundary. Should only be called if the the dense prefix is
duke@435 965 // non-empty.
duke@435 966 static void fill_dense_prefix_end(SpaceId id);
duke@435 967
jcoomes@917 968 // Clear the summary data source_region field for the specified addresses.
jcoomes@917 969 static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
jcoomes@917 970
jcoomes@918 971 #ifndef PRODUCT
jcoomes@918 972 // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
jcoomes@918 973
jcoomes@918 974 // Fill the region [start, start + words) with live object(s). Only usable
jcoomes@918 975 // for the old and permanent generations.
jcoomes@918 976 static void fill_with_live_objects(SpaceId id, HeapWord* const start,
jcoomes@918 977 size_t words);
jcoomes@918 978 // Include the new objects in the summary data.
jcoomes@918 979 static void summarize_new_objects(SpaceId id, HeapWord* start);
jcoomes@918 980
jcoomes@931 981 // Add live objects to a survivor space since it's rare that both survivors
jcoomes@931 982 // are non-empty.
jcoomes@931 983 static void provoke_split_fill_survivor(SpaceId id);
jcoomes@931 984
jcoomes@918 985 // Add live objects and/or choose the dense prefix to provoke splitting.
jcoomes@918 986 static void provoke_split(bool & maximum_compaction);
jcoomes@918 987 #endif
jcoomes@918 988
duke@435 989 static void summarize_spaces_quick();
duke@435 990 static void summarize_space(SpaceId id, bool maximum_compaction);
duke@435 991 static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
duke@435 992
duke@435 993 // Adjust addresses in roots. Does not adjust addresses in heap.
duke@435 994 static void adjust_roots();
duke@435 995
duke@435 996 // Serial code executed in preparation for the compaction phase.
duke@435 997 static void compact_prologue();
duke@435 998
duke@435 999 // Move objects to new locations.
duke@435 1000 static void compact_perm(ParCompactionManager* cm);
duke@435 1001 static void compact();
duke@435 1002
jcoomes@810 1003 // Add available regions to the stack and draining tasks to the task queue.
jcoomes@810 1004 static void enqueue_region_draining_tasks(GCTaskQueue* q,
jcoomes@810 1005 uint parallel_gc_threads);
duke@435 1006
duke@435 1007 // Add dense prefix update tasks to the task queue.
duke@435 1008 static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
duke@435 1009 uint parallel_gc_threads);
duke@435 1010
jcoomes@810 1011 // Add region stealing tasks to the task queue.
jcoomes@810 1012 static void enqueue_region_stealing_tasks(
duke@435 1013 GCTaskQueue* q,
duke@435 1014 ParallelTaskTerminator* terminator_ptr,
duke@435 1015 uint parallel_gc_threads);
duke@435 1016
duke@435 1017 // For debugging only - compacts the old gen serially
duke@435 1018 static void compact_serial(ParCompactionManager* cm);
duke@435 1019
duke@435 1020 // If objects are left in eden after a collection, try to move the boundary
duke@435 1021 // and absorb them into the old gen. Returns true if eden was emptied.
duke@435 1022 static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
duke@435 1023 PSYoungGen* young_gen,
duke@435 1024 PSOldGen* old_gen);
duke@435 1025
duke@435 1026 // Reset time since last full gc
duke@435 1027 static void reset_millis_since_last_gc();
duke@435 1028
duke@435 1029 protected:
duke@435 1030 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1031 static GrowableArray<void*>* _root_refs_stack;
duke@435 1032 static GrowableArray<oop> * _live_oops;
duke@435 1033 static GrowableArray<oop> * _live_oops_moved_to;
duke@435 1034 static GrowableArray<size_t>* _live_oops_size;
duke@435 1035 static size_t _live_oops_index;
duke@435 1036 static size_t _live_oops_index_at_perm;
coleenp@548 1037 static GrowableArray<void*>* _other_refs_stack;
coleenp@548 1038 static GrowableArray<void*>* _adjusted_pointers;
duke@435 1039 static bool _pointer_tracking;
duke@435 1040 static bool _root_tracking;
duke@435 1041
duke@435 1042 // The following arrays are saved since the time of the last GC and
duke@435 1043 // assist in tracking down problems where someone has done an errant
duke@435 1044 // store into the heap, usually to an oop that wasn't properly
duke@435 1045 // handleized across a GC. If we crash or otherwise fail before the
duke@435 1046 // next GC, we can query these arrays to find out the object we had
duke@435 1047 // intended to do the store to (assuming it is still alive) and the
duke@435 1048 // offset within that object. Covered under RecordMarkSweepCompaction.
duke@435 1049 static GrowableArray<HeapWord*> * _cur_gc_live_oops;
duke@435 1050 static GrowableArray<HeapWord*> * _cur_gc_live_oops_moved_to;
duke@435 1051 static GrowableArray<size_t>* _cur_gc_live_oops_size;
duke@435 1052 static GrowableArray<HeapWord*> * _last_gc_live_oops;
duke@435 1053 static GrowableArray<HeapWord*> * _last_gc_live_oops_moved_to;
duke@435 1054 static GrowableArray<size_t>* _last_gc_live_oops_size;
duke@435 1055 #endif
duke@435 1056
duke@435 1057 public:
duke@435 1058 class MarkAndPushClosure: public OopClosure {
coleenp@548 1059 private:
duke@435 1060 ParCompactionManager* _compaction_manager;
duke@435 1061 public:
coleenp@548 1062 MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
coleenp@548 1063 virtual void do_oop(oop* p);
coleenp@548 1064 virtual void do_oop(narrowOop* p);
duke@435 1065 virtual const bool do_nmethods() const { return true; }
duke@435 1066 };
duke@435 1067
duke@435 1068 PSParallelCompact();
duke@435 1069
duke@435 1070 // Convenient accessor for Universe::heap().
duke@435 1071 static ParallelScavengeHeap* gc_heap() {
duke@435 1072 return (ParallelScavengeHeap*)Universe::heap();
duke@435 1073 }
duke@435 1074
duke@435 1075 static void invoke(bool maximum_heap_compaction);
duke@435 1076 static void invoke_no_policy(bool maximum_heap_compaction);
duke@435 1077
duke@435 1078 static void post_initialize();
duke@435 1079 // Perform initialization for PSParallelCompact that requires
duke@435 1080 // allocations. This should be called during the VM initialization
duke@435 1081 // at a pointer where it would be appropriate to return a JNI_ENOMEM
duke@435 1082 // in the event of a failure.
duke@435 1083 static bool initialize();
duke@435 1084
duke@435 1085 // Public accessors
duke@435 1086 static elapsedTimer* accumulated_time() { return &_accumulated_time; }
duke@435 1087 static unsigned int total_invocations() { return _total_invocations; }
duke@435 1088 static CollectorCounters* counters() { return _counters; }
duke@435 1089
duke@435 1090 // Used to add tasks
duke@435 1091 static GCTaskManager* const gc_task_manager();
duke@435 1092 static klassOop updated_int_array_klass_obj() {
duke@435 1093 return _updated_int_array_klass_obj;
duke@435 1094 }
duke@435 1095
duke@435 1096 // Marking support
duke@435 1097 static inline bool mark_obj(oop obj);
coleenp@548 1098 // Check mark and maybe push on marking stack
coleenp@548 1099 template <class T> static inline void mark_and_push(ParCompactionManager* cm,
coleenp@548 1100 T* p);
duke@435 1101
duke@435 1102 // Compaction support.
duke@435 1103 // Return true if p is in the range [beg_addr, end_addr).
duke@435 1104 static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1105 static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
duke@435 1106
duke@435 1107 // Convenience wrappers for per-space data kept in _space_info.
duke@435 1108 static inline MutableSpace* space(SpaceId space_id);
duke@435 1109 static inline HeapWord* new_top(SpaceId space_id);
duke@435 1110 static inline HeapWord* dense_prefix(SpaceId space_id);
duke@435 1111 static inline ObjectStartArray* start_array(SpaceId space_id);
duke@435 1112
duke@435 1113 // Return true if the klass should be updated.
duke@435 1114 static inline bool should_update_klass(klassOop k);
duke@435 1115
duke@435 1116 // Move and update the live objects in the specified space.
duke@435 1117 static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
duke@435 1118
jcoomes@810 1119 // Process the end of the given region range in the dense prefix.
duke@435 1120 // This includes saving any object not updated.
jcoomes@810 1121 static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
jcoomes@810 1122 size_t region_start_index,
jcoomes@810 1123 size_t region_end_index,
jcoomes@810 1124 idx_t exiting_object_offset,
jcoomes@810 1125 idx_t region_offset_start,
jcoomes@810 1126 idx_t region_offset_end);
duke@435 1127
jcoomes@810 1128 // Update a region in the dense prefix. For each live object
jcoomes@810 1129 // in the region, update it's interior references. For each
duke@435 1130 // dead object, fill it with deadwood. Dead space at the end
jcoomes@810 1131 // of a region range will be filled to the start of the next
jcoomes@810 1132 // live object regardless of the region_index_end. None of the
duke@435 1133 // objects in the dense prefix move and dead space is dead
duke@435 1134 // (holds only dead objects that don't need any processing), so
duke@435 1135 // dead space can be filled in any order.
duke@435 1136 static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
duke@435 1137 SpaceId space_id,
jcoomes@810 1138 size_t region_index_start,
jcoomes@810 1139 size_t region_index_end);
duke@435 1140
duke@435 1141 // Return the address of the count + 1st live word in the range [beg, end).
duke@435 1142 static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
duke@435 1143
duke@435 1144 // Return the address of the word to be copied to dest_addr, which must be
jcoomes@810 1145 // aligned to a region boundary.
duke@435 1146 static HeapWord* first_src_addr(HeapWord* const dest_addr,
jcoomes@917 1147 SpaceId src_space_id,
jcoomes@810 1148 size_t src_region_idx);
duke@435 1149
jcoomes@810 1150 // Determine the next source region, set closure.source() to the start of the
jcoomes@810 1151 // new region return the region index. Parameter end_addr is the address one
duke@435 1152 // beyond the end of source range just processed. If necessary, switch to a
duke@435 1153 // new source space and set src_space_id (in-out parameter) and src_space_top
duke@435 1154 // (out parameter) accordingly.
jcoomes@810 1155 static size_t next_src_region(MoveAndUpdateClosure& closure,
jcoomes@810 1156 SpaceId& src_space_id,
jcoomes@810 1157 HeapWord*& src_space_top,
jcoomes@810 1158 HeapWord* end_addr);
duke@435 1159
jcoomes@810 1160 // Decrement the destination count for each non-empty source region in the
jcoomes@930 1161 // range [beg_region, region(region_align_up(end_addr))). If the destination
jcoomes@930 1162 // count for a region goes to 0 and it needs to be filled, enqueue it.
duke@435 1163 static void decrement_destination_counts(ParCompactionManager* cm,
jcoomes@930 1164 SpaceId src_space_id,
jcoomes@810 1165 size_t beg_region,
duke@435 1166 HeapWord* end_addr);
duke@435 1167
jcoomes@810 1168 // Fill a region, copying objects from one or more source regions.
jcoomes@810 1169 static void fill_region(ParCompactionManager* cm, size_t region_idx);
jcoomes@810 1170 static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
jcoomes@810 1171 fill_region(cm, region);
duke@435 1172 }
duke@435 1173
duke@435 1174 // Update the deferred objects in the space.
duke@435 1175 static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
duke@435 1176
duke@435 1177 // Mark pointer and follow contents.
coleenp@548 1178 template <class T>
coleenp@548 1179 static inline void mark_and_follow(ParCompactionManager* cm, T* p);
duke@435 1180
duke@435 1181 static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
duke@435 1182 static ParallelCompactData& summary_data() { return _summary_data; }
duke@435 1183
coleenp@548 1184 static inline void adjust_pointer(oop* p) { adjust_pointer(p, false); }
coleenp@548 1185 static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
coleenp@548 1186
coleenp@548 1187 template <class T>
coleenp@548 1188 static inline void adjust_pointer(T* p,
duke@435 1189 HeapWord* beg_addr,
duke@435 1190 HeapWord* end_addr);
duke@435 1191
duke@435 1192 // Reference Processing
duke@435 1193 static ReferenceProcessor* const ref_processor() { return _ref_processor; }
duke@435 1194
duke@435 1195 // Return the SpaceId for the given address.
duke@435 1196 static SpaceId space_id(HeapWord* addr);
duke@435 1197
duke@435 1198 // Time since last full gc (in milliseconds).
duke@435 1199 static jlong millis_since_last_gc();
duke@435 1200
duke@435 1201 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1202 static void track_adjusted_pointer(void* p, bool isroot);
coleenp@548 1203 static void check_adjust_pointer(void* p);
duke@435 1204 static void track_interior_pointers(oop obj);
duke@435 1205 static void check_interior_pointers();
duke@435 1206
duke@435 1207 static void reset_live_oop_tracking(bool at_perm);
duke@435 1208 static void register_live_oop(oop p, size_t size);
duke@435 1209 static void validate_live_oop(oop p, size_t size);
duke@435 1210 static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
duke@435 1211 static void compaction_complete();
duke@435 1212
duke@435 1213 // Querying operation of RecordMarkSweepCompaction results.
duke@435 1214 // Finds and prints the current base oop and offset for a word
duke@435 1215 // within an oop that was live during the last GC. Helpful for
duke@435 1216 // tracking down heap stomps.
duke@435 1217 static void print_new_location_of_heap_address(HeapWord* q);
duke@435 1218 #endif // #ifdef VALIDATE_MARK_SWEEP
duke@435 1219
duke@435 1220 // Call backs for class unloading
duke@435 1221 // Update subklass/sibling/implementor links at end of marking.
duke@435 1222 static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
duke@435 1223
duke@435 1224 #ifndef PRODUCT
duke@435 1225 // Debugging support.
duke@435 1226 static const char* space_names[last_space_id];
jcoomes@810 1227 static void print_region_ranges();
duke@435 1228 static void print_dense_prefix_stats(const char* const algorithm,
duke@435 1229 const SpaceId id,
duke@435 1230 const bool maximum_compaction,
duke@435 1231 HeapWord* const addr);
jcoomes@917 1232 static void summary_phase_msg(SpaceId dst_space_id,
jcoomes@917 1233 HeapWord* dst_beg, HeapWord* dst_end,
jcoomes@917 1234 SpaceId src_space_id,
jcoomes@917 1235 HeapWord* src_beg, HeapWord* src_end);
duke@435 1236 #endif // #ifndef PRODUCT
duke@435 1237
duke@435 1238 #ifdef ASSERT
jcoomes@930 1239 // Sanity check the new location of a word in the heap.
jcoomes@930 1240 static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
jcoomes@810 1241 // Verify that all the regions have been emptied.
duke@435 1242 static void verify_complete(SpaceId space_id);
duke@435 1243 #endif // #ifdef ASSERT
duke@435 1244 };
duke@435 1245
coleenp@548 1246 inline bool PSParallelCompact::mark_obj(oop obj) {
duke@435 1247 const int obj_size = obj->size();
duke@435 1248 if (mark_bitmap()->mark_obj(obj, obj_size)) {
duke@435 1249 _summary_data.add_obj(obj, obj_size);
duke@435 1250 return true;
duke@435 1251 } else {
duke@435 1252 return false;
duke@435 1253 }
duke@435 1254 }
duke@435 1255
coleenp@548 1256 template <class T>
coleenp@548 1257 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
coleenp@548 1258 assert(!Universe::heap()->is_in_reserved(p),
coleenp@548 1259 "roots shouldn't be things within the heap");
coleenp@548 1260 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1261 if (ValidateMarkSweep) {
coleenp@548 1262 guarantee(!_root_refs_stack->contains(p), "should only be in here once");
coleenp@548 1263 _root_refs_stack->push(p);
coleenp@548 1264 }
coleenp@548 1265 #endif
coleenp@548 1266 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1267 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1268 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1269 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1270 if (mark_obj(obj)) {
coleenp@548 1271 obj->follow_contents(cm);
coleenp@548 1272 }
coleenp@548 1273 }
coleenp@548 1274 }
coleenp@548 1275 follow_stack(cm);
coleenp@548 1276 }
coleenp@548 1277
coleenp@548 1278 template <class T>
coleenp@548 1279 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
coleenp@548 1280 T* p) {
coleenp@548 1281 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1282 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1283 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1284 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1285 if (mark_obj(obj)) {
coleenp@548 1286 obj->follow_contents(cm);
coleenp@548 1287 }
coleenp@548 1288 }
coleenp@548 1289 }
coleenp@548 1290 }
coleenp@548 1291
coleenp@548 1292 template <class T>
coleenp@548 1293 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
coleenp@548 1294 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1295 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1296 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1297 if (mark_bitmap()->is_unmarked(obj)) {
coleenp@548 1298 if (mark_obj(obj)) {
coleenp@548 1299 // This thread marked the object and owns the subsequent processing of it.
coleenp@548 1300 cm->save_for_scanning(obj);
coleenp@548 1301 }
coleenp@548 1302 }
coleenp@548 1303 }
coleenp@548 1304 }
coleenp@548 1305
coleenp@548 1306 template <class T>
coleenp@548 1307 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
coleenp@548 1308 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 1309 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 1310 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
coleenp@548 1311 oop new_obj = (oop)summary_data().calc_new_pointer(obj);
coleenp@548 1312 assert(new_obj != NULL || // is forwarding ptr?
coleenp@548 1313 obj->is_shared(), // never forwarded?
coleenp@548 1314 "should be forwarded");
coleenp@548 1315 // Just always do the update unconditionally?
coleenp@548 1316 if (new_obj != NULL) {
coleenp@548 1317 assert(Universe::heap()->is_in_reserved(new_obj),
coleenp@548 1318 "should be in object space");
coleenp@548 1319 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
coleenp@548 1320 }
coleenp@548 1321 }
coleenp@548 1322 VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
coleenp@548 1323 }
coleenp@548 1324
coleenp@548 1325 template <class T>
coleenp@548 1326 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 1327 #ifdef VALIDATE_MARK_SWEEP
coleenp@548 1328 if (ValidateMarkSweep) {
coleenp@548 1329 if (!Universe::heap()->is_in_reserved(p)) {
coleenp@548 1330 _root_refs_stack->push(p);
coleenp@548 1331 } else {
coleenp@548 1332 _other_refs_stack->push(p);
coleenp@548 1333 }
coleenp@548 1334 }
coleenp@548 1335 #endif
coleenp@548 1336 mark_and_push(_compaction_manager, p);
coleenp@548 1337 }
coleenp@548 1338
coleenp@548 1339 inline bool PSParallelCompact::print_phases() {
duke@435 1340 return _print_phases;
duke@435 1341 }
duke@435 1342
coleenp@548 1343 inline double PSParallelCompact::normal_distribution(double density) {
duke@435 1344 assert(_dwl_initialized, "uninitialized");
duke@435 1345 const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
duke@435 1346 return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
duke@435 1347 }
duke@435 1348
duke@435 1349 inline bool
jcoomes@810 1350 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
duke@435 1351 idx_t bit)
duke@435 1352 {
jcoomes@810 1353 assert(bit > 0, "cannot call this for the first bit/region");
jcoomes@810 1354 assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
duke@435 1355 "sanity check");
duke@435 1356
duke@435 1357 // Dead space crosses the boundary if (1) a partial object does not extend
jcoomes@810 1358 // onto the region, (2) an object does not start at the beginning of the
jcoomes@810 1359 // region, and (3) an object does not end at the end of the prior region.
jcoomes@810 1360 return region->partial_obj_size() == 0 &&
duke@435 1361 !_mark_bitmap.is_obj_beg(bit) &&
duke@435 1362 !_mark_bitmap.is_obj_end(bit - 1);
duke@435 1363 }
duke@435 1364
duke@435 1365 inline bool
duke@435 1366 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1367 return p >= beg_addr && p < end_addr;
duke@435 1368 }
duke@435 1369
duke@435 1370 inline bool
duke@435 1371 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 1372 return is_in((HeapWord*)p, beg_addr, end_addr);
duke@435 1373 }
duke@435 1374
duke@435 1375 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
duke@435 1376 assert(id < last_space_id, "id out of range");
duke@435 1377 return _space_info[id].space();
duke@435 1378 }
duke@435 1379
duke@435 1380 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
duke@435 1381 assert(id < last_space_id, "id out of range");
duke@435 1382 return _space_info[id].new_top();
duke@435 1383 }
duke@435 1384
duke@435 1385 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
duke@435 1386 assert(id < last_space_id, "id out of range");
duke@435 1387 return _space_info[id].dense_prefix();
duke@435 1388 }
duke@435 1389
duke@435 1390 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
duke@435 1391 assert(id < last_space_id, "id out of range");
duke@435 1392 return _space_info[id].start_array();
duke@435 1393 }
duke@435 1394
duke@435 1395 inline bool PSParallelCompact::should_update_klass(klassOop k) {
duke@435 1396 return ((HeapWord*) k) >= dense_prefix(perm_space_id);
duke@435 1397 }
duke@435 1398
coleenp@548 1399 template <class T>
coleenp@548 1400 inline void PSParallelCompact::adjust_pointer(T* p,
duke@435 1401 HeapWord* beg_addr,
duke@435 1402 HeapWord* end_addr) {
coleenp@548 1403 if (is_in((HeapWord*)p, beg_addr, end_addr)) {
duke@435 1404 adjust_pointer(p);
duke@435 1405 }
duke@435 1406 }
duke@435 1407
jcoomes@930 1408 #ifdef ASSERT
jcoomes@930 1409 inline void
jcoomes@930 1410 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
jcoomes@930 1411 {
jcoomes@930 1412 assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
jcoomes@930 1413 "must move left or to a different space");
jcoomes@930 1414 }
jcoomes@930 1415 #endif // ASSERT
jcoomes@930 1416
duke@435 1417 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
duke@435 1418 public:
duke@435 1419 inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
duke@435 1420 ObjectStartArray* start_array,
duke@435 1421 HeapWord* destination, size_t words);
duke@435 1422
duke@435 1423 // Accessors.
duke@435 1424 HeapWord* destination() const { return _destination; }
duke@435 1425
duke@435 1426 // If the object will fit (size <= words_remaining()), copy it to the current
duke@435 1427 // destination, update the interior oops and the start array and return either
duke@435 1428 // full (if the closure is full) or incomplete. If the object will not fit,
duke@435 1429 // return would_overflow.
duke@435 1430 virtual IterationStatus do_addr(HeapWord* addr, size_t size);
duke@435 1431
duke@435 1432 // Copy enough words to fill this closure, starting at source(). Interior
duke@435 1433 // oops and the start array are not updated. Return full.
duke@435 1434 IterationStatus copy_until_full();
duke@435 1435
duke@435 1436 // Copy enough words to fill this closure or to the end of an object,
duke@435 1437 // whichever is smaller, starting at source(). Interior oops and the start
duke@435 1438 // array are not updated.
duke@435 1439 void copy_partial_obj();
duke@435 1440
duke@435 1441 protected:
duke@435 1442 // Update variables to indicate that word_count words were processed.
duke@435 1443 inline void update_state(size_t word_count);
duke@435 1444
duke@435 1445 protected:
duke@435 1446 ObjectStartArray* const _start_array;
duke@435 1447 HeapWord* _destination; // Next addr to be written.
duke@435 1448 };
duke@435 1449
duke@435 1450 inline
duke@435 1451 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
duke@435 1452 ParCompactionManager* cm,
duke@435 1453 ObjectStartArray* start_array,
duke@435 1454 HeapWord* destination,
duke@435 1455 size_t words) :
duke@435 1456 ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
duke@435 1457 {
duke@435 1458 _destination = destination;
duke@435 1459 }
duke@435 1460
duke@435 1461 inline void MoveAndUpdateClosure::update_state(size_t words)
duke@435 1462 {
duke@435 1463 decrement_words_remaining(words);
duke@435 1464 _source += words;
duke@435 1465 _destination += words;
duke@435 1466 }
duke@435 1467
duke@435 1468 class UpdateOnlyClosure: public ParMarkBitMapClosure {
duke@435 1469 private:
duke@435 1470 const PSParallelCompact::SpaceId _space_id;
duke@435 1471 ObjectStartArray* const _start_array;
duke@435 1472
duke@435 1473 public:
duke@435 1474 UpdateOnlyClosure(ParMarkBitMap* mbm,
duke@435 1475 ParCompactionManager* cm,
duke@435 1476 PSParallelCompact::SpaceId space_id);
duke@435 1477
duke@435 1478 // Update the object.
duke@435 1479 virtual IterationStatus do_addr(HeapWord* addr, size_t words);
duke@435 1480
duke@435 1481 inline void do_addr(HeapWord* addr);
duke@435 1482 };
duke@435 1483
coleenp@548 1484 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
coleenp@548 1485 {
duke@435 1486 _start_array->allocate_block(addr);
duke@435 1487 oop(addr)->update_contents(compaction_manager());
duke@435 1488 }
duke@435 1489
jcoomes@916 1490 class FillClosure: public ParMarkBitMapClosure
jcoomes@916 1491 {
jcoomes@916 1492 public:
coleenp@548 1493 FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
duke@435 1494 ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
jcoomes@916 1495 _start_array(PSParallelCompact::start_array(space_id))
jcoomes@916 1496 {
jcoomes@916 1497 assert(space_id == PSParallelCompact::perm_space_id ||
jcoomes@916 1498 space_id == PSParallelCompact::old_space_id,
duke@435 1499 "cannot use FillClosure in the young gen");
duke@435 1500 }
duke@435 1501
duke@435 1502 virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
jcoomes@916 1503 CollectedHeap::fill_with_objects(addr, size);
jcoomes@916 1504 HeapWord* const end = addr + size;
jcoomes@916 1505 do {
jcoomes@916 1506 _start_array->allocate_block(addr);
jcoomes@916 1507 addr += oop(addr)->size();
jcoomes@916 1508 } while (addr < end);
duke@435 1509 return ParMarkBitMap::incomplete;
duke@435 1510 }
duke@435 1511
duke@435 1512 private:
jcoomes@916 1513 ObjectStartArray* const _start_array;
duke@435 1514 };

mercurial