src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 969
5cfd8d19e546
child 1114
cea947c8a988
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_parNewGeneration.cpp.incl"
duke@435 27
duke@435 28 #ifdef _MSC_VER
duke@435 29 #pragma warning( push )
duke@435 30 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 31 #endif
duke@435 32 ParScanThreadState::ParScanThreadState(Space* to_space_,
duke@435 33 ParNewGeneration* gen_,
duke@435 34 Generation* old_gen_,
duke@435 35 int thread_num_,
duke@435 36 ObjToScanQueueSet* work_queue_set_,
duke@435 37 size_t desired_plab_sz_,
duke@435 38 ParallelTaskTerminator& term_) :
duke@435 39 _to_space(to_space_), _old_gen(old_gen_), _thread_num(thread_num_),
duke@435 40 _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
duke@435 41 _ageTable(false), // false ==> not the global age table, no perf data.
duke@435 42 _to_space_alloc_buffer(desired_plab_sz_),
duke@435 43 _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
duke@435 44 _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
duke@435 45 _older_gen_closure(gen_, this),
duke@435 46 _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
duke@435 47 &_to_space_root_closure, gen_, &_old_gen_root_closure,
duke@435 48 work_queue_set_, &term_),
duke@435 49 _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
duke@435 50 _keep_alive_closure(&_scan_weak_ref_closure),
duke@435 51 _pushes(0), _pops(0), _steals(0), _steal_attempts(0), _term_attempts(0),
duke@435 52 _strong_roots_time(0.0), _term_time(0.0)
duke@435 53 {
duke@435 54 _survivor_chunk_array =
duke@435 55 (ChunkArray*) old_gen()->get_data_recorder(thread_num());
duke@435 56 _hash_seed = 17; // Might want to take time-based random value.
duke@435 57 _start = os::elapsedTime();
duke@435 58 _old_gen_closure.set_generation(old_gen_);
duke@435 59 _old_gen_root_closure.set_generation(old_gen_);
duke@435 60 }
duke@435 61 #ifdef _MSC_VER
duke@435 62 #pragma warning( pop )
duke@435 63 #endif
duke@435 64
duke@435 65 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
duke@435 66 size_t plab_word_size) {
duke@435 67 ChunkArray* sca = survivor_chunk_array();
duke@435 68 if (sca != NULL) {
duke@435 69 // A non-null SCA implies that we want the PLAB data recorded.
duke@435 70 sca->record_sample(plab_start, plab_word_size);
duke@435 71 }
duke@435 72 }
duke@435 73
duke@435 74 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
duke@435 75 return new_obj->is_objArray() &&
duke@435 76 arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
duke@435 77 new_obj != old_obj;
duke@435 78 }
duke@435 79
duke@435 80 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
duke@435 81 assert(old->is_objArray(), "must be obj array");
duke@435 82 assert(old->is_forwarded(), "must be forwarded");
duke@435 83 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
duke@435 84 assert(!_old_gen->is_in(old), "must be in young generation.");
duke@435 85
duke@435 86 objArrayOop obj = objArrayOop(old->forwardee());
duke@435 87 // Process ParGCArrayScanChunk elements now
duke@435 88 // and push the remainder back onto queue
duke@435 89 int start = arrayOop(old)->length();
duke@435 90 int end = obj->length();
duke@435 91 int remainder = end - start;
duke@435 92 assert(start <= end, "just checking");
duke@435 93 if (remainder > 2 * ParGCArrayScanChunk) {
duke@435 94 // Test above combines last partial chunk with a full chunk
duke@435 95 end = start + ParGCArrayScanChunk;
duke@435 96 arrayOop(old)->set_length(end);
duke@435 97 // Push remainder.
duke@435 98 bool ok = work_queue()->push(old);
duke@435 99 assert(ok, "just popped, push must be okay");
duke@435 100 note_push();
duke@435 101 } else {
duke@435 102 // Restore length so that it can be used if there
duke@435 103 // is a promotion failure and forwarding pointers
duke@435 104 // must be removed.
duke@435 105 arrayOop(old)->set_length(end);
duke@435 106 }
coleenp@548 107
duke@435 108 // process our set of indices (include header in first chunk)
coleenp@548 109 // should make sure end is even (aligned to HeapWord in case of compressed oops)
duke@435 110 if ((HeapWord *)obj < young_old_boundary()) {
duke@435 111 // object is in to_space
coleenp@548 112 obj->oop_iterate_range(&_to_space_closure, start, end);
duke@435 113 } else {
duke@435 114 // object is in old generation
coleenp@548 115 obj->oop_iterate_range(&_old_gen_closure, start, end);
duke@435 116 }
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 void ParScanThreadState::trim_queues(int max_size) {
duke@435 121 ObjToScanQueue* queue = work_queue();
duke@435 122 while (queue->size() > (juint)max_size) {
duke@435 123 oop obj_to_scan;
duke@435 124 if (queue->pop_local(obj_to_scan)) {
duke@435 125 note_pop();
duke@435 126
duke@435 127 if ((HeapWord *)obj_to_scan < young_old_boundary()) {
duke@435 128 if (obj_to_scan->is_objArray() &&
duke@435 129 obj_to_scan->is_forwarded() &&
duke@435 130 obj_to_scan->forwardee() != obj_to_scan) {
duke@435 131 scan_partial_array_and_push_remainder(obj_to_scan);
duke@435 132 } else {
duke@435 133 // object is in to_space
duke@435 134 obj_to_scan->oop_iterate(&_to_space_closure);
duke@435 135 }
duke@435 136 } else {
duke@435 137 // object is in old generation
duke@435 138 obj_to_scan->oop_iterate(&_old_gen_closure);
duke@435 139 }
duke@435 140 }
duke@435 141 }
duke@435 142 }
duke@435 143
duke@435 144 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
duke@435 145
duke@435 146 // Otherwise, if the object is small enough, try to reallocate the
duke@435 147 // buffer.
duke@435 148 HeapWord* obj = NULL;
duke@435 149 if (!_to_space_full) {
duke@435 150 ParGCAllocBuffer* const plab = to_space_alloc_buffer();
duke@435 151 Space* const sp = to_space();
duke@435 152 if (word_sz * 100 <
duke@435 153 ParallelGCBufferWastePct * plab->word_sz()) {
duke@435 154 // Is small enough; abandon this buffer and start a new one.
duke@435 155 plab->retire(false, false);
duke@435 156 size_t buf_size = plab->word_sz();
duke@435 157 HeapWord* buf_space = sp->par_allocate(buf_size);
duke@435 158 if (buf_space == NULL) {
duke@435 159 const size_t min_bytes =
duke@435 160 ParGCAllocBuffer::min_size() << LogHeapWordSize;
duke@435 161 size_t free_bytes = sp->free();
duke@435 162 while(buf_space == NULL && free_bytes >= min_bytes) {
duke@435 163 buf_size = free_bytes >> LogHeapWordSize;
duke@435 164 assert(buf_size == (size_t)align_object_size(buf_size),
duke@435 165 "Invariant");
duke@435 166 buf_space = sp->par_allocate(buf_size);
duke@435 167 free_bytes = sp->free();
duke@435 168 }
duke@435 169 }
duke@435 170 if (buf_space != NULL) {
duke@435 171 plab->set_word_size(buf_size);
duke@435 172 plab->set_buf(buf_space);
duke@435 173 record_survivor_plab(buf_space, buf_size);
duke@435 174 obj = plab->allocate(word_sz);
duke@435 175 // Note that we cannot compare buf_size < word_sz below
duke@435 176 // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
duke@435 177 assert(obj != NULL || plab->words_remaining() < word_sz,
duke@435 178 "Else should have been able to allocate");
duke@435 179 // It's conceivable that we may be able to use the
duke@435 180 // buffer we just grabbed for subsequent small requests
duke@435 181 // even if not for this one.
duke@435 182 } else {
duke@435 183 // We're used up.
duke@435 184 _to_space_full = true;
duke@435 185 }
duke@435 186
duke@435 187 } else {
duke@435 188 // Too large; allocate the object individually.
duke@435 189 obj = sp->par_allocate(word_sz);
duke@435 190 }
duke@435 191 }
duke@435 192 return obj;
duke@435 193 }
duke@435 194
duke@435 195
duke@435 196 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
duke@435 197 size_t word_sz) {
duke@435 198 // Is the alloc in the current alloc buffer?
duke@435 199 if (to_space_alloc_buffer()->contains(obj)) {
duke@435 200 assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
duke@435 201 "Should contain whole object.");
duke@435 202 to_space_alloc_buffer()->undo_allocation(obj, word_sz);
duke@435 203 } else {
jcoomes@916 204 CollectedHeap::fill_with_object(obj, word_sz);
duke@435 205 }
duke@435 206 }
duke@435 207
duke@435 208 class ParScanThreadStateSet: private ResourceArray {
duke@435 209 public:
duke@435 210 // Initializes states for the specified number of threads;
duke@435 211 ParScanThreadStateSet(int num_threads,
duke@435 212 Space& to_space,
duke@435 213 ParNewGeneration& gen,
duke@435 214 Generation& old_gen,
duke@435 215 ObjToScanQueueSet& queue_set,
duke@435 216 size_t desired_plab_sz,
duke@435 217 ParallelTaskTerminator& term);
duke@435 218 inline ParScanThreadState& thread_sate(int i);
duke@435 219 int pushes() { return _pushes; }
duke@435 220 int pops() { return _pops; }
duke@435 221 int steals() { return _steals; }
duke@435 222 void reset();
duke@435 223 void flush();
duke@435 224 private:
duke@435 225 ParallelTaskTerminator& _term;
duke@435 226 ParNewGeneration& _gen;
duke@435 227 Generation& _next_gen;
duke@435 228 // staticstics
duke@435 229 int _pushes;
duke@435 230 int _pops;
duke@435 231 int _steals;
duke@435 232 };
duke@435 233
duke@435 234
duke@435 235 ParScanThreadStateSet::ParScanThreadStateSet(
duke@435 236 int num_threads, Space& to_space, ParNewGeneration& gen,
duke@435 237 Generation& old_gen, ObjToScanQueueSet& queue_set,
duke@435 238 size_t desired_plab_sz, ParallelTaskTerminator& term)
duke@435 239 : ResourceArray(sizeof(ParScanThreadState), num_threads),
duke@435 240 _gen(gen), _next_gen(old_gen), _term(term),
duke@435 241 _pushes(0), _pops(0), _steals(0)
duke@435 242 {
duke@435 243 assert(num_threads > 0, "sanity check!");
duke@435 244 // Initialize states.
duke@435 245 for (int i = 0; i < num_threads; ++i) {
duke@435 246 new ((ParScanThreadState*)_data + i)
duke@435 247 ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
duke@435 248 desired_plab_sz, term);
duke@435 249 }
duke@435 250 }
duke@435 251
duke@435 252 inline ParScanThreadState& ParScanThreadStateSet::thread_sate(int i)
duke@435 253 {
duke@435 254 assert(i >= 0 && i < length(), "sanity check!");
duke@435 255 return ((ParScanThreadState*)_data)[i];
duke@435 256 }
duke@435 257
duke@435 258
duke@435 259 void ParScanThreadStateSet::reset()
duke@435 260 {
duke@435 261 _term.reset_for_reuse();
duke@435 262 }
duke@435 263
duke@435 264 void ParScanThreadStateSet::flush()
duke@435 265 {
duke@435 266 for (int i = 0; i < length(); ++i) {
duke@435 267 ParScanThreadState& par_scan_state = thread_sate(i);
duke@435 268
duke@435 269 // Flush stats related to To-space PLAB activity and
duke@435 270 // retire the last buffer.
duke@435 271 par_scan_state.to_space_alloc_buffer()->
duke@435 272 flush_stats_and_retire(_gen.plab_stats(),
duke@435 273 false /* !retain */);
duke@435 274
duke@435 275 // Every thread has its own age table. We need to merge
duke@435 276 // them all into one.
duke@435 277 ageTable *local_table = par_scan_state.age_table();
duke@435 278 _gen.age_table()->merge(local_table);
duke@435 279
duke@435 280 // Inform old gen that we're done.
duke@435 281 _next_gen.par_promote_alloc_done(i);
duke@435 282 _next_gen.par_oop_since_save_marks_iterate_done(i);
duke@435 283
duke@435 284 // Flush stats related to work queue activity (push/pop/steal)
duke@435 285 // This could conceivably become a bottleneck; if so, we'll put the
duke@435 286 // stat's gathering under the flag.
duke@435 287 if (PAR_STATS_ENABLED) {
duke@435 288 _pushes += par_scan_state.pushes();
duke@435 289 _pops += par_scan_state.pops();
duke@435 290 _steals += par_scan_state.steals();
duke@435 291 if (ParallelGCVerbose) {
duke@435 292 gclog_or_tty->print("Thread %d complete:\n"
duke@435 293 " Pushes: %7d Pops: %7d Steals %7d (in %d attempts)\n",
duke@435 294 i, par_scan_state.pushes(), par_scan_state.pops(),
duke@435 295 par_scan_state.steals(), par_scan_state.steal_attempts());
duke@435 296 if (par_scan_state.overflow_pushes() > 0 ||
duke@435 297 par_scan_state.overflow_refills() > 0) {
duke@435 298 gclog_or_tty->print(" Overflow pushes: %7d "
duke@435 299 "Overflow refills: %7d for %d objs.\n",
duke@435 300 par_scan_state.overflow_pushes(),
duke@435 301 par_scan_state.overflow_refills(),
duke@435 302 par_scan_state.overflow_refill_objs());
duke@435 303 }
duke@435 304
duke@435 305 double elapsed = par_scan_state.elapsed();
duke@435 306 double strong_roots = par_scan_state.strong_roots_time();
duke@435 307 double term = par_scan_state.term_time();
duke@435 308 gclog_or_tty->print(
duke@435 309 " Elapsed: %7.2f ms.\n"
duke@435 310 " Strong roots: %7.2f ms (%6.2f%%)\n"
duke@435 311 " Termination: %7.2f ms (%6.2f%%) (in %d entries)\n",
duke@435 312 elapsed * 1000.0,
duke@435 313 strong_roots * 1000.0, (strong_roots*100.0/elapsed),
duke@435 314 term * 1000.0, (term*100.0/elapsed),
duke@435 315 par_scan_state.term_attempts());
duke@435 316 }
duke@435 317 }
duke@435 318 }
duke@435 319 }
duke@435 320
duke@435 321 ParScanClosure::ParScanClosure(ParNewGeneration* g,
duke@435 322 ParScanThreadState* par_scan_state) :
duke@435 323 OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
duke@435 324 {
duke@435 325 assert(_g->level() == 0, "Optimized for youngest generation");
duke@435 326 _boundary = _g->reserved().end();
duke@435 327 }
duke@435 328
coleenp@548 329 void ParScanWithBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 330 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
coleenp@548 331
coleenp@548 332 void ParScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 333 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
coleenp@548 334
coleenp@548 335 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 336 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
coleenp@548 337
coleenp@548 338 void ParRootScanWithoutBarrierClosure::do_oop(oop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 339 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
coleenp@548 340
duke@435 341 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
duke@435 342 ParScanThreadState* par_scan_state)
duke@435 343 : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
coleenp@548 344 {}
coleenp@548 345
coleenp@548 346 void ParScanWeakRefClosure::do_oop(oop* p) { ParScanWeakRefClosure::do_oop_work(p); }
coleenp@548 347 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
duke@435 348
duke@435 349 #ifdef WIN32
duke@435 350 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
duke@435 351 #endif
duke@435 352
duke@435 353 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
duke@435 354 ParScanThreadState* par_scan_state_,
duke@435 355 ParScanWithoutBarrierClosure* to_space_closure_,
duke@435 356 ParScanWithBarrierClosure* old_gen_closure_,
duke@435 357 ParRootScanWithoutBarrierClosure* to_space_root_closure_,
duke@435 358 ParNewGeneration* par_gen_,
duke@435 359 ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
duke@435 360 ObjToScanQueueSet* task_queues_,
duke@435 361 ParallelTaskTerminator* terminator_) :
duke@435 362
duke@435 363 _par_scan_state(par_scan_state_),
duke@435 364 _to_space_closure(to_space_closure_),
duke@435 365 _old_gen_closure(old_gen_closure_),
duke@435 366 _to_space_root_closure(to_space_root_closure_),
duke@435 367 _old_gen_root_closure(old_gen_root_closure_),
duke@435 368 _par_gen(par_gen_),
duke@435 369 _task_queues(task_queues_),
duke@435 370 _terminator(terminator_)
duke@435 371 {}
duke@435 372
duke@435 373 void ParEvacuateFollowersClosure::do_void() {
duke@435 374 ObjToScanQueue* work_q = par_scan_state()->work_queue();
duke@435 375
duke@435 376 while (true) {
duke@435 377
duke@435 378 // Scan to-space and old-gen objs until we run out of both.
duke@435 379 oop obj_to_scan;
duke@435 380 par_scan_state()->trim_queues(0);
duke@435 381
duke@435 382 // We have no local work, attempt to steal from other threads.
duke@435 383
duke@435 384 // attempt to steal work from promoted.
duke@435 385 par_scan_state()->note_steal_attempt();
duke@435 386 if (task_queues()->steal(par_scan_state()->thread_num(),
duke@435 387 par_scan_state()->hash_seed(),
duke@435 388 obj_to_scan)) {
duke@435 389 par_scan_state()->note_steal();
duke@435 390 bool res = work_q->push(obj_to_scan);
duke@435 391 assert(res, "Empty queue should have room for a push.");
duke@435 392
duke@435 393 par_scan_state()->note_push();
duke@435 394 // if successful, goto Start.
duke@435 395 continue;
duke@435 396
duke@435 397 // try global overflow list.
duke@435 398 } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
duke@435 399 continue;
duke@435 400 }
duke@435 401
duke@435 402 // Otherwise, offer termination.
duke@435 403 par_scan_state()->start_term_time();
duke@435 404 if (terminator()->offer_termination()) break;
duke@435 405 par_scan_state()->end_term_time();
duke@435 406 }
ysr@969 407 assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
ysr@969 408 "Broken overflow list?");
duke@435 409 // Finish the last termination pause.
duke@435 410 par_scan_state()->end_term_time();
duke@435 411 }
duke@435 412
duke@435 413 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
duke@435 414 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
duke@435 415 AbstractGangTask("ParNewGeneration collection"),
duke@435 416 _gen(gen), _next_gen(next_gen),
duke@435 417 _young_old_boundary(young_old_boundary),
duke@435 418 _state_set(state_set)
duke@435 419 {}
duke@435 420
duke@435 421 void ParNewGenTask::work(int i) {
duke@435 422 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 423 // Since this is being done in a separate thread, need new resource
duke@435 424 // and handle marks.
duke@435 425 ResourceMark rm;
duke@435 426 HandleMark hm;
duke@435 427 // We would need multiple old-gen queues otherwise.
duke@435 428 guarantee(gch->n_gens() == 2,
duke@435 429 "Par young collection currently only works with one older gen.");
duke@435 430
duke@435 431 Generation* old_gen = gch->next_gen(_gen);
duke@435 432
duke@435 433 ParScanThreadState& par_scan_state = _state_set->thread_sate(i);
duke@435 434 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 435
duke@435 436 par_scan_state.start_strong_roots();
duke@435 437 gch->gen_process_strong_roots(_gen->level(),
duke@435 438 true, // Process younger gens, if any,
duke@435 439 // as strong roots.
duke@435 440 false,// not collecting perm generation.
duke@435 441 SharedHeap::SO_AllClasses,
duke@435 442 &par_scan_state.older_gen_closure(),
duke@435 443 &par_scan_state.to_space_root_closure());
duke@435 444 par_scan_state.end_strong_roots();
duke@435 445
duke@435 446 // "evacuate followers".
duke@435 447 par_scan_state.evacuate_followers_closure().do_void();
duke@435 448 }
duke@435 449
duke@435 450 #ifdef _MSC_VER
duke@435 451 #pragma warning( push )
duke@435 452 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 453 #endif
duke@435 454 ParNewGeneration::
duke@435 455 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
duke@435 456 : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
duke@435 457 _overflow_list(NULL),
duke@435 458 _is_alive_closure(this),
duke@435 459 _plab_stats(YoungPLABSize, PLABWeight)
duke@435 460 {
ysr@969 461 NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
ysr@969 462 NOT_PRODUCT(_num_par_pushes = 0;)
duke@435 463 _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
duke@435 464 guarantee(_task_queues != NULL, "task_queues allocation failure.");
duke@435 465
duke@435 466 for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
duke@435 467 ObjToScanQueuePadded *q_padded = new ObjToScanQueuePadded();
duke@435 468 guarantee(q_padded != NULL, "work_queue Allocation failure.");
duke@435 469
duke@435 470 _task_queues->register_queue(i1, &q_padded->work_queue);
duke@435 471 }
duke@435 472
duke@435 473 for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
duke@435 474 _task_queues->queue(i2)->initialize();
duke@435 475
duke@435 476 if (UsePerfData) {
duke@435 477 EXCEPTION_MARK;
duke@435 478 ResourceMark rm;
duke@435 479
duke@435 480 const char* cname =
duke@435 481 PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
duke@435 482 PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
duke@435 483 ParallelGCThreads, CHECK);
duke@435 484 }
duke@435 485 }
duke@435 486 #ifdef _MSC_VER
duke@435 487 #pragma warning( pop )
duke@435 488 #endif
duke@435 489
duke@435 490 // ParNewGeneration::
duke@435 491 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
duke@435 492 DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
duke@435 493
coleenp@548 494 template <class T>
coleenp@548 495 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
coleenp@548 496 #ifdef ASSERT
coleenp@548 497 {
coleenp@548 498 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 499 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 500 // We never expect to see a null reference being processed
coleenp@548 501 // as a weak reference.
coleenp@548 502 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 503 }
coleenp@548 504 #endif // ASSERT
duke@435 505
duke@435 506 _par_cl->do_oop_nv(p);
duke@435 507
duke@435 508 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 509 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 510 _rs->write_ref_field_gc_par(p, obj);
duke@435 511 }
duke@435 512 }
duke@435 513
coleenp@548 514 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 515 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
coleenp@548 516
duke@435 517 // ParNewGeneration::
duke@435 518 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
duke@435 519 DefNewGeneration::KeepAliveClosure(cl) {}
duke@435 520
coleenp@548 521 template <class T>
coleenp@548 522 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
coleenp@548 523 #ifdef ASSERT
coleenp@548 524 {
coleenp@548 525 assert(!oopDesc::is_null(*p), "expected non-null ref");
coleenp@548 526 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 527 // We never expect to see a null reference being processed
coleenp@548 528 // as a weak reference.
coleenp@548 529 assert(obj->is_oop(), "expected an oop while scanning weak refs");
coleenp@548 530 }
coleenp@548 531 #endif // ASSERT
duke@435 532
duke@435 533 _cl->do_oop_nv(p);
duke@435 534
duke@435 535 if (Universe::heap()->is_in_reserved(p)) {
coleenp@548 536 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 537 _rs->write_ref_field_gc_par(p, obj);
duke@435 538 }
duke@435 539 }
duke@435 540
coleenp@548 541 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 542 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
coleenp@548 543
coleenp@548 544 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
coleenp@548 545 T heap_oop = oopDesc::load_heap_oop(p);
coleenp@548 546 if (!oopDesc::is_null(heap_oop)) {
coleenp@548 547 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
duke@435 548 if ((HeapWord*)obj < _boundary) {
duke@435 549 assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
coleenp@548 550 oop new_obj = obj->is_forwarded()
coleenp@548 551 ? obj->forwardee()
coleenp@548 552 : _g->DefNewGeneration::copy_to_survivor_space(obj);
coleenp@548 553 oopDesc::encode_store_heap_oop_not_null(p, new_obj);
duke@435 554 }
duke@435 555 if (_gc_barrier) {
duke@435 556 // If p points to a younger generation, mark the card.
duke@435 557 if ((HeapWord*)obj < _gen_boundary) {
duke@435 558 _rs->write_ref_field_gc_par(p, obj);
duke@435 559 }
duke@435 560 }
duke@435 561 }
duke@435 562 }
duke@435 563
coleenp@548 564 void ScanClosureWithParBarrier::do_oop(oop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 565 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
coleenp@548 566
duke@435 567 class ParNewRefProcTaskProxy: public AbstractGangTask {
duke@435 568 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
duke@435 569 public:
duke@435 570 ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
duke@435 571 Generation& next_gen,
duke@435 572 HeapWord* young_old_boundary,
duke@435 573 ParScanThreadStateSet& state_set);
duke@435 574
duke@435 575 private:
duke@435 576 virtual void work(int i);
duke@435 577
duke@435 578 private:
duke@435 579 ParNewGeneration& _gen;
duke@435 580 ProcessTask& _task;
duke@435 581 Generation& _next_gen;
duke@435 582 HeapWord* _young_old_boundary;
duke@435 583 ParScanThreadStateSet& _state_set;
duke@435 584 };
duke@435 585
duke@435 586 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
duke@435 587 ProcessTask& task, ParNewGeneration& gen,
duke@435 588 Generation& next_gen,
duke@435 589 HeapWord* young_old_boundary,
duke@435 590 ParScanThreadStateSet& state_set)
duke@435 591 : AbstractGangTask("ParNewGeneration parallel reference processing"),
duke@435 592 _gen(gen),
duke@435 593 _task(task),
duke@435 594 _next_gen(next_gen),
duke@435 595 _young_old_boundary(young_old_boundary),
duke@435 596 _state_set(state_set)
duke@435 597 {
duke@435 598 }
duke@435 599
duke@435 600 void ParNewRefProcTaskProxy::work(int i)
duke@435 601 {
duke@435 602 ResourceMark rm;
duke@435 603 HandleMark hm;
duke@435 604 ParScanThreadState& par_scan_state = _state_set.thread_sate(i);
duke@435 605 par_scan_state.set_young_old_boundary(_young_old_boundary);
duke@435 606 _task.work(i, par_scan_state.is_alive_closure(),
duke@435 607 par_scan_state.keep_alive_closure(),
duke@435 608 par_scan_state.evacuate_followers_closure());
duke@435 609 }
duke@435 610
duke@435 611 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
duke@435 612 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
duke@435 613 EnqueueTask& _task;
duke@435 614
duke@435 615 public:
duke@435 616 ParNewRefEnqueueTaskProxy(EnqueueTask& task)
duke@435 617 : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
duke@435 618 _task(task)
duke@435 619 { }
duke@435 620
duke@435 621 virtual void work(int i)
duke@435 622 {
duke@435 623 _task.work(i);
duke@435 624 }
duke@435 625 };
duke@435 626
duke@435 627
duke@435 628 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
duke@435 629 {
duke@435 630 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 631 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 632 "not a generational heap");
duke@435 633 WorkGang* workers = gch->workers();
duke@435 634 assert(workers != NULL, "Need parallel worker threads.");
duke@435 635 ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
duke@435 636 _generation.reserved().end(), _state_set);
duke@435 637 workers->run_task(&rp_task);
duke@435 638 _state_set.reset();
duke@435 639 }
duke@435 640
duke@435 641 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
duke@435 642 {
duke@435 643 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 644 WorkGang* workers = gch->workers();
duke@435 645 assert(workers != NULL, "Need parallel worker threads.");
duke@435 646 ParNewRefEnqueueTaskProxy enq_task(task);
duke@435 647 workers->run_task(&enq_task);
duke@435 648 }
duke@435 649
duke@435 650 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
duke@435 651 {
duke@435 652 _state_set.flush();
duke@435 653 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 654 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 655 gch->save_marks();
duke@435 656 }
duke@435 657
duke@435 658 ScanClosureWithParBarrier::
duke@435 659 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
duke@435 660 ScanClosure(g, gc_barrier) {}
duke@435 661
duke@435 662 EvacuateFollowersClosureGeneral::
duke@435 663 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
duke@435 664 OopsInGenClosure* cur,
duke@435 665 OopsInGenClosure* older) :
duke@435 666 _gch(gch), _level(level),
duke@435 667 _scan_cur_or_nonheap(cur), _scan_older(older)
duke@435 668 {}
duke@435 669
duke@435 670 void EvacuateFollowersClosureGeneral::do_void() {
duke@435 671 do {
duke@435 672 // Beware: this call will lead to closure applications via virtual
duke@435 673 // calls.
duke@435 674 _gch->oop_since_save_marks_iterate(_level,
duke@435 675 _scan_cur_or_nonheap,
duke@435 676 _scan_older);
duke@435 677 } while (!_gch->no_allocs_since_save_marks(_level));
duke@435 678 }
duke@435 679
duke@435 680
duke@435 681 bool ParNewGeneration::_avoid_promotion_undo = false;
duke@435 682
duke@435 683 void ParNewGeneration::adjust_desired_tenuring_threshold() {
duke@435 684 // Set the desired survivor size to half the real survivor space
duke@435 685 _tenuring_threshold =
duke@435 686 age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
duke@435 687 }
duke@435 688
duke@435 689 // A Generation that does parallel young-gen collection.
duke@435 690
duke@435 691 void ParNewGeneration::collect(bool full,
duke@435 692 bool clear_all_soft_refs,
duke@435 693 size_t size,
duke@435 694 bool is_tlab) {
duke@435 695 assert(full || size > 0, "otherwise we don't want to collect");
duke@435 696 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 697 assert(gch->kind() == CollectedHeap::GenCollectedHeap,
duke@435 698 "not a CMS generational heap");
duke@435 699 AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
duke@435 700 WorkGang* workers = gch->workers();
duke@435 701 _next_gen = gch->next_gen(this);
duke@435 702 assert(_next_gen != NULL,
duke@435 703 "This must be the youngest gen, and not the only gen");
duke@435 704 assert(gch->n_gens() == 2,
duke@435 705 "Par collection currently only works with single older gen.");
duke@435 706 // Do we have to avoid promotion_undo?
duke@435 707 if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
duke@435 708 set_avoid_promotion_undo(true);
duke@435 709 }
duke@435 710
duke@435 711 // If the next generation is too full to accomodate worst-case promotion
duke@435 712 // from this generation, pass on collection; let the next generation
duke@435 713 // do it.
duke@435 714 if (!collection_attempt_is_safe()) {
duke@435 715 gch->set_incremental_collection_will_fail();
duke@435 716 return;
duke@435 717 }
duke@435 718 assert(to()->is_empty(), "Else not collection_attempt_is_safe");
duke@435 719
duke@435 720 init_assuming_no_promotion_failure();
duke@435 721
duke@435 722 if (UseAdaptiveSizePolicy) {
duke@435 723 set_survivor_overflow(false);
duke@435 724 size_policy->minor_collection_begin();
duke@435 725 }
duke@435 726
duke@435 727 TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
duke@435 728 // Capture heap used before collection (for printing).
duke@435 729 size_t gch_prev_used = gch->used();
duke@435 730
duke@435 731 SpecializationStats::clear();
duke@435 732
duke@435 733 age_table()->clear();
jmasa@698 734 to()->clear(SpaceDecorator::Mangle);
duke@435 735
duke@435 736 gch->save_marks();
duke@435 737 assert(workers != NULL, "Need parallel worker threads.");
duke@435 738 ParallelTaskTerminator _term(workers->total_workers(), task_queues());
duke@435 739 ParScanThreadStateSet thread_state_set(workers->total_workers(),
duke@435 740 *to(), *this, *_next_gen, *task_queues(),
duke@435 741 desired_plab_sz(), _term);
duke@435 742
duke@435 743 ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
duke@435 744 int n_workers = workers->total_workers();
duke@435 745 gch->set_par_threads(n_workers);
duke@435 746 gch->change_strong_roots_parity();
duke@435 747 gch->rem_set()->prepare_for_younger_refs_iterate(true);
duke@435 748 // It turns out that even when we're using 1 thread, doing the work in a
duke@435 749 // separate thread causes wide variance in run times. We can't help this
duke@435 750 // in the multi-threaded case, but we special-case n=1 here to get
duke@435 751 // repeatable measurements of the 1-thread overhead of the parallel code.
duke@435 752 if (n_workers > 1) {
duke@435 753 workers->run_task(&tsk);
duke@435 754 } else {
duke@435 755 tsk.work(0);
duke@435 756 }
duke@435 757 thread_state_set.reset();
duke@435 758
duke@435 759 if (PAR_STATS_ENABLED && ParallelGCVerbose) {
duke@435 760 gclog_or_tty->print("Thread totals:\n"
duke@435 761 " Pushes: %7d Pops: %7d Steals %7d (sum = %7d).\n",
duke@435 762 thread_state_set.pushes(), thread_state_set.pops(),
duke@435 763 thread_state_set.steals(),
duke@435 764 thread_state_set.pops()+thread_state_set.steals());
duke@435 765 }
ysr@888 766 assert(thread_state_set.pushes() == thread_state_set.pops()
ysr@888 767 + thread_state_set.steals(),
duke@435 768 "Or else the queues are leaky.");
duke@435 769
duke@435 770 // Process (weak) reference objects found during scavenge.
ysr@888 771 ReferenceProcessor* rp = ref_processor();
duke@435 772 IsAliveClosure is_alive(this);
duke@435 773 ScanWeakRefClosure scan_weak_ref(this);
duke@435 774 KeepAliveClosure keep_alive(&scan_weak_ref);
duke@435 775 ScanClosure scan_without_gc_barrier(this, false);
duke@435 776 ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
duke@435 777 set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
duke@435 778 EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
duke@435 779 &scan_without_gc_barrier, &scan_with_gc_barrier);
ysr@892 780 rp->setup_policy(clear_all_soft_refs);
ysr@888 781 if (rp->processing_is_mt()) {
duke@435 782 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 783 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 784 &evacuate_followers, &task_executor);
duke@435 785 } else {
duke@435 786 thread_state_set.flush();
duke@435 787 gch->set_par_threads(0); // 0 ==> non-parallel.
duke@435 788 gch->save_marks();
ysr@888 789 rp->process_discovered_references(&is_alive, &keep_alive,
ysr@888 790 &evacuate_followers, NULL);
duke@435 791 }
duke@435 792 if (!promotion_failed()) {
duke@435 793 // Swap the survivor spaces.
jmasa@698 794 eden()->clear(SpaceDecorator::Mangle);
jmasa@698 795 from()->clear(SpaceDecorator::Mangle);
jmasa@698 796 if (ZapUnusedHeapArea) {
jmasa@698 797 // This is now done here because of the piece-meal mangling which
jmasa@698 798 // can check for valid mangling at intermediate points in the
jmasa@698 799 // collection(s). When a minor collection fails to collect
jmasa@698 800 // sufficient space resizing of the young generation can occur
jmasa@698 801 // an redistribute the spaces in the young generation. Mangle
jmasa@698 802 // here so that unzapped regions don't get distributed to
jmasa@698 803 // other spaces.
jmasa@698 804 to()->mangle_unused_area();
jmasa@698 805 }
duke@435 806 swap_spaces();
duke@435 807
duke@435 808 assert(to()->is_empty(), "to space should be empty now");
duke@435 809 } else {
duke@435 810 assert(HandlePromotionFailure,
duke@435 811 "Should only be here if promotion failure handling is on");
duke@435 812 if (_promo_failure_scan_stack != NULL) {
duke@435 813 // Can be non-null because of reference processing.
duke@435 814 // Free stack with its elements.
duke@435 815 delete _promo_failure_scan_stack;
duke@435 816 _promo_failure_scan_stack = NULL;
duke@435 817 }
duke@435 818 remove_forwarding_pointers();
duke@435 819 if (PrintGCDetails) {
duke@435 820 gclog_or_tty->print(" (promotion failed)");
duke@435 821 }
duke@435 822 // All the spaces are in play for mark-sweep.
duke@435 823 swap_spaces(); // Make life simpler for CMS || rescan; see 6483690.
duke@435 824 from()->set_next_compaction_space(to());
duke@435 825 gch->set_incremental_collection_will_fail();
jmasa@441 826
jmasa@441 827 // Reset the PromotionFailureALot counters.
jmasa@441 828 NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
duke@435 829 }
duke@435 830 // set new iteration safe limit for the survivor spaces
duke@435 831 from()->set_concurrent_iteration_safe_limit(from()->top());
duke@435 832 to()->set_concurrent_iteration_safe_limit(to()->top());
duke@435 833
duke@435 834 adjust_desired_tenuring_threshold();
duke@435 835 if (ResizePLAB) {
duke@435 836 plab_stats()->adjust_desired_plab_sz();
duke@435 837 }
duke@435 838
duke@435 839 if (PrintGC && !PrintGCDetails) {
duke@435 840 gch->print_heap_change(gch_prev_used);
duke@435 841 }
duke@435 842
duke@435 843 if (UseAdaptiveSizePolicy) {
duke@435 844 size_policy->minor_collection_end(gch->gc_cause());
duke@435 845 size_policy->avg_survived()->sample(from()->used());
duke@435 846 }
duke@435 847
duke@435 848 update_time_of_last_gc(os::javaTimeMillis());
duke@435 849
duke@435 850 SpecializationStats::print();
duke@435 851
ysr@888 852 rp->set_enqueuing_is_done(true);
ysr@888 853 if (rp->processing_is_mt()) {
duke@435 854 ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
ysr@888 855 rp->enqueue_discovered_references(&task_executor);
duke@435 856 } else {
ysr@888 857 rp->enqueue_discovered_references(NULL);
duke@435 858 }
ysr@888 859 rp->verify_no_references_recorded();
duke@435 860 }
duke@435 861
duke@435 862 static int sum;
duke@435 863 void ParNewGeneration::waste_some_time() {
duke@435 864 for (int i = 0; i < 100; i++) {
duke@435 865 sum += i;
duke@435 866 }
duke@435 867 }
duke@435 868
duke@435 869 static const oop ClaimedForwardPtr = oop(0x4);
duke@435 870
duke@435 871 // Because of concurrency, there are times where an object for which
duke@435 872 // "is_forwarded()" is true contains an "interim" forwarding pointer
duke@435 873 // value. Such a value will soon be overwritten with a real value.
duke@435 874 // This method requires "obj" to have a forwarding pointer, and waits, if
duke@435 875 // necessary for a real one to be inserted, and returns it.
duke@435 876
duke@435 877 oop ParNewGeneration::real_forwardee(oop obj) {
duke@435 878 oop forward_ptr = obj->forwardee();
duke@435 879 if (forward_ptr != ClaimedForwardPtr) {
duke@435 880 return forward_ptr;
duke@435 881 } else {
duke@435 882 return real_forwardee_slow(obj);
duke@435 883 }
duke@435 884 }
duke@435 885
duke@435 886 oop ParNewGeneration::real_forwardee_slow(oop obj) {
duke@435 887 // Spin-read if it is claimed but not yet written by another thread.
duke@435 888 oop forward_ptr = obj->forwardee();
duke@435 889 while (forward_ptr == ClaimedForwardPtr) {
duke@435 890 waste_some_time();
duke@435 891 assert(obj->is_forwarded(), "precondition");
duke@435 892 forward_ptr = obj->forwardee();
duke@435 893 }
duke@435 894 return forward_ptr;
duke@435 895 }
duke@435 896
duke@435 897 #ifdef ASSERT
duke@435 898 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
duke@435 899 return
duke@435 900 (_avoid_promotion_undo && p == ClaimedForwardPtr)
duke@435 901 || Universe::heap()->is_in_reserved(p);
duke@435 902 }
duke@435 903 #endif
duke@435 904
duke@435 905 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
duke@435 906 if ((m != markOopDesc::prototype()) &&
duke@435 907 (!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
duke@435 908 MutexLocker ml(ParGCRareEvent_lock);
duke@435 909 DefNewGeneration::preserve_mark_if_necessary(obj, m);
duke@435 910 }
duke@435 911 }
duke@435 912
duke@435 913 // Multiple GC threads may try to promote an object. If the object
duke@435 914 // is successfully promoted, a forwarding pointer will be installed in
duke@435 915 // the object in the young generation. This method claims the right
duke@435 916 // to install the forwarding pointer before it copies the object,
duke@435 917 // thus avoiding the need to undo the copy as in
duke@435 918 // copy_to_survivor_space_avoiding_with_undo.
duke@435 919
duke@435 920 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
duke@435 921 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 922 // In the sequential version, this assert also says that the object is
duke@435 923 // not forwarded. That might not be the case here. It is the case that
duke@435 924 // the caller observed it to be not forwarded at some time in the past.
duke@435 925 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 926
duke@435 927 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 928 // since the age is in the mark word, and that might be overwritten with
duke@435 929 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 930 // word in a local and then analyze it.
duke@435 931 oopDesc dummyOld;
duke@435 932 dummyOld.set_mark(m);
duke@435 933 assert(!dummyOld.is_forwarded(),
duke@435 934 "should not be called with forwarding pointer mark word.");
duke@435 935
duke@435 936 oop new_obj = NULL;
duke@435 937 oop forward_ptr;
duke@435 938
duke@435 939 // Try allocating obj in to-space (unless too old)
duke@435 940 if (dummyOld.age() < tenuring_threshold()) {
duke@435 941 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 942 if (new_obj == NULL) {
duke@435 943 set_survivor_overflow(true);
duke@435 944 }
duke@435 945 }
duke@435 946
duke@435 947 if (new_obj == NULL) {
duke@435 948 // Either to-space is full or we decided to promote
duke@435 949 // try allocating obj tenured
duke@435 950
duke@435 951 // Attempt to install a null forwarding pointer (atomically),
duke@435 952 // to claim the right to install the real forwarding pointer.
duke@435 953 forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
duke@435 954 if (forward_ptr != NULL) {
duke@435 955 // someone else beat us to it.
duke@435 956 return real_forwardee(old);
duke@435 957 }
duke@435 958
duke@435 959 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 960 old, m, sz);
duke@435 961
duke@435 962 if (new_obj == NULL) {
duke@435 963 if (!HandlePromotionFailure) {
duke@435 964 // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
duke@435 965 // is incorrectly set. In any case, its seriously wrong to be here!
duke@435 966 vm_exit_out_of_memory(sz*wordSize, "promotion");
duke@435 967 }
duke@435 968 // promotion failed, forward to self
duke@435 969 _promotion_failed = true;
duke@435 970 new_obj = old;
duke@435 971
duke@435 972 preserve_mark_if_necessary(old, m);
duke@435 973 }
duke@435 974
duke@435 975 old->forward_to(new_obj);
duke@435 976 forward_ptr = NULL;
duke@435 977 } else {
duke@435 978 // Is in to-space; do copying ourselves.
duke@435 979 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 980 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 981 // Restore the mark word copied above.
duke@435 982 new_obj->set_mark(m);
duke@435 983 // Increment age if obj still in new generation
duke@435 984 new_obj->incr_age();
duke@435 985 par_scan_state->age_table()->add(new_obj, sz);
duke@435 986 }
duke@435 987 assert(new_obj != NULL, "just checking");
duke@435 988
duke@435 989 if (forward_ptr == NULL) {
duke@435 990 oop obj_to_push = new_obj;
duke@435 991 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 992 // Length field used as index of next element to be scanned.
duke@435 993 // Real length can be obtained from real_forwardee()
duke@435 994 arrayOop(old)->set_length(0);
duke@435 995 obj_to_push = old;
duke@435 996 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 997 "push forwarded object");
duke@435 998 }
duke@435 999 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1000 bool simulate_overflow = false;
ysr@969 1001 NOT_PRODUCT(
ysr@969 1002 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1003 // simulate a stack overflow
ysr@969 1004 simulate_overflow = true;
ysr@969 1005 }
ysr@969 1006 )
ysr@969 1007 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1008 // Add stats for overflow pushes.
duke@435 1009 if (Verbose && PrintGCDetails) {
duke@435 1010 gclog_or_tty->print("queue overflow!\n");
duke@435 1011 }
ysr@969 1012 push_on_overflow_list(old, par_scan_state);
duke@435 1013 par_scan_state->note_overflow_push();
duke@435 1014 }
duke@435 1015 par_scan_state->note_push();
duke@435 1016
duke@435 1017 return new_obj;
duke@435 1018 }
duke@435 1019
duke@435 1020 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1021 // allocate it?
duke@435 1022 if (is_in_reserved(new_obj)) {
duke@435 1023 // Must be in to_space.
duke@435 1024 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1025 if (forward_ptr == ClaimedForwardPtr) {
duke@435 1026 // Wait to get the real forwarding pointer value.
duke@435 1027 forward_ptr = real_forwardee(old);
duke@435 1028 }
duke@435 1029 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1030 }
duke@435 1031
duke@435 1032 return forward_ptr;
duke@435 1033 }
duke@435 1034
duke@435 1035
duke@435 1036 // Multiple GC threads may try to promote the same object. If two
duke@435 1037 // or more GC threads copy the object, only one wins the race to install
duke@435 1038 // the forwarding pointer. The other threads have to undo their copy.
duke@435 1039
duke@435 1040 oop ParNewGeneration::copy_to_survivor_space_with_undo(
duke@435 1041 ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
duke@435 1042
duke@435 1043 // In the sequential version, this assert also says that the object is
duke@435 1044 // not forwarded. That might not be the case here. It is the case that
duke@435 1045 // the caller observed it to be not forwarded at some time in the past.
duke@435 1046 assert(is_in_reserved(old), "shouldn't be scavenging this oop");
duke@435 1047
duke@435 1048 // The sequential code read "old->age()" below. That doesn't work here,
duke@435 1049 // since the age is in the mark word, and that might be overwritten with
duke@435 1050 // a forwarding pointer by a parallel thread. So we must save the mark
duke@435 1051 // word here, install it in a local oopDesc, and then analyze it.
duke@435 1052 oopDesc dummyOld;
duke@435 1053 dummyOld.set_mark(m);
duke@435 1054 assert(!dummyOld.is_forwarded(),
duke@435 1055 "should not be called with forwarding pointer mark word.");
duke@435 1056
duke@435 1057 bool failed_to_promote = false;
duke@435 1058 oop new_obj = NULL;
duke@435 1059 oop forward_ptr;
duke@435 1060
duke@435 1061 // Try allocating obj in to-space (unless too old)
duke@435 1062 if (dummyOld.age() < tenuring_threshold()) {
duke@435 1063 new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
duke@435 1064 if (new_obj == NULL) {
duke@435 1065 set_survivor_overflow(true);
duke@435 1066 }
duke@435 1067 }
duke@435 1068
duke@435 1069 if (new_obj == NULL) {
duke@435 1070 // Either to-space is full or we decided to promote
duke@435 1071 // try allocating obj tenured
duke@435 1072 new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
duke@435 1073 old, m, sz);
duke@435 1074
duke@435 1075 if (new_obj == NULL) {
duke@435 1076 if (!HandlePromotionFailure) {
duke@435 1077 // A failed promotion likely means the MaxLiveObjectEvacuationRatio
duke@435 1078 // flag is incorrectly set. In any case, its seriously wrong to be
duke@435 1079 // here!
duke@435 1080 vm_exit_out_of_memory(sz*wordSize, "promotion");
duke@435 1081 }
duke@435 1082 // promotion failed, forward to self
duke@435 1083 forward_ptr = old->forward_to_atomic(old);
duke@435 1084 new_obj = old;
duke@435 1085
duke@435 1086 if (forward_ptr != NULL) {
duke@435 1087 return forward_ptr; // someone else succeeded
duke@435 1088 }
duke@435 1089
duke@435 1090 _promotion_failed = true;
duke@435 1091 failed_to_promote = true;
duke@435 1092
duke@435 1093 preserve_mark_if_necessary(old, m);
duke@435 1094 }
duke@435 1095 } else {
duke@435 1096 // Is in to-space; do copying ourselves.
duke@435 1097 Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
duke@435 1098 // Restore the mark word copied above.
duke@435 1099 new_obj->set_mark(m);
duke@435 1100 // Increment age if new_obj still in new generation
duke@435 1101 new_obj->incr_age();
duke@435 1102 par_scan_state->age_table()->add(new_obj, sz);
duke@435 1103 }
duke@435 1104 assert(new_obj != NULL, "just checking");
duke@435 1105
duke@435 1106 // Now attempt to install the forwarding pointer (atomically).
duke@435 1107 // We have to copy the mark word before overwriting with forwarding
duke@435 1108 // ptr, so we can restore it below in the copy.
duke@435 1109 if (!failed_to_promote) {
duke@435 1110 forward_ptr = old->forward_to_atomic(new_obj);
duke@435 1111 }
duke@435 1112
duke@435 1113 if (forward_ptr == NULL) {
duke@435 1114 oop obj_to_push = new_obj;
duke@435 1115 if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
duke@435 1116 // Length field used as index of next element to be scanned.
duke@435 1117 // Real length can be obtained from real_forwardee()
duke@435 1118 arrayOop(old)->set_length(0);
duke@435 1119 obj_to_push = old;
duke@435 1120 assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
duke@435 1121 "push forwarded object");
duke@435 1122 }
duke@435 1123 // Push it on one of the queues of to-be-scanned objects.
ysr@969 1124 bool simulate_overflow = false;
ysr@969 1125 NOT_PRODUCT(
ysr@969 1126 if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
ysr@969 1127 // simulate a stack overflow
ysr@969 1128 simulate_overflow = true;
ysr@969 1129 }
ysr@969 1130 )
ysr@969 1131 if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
duke@435 1132 // Add stats for overflow pushes.
ysr@969 1133 push_on_overflow_list(old, par_scan_state);
duke@435 1134 par_scan_state->note_overflow_push();
duke@435 1135 }
duke@435 1136 par_scan_state->note_push();
duke@435 1137
duke@435 1138 return new_obj;
duke@435 1139 }
duke@435 1140
duke@435 1141 // Oops. Someone beat us to it. Undo the allocation. Where did we
duke@435 1142 // allocate it?
duke@435 1143 if (is_in_reserved(new_obj)) {
duke@435 1144 // Must be in to_space.
duke@435 1145 assert(to()->is_in_reserved(new_obj), "Checking");
duke@435 1146 par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
duke@435 1147 } else {
duke@435 1148 assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
duke@435 1149 _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
duke@435 1150 (HeapWord*)new_obj, sz);
duke@435 1151 }
duke@435 1152
duke@435 1153 return forward_ptr;
duke@435 1154 }
duke@435 1155
ysr@969 1156 #ifndef PRODUCT
ysr@969 1157 // It's OK to call this multi-threaded; the worst thing
ysr@969 1158 // that can happen is that we'll get a bunch of closely
ysr@969 1159 // spaced simulated oveflows, but that's OK, in fact
ysr@969 1160 // probably good as it would exercise the overflow code
ysr@969 1161 // under contention.
ysr@969 1162 bool ParNewGeneration::should_simulate_overflow() {
ysr@969 1163 if (_overflow_counter-- <= 0) { // just being defensive
ysr@969 1164 _overflow_counter = ParGCWorkQueueOverflowInterval;
ysr@969 1165 return true;
ysr@969 1166 } else {
ysr@969 1167 return false;
ysr@969 1168 }
ysr@969 1169 }
ysr@969 1170 #endif
ysr@969 1171
ysr@969 1172 #define BUSY (oop(0x1aff1aff))
ysr@969 1173 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
duke@435 1174 // if the object has been forwarded to itself, then we cannot
duke@435 1175 // use the klass pointer for the linked list. Instead we have
duke@435 1176 // to allocate an oopDesc in the C-Heap and use that for the linked list.
ysr@969 1177 // XXX This is horribly inefficient when a promotion failure occurs
ysr@969 1178 // and should be fixed. XXX FIX ME !!!
ysr@969 1179 #ifndef PRODUCT
ysr@969 1180 Atomic::inc_ptr(&_num_par_pushes);
ysr@969 1181 assert(_num_par_pushes > 0, "Tautology");
ysr@969 1182 #endif
duke@435 1183 if (from_space_obj->forwardee() == from_space_obj) {
duke@435 1184 oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
duke@435 1185 listhead->forward_to(from_space_obj);
duke@435 1186 from_space_obj = listhead;
duke@435 1187 }
ysr@969 1188 oop observed_overflow_list = _overflow_list;
ysr@969 1189 oop cur_overflow_list;
ysr@969 1190 do {
ysr@969 1191 cur_overflow_list = observed_overflow_list;
ysr@969 1192 if (cur_overflow_list != BUSY) {
ysr@969 1193 from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
ysr@969 1194 } else {
ysr@969 1195 from_space_obj->set_klass_to_list_ptr(NULL);
ysr@969 1196 }
ysr@969 1197 observed_overflow_list =
duke@435 1198 (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
ysr@969 1199 } while (cur_overflow_list != observed_overflow_list);
duke@435 1200 }
duke@435 1201
ysr@969 1202 // *NOTE*: The overflow list manipulation code here and
ysr@969 1203 // in CMSCollector:: are very similar in shape,
ysr@969 1204 // except that in the CMS case we thread the objects
ysr@969 1205 // directly into the list via their mark word, and do
ysr@969 1206 // not need to deal with special cases below related
ysr@969 1207 // to chunking of object arrays and promotion failure
ysr@969 1208 // handling.
ysr@969 1209 // CR 6797058 has been filed to attempt consolidation of
ysr@969 1210 // the common code.
ysr@969 1211 // Because of the common code, if you make any changes in
ysr@969 1212 // the code below, please check the CMS version to see if
ysr@969 1213 // similar changes might be needed.
ysr@969 1214 // See CMSCollector::par_take_from_overflow_list() for
ysr@969 1215 // more extensive documentation comments.
duke@435 1216 bool
duke@435 1217 ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
duke@435 1218 ObjToScanQueue* work_q = par_scan_state->work_queue();
ysr@969 1219 assert(work_q->size() == 0, "Should first empty local work queue");
duke@435 1220 // How many to take?
ysr@969 1221 size_t objsFromOverflow = MIN2((size_t)work_q->max_elems()/4,
ysr@969 1222 (size_t)ParGCDesiredObjsFromOverflowList);
duke@435 1223
duke@435 1224 if (_overflow_list == NULL) return false;
duke@435 1225
duke@435 1226 // Otherwise, there was something there; try claiming the list.
ysr@969 1227 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1228 // Trim off a prefix of at most objsFromOverflow items
ysr@969 1229 Thread* tid = Thread::current();
ysr@969 1230 size_t spin_count = (size_t)ParallelGCThreads;
ysr@969 1231 size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
ysr@969 1232 for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
ysr@969 1233 // someone grabbed it before we did ...
ysr@969 1234 // ... we spin for a short while...
ysr@969 1235 os::sleep(tid, sleep_time_millis, false);
ysr@969 1236 if (_overflow_list == NULL) {
ysr@969 1237 // nothing left to take
ysr@969 1238 return false;
ysr@969 1239 } else if (_overflow_list != BUSY) {
ysr@969 1240 // try and grab the prefix
ysr@969 1241 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
ysr@969 1242 }
duke@435 1243 }
ysr@969 1244 if (prefix == NULL || prefix == BUSY) {
ysr@969 1245 // Nothing to take or waited long enough
ysr@969 1246 if (prefix == NULL) {
ysr@969 1247 // Write back the NULL in case we overwrote it with BUSY above
ysr@969 1248 // and it is still the same value.
ysr@969 1249 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
ysr@969 1250 }
ysr@969 1251 return false;
ysr@969 1252 }
ysr@969 1253 assert(prefix != NULL && prefix != BUSY, "Error");
ysr@969 1254 size_t i = 1;
duke@435 1255 oop cur = prefix;
coleenp@602 1256 while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
duke@435 1257 i++; cur = oop(cur->klass());
duke@435 1258 }
duke@435 1259
duke@435 1260 // Reattach remaining (suffix) to overflow list
ysr@969 1261 if (cur->klass_or_null() == NULL) {
ysr@969 1262 // Write back the NULL in lieu of the BUSY we wrote
ysr@969 1263 // above and it is still the same value.
ysr@969 1264 if (_overflow_list == BUSY) {
ysr@969 1265 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
duke@435 1266 }
ysr@969 1267 } else {
ysr@969 1268 assert(cur->klass_or_null() != BUSY, "Error");
ysr@969 1269 oop suffix = oop(cur->klass()); // suffix will be put back on global list
ysr@969 1270 cur->set_klass_to_list_ptr(NULL); // break off suffix
ysr@969 1271 // It's possible that the list is still in the empty(busy) state
ysr@969 1272 // we left it in a short while ago; in that case we may be
ysr@969 1273 // able to place back the suffix.
ysr@969 1274 oop observed_overflow_list = _overflow_list;
ysr@969 1275 oop cur_overflow_list = observed_overflow_list;
ysr@969 1276 bool attached = false;
ysr@969 1277 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
ysr@969 1278 observed_overflow_list =
ysr@969 1279 (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1280 if (cur_overflow_list == observed_overflow_list) {
ysr@969 1281 attached = true;
ysr@969 1282 break;
ysr@969 1283 } else cur_overflow_list = observed_overflow_list;
ysr@969 1284 }
ysr@969 1285 if (!attached) {
ysr@969 1286 // Too bad, someone else got in in between; we'll need to do a splice.
ysr@969 1287 // Find the last item of suffix list
ysr@969 1288 oop last = suffix;
ysr@969 1289 while (last->klass_or_null() != NULL) {
ysr@969 1290 last = oop(last->klass());
ysr@969 1291 }
ysr@969 1292 // Atomically prepend suffix to current overflow list
ysr@969 1293 observed_overflow_list = _overflow_list;
ysr@969 1294 do {
ysr@969 1295 cur_overflow_list = observed_overflow_list;
ysr@969 1296 if (cur_overflow_list != BUSY) {
ysr@969 1297 // Do the splice ...
ysr@969 1298 last->set_klass_to_list_ptr(cur_overflow_list);
ysr@969 1299 } else { // cur_overflow_list == BUSY
ysr@969 1300 last->set_klass_to_list_ptr(NULL);
ysr@969 1301 }
ysr@969 1302 observed_overflow_list =
ysr@969 1303 (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
ysr@969 1304 } while (cur_overflow_list != observed_overflow_list);
duke@435 1305 }
duke@435 1306 }
duke@435 1307
duke@435 1308 // Push objects on prefix list onto this thread's work queue
ysr@969 1309 assert(prefix != NULL && prefix != BUSY, "program logic");
duke@435 1310 cur = prefix;
ysr@969 1311 ssize_t n = 0;
duke@435 1312 while (cur != NULL) {
duke@435 1313 oop obj_to_push = cur->forwardee();
ysr@889 1314 oop next = oop(cur->klass_or_null());
duke@435 1315 cur->set_klass(obj_to_push->klass());
ysr@969 1316 // This may be an array object that is self-forwarded. In that case, the list pointer
ysr@969 1317 // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
ysr@969 1318 if (!is_in_reserved(cur)) {
ysr@969 1319 // This can become a scaling bottleneck when there is work queue overflow coincident
ysr@969 1320 // with promotion failure.
ysr@969 1321 oopDesc* f = cur;
ysr@969 1322 FREE_C_HEAP_ARRAY(oopDesc, f);
ysr@969 1323 } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
ysr@969 1324 assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
duke@435 1325 obj_to_push = cur;
duke@435 1326 }
ysr@969 1327 bool ok = work_q->push(obj_to_push);
ysr@969 1328 assert(ok, "Should have succeeded");
duke@435 1329 cur = next;
duke@435 1330 n++;
duke@435 1331 }
duke@435 1332 par_scan_state->note_overflow_refill(n);
ysr@969 1333 #ifndef PRODUCT
ysr@969 1334 assert(_num_par_pushes >= n, "Too many pops?");
ysr@969 1335 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
ysr@969 1336 #endif
duke@435 1337 return true;
duke@435 1338 }
ysr@969 1339 #undef BUSY
duke@435 1340
duke@435 1341 void ParNewGeneration::ref_processor_init()
duke@435 1342 {
duke@435 1343 if (_ref_processor == NULL) {
duke@435 1344 // Allocate and initialize a reference processor
duke@435 1345 _ref_processor = ReferenceProcessor::create_ref_processor(
duke@435 1346 _reserved, // span
duke@435 1347 refs_discovery_is_atomic(), // atomic_discovery
duke@435 1348 refs_discovery_is_mt(), // mt_discovery
duke@435 1349 NULL, // is_alive_non_header
duke@435 1350 ParallelGCThreads,
duke@435 1351 ParallelRefProcEnabled);
duke@435 1352 }
duke@435 1353 }
duke@435 1354
duke@435 1355 const char* ParNewGeneration::name() const {
duke@435 1356 return "par new generation";
duke@435 1357 }

mercurial