src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 984
fe3d7c11b4b7
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

ysr@777 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
ysr@777 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
ysr@777 20 * CA 95054 USA or visit www.sun.com if you need additional information or
ysr@777 21 * have any questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 // A G1CollectorPolicy makes policy decisions that determine the
ysr@777 26 // characteristics of the collector. Examples include:
ysr@777 27 // * choice of collection set.
ysr@777 28 // * when to collect.
ysr@777 29
ysr@777 30 class HeapRegion;
ysr@777 31 class CollectionSetChooser;
ysr@777 32
ysr@777 33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
ysr@777 34 // over and over again and introducing subtle problems through small typos and
ysr@777 35 // cutting and pasting mistakes. The macros below introduces a number
ysr@777 36 // sequnce into the following two classes and the methods that access it.
ysr@777 37
ysr@777 38 #define define_num_seq(name) \
ysr@777 39 private: \
ysr@777 40 NumberSeq _all_##name##_times_ms; \
ysr@777 41 public: \
ysr@777 42 void record_##name##_time_ms(double ms) { \
ysr@777 43 _all_##name##_times_ms.add(ms); \
ysr@777 44 } \
ysr@777 45 NumberSeq* get_##name##_seq() { \
ysr@777 46 return &_all_##name##_times_ms; \
ysr@777 47 }
ysr@777 48
ysr@777 49 class MainBodySummary;
ysr@777 50 class PopPreambleSummary;
ysr@777 51
apetrusenko@984 52 class PauseSummary: public CHeapObj {
ysr@777 53 define_num_seq(total)
ysr@777 54 define_num_seq(other)
ysr@777 55
ysr@777 56 public:
ysr@777 57 virtual MainBodySummary* main_body_summary() { return NULL; }
ysr@777 58 virtual PopPreambleSummary* pop_preamble_summary() { return NULL; }
ysr@777 59 };
ysr@777 60
apetrusenko@984 61 class MainBodySummary: public CHeapObj {
ysr@777 62 define_num_seq(satb_drain) // optional
ysr@777 63 define_num_seq(parallel) // parallel only
ysr@777 64 define_num_seq(ext_root_scan)
ysr@777 65 define_num_seq(mark_stack_scan)
ysr@777 66 define_num_seq(scan_only)
ysr@777 67 define_num_seq(update_rs)
ysr@777 68 define_num_seq(scan_rs)
ysr@777 69 define_num_seq(scan_new_refs) // Only for temp use; added to
ysr@777 70 // in parallel case.
ysr@777 71 define_num_seq(obj_copy)
ysr@777 72 define_num_seq(termination) // parallel only
ysr@777 73 define_num_seq(parallel_other) // parallel only
ysr@777 74 define_num_seq(mark_closure)
ysr@777 75 define_num_seq(clear_ct) // parallel only
ysr@777 76 };
ysr@777 77
apetrusenko@984 78 class PopPreambleSummary: public CHeapObj {
ysr@777 79 define_num_seq(pop_preamble)
ysr@777 80 define_num_seq(pop_update_rs)
ysr@777 81 define_num_seq(pop_scan_rs)
ysr@777 82 define_num_seq(pop_closure_app)
ysr@777 83 define_num_seq(pop_evacuation)
ysr@777 84 define_num_seq(pop_other)
ysr@777 85 };
ysr@777 86
ysr@777 87 class NonPopSummary: public PauseSummary,
ysr@777 88 public MainBodySummary {
ysr@777 89 public:
ysr@777 90 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 91 };
ysr@777 92
ysr@777 93 class PopSummary: public PauseSummary,
ysr@777 94 public MainBodySummary,
ysr@777 95 public PopPreambleSummary {
ysr@777 96 public:
ysr@777 97 virtual MainBodySummary* main_body_summary() { return this; }
ysr@777 98 virtual PopPreambleSummary* pop_preamble_summary() { return this; }
ysr@777 99 };
ysr@777 100
ysr@777 101 class NonPopAbandonedSummary: public PauseSummary {
ysr@777 102 };
ysr@777 103
ysr@777 104 class PopAbandonedSummary: public PauseSummary,
ysr@777 105 public PopPreambleSummary {
ysr@777 106 public:
ysr@777 107 virtual PopPreambleSummary* pop_preamble_summary() { return this; }
ysr@777 108 };
ysr@777 109
ysr@777 110 class G1CollectorPolicy: public CollectorPolicy {
ysr@777 111 protected:
ysr@777 112 // The number of pauses during the execution.
ysr@777 113 long _n_pauses;
ysr@777 114
ysr@777 115 // either equal to the number of parallel threads, if ParallelGCThreads
ysr@777 116 // has been set, or 1 otherwise
ysr@777 117 int _parallel_gc_threads;
ysr@777 118
ysr@777 119 enum SomePrivateConstants {
ysr@777 120 NumPrevPausesForHeuristics = 10,
ysr@777 121 NumPrevGCsForHeuristics = 10,
ysr@777 122 NumAPIs = HeapRegion::MaxAge
ysr@777 123 };
ysr@777 124
ysr@777 125 G1MMUTracker* _mmu_tracker;
ysr@777 126
ysr@777 127 void initialize_flags();
ysr@777 128
ysr@777 129 void initialize_all() {
ysr@777 130 initialize_flags();
ysr@777 131 initialize_size_info();
ysr@777 132 initialize_perm_generation(PermGen::MarkSweepCompact);
ysr@777 133 }
ysr@777 134
ysr@777 135 virtual size_t default_init_heap_size() {
ysr@777 136 // Pick some reasonable default.
ysr@777 137 return 8*M;
ysr@777 138 }
ysr@777 139
ysr@777 140
ysr@777 141 double _cur_collection_start_sec;
ysr@777 142 size_t _cur_collection_pause_used_at_start_bytes;
ysr@777 143 size_t _cur_collection_pause_used_regions_at_start;
ysr@777 144 size_t _prev_collection_pause_used_at_end_bytes;
ysr@777 145 double _cur_collection_par_time_ms;
ysr@777 146 double _cur_satb_drain_time_ms;
ysr@777 147 double _cur_clear_ct_time_ms;
ysr@777 148 bool _satb_drain_time_set;
ysr@777 149 double _cur_popular_preamble_start_ms;
ysr@777 150 double _cur_popular_preamble_time_ms;
ysr@777 151 double _cur_popular_compute_rc_time_ms;
ysr@777 152 double _cur_popular_evac_time_ms;
ysr@777 153
ysr@777 154 double _cur_CH_strong_roots_end_sec;
ysr@777 155 double _cur_CH_strong_roots_dur_ms;
ysr@777 156 double _cur_G1_strong_roots_end_sec;
ysr@777 157 double _cur_G1_strong_roots_dur_ms;
ysr@777 158
ysr@777 159 // Statistics for recent GC pauses. See below for how indexed.
ysr@777 160 TruncatedSeq* _recent_CH_strong_roots_times_ms;
ysr@777 161 TruncatedSeq* _recent_G1_strong_roots_times_ms;
ysr@777 162 TruncatedSeq* _recent_evac_times_ms;
ysr@777 163 // These exclude marking times.
ysr@777 164 TruncatedSeq* _recent_pause_times_ms;
ysr@777 165 TruncatedSeq* _recent_gc_times_ms;
ysr@777 166
ysr@777 167 TruncatedSeq* _recent_CS_bytes_used_before;
ysr@777 168 TruncatedSeq* _recent_CS_bytes_surviving;
ysr@777 169
ysr@777 170 TruncatedSeq* _recent_rs_sizes;
ysr@777 171
ysr@777 172 TruncatedSeq* _concurrent_mark_init_times_ms;
ysr@777 173 TruncatedSeq* _concurrent_mark_remark_times_ms;
ysr@777 174 TruncatedSeq* _concurrent_mark_cleanup_times_ms;
ysr@777 175
ysr@777 176 NonPopSummary* _non_pop_summary;
ysr@777 177 PopSummary* _pop_summary;
ysr@777 178 NonPopAbandonedSummary* _non_pop_abandoned_summary;
ysr@777 179 PopAbandonedSummary* _pop_abandoned_summary;
ysr@777 180
ysr@777 181 NumberSeq* _all_pause_times_ms;
ysr@777 182 NumberSeq* _all_full_gc_times_ms;
ysr@777 183 double _stop_world_start;
ysr@777 184 NumberSeq* _all_stop_world_times_ms;
ysr@777 185 NumberSeq* _all_yield_times_ms;
ysr@777 186
ysr@777 187 size_t _region_num_young;
ysr@777 188 size_t _region_num_tenured;
ysr@777 189 size_t _prev_region_num_young;
ysr@777 190 size_t _prev_region_num_tenured;
ysr@777 191
ysr@777 192 NumberSeq* _all_mod_union_times_ms;
ysr@777 193
ysr@777 194 int _aux_num;
ysr@777 195 NumberSeq* _all_aux_times_ms;
ysr@777 196 double* _cur_aux_start_times_ms;
ysr@777 197 double* _cur_aux_times_ms;
ysr@777 198 bool* _cur_aux_times_set;
ysr@777 199
ysr@777 200 double* _par_last_ext_root_scan_times_ms;
ysr@777 201 double* _par_last_mark_stack_scan_times_ms;
ysr@777 202 double* _par_last_scan_only_times_ms;
ysr@777 203 double* _par_last_scan_only_regions_scanned;
ysr@777 204 double* _par_last_update_rs_start_times_ms;
ysr@777 205 double* _par_last_update_rs_times_ms;
ysr@777 206 double* _par_last_update_rs_processed_buffers;
ysr@777 207 double* _par_last_scan_rs_start_times_ms;
ysr@777 208 double* _par_last_scan_rs_times_ms;
ysr@777 209 double* _par_last_scan_new_refs_times_ms;
ysr@777 210 double* _par_last_obj_copy_times_ms;
ysr@777 211 double* _par_last_termination_times_ms;
ysr@777 212
ysr@777 213 // there are two pases during popular pauses, so we need to store
ysr@777 214 // somewhere the results of the first pass
ysr@777 215 double* _pop_par_last_update_rs_start_times_ms;
ysr@777 216 double* _pop_par_last_update_rs_times_ms;
ysr@777 217 double* _pop_par_last_update_rs_processed_buffers;
ysr@777 218 double* _pop_par_last_scan_rs_start_times_ms;
ysr@777 219 double* _pop_par_last_scan_rs_times_ms;
ysr@777 220 double* _pop_par_last_closure_app_times_ms;
ysr@777 221
ysr@777 222 double _pop_compute_rc_start;
ysr@777 223 double _pop_evac_start;
ysr@777 224
ysr@777 225 // indicates that we are in young GC mode
ysr@777 226 bool _in_young_gc_mode;
ysr@777 227
ysr@777 228 // indicates whether we are in full young or partially young GC mode
ysr@777 229 bool _full_young_gcs;
ysr@777 230
ysr@777 231 // if true, then it tries to dynamically adjust the length of the
ysr@777 232 // young list
ysr@777 233 bool _adaptive_young_list_length;
ysr@777 234 size_t _young_list_min_length;
ysr@777 235 size_t _young_list_target_length;
ysr@777 236 size_t _young_list_so_prefix_length;
ysr@777 237 size_t _young_list_fixed_length;
ysr@777 238
ysr@777 239 size_t _young_cset_length;
ysr@777 240 bool _last_young_gc_full;
ysr@777 241
ysr@777 242 double _target_pause_time_ms;
ysr@777 243
ysr@777 244 unsigned _full_young_pause_num;
ysr@777 245 unsigned _partial_young_pause_num;
ysr@777 246
ysr@777 247 bool _during_marking;
ysr@777 248 bool _in_marking_window;
ysr@777 249 bool _in_marking_window_im;
ysr@777 250
ysr@777 251 SurvRateGroup* _short_lived_surv_rate_group;
ysr@777 252 SurvRateGroup* _survivor_surv_rate_group;
ysr@777 253 // add here any more surv rate groups
ysr@777 254
ysr@777 255 bool during_marking() {
ysr@777 256 return _during_marking;
ysr@777 257 }
ysr@777 258
ysr@777 259 // <NEW PREDICTION>
ysr@777 260
ysr@777 261 private:
ysr@777 262 enum PredictionConstants {
ysr@777 263 TruncatedSeqLength = 10
ysr@777 264 };
ysr@777 265
ysr@777 266 TruncatedSeq* _alloc_rate_ms_seq;
ysr@777 267 double _prev_collection_pause_end_ms;
ysr@777 268
ysr@777 269 TruncatedSeq* _pending_card_diff_seq;
ysr@777 270 TruncatedSeq* _rs_length_diff_seq;
ysr@777 271 TruncatedSeq* _cost_per_card_ms_seq;
ysr@777 272 TruncatedSeq* _cost_per_scan_only_region_ms_seq;
ysr@777 273 TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
ysr@777 274 TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
ysr@777 275 TruncatedSeq* _cost_per_entry_ms_seq;
ysr@777 276 TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
ysr@777 277 TruncatedSeq* _cost_per_byte_ms_seq;
ysr@777 278 TruncatedSeq* _constant_other_time_ms_seq;
ysr@777 279 TruncatedSeq* _young_other_cost_per_region_ms_seq;
ysr@777 280 TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
ysr@777 281
ysr@777 282 TruncatedSeq* _pending_cards_seq;
ysr@777 283 TruncatedSeq* _scanned_cards_seq;
ysr@777 284 TruncatedSeq* _rs_lengths_seq;
ysr@777 285
ysr@777 286 TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
ysr@777 287 TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
ysr@777 288
ysr@777 289 TruncatedSeq* _young_gc_eff_seq;
ysr@777 290
ysr@777 291 TruncatedSeq* _max_conc_overhead_seq;
ysr@777 292
ysr@777 293 size_t _recorded_young_regions;
ysr@777 294 size_t _recorded_scan_only_regions;
ysr@777 295 size_t _recorded_non_young_regions;
ysr@777 296 size_t _recorded_region_num;
ysr@777 297
ysr@777 298 size_t _free_regions_at_end_of_collection;
ysr@777 299 size_t _scan_only_regions_at_end_of_collection;
ysr@777 300
ysr@777 301 size_t _recorded_rs_lengths;
ysr@777 302 size_t _max_rs_lengths;
ysr@777 303
ysr@777 304 size_t _recorded_marked_bytes;
ysr@777 305 size_t _recorded_young_bytes;
ysr@777 306
ysr@777 307 size_t _predicted_pending_cards;
ysr@777 308 size_t _predicted_cards_scanned;
ysr@777 309 size_t _predicted_rs_lengths;
ysr@777 310 size_t _predicted_bytes_to_copy;
ysr@777 311
ysr@777 312 double _predicted_survival_ratio;
ysr@777 313 double _predicted_rs_update_time_ms;
ysr@777 314 double _predicted_rs_scan_time_ms;
ysr@777 315 double _predicted_scan_only_scan_time_ms;
ysr@777 316 double _predicted_object_copy_time_ms;
ysr@777 317 double _predicted_constant_other_time_ms;
ysr@777 318 double _predicted_young_other_time_ms;
ysr@777 319 double _predicted_non_young_other_time_ms;
ysr@777 320 double _predicted_pause_time_ms;
ysr@777 321
ysr@777 322 double _vtime_diff_ms;
ysr@777 323
ysr@777 324 double _recorded_young_free_cset_time_ms;
ysr@777 325 double _recorded_non_young_free_cset_time_ms;
ysr@777 326
ysr@777 327 double _sigma;
ysr@777 328 double _expensive_region_limit_ms;
ysr@777 329
ysr@777 330 size_t _rs_lengths_prediction;
ysr@777 331
ysr@777 332 size_t _known_garbage_bytes;
ysr@777 333 double _known_garbage_ratio;
ysr@777 334
ysr@777 335 double sigma() {
ysr@777 336 return _sigma;
ysr@777 337 }
ysr@777 338
ysr@777 339 // A function that prevents us putting too much stock in small sample
ysr@777 340 // sets. Returns a number between 2.0 and 1.0, depending on the number
ysr@777 341 // of samples. 5 or more samples yields one; fewer scales linearly from
ysr@777 342 // 2.0 at 1 sample to 1.0 at 5.
ysr@777 343 double confidence_factor(int samples) {
ysr@777 344 if (samples > 4) return 1.0;
ysr@777 345 else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
ysr@777 346 }
ysr@777 347
ysr@777 348 double get_new_neg_prediction(TruncatedSeq* seq) {
ysr@777 349 return seq->davg() - sigma() * seq->dsd();
ysr@777 350 }
ysr@777 351
ysr@777 352 #ifndef PRODUCT
ysr@777 353 bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
ysr@777 354 #endif // PRODUCT
ysr@777 355
ysr@777 356 protected:
ysr@777 357 double _pause_time_target_ms;
ysr@777 358 double _recorded_young_cset_choice_time_ms;
ysr@777 359 double _recorded_non_young_cset_choice_time_ms;
ysr@777 360 bool _within_target;
ysr@777 361 size_t _pending_cards;
ysr@777 362 size_t _max_pending_cards;
ysr@777 363
ysr@777 364 public:
ysr@777 365
ysr@777 366 void set_region_short_lived(HeapRegion* hr) {
ysr@777 367 hr->install_surv_rate_group(_short_lived_surv_rate_group);
ysr@777 368 }
ysr@777 369
ysr@777 370 void set_region_survivors(HeapRegion* hr) {
ysr@777 371 hr->install_surv_rate_group(_survivor_surv_rate_group);
ysr@777 372 }
ysr@777 373
ysr@777 374 #ifndef PRODUCT
ysr@777 375 bool verify_young_ages();
ysr@777 376 #endif // PRODUCT
ysr@777 377
ysr@777 378 void tag_scan_only(size_t short_lived_scan_only_length);
ysr@777 379
ysr@777 380 double get_new_prediction(TruncatedSeq* seq) {
ysr@777 381 return MAX2(seq->davg() + sigma() * seq->dsd(),
ysr@777 382 seq->davg() * confidence_factor(seq->num()));
ysr@777 383 }
ysr@777 384
ysr@777 385 size_t young_cset_length() {
ysr@777 386 return _young_cset_length;
ysr@777 387 }
ysr@777 388
ysr@777 389 void record_max_rs_lengths(size_t rs_lengths) {
ysr@777 390 _max_rs_lengths = rs_lengths;
ysr@777 391 }
ysr@777 392
ysr@777 393 size_t predict_pending_card_diff() {
ysr@777 394 double prediction = get_new_neg_prediction(_pending_card_diff_seq);
ysr@777 395 if (prediction < 0.00001)
ysr@777 396 return 0;
ysr@777 397 else
ysr@777 398 return (size_t) prediction;
ysr@777 399 }
ysr@777 400
ysr@777 401 size_t predict_pending_cards() {
ysr@777 402 size_t max_pending_card_num = _g1->max_pending_card_num();
ysr@777 403 size_t diff = predict_pending_card_diff();
ysr@777 404 size_t prediction;
ysr@777 405 if (diff > max_pending_card_num)
ysr@777 406 prediction = max_pending_card_num;
ysr@777 407 else
ysr@777 408 prediction = max_pending_card_num - diff;
ysr@777 409
ysr@777 410 return prediction;
ysr@777 411 }
ysr@777 412
ysr@777 413 size_t predict_rs_length_diff() {
ysr@777 414 return (size_t) get_new_prediction(_rs_length_diff_seq);
ysr@777 415 }
ysr@777 416
ysr@777 417 double predict_alloc_rate_ms() {
ysr@777 418 return get_new_prediction(_alloc_rate_ms_seq);
ysr@777 419 }
ysr@777 420
ysr@777 421 double predict_cost_per_card_ms() {
ysr@777 422 return get_new_prediction(_cost_per_card_ms_seq);
ysr@777 423 }
ysr@777 424
ysr@777 425 double predict_rs_update_time_ms(size_t pending_cards) {
ysr@777 426 return (double) pending_cards * predict_cost_per_card_ms();
ysr@777 427 }
ysr@777 428
ysr@777 429 double predict_fully_young_cards_per_entry_ratio() {
ysr@777 430 return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
ysr@777 431 }
ysr@777 432
ysr@777 433 double predict_partially_young_cards_per_entry_ratio() {
ysr@777 434 if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
ysr@777 435 return predict_fully_young_cards_per_entry_ratio();
ysr@777 436 else
ysr@777 437 return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
ysr@777 438 }
ysr@777 439
ysr@777 440 size_t predict_young_card_num(size_t rs_length) {
ysr@777 441 return (size_t) ((double) rs_length *
ysr@777 442 predict_fully_young_cards_per_entry_ratio());
ysr@777 443 }
ysr@777 444
ysr@777 445 size_t predict_non_young_card_num(size_t rs_length) {
ysr@777 446 return (size_t) ((double) rs_length *
ysr@777 447 predict_partially_young_cards_per_entry_ratio());
ysr@777 448 }
ysr@777 449
ysr@777 450 double predict_rs_scan_time_ms(size_t card_num) {
ysr@777 451 if (full_young_gcs())
ysr@777 452 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 453 else
ysr@777 454 return predict_partially_young_rs_scan_time_ms(card_num);
ysr@777 455 }
ysr@777 456
ysr@777 457 double predict_partially_young_rs_scan_time_ms(size_t card_num) {
ysr@777 458 if (_partially_young_cost_per_entry_ms_seq->num() < 3)
ysr@777 459 return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
ysr@777 460 else
ysr@777 461 return (double) card_num *
ysr@777 462 get_new_prediction(_partially_young_cost_per_entry_ms_seq);
ysr@777 463 }
ysr@777 464
ysr@777 465 double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
ysr@777 466 if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
ysr@777 467 return 1.5 * (double) scan_only_region_num *
ysr@777 468 get_new_prediction(_cost_per_scan_only_region_ms_seq);
ysr@777 469 else
ysr@777 470 return (double) scan_only_region_num *
ysr@777 471 get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
ysr@777 472 }
ysr@777 473
ysr@777 474 double predict_scan_only_time_ms(size_t scan_only_region_num) {
ysr@777 475 if (_in_marking_window_im)
ysr@777 476 return predict_scan_only_time_ms_during_cm(scan_only_region_num);
ysr@777 477 else
ysr@777 478 return (double) scan_only_region_num *
ysr@777 479 get_new_prediction(_cost_per_scan_only_region_ms_seq);
ysr@777 480 }
ysr@777 481
ysr@777 482 double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
ysr@777 483 if (_cost_per_byte_ms_during_cm_seq->num() < 3)
ysr@777 484 return 1.1 * (double) bytes_to_copy *
ysr@777 485 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 486 else
ysr@777 487 return (double) bytes_to_copy *
ysr@777 488 get_new_prediction(_cost_per_byte_ms_during_cm_seq);
ysr@777 489 }
ysr@777 490
ysr@777 491 double predict_object_copy_time_ms(size_t bytes_to_copy) {
ysr@777 492 if (_in_marking_window && !_in_marking_window_im)
ysr@777 493 return predict_object_copy_time_ms_during_cm(bytes_to_copy);
ysr@777 494 else
ysr@777 495 return (double) bytes_to_copy *
ysr@777 496 get_new_prediction(_cost_per_byte_ms_seq);
ysr@777 497 }
ysr@777 498
ysr@777 499 double predict_constant_other_time_ms() {
ysr@777 500 return get_new_prediction(_constant_other_time_ms_seq);
ysr@777 501 }
ysr@777 502
ysr@777 503 double predict_young_other_time_ms(size_t young_num) {
ysr@777 504 return
ysr@777 505 (double) young_num *
ysr@777 506 get_new_prediction(_young_other_cost_per_region_ms_seq);
ysr@777 507 }
ysr@777 508
ysr@777 509 double predict_non_young_other_time_ms(size_t non_young_num) {
ysr@777 510 return
ysr@777 511 (double) non_young_num *
ysr@777 512 get_new_prediction(_non_young_other_cost_per_region_ms_seq);
ysr@777 513 }
ysr@777 514
ysr@777 515 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 516
ysr@777 517 double predict_young_collection_elapsed_time_ms(size_t adjustment);
ysr@777 518 double predict_base_elapsed_time_ms(size_t pending_cards);
ysr@777 519 double predict_base_elapsed_time_ms(size_t pending_cards,
ysr@777 520 size_t scanned_cards);
ysr@777 521 size_t predict_bytes_to_copy(HeapRegion* hr);
ysr@777 522 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 523
ysr@777 524 // for use by: calculate_optimal_so_length(length)
ysr@777 525 void predict_gc_eff(size_t young_region_num,
ysr@777 526 size_t so_length,
ysr@777 527 double base_time_ms,
ysr@777 528 double *gc_eff,
ysr@777 529 double *pause_time_ms);
ysr@777 530
ysr@777 531 // for use by: calculate_young_list_target_config(rs_length)
ysr@777 532 bool predict_gc_eff(size_t young_region_num,
ysr@777 533 size_t so_length,
ysr@777 534 double base_time_with_so_ms,
ysr@777 535 size_t init_free_regions,
ysr@777 536 double target_pause_time_ms,
ysr@777 537 double* gc_eff);
ysr@777 538
ysr@777 539 void start_recording_regions();
ysr@777 540 void record_cset_region(HeapRegion* hr, bool young);
ysr@777 541 void record_scan_only_regions(size_t scan_only_length);
ysr@777 542 void end_recording_regions();
ysr@777 543
ysr@777 544 void record_vtime_diff_ms(double vtime_diff_ms) {
ysr@777 545 _vtime_diff_ms = vtime_diff_ms;
ysr@777 546 }
ysr@777 547
ysr@777 548 void record_young_free_cset_time_ms(double time_ms) {
ysr@777 549 _recorded_young_free_cset_time_ms = time_ms;
ysr@777 550 }
ysr@777 551
ysr@777 552 void record_non_young_free_cset_time_ms(double time_ms) {
ysr@777 553 _recorded_non_young_free_cset_time_ms = time_ms;
ysr@777 554 }
ysr@777 555
ysr@777 556 double predict_young_gc_eff() {
ysr@777 557 return get_new_neg_prediction(_young_gc_eff_seq);
ysr@777 558 }
ysr@777 559
apetrusenko@980 560 double predict_survivor_regions_evac_time();
apetrusenko@980 561
ysr@777 562 // </NEW PREDICTION>
ysr@777 563
ysr@777 564 public:
ysr@777 565 void cset_regions_freed() {
ysr@777 566 bool propagate = _last_young_gc_full && !_in_marking_window;
ysr@777 567 _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 568 _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
ysr@777 569 // also call it on any more surv rate groups
ysr@777 570 }
ysr@777 571
ysr@777 572 void set_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 573 _known_garbage_bytes = known_garbage_bytes;
ysr@777 574 size_t heap_bytes = _g1->capacity();
ysr@777 575 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 576 }
ysr@777 577
ysr@777 578 void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
ysr@777 579 guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
ysr@777 580
ysr@777 581 _known_garbage_bytes -= known_garbage_bytes;
ysr@777 582 size_t heap_bytes = _g1->capacity();
ysr@777 583 _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
ysr@777 584 }
ysr@777 585
ysr@777 586 G1MMUTracker* mmu_tracker() {
ysr@777 587 return _mmu_tracker;
ysr@777 588 }
ysr@777 589
ysr@777 590 double predict_init_time_ms() {
ysr@777 591 return get_new_prediction(_concurrent_mark_init_times_ms);
ysr@777 592 }
ysr@777 593
ysr@777 594 double predict_remark_time_ms() {
ysr@777 595 return get_new_prediction(_concurrent_mark_remark_times_ms);
ysr@777 596 }
ysr@777 597
ysr@777 598 double predict_cleanup_time_ms() {
ysr@777 599 return get_new_prediction(_concurrent_mark_cleanup_times_ms);
ysr@777 600 }
ysr@777 601
ysr@777 602 // Returns an estimate of the survival rate of the region at yg-age
ysr@777 603 // "yg_age".
apetrusenko@980 604 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
apetrusenko@980 605 TruncatedSeq* seq = surv_rate_group->get_seq(age);
ysr@777 606 if (seq->num() == 0)
ysr@777 607 gclog_or_tty->print("BARF! age is %d", age);
ysr@777 608 guarantee( seq->num() > 0, "invariant" );
ysr@777 609 double pred = get_new_prediction(seq);
ysr@777 610 if (pred > 1.0)
ysr@777 611 pred = 1.0;
ysr@777 612 return pred;
ysr@777 613 }
ysr@777 614
apetrusenko@980 615 double predict_yg_surv_rate(int age) {
apetrusenko@980 616 return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
apetrusenko@980 617 }
apetrusenko@980 618
ysr@777 619 double accum_yg_surv_rate_pred(int age) {
ysr@777 620 return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
ysr@777 621 }
ysr@777 622
ysr@777 623 protected:
ysr@777 624 void print_stats (int level, const char* str, double value);
ysr@777 625 void print_stats (int level, const char* str, int value);
ysr@777 626 void print_par_stats (int level, const char* str, double* data) {
ysr@777 627 print_par_stats(level, str, data, true);
ysr@777 628 }
ysr@777 629 void print_par_stats (int level, const char* str, double* data, bool summary);
ysr@777 630 void print_par_buffers (int level, const char* str, double* data, bool summary);
ysr@777 631
ysr@777 632 void check_other_times(int level,
ysr@777 633 NumberSeq* other_times_ms,
ysr@777 634 NumberSeq* calc_other_times_ms) const;
ysr@777 635
ysr@777 636 void print_summary (PauseSummary* stats) const;
ysr@777 637 void print_abandoned_summary(PauseSummary* non_pop_summary,
ysr@777 638 PauseSummary* pop_summary) const;
ysr@777 639
ysr@777 640 void print_summary (int level, const char* str, NumberSeq* seq) const;
ysr@777 641 void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
ysr@777 642
ysr@777 643 double avg_value (double* data);
ysr@777 644 double max_value (double* data);
ysr@777 645 double sum_of_values (double* data);
ysr@777 646 double max_sum (double* data1, double* data2);
ysr@777 647
ysr@777 648 int _last_satb_drain_processed_buffers;
ysr@777 649 int _last_update_rs_processed_buffers;
ysr@777 650 double _last_pause_time_ms;
ysr@777 651
ysr@777 652 size_t _bytes_in_to_space_before_gc;
ysr@777 653 size_t _bytes_in_to_space_after_gc;
ysr@777 654 size_t bytes_in_to_space_during_gc() {
ysr@777 655 return
ysr@777 656 _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
ysr@777 657 }
ysr@777 658 size_t _bytes_in_collection_set_before_gc;
ysr@777 659 // Used to count used bytes in CS.
ysr@777 660 friend class CountCSClosure;
ysr@777 661
ysr@777 662 // Statistics kept per GC stoppage, pause or full.
ysr@777 663 TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
ysr@777 664
ysr@777 665 // We track markings.
ysr@777 666 int _num_markings;
ysr@777 667 double _mark_thread_startup_sec; // Time at startup of marking thread
ysr@777 668
ysr@777 669 // Add a new GC of the given duration and end time to the record.
ysr@777 670 void update_recent_gc_times(double end_time_sec, double elapsed_ms);
ysr@777 671
ysr@777 672 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 673 // current collection set.
ysr@777 674 HeapRegion* _collection_set;
ysr@777 675 size_t _collection_set_size;
ysr@777 676 size_t _collection_set_bytes_used_before;
ysr@777 677
ysr@777 678 // Info about marking.
ysr@777 679 int _n_marks; // Sticky at 2, so we know when we've done at least 2.
ysr@777 680
ysr@777 681 // The number of collection pauses at the end of the last mark.
ysr@777 682 size_t _n_pauses_at_mark_end;
ysr@777 683
ysr@777 684 // ==== This section is for stats related to starting Conc Refinement on time.
ysr@777 685 size_t _conc_refine_enabled;
ysr@777 686 size_t _conc_refine_zero_traversals;
ysr@777 687 size_t _conc_refine_max_traversals;
ysr@777 688 // In # of heap regions.
ysr@777 689 size_t _conc_refine_current_delta;
ysr@777 690
ysr@777 691 // At the beginning of a collection pause, update the variables above,
ysr@777 692 // especially the "delta".
ysr@777 693 void update_conc_refine_data();
ysr@777 694 // ====
ysr@777 695
ysr@777 696 // Stash a pointer to the g1 heap.
ysr@777 697 G1CollectedHeap* _g1;
ysr@777 698
ysr@777 699 // The average time in ms per collection pause, averaged over recent pauses.
ysr@777 700 double recent_avg_time_for_pauses_ms();
ysr@777 701
ysr@777 702 // The average time in ms for processing CollectedHeap strong roots, per
ysr@777 703 // collection pause, averaged over recent pauses.
ysr@777 704 double recent_avg_time_for_CH_strong_ms();
ysr@777 705
ysr@777 706 // The average time in ms for processing the G1 remembered set, per
ysr@777 707 // pause, averaged over recent pauses.
ysr@777 708 double recent_avg_time_for_G1_strong_ms();
ysr@777 709
ysr@777 710 // The average time in ms for "evacuating followers", per pause, averaged
ysr@777 711 // over recent pauses.
ysr@777 712 double recent_avg_time_for_evac_ms();
ysr@777 713
ysr@777 714 // The number of "recent" GCs recorded in the number sequences
ysr@777 715 int number_of_recent_gcs();
ysr@777 716
ysr@777 717 // The average survival ratio, computed by the total number of bytes
ysr@777 718 // suriviving / total number of bytes before collection over the last
ysr@777 719 // several recent pauses.
ysr@777 720 double recent_avg_survival_fraction();
ysr@777 721 // The survival fraction of the most recent pause; if there have been no
ysr@777 722 // pauses, returns 1.0.
ysr@777 723 double last_survival_fraction();
ysr@777 724
ysr@777 725 // Returns a "conservative" estimate of the recent survival rate, i.e.,
ysr@777 726 // one that may be higher than "recent_avg_survival_fraction".
ysr@777 727 // This is conservative in several ways:
ysr@777 728 // If there have been few pauses, it will assume a potential high
ysr@777 729 // variance, and err on the side of caution.
ysr@777 730 // It puts a lower bound (currently 0.1) on the value it will return.
ysr@777 731 // To try to detect phase changes, if the most recent pause ("latest") has a
ysr@777 732 // higher-than average ("avg") survival rate, it returns that rate.
ysr@777 733 // "work" version is a utility function; young is restricted to young regions.
ysr@777 734 double conservative_avg_survival_fraction_work(double avg,
ysr@777 735 double latest);
ysr@777 736
ysr@777 737 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 738 // surviving and the total number of bytes before collection, resp.,
ysr@777 739 // over the last evereal recent pauses
ysr@777 740 // Returns the survival rate for the category in the most recent pause.
ysr@777 741 // If there have been no pauses, returns 1.0.
ysr@777 742 double last_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 743 TruncatedSeq* before);
ysr@777 744
ysr@777 745 // The arguments are the two sequences that keep track of the number of bytes
ysr@777 746 // surviving and the total number of bytes before collection, resp.,
ysr@777 747 // over the last several recent pauses
ysr@777 748 // Returns the average survival ration over the last several recent pauses
ysr@777 749 // If there have been no pauses, return 1.0
ysr@777 750 double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
ysr@777 751 TruncatedSeq* before);
ysr@777 752
ysr@777 753 double conservative_avg_survival_fraction() {
ysr@777 754 double avg = recent_avg_survival_fraction();
ysr@777 755 double latest = last_survival_fraction();
ysr@777 756 return conservative_avg_survival_fraction_work(avg, latest);
ysr@777 757 }
ysr@777 758
ysr@777 759 // The ratio of gc time to elapsed time, computed over recent pauses.
ysr@777 760 double _recent_avg_pause_time_ratio;
ysr@777 761
ysr@777 762 double recent_avg_pause_time_ratio() {
ysr@777 763 return _recent_avg_pause_time_ratio;
ysr@777 764 }
ysr@777 765
ysr@777 766 // Number of pauses between concurrent marking.
ysr@777 767 size_t _pauses_btwn_concurrent_mark;
ysr@777 768
ysr@777 769 size_t _n_marks_since_last_pause;
ysr@777 770
ysr@777 771 // True iff CM has been initiated.
ysr@777 772 bool _conc_mark_initiated;
ysr@777 773
ysr@777 774 // True iff CM should be initiated
ysr@777 775 bool _should_initiate_conc_mark;
ysr@777 776 bool _should_revert_to_full_young_gcs;
ysr@777 777 bool _last_full_young_gc;
ysr@777 778
ysr@777 779 // This set of variables tracks the collector efficiency, in order to
ysr@777 780 // determine whether we should initiate a new marking.
ysr@777 781 double _cur_mark_stop_world_time_ms;
ysr@777 782 double _mark_init_start_sec;
ysr@777 783 double _mark_remark_start_sec;
ysr@777 784 double _mark_cleanup_start_sec;
ysr@777 785 double _mark_closure_time_ms;
ysr@777 786
ysr@777 787 void calculate_young_list_min_length();
ysr@777 788 void calculate_young_list_target_config();
ysr@777 789 void calculate_young_list_target_config(size_t rs_lengths);
ysr@777 790 size_t calculate_optimal_so_length(size_t young_list_length);
ysr@777 791
ysr@777 792 public:
ysr@777 793
ysr@777 794 G1CollectorPolicy();
ysr@777 795
ysr@777 796 virtual G1CollectorPolicy* as_g1_policy() { return this; }
ysr@777 797
ysr@777 798 virtual CollectorPolicy::Name kind() {
ysr@777 799 return CollectorPolicy::G1CollectorPolicyKind;
ysr@777 800 }
ysr@777 801
ysr@777 802 void check_prediction_validity();
ysr@777 803
ysr@777 804 size_t bytes_in_collection_set() {
ysr@777 805 return _bytes_in_collection_set_before_gc;
ysr@777 806 }
ysr@777 807
ysr@777 808 size_t bytes_in_to_space() {
ysr@777 809 return bytes_in_to_space_during_gc();
ysr@777 810 }
ysr@777 811
ysr@777 812 unsigned calc_gc_alloc_time_stamp() {
ysr@777 813 return _all_pause_times_ms->num() + 1;
ysr@777 814 }
ysr@777 815
ysr@777 816 protected:
ysr@777 817
ysr@777 818 // Count the number of bytes used in the CS.
ysr@777 819 void count_CS_bytes_used();
ysr@777 820
ysr@777 821 // Together these do the base cleanup-recording work. Subclasses might
ysr@777 822 // want to put something between them.
ysr@777 823 void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
ysr@777 824 size_t max_live_bytes);
ysr@777 825 void record_concurrent_mark_cleanup_end_work2();
ysr@777 826
ysr@777 827 public:
ysr@777 828
ysr@777 829 virtual void init();
ysr@777 830
apetrusenko@980 831 // Create jstat counters for the policy.
apetrusenko@980 832 virtual void initialize_gc_policy_counters();
apetrusenko@980 833
ysr@777 834 virtual HeapWord* mem_allocate_work(size_t size,
ysr@777 835 bool is_tlab,
ysr@777 836 bool* gc_overhead_limit_was_exceeded);
ysr@777 837
ysr@777 838 // This method controls how a collector handles one or more
ysr@777 839 // of its generations being fully allocated.
ysr@777 840 virtual HeapWord* satisfy_failed_allocation(size_t size,
ysr@777 841 bool is_tlab);
ysr@777 842
ysr@777 843 BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
ysr@777 844
ysr@777 845 GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
ysr@777 846
ysr@777 847 // The number of collection pauses so far.
ysr@777 848 long n_pauses() const { return _n_pauses; }
ysr@777 849
ysr@777 850 // Update the heuristic info to record a collection pause of the given
ysr@777 851 // start time, where the given number of bytes were used at the start.
ysr@777 852 // This may involve changing the desired size of a collection set.
ysr@777 853
ysr@777 854 virtual void record_stop_world_start();
ysr@777 855
ysr@777 856 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 857 size_t start_used);
ysr@777 858
ysr@777 859 virtual void record_popular_pause_preamble_start();
ysr@777 860 virtual void record_popular_pause_preamble_end();
ysr@777 861
ysr@777 862 // Must currently be called while the world is stopped.
ysr@777 863 virtual void record_concurrent_mark_init_start();
ysr@777 864 virtual void record_concurrent_mark_init_end();
ysr@777 865 void record_concurrent_mark_init_end_pre(double
ysr@777 866 mark_init_elapsed_time_ms);
ysr@777 867
ysr@777 868 void record_mark_closure_time(double mark_closure_time_ms);
ysr@777 869
ysr@777 870 virtual void record_concurrent_mark_remark_start();
ysr@777 871 virtual void record_concurrent_mark_remark_end();
ysr@777 872
ysr@777 873 virtual void record_concurrent_mark_cleanup_start();
ysr@777 874 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 875 size_t max_live_bytes);
ysr@777 876 virtual void record_concurrent_mark_cleanup_completed();
ysr@777 877
ysr@777 878 virtual void record_concurrent_pause();
ysr@777 879 virtual void record_concurrent_pause_end();
ysr@777 880
ysr@777 881 virtual void record_collection_pause_end_CH_strong_roots();
ysr@777 882 virtual void record_collection_pause_end_G1_strong_roots();
ysr@777 883
ysr@777 884 virtual void record_collection_pause_end(bool popular, bool abandoned);
ysr@777 885
ysr@777 886 // Record the fact that a full collection occurred.
ysr@777 887 virtual void record_full_collection_start();
ysr@777 888 virtual void record_full_collection_end();
ysr@777 889
ysr@777 890 void record_ext_root_scan_time(int worker_i, double ms) {
ysr@777 891 _par_last_ext_root_scan_times_ms[worker_i] = ms;
ysr@777 892 }
ysr@777 893
ysr@777 894 void record_mark_stack_scan_time(int worker_i, double ms) {
ysr@777 895 _par_last_mark_stack_scan_times_ms[worker_i] = ms;
ysr@777 896 }
ysr@777 897
ysr@777 898 void record_scan_only_time(int worker_i, double ms, int n) {
ysr@777 899 _par_last_scan_only_times_ms[worker_i] = ms;
ysr@777 900 _par_last_scan_only_regions_scanned[worker_i] = (double) n;
ysr@777 901 }
ysr@777 902
ysr@777 903 void record_satb_drain_time(double ms) {
ysr@777 904 _cur_satb_drain_time_ms = ms;
ysr@777 905 _satb_drain_time_set = true;
ysr@777 906 }
ysr@777 907
ysr@777 908 void record_satb_drain_processed_buffers (int processed_buffers) {
ysr@777 909 _last_satb_drain_processed_buffers = processed_buffers;
ysr@777 910 }
ysr@777 911
ysr@777 912 void record_mod_union_time(double ms) {
ysr@777 913 _all_mod_union_times_ms->add(ms);
ysr@777 914 }
ysr@777 915
ysr@777 916 void record_update_rs_start_time(int thread, double ms) {
ysr@777 917 _par_last_update_rs_start_times_ms[thread] = ms;
ysr@777 918 }
ysr@777 919
ysr@777 920 void record_update_rs_time(int thread, double ms) {
ysr@777 921 _par_last_update_rs_times_ms[thread] = ms;
ysr@777 922 }
ysr@777 923
ysr@777 924 void record_update_rs_processed_buffers (int thread,
ysr@777 925 double processed_buffers) {
ysr@777 926 _par_last_update_rs_processed_buffers[thread] = processed_buffers;
ysr@777 927 }
ysr@777 928
ysr@777 929 void record_scan_rs_start_time(int thread, double ms) {
ysr@777 930 _par_last_scan_rs_start_times_ms[thread] = ms;
ysr@777 931 }
ysr@777 932
ysr@777 933 void record_scan_rs_time(int thread, double ms) {
ysr@777 934 _par_last_scan_rs_times_ms[thread] = ms;
ysr@777 935 }
ysr@777 936
ysr@777 937 void record_scan_new_refs_time(int thread, double ms) {
ysr@777 938 _par_last_scan_new_refs_times_ms[thread] = ms;
ysr@777 939 }
ysr@777 940
ysr@777 941 double get_scan_new_refs_time(int thread) {
ysr@777 942 return _par_last_scan_new_refs_times_ms[thread];
ysr@777 943 }
ysr@777 944
ysr@777 945 void reset_obj_copy_time(int thread) {
ysr@777 946 _par_last_obj_copy_times_ms[thread] = 0.0;
ysr@777 947 }
ysr@777 948
ysr@777 949 void reset_obj_copy_time() {
ysr@777 950 reset_obj_copy_time(0);
ysr@777 951 }
ysr@777 952
ysr@777 953 void record_obj_copy_time(int thread, double ms) {
ysr@777 954 _par_last_obj_copy_times_ms[thread] += ms;
ysr@777 955 }
ysr@777 956
ysr@777 957 void record_obj_copy_time(double ms) {
ysr@777 958 record_obj_copy_time(0, ms);
ysr@777 959 }
ysr@777 960
ysr@777 961 void record_termination_time(int thread, double ms) {
ysr@777 962 _par_last_termination_times_ms[thread] = ms;
ysr@777 963 }
ysr@777 964
ysr@777 965 void record_termination_time(double ms) {
ysr@777 966 record_termination_time(0, ms);
ysr@777 967 }
ysr@777 968
ysr@777 969 void record_pause_time(double ms) {
ysr@777 970 _last_pause_time_ms = ms;
ysr@777 971 }
ysr@777 972
ysr@777 973 void record_clear_ct_time(double ms) {
ysr@777 974 _cur_clear_ct_time_ms = ms;
ysr@777 975 }
ysr@777 976
ysr@777 977 void record_par_time(double ms) {
ysr@777 978 _cur_collection_par_time_ms = ms;
ysr@777 979 }
ysr@777 980
ysr@777 981 void record_aux_start_time(int i) {
ysr@777 982 guarantee(i < _aux_num, "should be within range");
ysr@777 983 _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
ysr@777 984 }
ysr@777 985
ysr@777 986 void record_aux_end_time(int i) {
ysr@777 987 guarantee(i < _aux_num, "should be within range");
ysr@777 988 double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
ysr@777 989 _cur_aux_times_set[i] = true;
ysr@777 990 _cur_aux_times_ms[i] += ms;
ysr@777 991 }
ysr@777 992
ysr@777 993 void record_pop_compute_rc_start();
ysr@777 994 void record_pop_compute_rc_end();
ysr@777 995
ysr@777 996 void record_pop_evac_start();
ysr@777 997 void record_pop_evac_end();
ysr@777 998
ysr@777 999 // Record the fact that "bytes" bytes allocated in a region.
ysr@777 1000 void record_before_bytes(size_t bytes);
ysr@777 1001 void record_after_bytes(size_t bytes);
ysr@777 1002
ysr@777 1003 // Returns "true" if this is a good time to do a collection pause.
ysr@777 1004 // The "word_size" argument, if non-zero, indicates the size of an
ysr@777 1005 // allocation request that is prompting this query.
ysr@777 1006 virtual bool should_do_collection_pause(size_t word_size) = 0;
ysr@777 1007
ysr@777 1008 // Choose a new collection set. Marks the chosen regions as being
ysr@777 1009 // "in_collection_set", and links them together. The head and number of
ysr@777 1010 // the collection set are available via access methods.
ysr@777 1011 // If "pop_region" is non-NULL, it is a popular region that has already
ysr@777 1012 // been added to the collection set.
ysr@777 1013 virtual void choose_collection_set(HeapRegion* pop_region = NULL) = 0;
ysr@777 1014
ysr@777 1015 void clear_collection_set() { _collection_set = NULL; }
ysr@777 1016
ysr@777 1017 // The head of the list (via "next_in_collection_set()") representing the
ysr@777 1018 // current collection set.
ysr@777 1019 HeapRegion* collection_set() { return _collection_set; }
ysr@777 1020
ysr@777 1021 // Sets the collection set to the given single region.
ysr@777 1022 virtual void set_single_region_collection_set(HeapRegion* hr);
ysr@777 1023
ysr@777 1024 // The number of elements in the current collection set.
ysr@777 1025 size_t collection_set_size() { return _collection_set_size; }
ysr@777 1026
ysr@777 1027 // Add "hr" to the CS.
ysr@777 1028 void add_to_collection_set(HeapRegion* hr);
ysr@777 1029
ysr@777 1030 bool should_initiate_conc_mark() { return _should_initiate_conc_mark; }
ysr@777 1031 void set_should_initiate_conc_mark() { _should_initiate_conc_mark = true; }
ysr@777 1032 void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
ysr@777 1033
ysr@777 1034 void checkpoint_conc_overhead();
ysr@777 1035
ysr@777 1036 // If an expansion would be appropriate, because recent GC overhead had
ysr@777 1037 // exceeded the desired limit, return an amount to expand by.
ysr@777 1038 virtual size_t expansion_amount();
ysr@777 1039
ysr@777 1040 // note start of mark thread
ysr@777 1041 void note_start_of_mark_thread();
ysr@777 1042
ysr@777 1043 // The marked bytes of the "r" has changed; reclassify it's desirability
ysr@777 1044 // for marking. Also asserts that "r" is eligible for a CS.
ysr@777 1045 virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
ysr@777 1046
ysr@777 1047 #ifndef PRODUCT
ysr@777 1048 // Check any appropriate marked bytes info, asserting false if
ysr@777 1049 // something's wrong, else returning "true".
ysr@777 1050 virtual bool assertMarkedBytesDataOK() = 0;
ysr@777 1051 #endif
ysr@777 1052
ysr@777 1053 // Print tracing information.
ysr@777 1054 void print_tracing_info() const;
ysr@777 1055
ysr@777 1056 // Print stats on young survival ratio
ysr@777 1057 void print_yg_surv_rate_info() const;
ysr@777 1058
apetrusenko@980 1059 void finished_recalculating_age_indexes(bool is_survivors) {
apetrusenko@980 1060 if (is_survivors) {
apetrusenko@980 1061 _survivor_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1062 } else {
apetrusenko@980 1063 _short_lived_surv_rate_group->finished_recalculating_age_indexes();
apetrusenko@980 1064 }
ysr@777 1065 // do that for any other surv rate groups
ysr@777 1066 }
ysr@777 1067
ysr@777 1068 bool should_add_next_region_to_young_list();
ysr@777 1069
ysr@777 1070 bool in_young_gc_mode() {
ysr@777 1071 return _in_young_gc_mode;
ysr@777 1072 }
ysr@777 1073 void set_in_young_gc_mode(bool in_young_gc_mode) {
ysr@777 1074 _in_young_gc_mode = in_young_gc_mode;
ysr@777 1075 }
ysr@777 1076
ysr@777 1077 bool full_young_gcs() {
ysr@777 1078 return _full_young_gcs;
ysr@777 1079 }
ysr@777 1080 void set_full_young_gcs(bool full_young_gcs) {
ysr@777 1081 _full_young_gcs = full_young_gcs;
ysr@777 1082 }
ysr@777 1083
ysr@777 1084 bool adaptive_young_list_length() {
ysr@777 1085 return _adaptive_young_list_length;
ysr@777 1086 }
ysr@777 1087 void set_adaptive_young_list_length(bool adaptive_young_list_length) {
ysr@777 1088 _adaptive_young_list_length = adaptive_young_list_length;
ysr@777 1089 }
ysr@777 1090
ysr@777 1091 inline double get_gc_eff_factor() {
ysr@777 1092 double ratio = _known_garbage_ratio;
ysr@777 1093
ysr@777 1094 double square = ratio * ratio;
ysr@777 1095 // square = square * square;
ysr@777 1096 double ret = square * 9.0 + 1.0;
ysr@777 1097 #if 0
ysr@777 1098 gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
ysr@777 1099 #endif // 0
ysr@777 1100 guarantee(0.0 <= ret && ret < 10.0, "invariant!");
ysr@777 1101 return ret;
ysr@777 1102 }
ysr@777 1103
ysr@777 1104 //
ysr@777 1105 // Survivor regions policy.
ysr@777 1106 //
ysr@777 1107 protected:
ysr@777 1108
ysr@777 1109 // Current tenuring threshold, set to 0 if the collector reaches the
ysr@777 1110 // maximum amount of suvivors regions.
ysr@777 1111 int _tenuring_threshold;
ysr@777 1112
apetrusenko@980 1113 // The limit on the number of regions allocated for survivors.
apetrusenko@980 1114 size_t _max_survivor_regions;
apetrusenko@980 1115
apetrusenko@980 1116 // The amount of survor regions after a collection.
apetrusenko@980 1117 size_t _recorded_survivor_regions;
apetrusenko@980 1118 // List of survivor regions.
apetrusenko@980 1119 HeapRegion* _recorded_survivor_head;
apetrusenko@980 1120 HeapRegion* _recorded_survivor_tail;
apetrusenko@980 1121
apetrusenko@980 1122 ageTable _survivors_age_table;
apetrusenko@980 1123
ysr@777 1124 public:
ysr@777 1125
ysr@777 1126 inline GCAllocPurpose
ysr@777 1127 evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
ysr@777 1128 if (age < _tenuring_threshold && src_region->is_young()) {
ysr@777 1129 return GCAllocForSurvived;
ysr@777 1130 } else {
ysr@777 1131 return GCAllocForTenured;
ysr@777 1132 }
ysr@777 1133 }
ysr@777 1134
ysr@777 1135 inline bool track_object_age(GCAllocPurpose purpose) {
ysr@777 1136 return purpose == GCAllocForSurvived;
ysr@777 1137 }
ysr@777 1138
ysr@777 1139 inline GCAllocPurpose alternative_purpose(int purpose) {
ysr@777 1140 return GCAllocForTenured;
ysr@777 1141 }
ysr@777 1142
apetrusenko@980 1143 static const size_t REGIONS_UNLIMITED = ~(size_t)0;
apetrusenko@980 1144
apetrusenko@980 1145 size_t max_regions(int purpose);
ysr@777 1146
ysr@777 1147 // The limit on regions for a particular purpose is reached.
ysr@777 1148 void note_alloc_region_limit_reached(int purpose) {
ysr@777 1149 if (purpose == GCAllocForSurvived) {
ysr@777 1150 _tenuring_threshold = 0;
ysr@777 1151 }
ysr@777 1152 }
ysr@777 1153
ysr@777 1154 void note_start_adding_survivor_regions() {
ysr@777 1155 _survivor_surv_rate_group->start_adding_regions();
ysr@777 1156 }
ysr@777 1157
ysr@777 1158 void note_stop_adding_survivor_regions() {
ysr@777 1159 _survivor_surv_rate_group->stop_adding_regions();
ysr@777 1160 }
apetrusenko@980 1161
apetrusenko@980 1162 void record_survivor_regions(size_t regions,
apetrusenko@980 1163 HeapRegion* head,
apetrusenko@980 1164 HeapRegion* tail) {
apetrusenko@980 1165 _recorded_survivor_regions = regions;
apetrusenko@980 1166 _recorded_survivor_head = head;
apetrusenko@980 1167 _recorded_survivor_tail = tail;
apetrusenko@980 1168 }
apetrusenko@980 1169
apetrusenko@980 1170 void record_thread_age_table(ageTable* age_table)
apetrusenko@980 1171 {
apetrusenko@980 1172 _survivors_age_table.merge_par(age_table);
apetrusenko@980 1173 }
apetrusenko@980 1174
apetrusenko@980 1175 // Calculates survivor space parameters.
apetrusenko@980 1176 void calculate_survivors_policy();
apetrusenko@980 1177
ysr@777 1178 };
ysr@777 1179
ysr@777 1180 // This encapsulates a particular strategy for a g1 Collector.
ysr@777 1181 //
ysr@777 1182 // Start a concurrent mark when our heap size is n bytes
ysr@777 1183 // greater then our heap size was at the last concurrent
ysr@777 1184 // mark. Where n is a function of the CMSTriggerRatio
ysr@777 1185 // and the MinHeapFreeRatio.
ysr@777 1186 //
ysr@777 1187 // Start a g1 collection pause when we have allocated the
ysr@777 1188 // average number of bytes currently being freed in
ysr@777 1189 // a collection, but only if it is at least one region
ysr@777 1190 // full
ysr@777 1191 //
ysr@777 1192 // Resize Heap based on desired
ysr@777 1193 // allocation space, where desired allocation space is
ysr@777 1194 // a function of survival rate and desired future to size.
ysr@777 1195 //
ysr@777 1196 // Choose collection set by first picking all older regions
ysr@777 1197 // which have a survival rate which beats our projected young
ysr@777 1198 // survival rate. Then fill out the number of needed regions
ysr@777 1199 // with young regions.
ysr@777 1200
ysr@777 1201 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
ysr@777 1202 CollectionSetChooser* _collectionSetChooser;
ysr@777 1203 // If the estimated is less then desirable, resize if possible.
ysr@777 1204 void expand_if_possible(size_t numRegions);
ysr@777 1205
ysr@777 1206 virtual void choose_collection_set(HeapRegion* pop_region = NULL);
ysr@777 1207 virtual void record_collection_pause_start(double start_time_sec,
ysr@777 1208 size_t start_used);
ysr@777 1209 virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
ysr@777 1210 size_t max_live_bytes);
ysr@777 1211 virtual void record_full_collection_end();
ysr@777 1212
ysr@777 1213 public:
ysr@777 1214 G1CollectorPolicy_BestRegionsFirst() {
ysr@777 1215 _collectionSetChooser = new CollectionSetChooser();
ysr@777 1216 }
ysr@777 1217 void record_collection_pause_end(bool popular, bool abandoned);
ysr@777 1218 bool should_do_collection_pause(size_t word_size);
ysr@777 1219 virtual void set_single_region_collection_set(HeapRegion* hr);
ysr@777 1220 // This is not needed any more, after the CSet choosing code was
ysr@777 1221 // changed to use the pause prediction work. But let's leave the
ysr@777 1222 // hook in just in case.
ysr@777 1223 void note_change_in_marked_bytes(HeapRegion* r) { }
ysr@777 1224 #ifndef PRODUCT
ysr@777 1225 bool assertMarkedBytesDataOK();
ysr@777 1226 #endif
ysr@777 1227 };
ysr@777 1228
ysr@777 1229 // This should move to some place more general...
ysr@777 1230
ysr@777 1231 // If we have "n" measurements, and we've kept track of their "sum" and the
ysr@777 1232 // "sum_of_squares" of the measurements, this returns the variance of the
ysr@777 1233 // sequence.
ysr@777 1234 inline double variance(int n, double sum_of_squares, double sum) {
ysr@777 1235 double n_d = (double)n;
ysr@777 1236 double avg = sum/n_d;
ysr@777 1237 return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
ysr@777 1238 }
ysr@777 1239
ysr@777 1240 // Local Variables: ***
ysr@777 1241 // c-indentation-style: gnu ***
ysr@777 1242 // End: ***

mercurial