src/cpu/x86/vm/assembler_x86.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 855
a1980da045cc
child 1057
56aae7be60d4
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // Contains all the definitions needed for x86 assembly code generation.
duke@435 28
duke@435 29 // Calling convention
duke@435 30 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 31 public:
duke@435 32 enum {
duke@435 33 #ifdef _LP64
duke@435 34 #ifdef _WIN64
duke@435 35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 37 #else
duke@435 38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 40 #endif // _WIN64
duke@435 41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 43 #else
duke@435 44 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 45 #endif // _LP64
duke@435 46 };
duke@435 47 };
duke@435 48
duke@435 49
duke@435 50 #ifdef _LP64
duke@435 51 // Symbolically name the register arguments used by the c calling convention.
duke@435 52 // Windows is different from linux/solaris. So much for standards...
duke@435 53
duke@435 54 #ifdef _WIN64
duke@435 55
duke@435 56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 58 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 59 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 60
never@739 61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 65
duke@435 66 #else
duke@435 67
duke@435 68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 74
never@739 75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 83
duke@435 84 #endif // _WIN64
duke@435 85
duke@435 86 // Symbolically name the register arguments used by the Java calling convention.
duke@435 87 // We have control over the convention for java so we can do what we please.
duke@435 88 // What pleases us is to offset the java calling convention so that when
duke@435 89 // we call a suitable jni method the arguments are lined up and we don't
duke@435 90 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 91 // small number of arguments (two fewer args on windows)
duke@435 92 //
duke@435 93 // |-------------------------------------------------------|
duke@435 94 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 95 // |-------------------------------------------------------|
duke@435 96 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 97 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 100 // |-------------------------------------------------------|
duke@435 101
duke@435 102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 105 // Windows runs out of register args here
duke@435 106 #ifdef _WIN64
duke@435 107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 109 #else
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 112 #endif /* _WIN64 */
duke@435 113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 114
never@739 115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 123
duke@435 124 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 125 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 126
never@739 127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 129
never@739 130 #else
never@739 131 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 132 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 133 // will cause an assertion failure
never@739 134 #define rscratch1 noreg
never@739 135
duke@435 136 #endif // _LP64
duke@435 137
duke@435 138 // Address is an abstraction used to represent a memory location
duke@435 139 // using any of the amd64 addressing modes with one object.
duke@435 140 //
duke@435 141 // Note: A register location is represented via a Register, not
duke@435 142 // via an address for efficiency & simplicity reasons.
duke@435 143
duke@435 144 class ArrayAddress;
duke@435 145
duke@435 146 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 147 public:
duke@435 148 enum ScaleFactor {
duke@435 149 no_scale = -1,
duke@435 150 times_1 = 0,
duke@435 151 times_2 = 1,
duke@435 152 times_4 = 2,
never@739 153 times_8 = 3,
never@739 154 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 155 };
duke@435 156
duke@435 157 private:
duke@435 158 Register _base;
duke@435 159 Register _index;
duke@435 160 ScaleFactor _scale;
duke@435 161 int _disp;
duke@435 162 RelocationHolder _rspec;
duke@435 163
never@739 164 // Easily misused constructors make them private
never@739 165 // %%% can we make these go away?
never@739 166 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 167 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 168 Address(int disp, address loc, RelocationHolder spec);
duke@435 169
duke@435 170 public:
never@739 171
never@739 172 int disp() { return _disp; }
duke@435 173 // creation
duke@435 174 Address()
duke@435 175 : _base(noreg),
duke@435 176 _index(noreg),
duke@435 177 _scale(no_scale),
duke@435 178 _disp(0) {
duke@435 179 }
duke@435 180
duke@435 181 // No default displacement otherwise Register can be implicitly
duke@435 182 // converted to 0(Register) which is quite a different animal.
duke@435 183
duke@435 184 Address(Register base, int disp)
duke@435 185 : _base(base),
duke@435 186 _index(noreg),
duke@435 187 _scale(no_scale),
duke@435 188 _disp(disp) {
duke@435 189 }
duke@435 190
duke@435 191 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 192 : _base (base),
duke@435 193 _index(index),
duke@435 194 _scale(scale),
duke@435 195 _disp (disp) {
duke@435 196 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 197 "inconsistent address");
duke@435 198 }
duke@435 199
duke@435 200 // The following two overloads are used in connection with the
duke@435 201 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 202 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 203 // for the optimized build are the member functions with int disp
duke@435 204 // argument since ByteSize is mapped to an int type in that case.
duke@435 205 //
duke@435 206 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 207 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 208 // are mapped to the same type and thus the compiler cannot make a
duke@435 209 // distinction anymore (=> compiler errors).
duke@435 210
duke@435 211 #ifdef ASSERT
duke@435 212 Address(Register base, ByteSize disp)
duke@435 213 : _base(base),
duke@435 214 _index(noreg),
duke@435 215 _scale(no_scale),
duke@435 216 _disp(in_bytes(disp)) {
duke@435 217 }
duke@435 218
duke@435 219 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 220 : _base(base),
duke@435 221 _index(index),
duke@435 222 _scale(scale),
duke@435 223 _disp(in_bytes(disp)) {
duke@435 224 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 225 "inconsistent address");
duke@435 226 }
duke@435 227 #endif // ASSERT
duke@435 228
duke@435 229 // accessors
ysr@777 230 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 231 Register base() const { return _base; }
ysr@777 232 Register index() const { return _index; }
ysr@777 233 ScaleFactor scale() const { return _scale; }
ysr@777 234 int disp() const { return _disp; }
duke@435 235
duke@435 236 // Convert the raw encoding form into the form expected by the constructor for
duke@435 237 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 238 // that to noreg for the Address constructor.
duke@435 239 static Address make_raw(int base, int index, int scale, int disp);
duke@435 240
duke@435 241 static Address make_array(ArrayAddress);
duke@435 242
duke@435 243
duke@435 244 private:
duke@435 245 bool base_needs_rex() const {
duke@435 246 return _base != noreg && _base->encoding() >= 8;
duke@435 247 }
duke@435 248
duke@435 249 bool index_needs_rex() const {
duke@435 250 return _index != noreg &&_index->encoding() >= 8;
duke@435 251 }
duke@435 252
duke@435 253 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 254
duke@435 255 friend class Assembler;
duke@435 256 friend class MacroAssembler;
duke@435 257 friend class LIR_Assembler; // base/index/scale/disp
duke@435 258 };
duke@435 259
duke@435 260 //
duke@435 261 // AddressLiteral has been split out from Address because operands of this type
duke@435 262 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 263 // the few instructions that need to deal with address literals are unique and the
duke@435 264 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 265 // in order to search for address literals that may need special handling depending
duke@435 266 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 267 // directories.
duke@435 268 //
duke@435 269 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 270 friend class ArrayAddress;
duke@435 271 RelocationHolder _rspec;
duke@435 272 // Typically we use AddressLiterals we want to use their rval
duke@435 273 // However in some situations we want the lval (effect address) of the item.
duke@435 274 // We provide a special factory for making those lvals.
duke@435 275 bool _is_lval;
duke@435 276
duke@435 277 // If the target is far we'll need to load the ea of this to
duke@435 278 // a register to reach it. Otherwise if near we can do rip
duke@435 279 // relative addressing.
duke@435 280
duke@435 281 address _target;
duke@435 282
duke@435 283 protected:
duke@435 284 // creation
duke@435 285 AddressLiteral()
duke@435 286 : _is_lval(false),
duke@435 287 _target(NULL)
duke@435 288 {}
duke@435 289
duke@435 290 public:
duke@435 291
duke@435 292
duke@435 293 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 294
duke@435 295 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 296 : _rspec(rspec),
duke@435 297 _is_lval(false),
duke@435 298 _target(target)
duke@435 299 {}
duke@435 300
duke@435 301 AddressLiteral addr() {
duke@435 302 AddressLiteral ret = *this;
duke@435 303 ret._is_lval = true;
duke@435 304 return ret;
duke@435 305 }
duke@435 306
duke@435 307
duke@435 308 private:
duke@435 309
duke@435 310 address target() { return _target; }
duke@435 311 bool is_lval() { return _is_lval; }
duke@435 312
duke@435 313 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 314 const RelocationHolder& rspec() const { return _rspec; }
duke@435 315
duke@435 316 friend class Assembler;
duke@435 317 friend class MacroAssembler;
duke@435 318 friend class Address;
duke@435 319 friend class LIR_Assembler;
duke@435 320 };
duke@435 321
duke@435 322 // Convience classes
duke@435 323 class RuntimeAddress: public AddressLiteral {
duke@435 324
duke@435 325 public:
duke@435 326
duke@435 327 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 328
duke@435 329 };
duke@435 330
duke@435 331 class OopAddress: public AddressLiteral {
duke@435 332
duke@435 333 public:
duke@435 334
duke@435 335 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 336
duke@435 337 };
duke@435 338
duke@435 339 class ExternalAddress: public AddressLiteral {
duke@435 340
duke@435 341 public:
duke@435 342
duke@435 343 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 344
duke@435 345 };
duke@435 346
duke@435 347 class InternalAddress: public AddressLiteral {
duke@435 348
duke@435 349 public:
duke@435 350
duke@435 351 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 352
duke@435 353 };
duke@435 354
duke@435 355 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 356 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 357 // magic on amd64 to get the final result
duke@435 358
duke@435 359 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 360 private:
duke@435 361
duke@435 362 AddressLiteral _base;
duke@435 363 Address _index;
duke@435 364
duke@435 365 public:
duke@435 366
duke@435 367 ArrayAddress() {};
duke@435 368 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 369 AddressLiteral base() { return _base; }
duke@435 370 Address index() { return _index; }
duke@435 371
duke@435 372 };
duke@435 373
never@739 374 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 375
duke@435 376 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 377 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 378 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 379
duke@435 380 class Assembler : public AbstractAssembler {
duke@435 381 friend class AbstractAssembler; // for the non-virtual hack
duke@435 382 friend class LIR_Assembler; // as_Address()
never@739 383 friend class StubGenerator;
duke@435 384
duke@435 385 public:
duke@435 386 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 387 zero = 0x4,
duke@435 388 notZero = 0x5,
duke@435 389 equal = 0x4,
duke@435 390 notEqual = 0x5,
duke@435 391 less = 0xc,
duke@435 392 lessEqual = 0xe,
duke@435 393 greater = 0xf,
duke@435 394 greaterEqual = 0xd,
duke@435 395 below = 0x2,
duke@435 396 belowEqual = 0x6,
duke@435 397 above = 0x7,
duke@435 398 aboveEqual = 0x3,
duke@435 399 overflow = 0x0,
duke@435 400 noOverflow = 0x1,
duke@435 401 carrySet = 0x2,
duke@435 402 carryClear = 0x3,
duke@435 403 negative = 0x8,
duke@435 404 positive = 0x9,
duke@435 405 parity = 0xa,
duke@435 406 noParity = 0xb
duke@435 407 };
duke@435 408
duke@435 409 enum Prefix {
duke@435 410 // segment overrides
duke@435 411 CS_segment = 0x2e,
duke@435 412 SS_segment = 0x36,
duke@435 413 DS_segment = 0x3e,
duke@435 414 ES_segment = 0x26,
duke@435 415 FS_segment = 0x64,
duke@435 416 GS_segment = 0x65,
duke@435 417
duke@435 418 REX = 0x40,
duke@435 419
duke@435 420 REX_B = 0x41,
duke@435 421 REX_X = 0x42,
duke@435 422 REX_XB = 0x43,
duke@435 423 REX_R = 0x44,
duke@435 424 REX_RB = 0x45,
duke@435 425 REX_RX = 0x46,
duke@435 426 REX_RXB = 0x47,
duke@435 427
duke@435 428 REX_W = 0x48,
duke@435 429
duke@435 430 REX_WB = 0x49,
duke@435 431 REX_WX = 0x4A,
duke@435 432 REX_WXB = 0x4B,
duke@435 433 REX_WR = 0x4C,
duke@435 434 REX_WRB = 0x4D,
duke@435 435 REX_WRX = 0x4E,
duke@435 436 REX_WRXB = 0x4F
duke@435 437 };
duke@435 438
duke@435 439 enum WhichOperand {
duke@435 440 // input to locate_operand, and format code for relocations
never@739 441 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 442 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 443 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 444 #ifndef _LP64
duke@435 445 _WhichOperand_limit = 3
never@739 446 #else
never@739 447 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 448 _WhichOperand_limit = 4
never@739 449 #endif
duke@435 450 };
duke@435 451
never@739 452
never@739 453
never@739 454 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 455 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 456 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 457 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 458 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 459 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 460 //
never@739 461 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 462 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 463
never@739 464 private:
never@739 465
never@739 466
never@739 467 // 64bit prefixes
never@739 468 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 469 int prefixq_and_encode(int reg_enc);
never@739 470
never@739 471 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 472 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 473
never@739 474 void prefix(Register reg);
never@739 475 void prefix(Address adr);
never@739 476 void prefixq(Address adr);
never@739 477
never@739 478 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 479 void prefixq(Address adr, Register reg);
never@739 480
never@739 481 void prefix(Address adr, XMMRegister reg);
never@739 482
never@739 483 void prefetch_prefix(Address src);
never@739 484
never@739 485 // Helper functions for groups of instructions
never@739 486 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 487
never@739 488 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 489 // only 32bit??
never@739 490 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 491 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 492
never@739 493 void emit_operand(Register reg,
never@739 494 Register base, Register index, Address::ScaleFactor scale,
never@739 495 int disp,
never@739 496 RelocationHolder const& rspec,
never@739 497 int rip_relative_correction = 0);
never@739 498
never@739 499 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 500
never@739 501 // operands that only take the original 32bit registers
never@739 502 void emit_operand32(Register reg, Address adr);
never@739 503
never@739 504 void emit_operand(XMMRegister reg,
never@739 505 Register base, Register index, Address::ScaleFactor scale,
never@739 506 int disp,
never@739 507 RelocationHolder const& rspec);
never@739 508
never@739 509 void emit_operand(XMMRegister reg, Address adr);
never@739 510
never@739 511 void emit_operand(MMXRegister reg, Address adr);
never@739 512
never@739 513 // workaround gcc (3.2.1-7) bug
never@739 514 void emit_operand(Address adr, MMXRegister reg);
never@739 515
never@739 516
never@739 517 // Immediate-to-memory forms
never@739 518 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 519
never@739 520 void emit_farith(int b1, int b2, int i);
never@739 521
duke@435 522
duke@435 523 protected:
never@739 524 #ifdef ASSERT
never@739 525 void check_relocation(RelocationHolder const& rspec, int format);
never@739 526 #endif
never@739 527
never@739 528 inline void emit_long64(jlong x);
never@739 529
never@739 530 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 531 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 532 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 533 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 534
never@739 535
never@739 536 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 537
never@739 538 // These are all easily abused and hence protected
never@739 539
never@739 540 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
never@739 541
never@739 542 // 32BIT ONLY SECTION
never@739 543 #ifndef _LP64
never@739 544 // Make these disappear in 64bit mode since they would never be correct
never@739 545 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 546 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 547
never@739 548 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 549
never@739 550 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 551 #else
never@739 552 // 64BIT ONLY SECTION
never@739 553 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
never@739 554 #endif // _LP64
never@739 555
never@739 556 // These are unique in that we are ensured by the caller that the 32bit
never@739 557 // relative in these instructions will always be able to reach the potentially
never@739 558 // 64bit address described by entry. Since they can take a 64bit address they
never@739 559 // don't have the 32 suffix like the other instructions in this class.
never@739 560
never@739 561 void call_literal(address entry, RelocationHolder const& rspec);
never@739 562 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 563
never@739 564 // Avoid using directly section
never@739 565 // Instructions in this section are actually usable by anyone without danger
never@739 566 // of failure but have performance issues that are addressed my enhanced
never@739 567 // instructions which will do the proper thing base on the particular cpu.
never@739 568 // We protect them because we don't trust you...
never@739 569
duke@435 570 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 571 // could cause a partial flag stall since they don't set CF flag.
duke@435 572 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 573 // which call inc() & dec() or add() & sub() in accordance with
duke@435 574 // the product flag UseIncDec value.
duke@435 575
duke@435 576 void decl(Register dst);
duke@435 577 void decl(Address dst);
never@739 578 void decq(Register dst);
never@739 579 void decq(Address dst);
duke@435 580
duke@435 581 void incl(Register dst);
duke@435 582 void incl(Address dst);
never@739 583 void incq(Register dst);
never@739 584 void incq(Address dst);
never@739 585
never@739 586 // New cpus require use of movsd and movss to avoid partial register stall
never@739 587 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 588 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 589
never@739 590 // Move Scalar Single-Precision Floating-Point Values
never@739 591 void movss(XMMRegister dst, Address src);
never@739 592 void movss(XMMRegister dst, XMMRegister src);
never@739 593 void movss(Address dst, XMMRegister src);
never@739 594
never@739 595 // Move Scalar Double-Precision Floating-Point Values
never@739 596 void movsd(XMMRegister dst, Address src);
never@739 597 void movsd(XMMRegister dst, XMMRegister src);
never@739 598 void movsd(Address dst, XMMRegister src);
never@739 599 void movlpd(XMMRegister dst, Address src);
never@739 600
never@739 601 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 602 // when moving between registers.
never@739 603 void movaps(XMMRegister dst, XMMRegister src);
never@739 604 void movapd(XMMRegister dst, XMMRegister src);
never@739 605
never@739 606 // End avoid using directly
never@739 607
never@739 608
never@739 609 // Instruction prefixes
never@739 610 void prefix(Prefix p);
never@739 611
never@739 612 public:
never@739 613
never@739 614 // Creation
never@739 615 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 616
never@739 617 // Decoding
never@739 618 static address locate_operand(address inst, WhichOperand which);
never@739 619 static address locate_next_instruction(address inst);
never@739 620
never@739 621 // Utilities
never@739 622
never@739 623 #ifdef _LP64
never@739 624 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
never@739 625 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 626 #else
never@739 627 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); }
never@739 628 static bool is_simm32(int32_t x) { return true; }
never@739 629 #endif // LP64
never@739 630
never@739 631 // Generic instructions
never@739 632 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 633 // belong in macro assembler but there is no need for both varieties to exist
never@739 634
never@739 635 void lea(Register dst, Address src);
never@739 636
never@739 637 void mov(Register dst, Register src);
never@739 638
never@739 639 void pusha();
never@739 640 void popa();
never@739 641
never@739 642 void pushf();
never@739 643 void popf();
never@739 644
never@739 645 void push(int32_t imm32);
never@739 646
never@739 647 void push(Register src);
never@739 648
never@739 649 void pop(Register dst);
never@739 650
never@739 651 // These are dummies to prevent surprise implicit conversions to Register
never@739 652 void push(void* v);
never@739 653 void pop(void* v);
never@739 654
never@739 655
never@739 656 // These do register sized moves/scans
never@739 657 void rep_mov();
never@739 658 void rep_set();
never@739 659 void repne_scan();
never@739 660 #ifdef _LP64
never@739 661 void repne_scanl();
never@739 662 #endif
never@739 663
never@739 664 // Vanilla instructions in lexical order
never@739 665
never@739 666 void adcl(Register dst, int32_t imm32);
never@739 667 void adcl(Register dst, Address src);
never@739 668 void adcl(Register dst, Register src);
never@739 669
never@739 670 void adcq(Register dst, int32_t imm32);
never@739 671 void adcq(Register dst, Address src);
never@739 672 void adcq(Register dst, Register src);
never@739 673
never@739 674
never@739 675 void addl(Address dst, int32_t imm32);
never@739 676 void addl(Address dst, Register src);
never@739 677 void addl(Register dst, int32_t imm32);
never@739 678 void addl(Register dst, Address src);
never@739 679 void addl(Register dst, Register src);
never@739 680
never@739 681 void addq(Address dst, int32_t imm32);
never@739 682 void addq(Address dst, Register src);
never@739 683 void addq(Register dst, int32_t imm32);
never@739 684 void addq(Register dst, Address src);
never@739 685 void addq(Register dst, Register src);
never@739 686
never@739 687
duke@435 688 void addr_nop_4();
duke@435 689 void addr_nop_5();
duke@435 690 void addr_nop_7();
duke@435 691 void addr_nop_8();
duke@435 692
never@739 693 // Add Scalar Double-Precision Floating-Point Values
never@739 694 void addsd(XMMRegister dst, Address src);
never@739 695 void addsd(XMMRegister dst, XMMRegister src);
never@739 696
never@739 697 // Add Scalar Single-Precision Floating-Point Values
never@739 698 void addss(XMMRegister dst, Address src);
never@739 699 void addss(XMMRegister dst, XMMRegister src);
never@739 700
never@739 701 void andl(Register dst, int32_t imm32);
never@739 702 void andl(Register dst, Address src);
never@739 703 void andl(Register dst, Register src);
never@739 704
never@739 705 void andq(Register dst, int32_t imm32);
never@739 706 void andq(Register dst, Address src);
never@739 707 void andq(Register dst, Register src);
never@739 708
never@739 709
never@739 710 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 711 void andpd(XMMRegister dst, Address src);
never@739 712 void andpd(XMMRegister dst, XMMRegister src);
never@739 713
never@739 714 void bswapl(Register reg);
never@739 715
never@739 716 void bswapq(Register reg);
never@739 717
duke@435 718 void call(Label& L, relocInfo::relocType rtype);
duke@435 719 void call(Register reg); // push pc; pc <- reg
duke@435 720 void call(Address adr); // push pc; pc <- adr
duke@435 721
never@739 722 void cdql();
never@739 723
never@739 724 void cdqq();
never@739 725
never@739 726 void cld() { emit_byte(0xfc); }
never@739 727
never@739 728 void clflush(Address adr);
never@739 729
never@739 730 void cmovl(Condition cc, Register dst, Register src);
never@739 731 void cmovl(Condition cc, Register dst, Address src);
never@739 732
never@739 733 void cmovq(Condition cc, Register dst, Register src);
never@739 734 void cmovq(Condition cc, Register dst, Address src);
never@739 735
never@739 736
never@739 737 void cmpb(Address dst, int imm8);
never@739 738
never@739 739 void cmpl(Address dst, int32_t imm32);
never@739 740
never@739 741 void cmpl(Register dst, int32_t imm32);
never@739 742 void cmpl(Register dst, Register src);
never@739 743 void cmpl(Register dst, Address src);
never@739 744
never@739 745 void cmpq(Address dst, int32_t imm32);
never@739 746 void cmpq(Address dst, Register src);
never@739 747
never@739 748 void cmpq(Register dst, int32_t imm32);
never@739 749 void cmpq(Register dst, Register src);
never@739 750 void cmpq(Register dst, Address src);
never@739 751
never@739 752 // these are dummies used to catch attempting to convert NULL to Register
never@739 753 void cmpl(Register dst, void* junk); // dummy
never@739 754 void cmpq(Register dst, void* junk); // dummy
never@739 755
never@739 756 void cmpw(Address dst, int imm16);
never@739 757
never@739 758 void cmpxchg8 (Address adr);
never@739 759
never@739 760 void cmpxchgl(Register reg, Address adr);
never@739 761
never@739 762 void cmpxchgq(Register reg, Address adr);
never@739 763
never@739 764 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 765 void comisd(XMMRegister dst, Address src);
never@739 766
never@739 767 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 768 void comiss(XMMRegister dst, Address src);
never@739 769
never@739 770 // Identify processor type and features
never@739 771 void cpuid() {
never@739 772 emit_byte(0x0F);
never@739 773 emit_byte(0xA2);
never@739 774 }
never@739 775
never@739 776 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 777 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 778
never@739 779 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 780 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 781 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 782
never@739 783 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 784 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 785 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 786
never@739 787 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 788 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 789
never@739 790 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 791 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 792
never@739 793 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 794 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 795
never@739 796 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 797 void cvttsd2sil(Register dst, Address src);
never@739 798 void cvttsd2sil(Register dst, XMMRegister src);
never@739 799 void cvttsd2siq(Register dst, XMMRegister src);
never@739 800
never@739 801 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 802 void cvttss2sil(Register dst, XMMRegister src);
never@739 803 void cvttss2siq(Register dst, XMMRegister src);
never@739 804
never@739 805 // Divide Scalar Double-Precision Floating-Point Values
never@739 806 void divsd(XMMRegister dst, Address src);
never@739 807 void divsd(XMMRegister dst, XMMRegister src);
never@739 808
never@739 809 // Divide Scalar Single-Precision Floating-Point Values
never@739 810 void divss(XMMRegister dst, Address src);
never@739 811 void divss(XMMRegister dst, XMMRegister src);
never@739 812
never@739 813 void emms();
never@739 814
never@739 815 void fabs();
never@739 816
never@739 817 void fadd(int i);
never@739 818
never@739 819 void fadd_d(Address src);
never@739 820 void fadd_s(Address src);
never@739 821
never@739 822 // "Alternate" versions of x87 instructions place result down in FPU
never@739 823 // stack instead of on TOS
never@739 824
never@739 825 void fadda(int i); // "alternate" fadd
never@739 826 void faddp(int i = 1);
never@739 827
never@739 828 void fchs();
never@739 829
never@739 830 void fcom(int i);
never@739 831
never@739 832 void fcomp(int i = 1);
never@739 833 void fcomp_d(Address src);
never@739 834 void fcomp_s(Address src);
never@739 835
never@739 836 void fcompp();
never@739 837
never@739 838 void fcos();
never@739 839
never@739 840 void fdecstp();
never@739 841
never@739 842 void fdiv(int i);
never@739 843 void fdiv_d(Address src);
never@739 844 void fdivr_s(Address src);
never@739 845 void fdiva(int i); // "alternate" fdiv
never@739 846 void fdivp(int i = 1);
never@739 847
never@739 848 void fdivr(int i);
never@739 849 void fdivr_d(Address src);
never@739 850 void fdiv_s(Address src);
never@739 851
never@739 852 void fdivra(int i); // "alternate" reversed fdiv
never@739 853
never@739 854 void fdivrp(int i = 1);
never@739 855
never@739 856 void ffree(int i = 0);
never@739 857
never@739 858 void fild_d(Address adr);
never@739 859 void fild_s(Address adr);
never@739 860
never@739 861 void fincstp();
never@739 862
never@739 863 void finit();
never@739 864
never@739 865 void fist_s (Address adr);
never@739 866 void fistp_d(Address adr);
never@739 867 void fistp_s(Address adr);
never@739 868
never@739 869 void fld1();
never@739 870
never@739 871 void fld_d(Address adr);
never@739 872 void fld_s(Address adr);
never@739 873 void fld_s(int index);
never@739 874 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 875
never@739 876 void fldcw(Address src);
never@739 877
never@739 878 void fldenv(Address src);
never@739 879
never@739 880 void fldlg2();
never@739 881
never@739 882 void fldln2();
never@739 883
never@739 884 void fldz();
never@739 885
never@739 886 void flog();
never@739 887 void flog10();
never@739 888
never@739 889 void fmul(int i);
never@739 890
never@739 891 void fmul_d(Address src);
never@739 892 void fmul_s(Address src);
never@739 893
never@739 894 void fmula(int i); // "alternate" fmul
never@739 895
never@739 896 void fmulp(int i = 1);
never@739 897
never@739 898 void fnsave(Address dst);
never@739 899
never@739 900 void fnstcw(Address src);
never@739 901
never@739 902 void fnstsw_ax();
never@739 903
never@739 904 void fprem();
never@739 905 void fprem1();
never@739 906
never@739 907 void frstor(Address src);
never@739 908
never@739 909 void fsin();
never@739 910
never@739 911 void fsqrt();
never@739 912
never@739 913 void fst_d(Address adr);
never@739 914 void fst_s(Address adr);
never@739 915
never@739 916 void fstp_d(Address adr);
never@739 917 void fstp_d(int index);
never@739 918 void fstp_s(Address adr);
never@739 919 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 920
never@739 921 void fsub(int i);
never@739 922 void fsub_d(Address src);
never@739 923 void fsub_s(Address src);
never@739 924
never@739 925 void fsuba(int i); // "alternate" fsub
never@739 926
never@739 927 void fsubp(int i = 1);
never@739 928
never@739 929 void fsubr(int i);
never@739 930 void fsubr_d(Address src);
never@739 931 void fsubr_s(Address src);
never@739 932
never@739 933 void fsubra(int i); // "alternate" reversed fsub
never@739 934
never@739 935 void fsubrp(int i = 1);
never@739 936
never@739 937 void ftan();
never@739 938
never@739 939 void ftst();
never@739 940
never@739 941 void fucomi(int i = 1);
never@739 942 void fucomip(int i = 1);
never@739 943
never@739 944 void fwait();
never@739 945
never@739 946 void fxch(int i = 1);
never@739 947
never@739 948 void fxrstor(Address src);
never@739 949
never@739 950 void fxsave(Address dst);
never@739 951
never@739 952 void fyl2x();
never@739 953
never@739 954 void hlt();
never@739 955
never@739 956 void idivl(Register src);
never@739 957
never@739 958 void idivq(Register src);
never@739 959
never@739 960 void imull(Register dst, Register src);
never@739 961 void imull(Register dst, Register src, int value);
never@739 962
never@739 963 void imulq(Register dst, Register src);
never@739 964 void imulq(Register dst, Register src, int value);
never@739 965
duke@435 966
duke@435 967 // jcc is the generic conditional branch generator to run-
duke@435 968 // time routines, jcc is used for branches to labels. jcc
duke@435 969 // takes a branch opcode (cc) and a label (L) and generates
duke@435 970 // either a backward branch or a forward branch and links it
duke@435 971 // to the label fixup chain. Usage:
duke@435 972 //
duke@435 973 // Label L; // unbound label
duke@435 974 // jcc(cc, L); // forward branch to unbound label
duke@435 975 // bind(L); // bind label to the current pc
duke@435 976 // jcc(cc, L); // backward branch to bound label
duke@435 977 // bind(L); // illegal: a label may be bound only once
duke@435 978 //
duke@435 979 // Note: The same Label can be used for forward and backward branches
duke@435 980 // but it may be bound only once.
duke@435 981
duke@435 982 void jcc(Condition cc, Label& L,
duke@435 983 relocInfo::relocType rtype = relocInfo::none);
duke@435 984
duke@435 985 // Conditional jump to a 8-bit offset to L.
duke@435 986 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 987 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 988 // will occur.
duke@435 989 void jccb(Condition cc, Label& L);
duke@435 990
never@739 991 void jmp(Address entry); // pc <- entry
never@739 992
never@739 993 // Label operations & relative jumps (PPUM Appendix D)
never@739 994 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
never@739 995
never@739 996 void jmp(Register entry); // pc <- entry
never@739 997
never@739 998 // Unconditional 8-bit offset jump to L.
never@739 999 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1000 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1001 // will occur.
never@739 1002 void jmpb(Label& L);
never@739 1003
never@739 1004 void ldmxcsr( Address src );
never@739 1005
never@739 1006 void leal(Register dst, Address src);
never@739 1007
never@739 1008 void leaq(Register dst, Address src);
never@739 1009
never@739 1010 void lfence() {
never@739 1011 emit_byte(0x0F);
never@739 1012 emit_byte(0xAE);
never@739 1013 emit_byte(0xE8);
never@739 1014 }
never@739 1015
never@739 1016 void lock();
never@739 1017
never@739 1018 enum Membar_mask_bits {
never@739 1019 StoreStore = 1 << 3,
never@739 1020 LoadStore = 1 << 2,
never@739 1021 StoreLoad = 1 << 1,
never@739 1022 LoadLoad = 1 << 0
never@739 1023 };
never@739 1024
never@739 1025 // Serializes memory.
never@739 1026 void membar(Membar_mask_bits order_constraint) {
never@739 1027 // We only have to handle StoreLoad and LoadLoad
never@739 1028 if (order_constraint & StoreLoad) {
never@739 1029 // MFENCE subsumes LFENCE
never@739 1030 mfence();
never@739 1031 } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
never@739 1032 lfence();
never@739 1033 } */
never@739 1034 }
never@739 1035
never@739 1036 void mfence();
never@739 1037
never@739 1038 // Moves
never@739 1039
never@739 1040 void mov64(Register dst, int64_t imm64);
never@739 1041
never@739 1042 void movb(Address dst, Register src);
never@739 1043 void movb(Address dst, int imm8);
never@739 1044 void movb(Register dst, Address src);
never@739 1045
never@739 1046 void movdl(XMMRegister dst, Register src);
never@739 1047 void movdl(Register dst, XMMRegister src);
never@739 1048
never@739 1049 // Move Double Quadword
never@739 1050 void movdq(XMMRegister dst, Register src);
never@739 1051 void movdq(Register dst, XMMRegister src);
never@739 1052
never@739 1053 // Move Aligned Double Quadword
never@739 1054 void movdqa(Address dst, XMMRegister src);
never@739 1055 void movdqa(XMMRegister dst, Address src);
never@739 1056 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1057
kvn@840 1058 // Move Unaligned Double Quadword
kvn@840 1059 void movdqu(Address dst, XMMRegister src);
kvn@840 1060 void movdqu(XMMRegister dst, Address src);
kvn@840 1061 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1062
never@739 1063 void movl(Register dst, int32_t imm32);
never@739 1064 void movl(Address dst, int32_t imm32);
never@739 1065 void movl(Register dst, Register src);
never@739 1066 void movl(Register dst, Address src);
never@739 1067 void movl(Address dst, Register src);
never@739 1068
never@739 1069 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1070 // by giving the compiler two choices it can't resolve
never@739 1071
never@739 1072 void movl(Address dst, void* junk);
never@739 1073 void movl(Register dst, void* junk);
never@739 1074
never@739 1075 #ifdef _LP64
never@739 1076 void movq(Register dst, Register src);
never@739 1077 void movq(Register dst, Address src);
never@739 1078 void movq(Address dst, Register src);
never@739 1079 #endif
never@739 1080
never@739 1081 void movq(Address dst, MMXRegister src );
never@739 1082 void movq(MMXRegister dst, Address src );
never@739 1083
never@739 1084 #ifdef _LP64
never@739 1085 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1086 // by giving the compiler two choices it can't resolve
never@739 1087
never@739 1088 void movq(Address dst, void* dummy);
never@739 1089 void movq(Register dst, void* dummy);
never@739 1090 #endif
never@739 1091
never@739 1092 // Move Quadword
never@739 1093 void movq(Address dst, XMMRegister src);
never@739 1094 void movq(XMMRegister dst, Address src);
never@739 1095
never@739 1096 void movsbl(Register dst, Address src);
never@739 1097 void movsbl(Register dst, Register src);
never@739 1098
never@739 1099 #ifdef _LP64
never@739 1100 // Move signed 32bit immediate to 64bit extending sign
never@739 1101 void movslq(Address dst, int32_t imm64);
never@739 1102 void movslq(Register dst, int32_t imm64);
never@739 1103
never@739 1104 void movslq(Register dst, Address src);
never@739 1105 void movslq(Register dst, Register src);
never@739 1106 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1107 #endif
never@739 1108
never@739 1109 void movswl(Register dst, Address src);
never@739 1110 void movswl(Register dst, Register src);
never@739 1111
never@739 1112 void movw(Address dst, int imm16);
never@739 1113 void movw(Register dst, Address src);
never@739 1114 void movw(Address dst, Register src);
never@739 1115
never@739 1116 void movzbl(Register dst, Address src);
never@739 1117 void movzbl(Register dst, Register src);
never@739 1118
never@739 1119 void movzwl(Register dst, Address src);
never@739 1120 void movzwl(Register dst, Register src);
never@739 1121
never@739 1122 void mull(Address src);
never@739 1123 void mull(Register src);
never@739 1124
never@739 1125 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1126 void mulsd(XMMRegister dst, Address src);
never@739 1127 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1128
never@739 1129 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1130 void mulss(XMMRegister dst, Address src);
never@739 1131 void mulss(XMMRegister dst, XMMRegister src);
never@739 1132
never@739 1133 void negl(Register dst);
never@739 1134
never@739 1135 #ifdef _LP64
never@739 1136 void negq(Register dst);
never@739 1137 #endif
never@739 1138
never@739 1139 void nop(int i = 1);
never@739 1140
never@739 1141 void notl(Register dst);
never@739 1142
never@739 1143 #ifdef _LP64
never@739 1144 void notq(Register dst);
never@739 1145 #endif
never@739 1146
never@739 1147 void orl(Address dst, int32_t imm32);
never@739 1148 void orl(Register dst, int32_t imm32);
never@739 1149 void orl(Register dst, Address src);
never@739 1150 void orl(Register dst, Register src);
never@739 1151
never@739 1152 void orq(Address dst, int32_t imm32);
never@739 1153 void orq(Register dst, int32_t imm32);
never@739 1154 void orq(Register dst, Address src);
never@739 1155 void orq(Register dst, Register src);
never@739 1156
never@739 1157 void popl(Address dst);
never@739 1158
never@739 1159 #ifdef _LP64
never@739 1160 void popq(Address dst);
never@739 1161 #endif
never@739 1162
never@739 1163 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1164
never@739 1165 void prefetchnta(Address src);
never@739 1166 void prefetchr(Address src);
never@739 1167 void prefetcht0(Address src);
never@739 1168 void prefetcht1(Address src);
never@739 1169 void prefetcht2(Address src);
never@739 1170 void prefetchw(Address src);
never@739 1171
never@739 1172 // Shuffle Packed Doublewords
never@739 1173 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1174 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1175
never@739 1176 // Shuffle Packed Low Words
never@739 1177 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1178 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1179
never@739 1180 // Shift Right Logical Quadword Immediate
never@739 1181 void psrlq(XMMRegister dst, int shift);
never@739 1182
never@739 1183 // Interleave Low Bytes
never@739 1184 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1185
never@739 1186 void pushl(Address src);
never@739 1187
never@739 1188 void pushq(Address src);
never@739 1189
never@739 1190 // Xor Packed Byte Integer Values
never@739 1191 void pxor(XMMRegister dst, Address src);
never@739 1192 void pxor(XMMRegister dst, XMMRegister src);
never@739 1193
never@739 1194 void rcll(Register dst, int imm8);
never@739 1195
never@739 1196 void rclq(Register dst, int imm8);
never@739 1197
never@739 1198 void ret(int imm16);
duke@435 1199
duke@435 1200 void sahf();
duke@435 1201
never@739 1202 void sarl(Register dst, int imm8);
never@739 1203 void sarl(Register dst);
never@739 1204
never@739 1205 void sarq(Register dst, int imm8);
never@739 1206 void sarq(Register dst);
never@739 1207
never@739 1208 void sbbl(Address dst, int32_t imm32);
never@739 1209 void sbbl(Register dst, int32_t imm32);
never@739 1210 void sbbl(Register dst, Address src);
never@739 1211 void sbbl(Register dst, Register src);
never@739 1212
never@739 1213 void sbbq(Address dst, int32_t imm32);
never@739 1214 void sbbq(Register dst, int32_t imm32);
never@739 1215 void sbbq(Register dst, Address src);
never@739 1216 void sbbq(Register dst, Register src);
never@739 1217
never@739 1218 void setb(Condition cc, Register dst);
never@739 1219
never@739 1220 void shldl(Register dst, Register src);
never@739 1221
never@739 1222 void shll(Register dst, int imm8);
never@739 1223 void shll(Register dst);
never@739 1224
never@739 1225 void shlq(Register dst, int imm8);
never@739 1226 void shlq(Register dst);
never@739 1227
never@739 1228 void shrdl(Register dst, Register src);
never@739 1229
never@739 1230 void shrl(Register dst, int imm8);
never@739 1231 void shrl(Register dst);
never@739 1232
never@739 1233 void shrq(Register dst, int imm8);
never@739 1234 void shrq(Register dst);
never@739 1235
never@739 1236 void smovl(); // QQQ generic?
never@739 1237
never@739 1238 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1239 void sqrtsd(XMMRegister dst, Address src);
never@739 1240 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1241
never@739 1242 void std() { emit_byte(0xfd); }
never@739 1243
never@739 1244 void stmxcsr( Address dst );
never@739 1245
never@739 1246 void subl(Address dst, int32_t imm32);
never@739 1247 void subl(Address dst, Register src);
never@739 1248 void subl(Register dst, int32_t imm32);
never@739 1249 void subl(Register dst, Address src);
never@739 1250 void subl(Register dst, Register src);
never@739 1251
never@739 1252 void subq(Address dst, int32_t imm32);
never@739 1253 void subq(Address dst, Register src);
never@739 1254 void subq(Register dst, int32_t imm32);
never@739 1255 void subq(Register dst, Address src);
never@739 1256 void subq(Register dst, Register src);
never@739 1257
never@739 1258
never@739 1259 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1260 void subsd(XMMRegister dst, Address src);
never@739 1261 void subsd(XMMRegister dst, XMMRegister src);
never@739 1262
never@739 1263 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1264 void subss(XMMRegister dst, Address src);
duke@435 1265 void subss(XMMRegister dst, XMMRegister src);
never@739 1266
never@739 1267 void testb(Register dst, int imm8);
never@739 1268
never@739 1269 void testl(Register dst, int32_t imm32);
never@739 1270 void testl(Register dst, Register src);
never@739 1271 void testl(Register dst, Address src);
never@739 1272
never@739 1273 void testq(Register dst, int32_t imm32);
never@739 1274 void testq(Register dst, Register src);
never@739 1275
never@739 1276
never@739 1277 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1278 void ucomisd(XMMRegister dst, Address src);
never@739 1279 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1280
never@739 1281 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1282 void ucomiss(XMMRegister dst, Address src);
duke@435 1283 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1284
never@739 1285 void xaddl(Address dst, Register src);
never@739 1286
never@739 1287 void xaddq(Address dst, Register src);
never@739 1288
never@739 1289 void xchgl(Register reg, Address adr);
never@739 1290 void xchgl(Register dst, Register src);
never@739 1291
never@739 1292 void xchgq(Register reg, Address adr);
never@739 1293 void xchgq(Register dst, Register src);
never@739 1294
never@739 1295 void xorl(Register dst, int32_t imm32);
never@739 1296 void xorl(Register dst, Address src);
never@739 1297 void xorl(Register dst, Register src);
never@739 1298
never@739 1299 void xorq(Register dst, Address src);
never@739 1300 void xorq(Register dst, Register src);
never@739 1301
never@739 1302 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1303 void xorpd(XMMRegister dst, Address src);
never@739 1304 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1305
never@739 1306 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1307 void xorps(XMMRegister dst, Address src);
duke@435 1308 void xorps(XMMRegister dst, XMMRegister src);
never@739 1309
never@739 1310 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1311 };
duke@435 1312
duke@435 1313
duke@435 1314 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1315 //
duke@435 1316 // Instructions for which a 'better' code sequence exists depending
duke@435 1317 // on arguments should also go in here.
duke@435 1318
duke@435 1319 class MacroAssembler: public Assembler {
ysr@777 1320 friend class LIR_Assembler;
ysr@777 1321 friend class Runtime1; // as_Address()
duke@435 1322 protected:
duke@435 1323
duke@435 1324 Address as_Address(AddressLiteral adr);
duke@435 1325 Address as_Address(ArrayAddress adr);
duke@435 1326
duke@435 1327 // Support for VM calls
duke@435 1328 //
duke@435 1329 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1330 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1331 // additional registers when doing a VM call).
duke@435 1332 #ifdef CC_INTERP
duke@435 1333 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1334 #define VIRTUAL
duke@435 1335 #else
duke@435 1336 #define VIRTUAL virtual
duke@435 1337 #endif
duke@435 1338
duke@435 1339 VIRTUAL void call_VM_leaf_base(
duke@435 1340 address entry_point, // the entry point
duke@435 1341 int number_of_arguments // the number of arguments to pop after the call
duke@435 1342 );
duke@435 1343
duke@435 1344 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1345 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1346 // additional registers when doing a VM call).
duke@435 1347 //
duke@435 1348 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1349 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1350 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1351 // (noreg) than rsp will be used instead.
duke@435 1352 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1353 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1354 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1355 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1356 address entry_point, // the entry point
duke@435 1357 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1358 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1359 );
duke@435 1360
duke@435 1361 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1362 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1363 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1364 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1365 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1366
duke@435 1367 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1368
duke@435 1369 // helpers for FPU flag access
duke@435 1370 // tmp is a temporary register, if none is available use noreg
duke@435 1371 void save_rax (Register tmp);
duke@435 1372 void restore_rax(Register tmp);
duke@435 1373
duke@435 1374 public:
duke@435 1375 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1376
duke@435 1377 // Support for NULL-checks
duke@435 1378 //
duke@435 1379 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1380 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1381 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1382 // range (0 <= offset <= page_size).
duke@435 1383
duke@435 1384 void null_check(Register reg, int offset = -1);
kvn@603 1385 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1386
duke@435 1387 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1388 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1389 void pd_patch_instruction(address branch, address target);
duke@435 1390 #ifndef PRODUCT
duke@435 1391 static void pd_print_patched_instruction(address branch);
duke@435 1392 #endif
duke@435 1393
duke@435 1394 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1395
duke@435 1396 // Support for fast byte/word loading with zero extension (depending on particular CPU)
duke@435 1397 int load_unsigned_byte(Register dst, Address src);
duke@435 1398 int load_unsigned_word(Register dst, Address src);
duke@435 1399
duke@435 1400 // Support for fast byte/word loading with sign extension (depending on particular CPU)
duke@435 1401 int load_signed_byte(Register dst, Address src);
duke@435 1402 int load_signed_word(Register dst, Address src);
duke@435 1403
duke@435 1404 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1405 void extend_sign(Register hi, Register lo);
duke@435 1406
duke@435 1407 // Support for inc/dec with optimal instruction selection depending on value
never@739 1408
never@739 1409 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1410 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1411
never@739 1412 void decrementl(Address dst, int value = 1);
never@739 1413 void decrementl(Register reg, int value = 1);
never@739 1414
never@739 1415 void decrementq(Register reg, int value = 1);
never@739 1416 void decrementq(Address dst, int value = 1);
never@739 1417
never@739 1418 void incrementl(Address dst, int value = 1);
never@739 1419 void incrementl(Register reg, int value = 1);
never@739 1420
never@739 1421 void incrementq(Register reg, int value = 1);
never@739 1422 void incrementq(Address dst, int value = 1);
never@739 1423
duke@435 1424
duke@435 1425 // Support optimal SSE move instructions.
duke@435 1426 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1427 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1428 else { movss (dst, src); return; }
duke@435 1429 }
duke@435 1430 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1431 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1432 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1433
duke@435 1434 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1435 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1436 else { movsd (dst, src); return; }
duke@435 1437 }
duke@435 1438
duke@435 1439 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1440
duke@435 1441 void movdbl(XMMRegister dst, Address src) {
duke@435 1442 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1443 else { movlpd(dst, src); return; }
duke@435 1444 }
duke@435 1445 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1446
never@739 1447 void incrementl(AddressLiteral dst);
never@739 1448 void incrementl(ArrayAddress dst);
duke@435 1449
duke@435 1450 // Alignment
duke@435 1451 void align(int modulus);
duke@435 1452
duke@435 1453 // Misc
duke@435 1454 void fat_nop(); // 5 byte nop
duke@435 1455
duke@435 1456 // Stack frame creation/removal
duke@435 1457 void enter();
duke@435 1458 void leave();
duke@435 1459
duke@435 1460 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1461 // The pointer will be loaded into the thread register.
duke@435 1462 void get_thread(Register thread);
duke@435 1463
apetrusenko@797 1464
duke@435 1465 // Support for VM calls
duke@435 1466 //
duke@435 1467 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1468 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1469 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1470
never@739 1471
never@739 1472 void call_VM(Register oop_result,
never@739 1473 address entry_point,
never@739 1474 bool check_exceptions = true);
never@739 1475 void call_VM(Register oop_result,
never@739 1476 address entry_point,
never@739 1477 Register arg_1,
never@739 1478 bool check_exceptions = true);
never@739 1479 void call_VM(Register oop_result,
never@739 1480 address entry_point,
never@739 1481 Register arg_1, Register arg_2,
never@739 1482 bool check_exceptions = true);
never@739 1483 void call_VM(Register oop_result,
never@739 1484 address entry_point,
never@739 1485 Register arg_1, Register arg_2, Register arg_3,
never@739 1486 bool check_exceptions = true);
never@739 1487
never@739 1488 // Overloadings with last_Java_sp
never@739 1489 void call_VM(Register oop_result,
never@739 1490 Register last_java_sp,
never@739 1491 address entry_point,
never@739 1492 int number_of_arguments = 0,
never@739 1493 bool check_exceptions = true);
never@739 1494 void call_VM(Register oop_result,
never@739 1495 Register last_java_sp,
never@739 1496 address entry_point,
never@739 1497 Register arg_1, bool
never@739 1498 check_exceptions = true);
never@739 1499 void call_VM(Register oop_result,
never@739 1500 Register last_java_sp,
never@739 1501 address entry_point,
never@739 1502 Register arg_1, Register arg_2,
never@739 1503 bool check_exceptions = true);
never@739 1504 void call_VM(Register oop_result,
never@739 1505 Register last_java_sp,
never@739 1506 address entry_point,
never@739 1507 Register arg_1, Register arg_2, Register arg_3,
never@739 1508 bool check_exceptions = true);
never@739 1509
never@739 1510 void call_VM_leaf(address entry_point,
never@739 1511 int number_of_arguments = 0);
never@739 1512 void call_VM_leaf(address entry_point,
never@739 1513 Register arg_1);
never@739 1514 void call_VM_leaf(address entry_point,
never@739 1515 Register arg_1, Register arg_2);
never@739 1516 void call_VM_leaf(address entry_point,
never@739 1517 Register arg_1, Register arg_2, Register arg_3);
duke@435 1518
duke@435 1519 // last Java Frame (fills frame anchor)
never@739 1520 void set_last_Java_frame(Register thread,
never@739 1521 Register last_java_sp,
never@739 1522 Register last_java_fp,
never@739 1523 address last_java_pc);
never@739 1524
never@739 1525 // thread in the default location (r15_thread on 64bit)
never@739 1526 void set_last_Java_frame(Register last_java_sp,
never@739 1527 Register last_java_fp,
never@739 1528 address last_java_pc);
never@739 1529
duke@435 1530 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1531
never@739 1532 // thread in the default location (r15_thread on 64bit)
never@739 1533 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1534
duke@435 1535 // Stores
duke@435 1536 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1537 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1538
apetrusenko@797 1539 void g1_write_barrier_pre(Register obj,
apetrusenko@797 1540 #ifndef _LP64
apetrusenko@797 1541 Register thread,
apetrusenko@797 1542 #endif
apetrusenko@797 1543 Register tmp,
apetrusenko@797 1544 Register tmp2,
apetrusenko@797 1545 bool tosca_live);
apetrusenko@797 1546 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1547 Register new_val,
apetrusenko@797 1548 #ifndef _LP64
apetrusenko@797 1549 Register thread,
apetrusenko@797 1550 #endif
apetrusenko@797 1551 Register tmp,
apetrusenko@797 1552 Register tmp2);
ysr@777 1553
ysr@777 1554
duke@435 1555 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1556 void store_check_part_1(Register obj);
duke@435 1557 void store_check_part_2(Register obj);
duke@435 1558
duke@435 1559 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1560 void c2bool(Register x);
duke@435 1561
duke@435 1562 // C++ bool manipulation
duke@435 1563
duke@435 1564 void movbool(Register dst, Address src);
duke@435 1565 void movbool(Address dst, bool boolconst);
duke@435 1566 void movbool(Address dst, Register src);
duke@435 1567 void testbool(Register dst);
duke@435 1568
never@739 1569 // oop manipulations
never@739 1570 void load_klass(Register dst, Register src);
never@739 1571 void store_klass(Register dst, Register src);
never@739 1572
never@739 1573 void load_prototype_header(Register dst, Register src);
never@739 1574
never@739 1575 #ifdef _LP64
never@739 1576 void store_klass_gap(Register dst, Register src);
never@739 1577
never@739 1578 void load_heap_oop(Register dst, Address src);
never@739 1579 void store_heap_oop(Address dst, Register src);
never@739 1580 void encode_heap_oop(Register r);
never@739 1581 void decode_heap_oop(Register r);
never@739 1582 void encode_heap_oop_not_null(Register r);
never@739 1583 void decode_heap_oop_not_null(Register r);
never@739 1584 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1585 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1586
never@739 1587 void set_narrow_oop(Register dst, jobject obj);
never@739 1588
never@739 1589 // if heap base register is used - reinit it with the correct value
never@739 1590 void reinit_heapbase();
never@739 1591 #endif // _LP64
never@739 1592
never@739 1593 // Int division/remainder for Java
duke@435 1594 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1595 // returns idivl instruction offset for implicit exception handling
duke@435 1596 int corrected_idivl(Register reg);
duke@435 1597
never@739 1598 // Long division/remainder for Java
never@739 1599 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1600 // returns idivq instruction offset for implicit exception handling
never@739 1601 int corrected_idivq(Register reg);
never@739 1602
duke@435 1603 void int3();
duke@435 1604
never@739 1605 // Long operation macros for a 32bit cpu
duke@435 1606 // Long negation for Java
duke@435 1607 void lneg(Register hi, Register lo);
duke@435 1608
duke@435 1609 // Long multiplication for Java
never@739 1610 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1611 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1612
duke@435 1613 // Long shifts for Java
duke@435 1614 // (semantics as described in JVM spec.)
duke@435 1615 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1616 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1617
duke@435 1618 // Long compare for Java
duke@435 1619 // (semantics as described in JVM spec.)
duke@435 1620 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1621
never@739 1622
never@739 1623 // misc
never@739 1624
never@739 1625 // Sign extension
never@739 1626 void sign_extend_short(Register reg);
never@739 1627 void sign_extend_byte(Register reg);
never@739 1628
never@739 1629 // Division by power of 2, rounding towards 0
never@739 1630 void division_with_shift(Register reg, int shift_value);
never@739 1631
duke@435 1632 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1633 //
duke@435 1634 // CF (corresponds to C0) if x < y
duke@435 1635 // PF (corresponds to C2) if unordered
duke@435 1636 // ZF (corresponds to C3) if x = y
duke@435 1637 //
duke@435 1638 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1639 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1640 void fcmp(Register tmp);
duke@435 1641 // Variant of the above which allows y to be further down the stack
duke@435 1642 // and which only pops x and y if specified. If pop_right is
duke@435 1643 // specified then pop_left must also be specified.
duke@435 1644 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1645
duke@435 1646 // Floating-point comparison for Java
duke@435 1647 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1648 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1649 // (semantics as described in JVM spec.)
duke@435 1650 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1651 // Variant of the above which allows y to be further down the stack
duke@435 1652 // and which only pops x and y if specified. If pop_right is
duke@435 1653 // specified then pop_left must also be specified.
duke@435 1654 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1655
duke@435 1656 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1657 // tmp is a temporary register, if none is available use noreg
duke@435 1658 void fremr(Register tmp);
duke@435 1659
duke@435 1660
duke@435 1661 // same as fcmp2int, but using SSE2
duke@435 1662 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1663 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1664
duke@435 1665 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1666 // directly on Intel as it does not have high enough precision
duke@435 1667 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1668 // number of FPU stack slots in use; all but the topmost will
duke@435 1669 // require saving if a slow case is necessary. Assumes argument is
duke@435 1670 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1671 // this code.
duke@435 1672 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1673
duke@435 1674 // branch to L if FPU flag C2 is set/not set
duke@435 1675 // tmp is a temporary register, if none is available use noreg
duke@435 1676 void jC2 (Register tmp, Label& L);
duke@435 1677 void jnC2(Register tmp, Label& L);
duke@435 1678
duke@435 1679 // Pop ST (ffree & fincstp combined)
duke@435 1680 void fpop();
duke@435 1681
duke@435 1682 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1683 void push_fTOS();
duke@435 1684
duke@435 1685 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1686 void pop_fTOS();
duke@435 1687
duke@435 1688 void empty_FPU_stack();
duke@435 1689
duke@435 1690 void push_IU_state();
duke@435 1691 void pop_IU_state();
duke@435 1692
duke@435 1693 void push_FPU_state();
duke@435 1694 void pop_FPU_state();
duke@435 1695
duke@435 1696 void push_CPU_state();
duke@435 1697 void pop_CPU_state();
duke@435 1698
duke@435 1699 // Round up to a power of two
duke@435 1700 void round_to(Register reg, int modulus);
duke@435 1701
duke@435 1702 // Callee saved registers handling
duke@435 1703 void push_callee_saved_registers();
duke@435 1704 void pop_callee_saved_registers();
duke@435 1705
duke@435 1706 // allocation
duke@435 1707 void eden_allocate(
duke@435 1708 Register obj, // result: pointer to object after successful allocation
duke@435 1709 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1710 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1711 Register t1, // temp register
duke@435 1712 Label& slow_case // continuation point if fast allocation fails
duke@435 1713 );
duke@435 1714 void tlab_allocate(
duke@435 1715 Register obj, // result: pointer to object after successful allocation
duke@435 1716 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1717 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1718 Register t1, // temp register
duke@435 1719 Register t2, // temp register
duke@435 1720 Label& slow_case // continuation point if fast allocation fails
duke@435 1721 );
duke@435 1722 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 1723
duke@435 1724 //----
duke@435 1725 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1726
duke@435 1727 // Debugging
never@739 1728
never@739 1729 // only if +VerifyOops
never@739 1730 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1731 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1732
never@739 1733 // only if +VerifyFPU
never@739 1734 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1735
never@739 1736 // prints msg, dumps registers and stops execution
never@739 1737 void stop(const char* msg);
never@739 1738
never@739 1739 // prints msg and continues
never@739 1740 void warn(const char* msg);
never@739 1741
never@739 1742 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1743 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1744
duke@435 1745 void os_breakpoint();
never@739 1746
duke@435 1747 void untested() { stop("untested"); }
never@739 1748
duke@435 1749 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
never@739 1750
duke@435 1751 void should_not_reach_here() { stop("should not reach here"); }
never@739 1752
duke@435 1753 void print_CPU_state();
duke@435 1754
duke@435 1755 // Stack overflow checking
duke@435 1756 void bang_stack_with_offset(int offset) {
duke@435 1757 // stack grows down, caller passes positive offset
duke@435 1758 assert(offset > 0, "must bang with negative offset");
duke@435 1759 movl(Address(rsp, (-offset)), rax);
duke@435 1760 }
duke@435 1761
duke@435 1762 // Writes to stack successive pages until offset reached to check for
duke@435 1763 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1764 void bang_stack_size(Register size, Register tmp);
duke@435 1765
duke@435 1766 // Support for serializing memory accesses between threads
duke@435 1767 void serialize_memory(Register thread, Register tmp);
duke@435 1768
duke@435 1769 void verify_tlab();
duke@435 1770
duke@435 1771 // Biased locking support
duke@435 1772 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1773 // swap_reg must be rax, and is killed.
duke@435 1774 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 1775 // be killed; if not supplied, push/pop will be used internally to
duke@435 1776 // allocate a temporary (inefficient, avoid if possible).
duke@435 1777 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1778 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1779 // Returns offset of first potentially-faulting instruction for null
duke@435 1780 // check info (currently consumed only by C1). If
duke@435 1781 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1782 // the calling code has already passed any potential faults.
kvn@855 1783 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 1784 Register swap_reg, Register tmp_reg,
duke@435 1785 bool swap_reg_contains_mark,
duke@435 1786 Label& done, Label* slow_case = NULL,
duke@435 1787 BiasedLockingCounters* counters = NULL);
duke@435 1788 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1789
duke@435 1790
duke@435 1791 Condition negate_condition(Condition cond);
duke@435 1792
duke@435 1793 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1794 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1795 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1796 // here in MacroAssembler. The major exception to this rule is call
duke@435 1797
duke@435 1798 // Arithmetics
duke@435 1799
never@739 1800
never@739 1801 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 1802 void addptr(Address dst, Register src);
never@739 1803
never@739 1804 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 1805 void addptr(Register dst, int32_t src);
never@739 1806 void addptr(Register dst, Register src);
never@739 1807
never@739 1808 void andptr(Register dst, int32_t src);
never@739 1809 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 1810
never@739 1811 void cmp8(AddressLiteral src1, int imm);
never@739 1812
never@739 1813 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 1814 void cmp32(Register src1, int32_t imm);
duke@435 1815
duke@435 1816 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 1817 // compare reg - mem, or reg - &mem
duke@435 1818 void cmp32(Register src1, AddressLiteral src2);
duke@435 1819
duke@435 1820 void cmp32(Register src1, Address src2);
duke@435 1821
never@739 1822 #ifndef _LP64
never@739 1823 void cmpoop(Address dst, jobject obj);
never@739 1824 void cmpoop(Register dst, jobject obj);
never@739 1825 #endif // _LP64
never@739 1826
duke@435 1827 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 1828 void cmpptr(Address src1, AddressLiteral src2);
duke@435 1829
duke@435 1830 void cmpptr(Register src1, AddressLiteral src2);
duke@435 1831
never@739 1832 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1833 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1834 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1835
never@739 1836 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1837 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1838
never@739 1839 // cmp64 to avoild hiding cmpq
never@739 1840 void cmp64(Register src1, AddressLiteral src);
never@739 1841
never@739 1842 void cmpxchgptr(Register reg, Address adr);
never@739 1843
never@739 1844 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 1845
never@739 1846
never@739 1847 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 1848
never@739 1849
never@739 1850 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 1851
never@739 1852 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 1853
never@739 1854 void shlptr(Register dst, int32_t shift);
never@739 1855 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 1856
never@739 1857 void shrptr(Register dst, int32_t shift);
never@739 1858 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 1859
never@739 1860 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 1861 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 1862
never@739 1863 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 1864
never@739 1865 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 1866 void subptr(Register dst, int32_t src);
never@739 1867 void subptr(Register dst, Register src);
never@739 1868
never@739 1869
never@739 1870 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 1871 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 1872
never@739 1873 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 1874 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 1875
never@739 1876 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 1877
never@739 1878
duke@435 1879
duke@435 1880 // Helper functions for statistics gathering.
duke@435 1881 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 1882 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 1883 // Unconditional atomic increment.
duke@435 1884 void atomic_incl(AddressLiteral counter_addr);
duke@435 1885
duke@435 1886 void lea(Register dst, AddressLiteral adr);
duke@435 1887 void lea(Address dst, AddressLiteral adr);
never@739 1888 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 1889
never@739 1890 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 1891
never@739 1892 void test32(Register src1, AddressLiteral src2);
never@739 1893
never@739 1894 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 1895 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 1896 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 1897
never@739 1898 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 1899 void testptr(Register src1, Register src2);
never@739 1900
never@739 1901 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 1902 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 1903
duke@435 1904 // Calls
duke@435 1905
duke@435 1906 void call(Label& L, relocInfo::relocType rtype);
duke@435 1907 void call(Register entry);
duke@435 1908
duke@435 1909 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 1910 // the address contained by entry. This is because this is more natural
duke@435 1911 // for jumps/calls.
duke@435 1912 void call(AddressLiteral entry);
duke@435 1913
duke@435 1914 // Jumps
duke@435 1915
duke@435 1916 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 1917 // the address contained by dst. This is because this is more natural
duke@435 1918 // for jumps/calls.
duke@435 1919 void jump(AddressLiteral dst);
duke@435 1920 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 1921
duke@435 1922 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 1923 // to be installed in the Address class. This jump will tranfers to the address
duke@435 1924 // contained in the location described by entry (not the address of entry)
duke@435 1925 void jump(ArrayAddress entry);
duke@435 1926
duke@435 1927 // Floating
duke@435 1928
duke@435 1929 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 1930 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 1931
duke@435 1932 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 1933 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 1934
duke@435 1935 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 1936 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 1937
duke@435 1938 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 1939 void fldcw(AddressLiteral src);
duke@435 1940
duke@435 1941 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 1942 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 1943 void fld_s(AddressLiteral src);
duke@435 1944
duke@435 1945 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 1946 void fld_d(AddressLiteral src);
duke@435 1947
duke@435 1948 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 1949 void fld_x(AddressLiteral src);
duke@435 1950
duke@435 1951 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 1952 void ldmxcsr(AddressLiteral src);
duke@435 1953
never@739 1954 private:
never@739 1955 // these are private because users should be doing movflt/movdbl
never@739 1956
duke@435 1957 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 1958 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 1959 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 1960 void movss(XMMRegister dst, AddressLiteral src);
duke@435 1961
never@739 1962 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 1963 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 1964
never@739 1965 public:
never@739 1966
duke@435 1967 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 1968 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 1969 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
duke@435 1970 void movsd(XMMRegister dst, AddressLiteral src);
duke@435 1971
duke@435 1972 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 1973 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 1974 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 1975
duke@435 1976 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 1977 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 1978 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 1979
duke@435 1980 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 1981 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 1982 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 1983 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 1984
duke@435 1985 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 1986 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 1987 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 1988 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 1989
duke@435 1990 // Data
duke@435 1991
never@739 1992 void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 1993
never@739 1994 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 1995 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 1996
duke@435 1997 void movoop(Register dst, jobject obj);
duke@435 1998 void movoop(Address dst, jobject obj);
duke@435 1999
duke@435 2000 void movptr(ArrayAddress dst, Register src);
duke@435 2001 // can this do an lea?
duke@435 2002 void movptr(Register dst, ArrayAddress src);
duke@435 2003
never@739 2004 void movptr(Register dst, Address src);
never@739 2005
duke@435 2006 void movptr(Register dst, AddressLiteral src);
duke@435 2007
never@739 2008 void movptr(Register dst, intptr_t src);
never@739 2009 void movptr(Register dst, Register src);
never@739 2010 void movptr(Address dst, intptr_t src);
never@739 2011
never@739 2012 void movptr(Address dst, Register src);
never@739 2013
never@739 2014 #ifdef _LP64
never@739 2015 // Generally the next two are only used for moving NULL
never@739 2016 // Although there are situations in initializing the mark word where
never@739 2017 // they could be used. They are dangerous.
never@739 2018
never@739 2019 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2020 // and we have ambiguous declarations.
never@739 2021
never@739 2022 void movptr(Address dst, int32_t imm32);
never@739 2023 void movptr(Register dst, int32_t imm32);
never@739 2024 #endif // _LP64
never@739 2025
duke@435 2026 // to avoid hiding movl
duke@435 2027 void mov32(AddressLiteral dst, Register src);
duke@435 2028 void mov32(Register dst, AddressLiteral src);
never@739 2029
duke@435 2030 // to avoid hiding movb
duke@435 2031 void movbyte(ArrayAddress dst, int src);
duke@435 2032
duke@435 2033 // Can push value or effective address
duke@435 2034 void pushptr(AddressLiteral src);
duke@435 2035
never@739 2036 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2037 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2038
never@739 2039 void pushoop(jobject obj);
never@739 2040
never@739 2041 // sign extend as need a l to ptr sized element
never@739 2042 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2043 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2044
never@739 2045
duke@435 2046 #undef VIRTUAL
duke@435 2047
duke@435 2048 };
duke@435 2049
duke@435 2050 /**
duke@435 2051 * class SkipIfEqual:
duke@435 2052 *
duke@435 2053 * Instantiating this class will result in assembly code being output that will
duke@435 2054 * jump around any code emitted between the creation of the instance and it's
duke@435 2055 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2056 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2057 */
duke@435 2058 class SkipIfEqual {
duke@435 2059 private:
duke@435 2060 MacroAssembler* _masm;
duke@435 2061 Label _label;
duke@435 2062
duke@435 2063 public:
duke@435 2064 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2065 ~SkipIfEqual();
duke@435 2066 };
duke@435 2067
duke@435 2068 #ifdef ASSERT
duke@435 2069 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2070 #endif

mercurial