src/share/vm/utilities/globalDefinitions.hpp

Tue, 17 Oct 2017 12:58:25 +0800

author
aoqi
date
Tue, 17 Oct 2017 12:58:25 +0800
changeset 7994
04ff2f6cd0eb
parent 7535
7ae4e26cb1e0
child 8604
04d83ba48607
permissions
-rw-r--r--

merge

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@1 25 /*
aoqi@1 26 * This file has been modified by Loongson Technology in 2015. These
aoqi@1 27 * modifications are Copyright (c) 2015 Loongson Technology, and are made
aoqi@1 28 * available on the same license terms set forth above.
aoqi@1 29 */
aoqi@1 30
aoqi@0 31 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
aoqi@0 32 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
aoqi@0 33
aoqi@0 34 #ifndef __STDC_FORMAT_MACROS
aoqi@0 35 #define __STDC_FORMAT_MACROS
aoqi@0 36 #endif
aoqi@0 37
aoqi@0 38 #ifdef TARGET_COMPILER_gcc
aoqi@0 39 # include "utilities/globalDefinitions_gcc.hpp"
aoqi@0 40 #endif
aoqi@0 41 #ifdef TARGET_COMPILER_visCPP
aoqi@0 42 # include "utilities/globalDefinitions_visCPP.hpp"
aoqi@0 43 #endif
aoqi@0 44 #ifdef TARGET_COMPILER_sparcWorks
aoqi@0 45 # include "utilities/globalDefinitions_sparcWorks.hpp"
aoqi@0 46 #endif
aoqi@0 47 #ifdef TARGET_COMPILER_xlc
aoqi@0 48 # include "utilities/globalDefinitions_xlc.hpp"
aoqi@0 49 #endif
aoqi@0 50
aoqi@0 51 #ifndef PRAGMA_DIAG_PUSH
aoqi@0 52 #define PRAGMA_DIAG_PUSH
aoqi@0 53 #endif
aoqi@0 54 #ifndef PRAGMA_DIAG_POP
aoqi@0 55 #define PRAGMA_DIAG_POP
aoqi@0 56 #endif
aoqi@0 57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
aoqi@0 58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
aoqi@0 59 #endif
aoqi@0 60 #ifndef PRAGMA_FORMAT_IGNORED
aoqi@0 61 #define PRAGMA_FORMAT_IGNORED
aoqi@0 62 #endif
aoqi@0 63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
aoqi@0 64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
aoqi@0 65 #endif
aoqi@0 66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
aoqi@0 67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
aoqi@0 68 #endif
aoqi@0 69 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
aoqi@0 70 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
aoqi@0 71 #endif
aoqi@0 72 #ifndef ATTRIBUTE_PRINTF
aoqi@0 73 #define ATTRIBUTE_PRINTF(fmt, vargs)
aoqi@0 74 #endif
aoqi@0 75
aoqi@0 76
aoqi@0 77 #include "utilities/macros.hpp"
aoqi@0 78
aoqi@0 79 // This file holds all globally used constants & types, class (forward)
aoqi@0 80 // declarations and a few frequently used utility functions.
aoqi@0 81
aoqi@0 82 //----------------------------------------------------------------------------------------------------
aoqi@0 83 // Constants
aoqi@0 84
aoqi@0 85 const int LogBytesPerShort = 1;
aoqi@0 86 const int LogBytesPerInt = 2;
aoqi@0 87 #ifdef _LP64
aoqi@0 88 const int LogBytesPerWord = 3;
aoqi@0 89 #else
aoqi@0 90 const int LogBytesPerWord = 2;
aoqi@0 91 #endif
aoqi@0 92 const int LogBytesPerLong = 3;
aoqi@0 93
aoqi@0 94 const int BytesPerShort = 1 << LogBytesPerShort;
aoqi@0 95 const int BytesPerInt = 1 << LogBytesPerInt;
aoqi@0 96 const int BytesPerWord = 1 << LogBytesPerWord;
aoqi@0 97 const int BytesPerLong = 1 << LogBytesPerLong;
aoqi@0 98
aoqi@0 99 const int LogBitsPerByte = 3;
aoqi@0 100 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
aoqi@0 101 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
aoqi@0 102 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
aoqi@0 103 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
aoqi@0 104
aoqi@0 105 const int BitsPerByte = 1 << LogBitsPerByte;
aoqi@0 106 const int BitsPerShort = 1 << LogBitsPerShort;
aoqi@0 107 const int BitsPerInt = 1 << LogBitsPerInt;
aoqi@0 108 const int BitsPerWord = 1 << LogBitsPerWord;
aoqi@0 109 const int BitsPerLong = 1 << LogBitsPerLong;
aoqi@0 110
aoqi@0 111 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
aoqi@0 112 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
aoqi@0 113
aoqi@0 114 const int WordsPerLong = 2; // Number of stack entries for longs
aoqi@0 115
aoqi@0 116 const int oopSize = sizeof(char*); // Full-width oop
aoqi@0 117 extern int heapOopSize; // Oop within a java object
aoqi@0 118 const int wordSize = sizeof(char*);
aoqi@0 119 const int longSize = sizeof(jlong);
aoqi@0 120 const int jintSize = sizeof(jint);
aoqi@0 121 const int size_tSize = sizeof(size_t);
aoqi@0 122
aoqi@0 123 const int BytesPerOop = BytesPerWord; // Full-width oop
aoqi@0 124
aoqi@0 125 extern int LogBytesPerHeapOop; // Oop within a java object
aoqi@0 126 extern int LogBitsPerHeapOop;
aoqi@0 127 extern int BytesPerHeapOop;
aoqi@0 128 extern int BitsPerHeapOop;
aoqi@0 129
aoqi@0 130 // Oop encoding heap max
aoqi@0 131 extern uint64_t OopEncodingHeapMax;
aoqi@0 132
aoqi@0 133 const int BitsPerJavaInteger = 32;
aoqi@0 134 const int BitsPerJavaLong = 64;
aoqi@0 135 const int BitsPerSize_t = size_tSize * BitsPerByte;
aoqi@0 136
aoqi@0 137 // Size of a char[] needed to represent a jint as a string in decimal.
aoqi@0 138 const int jintAsStringSize = 12;
aoqi@0 139
aoqi@0 140 // In fact this should be
aoqi@0 141 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
aoqi@0 142 // see os::set_memory_serialize_page()
aoqi@0 143 #ifdef _LP64
aoqi@0 144 const int SerializePageShiftCount = 4;
aoqi@0 145 #else
aoqi@0 146 const int SerializePageShiftCount = 3;
aoqi@0 147 #endif
aoqi@0 148
aoqi@0 149 // An opaque struct of heap-word width, so that HeapWord* can be a generic
aoqi@0 150 // pointer into the heap. We require that object sizes be measured in
aoqi@0 151 // units of heap words, so that that
aoqi@0 152 // HeapWord* hw;
aoqi@0 153 // hw += oop(hw)->foo();
aoqi@0 154 // works, where foo is a method (like size or scavenge) that returns the
aoqi@0 155 // object size.
aoqi@0 156 class HeapWord {
aoqi@0 157 friend class VMStructs;
aoqi@0 158 private:
aoqi@0 159 char* i;
aoqi@0 160 #ifndef PRODUCT
aoqi@0 161 public:
aoqi@0 162 char* value() { return i; }
aoqi@0 163 #endif
aoqi@0 164 };
aoqi@0 165
aoqi@0 166 // Analogous opaque struct for metadata allocated from
aoqi@0 167 // metaspaces.
aoqi@0 168 class MetaWord {
aoqi@0 169 friend class VMStructs;
aoqi@0 170 private:
aoqi@0 171 char* i;
aoqi@0 172 };
aoqi@0 173
aoqi@0 174 // HeapWordSize must be 2^LogHeapWordSize.
aoqi@0 175 const int HeapWordSize = sizeof(HeapWord);
aoqi@0 176 #ifdef _LP64
aoqi@0 177 const int LogHeapWordSize = 3;
aoqi@0 178 #else
aoqi@0 179 const int LogHeapWordSize = 2;
aoqi@0 180 #endif
aoqi@0 181 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
aoqi@0 182 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
aoqi@0 183
aoqi@0 184 // The larger HeapWordSize for 64bit requires larger heaps
aoqi@0 185 // for the same application running in 64bit. See bug 4967770.
aoqi@0 186 // The minimum alignment to a heap word size is done. Other
aoqi@0 187 // parts of the memory system may required additional alignment
aoqi@0 188 // and are responsible for those alignments.
aoqi@0 189 #ifdef _LP64
aoqi@0 190 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
aoqi@0 191 #else
aoqi@0 192 #define ScaleForWordSize(x) (x)
aoqi@0 193 #endif
aoqi@0 194
aoqi@0 195 // The minimum number of native machine words necessary to contain "byte_size"
aoqi@0 196 // bytes.
aoqi@0 197 inline size_t heap_word_size(size_t byte_size) {
aoqi@0 198 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
aoqi@0 199 }
aoqi@0 200
aoqi@0 201
aoqi@0 202 const size_t K = 1024;
aoqi@0 203 const size_t M = K*K;
aoqi@0 204 const size_t G = M*K;
aoqi@0 205 const size_t HWperKB = K / sizeof(HeapWord);
aoqi@0 206
aoqi@0 207 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
aoqi@0 208 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
aoqi@0 209
aoqi@0 210 // Constants for converting from a base unit to milli-base units. For
aoqi@0 211 // example from seconds to milliseconds and microseconds
aoqi@0 212
aoqi@0 213 const int MILLIUNITS = 1000; // milli units per base unit
aoqi@0 214 const int MICROUNITS = 1000000; // micro units per base unit
aoqi@0 215 const int NANOUNITS = 1000000000; // nano units per base unit
aoqi@0 216
aoqi@0 217 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
aoqi@0 218 const jint NANOSECS_PER_MILLISEC = 1000000;
aoqi@0 219
aoqi@0 220 inline const char* proper_unit_for_byte_size(size_t s) {
aoqi@0 221 #ifdef _LP64
aoqi@0 222 if (s >= 10*G) {
aoqi@0 223 return "G";
aoqi@0 224 }
aoqi@0 225 #endif
aoqi@0 226 if (s >= 10*M) {
aoqi@0 227 return "M";
aoqi@0 228 } else if (s >= 10*K) {
aoqi@0 229 return "K";
aoqi@0 230 } else {
aoqi@0 231 return "B";
aoqi@0 232 }
aoqi@0 233 }
aoqi@0 234
aoqi@0 235 template <class T>
aoqi@0 236 inline T byte_size_in_proper_unit(T s) {
aoqi@0 237 #ifdef _LP64
aoqi@0 238 if (s >= 10*G) {
aoqi@0 239 return (T)(s/G);
aoqi@0 240 }
aoqi@0 241 #endif
aoqi@0 242 if (s >= 10*M) {
aoqi@0 243 return (T)(s/M);
aoqi@0 244 } else if (s >= 10*K) {
aoqi@0 245 return (T)(s/K);
aoqi@0 246 } else {
aoqi@0 247 return s;
aoqi@0 248 }
aoqi@0 249 }
aoqi@0 250
aoqi@0 251 //----------------------------------------------------------------------------------------------------
aoqi@0 252 // VM type definitions
aoqi@0 253
aoqi@0 254 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
aoqi@0 255 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
aoqi@0 256
aoqi@0 257 typedef intptr_t intx;
aoqi@0 258 typedef uintptr_t uintx;
aoqi@0 259
aoqi@0 260 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
aoqi@0 261 const intx max_intx = (uintx)min_intx - 1;
aoqi@0 262 const uintx max_uintx = (uintx)-1;
aoqi@0 263
aoqi@0 264 // Table of values:
aoqi@0 265 // sizeof intx 4 8
aoqi@0 266 // min_intx 0x80000000 0x8000000000000000
aoqi@0 267 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
aoqi@0 268 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
aoqi@0 269
aoqi@0 270 typedef unsigned int uint; NEEDS_CLEANUP
aoqi@0 271
aoqi@0 272
aoqi@0 273 //----------------------------------------------------------------------------------------------------
aoqi@0 274 // Java type definitions
aoqi@0 275
aoqi@0 276 // All kinds of 'plain' byte addresses
aoqi@0 277 typedef signed char s_char;
aoqi@0 278 typedef unsigned char u_char;
aoqi@0 279 typedef u_char* address;
aoqi@0 280 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
aoqi@0 281 // except for some implementations of a C++
aoqi@0 282 // linkage pointer to function. Should never
aoqi@0 283 // need one of those to be placed in this
aoqi@0 284 // type anyway.
aoqi@0 285
aoqi@0 286 // Utility functions to "portably" (?) bit twiddle pointers
aoqi@0 287 // Where portable means keep ANSI C++ compilers quiet
aoqi@0 288
aoqi@0 289 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
aoqi@0 290 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
aoqi@0 291
aoqi@0 292 // Utility functions to "portably" make cast to/from function pointers.
aoqi@0 293
aoqi@0 294 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
aoqi@0 295 inline address_word castable_address(address x) { return address_word(x) ; }
aoqi@0 296 inline address_word castable_address(void* x) { return address_word(x) ; }
aoqi@0 297
aoqi@0 298 // Pointer subtraction.
aoqi@0 299 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
aoqi@0 300 // the range we might need to find differences from one end of the heap
aoqi@0 301 // to the other.
aoqi@0 302 // A typical use might be:
aoqi@0 303 // if (pointer_delta(end(), top()) >= size) {
aoqi@0 304 // // enough room for an object of size
aoqi@0 305 // ...
aoqi@0 306 // and then additions like
aoqi@0 307 // ... top() + size ...
aoqi@0 308 // are safe because we know that top() is at least size below end().
aoqi@0 309 inline size_t pointer_delta(const void* left,
aoqi@0 310 const void* right,
aoqi@0 311 size_t element_size) {
aoqi@0 312 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
aoqi@0 313 }
aoqi@0 314 // A version specialized for HeapWord*'s.
aoqi@0 315 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
aoqi@0 316 return pointer_delta(left, right, sizeof(HeapWord));
aoqi@0 317 }
aoqi@0 318 // A version specialized for MetaWord*'s.
aoqi@0 319 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
aoqi@0 320 return pointer_delta(left, right, sizeof(MetaWord));
aoqi@0 321 }
aoqi@0 322
aoqi@0 323 //
aoqi@0 324 // ANSI C++ does not allow casting from one pointer type to a function pointer
aoqi@0 325 // directly without at best a warning. This macro accomplishes it silently
aoqi@0 326 // In every case that is present at this point the value be cast is a pointer
aoqi@0 327 // to a C linkage function. In somecase the type used for the cast reflects
aoqi@0 328 // that linkage and a picky compiler would not complain. In other cases because
aoqi@0 329 // there is no convenient place to place a typedef with extern C linkage (i.e
aoqi@0 330 // a platform dependent header file) it doesn't. At this point no compiler seems
aoqi@0 331 // picky enough to catch these instances (which are few). It is possible that
aoqi@0 332 // using templates could fix these for all cases. This use of templates is likely
aoqi@0 333 // so far from the middle of the road that it is likely to be problematic in
aoqi@0 334 // many C++ compilers.
aoqi@0 335 //
aoqi@0 336 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
aoqi@0 337 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
aoqi@0 338
aoqi@0 339 // Unsigned byte types for os and stream.hpp
aoqi@0 340
aoqi@0 341 // Unsigned one, two, four and eigth byte quantities used for describing
aoqi@0 342 // the .class file format. See JVM book chapter 4.
aoqi@0 343
aoqi@0 344 typedef jubyte u1;
aoqi@0 345 typedef jushort u2;
aoqi@0 346 typedef juint u4;
aoqi@0 347 typedef julong u8;
aoqi@0 348
aoqi@0 349 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
aoqi@0 350 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
aoqi@0 351 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
aoqi@0 352 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
aoqi@0 353
aoqi@0 354 typedef jbyte s1;
aoqi@0 355 typedef jshort s2;
aoqi@0 356 typedef jint s4;
aoqi@0 357 typedef jlong s8;
aoqi@0 358
aoqi@0 359 //----------------------------------------------------------------------------------------------------
aoqi@0 360 // JVM spec restrictions
aoqi@0 361
aoqi@0 362 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
aoqi@0 363
aoqi@0 364 // Default ProtectionDomainCacheSize values
aoqi@0 365
aoqi@0 366 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
aoqi@0 367
aoqi@0 368 //----------------------------------------------------------------------------------------------------
aoqi@0 369 // Default and minimum StringTableSize values
aoqi@0 370
aoqi@0 371 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
aoqi@0 372 const int minimumStringTableSize = 1009;
aoqi@0 373
aoqi@0 374 const int defaultSymbolTableSize = 20011;
aoqi@0 375 const int minimumSymbolTableSize = 1009;
aoqi@0 376
aoqi@0 377
aoqi@0 378 //----------------------------------------------------------------------------------------------------
aoqi@0 379 // HotSwap - for JVMTI aka Class File Replacement and PopFrame
aoqi@0 380 //
aoqi@0 381 // Determines whether on-the-fly class replacement and frame popping are enabled.
aoqi@0 382
aoqi@0 383 #define HOTSWAP
aoqi@0 384
aoqi@0 385 //----------------------------------------------------------------------------------------------------
aoqi@0 386 // Object alignment, in units of HeapWords.
aoqi@0 387 //
aoqi@0 388 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
aoqi@0 389 // reference fields can be naturally aligned.
aoqi@0 390
aoqi@0 391 extern int MinObjAlignment;
aoqi@0 392 extern int MinObjAlignmentInBytes;
aoqi@0 393 extern int MinObjAlignmentInBytesMask;
aoqi@0 394
aoqi@0 395 extern int LogMinObjAlignment;
aoqi@0 396 extern int LogMinObjAlignmentInBytes;
aoqi@0 397
aoqi@0 398 const int LogKlassAlignmentInBytes = 3;
aoqi@0 399 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
aoqi@0 400 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
aoqi@0 401 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
aoqi@0 402
aoqi@0 403 // Klass encoding metaspace max size
aoqi@0 404 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
aoqi@0 405
aoqi@0 406 // Machine dependent stuff
aoqi@0 407
aoqi@0 408 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
aoqi@0 409 // Include Restricted Transactional Memory lock eliding optimization
aoqi@0 410 #define INCLUDE_RTM_OPT 1
aoqi@0 411 #define RTM_OPT_ONLY(code) code
aoqi@0 412 #else
aoqi@0 413 #define INCLUDE_RTM_OPT 0
aoqi@0 414 #define RTM_OPT_ONLY(code)
aoqi@0 415 #endif
aoqi@0 416 // States of Restricted Transactional Memory usage.
aoqi@0 417 enum RTMState {
aoqi@0 418 NoRTM = 0x2, // Don't use RTM
aoqi@0 419 UseRTM = 0x1, // Use RTM
aoqi@0 420 ProfileRTM = 0x0 // Use RTM with abort ratio calculation
aoqi@0 421 };
aoqi@0 422
aoqi@0 423 #ifdef TARGET_ARCH_x86
aoqi@0 424 # include "globalDefinitions_x86.hpp"
aoqi@0 425 #endif
aoqi@0 426 #ifdef TARGET_ARCH_sparc
aoqi@0 427 # include "globalDefinitions_sparc.hpp"
aoqi@0 428 #endif
aoqi@0 429 #ifdef TARGET_ARCH_zero
aoqi@0 430 # include "globalDefinitions_zero.hpp"
aoqi@0 431 #endif
aoqi@0 432 #ifdef TARGET_ARCH_arm
aoqi@0 433 # include "globalDefinitions_arm.hpp"
aoqi@0 434 #endif
aoqi@0 435 #ifdef TARGET_ARCH_ppc
aoqi@0 436 # include "globalDefinitions_ppc.hpp"
aoqi@0 437 #endif
aoqi@1 438 #ifdef TARGET_ARCH_mips
aoqi@1 439 # include "globalDefinitions_mips.hpp"
aoqi@1 440 #endif
aoqi@0 441
aoqi@0 442 /*
aoqi@0 443 * If a platform does not support native stack walking
aoqi@0 444 * the platform specific globalDefinitions (above)
aoqi@0 445 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
aoqi@0 446 */
aoqi@0 447 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
aoqi@0 448 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
aoqi@0 449 #endif
aoqi@0 450
aoqi@0 451 // To assure the IRIW property on processors that are not multiple copy
aoqi@0 452 // atomic, sync instructions must be issued between volatile reads to
aoqi@0 453 // assure their ordering, instead of after volatile stores.
aoqi@0 454 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
aoqi@0 455 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
aoqi@0 456 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
aoqi@0 457 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
aoqi@0 458 #else
aoqi@0 459 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
aoqi@0 460 #endif
aoqi@0 461
aoqi@0 462 // The byte alignment to be used by Arena::Amalloc. See bugid 4169348.
aoqi@0 463 // Note: this value must be a power of 2
aoqi@0 464
aoqi@0 465 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
aoqi@0 466
aoqi@0 467 // Signed variants of alignment helpers. There are two versions of each, a macro
aoqi@0 468 // for use in places like enum definitions that require compile-time constant
aoqi@0 469 // expressions and a function for all other places so as to get type checking.
aoqi@0 470
aoqi@0 471 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
aoqi@0 472
aoqi@0 473 inline bool is_size_aligned(size_t size, size_t alignment) {
aoqi@0 474 return align_size_up_(size, alignment) == size;
aoqi@0 475 }
aoqi@0 476
aoqi@0 477 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
aoqi@0 478 return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
aoqi@0 479 }
aoqi@0 480
aoqi@0 481 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
aoqi@0 482 return align_size_up_(size, alignment);
aoqi@0 483 }
aoqi@0 484
aoqi@0 485 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
aoqi@0 486
aoqi@0 487 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
aoqi@0 488 return align_size_down_(size, alignment);
aoqi@0 489 }
aoqi@0 490
aoqi@0 491 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
aoqi@0 492
aoqi@0 493 inline void* align_ptr_up(void* ptr, size_t alignment) {
aoqi@0 494 return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
aoqi@0 495 }
aoqi@0 496
aoqi@0 497 inline void* align_ptr_down(void* ptr, size_t alignment) {
aoqi@0 498 return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
aoqi@0 499 }
aoqi@0 500
aoqi@0 501 // Align objects by rounding up their size, in HeapWord units.
aoqi@0 502
aoqi@0 503 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
aoqi@0 504
aoqi@0 505 inline intptr_t align_object_size(intptr_t size) {
aoqi@0 506 return align_size_up(size, MinObjAlignment);
aoqi@0 507 }
aoqi@0 508
aoqi@0 509 inline bool is_object_aligned(intptr_t addr) {
aoqi@0 510 return addr == align_object_size(addr);
aoqi@0 511 }
aoqi@0 512
aoqi@0 513 // Pad out certain offsets to jlong alignment, in HeapWord units.
aoqi@0 514
aoqi@0 515 inline intptr_t align_object_offset(intptr_t offset) {
aoqi@0 516 return align_size_up(offset, HeapWordsPerLong);
aoqi@0 517 }
aoqi@0 518
aoqi@0 519 inline void* align_pointer_up(const void* addr, size_t size) {
aoqi@0 520 return (void*) align_size_up_((uintptr_t)addr, size);
aoqi@0 521 }
aoqi@0 522
aoqi@0 523 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
aoqi@0 524
aoqi@0 525 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
aoqi@0 526 size_t aligned_size = align_size_down_(size, alignment);
aoqi@0 527 return aligned_size > 0 ? aligned_size : alignment;
aoqi@0 528 }
aoqi@0 529
aoqi@0 530 // Clamp an address to be within a specific page
aoqi@0 531 // 1. If addr is on the page it is returned as is
aoqi@0 532 // 2. If addr is above the page_address the start of the *next* page will be returned
aoqi@0 533 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
aoqi@0 534 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
aoqi@0 535 if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
aoqi@0 536 // address is in the specified page, just return it as is
aoqi@0 537 return addr;
aoqi@0 538 } else if (addr > page_address) {
aoqi@0 539 // address is above specified page, return start of next page
aoqi@0 540 return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
aoqi@0 541 } else {
aoqi@0 542 // address is below specified page, return start of page
aoqi@0 543 return (address)align_size_down(intptr_t(page_address), page_size);
aoqi@0 544 }
aoqi@0 545 }
aoqi@0 546
aoqi@0 547
aoqi@0 548 // The expected size in bytes of a cache line, used to pad data structures.
aoqi@0 549 #define DEFAULT_CACHE_LINE_SIZE 64
aoqi@0 550
aoqi@0 551
aoqi@0 552 //----------------------------------------------------------------------------------------------------
aoqi@0 553 // Utility macros for compilers
aoqi@0 554 // used to silence compiler warnings
aoqi@0 555
aoqi@0 556 #define Unused_Variable(var) var
aoqi@0 557
aoqi@0 558
aoqi@0 559 //----------------------------------------------------------------------------------------------------
aoqi@0 560 // Miscellaneous
aoqi@0 561
aoqi@0 562 // 6302670 Eliminate Hotspot __fabsf dependency
aoqi@0 563 // All fabs() callers should call this function instead, which will implicitly
aoqi@0 564 // convert the operand to double, avoiding a dependency on __fabsf which
aoqi@0 565 // doesn't exist in early versions of Solaris 8.
aoqi@0 566 inline double fabsd(double value) {
aoqi@0 567 return fabs(value);
aoqi@0 568 }
aoqi@0 569
thartmann@7001 570 //----------------------------------------------------------------------------------------------------
thartmann@7001 571 // Special casts
thartmann@7001 572 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
thartmann@7001 573 typedef union {
thartmann@7001 574 jfloat f;
thartmann@7001 575 jint i;
thartmann@7001 576 } FloatIntConv;
thartmann@7001 577
thartmann@7001 578 typedef union {
thartmann@7001 579 jdouble d;
thartmann@7001 580 jlong l;
thartmann@7001 581 julong ul;
thartmann@7001 582 } DoubleLongConv;
thartmann@7001 583
thartmann@7001 584 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
thartmann@7001 585 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
thartmann@7001 586
thartmann@7001 587 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
thartmann@7001 588 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
thartmann@7001 589 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
thartmann@7001 590
aoqi@0 591 inline jint low (jlong value) { return jint(value); }
aoqi@0 592 inline jint high(jlong value) { return jint(value >> 32); }
aoqi@0 593
aoqi@0 594 // the fancy casts are a hopefully portable way
aoqi@0 595 // to do unsigned 32 to 64 bit type conversion
aoqi@0 596 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
aoqi@0 597 *value |= (jlong)(julong)(juint)low; }
aoqi@0 598
aoqi@0 599 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
aoqi@0 600 *value |= (jlong)high << 32; }
aoqi@0 601
aoqi@0 602 inline jlong jlong_from(jint h, jint l) {
aoqi@0 603 jlong result = 0; // initialization to avoid warning
aoqi@0 604 set_high(&result, h);
aoqi@0 605 set_low(&result, l);
aoqi@0 606 return result;
aoqi@0 607 }
aoqi@0 608
aoqi@0 609 union jlong_accessor {
aoqi@0 610 jint words[2];
aoqi@0 611 jlong long_value;
aoqi@0 612 };
aoqi@0 613
aoqi@0 614 void basic_types_init(); // cannot define here; uses assert
aoqi@0 615
aoqi@0 616
aoqi@0 617 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
aoqi@0 618 enum BasicType {
aoqi@0 619 T_BOOLEAN = 4,
aoqi@0 620 T_CHAR = 5,
aoqi@0 621 T_FLOAT = 6,
aoqi@0 622 T_DOUBLE = 7,
aoqi@0 623 T_BYTE = 8,
aoqi@0 624 T_SHORT = 9,
aoqi@0 625 T_INT = 10,
aoqi@0 626 T_LONG = 11,
aoqi@0 627 T_OBJECT = 12,
aoqi@0 628 T_ARRAY = 13,
aoqi@0 629 T_VOID = 14,
aoqi@0 630 T_ADDRESS = 15,
aoqi@0 631 T_NARROWOOP = 16,
aoqi@0 632 T_METADATA = 17,
aoqi@0 633 T_NARROWKLASS = 18,
aoqi@0 634 T_CONFLICT = 19, // for stack value type with conflicting contents
aoqi@0 635 T_ILLEGAL = 99
aoqi@0 636 };
aoqi@0 637
aoqi@0 638 inline bool is_java_primitive(BasicType t) {
aoqi@0 639 return T_BOOLEAN <= t && t <= T_LONG;
aoqi@0 640 }
aoqi@0 641
aoqi@0 642 inline bool is_subword_type(BasicType t) {
aoqi@0 643 // these guys are processed exactly like T_INT in calling sequences:
aoqi@0 644 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
aoqi@0 645 }
aoqi@0 646
aoqi@0 647 inline bool is_signed_subword_type(BasicType t) {
aoqi@0 648 return (t == T_BYTE || t == T_SHORT);
aoqi@0 649 }
aoqi@0 650
aoqi@0 651 // Convert a char from a classfile signature to a BasicType
aoqi@0 652 inline BasicType char2type(char c) {
aoqi@0 653 switch( c ) {
aoqi@0 654 case 'B': return T_BYTE;
aoqi@0 655 case 'C': return T_CHAR;
aoqi@0 656 case 'D': return T_DOUBLE;
aoqi@0 657 case 'F': return T_FLOAT;
aoqi@0 658 case 'I': return T_INT;
aoqi@0 659 case 'J': return T_LONG;
aoqi@0 660 case 'S': return T_SHORT;
aoqi@0 661 case 'Z': return T_BOOLEAN;
aoqi@0 662 case 'V': return T_VOID;
aoqi@0 663 case 'L': return T_OBJECT;
aoqi@0 664 case '[': return T_ARRAY;
aoqi@0 665 }
aoqi@0 666 return T_ILLEGAL;
aoqi@0 667 }
aoqi@0 668
aoqi@0 669 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
aoqi@0 670 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
aoqi@0 671 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
aoqi@0 672 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
aoqi@0 673 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
aoqi@0 674 extern BasicType name2type(const char* name);
aoqi@0 675
aoqi@0 676 // Auxilary math routines
aoqi@0 677 // least common multiple
aoqi@0 678 extern size_t lcm(size_t a, size_t b);
aoqi@0 679
aoqi@0 680
aoqi@0 681 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
aoqi@0 682 enum BasicTypeSize {
aoqi@0 683 T_BOOLEAN_size = 1,
aoqi@0 684 T_CHAR_size = 1,
aoqi@0 685 T_FLOAT_size = 1,
aoqi@0 686 T_DOUBLE_size = 2,
aoqi@0 687 T_BYTE_size = 1,
aoqi@0 688 T_SHORT_size = 1,
aoqi@0 689 T_INT_size = 1,
aoqi@0 690 T_LONG_size = 2,
aoqi@0 691 T_OBJECT_size = 1,
aoqi@0 692 T_ARRAY_size = 1,
aoqi@0 693 T_NARROWOOP_size = 1,
aoqi@0 694 T_NARROWKLASS_size = 1,
aoqi@0 695 T_VOID_size = 0
aoqi@0 696 };
aoqi@0 697
aoqi@0 698
aoqi@0 699 // maps a BasicType to its instance field storage type:
aoqi@0 700 // all sub-word integral types are widened to T_INT
aoqi@0 701 extern BasicType type2field[T_CONFLICT+1];
aoqi@0 702 extern BasicType type2wfield[T_CONFLICT+1];
aoqi@0 703
aoqi@0 704
aoqi@0 705 // size in bytes
aoqi@0 706 enum ArrayElementSize {
aoqi@0 707 T_BOOLEAN_aelem_bytes = 1,
aoqi@0 708 T_CHAR_aelem_bytes = 2,
aoqi@0 709 T_FLOAT_aelem_bytes = 4,
aoqi@0 710 T_DOUBLE_aelem_bytes = 8,
aoqi@0 711 T_BYTE_aelem_bytes = 1,
aoqi@0 712 T_SHORT_aelem_bytes = 2,
aoqi@0 713 T_INT_aelem_bytes = 4,
aoqi@0 714 T_LONG_aelem_bytes = 8,
aoqi@0 715 #ifdef _LP64
aoqi@0 716 T_OBJECT_aelem_bytes = 8,
aoqi@0 717 T_ARRAY_aelem_bytes = 8,
aoqi@0 718 #else
aoqi@0 719 T_OBJECT_aelem_bytes = 4,
aoqi@0 720 T_ARRAY_aelem_bytes = 4,
aoqi@0 721 #endif
aoqi@0 722 T_NARROWOOP_aelem_bytes = 4,
aoqi@0 723 T_NARROWKLASS_aelem_bytes = 4,
aoqi@0 724 T_VOID_aelem_bytes = 0
aoqi@0 725 };
aoqi@0 726
aoqi@0 727 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
aoqi@0 728 #ifdef ASSERT
aoqi@0 729 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
aoqi@0 730 #else
aoqi@0 731 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
aoqi@0 732 #endif
aoqi@0 733
aoqi@0 734
aoqi@0 735 // JavaValue serves as a container for arbitrary Java values.
aoqi@0 736
aoqi@0 737 class JavaValue {
aoqi@0 738
aoqi@0 739 public:
aoqi@0 740 typedef union JavaCallValue {
aoqi@0 741 jfloat f;
aoqi@0 742 jdouble d;
aoqi@0 743 jint i;
aoqi@0 744 jlong l;
aoqi@0 745 jobject h;
aoqi@0 746 } JavaCallValue;
aoqi@0 747
aoqi@0 748 private:
aoqi@0 749 BasicType _type;
aoqi@0 750 JavaCallValue _value;
aoqi@0 751
aoqi@0 752 public:
aoqi@0 753 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
aoqi@0 754
aoqi@0 755 JavaValue(jfloat value) {
aoqi@0 756 _type = T_FLOAT;
aoqi@0 757 _value.f = value;
aoqi@0 758 }
aoqi@0 759
aoqi@0 760 JavaValue(jdouble value) {
aoqi@0 761 _type = T_DOUBLE;
aoqi@0 762 _value.d = value;
aoqi@0 763 }
aoqi@0 764
aoqi@0 765 jfloat get_jfloat() const { return _value.f; }
aoqi@0 766 jdouble get_jdouble() const { return _value.d; }
aoqi@0 767 jint get_jint() const { return _value.i; }
aoqi@0 768 jlong get_jlong() const { return _value.l; }
aoqi@0 769 jobject get_jobject() const { return _value.h; }
aoqi@0 770 JavaCallValue* get_value_addr() { return &_value; }
aoqi@0 771 BasicType get_type() const { return _type; }
aoqi@0 772
aoqi@0 773 void set_jfloat(jfloat f) { _value.f = f;}
aoqi@0 774 void set_jdouble(jdouble d) { _value.d = d;}
aoqi@0 775 void set_jint(jint i) { _value.i = i;}
aoqi@0 776 void set_jlong(jlong l) { _value.l = l;}
aoqi@0 777 void set_jobject(jobject h) { _value.h = h;}
aoqi@0 778 void set_type(BasicType t) { _type = t; }
aoqi@0 779
aoqi@0 780 jboolean get_jboolean() const { return (jboolean) (_value.i);}
aoqi@0 781 jbyte get_jbyte() const { return (jbyte) (_value.i);}
aoqi@0 782 jchar get_jchar() const { return (jchar) (_value.i);}
aoqi@0 783 jshort get_jshort() const { return (jshort) (_value.i);}
aoqi@0 784
aoqi@0 785 };
aoqi@0 786
aoqi@0 787
aoqi@0 788 #define STACK_BIAS 0
aoqi@0 789 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
aoqi@0 790 // in order to extend the reach of the stack pointer.
aoqi@0 791 #if defined(SPARC) && defined(_LP64)
aoqi@0 792 #undef STACK_BIAS
aoqi@0 793 #define STACK_BIAS 0x7ff
aoqi@0 794 #endif
aoqi@0 795
aoqi@0 796
aoqi@0 797 // TosState describes the top-of-stack state before and after the execution of
aoqi@0 798 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
aoqi@0 799 // registers. The TosState corresponds to the 'machine represention' of this cached
aoqi@0 800 // value. There's 4 states corresponding to the JAVA types int, long, float & double
aoqi@0 801 // as well as a 5th state in case the top-of-stack value is actually on the top
aoqi@0 802 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
aoqi@0 803 // state when it comes to machine representation but is used separately for (oop)
aoqi@0 804 // type specific operations (e.g. verification code).
aoqi@0 805
aoqi@0 806 enum TosState { // describes the tos cache contents
aoqi@0 807 btos = 0, // byte, bool tos cached
aoqi@0 808 ctos = 1, // char tos cached
aoqi@0 809 stos = 2, // short tos cached
aoqi@0 810 itos = 3, // int tos cached
aoqi@0 811 ltos = 4, // long tos cached
aoqi@0 812 ftos = 5, // float tos cached
aoqi@0 813 dtos = 6, // double tos cached
aoqi@0 814 atos = 7, // object cached
aoqi@0 815 vtos = 8, // tos not cached
aoqi@0 816 number_of_states,
aoqi@0 817 ilgl // illegal state: should not occur
aoqi@0 818 };
aoqi@0 819
aoqi@0 820
aoqi@0 821 inline TosState as_TosState(BasicType type) {
aoqi@0 822 switch (type) {
aoqi@0 823 case T_BYTE : return btos;
aoqi@0 824 case T_BOOLEAN: return btos; // FIXME: Add ztos
aoqi@0 825 case T_CHAR : return ctos;
aoqi@0 826 case T_SHORT : return stos;
aoqi@0 827 case T_INT : return itos;
aoqi@0 828 case T_LONG : return ltos;
aoqi@0 829 case T_FLOAT : return ftos;
aoqi@0 830 case T_DOUBLE : return dtos;
aoqi@0 831 case T_VOID : return vtos;
aoqi@0 832 case T_ARRAY : // fall through
aoqi@0 833 case T_OBJECT : return atos;
aoqi@0 834 }
aoqi@0 835 return ilgl;
aoqi@0 836 }
aoqi@0 837
aoqi@0 838 inline BasicType as_BasicType(TosState state) {
aoqi@0 839 switch (state) {
aoqi@0 840 //case ztos: return T_BOOLEAN;//FIXME
aoqi@0 841 case btos : return T_BYTE;
aoqi@0 842 case ctos : return T_CHAR;
aoqi@0 843 case stos : return T_SHORT;
aoqi@0 844 case itos : return T_INT;
aoqi@0 845 case ltos : return T_LONG;
aoqi@0 846 case ftos : return T_FLOAT;
aoqi@0 847 case dtos : return T_DOUBLE;
aoqi@0 848 case atos : return T_OBJECT;
aoqi@0 849 case vtos : return T_VOID;
aoqi@0 850 }
aoqi@0 851 return T_ILLEGAL;
aoqi@0 852 }
aoqi@0 853
aoqi@0 854
aoqi@0 855 // Helper function to convert BasicType info into TosState
aoqi@0 856 // Note: Cannot define here as it uses global constant at the time being.
aoqi@0 857 TosState as_TosState(BasicType type);
aoqi@0 858
aoqi@0 859
aoqi@0 860 // JavaThreadState keeps track of which part of the code a thread is executing in. This
aoqi@0 861 // information is needed by the safepoint code.
aoqi@0 862 //
aoqi@0 863 // There are 4 essential states:
aoqi@0 864 //
aoqi@0 865 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
aoqi@0 866 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
aoqi@0 867 // _thread_in_vm : Executing in the vm
aoqi@0 868 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
aoqi@0 869 //
aoqi@0 870 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
aoqi@0 871 // a transition from one state to another. These extra states makes it possible for the safepoint code to
aoqi@0 872 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
aoqi@0 873 //
aoqi@0 874 // Given a state, the xxx_trans state can always be found by adding 1.
aoqi@0 875 //
aoqi@0 876 enum JavaThreadState {
aoqi@0 877 _thread_uninitialized = 0, // should never happen (missing initialization)
aoqi@0 878 _thread_new = 2, // just starting up, i.e., in process of being initialized
aoqi@0 879 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
aoqi@0 880 _thread_in_native = 4, // running in native code
aoqi@0 881 _thread_in_native_trans = 5, // corresponding transition state
aoqi@0 882 _thread_in_vm = 6, // running in VM
aoqi@0 883 _thread_in_vm_trans = 7, // corresponding transition state
aoqi@0 884 _thread_in_Java = 8, // running in Java or in stub code
aoqi@0 885 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
aoqi@0 886 _thread_blocked = 10, // blocked in vm
aoqi@0 887 _thread_blocked_trans = 11, // corresponding transition state
aoqi@0 888 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
aoqi@0 889 };
aoqi@0 890
aoqi@0 891
aoqi@0 892 // Handy constants for deciding which compiler mode to use.
aoqi@0 893 enum MethodCompilation {
aoqi@0 894 InvocationEntryBci = -1, // i.e., not a on-stack replacement compilation
aoqi@0 895 InvalidOSREntryBci = -2
aoqi@0 896 };
aoqi@0 897
aoqi@0 898 // Enumeration to distinguish tiers of compilation
aoqi@0 899 enum CompLevel {
aoqi@0 900 CompLevel_any = -1,
aoqi@0 901 CompLevel_all = -1,
aoqi@0 902 CompLevel_none = 0, // Interpreter
aoqi@0 903 CompLevel_simple = 1, // C1
aoqi@0 904 CompLevel_limited_profile = 2, // C1, invocation & backedge counters
aoqi@0 905 CompLevel_full_profile = 3, // C1, invocation & backedge counters + mdo
aoqi@0 906 CompLevel_full_optimization = 4, // C2 or Shark
aoqi@0 907
aoqi@0 908 #if defined(COMPILER2) || defined(SHARK)
aoqi@0 909 CompLevel_highest_tier = CompLevel_full_optimization, // pure C2 and tiered
aoqi@0 910 #elif defined(COMPILER1)
aoqi@0 911 CompLevel_highest_tier = CompLevel_simple, // pure C1
aoqi@0 912 #else
aoqi@0 913 CompLevel_highest_tier = CompLevel_none,
aoqi@0 914 #endif
aoqi@0 915
aoqi@0 916 #if defined(TIERED)
aoqi@0 917 CompLevel_initial_compile = CompLevel_full_profile // tiered
aoqi@0 918 #elif defined(COMPILER1)
aoqi@0 919 CompLevel_initial_compile = CompLevel_simple // pure C1
aoqi@0 920 #elif defined(COMPILER2) || defined(SHARK)
aoqi@0 921 CompLevel_initial_compile = CompLevel_full_optimization // pure C2
aoqi@0 922 #else
aoqi@0 923 CompLevel_initial_compile = CompLevel_none
aoqi@0 924 #endif
aoqi@0 925 };
aoqi@0 926
aoqi@0 927 inline bool is_c1_compile(int comp_level) {
aoqi@0 928 return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
aoqi@0 929 }
aoqi@0 930
aoqi@0 931 inline bool is_c2_compile(int comp_level) {
aoqi@0 932 return comp_level == CompLevel_full_optimization;
aoqi@0 933 }
aoqi@0 934
aoqi@0 935 inline bool is_highest_tier_compile(int comp_level) {
aoqi@0 936 return comp_level == CompLevel_highest_tier;
aoqi@0 937 }
aoqi@0 938
aoqi@0 939 inline bool is_compile(int comp_level) {
aoqi@0 940 return is_c1_compile(comp_level) || is_c2_compile(comp_level);
aoqi@0 941 }
aoqi@0 942
aoqi@0 943 //----------------------------------------------------------------------------------------------------
aoqi@0 944 // 'Forward' declarations of frequently used classes
aoqi@0 945 // (in order to reduce interface dependencies & reduce
aoqi@0 946 // number of unnecessary compilations after changes)
aoqi@0 947
aoqi@0 948 class symbolTable;
aoqi@0 949 class ClassFileStream;
aoqi@0 950
aoqi@0 951 class Event;
aoqi@0 952
aoqi@0 953 class Thread;
aoqi@0 954 class VMThread;
aoqi@0 955 class JavaThread;
aoqi@0 956 class Threads;
aoqi@0 957
aoqi@0 958 class VM_Operation;
aoqi@0 959 class VMOperationQueue;
aoqi@0 960
aoqi@0 961 class CodeBlob;
aoqi@0 962 class nmethod;
aoqi@0 963 class OSRAdapter;
aoqi@0 964 class I2CAdapter;
aoqi@0 965 class C2IAdapter;
aoqi@0 966 class CompiledIC;
aoqi@0 967 class relocInfo;
aoqi@0 968 class ScopeDesc;
aoqi@0 969 class PcDesc;
aoqi@0 970
aoqi@0 971 class Recompiler;
aoqi@0 972 class Recompilee;
aoqi@0 973 class RecompilationPolicy;
aoqi@0 974 class RFrame;
aoqi@0 975 class CompiledRFrame;
aoqi@0 976 class InterpretedRFrame;
aoqi@0 977
aoqi@0 978 class frame;
aoqi@0 979
aoqi@0 980 class vframe;
aoqi@0 981 class javaVFrame;
aoqi@0 982 class interpretedVFrame;
aoqi@0 983 class compiledVFrame;
aoqi@0 984 class deoptimizedVFrame;
aoqi@0 985 class externalVFrame;
aoqi@0 986 class entryVFrame;
aoqi@0 987
aoqi@0 988 class RegisterMap;
aoqi@0 989
aoqi@0 990 class Mutex;
aoqi@0 991 class Monitor;
aoqi@0 992 class BasicLock;
aoqi@0 993 class BasicObjectLock;
aoqi@0 994
aoqi@0 995 class PeriodicTask;
aoqi@0 996
aoqi@0 997 class JavaCallWrapper;
aoqi@0 998
aoqi@0 999 class oopDesc;
aoqi@0 1000 class metaDataOopDesc;
aoqi@0 1001
aoqi@0 1002 class NativeCall;
aoqi@0 1003
aoqi@0 1004 class zone;
aoqi@0 1005
aoqi@0 1006 class StubQueue;
aoqi@0 1007
aoqi@0 1008 class outputStream;
aoqi@0 1009
aoqi@0 1010 class ResourceArea;
aoqi@0 1011
aoqi@0 1012 class DebugInformationRecorder;
aoqi@0 1013 class ScopeValue;
aoqi@0 1014 class CompressedStream;
aoqi@0 1015 class DebugInfoReadStream;
aoqi@0 1016 class DebugInfoWriteStream;
aoqi@0 1017 class LocationValue;
aoqi@0 1018 class ConstantValue;
aoqi@0 1019 class IllegalValue;
aoqi@0 1020
aoqi@0 1021 class PrivilegedElement;
aoqi@0 1022 class MonitorArray;
aoqi@0 1023
aoqi@0 1024 class MonitorInfo;
aoqi@0 1025
aoqi@0 1026 class OffsetClosure;
aoqi@0 1027 class OopMapCache;
aoqi@0 1028 class InterpreterOopMap;
aoqi@0 1029 class OopMapCacheEntry;
aoqi@0 1030 class OSThread;
aoqi@0 1031
aoqi@0 1032 typedef int (*OSThreadStartFunc)(void*);
aoqi@0 1033
aoqi@0 1034 class Space;
aoqi@0 1035
aoqi@0 1036 class JavaValue;
aoqi@0 1037 class methodHandle;
aoqi@0 1038 class JavaCallArguments;
aoqi@0 1039
aoqi@0 1040 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
aoqi@0 1041
aoqi@0 1042 extern void basic_fatal(const char* msg);
aoqi@0 1043
aoqi@0 1044
aoqi@0 1045 //----------------------------------------------------------------------------------------------------
aoqi@0 1046 // Special constants for debugging
aoqi@0 1047
aoqi@0 1048 const jint badInt = -3; // generic "bad int" value
aoqi@0 1049 const long badAddressVal = -2; // generic "bad address" value
aoqi@0 1050 const long badOopVal = -1; // generic "bad oop" value
aoqi@0 1051 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
aoqi@0 1052 const int badHandleValue = 0xBC; // value used to zap vm handle area
aoqi@0 1053 const int badResourceValue = 0xAB; // value used to zap resource area
aoqi@0 1054 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
aoqi@0 1055 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
aoqi@0 1056 const intptr_t badJNIHandleVal = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
aoqi@0 1057 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
aoqi@0 1058 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
aoqi@0 1059 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
aoqi@0 1060 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
aoqi@0 1061
aoqi@0 1062
aoqi@0 1063 // (These must be implemented as #defines because C++ compilers are
aoqi@0 1064 // not obligated to inline non-integral constants!)
aoqi@0 1065 #define badAddress ((address)::badAddressVal)
aoqi@0 1066 #define badOop (cast_to_oop(::badOopVal))
aoqi@0 1067 #define badHeapWord (::badHeapWordVal)
aoqi@0 1068 #define badJNIHandle (cast_to_oop(::badJNIHandleVal))
aoqi@0 1069
aoqi@0 1070 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
aoqi@0 1071 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
aoqi@0 1072
aoqi@0 1073 //----------------------------------------------------------------------------------------------------
aoqi@0 1074 // Utility functions for bitfield manipulations
aoqi@0 1075
aoqi@0 1076 const intptr_t AllBits = ~0; // all bits set in a word
aoqi@0 1077 const intptr_t NoBits = 0; // no bits set in a word
aoqi@0 1078 const jlong NoLongBits = 0; // no bits set in a long
aoqi@0 1079 const intptr_t OneBit = 1; // only right_most bit set in a word
aoqi@0 1080
aoqi@0 1081 // get a word with the n.th or the right-most or left-most n bits set
aoqi@0 1082 // (note: #define used only so that they can be used in enum constant definitions)
aoqi@0 1083 #define nth_bit(n) (n >= BitsPerWord ? 0 : OneBit << (n))
aoqi@0 1084 #define right_n_bits(n) (nth_bit(n) - 1)
aoqi@0 1085 #define left_n_bits(n) (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
aoqi@0 1086
aoqi@0 1087 // bit-operations using a mask m
aoqi@0 1088 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
aoqi@0 1089 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
aoqi@0 1090 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
aoqi@0 1091 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
aoqi@0 1092 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
aoqi@0 1093
aoqi@0 1094 // bit-operations using the n.th bit
aoqi@0 1095 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
aoqi@0 1096 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
aoqi@0 1097 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
aoqi@0 1098
aoqi@0 1099 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
aoqi@0 1100 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
aoqi@0 1101 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
aoqi@0 1102 }
aoqi@0 1103
aoqi@0 1104
aoqi@0 1105 //----------------------------------------------------------------------------------------------------
aoqi@0 1106 // Utility functions for integers
aoqi@0 1107
aoqi@0 1108 // Avoid use of global min/max macros which may cause unwanted double
aoqi@0 1109 // evaluation of arguments.
aoqi@0 1110 #ifdef max
aoqi@0 1111 #undef max
aoqi@0 1112 #endif
aoqi@0 1113
aoqi@0 1114 #ifdef min
aoqi@0 1115 #undef min
aoqi@0 1116 #endif
aoqi@0 1117
aoqi@0 1118 #define max(a,b) Do_not_use_max_use_MAX2_instead
aoqi@0 1119 #define min(a,b) Do_not_use_min_use_MIN2_instead
aoqi@0 1120
aoqi@0 1121 // It is necessary to use templates here. Having normal overloaded
aoqi@0 1122 // functions does not work because it is necessary to provide both 32-
aoqi@0 1123 // and 64-bit overloaded functions, which does not work, and having
aoqi@0 1124 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
aoqi@0 1125 // will be even more error-prone than macros.
aoqi@0 1126 template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
aoqi@0 1127 template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
aoqi@0 1128 template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
aoqi@0 1129 template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
aoqi@0 1130 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
aoqi@0 1131 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
aoqi@0 1132
aoqi@0 1133 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
aoqi@0 1134
aoqi@0 1135 // true if x is a power of 2, false otherwise
aoqi@0 1136 inline bool is_power_of_2(intptr_t x) {
aoqi@0 1137 return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
aoqi@0 1138 }
aoqi@0 1139
aoqi@0 1140 // long version of is_power_of_2
aoqi@0 1141 inline bool is_power_of_2_long(jlong x) {
aoqi@0 1142 return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
aoqi@0 1143 }
aoqi@0 1144
aoqi@0 1145 //* largest i such that 2^i <= x
aoqi@0 1146 // A negative value of 'x' will return '31'
aoqi@0 1147 inline int log2_intptr(intptr_t x) {
aoqi@0 1148 int i = -1;
aoqi@0 1149 uintptr_t p = 1;
aoqi@0 1150 while (p != 0 && p <= (uintptr_t)x) {
aoqi@0 1151 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
aoqi@0 1152 i++; p *= 2;
aoqi@0 1153 }
aoqi@0 1154 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
aoqi@0 1155 // (if p = 0 then overflow occurred and i = 31)
aoqi@0 1156 return i;
aoqi@0 1157 }
aoqi@0 1158
aoqi@0 1159 //* largest i such that 2^i <= x
aoqi@0 1160 // A negative value of 'x' will return '63'
aoqi@0 1161 inline int log2_long(jlong x) {
aoqi@0 1162 int i = -1;
aoqi@0 1163 julong p = 1;
aoqi@0 1164 while (p != 0 && p <= (julong)x) {
aoqi@0 1165 // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
aoqi@0 1166 i++; p *= 2;
aoqi@0 1167 }
aoqi@0 1168 // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
aoqi@0 1169 // (if p = 0 then overflow occurred and i = 63)
aoqi@0 1170 return i;
aoqi@0 1171 }
aoqi@0 1172
aoqi@0 1173 //* the argument must be exactly a power of 2
aoqi@0 1174 inline int exact_log2(intptr_t x) {
aoqi@0 1175 #ifdef ASSERT
aoqi@0 1176 if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
aoqi@0 1177 #endif
aoqi@0 1178 return log2_intptr(x);
aoqi@0 1179 }
aoqi@0 1180
aoqi@0 1181 //* the argument must be exactly a power of 2
aoqi@0 1182 inline int exact_log2_long(jlong x) {
aoqi@0 1183 #ifdef ASSERT
aoqi@0 1184 if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
aoqi@0 1185 #endif
aoqi@0 1186 return log2_long(x);
aoqi@0 1187 }
aoqi@0 1188
aoqi@0 1189
aoqi@0 1190 // returns integer round-up to the nearest multiple of s (s must be a power of two)
aoqi@0 1191 inline intptr_t round_to(intptr_t x, uintx s) {
aoqi@0 1192 #ifdef ASSERT
aoqi@0 1193 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
aoqi@0 1194 #endif
aoqi@0 1195 const uintx m = s - 1;
aoqi@0 1196 return mask_bits(x + m, ~m);
aoqi@0 1197 }
aoqi@0 1198
aoqi@0 1199 // returns integer round-down to the nearest multiple of s (s must be a power of two)
aoqi@0 1200 inline intptr_t round_down(intptr_t x, uintx s) {
aoqi@0 1201 #ifdef ASSERT
aoqi@0 1202 if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
aoqi@0 1203 #endif
aoqi@0 1204 const uintx m = s - 1;
aoqi@0 1205 return mask_bits(x, ~m);
aoqi@0 1206 }
aoqi@0 1207
aoqi@0 1208
aoqi@0 1209 inline bool is_odd (intx x) { return x & 1; }
aoqi@0 1210 inline bool is_even(intx x) { return !is_odd(x); }
aoqi@0 1211
aoqi@0 1212 // "to" should be greater than "from."
aoqi@0 1213 inline intx byte_size(void* from, void* to) {
aoqi@0 1214 return (address)to - (address)from;
aoqi@0 1215 }
aoqi@0 1216
aoqi@0 1217 //----------------------------------------------------------------------------------------------------
aoqi@0 1218 // Avoid non-portable casts with these routines (DEPRECATED)
aoqi@0 1219
aoqi@0 1220 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
aoqi@0 1221 // Bytes is optimized machine-specifically and may be much faster then the portable routines below.
aoqi@0 1222
aoqi@0 1223 // Given sequence of four bytes, build into a 32-bit word
aoqi@0 1224 // following the conventions used in class files.
aoqi@0 1225 // On the 386, this could be realized with a simple address cast.
aoqi@0 1226 //
aoqi@0 1227
aoqi@0 1228 // This routine takes eight bytes:
aoqi@0 1229 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
aoqi@0 1230 return (( u8(c1) << 56 ) & ( u8(0xff) << 56 ))
aoqi@0 1231 | (( u8(c2) << 48 ) & ( u8(0xff) << 48 ))
aoqi@0 1232 | (( u8(c3) << 40 ) & ( u8(0xff) << 40 ))
aoqi@0 1233 | (( u8(c4) << 32 ) & ( u8(0xff) << 32 ))
aoqi@0 1234 | (( u8(c5) << 24 ) & ( u8(0xff) << 24 ))
aoqi@0 1235 | (( u8(c6) << 16 ) & ( u8(0xff) << 16 ))
aoqi@0 1236 | (( u8(c7) << 8 ) & ( u8(0xff) << 8 ))
aoqi@0 1237 | (( u8(c8) << 0 ) & ( u8(0xff) << 0 ));
aoqi@0 1238 }
aoqi@0 1239
aoqi@0 1240 // This routine takes four bytes:
aoqi@0 1241 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
aoqi@0 1242 return (( u4(c1) << 24 ) & 0xff000000)
aoqi@0 1243 | (( u4(c2) << 16 ) & 0x00ff0000)
aoqi@0 1244 | (( u4(c3) << 8 ) & 0x0000ff00)
aoqi@0 1245 | (( u4(c4) << 0 ) & 0x000000ff);
aoqi@0 1246 }
aoqi@0 1247
aoqi@0 1248 // And this one works if the four bytes are contiguous in memory:
aoqi@0 1249 inline u4 build_u4_from( u1* p ) {
aoqi@0 1250 return build_u4_from( p[0], p[1], p[2], p[3] );
aoqi@0 1251 }
aoqi@0 1252
aoqi@0 1253 // Ditto for two-byte ints:
aoqi@0 1254 inline u2 build_u2_from( u1 c1, u1 c2 ) {
aoqi@0 1255 return u2((( u2(c1) << 8 ) & 0xff00)
aoqi@0 1256 | (( u2(c2) << 0 ) & 0x00ff));
aoqi@0 1257 }
aoqi@0 1258
aoqi@0 1259 // And this one works if the two bytes are contiguous in memory:
aoqi@0 1260 inline u2 build_u2_from( u1* p ) {
aoqi@0 1261 return build_u2_from( p[0], p[1] );
aoqi@0 1262 }
aoqi@0 1263
aoqi@0 1264 // Ditto for floats:
aoqi@0 1265 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
aoqi@0 1266 u4 u = build_u4_from( c1, c2, c3, c4 );
aoqi@0 1267 return *(jfloat*)&u;
aoqi@0 1268 }
aoqi@0 1269
aoqi@0 1270 inline jfloat build_float_from( u1* p ) {
aoqi@0 1271 u4 u = build_u4_from( p );
aoqi@0 1272 return *(jfloat*)&u;
aoqi@0 1273 }
aoqi@0 1274
aoqi@0 1275
aoqi@0 1276 // now (64-bit) longs
aoqi@0 1277
aoqi@0 1278 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
aoqi@0 1279 return (( jlong(c1) << 56 ) & ( jlong(0xff) << 56 ))
aoqi@0 1280 | (( jlong(c2) << 48 ) & ( jlong(0xff) << 48 ))
aoqi@0 1281 | (( jlong(c3) << 40 ) & ( jlong(0xff) << 40 ))
aoqi@0 1282 | (( jlong(c4) << 32 ) & ( jlong(0xff) << 32 ))
aoqi@0 1283 | (( jlong(c5) << 24 ) & ( jlong(0xff) << 24 ))
aoqi@0 1284 | (( jlong(c6) << 16 ) & ( jlong(0xff) << 16 ))
aoqi@0 1285 | (( jlong(c7) << 8 ) & ( jlong(0xff) << 8 ))
aoqi@0 1286 | (( jlong(c8) << 0 ) & ( jlong(0xff) << 0 ));
aoqi@0 1287 }
aoqi@0 1288
aoqi@0 1289 inline jlong build_long_from( u1* p ) {
aoqi@0 1290 return build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
aoqi@0 1291 }
aoqi@0 1292
aoqi@0 1293
aoqi@0 1294 // Doubles, too!
aoqi@0 1295 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
aoqi@0 1296 jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
aoqi@0 1297 return *(jdouble*)&u;
aoqi@0 1298 }
aoqi@0 1299
aoqi@0 1300 inline jdouble build_double_from( u1* p ) {
aoqi@0 1301 jlong u = build_long_from( p );
aoqi@0 1302 return *(jdouble*)&u;
aoqi@0 1303 }
aoqi@0 1304
aoqi@0 1305
aoqi@0 1306 // Portable routines to go the other way:
aoqi@0 1307
aoqi@0 1308 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
aoqi@0 1309 c1 = u1(x >> 8);
aoqi@0 1310 c2 = u1(x);
aoqi@0 1311 }
aoqi@0 1312
aoqi@0 1313 inline void explode_short_to( u2 x, u1* p ) {
aoqi@0 1314 explode_short_to( x, p[0], p[1]);
aoqi@0 1315 }
aoqi@0 1316
aoqi@0 1317 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
aoqi@0 1318 c1 = u1(x >> 24);
aoqi@0 1319 c2 = u1(x >> 16);
aoqi@0 1320 c3 = u1(x >> 8);
aoqi@0 1321 c4 = u1(x);
aoqi@0 1322 }
aoqi@0 1323
aoqi@0 1324 inline void explode_int_to( u4 x, u1* p ) {
aoqi@0 1325 explode_int_to( x, p[0], p[1], p[2], p[3]);
aoqi@0 1326 }
aoqi@0 1327
aoqi@0 1328
aoqi@0 1329 // Pack and extract shorts to/from ints:
aoqi@0 1330
aoqi@0 1331 inline int extract_low_short_from_int(jint x) {
aoqi@0 1332 return x & 0xffff;
aoqi@0 1333 }
aoqi@0 1334
aoqi@0 1335 inline int extract_high_short_from_int(jint x) {
aoqi@0 1336 return (x >> 16) & 0xffff;
aoqi@0 1337 }
aoqi@0 1338
aoqi@0 1339 inline int build_int_from_shorts( jushort low, jushort high ) {
aoqi@0 1340 return ((int)((unsigned int)high << 16) | (unsigned int)low);
aoqi@0 1341 }
aoqi@0 1342
aoqi@0 1343 // Convert pointer to intptr_t, for use in printing pointers.
aoqi@0 1344 inline intptr_t p2i(const void * p) {
aoqi@0 1345 return (intptr_t) p;
aoqi@0 1346 }
aoqi@0 1347
aoqi@0 1348 // Printf-style formatters for fixed- and variable-width types as pointers and
aoqi@0 1349 // integers. These are derived from the definitions in inttypes.h. If the platform
aoqi@0 1350 // doesn't provide appropriate definitions, they should be provided in
aoqi@0 1351 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
aoqi@0 1352
aoqi@0 1353 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
aoqi@0 1354
aoqi@0 1355 // Format 32-bit quantities.
aoqi@0 1356 #define INT32_FORMAT "%" PRId32
aoqi@0 1357 #define UINT32_FORMAT "%" PRIu32
aoqi@0 1358 #define INT32_FORMAT_W(width) "%" #width PRId32
aoqi@0 1359 #define UINT32_FORMAT_W(width) "%" #width PRIu32
aoqi@0 1360
aoqi@0 1361 #define PTR32_FORMAT "0x%08" PRIx32
aoqi@0 1362
aoqi@0 1363 // Format 64-bit quantities.
aoqi@0 1364 #define INT64_FORMAT "%" PRId64
aoqi@0 1365 #define UINT64_FORMAT "%" PRIu64
aoqi@0 1366 #define UINT64_FORMAT_X "%" PRIx64
aoqi@0 1367 #define INT64_FORMAT_W(width) "%" #width PRId64
aoqi@0 1368 #define UINT64_FORMAT_W(width) "%" #width PRIu64
aoqi@0 1369
aoqi@0 1370 #define PTR64_FORMAT "0x%016" PRIx64
aoqi@0 1371
aoqi@0 1372 // Format jlong, if necessary
aoqi@0 1373 #ifndef JLONG_FORMAT
aoqi@0 1374 #define JLONG_FORMAT INT64_FORMAT
aoqi@0 1375 #endif
aoqi@0 1376 #ifndef JULONG_FORMAT
aoqi@0 1377 #define JULONG_FORMAT UINT64_FORMAT
aoqi@0 1378 #endif
aoqi@0 1379
aoqi@0 1380 // Format pointers which change size between 32- and 64-bit.
aoqi@0 1381 #ifdef _LP64
aoqi@0 1382 #define INTPTR_FORMAT "0x%016" PRIxPTR
aoqi@0 1383 #define PTR_FORMAT "0x%016" PRIxPTR
aoqi@0 1384 #else // !_LP64
aoqi@0 1385 #define INTPTR_FORMAT "0x%08" PRIxPTR
aoqi@0 1386 #define PTR_FORMAT "0x%08" PRIxPTR
aoqi@0 1387 #endif // _LP64
aoqi@0 1388
aoqi@0 1389 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
aoqi@0 1390
aoqi@0 1391 #define SSIZE_FORMAT "%" PRIdPTR
aoqi@0 1392 #define SIZE_FORMAT "%" PRIuPTR
aoqi@0 1393 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
aoqi@0 1394 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
aoqi@0 1395 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
aoqi@0 1396 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
aoqi@0 1397
aoqi@0 1398 #define INTX_FORMAT "%" PRIdPTR
aoqi@0 1399 #define UINTX_FORMAT "%" PRIuPTR
aoqi@0 1400 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
aoqi@0 1401 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
aoqi@0 1402
aoqi@0 1403
aoqi@0 1404 // Enable zap-a-lot if in debug version.
aoqi@0 1405
aoqi@0 1406 # ifdef ASSERT
aoqi@0 1407 # ifdef COMPILER2
aoqi@0 1408 # define ENABLE_ZAP_DEAD_LOCALS
aoqi@0 1409 #endif /* COMPILER2 */
aoqi@0 1410 # endif /* ASSERT */
aoqi@0 1411
aoqi@0 1412 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
aoqi@0 1413
aoqi@0 1414 // Dereference vptr
aoqi@0 1415 // All C++ compilers that we know of have the vtbl pointer in the first
aoqi@0 1416 // word. If there are exceptions, this function needs to be made compiler
aoqi@0 1417 // specific.
aoqi@0 1418 static inline void* dereference_vptr(const void* addr) {
aoqi@0 1419 return *(void**)addr;
aoqi@0 1420 }
aoqi@0 1421
aoqi@0 1422 #ifndef PRODUCT
aoqi@0 1423
aoqi@0 1424 // For unit testing only
aoqi@0 1425 class GlobalDefinitions {
aoqi@0 1426 public:
aoqi@0 1427 static void test_globals();
aoqi@0 1428 };
aoqi@0 1429
aoqi@0 1430 #endif // PRODUCT
aoqi@0 1431
aoqi@0 1432 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

mercurial