src/share/vm/opto/output.cpp

Tue, 14 Jan 2014 17:46:48 -0800

author
kvn
date
Tue, 14 Jan 2014 17:46:48 -0800
changeset 6312
04d32e7fad07
parent 6198
55fb97c4c58d
child 6339
0f95765ebd35
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8002074: Support for AES on SPARC
Summary: Add intrinsics/stub routines support for single-block and multi-block (as used by Cipher Block Chaining mode) AES encryption and decryption operations on the SPARC platform.
Reviewed-by: kvn, roland
Contributed-by: shrinivas.joshi@oracle.com

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.inline.hpp"
dlong@5000 27 #include "code/compiledIC.hpp"
stefank@2314 28 #include "code/debugInfo.hpp"
stefank@2314 29 #include "code/debugInfoRec.hpp"
stefank@2314 30 #include "compiler/compileBroker.hpp"
stefank@2314 31 #include "compiler/oopMap.hpp"
stefank@2314 32 #include "memory/allocation.inline.hpp"
stefank@2314 33 #include "opto/callnode.hpp"
stefank@2314 34 #include "opto/cfgnode.hpp"
stefank@2314 35 #include "opto/locknode.hpp"
stefank@2314 36 #include "opto/machnode.hpp"
stefank@2314 37 #include "opto/output.hpp"
stefank@2314 38 #include "opto/regalloc.hpp"
stefank@2314 39 #include "opto/runtime.hpp"
stefank@2314 40 #include "opto/subnode.hpp"
stefank@2314 41 #include "opto/type.hpp"
stefank@2314 42 #include "runtime/handles.inline.hpp"
stefank@2314 43 #include "utilities/xmlstream.hpp"
duke@435 44
duke@435 45 extern uint size_exception_handler();
duke@435 46 extern uint size_deopt_handler();
duke@435 47
duke@435 48 #ifndef PRODUCT
duke@435 49 #define DEBUG_ARG(x) , x
duke@435 50 #else
duke@435 51 #define DEBUG_ARG(x)
duke@435 52 #endif
duke@435 53
duke@435 54 extern int emit_exception_handler(CodeBuffer &cbuf);
duke@435 55 extern int emit_deopt_handler(CodeBuffer &cbuf);
duke@435 56
duke@435 57 // Convert Nodes to instruction bits and pass off to the VM
duke@435 58 void Compile::Output() {
duke@435 59 // RootNode goes
adlertz@5635 60 assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
duke@435 61
kvn@1294 62 // The number of new nodes (mostly MachNop) is proportional to
kvn@1294 63 // the number of java calls and inner loops which are aligned.
kvn@1294 64 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
kvn@1294 65 C->inner_loops()*(OptoLoopAlignment-1)),
kvn@1294 66 "out of nodes before code generation" ) ) {
kvn@1294 67 return;
kvn@1294 68 }
duke@435 69 // Make sure I can find the Start Node
adlertz@5539 70 Block *entry = _cfg->get_block(1);
adlertz@5539 71 Block *broot = _cfg->get_root_block();
duke@435 72
adlertz@5635 73 const StartNode *start = entry->head()->as_Start();
duke@435 74
duke@435 75 // Replace StartNode with prolog
duke@435 76 MachPrologNode *prolog = new (this) MachPrologNode();
adlertz@5635 77 entry->map_node(prolog, 0);
adlertz@5509 78 _cfg->map_node_to_block(prolog, entry);
adlertz@5509 79 _cfg->unmap_node_from_block(start); // start is no longer in any block
duke@435 80
duke@435 81 // Virtual methods need an unverified entry point
duke@435 82
duke@435 83 if( is_osr_compilation() ) {
duke@435 84 if( PoisonOSREntry ) {
duke@435 85 // TODO: Should use a ShouldNotReachHereNode...
duke@435 86 _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
duke@435 87 }
duke@435 88 } else {
duke@435 89 if( _method && !_method->flags().is_static() ) {
duke@435 90 // Insert unvalidated entry point
duke@435 91 _cfg->insert( broot, 0, new (this) MachUEPNode() );
duke@435 92 }
duke@435 93
duke@435 94 }
duke@435 95
duke@435 96
duke@435 97 // Break before main entry point
duke@435 98 if( (_method && _method->break_at_execute())
duke@435 99 #ifndef PRODUCT
duke@435 100 ||(OptoBreakpoint && is_method_compilation())
duke@435 101 ||(OptoBreakpointOSR && is_osr_compilation())
duke@435 102 ||(OptoBreakpointC2R && !_method)
duke@435 103 #endif
duke@435 104 ) {
duke@435 105 // checking for _method means that OptoBreakpoint does not apply to
duke@435 106 // runtime stubs or frame converters
duke@435 107 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
duke@435 108 }
duke@435 109
duke@435 110 // Insert epilogs before every return
adlertz@5539 111 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 112 Block* block = _cfg->get_block(i);
adlertz@5539 113 if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
adlertz@5539 114 Node* m = block->end();
adlertz@5539 115 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
adlertz@5539 116 MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
adlertz@5539 117 block->add_inst(epilog);
adlertz@5539 118 _cfg->map_node_to_block(epilog, block);
duke@435 119 }
duke@435 120 }
duke@435 121 }
duke@435 122
duke@435 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
adlertz@5539 124 if (ZapDeadCompiledLocals) {
adlertz@5539 125 Insert_zap_nodes();
adlertz@5539 126 }
duke@435 127 # endif
duke@435 128
adlertz@5539 129 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
adlertz@5539 130 blk_starts[0] = 0;
kvn@3049 131
kvn@3049 132 // Initialize code buffer and process short branches.
kvn@3049 133 CodeBuffer* cb = init_buffer(blk_starts);
kvn@3049 134
adlertz@5539 135 if (cb == NULL || failing()) {
adlertz@5539 136 return;
adlertz@5539 137 }
kvn@3049 138
duke@435 139 ScheduleAndBundle();
duke@435 140
duke@435 141 #ifndef PRODUCT
duke@435 142 if (trace_opto_output()) {
duke@435 143 tty->print("\n---- After ScheduleAndBundle ----\n");
adlertz@5539 144 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
duke@435 145 tty->print("\nBB#%03d:\n", i);
adlertz@5539 146 Block* block = _cfg->get_block(i);
adlertz@5635 147 for (uint j = 0; j < block->number_of_nodes(); j++) {
adlertz@5635 148 Node* n = block->get_node(j);
duke@435 149 OptoReg::Name reg = _regalloc->get_reg_first(n);
duke@435 150 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
duke@435 151 n->dump();
duke@435 152 }
duke@435 153 }
duke@435 154 }
duke@435 155 #endif
duke@435 156
adlertz@5539 157 if (failing()) {
adlertz@5539 158 return;
adlertz@5539 159 }
duke@435 160
duke@435 161 BuildOopMaps();
duke@435 162
adlertz@5539 163 if (failing()) {
adlertz@5539 164 return;
adlertz@5539 165 }
duke@435 166
kvn@3049 167 fill_buffer(cb, blk_starts);
duke@435 168 }
duke@435 169
duke@435 170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
duke@435 171 // Determine if we need to generate a stack overflow check.
duke@435 172 // Do it if the method is not a stub function and
duke@435 173 // has java calls or has frame size > vm_page_size/8.
kvn@3574 174 return (UseStackBanging && stub_function() == NULL &&
duke@435 175 (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
duke@435 176 }
duke@435 177
duke@435 178 bool Compile::need_register_stack_bang() const {
duke@435 179 // Determine if we need to generate a register stack overflow check.
duke@435 180 // This is only used on architectures which have split register
duke@435 181 // and memory stacks (ie. IA64).
duke@435 182 // Bang if the method is not a stub function and has java calls
duke@435 183 return (stub_function() == NULL && has_java_calls());
duke@435 184 }
duke@435 185
duke@435 186 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 187
duke@435 188
duke@435 189 // In order to catch compiler oop-map bugs, we have implemented
duke@435 190 // a debugging mode called ZapDeadCompilerLocals.
duke@435 191 // This mode causes the compiler to insert a call to a runtime routine,
duke@435 192 // "zap_dead_locals", right before each place in compiled code
duke@435 193 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
duke@435 194 // The runtime routine checks that locations mapped as oops are really
duke@435 195 // oops, that locations mapped as values do not look like oops,
duke@435 196 // and that locations mapped as dead are not used later
duke@435 197 // (by zapping them to an invalid address).
duke@435 198
duke@435 199 int Compile::_CompiledZap_count = 0;
duke@435 200
duke@435 201 void Compile::Insert_zap_nodes() {
duke@435 202 bool skip = false;
duke@435 203
duke@435 204
duke@435 205 // Dink with static counts because code code without the extra
duke@435 206 // runtime calls is MUCH faster for debugging purposes
duke@435 207
duke@435 208 if ( CompileZapFirst == 0 ) ; // nothing special
duke@435 209 else if ( CompileZapFirst > CompiledZap_count() ) skip = true;
duke@435 210 else if ( CompileZapFirst == CompiledZap_count() )
duke@435 211 warning("starting zap compilation after skipping");
duke@435 212
duke@435 213 if ( CompileZapLast == -1 ) ; // nothing special
duke@435 214 else if ( CompileZapLast < CompiledZap_count() ) skip = true;
duke@435 215 else if ( CompileZapLast == CompiledZap_count() )
duke@435 216 warning("about to compile last zap");
duke@435 217
duke@435 218 ++_CompiledZap_count; // counts skipped zaps, too
duke@435 219
duke@435 220 if ( skip ) return;
duke@435 221
duke@435 222
duke@435 223 if ( _method == NULL )
duke@435 224 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
duke@435 225
duke@435 226 // Insert call to zap runtime stub before every node with an oop map
adlertz@5539 227 for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
adlertz@5539 228 Block *b = _cfg->get_block(i);
adlertz@5635 229 for ( uint j = 0; j < b->number_of_nodes(); ++j ) {
adlertz@5635 230 Node *n = b->get_node(j);
duke@435 231
duke@435 232 // Determining if we should insert a zap-a-lot node in output.
duke@435 233 // We do that for all nodes that has oopmap info, except for calls
duke@435 234 // to allocation. Calls to allocation passes in the old top-of-eden pointer
duke@435 235 // and expect the C code to reset it. Hence, there can be no safepoints between
duke@435 236 // the inlined-allocation and the call to new_Java, etc.
duke@435 237 // We also cannot zap monitor calls, as they must hold the microlock
duke@435 238 // during the call to Zap, which also wants to grab the microlock.
duke@435 239 bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
duke@435 240 if ( insert ) { // it is MachSafePoint
duke@435 241 if ( !n->is_MachCall() ) {
duke@435 242 insert = false;
duke@435 243 } else if ( n->is_MachCall() ) {
duke@435 244 MachCallNode* call = n->as_MachCall();
duke@435 245 if (call->entry_point() == OptoRuntime::new_instance_Java() ||
duke@435 246 call->entry_point() == OptoRuntime::new_array_Java() ||
duke@435 247 call->entry_point() == OptoRuntime::multianewarray2_Java() ||
duke@435 248 call->entry_point() == OptoRuntime::multianewarray3_Java() ||
duke@435 249 call->entry_point() == OptoRuntime::multianewarray4_Java() ||
duke@435 250 call->entry_point() == OptoRuntime::multianewarray5_Java() ||
duke@435 251 call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
duke@435 252 call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
duke@435 253 ) {
duke@435 254 insert = false;
duke@435 255 }
duke@435 256 }
duke@435 257 if (insert) {
duke@435 258 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
adlertz@5635 259 b->insert_node(zap, j);
adlertz@5509 260 _cfg->map_node_to_block(zap, b);
duke@435 261 ++j;
duke@435 262 }
duke@435 263 }
duke@435 264 }
duke@435 265 }
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
duke@435 270 const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
duke@435 271 CallStaticJavaNode* ideal_node =
kvn@4115 272 new (this) CallStaticJavaNode( tf,
duke@435 273 OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
kvn@4115 274 "call zap dead locals stub", 0, TypePtr::BOTTOM);
duke@435 275 // We need to copy the OopMap from the site we're zapping at.
duke@435 276 // We have to make a copy, because the zap site might not be
duke@435 277 // a call site, and zap_dead is a call site.
duke@435 278 OopMap* clone = node_to_check->oop_map()->deep_copy();
duke@435 279
duke@435 280 // Add the cloned OopMap to the zap node
duke@435 281 ideal_node->set_oop_map(clone);
duke@435 282 return _matcher->match_sfpt(ideal_node);
duke@435 283 }
duke@435 284
duke@435 285 bool Compile::is_node_getting_a_safepoint( Node* n) {
duke@435 286 // This code duplicates the logic prior to the call of add_safepoint
duke@435 287 // below in this file.
duke@435 288 if( n->is_MachSafePoint() ) return true;
duke@435 289 return false;
duke@435 290 }
duke@435 291
duke@435 292 # endif // ENABLE_ZAP_DEAD_LOCALS
duke@435 293
rasbold@853 294 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
duke@435 295 // of a loop. When aligning a loop we need to provide enough instructions
duke@435 296 // in cpu's fetch buffer to feed decoders. The loop alignment could be
duke@435 297 // avoided if we have enough instructions in fetch buffer at the head of a loop.
duke@435 298 // By default, the size is set to 999999 by Block's constructor so that
duke@435 299 // a loop will be aligned if the size is not reset here.
duke@435 300 //
duke@435 301 // Note: Mach instructions could contain several HW instructions
duke@435 302 // so the size is estimated only.
duke@435 303 //
duke@435 304 void Compile::compute_loop_first_inst_sizes() {
duke@435 305 // The next condition is used to gate the loop alignment optimization.
duke@435 306 // Don't aligned a loop if there are enough instructions at the head of a loop
duke@435 307 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
duke@435 308 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
duke@435 309 // equal to 11 bytes which is the largest address NOP instruction.
adlertz@5539 310 if (MaxLoopPad < OptoLoopAlignment - 1) {
adlertz@5539 311 uint last_block = _cfg->number_of_blocks() - 1;
adlertz@5539 312 for (uint i = 1; i <= last_block; i++) {
adlertz@5539 313 Block* block = _cfg->get_block(i);
duke@435 314 // Check the first loop's block which requires an alignment.
adlertz@5539 315 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
duke@435 316 uint sum_size = 0;
duke@435 317 uint inst_cnt = NumberOfLoopInstrToAlign;
adlertz@5539 318 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 319
rasbold@853 320 // Check subsequent fallthrough blocks if the loop's first
rasbold@853 321 // block(s) does not have enough instructions.
adlertz@5539 322 Block *nb = block;
adlertz@5539 323 while(inst_cnt > 0 &&
adlertz@5539 324 i < last_block &&
adlertz@5539 325 !_cfg->get_block(i + 1)->has_loop_alignment() &&
adlertz@5539 326 !nb->has_successor(block)) {
rasbold@853 327 i++;
adlertz@5539 328 nb = _cfg->get_block(i);
rasbold@853 329 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
rasbold@853 330 } // while( inst_cnt > 0 && i < last_block )
rasbold@853 331
adlertz@5539 332 block->set_first_inst_size(sum_size);
duke@435 333 } // f( b->head()->is_Loop() )
duke@435 334 } // for( i <= last_block )
duke@435 335 } // if( MaxLoopPad < OptoLoopAlignment-1 )
duke@435 336 }
duke@435 337
duke@435 338 // The architecture description provides short branch variants for some long
duke@435 339 // branch instructions. Replace eligible long branches with short branches.
kvn@3049 340 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
duke@435 341 // Compute size of each block, method size, and relocation information size
adlertz@5539 342 uint nblocks = _cfg->number_of_blocks();
kvn@3049 343
kvn@3049 344 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 345 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 346 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
kvn@3049 347 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
kvn@3049 348 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
kvn@3049 349
kvn@3049 350 bool has_short_branch_candidate = false;
duke@435 351
duke@435 352 // Initialize the sizes to 0
duke@435 353 code_size = 0; // Size in bytes of generated code
duke@435 354 stub_size = 0; // Size in bytes of all stub entries
duke@435 355 // Size in bytes of all relocation entries, including those in local stubs.
duke@435 356 // Start with 2-bytes of reloc info for the unvalidated entry point
duke@435 357 reloc_size = 1; // Number of relocation entries
duke@435 358
duke@435 359 // Make three passes. The first computes pessimistic blk_starts,
kvn@3049 360 // relative jmp_offset and reloc_size information. The second performs
twisti@2350 361 // short branch substitution using the pessimistic sizing. The
twisti@2350 362 // third inserts nops where needed.
duke@435 363
duke@435 364 // Step one, perform a pessimistic sizing pass.
kvn@3049 365 uint last_call_adr = max_uint;
kvn@3049 366 uint last_avoid_back_to_back_adr = max_uint;
duke@435 367 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
kvn@3049 368 for (uint i = 0; i < nblocks; i++) { // For all blocks
adlertz@5539 369 Block* block = _cfg->get_block(i);
duke@435 370
kvn@3049 371 // During short branch replacement, we store the relative (to blk_starts)
kvn@3049 372 // offset of jump in jmp_offset, rather than the absolute offset of jump.
kvn@3049 373 // This is so that we do not need to recompute sizes of all nodes when
kvn@3049 374 // we compute correct blk_starts in our next sizing pass.
kvn@3049 375 jmp_offset[i] = 0;
kvn@3049 376 jmp_size[i] = 0;
kvn@3049 377 jmp_nidx[i] = -1;
kvn@3049 378 DEBUG_ONLY( jmp_target[i] = 0; )
kvn@3049 379 DEBUG_ONLY( jmp_rule[i] = 0; )
kvn@3049 380
duke@435 381 // Sum all instruction sizes to compute block size
adlertz@5635 382 uint last_inst = block->number_of_nodes();
duke@435 383 uint blk_size = 0;
kvn@3049 384 for (uint j = 0; j < last_inst; j++) {
adlertz@5635 385 Node* nj = block->get_node(j);
duke@435 386 // Handle machine instruction nodes
kvn@3049 387 if (nj->is_Mach()) {
duke@435 388 MachNode *mach = nj->as_Mach();
duke@435 389 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
duke@435 390 reloc_size += mach->reloc();
dlong@5000 391 if (mach->is_MachCall()) {
duke@435 392 MachCallNode *mcall = mach->as_MachCall();
duke@435 393 // This destination address is NOT PC-relative
duke@435 394
duke@435 395 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 396
dlong@5000 397 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
dlong@5000 398 stub_size += CompiledStaticCall::to_interp_stub_size();
dlong@5000 399 reloc_size += CompiledStaticCall::reloc_to_interp_stub();
duke@435 400 }
duke@435 401 } else if (mach->is_MachSafePoint()) {
duke@435 402 // If call/safepoint are adjacent, account for possible
duke@435 403 // nop to disambiguate the two safepoints.
kvn@3049 404 // ScheduleAndBundle() can rearrange nodes in a block,
kvn@3049 405 // check for all offsets inside this block.
kvn@3049 406 if (last_call_adr >= blk_starts[i]) {
duke@435 407 blk_size += nop_size;
duke@435 408 }
duke@435 409 }
kvn@3049 410 if (mach->avoid_back_to_back()) {
kvn@3049 411 // Nop is inserted between "avoid back to back" instructions.
kvn@3049 412 // ScheduleAndBundle() can rearrange nodes in a block,
kvn@3049 413 // check for all offsets inside this block.
kvn@3049 414 if (last_avoid_back_to_back_adr >= blk_starts[i]) {
kvn@3049 415 blk_size += nop_size;
kvn@3049 416 }
kvn@3049 417 }
kvn@3049 418 if (mach->may_be_short_branch()) {
kvn@3051 419 if (!nj->is_MachBranch()) {
kvn@3049 420 #ifndef PRODUCT
kvn@3049 421 nj->dump(3);
kvn@3049 422 #endif
kvn@3049 423 Unimplemented();
kvn@3049 424 }
kvn@3049 425 assert(jmp_nidx[i] == -1, "block should have only one branch");
kvn@3049 426 jmp_offset[i] = blk_size;
kvn@3055 427 jmp_size[i] = nj->size(_regalloc);
kvn@3049 428 jmp_nidx[i] = j;
kvn@3049 429 has_short_branch_candidate = true;
kvn@3049 430 }
duke@435 431 }
kvn@3055 432 blk_size += nj->size(_regalloc);
duke@435 433 // Remember end of call offset
kvn@3040 434 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
kvn@3049 435 last_call_adr = blk_starts[i]+blk_size;
kvn@3049 436 }
kvn@3049 437 // Remember end of avoid_back_to_back offset
kvn@3049 438 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
kvn@3049 439 last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
duke@435 440 }
duke@435 441 }
duke@435 442
duke@435 443 // When the next block starts a loop, we may insert pad NOP
duke@435 444 // instructions. Since we cannot know our future alignment,
duke@435 445 // assume the worst.
adlertz@5539 446 if (i < nblocks - 1) {
adlertz@5539 447 Block* nb = _cfg->get_block(i + 1);
duke@435 448 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
kvn@3049 449 if (max_loop_pad > 0) {
duke@435 450 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
rasbold@4874 451 // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
rasbold@4874 452 // If either is the last instruction in this block, bump by
rasbold@4874 453 // max_loop_pad in lock-step with blk_size, so sizing
rasbold@4874 454 // calculations in subsequent blocks still can conservatively
rasbold@4874 455 // detect that it may the last instruction in this block.
rasbold@4874 456 if (last_call_adr == blk_starts[i]+blk_size) {
rasbold@4874 457 last_call_adr += max_loop_pad;
rasbold@4874 458 }
rasbold@4874 459 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
rasbold@4874 460 last_avoid_back_to_back_adr += max_loop_pad;
rasbold@4874 461 }
duke@435 462 blk_size += max_loop_pad;
duke@435 463 }
duke@435 464 }
duke@435 465
duke@435 466 // Save block size; update total method size
duke@435 467 blk_starts[i+1] = blk_starts[i]+blk_size;
duke@435 468 }
duke@435 469
duke@435 470 // Step two, replace eligible long jumps.
kvn@3049 471 bool progress = true;
kvn@3049 472 uint last_may_be_short_branch_adr = max_uint;
kvn@3049 473 while (has_short_branch_candidate && progress) {
kvn@3049 474 progress = false;
kvn@3049 475 has_short_branch_candidate = false;
kvn@3049 476 int adjust_block_start = 0;
kvn@3049 477 for (uint i = 0; i < nblocks; i++) {
adlertz@5539 478 Block* block = _cfg->get_block(i);
kvn@3049 479 int idx = jmp_nidx[i];
adlertz@5635 480 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
kvn@3049 481 if (mach != NULL && mach->may_be_short_branch()) {
kvn@3049 482 #ifdef ASSERT
kvn@3051 483 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
kvn@3049 484 int j;
kvn@3049 485 // Find the branch; ignore trailing NOPs.
adlertz@5635 486 for (j = block->number_of_nodes()-1; j>=0; j--) {
adlertz@5635 487 Node* n = block->get_node(j);
kvn@3049 488 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
kvn@3049 489 break;
kvn@3049 490 }
adlertz@5635 491 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
kvn@3049 492 #endif
kvn@3049 493 int br_size = jmp_size[i];
kvn@3049 494 int br_offs = blk_starts[i] + jmp_offset[i];
kvn@3049 495
duke@435 496 // This requires the TRUE branch target be in succs[0]
adlertz@5539 497 uint bnum = block->non_connector_successor(0)->_pre_order;
kvn@3049 498 int offset = blk_starts[bnum] - br_offs;
kvn@3049 499 if (bnum > i) { // adjust following block's offset
kvn@3049 500 offset -= adjust_block_start;
kvn@3049 501 }
kvn@3049 502 // In the following code a nop could be inserted before
kvn@3049 503 // the branch which will increase the backward distance.
kvn@3049 504 bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
kvn@3049 505 if (needs_padding && offset <= 0)
kvn@3049 506 offset -= nop_size;
kvn@3049 507
kvn@3049 508 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
kvn@3049 509 // We've got a winner. Replace this branch.
kvn@3051 510 MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
kvn@3049 511
kvn@3049 512 // Update the jmp_size.
kvn@3049 513 int new_size = replacement->size(_regalloc);
kvn@3049 514 int diff = br_size - new_size;
kvn@3049 515 assert(diff >= (int)nop_size, "short_branch size should be smaller");
kvn@3049 516 // Conservatively take into accound padding between
kvn@3049 517 // avoid_back_to_back branches. Previous branch could be
kvn@3049 518 // converted into avoid_back_to_back branch during next
kvn@3049 519 // rounds.
kvn@3049 520 if (needs_padding && replacement->avoid_back_to_back()) {
kvn@3049 521 jmp_offset[i] += nop_size;
kvn@3049 522 diff -= nop_size;
duke@435 523 }
kvn@3049 524 adjust_block_start += diff;
adlertz@5635 525 block->map_node(replacement, idx);
bharadwaj@4315 526 mach->subsume_by(replacement, C);
kvn@3049 527 mach = replacement;
kvn@3049 528 progress = true;
kvn@3049 529
kvn@3049 530 jmp_size[i] = new_size;
kvn@3049 531 DEBUG_ONLY( jmp_target[i] = bnum; );
kvn@3049 532 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
duke@435 533 } else {
kvn@3049 534 // The jump distance is not short, try again during next iteration.
kvn@3049 535 has_short_branch_candidate = true;
duke@435 536 }
kvn@3049 537 } // (mach->may_be_short_branch())
kvn@3049 538 if (mach != NULL && (mach->may_be_short_branch() ||
kvn@3049 539 mach->avoid_back_to_back())) {
kvn@3049 540 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
duke@435 541 }
kvn@3049 542 blk_starts[i+1] -= adjust_block_start;
duke@435 543 }
duke@435 544 }
duke@435 545
kvn@3049 546 #ifdef ASSERT
kvn@3049 547 for (uint i = 0; i < nblocks; i++) { // For all blocks
kvn@3049 548 if (jmp_target[i] != 0) {
kvn@3049 549 int br_size = jmp_size[i];
kvn@3049 550 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
kvn@3049 551 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
kvn@3049 552 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
kvn@3049 553 }
kvn@3049 554 assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
kvn@3049 555 }
kvn@3049 556 }
kvn@3049 557 #endif
kvn@3049 558
kvn@3055 559 // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
kvn@3049 560 // after ScheduleAndBundle().
kvn@3049 561
kvn@3049 562 // ------------------
kvn@3049 563 // Compute size for code buffer
kvn@3049 564 code_size = blk_starts[nblocks];
kvn@3049 565
kvn@3049 566 // Relocation records
kvn@3049 567 reloc_size += 1; // Relo entry for exception handler
kvn@3049 568
kvn@3049 569 // Adjust reloc_size to number of record of relocation info
kvn@3049 570 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
kvn@3049 571 // a relocation index.
kvn@3049 572 // The CodeBuffer will expand the locs array if this estimate is too low.
kvn@3049 573 reloc_size *= 10 / sizeof(relocInfo);
kvn@3049 574 }
kvn@3049 575
duke@435 576 //------------------------------FillLocArray-----------------------------------
duke@435 577 // Create a bit of debug info and append it to the array. The mapping is from
duke@435 578 // Java local or expression stack to constant, register or stack-slot. For
duke@435 579 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
duke@435 580 // entry has been taken care of and caller should skip it).
duke@435 581 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
duke@435 582 // This should never have accepted Bad before
duke@435 583 assert(OptoReg::is_valid(regnum), "location must be valid");
duke@435 584 return (OptoReg::is_reg(regnum))
duke@435 585 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
duke@435 586 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
duke@435 587 }
duke@435 588
kvn@498 589
kvn@498 590 ObjectValue*
kvn@498 591 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
kvn@498 592 for (int i = 0; i < objs->length(); i++) {
kvn@498 593 assert(objs->at(i)->is_object(), "corrupt object cache");
kvn@498 594 ObjectValue* sv = (ObjectValue*) objs->at(i);
kvn@498 595 if (sv->id() == id) {
kvn@498 596 return sv;
kvn@498 597 }
kvn@498 598 }
kvn@498 599 // Otherwise..
kvn@498 600 return NULL;
kvn@498 601 }
kvn@498 602
kvn@498 603 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
kvn@498 604 ObjectValue* sv ) {
kvn@498 605 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
kvn@498 606 objs->append(sv);
kvn@498 607 }
kvn@498 608
kvn@498 609
kvn@498 610 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
kvn@498 611 GrowableArray<ScopeValue*> *array,
kvn@498 612 GrowableArray<ScopeValue*> *objs ) {
duke@435 613 assert( local, "use _top instead of null" );
duke@435 614 if (array->length() != idx) {
duke@435 615 assert(array->length() == idx + 1, "Unexpected array count");
duke@435 616 // Old functionality:
duke@435 617 // return
duke@435 618 // New functionality:
duke@435 619 // Assert if the local is not top. In product mode let the new node
duke@435 620 // override the old entry.
duke@435 621 assert(local == top(), "LocArray collision");
duke@435 622 if (local == top()) {
duke@435 623 return;
duke@435 624 }
duke@435 625 array->pop();
duke@435 626 }
duke@435 627 const Type *t = local->bottom_type();
duke@435 628
kvn@498 629 // Is it a safepoint scalar object node?
kvn@498 630 if (local->is_SafePointScalarObject()) {
kvn@498 631 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
kvn@498 632
kvn@498 633 ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 634 if (sv == NULL) {
kvn@498 635 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 636 assert(cik->is_instance_klass() ||
kvn@498 637 cik->is_array_klass(), "Not supported allocation.");
kvn@498 638 sv = new ObjectValue(spobj->_idx,
coleenp@4037 639 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
kvn@498 640 Compile::set_sv_for_object_node(objs, sv);
kvn@498 641
kvn@5626 642 uint first_ind = spobj->first_index(sfpt->jvms());
kvn@498 643 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 644 Node* fld_node = sfpt->in(first_ind+i);
kvn@498 645 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
kvn@498 646 }
kvn@498 647 }
kvn@498 648 array->append(sv);
kvn@498 649 return;
kvn@498 650 }
kvn@498 651
duke@435 652 // Grab the register number for the local
duke@435 653 OptoReg::Name regnum = _regalloc->get_reg_first(local);
duke@435 654 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
duke@435 655 // Record the double as two float registers.
duke@435 656 // The register mask for such a value always specifies two adjacent
duke@435 657 // float registers, with the lower register number even.
duke@435 658 // Normally, the allocation of high and low words to these registers
duke@435 659 // is irrelevant, because nearly all operations on register pairs
duke@435 660 // (e.g., StoreD) treat them as a single unit.
duke@435 661 // Here, we assume in addition that the words in these two registers
duke@435 662 // stored "naturally" (by operations like StoreD and double stores
duke@435 663 // within the interpreter) such that the lower-numbered register
duke@435 664 // is written to the lower memory address. This may seem like
duke@435 665 // a machine dependency, but it is not--it is a requirement on
duke@435 666 // the author of the <arch>.ad file to ensure that, for every
duke@435 667 // even/odd double-register pair to which a double may be allocated,
duke@435 668 // the word in the even single-register is stored to the first
duke@435 669 // memory word. (Note that register numbers are completely
duke@435 670 // arbitrary, and are not tied to any machine-level encodings.)
duke@435 671 #ifdef _LP64
duke@435 672 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
duke@435 673 array->append(new ConstantIntValue(0));
duke@435 674 array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
duke@435 675 } else if ( t->base() == Type::Long ) {
duke@435 676 array->append(new ConstantIntValue(0));
duke@435 677 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 678 } else if ( t->base() == Type::RawPtr ) {
duke@435 679 // jsr/ret return address which must be restored into a the full
duke@435 680 // width 64-bit stack slot.
duke@435 681 array->append(new_loc_value( _regalloc, regnum, Location::lng ));
duke@435 682 }
duke@435 683 #else //_LP64
duke@435 684 #ifdef SPARC
duke@435 685 if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
duke@435 686 // For SPARC we have to swap high and low words for
duke@435 687 // long values stored in a single-register (g0-g7).
duke@435 688 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 689 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 690 } else
duke@435 691 #endif //SPARC
duke@435 692 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
duke@435 693 // Repack the double/long as two jints.
duke@435 694 // The convention the interpreter uses is that the second local
duke@435 695 // holds the first raw word of the native double representation.
duke@435 696 // This is actually reasonable, since locals and stack arrays
duke@435 697 // grow downwards in all implementations.
duke@435 698 // (If, on some machine, the interpreter's Java locals or stack
duke@435 699 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 700 array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
duke@435 701 array->append(new_loc_value( _regalloc, regnum , Location::normal ));
duke@435 702 }
duke@435 703 #endif //_LP64
duke@435 704 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
duke@435 705 OptoReg::is_reg(regnum) ) {
kvn@1709 706 array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
duke@435 707 ? Location::float_in_dbl : Location::normal ));
duke@435 708 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
duke@435 709 array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
duke@435 710 ? Location::int_in_long : Location::normal ));
kvn@766 711 } else if( t->base() == Type::NarrowOop ) {
kvn@766 712 array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
duke@435 713 } else {
duke@435 714 array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
duke@435 715 }
duke@435 716 return;
duke@435 717 }
duke@435 718
duke@435 719 // No register. It must be constant data.
duke@435 720 switch (t->base()) {
duke@435 721 case Type::Half: // Second half of a double
duke@435 722 ShouldNotReachHere(); // Caller should skip 2nd halves
duke@435 723 break;
duke@435 724 case Type::AnyPtr:
duke@435 725 array->append(new ConstantOopWriteValue(NULL));
duke@435 726 break;
duke@435 727 case Type::AryPtr:
coleenp@4037 728 case Type::InstPtr: // fall through
jrose@1424 729 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
duke@435 730 break;
kvn@766 731 case Type::NarrowOop:
kvn@766 732 if (t == TypeNarrowOop::NULL_PTR) {
kvn@766 733 array->append(new ConstantOopWriteValue(NULL));
kvn@766 734 } else {
jrose@1424 735 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
kvn@766 736 }
kvn@766 737 break;
duke@435 738 case Type::Int:
duke@435 739 array->append(new ConstantIntValue(t->is_int()->get_con()));
duke@435 740 break;
duke@435 741 case Type::RawPtr:
duke@435 742 // A return address (T_ADDRESS).
duke@435 743 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
duke@435 744 #ifdef _LP64
duke@435 745 // Must be restored to the full-width 64-bit stack slot.
duke@435 746 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
duke@435 747 #else
duke@435 748 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
duke@435 749 #endif
duke@435 750 break;
duke@435 751 case Type::FloatCon: {
duke@435 752 float f = t->is_float_constant()->getf();
duke@435 753 array->append(new ConstantIntValue(jint_cast(f)));
duke@435 754 break;
duke@435 755 }
duke@435 756 case Type::DoubleCon: {
duke@435 757 jdouble d = t->is_double_constant()->getd();
duke@435 758 #ifdef _LP64
duke@435 759 array->append(new ConstantIntValue(0));
duke@435 760 array->append(new ConstantDoubleValue(d));
duke@435 761 #else
duke@435 762 // Repack the double as two jints.
duke@435 763 // The convention the interpreter uses is that the second local
duke@435 764 // holds the first raw word of the native double representation.
duke@435 765 // This is actually reasonable, since locals and stack arrays
duke@435 766 // grow downwards in all implementations.
duke@435 767 // (If, on some machine, the interpreter's Java locals or stack
duke@435 768 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 769 jint *dp = (jint*)&d;
duke@435 770 array->append(new ConstantIntValue(dp[1]));
duke@435 771 array->append(new ConstantIntValue(dp[0]));
duke@435 772 #endif
duke@435 773 break;
duke@435 774 }
duke@435 775 case Type::Long: {
duke@435 776 jlong d = t->is_long()->get_con();
duke@435 777 #ifdef _LP64
duke@435 778 array->append(new ConstantIntValue(0));
duke@435 779 array->append(new ConstantLongValue(d));
duke@435 780 #else
duke@435 781 // Repack the long as two jints.
duke@435 782 // The convention the interpreter uses is that the second local
duke@435 783 // holds the first raw word of the native double representation.
duke@435 784 // This is actually reasonable, since locals and stack arrays
duke@435 785 // grow downwards in all implementations.
duke@435 786 // (If, on some machine, the interpreter's Java locals or stack
duke@435 787 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 788 jint *dp = (jint*)&d;
duke@435 789 array->append(new ConstantIntValue(dp[1]));
duke@435 790 array->append(new ConstantIntValue(dp[0]));
duke@435 791 #endif
duke@435 792 break;
duke@435 793 }
duke@435 794 case Type::Top: // Add an illegal value here
duke@435 795 array->append(new LocationValue(Location()));
duke@435 796 break;
duke@435 797 default:
duke@435 798 ShouldNotReachHere();
duke@435 799 break;
duke@435 800 }
duke@435 801 }
duke@435 802
duke@435 803 // Determine if this node starts a bundle
duke@435 804 bool Compile::starts_bundle(const Node *n) const {
duke@435 805 return (_node_bundling_limit > n->_idx &&
duke@435 806 _node_bundling_base[n->_idx].starts_bundle());
duke@435 807 }
duke@435 808
duke@435 809 //--------------------------Process_OopMap_Node--------------------------------
duke@435 810 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
duke@435 811
duke@435 812 // Handle special safepoint nodes for synchronization
duke@435 813 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 814 MachCallNode *mcall;
duke@435 815
duke@435 816 #ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 817 assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative");
duke@435 818 #endif
duke@435 819
duke@435 820 int safepoint_pc_offset = current_offset;
twisti@1572 821 bool is_method_handle_invoke = false;
kvn@1688 822 bool return_oop = false;
duke@435 823
duke@435 824 // Add the safepoint in the DebugInfoRecorder
duke@435 825 if( !mach->is_MachCall() ) {
duke@435 826 mcall = NULL;
duke@435 827 debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
duke@435 828 } else {
duke@435 829 mcall = mach->as_MachCall();
twisti@1572 830
twisti@1572 831 // Is the call a MethodHandle call?
twisti@1700 832 if (mcall->is_MachCallJava()) {
twisti@1700 833 if (mcall->as_MachCallJava()->_method_handle_invoke) {
twisti@1700 834 assert(has_method_handle_invokes(), "must have been set during call generation");
twisti@1700 835 is_method_handle_invoke = true;
twisti@1700 836 }
twisti@1700 837 }
twisti@1572 838
kvn@1688 839 // Check if a call returns an object.
kvn@1688 840 if (mcall->return_value_is_used() &&
kvn@1688 841 mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
kvn@1688 842 return_oop = true;
kvn@1688 843 }
duke@435 844 safepoint_pc_offset += mcall->ret_addr_offset();
duke@435 845 debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
duke@435 846 }
duke@435 847
duke@435 848 // Loop over the JVMState list to add scope information
duke@435 849 // Do not skip safepoints with a NULL method, they need monitor info
duke@435 850 JVMState* youngest_jvms = sfn->jvms();
duke@435 851 int max_depth = youngest_jvms->depth();
duke@435 852
kvn@498 853 // Allocate the object pool for scalar-replaced objects -- the map from
kvn@498 854 // small-integer keys (which can be recorded in the local and ostack
kvn@498 855 // arrays) to descriptions of the object state.
kvn@498 856 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
kvn@498 857
duke@435 858 // Visit scopes from oldest to youngest.
duke@435 859 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 860 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 861 int idx;
duke@435 862 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
duke@435 863 // Safepoints that do not have method() set only provide oop-map and monitor info
duke@435 864 // to support GC; these do not support deoptimization.
duke@435 865 int num_locs = (method == NULL) ? 0 : jvms->loc_size();
duke@435 866 int num_exps = (method == NULL) ? 0 : jvms->stk_size();
duke@435 867 int num_mon = jvms->nof_monitors();
duke@435 868 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
duke@435 869 "JVMS local count must match that of the method");
duke@435 870
duke@435 871 // Add Local and Expression Stack Information
duke@435 872
duke@435 873 // Insert locals into the locarray
duke@435 874 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
duke@435 875 for( idx = 0; idx < num_locs; idx++ ) {
kvn@498 876 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
duke@435 877 }
duke@435 878
duke@435 879 // Insert expression stack entries into the exparray
duke@435 880 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
duke@435 881 for( idx = 0; idx < num_exps; idx++ ) {
kvn@498 882 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
duke@435 883 }
duke@435 884
duke@435 885 // Add in mappings of the monitors
duke@435 886 assert( !method ||
duke@435 887 !method->is_synchronized() ||
duke@435 888 method->is_native() ||
duke@435 889 num_mon > 0 ||
duke@435 890 !GenerateSynchronizationCode,
duke@435 891 "monitors must always exist for synchronized methods");
duke@435 892
duke@435 893 // Build the growable array of ScopeValues for exp stack
duke@435 894 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
duke@435 895
duke@435 896 // Loop over monitors and insert into array
kvn@5626 897 for (idx = 0; idx < num_mon; idx++) {
duke@435 898 // Grab the node that defines this monitor
kvn@895 899 Node* box_node = sfn->monitor_box(jvms, idx);
kvn@895 900 Node* obj_node = sfn->monitor_obj(jvms, idx);
duke@435 901
duke@435 902 // Create ScopeValue for object
duke@435 903 ScopeValue *scval = NULL;
kvn@498 904
kvn@5626 905 if (obj_node->is_SafePointScalarObject()) {
kvn@498 906 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
kvn@498 907 scval = Compile::sv_for_node_id(objs, spobj->_idx);
kvn@498 908 if (scval == NULL) {
kvn@5626 909 const Type *t = spobj->bottom_type();
kvn@498 910 ciKlass* cik = t->is_oopptr()->klass();
kvn@498 911 assert(cik->is_instance_klass() ||
kvn@498 912 cik->is_array_klass(), "Not supported allocation.");
kvn@498 913 ObjectValue* sv = new ObjectValue(spobj->_idx,
coleenp@4037 914 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
kvn@498 915 Compile::set_sv_for_object_node(objs, sv);
kvn@498 916
kvn@5626 917 uint first_ind = spobj->first_index(youngest_jvms);
kvn@498 918 for (uint i = 0; i < spobj->n_fields(); i++) {
kvn@498 919 Node* fld_node = sfn->in(first_ind+i);
kvn@498 920 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
kvn@498 921 }
kvn@498 922 scval = sv;
kvn@498 923 }
kvn@5626 924 } else if (!obj_node->is_Con()) {
duke@435 925 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
kvn@766 926 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
kvn@766 927 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
kvn@766 928 } else {
kvn@766 929 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
kvn@766 930 }
duke@435 931 } else {
kvn@5111 932 const TypePtr *tp = obj_node->get_ptr_type();
kvn@2931 933 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
duke@435 934 }
duke@435 935
kvn@3406 936 OptoReg::Name box_reg = BoxLockNode::reg(box_node);
kvn@501 937 Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
kvn@3406 938 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
kvn@3406 939 monarray->append(new MonitorValue(scval, basic_lock, eliminated));
duke@435 940 }
duke@435 941
kvn@498 942 // We dump the object pool first, since deoptimization reads it in first.
kvn@498 943 debug_info()->dump_object_pool(objs);
kvn@498 944
duke@435 945 // Build first class objects to pass to scope
duke@435 946 DebugToken *locvals = debug_info()->create_scope_values(locarray);
duke@435 947 DebugToken *expvals = debug_info()->create_scope_values(exparray);
duke@435 948 DebugToken *monvals = debug_info()->create_monitor_values(monarray);
duke@435 949
duke@435 950 // Make method available for all Safepoints
duke@435 951 ciMethod* scope_method = method ? method : _method;
duke@435 952 // Describe the scope here
duke@435 953 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
twisti@1570 954 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
kvn@498 955 // Now we can describe the scope.
kvn@1688 956 debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
duke@435 957 } // End jvms loop
duke@435 958
duke@435 959 // Mark the end of the scope set.
duke@435 960 debug_info()->end_safepoint(safepoint_pc_offset);
duke@435 961 }
duke@435 962
duke@435 963
duke@435 964
duke@435 965 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
duke@435 966 class NonSafepointEmitter {
duke@435 967 Compile* C;
duke@435 968 JVMState* _pending_jvms;
duke@435 969 int _pending_offset;
duke@435 970
duke@435 971 void emit_non_safepoint();
duke@435 972
duke@435 973 public:
duke@435 974 NonSafepointEmitter(Compile* compile) {
duke@435 975 this->C = compile;
duke@435 976 _pending_jvms = NULL;
duke@435 977 _pending_offset = 0;
duke@435 978 }
duke@435 979
duke@435 980 void observe_instruction(Node* n, int pc_offset) {
duke@435 981 if (!C->debug_info()->recording_non_safepoints()) return;
duke@435 982
duke@435 983 Node_Notes* nn = C->node_notes_at(n->_idx);
duke@435 984 if (nn == NULL || nn->jvms() == NULL) return;
duke@435 985 if (_pending_jvms != NULL &&
duke@435 986 _pending_jvms->same_calls_as(nn->jvms())) {
duke@435 987 // Repeated JVMS? Stretch it up here.
duke@435 988 _pending_offset = pc_offset;
duke@435 989 } else {
duke@435 990 if (_pending_jvms != NULL &&
duke@435 991 _pending_offset < pc_offset) {
duke@435 992 emit_non_safepoint();
duke@435 993 }
duke@435 994 _pending_jvms = NULL;
duke@435 995 if (pc_offset > C->debug_info()->last_pc_offset()) {
duke@435 996 // This is the only way _pending_jvms can become non-NULL:
duke@435 997 _pending_jvms = nn->jvms();
duke@435 998 _pending_offset = pc_offset;
duke@435 999 }
duke@435 1000 }
duke@435 1001 }
duke@435 1002
duke@435 1003 // Stay out of the way of real safepoints:
duke@435 1004 void observe_safepoint(JVMState* jvms, int pc_offset) {
duke@435 1005 if (_pending_jvms != NULL &&
duke@435 1006 !_pending_jvms->same_calls_as(jvms) &&
duke@435 1007 _pending_offset < pc_offset) {
duke@435 1008 emit_non_safepoint();
duke@435 1009 }
duke@435 1010 _pending_jvms = NULL;
duke@435 1011 }
duke@435 1012
duke@435 1013 void flush_at_end() {
duke@435 1014 if (_pending_jvms != NULL) {
duke@435 1015 emit_non_safepoint();
duke@435 1016 }
duke@435 1017 _pending_jvms = NULL;
duke@435 1018 }
duke@435 1019 };
duke@435 1020
duke@435 1021 void NonSafepointEmitter::emit_non_safepoint() {
duke@435 1022 JVMState* youngest_jvms = _pending_jvms;
duke@435 1023 int pc_offset = _pending_offset;
duke@435 1024
duke@435 1025 // Clear it now:
duke@435 1026 _pending_jvms = NULL;
duke@435 1027
duke@435 1028 DebugInformationRecorder* debug_info = C->debug_info();
duke@435 1029 assert(debug_info->recording_non_safepoints(), "sanity");
duke@435 1030
duke@435 1031 debug_info->add_non_safepoint(pc_offset);
duke@435 1032 int max_depth = youngest_jvms->depth();
duke@435 1033
duke@435 1034 // Visit scopes from oldest to youngest.
duke@435 1035 for (int depth = 1; depth <= max_depth; depth++) {
duke@435 1036 JVMState* jvms = youngest_jvms->of_depth(depth);
duke@435 1037 ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
cfang@1335 1038 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
cfang@1335 1039 debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
duke@435 1040 }
duke@435 1041
duke@435 1042 // Mark the end of the scope set.
duke@435 1043 debug_info->end_non_safepoint(pc_offset);
duke@435 1044 }
duke@435 1045
kvn@3049 1046 //------------------------------init_buffer------------------------------------
kvn@3049 1047 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
duke@435 1048
duke@435 1049 // Set the initially allocated size
duke@435 1050 int code_req = initial_code_capacity;
duke@435 1051 int locs_req = initial_locs_capacity;
duke@435 1052 int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
duke@435 1053 int const_req = initial_const_capacity;
duke@435 1054
duke@435 1055 int pad_req = NativeCall::instruction_size;
duke@435 1056 // The extra spacing after the code is necessary on some platforms.
duke@435 1057 // Sometimes we need to patch in a jump after the last instruction,
duke@435 1058 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
duke@435 1059
duke@435 1060 // Compute the byte offset where we can store the deopt pc.
duke@435 1061 if (fixed_slots() != 0) {
duke@435 1062 _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
duke@435 1063 }
duke@435 1064
duke@435 1065 // Compute prolog code size
duke@435 1066 _method_size = 0;
duke@435 1067 _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
duke@435 1068 #ifdef IA64
duke@435 1069 if (save_argument_registers()) {
duke@435 1070 // 4815101: this is a stub with implicit and unknown precision fp args.
duke@435 1071 // The usual spill mechanism can only generate stfd's in this case, which
duke@435 1072 // doesn't work if the fp reg to spill contains a single-precision denorm.
duke@435 1073 // Instead, we hack around the normal spill mechanism using stfspill's and
duke@435 1074 // ldffill's in the MachProlog and MachEpilog emit methods. We allocate
duke@435 1075 // space here for the fp arg regs (f8-f15) we're going to thusly spill.
duke@435 1076 //
duke@435 1077 // If we ever implement 16-byte 'registers' == stack slots, we can
duke@435 1078 // get rid of this hack and have SpillCopy generate stfspill/ldffill
duke@435 1079 // instead of stfd/stfs/ldfd/ldfs.
duke@435 1080 _frame_slots += 8*(16/BytesPerInt);
duke@435 1081 }
duke@435 1082 #endif
kvn@3049 1083 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
duke@435 1084
twisti@2350 1085 if (has_mach_constant_base_node()) {
twisti@2350 1086 // Fill the constant table.
kvn@3049 1087 // Note: This must happen before shorten_branches.
adlertz@5539 1088 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 1089 Block* b = _cfg->get_block(i);
twisti@2350 1090
adlertz@5635 1091 for (uint j = 0; j < b->number_of_nodes(); j++) {
adlertz@5635 1092 Node* n = b->get_node(j);
twisti@2350 1093
twisti@2350 1094 // If the node is a MachConstantNode evaluate the constant
twisti@2350 1095 // value section.
twisti@2350 1096 if (n->is_MachConstant()) {
twisti@2350 1097 MachConstantNode* machcon = n->as_MachConstant();
twisti@2350 1098 machcon->eval_constant(C);
twisti@2350 1099 }
twisti@2350 1100 }
twisti@2350 1101 }
twisti@2350 1102
twisti@2350 1103 // Calculate the offsets of the constants and the size of the
twisti@2350 1104 // constant table (including the padding to the next section).
twisti@2350 1105 constant_table().calculate_offsets_and_size();
twisti@2350 1106 const_req = constant_table().size();
twisti@2350 1107 }
twisti@2350 1108
twisti@2350 1109 // Initialize the space for the BufferBlob used to find and verify
twisti@2350 1110 // instruction size in MachNode::emit_size()
twisti@2350 1111 init_scratch_buffer_blob(const_req);
kvn@3049 1112 if (failing()) return NULL; // Out of memory
kvn@3049 1113
kvn@3049 1114 // Pre-compute the length of blocks and replace
kvn@3049 1115 // long branches with short if machine supports it.
kvn@3049 1116 shorten_branches(blk_starts, code_req, locs_req, stub_req);
duke@435 1117
duke@435 1118 // nmethod and CodeBuffer count stubs & constants as part of method's code.
duke@435 1119 int exception_handler_req = size_exception_handler();
duke@435 1120 int deopt_handler_req = size_deopt_handler();
duke@435 1121 exception_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1122 deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
duke@435 1123 stub_req += MAX_stubs_size; // ensure per-stub margin
duke@435 1124 code_req += MAX_inst_size; // ensure per-instruction margin
twisti@1700 1125
duke@435 1126 if (StressCodeBuffers)
duke@435 1127 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
twisti@1700 1128
twisti@1700 1129 int total_req =
twisti@2350 1130 const_req +
twisti@1700 1131 code_req +
twisti@1700 1132 pad_req +
twisti@1700 1133 stub_req +
twisti@1700 1134 exception_handler_req +
twisti@2350 1135 deopt_handler_req; // deopt handler
twisti@1700 1136
twisti@1700 1137 if (has_method_handle_invokes())
twisti@1700 1138 total_req += deopt_handler_req; // deopt MH handler
twisti@1700 1139
duke@435 1140 CodeBuffer* cb = code_buffer();
duke@435 1141 cb->initialize(total_req, locs_req);
duke@435 1142
duke@435 1143 // Have we run out of code space?
kvn@1637 1144 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
neliasso@4952 1145 C->record_failure("CodeCache is full");
kvn@3049 1146 return NULL;
duke@435 1147 }
duke@435 1148 // Configure the code buffer.
duke@435 1149 cb->initialize_consts_size(const_req);
duke@435 1150 cb->initialize_stubs_size(stub_req);
duke@435 1151 cb->initialize_oop_recorder(env()->oop_recorder());
duke@435 1152
duke@435 1153 // fill in the nop array for bundling computations
duke@435 1154 MachNode *_nop_list[Bundle::_nop_count];
duke@435 1155 Bundle::initialize_nops(_nop_list, this);
duke@435 1156
kvn@3049 1157 return cb;
kvn@3049 1158 }
kvn@3049 1159
kvn@3049 1160 //------------------------------fill_buffer------------------------------------
kvn@3049 1161 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
kvn@3055 1162 // blk_starts[] contains offsets calculated during short branches processing,
kvn@3055 1163 // offsets should not be increased during following steps.
kvn@3055 1164
kvn@3055 1165 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
kvn@3055 1166 // of a loop. It is used to determine the padding for loop alignment.
kvn@3055 1167 compute_loop_first_inst_sizes();
kvn@3049 1168
duke@435 1169 // Create oopmap set.
duke@435 1170 _oop_map_set = new OopMapSet();
duke@435 1171
duke@435 1172 // !!!!! This preserves old handling of oopmaps for now
duke@435 1173 debug_info()->set_oopmaps(_oop_map_set);
duke@435 1174
adlertz@5539 1175 uint nblocks = _cfg->number_of_blocks();
duke@435 1176 // Count and start of implicit null check instructions
duke@435 1177 uint inct_cnt = 0;
kvn@3055 1178 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
duke@435 1179
duke@435 1180 // Count and start of calls
kvn@3055 1181 uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
duke@435 1182
duke@435 1183 uint return_offset = 0;
kvn@1294 1184 int nop_size = (new (this) MachNopNode())->size(_regalloc);
duke@435 1185
duke@435 1186 int previous_offset = 0;
duke@435 1187 int current_offset = 0;
duke@435 1188 int last_call_offset = -1;
kvn@3049 1189 int last_avoid_back_to_back_offset = -1;
kvn@3055 1190 #ifdef ASSERT
kvn@3055 1191 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1192 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1193 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3055 1194 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks);
kvn@3049 1195 #endif
kvn@3055 1196
duke@435 1197 // Create an array of unused labels, one for each basic block, if printing is enabled
duke@435 1198 #ifndef PRODUCT
duke@435 1199 int *node_offsets = NULL;
kvn@3049 1200 uint node_offset_limit = unique();
kvn@3049 1201
kvn@3049 1202 if (print_assembly())
duke@435 1203 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
duke@435 1204 #endif
duke@435 1205
duke@435 1206 NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily
duke@435 1207
twisti@2350 1208 // Emit the constant table.
twisti@2350 1209 if (has_mach_constant_base_node()) {
twisti@2350 1210 constant_table().emit(*cb);
twisti@2350 1211 }
twisti@2350 1212
kvn@3049 1213 // Create an array of labels, one for each basic block
kvn@3055 1214 Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
kvn@3055 1215 for (uint i=0; i <= nblocks; i++) {
kvn@3049 1216 blk_labels[i].init();
kvn@3049 1217 }
kvn@3049 1218
duke@435 1219 // ------------------
duke@435 1220 // Now fill in the code buffer
duke@435 1221 Node *delay_slot = NULL;
duke@435 1222
adlertz@5539 1223 for (uint i = 0; i < nblocks; i++) {
adlertz@5539 1224 Block* block = _cfg->get_block(i);
adlertz@5539 1225 Node* head = block->head();
duke@435 1226
duke@435 1227 // If this block needs to start aligned (i.e, can be reached other
duke@435 1228 // than by falling-thru from the previous block), then force the
duke@435 1229 // start of a new bundle.
adlertz@5539 1230 if (Pipeline::requires_bundling() && starts_bundle(head)) {
duke@435 1231 cb->flush_bundle(true);
adlertz@5539 1232 }
duke@435 1233
kvn@3049 1234 #ifdef ASSERT
adlertz@5539 1235 if (!block->is_connector()) {
kvn@3049 1236 stringStream st;
adlertz@5539 1237 block->dump_head(_cfg, &st);
kvn@3049 1238 MacroAssembler(cb).block_comment(st.as_string());
kvn@3049 1239 }
kvn@3055 1240 jmp_target[i] = 0;
kvn@3055 1241 jmp_offset[i] = 0;
kvn@3055 1242 jmp_size[i] = 0;
kvn@3055 1243 jmp_rule[i] = 0;
kvn@3049 1244 #endif
kvn@3055 1245 int blk_offset = current_offset;
kvn@3049 1246
duke@435 1247 // Define the label at the beginning of the basic block
adlertz@5539 1248 MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
adlertz@5539 1249
adlertz@5635 1250 uint last_inst = block->number_of_nodes();
duke@435 1251
duke@435 1252 // Emit block normally, except for last instruction.
duke@435 1253 // Emit means "dump code bits into code buffer".
kvn@3049 1254 for (uint j = 0; j<last_inst; j++) {
duke@435 1255
duke@435 1256 // Get the node
adlertz@5635 1257 Node* n = block->get_node(j);
duke@435 1258
duke@435 1259 // See if delay slots are supported
duke@435 1260 if (valid_bundle_info(n) &&
duke@435 1261 node_bundling(n)->used_in_unconditional_delay()) {
duke@435 1262 assert(delay_slot == NULL, "no use of delay slot node");
duke@435 1263 assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
duke@435 1264
duke@435 1265 delay_slot = n;
duke@435 1266 continue;
duke@435 1267 }
duke@435 1268
duke@435 1269 // If this starts a new instruction group, then flush the current one
duke@435 1270 // (but allow split bundles)
kvn@3049 1271 if (Pipeline::requires_bundling() && starts_bundle(n))
duke@435 1272 cb->flush_bundle(false);
duke@435 1273
duke@435 1274 // The following logic is duplicated in the code ifdeffed for
twisti@1040 1275 // ENABLE_ZAP_DEAD_LOCALS which appears above in this file. It
duke@435 1276 // should be factored out. Or maybe dispersed to the nodes?
duke@435 1277
duke@435 1278 // Special handling for SafePoint/Call Nodes
duke@435 1279 bool is_mcall = false;
kvn@3049 1280 if (n->is_Mach()) {
duke@435 1281 MachNode *mach = n->as_Mach();
duke@435 1282 is_mcall = n->is_MachCall();
duke@435 1283 bool is_sfn = n->is_MachSafePoint();
duke@435 1284
duke@435 1285 // If this requires all previous instructions be flushed, then do so
kvn@3049 1286 if (is_sfn || is_mcall || mach->alignment_required() != 1) {
duke@435 1287 cb->flush_bundle(true);
twisti@2103 1288 current_offset = cb->insts_size();
duke@435 1289 }
duke@435 1290
kvn@3049 1291 // A padding may be needed again since a previous instruction
kvn@3049 1292 // could be moved to delay slot.
kvn@3049 1293
duke@435 1294 // align the instruction if necessary
duke@435 1295 int padding = mach->compute_padding(current_offset);
duke@435 1296 // Make sure safepoint node for polling is distinct from a call's
duke@435 1297 // return by adding a nop if needed.
kvn@3049 1298 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
duke@435 1299 padding = nop_size;
duke@435 1300 }
kvn@3049 1301 if (padding == 0 && mach->avoid_back_to_back() &&
kvn@3049 1302 current_offset == last_avoid_back_to_back_offset) {
kvn@3049 1303 // Avoid back to back some instructions.
kvn@3049 1304 padding = nop_size;
duke@435 1305 }
kvn@3055 1306
kvn@3055 1307 if(padding > 0) {
kvn@3055 1308 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
kvn@3055 1309 int nops_cnt = padding / nop_size;
kvn@3055 1310 MachNode *nop = new (this) MachNopNode(nops_cnt);
adlertz@5635 1311 block->insert_node(nop, j++);
kvn@3055 1312 last_inst++;
adlertz@5539 1313 _cfg->map_node_to_block(nop, block);
kvn@3055 1314 nop->emit(*cb, _regalloc);
kvn@3055 1315 cb->flush_bundle(true);
kvn@3055 1316 current_offset = cb->insts_size();
kvn@3055 1317 }
kvn@3055 1318
duke@435 1319 // Remember the start of the last call in a basic block
duke@435 1320 if (is_mcall) {
duke@435 1321 MachCallNode *mcall = mach->as_MachCall();
duke@435 1322
duke@435 1323 // This destination address is NOT PC-relative
duke@435 1324 mcall->method_set((intptr_t)mcall->entry_point());
duke@435 1325
duke@435 1326 // Save the return address
adlertz@5539 1327 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
duke@435 1328
kvn@3040 1329 if (mcall->is_MachCallLeaf()) {
duke@435 1330 is_mcall = false;
duke@435 1331 is_sfn = false;
duke@435 1332 }
duke@435 1333 }
duke@435 1334
duke@435 1335 // sfn will be valid whenever mcall is valid now because of inheritance
kvn@3049 1336 if (is_sfn || is_mcall) {
duke@435 1337
duke@435 1338 // Handle special safepoint nodes for synchronization
kvn@3049 1339 if (!is_mcall) {
duke@435 1340 MachSafePointNode *sfn = mach->as_MachSafePoint();
duke@435 1341 // !!!!! Stubs only need an oopmap right now, so bail out
kvn@3049 1342 if (sfn->jvms()->method() == NULL) {
duke@435 1343 // Write the oopmap directly to the code blob??!!
duke@435 1344 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1345 assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive");
duke@435 1346 # endif
duke@435 1347 continue;
duke@435 1348 }
duke@435 1349 } // End synchronization
duke@435 1350
duke@435 1351 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1352 current_offset);
duke@435 1353 Process_OopMap_Node(mach, current_offset);
duke@435 1354 } // End if safepoint
duke@435 1355
duke@435 1356 // If this is a null check, then add the start of the previous instruction to the list
duke@435 1357 else if( mach->is_MachNullCheck() ) {
duke@435 1358 inct_starts[inct_cnt++] = previous_offset;
duke@435 1359 }
duke@435 1360
duke@435 1361 // If this is a branch, then fill in the label with the target BB's label
kvn@3051 1362 else if (mach->is_MachBranch()) {
kvn@3051 1363 // This requires the TRUE branch target be in succs[0]
adlertz@5539 1364 uint block_num = block->non_connector_successor(0)->_pre_order;
kvn@3055 1365
kvn@3055 1366 // Try to replace long branch if delay slot is not used,
kvn@3055 1367 // it is mostly for back branches since forward branch's
kvn@3055 1368 // distance is not updated yet.
kvn@3055 1369 bool delay_slot_is_used = valid_bundle_info(n) &&
kvn@3055 1370 node_bundling(n)->use_unconditional_delay();
kvn@3055 1371 if (!delay_slot_is_used && mach->may_be_short_branch()) {
kvn@3055 1372 assert(delay_slot == NULL, "not expecting delay slot node");
kvn@3055 1373 int br_size = n->size(_regalloc);
kvn@3055 1374 int offset = blk_starts[block_num] - current_offset;
kvn@3055 1375 if (block_num >= i) {
kvn@3055 1376 // Current and following block's offset are not
kvn@3055 1377 // finilized yet, adjust distance by the difference
kvn@3055 1378 // between calculated and final offsets of current block.
kvn@3055 1379 offset -= (blk_starts[i] - blk_offset);
kvn@3055 1380 }
kvn@3055 1381 // In the following code a nop could be inserted before
kvn@3055 1382 // the branch which will increase the backward distance.
kvn@3055 1383 bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
kvn@3055 1384 if (needs_padding && offset <= 0)
kvn@3055 1385 offset -= nop_size;
kvn@3055 1386
kvn@3055 1387 if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
kvn@3055 1388 // We've got a winner. Replace this branch.
kvn@3055 1389 MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
kvn@3055 1390
kvn@3055 1391 // Update the jmp_size.
kvn@3055 1392 int new_size = replacement->size(_regalloc);
kvn@3055 1393 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
kvn@3055 1394 // Insert padding between avoid_back_to_back branches.
kvn@3055 1395 if (needs_padding && replacement->avoid_back_to_back()) {
kvn@3055 1396 MachNode *nop = new (this) MachNopNode();
adlertz@5635 1397 block->insert_node(nop, j++);
adlertz@5539 1398 _cfg->map_node_to_block(nop, block);
kvn@3055 1399 last_inst++;
kvn@3055 1400 nop->emit(*cb, _regalloc);
kvn@3055 1401 cb->flush_bundle(true);
kvn@3055 1402 current_offset = cb->insts_size();
kvn@3055 1403 }
kvn@3055 1404 #ifdef ASSERT
kvn@3055 1405 jmp_target[i] = block_num;
kvn@3055 1406 jmp_offset[i] = current_offset - blk_offset;
kvn@3055 1407 jmp_size[i] = new_size;
kvn@3055 1408 jmp_rule[i] = mach->rule();
kvn@3055 1409 #endif
adlertz@5635 1410 block->map_node(replacement, j);
bharadwaj@4315 1411 mach->subsume_by(replacement, C);
kvn@3055 1412 n = replacement;
kvn@3055 1413 mach = replacement;
kvn@3055 1414 }
kvn@3055 1415 }
kvn@3051 1416 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
kvn@3051 1417 } else if (mach->ideal_Opcode() == Op_Jump) {
adlertz@5539 1418 for (uint h = 0; h < block->_num_succs; h++) {
adlertz@5539 1419 Block* succs_block = block->_succs[h];
kvn@3051 1420 for (uint j = 1; j < succs_block->num_preds(); j++) {
kvn@3051 1421 Node* jpn = succs_block->pred(j);
kvn@3051 1422 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
kvn@3051 1423 uint block_num = succs_block->non_connector()->_pre_order;
kvn@3051 1424 Label *blkLabel = &blk_labels[block_num];
kvn@3051 1425 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
duke@435 1426 }
duke@435 1427 }
duke@435 1428 }
duke@435 1429 }
duke@435 1430 #ifdef ASSERT
twisti@1040 1431 // Check that oop-store precedes the card-mark
kvn@3049 1432 else if (mach->ideal_Opcode() == Op_StoreCM) {
duke@435 1433 uint storeCM_idx = j;
never@2780 1434 int count = 0;
never@2780 1435 for (uint prec = mach->req(); prec < mach->len(); prec++) {
never@2780 1436 Node *oop_store = mach->in(prec); // Precedence edge
never@2780 1437 if (oop_store == NULL) continue;
never@2780 1438 count++;
never@2780 1439 uint i4;
adlertz@5539 1440 for (i4 = 0; i4 < last_inst; ++i4) {
adlertz@5635 1441 if (block->get_node(i4) == oop_store) {
adlertz@5539 1442 break;
adlertz@5539 1443 }
never@2780 1444 }
never@2780 1445 // Note: This test can provide a false failure if other precedence
never@2780 1446 // edges have been added to the storeCMNode.
adlertz@5539 1447 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
duke@435 1448 }
never@2780 1449 assert(count > 0, "storeCM expects at least one precedence edge");
duke@435 1450 }
duke@435 1451 #endif
kvn@3049 1452 else if (!n->is_Proj()) {
twisti@1040 1453 // Remember the beginning of the previous instruction, in case
duke@435 1454 // it's followed by a flag-kill and a null-check. Happens on
duke@435 1455 // Intel all the time, with add-to-memory kind of opcodes.
duke@435 1456 previous_offset = current_offset;
duke@435 1457 }
duke@435 1458 }
duke@435 1459
duke@435 1460 // Verify that there is sufficient space remaining
duke@435 1461 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
kvn@1637 1462 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
neliasso@4952 1463 C->record_failure("CodeCache is full");
duke@435 1464 return;
duke@435 1465 }
duke@435 1466
duke@435 1467 // Save the offset for the listing
duke@435 1468 #ifndef PRODUCT
kvn@3049 1469 if (node_offsets && n->_idx < node_offset_limit)
twisti@2103 1470 node_offsets[n->_idx] = cb->insts_size();
duke@435 1471 #endif
duke@435 1472
duke@435 1473 // "Normal" instruction case
kvn@3049 1474 DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
duke@435 1475 n->emit(*cb, _regalloc);
twisti@2103 1476 current_offset = cb->insts_size();
kvn@3049 1477
kvn@3049 1478 #ifdef ASSERT
kvn@3055 1479 if (n->size(_regalloc) < (current_offset-instr_offset)) {
kvn@3049 1480 n->dump();
kvn@3055 1481 assert(false, "wrong size of mach node");
kvn@3049 1482 }
kvn@3049 1483 #endif
duke@435 1484 non_safepoints.observe_instruction(n, current_offset);
duke@435 1485
duke@435 1486 // mcall is last "call" that can be a safepoint
duke@435 1487 // record it so we can see if a poll will directly follow it
duke@435 1488 // in which case we'll need a pad to make the PcDesc sites unique
duke@435 1489 // see 5010568. This can be slightly inaccurate but conservative
duke@435 1490 // in the case that return address is not actually at current_offset.
duke@435 1491 // This is a small price to pay.
duke@435 1492
duke@435 1493 if (is_mcall) {
duke@435 1494 last_call_offset = current_offset;
duke@435 1495 }
duke@435 1496
kvn@3049 1497 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
kvn@3049 1498 // Avoid back to back some instructions.
kvn@3049 1499 last_avoid_back_to_back_offset = current_offset;
kvn@3049 1500 }
kvn@3049 1501
duke@435 1502 // See if this instruction has a delay slot
kvn@3049 1503 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
duke@435 1504 assert(delay_slot != NULL, "expecting delay slot node");
duke@435 1505
duke@435 1506 // Back up 1 instruction
twisti@2103 1507 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
duke@435 1508
duke@435 1509 // Save the offset for the listing
duke@435 1510 #ifndef PRODUCT
kvn@3049 1511 if (node_offsets && delay_slot->_idx < node_offset_limit)
twisti@2103 1512 node_offsets[delay_slot->_idx] = cb->insts_size();
duke@435 1513 #endif
duke@435 1514
duke@435 1515 // Support a SafePoint in the delay slot
kvn@3049 1516 if (delay_slot->is_MachSafePoint()) {
duke@435 1517 MachNode *mach = delay_slot->as_Mach();
duke@435 1518 // !!!!! Stubs only need an oopmap right now, so bail out
kvn@3049 1519 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
duke@435 1520 // Write the oopmap directly to the code blob??!!
duke@435 1521 # ifdef ENABLE_ZAP_DEAD_LOCALS
duke@435 1522 assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive");
duke@435 1523 # endif
duke@435 1524 delay_slot = NULL;
duke@435 1525 continue;
duke@435 1526 }
duke@435 1527
duke@435 1528 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
duke@435 1529 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
duke@435 1530 adjusted_offset);
duke@435 1531 // Generate an OopMap entry
duke@435 1532 Process_OopMap_Node(mach, adjusted_offset);
duke@435 1533 }
duke@435 1534
duke@435 1535 // Insert the delay slot instruction
duke@435 1536 delay_slot->emit(*cb, _regalloc);
duke@435 1537
duke@435 1538 // Don't reuse it
duke@435 1539 delay_slot = NULL;
duke@435 1540 }
duke@435 1541
duke@435 1542 } // End for all instructions in block
kvn@3055 1543
rasbold@853 1544 // If the next block is the top of a loop, pad this block out to align
rasbold@853 1545 // the loop top a little. Helps prevent pipe stalls at loop back branches.
kvn@3055 1546 if (i < nblocks-1) {
adlertz@5539 1547 Block *nb = _cfg->get_block(i + 1);
kvn@3055 1548 int padding = nb->alignment_padding(current_offset);
kvn@3055 1549 if( padding > 0 ) {
kvn@3055 1550 MachNode *nop = new (this) MachNopNode(padding / nop_size);
adlertz@5635 1551 block->insert_node(nop, block->number_of_nodes());
adlertz@5539 1552 _cfg->map_node_to_block(nop, block);
kvn@3055 1553 nop->emit(*cb, _regalloc);
kvn@3055 1554 current_offset = cb->insts_size();
kvn@3055 1555 }
duke@435 1556 }
kvn@3055 1557 // Verify that the distance for generated before forward
kvn@3055 1558 // short branches is still valid.
rasbold@4874 1559 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
rasbold@4874 1560
rasbold@4874 1561 // Save new block start offset
rasbold@4874 1562 blk_starts[i] = blk_offset;
duke@435 1563 } // End of for all blocks
kvn@3055 1564 blk_starts[nblocks] = current_offset;
duke@435 1565
duke@435 1566 non_safepoints.flush_at_end();
duke@435 1567
duke@435 1568 // Offset too large?
duke@435 1569 if (failing()) return;
duke@435 1570
duke@435 1571 // Define a pseudo-label at the end of the code
kvn@3055 1572 MacroAssembler(cb).bind( blk_labels[nblocks] );
duke@435 1573
duke@435 1574 // Compute the size of the first block
duke@435 1575 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
duke@435 1576
twisti@2103 1577 assert(cb->insts_size() < 500000, "method is unreasonably large");
duke@435 1578
kvn@3055 1579 #ifdef ASSERT
kvn@3055 1580 for (uint i = 0; i < nblocks; i++) { // For all blocks
kvn@3055 1581 if (jmp_target[i] != 0) {
kvn@3055 1582 int br_size = jmp_size[i];
kvn@3055 1583 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
kvn@3055 1584 if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
kvn@3055 1585 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
kvn@3055 1586 assert(false, "Displacement too large for short jmp");
kvn@3055 1587 }
kvn@3055 1588 }
kvn@3055 1589 }
kvn@3055 1590 #endif
kvn@3055 1591
duke@435 1592 #ifndef PRODUCT
duke@435 1593 // Information on the size of the method, without the extraneous code
twisti@2103 1594 Scheduling::increment_method_size(cb->insts_size());
duke@435 1595 #endif
duke@435 1596
duke@435 1597 // ------------------
duke@435 1598 // Fill in exception table entries.
duke@435 1599 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
duke@435 1600
duke@435 1601 // Only java methods have exception handlers and deopt handlers
duke@435 1602 if (_method) {
duke@435 1603 // Emit the exception handler code.
duke@435 1604 _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
duke@435 1605 // Emit the deopt handler code.
duke@435 1606 _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
twisti@1700 1607
twisti@1700 1608 // Emit the MethodHandle deopt handler code (if required).
twisti@1700 1609 if (has_method_handle_invokes()) {
twisti@1700 1610 // We can use the same code as for the normal deopt handler, we
twisti@1700 1611 // just need a different entry point address.
twisti@1700 1612 _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
twisti@1700 1613 }
duke@435 1614 }
duke@435 1615
duke@435 1616 // One last check for failed CodeBuffer::expand:
kvn@1637 1617 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
neliasso@4952 1618 C->record_failure("CodeCache is full");
duke@435 1619 return;
duke@435 1620 }
duke@435 1621
duke@435 1622 #ifndef PRODUCT
duke@435 1623 // Dump the assembly code, including basic-block numbers
duke@435 1624 if (print_assembly()) {
duke@435 1625 ttyLocker ttyl; // keep the following output all in one block
duke@435 1626 if (!VMThread::should_terminate()) { // test this under the tty lock
duke@435 1627 // This output goes directly to the tty, not the compiler log.
duke@435 1628 // To enable tools to match it up with the compilation activity,
duke@435 1629 // be sure to tag this tty output with the compile ID.
duke@435 1630 if (xtty != NULL) {
duke@435 1631 xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
duke@435 1632 is_osr_compilation() ? " compile_kind='osr'" :
duke@435 1633 "");
duke@435 1634 }
duke@435 1635 if (method() != NULL) {
coleenp@4037 1636 method()->print_metadata();
duke@435 1637 }
duke@435 1638 dump_asm(node_offsets, node_offset_limit);
duke@435 1639 if (xtty != NULL) {
duke@435 1640 xtty->tail("opto_assembly");
duke@435 1641 }
duke@435 1642 }
duke@435 1643 }
duke@435 1644 #endif
duke@435 1645
duke@435 1646 }
duke@435 1647
duke@435 1648 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
duke@435 1649 _inc_table.set_size(cnt);
duke@435 1650
duke@435 1651 uint inct_cnt = 0;
adlertz@5539 1652 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
adlertz@5539 1653 Block* block = _cfg->get_block(i);
duke@435 1654 Node *n = NULL;
duke@435 1655 int j;
duke@435 1656
duke@435 1657 // Find the branch; ignore trailing NOPs.
adlertz@5635 1658 for (j = block->number_of_nodes() - 1; j >= 0; j--) {
adlertz@5635 1659 n = block->get_node(j);
adlertz@5539 1660 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
duke@435 1661 break;
adlertz@5539 1662 }
duke@435 1663 }
duke@435 1664
duke@435 1665 // If we didn't find anything, continue
adlertz@5539 1666 if (j < 0) {
adlertz@5539 1667 continue;
adlertz@5539 1668 }
duke@435 1669
duke@435 1670 // Compute ExceptionHandlerTable subtable entry and add it
duke@435 1671 // (skip empty blocks)
adlertz@5539 1672 if (n->is_Catch()) {
duke@435 1673
duke@435 1674 // Get the offset of the return from the call
adlertz@5539 1675 uint call_return = call_returns[block->_pre_order];
duke@435 1676 #ifdef ASSERT
duke@435 1677 assert( call_return > 0, "no call seen for this basic block" );
adlertz@5635 1678 while (block->get_node(--j)->is_MachProj()) ;
adlertz@5635 1679 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
duke@435 1680 #endif
duke@435 1681 // last instruction is a CatchNode, find it's CatchProjNodes
adlertz@5539 1682 int nof_succs = block->_num_succs;
duke@435 1683 // allocate space
duke@435 1684 GrowableArray<intptr_t> handler_bcis(nof_succs);
duke@435 1685 GrowableArray<intptr_t> handler_pcos(nof_succs);
duke@435 1686 // iterate through all successors
duke@435 1687 for (int j = 0; j < nof_succs; j++) {
adlertz@5539 1688 Block* s = block->_succs[j];
duke@435 1689 bool found_p = false;
adlertz@5539 1690 for (uint k = 1; k < s->num_preds(); k++) {
adlertz@5539 1691 Node* pk = s->pred(k);
adlertz@5539 1692 if (pk->is_CatchProj() && pk->in(0) == n) {
duke@435 1693 const CatchProjNode* p = pk->as_CatchProj();
duke@435 1694 found_p = true;
duke@435 1695 // add the corresponding handler bci & pco information
adlertz@5539 1696 if (p->_con != CatchProjNode::fall_through_index) {
duke@435 1697 // p leads to an exception handler (and is not fall through)
adlertz@5539 1698 assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
duke@435 1699 // no duplicates, please
adlertz@5539 1700 if (!handler_bcis.contains(p->handler_bci())) {
duke@435 1701 uint block_num = s->non_connector()->_pre_order;
duke@435 1702 handler_bcis.append(p->handler_bci());
duke@435 1703 handler_pcos.append(blk_labels[block_num].loc_pos());
duke@435 1704 }
duke@435 1705 }
duke@435 1706 }
duke@435 1707 }
duke@435 1708 assert(found_p, "no matching predecessor found");
duke@435 1709 // Note: Due to empty block removal, one block may have
duke@435 1710 // several CatchProj inputs, from the same Catch.
duke@435 1711 }
duke@435 1712
duke@435 1713 // Set the offset of the return from the call
duke@435 1714 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
duke@435 1715 continue;
duke@435 1716 }
duke@435 1717
duke@435 1718 // Handle implicit null exception table updates
adlertz@5539 1719 if (n->is_MachNullCheck()) {
adlertz@5539 1720 uint block_num = block->non_connector_successor(0)->_pre_order;
adlertz@5539 1721 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
duke@435 1722 continue;
duke@435 1723 }
duke@435 1724 } // End of for all blocks fill in exception table entries
duke@435 1725 }
duke@435 1726
duke@435 1727 // Static Variables
duke@435 1728 #ifndef PRODUCT
duke@435 1729 uint Scheduling::_total_nop_size = 0;
duke@435 1730 uint Scheduling::_total_method_size = 0;
duke@435 1731 uint Scheduling::_total_branches = 0;
duke@435 1732 uint Scheduling::_total_unconditional_delays = 0;
duke@435 1733 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
duke@435 1734 #endif
duke@435 1735
duke@435 1736 // Initializer for class Scheduling
duke@435 1737
duke@435 1738 Scheduling::Scheduling(Arena *arena, Compile &compile)
duke@435 1739 : _arena(arena),
duke@435 1740 _cfg(compile.cfg()),
duke@435 1741 _regalloc(compile.regalloc()),
duke@435 1742 _reg_node(arena),
duke@435 1743 _bundle_instr_count(0),
duke@435 1744 _bundle_cycle_number(0),
duke@435 1745 _scheduled(arena),
duke@435 1746 _available(arena),
duke@435 1747 _next_node(NULL),
duke@435 1748 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
duke@435 1749 _pinch_free_list(arena)
duke@435 1750 #ifndef PRODUCT
duke@435 1751 , _branches(0)
duke@435 1752 , _unconditional_delays(0)
duke@435 1753 #endif
duke@435 1754 {
duke@435 1755 // Create a MachNopNode
duke@435 1756 _nop = new (&compile) MachNopNode();
duke@435 1757
duke@435 1758 // Now that the nops are in the array, save the count
duke@435 1759 // (but allow entries for the nops)
duke@435 1760 _node_bundling_limit = compile.unique();
duke@435 1761 uint node_max = _regalloc->node_regs_max_index();
duke@435 1762
duke@435 1763 compile.set_node_bundling_limit(_node_bundling_limit);
duke@435 1764
twisti@1040 1765 // This one is persistent within the Compile class
duke@435 1766 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
duke@435 1767
duke@435 1768 // Allocate space for fixed-size arrays
duke@435 1769 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1770 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
duke@435 1771 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
duke@435 1772
duke@435 1773 // Clear the arrays
duke@435 1774 memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
duke@435 1775 memset(_node_latency, 0, node_max * sizeof(unsigned short));
duke@435 1776 memset(_uses, 0, node_max * sizeof(short));
duke@435 1777 memset(_current_latency, 0, node_max * sizeof(unsigned short));
duke@435 1778
duke@435 1779 // Clear the bundling information
adlertz@5539 1780 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
duke@435 1781
duke@435 1782 // Get the last node
adlertz@5539 1783 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
adlertz@5539 1784
adlertz@5635 1785 _next_node = block->get_node(block->number_of_nodes() - 1);
duke@435 1786 }
duke@435 1787
duke@435 1788 #ifndef PRODUCT
duke@435 1789 // Scheduling destructor
duke@435 1790 Scheduling::~Scheduling() {
duke@435 1791 _total_branches += _branches;
duke@435 1792 _total_unconditional_delays += _unconditional_delays;
duke@435 1793 }
duke@435 1794 #endif
duke@435 1795
duke@435 1796 // Step ahead "i" cycles
duke@435 1797 void Scheduling::step(uint i) {
duke@435 1798
duke@435 1799 Bundle *bundle = node_bundling(_next_node);
duke@435 1800 bundle->set_starts_bundle();
duke@435 1801
duke@435 1802 // Update the bundle record, but leave the flags information alone
duke@435 1803 if (_bundle_instr_count > 0) {
duke@435 1804 bundle->set_instr_count(_bundle_instr_count);
duke@435 1805 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1806 }
duke@435 1807
duke@435 1808 // Update the state information
duke@435 1809 _bundle_instr_count = 0;
duke@435 1810 _bundle_cycle_number += i;
duke@435 1811 _bundle_use.step(i);
duke@435 1812 }
duke@435 1813
duke@435 1814 void Scheduling::step_and_clear() {
duke@435 1815 Bundle *bundle = node_bundling(_next_node);
duke@435 1816 bundle->set_starts_bundle();
duke@435 1817
duke@435 1818 // Update the bundle record
duke@435 1819 if (_bundle_instr_count > 0) {
duke@435 1820 bundle->set_instr_count(_bundle_instr_count);
duke@435 1821 bundle->set_resources_used(_bundle_use.resourcesUsed());
duke@435 1822
duke@435 1823 _bundle_cycle_number += 1;
duke@435 1824 }
duke@435 1825
duke@435 1826 // Clear the bundling information
duke@435 1827 _bundle_instr_count = 0;
duke@435 1828 _bundle_use.reset();
duke@435 1829
duke@435 1830 memcpy(_bundle_use_elements,
duke@435 1831 Pipeline_Use::elaborated_elements,
duke@435 1832 sizeof(Pipeline_Use::elaborated_elements));
duke@435 1833 }
duke@435 1834
duke@435 1835 // Perform instruction scheduling and bundling over the sequence of
duke@435 1836 // instructions in backwards order.
duke@435 1837 void Compile::ScheduleAndBundle() {
duke@435 1838
duke@435 1839 // Don't optimize this if it isn't a method
duke@435 1840 if (!_method)
duke@435 1841 return;
duke@435 1842
duke@435 1843 // Don't optimize this if scheduling is disabled
duke@435 1844 if (!do_scheduling())
duke@435 1845 return;
duke@435 1846
kvn@4103 1847 // Scheduling code works only with pairs (8 bytes) maximum.
kvn@4103 1848 if (max_vector_size() > 8)
kvn@4103 1849 return;
kvn@4007 1850
duke@435 1851 NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
duke@435 1852
duke@435 1853 // Create a data structure for all the scheduling information
duke@435 1854 Scheduling scheduling(Thread::current()->resource_area(), *this);
duke@435 1855
duke@435 1856 // Walk backwards over each basic block, computing the needed alignment
duke@435 1857 // Walk over all the basic blocks
duke@435 1858 scheduling.DoScheduling();
duke@435 1859 }
duke@435 1860
duke@435 1861 // Compute the latency of all the instructions. This is fairly simple,
duke@435 1862 // because we already have a legal ordering. Walk over the instructions
duke@435 1863 // from first to last, and compute the latency of the instruction based
twisti@1040 1864 // on the latency of the preceding instruction(s).
duke@435 1865 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
duke@435 1866 #ifndef PRODUCT
duke@435 1867 if (_cfg->C->trace_opto_output())
duke@435 1868 tty->print("# -> ComputeLocalLatenciesForward\n");
duke@435 1869 #endif
duke@435 1870
duke@435 1871 // Walk over all the schedulable instructions
duke@435 1872 for( uint j=_bb_start; j < _bb_end; j++ ) {
duke@435 1873
duke@435 1874 // This is a kludge, forcing all latency calculations to start at 1.
duke@435 1875 // Used to allow latency 0 to force an instruction to the beginning
duke@435 1876 // of the bb
duke@435 1877 uint latency = 1;
adlertz@5635 1878 Node *use = bb->get_node(j);
duke@435 1879 uint nlen = use->len();
duke@435 1880
duke@435 1881 // Walk over all the inputs
duke@435 1882 for ( uint k=0; k < nlen; k++ ) {
duke@435 1883 Node *def = use->in(k);
duke@435 1884 if (!def)
duke@435 1885 continue;
duke@435 1886
duke@435 1887 uint l = _node_latency[def->_idx] + use->latency(k);
duke@435 1888 if (latency < l)
duke@435 1889 latency = l;
duke@435 1890 }
duke@435 1891
duke@435 1892 _node_latency[use->_idx] = latency;
duke@435 1893
duke@435 1894 #ifndef PRODUCT
duke@435 1895 if (_cfg->C->trace_opto_output()) {
duke@435 1896 tty->print("# latency %4d: ", latency);
duke@435 1897 use->dump();
duke@435 1898 }
duke@435 1899 #endif
duke@435 1900 }
duke@435 1901
duke@435 1902 #ifndef PRODUCT
duke@435 1903 if (_cfg->C->trace_opto_output())
duke@435 1904 tty->print("# <- ComputeLocalLatenciesForward\n");
duke@435 1905 #endif
duke@435 1906
duke@435 1907 } // end ComputeLocalLatenciesForward
duke@435 1908
duke@435 1909 // See if this node fits into the present instruction bundle
duke@435 1910 bool Scheduling::NodeFitsInBundle(Node *n) {
duke@435 1911 uint n_idx = n->_idx;
duke@435 1912
duke@435 1913 // If this is the unconditional delay instruction, then it fits
duke@435 1914 if (n == _unconditional_delay_slot) {
duke@435 1915 #ifndef PRODUCT
duke@435 1916 if (_cfg->C->trace_opto_output())
duke@435 1917 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
duke@435 1918 #endif
duke@435 1919 return (true);
duke@435 1920 }
duke@435 1921
duke@435 1922 // If the node cannot be scheduled this cycle, skip it
duke@435 1923 if (_current_latency[n_idx] > _bundle_cycle_number) {
duke@435 1924 #ifndef PRODUCT
duke@435 1925 if (_cfg->C->trace_opto_output())
duke@435 1926 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
duke@435 1927 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
duke@435 1928 #endif
duke@435 1929 return (false);
duke@435 1930 }
duke@435 1931
duke@435 1932 const Pipeline *node_pipeline = n->pipeline();
duke@435 1933
duke@435 1934 uint instruction_count = node_pipeline->instructionCount();
duke@435 1935 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 1936 instruction_count = 0;
duke@435 1937 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 1938 instruction_count++;
duke@435 1939
duke@435 1940 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
duke@435 1941 #ifndef PRODUCT
duke@435 1942 if (_cfg->C->trace_opto_output())
duke@435 1943 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
duke@435 1944 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
duke@435 1945 #endif
duke@435 1946 return (false);
duke@435 1947 }
duke@435 1948
duke@435 1949 // Don't allow non-machine nodes to be handled this way
duke@435 1950 if (!n->is_Mach() && instruction_count == 0)
duke@435 1951 return (false);
duke@435 1952
duke@435 1953 // See if there is any overlap
duke@435 1954 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
duke@435 1955
duke@435 1956 if (delay > 0) {
duke@435 1957 #ifndef PRODUCT
duke@435 1958 if (_cfg->C->trace_opto_output())
duke@435 1959 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
duke@435 1960 #endif
duke@435 1961 return false;
duke@435 1962 }
duke@435 1963
duke@435 1964 #ifndef PRODUCT
duke@435 1965 if (_cfg->C->trace_opto_output())
duke@435 1966 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
duke@435 1967 #endif
duke@435 1968
duke@435 1969 return true;
duke@435 1970 }
duke@435 1971
duke@435 1972 Node * Scheduling::ChooseNodeToBundle() {
duke@435 1973 uint siz = _available.size();
duke@435 1974
duke@435 1975 if (siz == 0) {
duke@435 1976
duke@435 1977 #ifndef PRODUCT
duke@435 1978 if (_cfg->C->trace_opto_output())
duke@435 1979 tty->print("# ChooseNodeToBundle: NULL\n");
duke@435 1980 #endif
duke@435 1981 return (NULL);
duke@435 1982 }
duke@435 1983
duke@435 1984 // Fast path, if only 1 instruction in the bundle
duke@435 1985 if (siz == 1) {
duke@435 1986 #ifndef PRODUCT
duke@435 1987 if (_cfg->C->trace_opto_output()) {
duke@435 1988 tty->print("# ChooseNodeToBundle (only 1): ");
duke@435 1989 _available[0]->dump();
duke@435 1990 }
duke@435 1991 #endif
duke@435 1992 return (_available[0]);
duke@435 1993 }
duke@435 1994
duke@435 1995 // Don't bother, if the bundle is already full
duke@435 1996 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
duke@435 1997 for ( uint i = 0; i < siz; i++ ) {
duke@435 1998 Node *n = _available[i];
duke@435 1999
duke@435 2000 // Skip projections, we'll handle them another way
duke@435 2001 if (n->is_Proj())
duke@435 2002 continue;
duke@435 2003
duke@435 2004 // This presupposed that instructions are inserted into the
duke@435 2005 // available list in a legality order; i.e. instructions that
duke@435 2006 // must be inserted first are at the head of the list
duke@435 2007 if (NodeFitsInBundle(n)) {
duke@435 2008 #ifndef PRODUCT
duke@435 2009 if (_cfg->C->trace_opto_output()) {
duke@435 2010 tty->print("# ChooseNodeToBundle: ");
duke@435 2011 n->dump();
duke@435 2012 }
duke@435 2013 #endif
duke@435 2014 return (n);
duke@435 2015 }
duke@435 2016 }
duke@435 2017 }
duke@435 2018
duke@435 2019 // Nothing fits in this bundle, choose the highest priority
duke@435 2020 #ifndef PRODUCT
duke@435 2021 if (_cfg->C->trace_opto_output()) {
duke@435 2022 tty->print("# ChooseNodeToBundle: ");
duke@435 2023 _available[0]->dump();
duke@435 2024 }
duke@435 2025 #endif
duke@435 2026
duke@435 2027 return _available[0];
duke@435 2028 }
duke@435 2029
duke@435 2030 void Scheduling::AddNodeToAvailableList(Node *n) {
duke@435 2031 assert( !n->is_Proj(), "projections never directly made available" );
duke@435 2032 #ifndef PRODUCT
duke@435 2033 if (_cfg->C->trace_opto_output()) {
duke@435 2034 tty->print("# AddNodeToAvailableList: ");
duke@435 2035 n->dump();
duke@435 2036 }
duke@435 2037 #endif
duke@435 2038
duke@435 2039 int latency = _current_latency[n->_idx];
duke@435 2040
duke@435 2041 // Insert in latency order (insertion sort)
duke@435 2042 uint i;
duke@435 2043 for ( i=0; i < _available.size(); i++ )
duke@435 2044 if (_current_latency[_available[i]->_idx] > latency)
duke@435 2045 break;
duke@435 2046
duke@435 2047 // Special Check for compares following branches
duke@435 2048 if( n->is_Mach() && _scheduled.size() > 0 ) {
duke@435 2049 int op = n->as_Mach()->ideal_Opcode();
duke@435 2050 Node *last = _scheduled[0];
duke@435 2051 if( last->is_MachIf() && last->in(1) == n &&
duke@435 2052 ( op == Op_CmpI ||
duke@435 2053 op == Op_CmpU ||
duke@435 2054 op == Op_CmpP ||
duke@435 2055 op == Op_CmpF ||
duke@435 2056 op == Op_CmpD ||
duke@435 2057 op == Op_CmpL ) ) {
duke@435 2058
duke@435 2059 // Recalculate position, moving to front of same latency
duke@435 2060 for ( i=0 ; i < _available.size(); i++ )
duke@435 2061 if (_current_latency[_available[i]->_idx] >= latency)
duke@435 2062 break;
duke@435 2063 }
duke@435 2064 }
duke@435 2065
duke@435 2066 // Insert the node in the available list
duke@435 2067 _available.insert(i, n);
duke@435 2068
duke@435 2069 #ifndef PRODUCT
duke@435 2070 if (_cfg->C->trace_opto_output())
duke@435 2071 dump_available();
duke@435 2072 #endif
duke@435 2073 }
duke@435 2074
duke@435 2075 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
duke@435 2076 for ( uint i=0; i < n->len(); i++ ) {
duke@435 2077 Node *def = n->in(i);
duke@435 2078 if (!def) continue;
duke@435 2079 if( def->is_Proj() ) // If this is a machine projection, then
duke@435 2080 def = def->in(0); // propagate usage thru to the base instruction
duke@435 2081
adlertz@5509 2082 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
duke@435 2083 continue;
adlertz@5509 2084 }
duke@435 2085
duke@435 2086 // Compute the latency
duke@435 2087 uint l = _bundle_cycle_number + n->latency(i);
duke@435 2088 if (_current_latency[def->_idx] < l)
duke@435 2089 _current_latency[def->_idx] = l;
duke@435 2090
duke@435 2091 // If this does not have uses then schedule it
duke@435 2092 if ((--_uses[def->_idx]) == 0)
duke@435 2093 AddNodeToAvailableList(def);
duke@435 2094 }
duke@435 2095 }
duke@435 2096
duke@435 2097 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
duke@435 2098 #ifndef PRODUCT
duke@435 2099 if (_cfg->C->trace_opto_output()) {
duke@435 2100 tty->print("# AddNodeToBundle: ");
duke@435 2101 n->dump();
duke@435 2102 }
duke@435 2103 #endif
duke@435 2104
duke@435 2105 // Remove this from the available list
duke@435 2106 uint i;
duke@435 2107 for (i = 0; i < _available.size(); i++)
duke@435 2108 if (_available[i] == n)
duke@435 2109 break;
duke@435 2110 assert(i < _available.size(), "entry in _available list not found");
duke@435 2111 _available.remove(i);
duke@435 2112
duke@435 2113 // See if this fits in the current bundle
duke@435 2114 const Pipeline *node_pipeline = n->pipeline();
duke@435 2115 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
duke@435 2116
duke@435 2117 // Check for instructions to be placed in the delay slot. We
duke@435 2118 // do this before we actually schedule the current instruction,
duke@435 2119 // because the delay slot follows the current instruction.
duke@435 2120 if (Pipeline::_branch_has_delay_slot &&
duke@435 2121 node_pipeline->hasBranchDelay() &&
duke@435 2122 !_unconditional_delay_slot) {
duke@435 2123
duke@435 2124 uint siz = _available.size();
duke@435 2125
duke@435 2126 // Conditional branches can support an instruction that
twisti@1040 2127 // is unconditionally executed and not dependent by the
duke@435 2128 // branch, OR a conditionally executed instruction if
duke@435 2129 // the branch is taken. In practice, this means that
duke@435 2130 // the first instruction at the branch target is
duke@435 2131 // copied to the delay slot, and the branch goes to
duke@435 2132 // the instruction after that at the branch target
kvn@3051 2133 if ( n->is_MachBranch() ) {
duke@435 2134
duke@435 2135 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
duke@435 2136 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
duke@435 2137
duke@435 2138 #ifndef PRODUCT
duke@435 2139 _branches++;
duke@435 2140 #endif
duke@435 2141
duke@435 2142 // At least 1 instruction is on the available list
twisti@1040 2143 // that is not dependent on the branch
duke@435 2144 for (uint i = 0; i < siz; i++) {
duke@435 2145 Node *d = _available[i];
duke@435 2146 const Pipeline *avail_pipeline = d->pipeline();
duke@435 2147
duke@435 2148 // Don't allow safepoints in the branch shadow, that will
duke@435 2149 // cause a number of difficulties
duke@435 2150 if ( avail_pipeline->instructionCount() == 1 &&
duke@435 2151 !avail_pipeline->hasMultipleBundles() &&
duke@435 2152 !avail_pipeline->hasBranchDelay() &&
duke@435 2153 Pipeline::instr_has_unit_size() &&
duke@435 2154 d->size(_regalloc) == Pipeline::instr_unit_size() &&
duke@435 2155 NodeFitsInBundle(d) &&
duke@435 2156 !node_bundling(d)->used_in_delay()) {
duke@435 2157
duke@435 2158 if (d->is_Mach() && !d->is_MachSafePoint()) {
duke@435 2159 // A node that fits in the delay slot was found, so we need to
duke@435 2160 // set the appropriate bits in the bundle pipeline information so
duke@435 2161 // that it correctly indicates resource usage. Later, when we
duke@435 2162 // attempt to add this instruction to the bundle, we will skip
duke@435 2163 // setting the resource usage.
duke@435 2164 _unconditional_delay_slot = d;
duke@435 2165 node_bundling(n)->set_use_unconditional_delay();
duke@435 2166 node_bundling(d)->set_used_in_unconditional_delay();
duke@435 2167 _bundle_use.add_usage(avail_pipeline->resourceUse());
duke@435 2168 _current_latency[d->_idx] = _bundle_cycle_number;
duke@435 2169 _next_node = d;
duke@435 2170 ++_bundle_instr_count;
duke@435 2171 #ifndef PRODUCT
duke@435 2172 _unconditional_delays++;
duke@435 2173 #endif
duke@435 2174 break;
duke@435 2175 }
duke@435 2176 }
duke@435 2177 }
duke@435 2178 }
duke@435 2179
duke@435 2180 // No delay slot, add a nop to the usage
duke@435 2181 if (!_unconditional_delay_slot) {
duke@435 2182 // See if adding an instruction in the delay slot will overflow
duke@435 2183 // the bundle.
duke@435 2184 if (!NodeFitsInBundle(_nop)) {
duke@435 2185 #ifndef PRODUCT
duke@435 2186 if (_cfg->C->trace_opto_output())
duke@435 2187 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
duke@435 2188 #endif
duke@435 2189 step(1);
duke@435 2190 }
duke@435 2191
duke@435 2192 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
duke@435 2193 _next_node = _nop;
duke@435 2194 ++_bundle_instr_count;
duke@435 2195 }
duke@435 2196
duke@435 2197 // See if the instruction in the delay slot requires a
duke@435 2198 // step of the bundles
duke@435 2199 if (!NodeFitsInBundle(n)) {
duke@435 2200 #ifndef PRODUCT
duke@435 2201 if (_cfg->C->trace_opto_output())
duke@435 2202 tty->print("# *** STEP(branch won't fit) ***\n");
duke@435 2203 #endif
duke@435 2204 // Update the state information
duke@435 2205 _bundle_instr_count = 0;
duke@435 2206 _bundle_cycle_number += 1;
duke@435 2207 _bundle_use.step(1);
duke@435 2208 }
duke@435 2209 }
duke@435 2210
duke@435 2211 // Get the number of instructions
duke@435 2212 uint instruction_count = node_pipeline->instructionCount();
duke@435 2213 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
duke@435 2214 instruction_count = 0;
duke@435 2215
duke@435 2216 // Compute the latency information
duke@435 2217 uint delay = 0;
duke@435 2218
duke@435 2219 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
duke@435 2220 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
duke@435 2221 if (relative_latency < 0)
duke@435 2222 relative_latency = 0;
duke@435 2223
duke@435 2224 delay = _bundle_use.full_latency(relative_latency, node_usage);
duke@435 2225
duke@435 2226 // Does not fit in this bundle, start a new one
duke@435 2227 if (delay > 0) {
duke@435 2228 step(delay);
duke@435 2229
duke@435 2230 #ifndef PRODUCT
duke@435 2231 if (_cfg->C->trace_opto_output())
duke@435 2232 tty->print("# *** STEP(%d) ***\n", delay);
duke@435 2233 #endif
duke@435 2234 }
duke@435 2235 }
duke@435 2236
duke@435 2237 // If this was placed in the delay slot, ignore it
duke@435 2238 if (n != _unconditional_delay_slot) {
duke@435 2239
duke@435 2240 if (delay == 0) {
duke@435 2241 if (node_pipeline->hasMultipleBundles()) {
duke@435 2242 #ifndef PRODUCT
duke@435 2243 if (_cfg->C->trace_opto_output())
duke@435 2244 tty->print("# *** STEP(multiple instructions) ***\n");
duke@435 2245 #endif
duke@435 2246 step(1);
duke@435 2247 }
duke@435 2248
duke@435 2249 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
duke@435 2250 #ifndef PRODUCT
duke@435 2251 if (_cfg->C->trace_opto_output())
duke@435 2252 tty->print("# *** STEP(%d >= %d instructions) ***\n",
duke@435 2253 instruction_count + _bundle_instr_count,
duke@435 2254 Pipeline::_max_instrs_per_cycle);
duke@435 2255 #endif
duke@435 2256 step(1);
duke@435 2257 }
duke@435 2258 }
duke@435 2259
duke@435 2260 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
duke@435 2261 _bundle_instr_count++;
duke@435 2262
duke@435 2263 // Set the node's latency
duke@435 2264 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2265
duke@435 2266 // Now merge the functional unit information
duke@435 2267 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
duke@435 2268 _bundle_use.add_usage(node_usage);
duke@435 2269
duke@435 2270 // Increment the number of instructions in this bundle
duke@435 2271 _bundle_instr_count += instruction_count;
duke@435 2272
duke@435 2273 // Remember this node for later
duke@435 2274 if (n->is_Mach())
duke@435 2275 _next_node = n;
duke@435 2276 }
duke@435 2277
duke@435 2278 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
duke@435 2279 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
duke@435 2280 // 'Schedule' them (basically ignore in the schedule) but do not insert them
duke@435 2281 // into the block. All other scheduled nodes get put in the schedule here.
duke@435 2282 int op = n->Opcode();
duke@435 2283 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
duke@435 2284 (op != Op_Node && // Not an unused antidepedence node and
duke@435 2285 // not an unallocated boxlock
duke@435 2286 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
duke@435 2287
duke@435 2288 // Push any trailing projections
adlertz@5635 2289 if( bb->get_node(bb->number_of_nodes()-1) != n ) {
duke@435 2290 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2291 Node *foi = n->fast_out(i);
duke@435 2292 if( foi->is_Proj() )
duke@435 2293 _scheduled.push(foi);
duke@435 2294 }
duke@435 2295 }
duke@435 2296
duke@435 2297 // Put the instruction in the schedule list
duke@435 2298 _scheduled.push(n);
duke@435 2299 }
duke@435 2300
duke@435 2301 #ifndef PRODUCT
duke@435 2302 if (_cfg->C->trace_opto_output())
duke@435 2303 dump_available();
duke@435 2304 #endif
duke@435 2305
duke@435 2306 // Walk all the definitions, decrementing use counts, and
duke@435 2307 // if a definition has a 0 use count, place it in the available list.
duke@435 2308 DecrementUseCounts(n,bb);
duke@435 2309 }
duke@435 2310
duke@435 2311 // This method sets the use count within a basic block. We will ignore all
duke@435 2312 // uses outside the current basic block. As we are doing a backwards walk,
duke@435 2313 // any node we reach that has a use count of 0 may be scheduled. This also
duke@435 2314 // avoids the problem of cyclic references from phi nodes, as long as phi
duke@435 2315 // nodes are at the front of the basic block. This method also initializes
duke@435 2316 // the available list to the set of instructions that have no uses within this
duke@435 2317 // basic block.
duke@435 2318 void Scheduling::ComputeUseCount(const Block *bb) {
duke@435 2319 #ifndef PRODUCT
duke@435 2320 if (_cfg->C->trace_opto_output())
duke@435 2321 tty->print("# -> ComputeUseCount\n");
duke@435 2322 #endif
duke@435 2323
duke@435 2324 // Clear the list of available and scheduled instructions, just in case
duke@435 2325 _available.clear();
duke@435 2326 _scheduled.clear();
duke@435 2327
duke@435 2328 // No delay slot specified
duke@435 2329 _unconditional_delay_slot = NULL;
duke@435 2330
duke@435 2331 #ifdef ASSERT
adlertz@5635 2332 for( uint i=0; i < bb->number_of_nodes(); i++ )
adlertz@5635 2333 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
duke@435 2334 #endif
duke@435 2335
duke@435 2336 // Force the _uses count to never go to zero for unscheduable pieces
duke@435 2337 // of the block
duke@435 2338 for( uint k = 0; k < _bb_start; k++ )
adlertz@5635 2339 _uses[bb->get_node(k)->_idx] = 1;
adlertz@5635 2340 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
adlertz@5635 2341 _uses[bb->get_node(l)->_idx] = 1;
duke@435 2342
duke@435 2343 // Iterate backwards over the instructions in the block. Don't count the
duke@435 2344 // branch projections at end or the block header instructions.
duke@435 2345 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
adlertz@5635 2346 Node *n = bb->get_node(j);
duke@435 2347 if( n->is_Proj() ) continue; // Projections handled another way
duke@435 2348
duke@435 2349 // Account for all uses
duke@435 2350 for ( uint k = 0; k < n->len(); k++ ) {
duke@435 2351 Node *inp = n->in(k);
duke@435 2352 if (!inp) continue;
duke@435 2353 assert(inp != n, "no cycles allowed" );
adlertz@5509 2354 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
adlertz@5509 2355 if (inp->is_Proj()) { // Skip through Proj's
duke@435 2356 inp = inp->in(0);
adlertz@5509 2357 }
duke@435 2358 ++_uses[inp->_idx]; // Count 1 block-local use
duke@435 2359 }
duke@435 2360 }
duke@435 2361
duke@435 2362 // If this instruction has a 0 use count, then it is available
duke@435 2363 if (!_uses[n->_idx]) {
duke@435 2364 _current_latency[n->_idx] = _bundle_cycle_number;
duke@435 2365 AddNodeToAvailableList(n);
duke@435 2366 }
duke@435 2367
duke@435 2368 #ifndef PRODUCT
duke@435 2369 if (_cfg->C->trace_opto_output()) {
duke@435 2370 tty->print("# uses: %3d: ", _uses[n->_idx]);
duke@435 2371 n->dump();
duke@435 2372 }
duke@435 2373 #endif
duke@435 2374 }
duke@435 2375
duke@435 2376 #ifndef PRODUCT
duke@435 2377 if (_cfg->C->trace_opto_output())
duke@435 2378 tty->print("# <- ComputeUseCount\n");
duke@435 2379 #endif
duke@435 2380 }
duke@435 2381
duke@435 2382 // This routine performs scheduling on each basic block in reverse order,
duke@435 2383 // using instruction latencies and taking into account function unit
duke@435 2384 // availability.
duke@435 2385 void Scheduling::DoScheduling() {
duke@435 2386 #ifndef PRODUCT
duke@435 2387 if (_cfg->C->trace_opto_output())
duke@435 2388 tty->print("# -> DoScheduling\n");
duke@435 2389 #endif
duke@435 2390
duke@435 2391 Block *succ_bb = NULL;
duke@435 2392 Block *bb;
duke@435 2393
duke@435 2394 // Walk over all the basic blocks in reverse order
adlertz@5539 2395 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
adlertz@5539 2396 bb = _cfg->get_block(i);
duke@435 2397
duke@435 2398 #ifndef PRODUCT
duke@435 2399 if (_cfg->C->trace_opto_output()) {
duke@435 2400 tty->print("# Schedule BB#%03d (initial)\n", i);
adlertz@5635 2401 for (uint j = 0; j < bb->number_of_nodes(); j++) {
adlertz@5635 2402 bb->get_node(j)->dump();
adlertz@5539 2403 }
duke@435 2404 }
duke@435 2405 #endif
duke@435 2406
duke@435 2407 // On the head node, skip processing
adlertz@5539 2408 if (bb == _cfg->get_root_block()) {
duke@435 2409 continue;
adlertz@5539 2410 }
duke@435 2411
duke@435 2412 // Skip empty, connector blocks
duke@435 2413 if (bb->is_connector())
duke@435 2414 continue;
duke@435 2415
duke@435 2416 // If the following block is not the sole successor of
duke@435 2417 // this one, then reset the pipeline information
duke@435 2418 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
duke@435 2419 #ifndef PRODUCT
duke@435 2420 if (_cfg->C->trace_opto_output()) {
duke@435 2421 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
duke@435 2422 _next_node->_idx, _bundle_instr_count);
duke@435 2423 }
duke@435 2424 #endif
duke@435 2425 step_and_clear();
duke@435 2426 }
duke@435 2427
duke@435 2428 // Leave untouched the starting instruction, any Phis, a CreateEx node
adlertz@5635 2429 // or Top. bb->get_node(_bb_start) is the first schedulable instruction.
adlertz@5635 2430 _bb_end = bb->number_of_nodes()-1;
duke@435 2431 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
adlertz@5635 2432 Node *n = bb->get_node(_bb_start);
duke@435 2433 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
duke@435 2434 // Also, MachIdealNodes do not get scheduled
duke@435 2435 if( !n->is_Mach() ) continue; // Skip non-machine nodes
duke@435 2436 MachNode *mach = n->as_Mach();
duke@435 2437 int iop = mach->ideal_Opcode();
duke@435 2438 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
duke@435 2439 if( iop == Op_Con ) continue; // Do not schedule Top
duke@435 2440 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
duke@435 2441 mach->pipeline() == MachNode::pipeline_class() &&
duke@435 2442 !n->is_SpillCopy() ) // Breakpoints, Prolog, etc
duke@435 2443 continue;
duke@435 2444 break; // Funny loop structure to be sure...
duke@435 2445 }
duke@435 2446 // Compute last "interesting" instruction in block - last instruction we
duke@435 2447 // might schedule. _bb_end points just after last schedulable inst. We
duke@435 2448 // normally schedule conditional branches (despite them being forced last
duke@435 2449 // in the block), because they have delay slots we can fill. Calls all
duke@435 2450 // have their delay slots filled in the template expansions, so we don't
duke@435 2451 // bother scheduling them.
adlertz@5635 2452 Node *last = bb->get_node(_bb_end);
kvn@3049 2453 // Ignore trailing NOPs.
kvn@3049 2454 while (_bb_end > 0 && last->is_Mach() &&
kvn@3049 2455 last->as_Mach()->ideal_Opcode() == Op_Con) {
adlertz@5635 2456 last = bb->get_node(--_bb_end);
kvn@3049 2457 }
kvn@3049 2458 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
duke@435 2459 if( last->is_Catch() ||
kvn@1142 2460 // Exclude unreachable path case when Halt node is in a separate block.
kvn@1142 2461 (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
duke@435 2462 // There must be a prior call. Skip it.
adlertz@5635 2463 while( !bb->get_node(--_bb_end)->is_MachCall() ) {
adlertz@5635 2464 assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
duke@435 2465 }
duke@435 2466 } else if( last->is_MachNullCheck() ) {
duke@435 2467 // Backup so the last null-checked memory instruction is
duke@435 2468 // outside the schedulable range. Skip over the nullcheck,
duke@435 2469 // projection, and the memory nodes.
duke@435 2470 Node *mem = last->in(1);
duke@435 2471 do {
duke@435 2472 _bb_end--;
adlertz@5635 2473 } while (mem != bb->get_node(_bb_end));
duke@435 2474 } else {
duke@435 2475 // Set _bb_end to point after last schedulable inst.
duke@435 2476 _bb_end++;
duke@435 2477 }
duke@435 2478
duke@435 2479 assert( _bb_start <= _bb_end, "inverted block ends" );
duke@435 2480
duke@435 2481 // Compute the register antidependencies for the basic block
duke@435 2482 ComputeRegisterAntidependencies(bb);
duke@435 2483 if (_cfg->C->failing()) return; // too many D-U pinch points
duke@435 2484
duke@435 2485 // Compute intra-bb latencies for the nodes
duke@435 2486 ComputeLocalLatenciesForward(bb);
duke@435 2487
duke@435 2488 // Compute the usage within the block, and set the list of all nodes
duke@435 2489 // in the block that have no uses within the block.
duke@435 2490 ComputeUseCount(bb);
duke@435 2491
duke@435 2492 // Schedule the remaining instructions in the block
duke@435 2493 while ( _available.size() > 0 ) {
duke@435 2494 Node *n = ChooseNodeToBundle();
morris@4770 2495 guarantee(n != NULL, "no nodes available");
duke@435 2496 AddNodeToBundle(n,bb);
duke@435 2497 }
duke@435 2498
duke@435 2499 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
duke@435 2500 #ifdef ASSERT
duke@435 2501 for( uint l = _bb_start; l < _bb_end; l++ ) {
adlertz@5635 2502 Node *n = bb->get_node(l);
duke@435 2503 uint m;
duke@435 2504 for( m = 0; m < _bb_end-_bb_start; m++ )
duke@435 2505 if( _scheduled[m] == n )
duke@435 2506 break;
duke@435 2507 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
duke@435 2508 }
duke@435 2509 #endif
duke@435 2510
duke@435 2511 // Now copy the instructions (in reverse order) back to the block
duke@435 2512 for ( uint k = _bb_start; k < _bb_end; k++ )
adlertz@5635 2513 bb->map_node(_scheduled[_bb_end-k-1], k);
duke@435 2514
duke@435 2515 #ifndef PRODUCT
duke@435 2516 if (_cfg->C->trace_opto_output()) {
duke@435 2517 tty->print("# Schedule BB#%03d (final)\n", i);
duke@435 2518 uint current = 0;
adlertz@5635 2519 for (uint j = 0; j < bb->number_of_nodes(); j++) {
adlertz@5635 2520 Node *n = bb->get_node(j);
duke@435 2521 if( valid_bundle_info(n) ) {
duke@435 2522 Bundle *bundle = node_bundling(n);
duke@435 2523 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
duke@435 2524 tty->print("*** Bundle: ");
duke@435 2525 bundle->dump();
duke@435 2526 }
duke@435 2527 n->dump();
duke@435 2528 }
duke@435 2529 }
duke@435 2530 }
duke@435 2531 #endif
duke@435 2532 #ifdef ASSERT
duke@435 2533 verify_good_schedule(bb,"after block local scheduling");
duke@435 2534 #endif
duke@435 2535 }
duke@435 2536
duke@435 2537 #ifndef PRODUCT
duke@435 2538 if (_cfg->C->trace_opto_output())
duke@435 2539 tty->print("# <- DoScheduling\n");
duke@435 2540 #endif
duke@435 2541
duke@435 2542 // Record final node-bundling array location
duke@435 2543 _regalloc->C->set_node_bundling_base(_node_bundling_base);
duke@435 2544
duke@435 2545 } // end DoScheduling
duke@435 2546
duke@435 2547 // Verify that no live-range used in the block is killed in the block by a
duke@435 2548 // wrong DEF. This doesn't verify live-ranges that span blocks.
duke@435 2549
duke@435 2550 // Check for edge existence. Used to avoid adding redundant precedence edges.
duke@435 2551 static bool edge_from_to( Node *from, Node *to ) {
duke@435 2552 for( uint i=0; i<from->len(); i++ )
duke@435 2553 if( from->in(i) == to )
duke@435 2554 return true;
duke@435 2555 return false;
duke@435 2556 }
duke@435 2557
duke@435 2558 #ifdef ASSERT
duke@435 2559 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
duke@435 2560 // Check for bad kills
duke@435 2561 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
duke@435 2562 Node *prior_use = _reg_node[def];
duke@435 2563 if( prior_use && !edge_from_to(prior_use,n) ) {
duke@435 2564 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
duke@435 2565 n->dump();
duke@435 2566 tty->print_cr("...");
duke@435 2567 prior_use->dump();
jcoomes@1845 2568 assert(edge_from_to(prior_use,n),msg);
duke@435 2569 }
duke@435 2570 _reg_node.map(def,NULL); // Kill live USEs
duke@435 2571 }
duke@435 2572 }
duke@435 2573
duke@435 2574 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
duke@435 2575
duke@435 2576 // Zap to something reasonable for the verify code
duke@435 2577 _reg_node.clear();
duke@435 2578
duke@435 2579 // Walk over the block backwards. Check to make sure each DEF doesn't
duke@435 2580 // kill a live value (other than the one it's supposed to). Add each
duke@435 2581 // USE to the live set.
adlertz@5635 2582 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
adlertz@5635 2583 Node *n = b->get_node(i);
duke@435 2584 int n_op = n->Opcode();
duke@435 2585 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2586 // Fat-proj kills a slew of registers
duke@435 2587 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2588 while( rm.is_NotEmpty() ) {
duke@435 2589 OptoReg::Name kill = rm.find_first_elem();
duke@435 2590 rm.Remove(kill);
duke@435 2591 verify_do_def( n, kill, msg );
duke@435 2592 }
duke@435 2593 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
duke@435 2594 // Get DEF'd registers the normal way
duke@435 2595 verify_do_def( n, _regalloc->get_reg_first(n), msg );
duke@435 2596 verify_do_def( n, _regalloc->get_reg_second(n), msg );
duke@435 2597 }
duke@435 2598
duke@435 2599 // Now make all USEs live
duke@435 2600 for( uint i=1; i<n->req(); i++ ) {
duke@435 2601 Node *def = n->in(i);
duke@435 2602 assert(def != 0, "input edge required");
duke@435 2603 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
duke@435 2604 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
duke@435 2605 if( OptoReg::is_valid(reg_lo) ) {
jcoomes@1845 2606 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
duke@435 2607 _reg_node.map(reg_lo,n);
duke@435 2608 }
duke@435 2609 if( OptoReg::is_valid(reg_hi) ) {
jcoomes@1845 2610 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
duke@435 2611 _reg_node.map(reg_hi,n);
duke@435 2612 }
duke@435 2613 }
duke@435 2614
duke@435 2615 }
duke@435 2616
duke@435 2617 // Zap to something reasonable for the Antidependence code
duke@435 2618 _reg_node.clear();
duke@435 2619 }
duke@435 2620 #endif
duke@435 2621
duke@435 2622 // Conditionally add precedence edges. Avoid putting edges on Projs.
duke@435 2623 static void add_prec_edge_from_to( Node *from, Node *to ) {
duke@435 2624 if( from->is_Proj() ) { // Put precedence edge on Proj's input
duke@435 2625 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
duke@435 2626 from = from->in(0);
duke@435 2627 }
duke@435 2628 if( from != to && // No cycles (for things like LD L0,[L0+4] )
duke@435 2629 !edge_from_to( from, to ) ) // Avoid duplicate edge
duke@435 2630 from->add_prec(to);
duke@435 2631 }
duke@435 2632
duke@435 2633 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
duke@435 2634 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
duke@435 2635 return;
duke@435 2636
duke@435 2637 Node *pinch = _reg_node[def_reg]; // Get pinch point
adlertz@5509 2638 if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
duke@435 2639 is_def ) { // Check for a true def (not a kill)
duke@435 2640 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
duke@435 2641 return;
duke@435 2642 }
duke@435 2643
duke@435 2644 Node *kill = def; // Rename 'def' to more descriptive 'kill'
duke@435 2645 debug_only( def = (Node*)0xdeadbeef; )
duke@435 2646
duke@435 2647 // After some number of kills there _may_ be a later def
duke@435 2648 Node *later_def = NULL;
duke@435 2649
duke@435 2650 // Finding a kill requires a real pinch-point.
duke@435 2651 // Check for not already having a pinch-point.
duke@435 2652 // Pinch points are Op_Node's.
duke@435 2653 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
duke@435 2654 later_def = pinch; // Must be def/kill as optimistic pinch-point
duke@435 2655 if ( _pinch_free_list.size() > 0) {
duke@435 2656 pinch = _pinch_free_list.pop();
duke@435 2657 } else {
kvn@4115 2658 pinch = new (_cfg->C) Node(1); // Pinch point to-be
duke@435 2659 }
duke@435 2660 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
duke@435 2661 _cfg->C->record_method_not_compilable("too many D-U pinch points");
duke@435 2662 return;
duke@435 2663 }
adlertz@5509 2664 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init)
duke@435 2665 _reg_node.map(def_reg,pinch); // Record pinch-point
duke@435 2666 //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
duke@435 2667 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
duke@435 2668 pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call
duke@435 2669 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
duke@435 2670 later_def = NULL; // and no later def
duke@435 2671 }
duke@435 2672 pinch->set_req(0,later_def); // Hook later def so we can find it
duke@435 2673 } else { // Else have valid pinch point
duke@435 2674 if( pinch->in(0) ) // If there is a later-def
duke@435 2675 later_def = pinch->in(0); // Get it
duke@435 2676 }
duke@435 2677
duke@435 2678 // Add output-dependence edge from later def to kill
duke@435 2679 if( later_def ) // If there is some original def
duke@435 2680 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
duke@435 2681
duke@435 2682 // See if current kill is also a use, and so is forced to be the pinch-point.
duke@435 2683 if( pinch->Opcode() == Op_Node ) {
duke@435 2684 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
duke@435 2685 for( uint i=1; i<uses->req(); i++ ) {
duke@435 2686 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
duke@435 2687 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
duke@435 2688 // Yes, found a use/kill pinch-point
duke@435 2689 pinch->set_req(0,NULL); //
duke@435 2690 pinch->replace_by(kill); // Move anti-dep edges up
duke@435 2691 pinch = kill;
duke@435 2692 _reg_node.map(def_reg,pinch);
duke@435 2693 return;
duke@435 2694 }
duke@435 2695 }
duke@435 2696 }
duke@435 2697
duke@435 2698 // Add edge from kill to pinch-point
duke@435 2699 add_prec_edge_from_to(kill,pinch);
duke@435 2700 }
duke@435 2701
duke@435 2702 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
duke@435 2703 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
duke@435 2704 return;
duke@435 2705 Node *pinch = _reg_node[use_reg]; // Get pinch point
duke@435 2706 // Check for no later def_reg/kill in block
adlertz@5509 2707 if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
duke@435 2708 // Use has to be block-local as well
adlertz@5509 2709 _cfg->get_block_for_node(use) == b) {
duke@435 2710 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
duke@435 2711 pinch->req() == 1 ) { // pinch not yet in block?
duke@435 2712 pinch->del_req(0); // yank pointer to later-def, also set flag
duke@435 2713 // Insert the pinch-point in the block just after the last use
adlertz@5635 2714 b->insert_node(pinch, b->find_node(use) + 1);
duke@435 2715 _bb_end++; // Increase size scheduled region in block
duke@435 2716 }
duke@435 2717
duke@435 2718 add_prec_edge_from_to(pinch,use);
duke@435 2719 }
duke@435 2720 }
duke@435 2721
duke@435 2722 // We insert antidependences between the reads and following write of
duke@435 2723 // allocated registers to prevent illegal code motion. Hopefully, the
duke@435 2724 // number of added references should be fairly small, especially as we
duke@435 2725 // are only adding references within the current basic block.
duke@435 2726 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
duke@435 2727
duke@435 2728 #ifdef ASSERT
duke@435 2729 verify_good_schedule(b,"before block local scheduling");
duke@435 2730 #endif
duke@435 2731
duke@435 2732 // A valid schedule, for each register independently, is an endless cycle
duke@435 2733 // of: a def, then some uses (connected to the def by true dependencies),
duke@435 2734 // then some kills (defs with no uses), finally the cycle repeats with a new
duke@435 2735 // def. The uses are allowed to float relative to each other, as are the
duke@435 2736 // kills. No use is allowed to slide past a kill (or def). This requires
duke@435 2737 // antidependencies between all uses of a single def and all kills that
duke@435 2738 // follow, up to the next def. More edges are redundant, because later defs
duke@435 2739 // & kills are already serialized with true or antidependencies. To keep
duke@435 2740 // the edge count down, we add a 'pinch point' node if there's more than
duke@435 2741 // one use or more than one kill/def.
duke@435 2742
duke@435 2743 // We add dependencies in one bottom-up pass.
duke@435 2744
duke@435 2745 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
duke@435 2746
duke@435 2747 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
duke@435 2748 // register. If not, we record the DEF/KILL in _reg_node, the
duke@435 2749 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
duke@435 2750 // "pinch point", a new Node that's in the graph but not in the block.
duke@435 2751 // We put edges from the prior and current DEF/KILLs to the pinch point.
duke@435 2752 // We put the pinch point in _reg_node. If there's already a pinch point
duke@435 2753 // we merely add an edge from the current DEF/KILL to the pinch point.
duke@435 2754
duke@435 2755 // After doing the DEF/KILLs, we handle USEs. For each used register, we
duke@435 2756 // put an edge from the pinch point to the USE.
duke@435 2757
duke@435 2758 // To be expedient, the _reg_node array is pre-allocated for the whole
duke@435 2759 // compilation. _reg_node is lazily initialized; it either contains a NULL,
duke@435 2760 // or a valid def/kill/pinch-point, or a leftover node from some prior
duke@435 2761 // block. Leftover node from some prior block is treated like a NULL (no
duke@435 2762 // prior def, so no anti-dependence needed). Valid def is distinguished by
duke@435 2763 // it being in the current block.
duke@435 2764 bool fat_proj_seen = false;
duke@435 2765 uint last_safept = _bb_end-1;
adlertz@5635 2766 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
duke@435 2767 Node* last_safept_node = end_node;
duke@435 2768 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
adlertz@5635 2769 Node *n = b->get_node(i);
duke@435 2770 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
kvn@3040 2771 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
duke@435 2772 // Fat-proj kills a slew of registers
duke@435 2773 // This can add edges to 'n' and obscure whether or not it was a def,
duke@435 2774 // hence the is_def flag.
duke@435 2775 fat_proj_seen = true;
duke@435 2776 RegMask rm = n->out_RegMask();// Make local copy
duke@435 2777 while( rm.is_NotEmpty() ) {
duke@435 2778 OptoReg::Name kill = rm.find_first_elem();
duke@435 2779 rm.Remove(kill);
duke@435 2780 anti_do_def( b, n, kill, is_def );
duke@435 2781 }
duke@435 2782 } else {
duke@435 2783 // Get DEF'd registers the normal way
duke@435 2784 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
duke@435 2785 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
duke@435 2786 }
duke@435 2787
kvn@3049 2788 // Kill projections on a branch should appear to occur on the
kvn@3049 2789 // branch, not afterwards, so grab the masks from the projections
kvn@3049 2790 // and process them.
kvn@3051 2791 if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
kvn@3049 2792 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3049 2793 Node* use = n->fast_out(i);
kvn@3049 2794 if (use->is_Proj()) {
kvn@3049 2795 RegMask rm = use->out_RegMask();// Make local copy
kvn@3049 2796 while( rm.is_NotEmpty() ) {
kvn@3049 2797 OptoReg::Name kill = rm.find_first_elem();
kvn@3049 2798 rm.Remove(kill);
kvn@3049 2799 anti_do_def( b, n, kill, false );
kvn@3049 2800 }
kvn@3049 2801 }
kvn@3049 2802 }
kvn@3049 2803 }
kvn@3049 2804
duke@435 2805 // Check each register used by this instruction for a following DEF/KILL
duke@435 2806 // that must occur afterward and requires an anti-dependence edge.
duke@435 2807 for( uint j=0; j<n->req(); j++ ) {
duke@435 2808 Node *def = n->in(j);
duke@435 2809 if( def ) {
kvn@3040 2810 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
duke@435 2811 anti_do_use( b, n, _regalloc->get_reg_first(def) );
duke@435 2812 anti_do_use( b, n, _regalloc->get_reg_second(def) );
duke@435 2813 }
duke@435 2814 }
duke@435 2815 // Do not allow defs of new derived values to float above GC
duke@435 2816 // points unless the base is definitely available at the GC point.
duke@435 2817
adlertz@5635 2818 Node *m = b->get_node(i);
duke@435 2819
duke@435 2820 // Add precedence edge from following safepoint to use of derived pointer
duke@435 2821 if( last_safept_node != end_node &&
duke@435 2822 m != last_safept_node) {
duke@435 2823 for (uint k = 1; k < m->req(); k++) {
duke@435 2824 const Type *t = m->in(k)->bottom_type();
duke@435 2825 if( t->isa_oop_ptr() &&
duke@435 2826 t->is_ptr()->offset() != 0 ) {
duke@435 2827 last_safept_node->add_prec( m );
duke@435 2828 break;
duke@435 2829 }
duke@435 2830 }
duke@435 2831 }
duke@435 2832
duke@435 2833 if( n->jvms() ) { // Precedence edge from derived to safept
duke@435 2834 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
adlertz@5635 2835 if( b->get_node(last_safept) != last_safept_node ) {
duke@435 2836 last_safept = b->find_node(last_safept_node);
duke@435 2837 }
duke@435 2838 for( uint j=last_safept; j > i; j-- ) {
adlertz@5635 2839 Node *mach = b->get_node(j);
duke@435 2840 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
duke@435 2841 mach->add_prec( n );
duke@435 2842 }
duke@435 2843 last_safept = i;
duke@435 2844 last_safept_node = m;
duke@435 2845 }
duke@435 2846 }
duke@435 2847
duke@435 2848 if (fat_proj_seen) {
duke@435 2849 // Garbage collect pinch nodes that were not consumed.
duke@435 2850 // They are usually created by a fat kill MachProj for a call.
duke@435 2851 garbage_collect_pinch_nodes();
duke@435 2852 }
duke@435 2853 }
duke@435 2854
duke@435 2855 // Garbage collect pinch nodes for reuse by other blocks.
duke@435 2856 //
duke@435 2857 // The block scheduler's insertion of anti-dependence
duke@435 2858 // edges creates many pinch nodes when the block contains
duke@435 2859 // 2 or more Calls. A pinch node is used to prevent a
duke@435 2860 // combinatorial explosion of edges. If a set of kills for a
duke@435 2861 // register is anti-dependent on a set of uses (or defs), rather
duke@435 2862 // than adding an edge in the graph between each pair of kill
duke@435 2863 // and use (or def), a pinch is inserted between them:
duke@435 2864 //
duke@435 2865 // use1 use2 use3
duke@435 2866 // \ | /
duke@435 2867 // \ | /
duke@435 2868 // pinch
duke@435 2869 // / | \
duke@435 2870 // / | \
duke@435 2871 // kill1 kill2 kill3
duke@435 2872 //
duke@435 2873 // One pinch node is created per register killed when
duke@435 2874 // the second call is encountered during a backwards pass
duke@435 2875 // over the block. Most of these pinch nodes are never
duke@435 2876 // wired into the graph because the register is never
duke@435 2877 // used or def'ed in the block.
duke@435 2878 //
duke@435 2879 void Scheduling::garbage_collect_pinch_nodes() {
duke@435 2880 #ifndef PRODUCT
duke@435 2881 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
duke@435 2882 #endif
duke@435 2883 int trace_cnt = 0;
duke@435 2884 for (uint k = 0; k < _reg_node.Size(); k++) {
duke@435 2885 Node* pinch = _reg_node[k];
adlertz@5509 2886 if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
duke@435 2887 // no predecence input edges
duke@435 2888 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
duke@435 2889 cleanup_pinch(pinch);
duke@435 2890 _pinch_free_list.push(pinch);
duke@435 2891 _reg_node.map(k, NULL);
duke@435 2892 #ifndef PRODUCT
duke@435 2893 if (_cfg->C->trace_opto_output()) {
duke@435 2894 trace_cnt++;
duke@435 2895 if (trace_cnt > 40) {
duke@435 2896 tty->print("\n");
duke@435 2897 trace_cnt = 0;
duke@435 2898 }
duke@435 2899 tty->print(" %d", pinch->_idx);
duke@435 2900 }
duke@435 2901 #endif
duke@435 2902 }
duke@435 2903 }
duke@435 2904 #ifndef PRODUCT
duke@435 2905 if (_cfg->C->trace_opto_output()) tty->print("\n");
duke@435 2906 #endif
duke@435 2907 }
duke@435 2908
duke@435 2909 // Clean up a pinch node for reuse.
duke@435 2910 void Scheduling::cleanup_pinch( Node *pinch ) {
duke@435 2911 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
duke@435 2912
duke@435 2913 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
duke@435 2914 Node* use = pinch->last_out(i);
duke@435 2915 uint uses_found = 0;
duke@435 2916 for (uint j = use->req(); j < use->len(); j++) {
duke@435 2917 if (use->in(j) == pinch) {
duke@435 2918 use->rm_prec(j);
duke@435 2919 uses_found++;
duke@435 2920 }
duke@435 2921 }
duke@435 2922 assert(uses_found > 0, "must be a precedence edge");
duke@435 2923 i -= uses_found; // we deleted 1 or more copies of this edge
duke@435 2924 }
duke@435 2925 // May have a later_def entry
duke@435 2926 pinch->set_req(0, NULL);
duke@435 2927 }
duke@435 2928
duke@435 2929 #ifndef PRODUCT
duke@435 2930
duke@435 2931 void Scheduling::dump_available() const {
duke@435 2932 tty->print("#Availist ");
duke@435 2933 for (uint i = 0; i < _available.size(); i++)
duke@435 2934 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
duke@435 2935 tty->cr();
duke@435 2936 }
duke@435 2937
duke@435 2938 // Print Scheduling Statistics
duke@435 2939 void Scheduling::print_statistics() {
duke@435 2940 // Print the size added by nops for bundling
duke@435 2941 tty->print("Nops added %d bytes to total of %d bytes",
duke@435 2942 _total_nop_size, _total_method_size);
duke@435 2943 if (_total_method_size > 0)
duke@435 2944 tty->print(", for %.2f%%",
duke@435 2945 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
duke@435 2946 tty->print("\n");
duke@435 2947
duke@435 2948 // Print the number of branch shadows filled
duke@435 2949 if (Pipeline::_branch_has_delay_slot) {
duke@435 2950 tty->print("Of %d branches, %d had unconditional delay slots filled",
duke@435 2951 _total_branches, _total_unconditional_delays);
duke@435 2952 if (_total_branches > 0)
duke@435 2953 tty->print(", for %.2f%%",
duke@435 2954 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
duke@435 2955 tty->print("\n");
duke@435 2956 }
duke@435 2957
duke@435 2958 uint total_instructions = 0, total_bundles = 0;
duke@435 2959
duke@435 2960 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
duke@435 2961 uint bundle_count = _total_instructions_per_bundle[i];
duke@435 2962 total_instructions += bundle_count * i;
duke@435 2963 total_bundles += bundle_count;
duke@435 2964 }
duke@435 2965
duke@435 2966 if (total_bundles > 0)
duke@435 2967 tty->print("Average ILP (excluding nops) is %.2f\n",
duke@435 2968 ((double)total_instructions) / ((double)total_bundles));
duke@435 2969 }
duke@435 2970 #endif

mercurial