src/share/vm/utilities/taskqueue.hpp

Thu, 11 Feb 2010 15:52:19 -0800

author
iveresov
date
Thu, 11 Feb 2010 15:52:19 -0800
changeset 1696
0414c1049f15
parent 1460
1ee412f7fec9
child 1719
5f1f51edaff6
permissions
-rw-r--r--

6923991: G1: improve scalability of RSet scanning
Summary: Implemented block-based work stealing. Moved copying during the rset scanning phase to the main copying phase. Made the size of rset table depend on the region size.
Reviewed-by: apetrusenko, tonyp

duke@435 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class TaskQueueSuper: public CHeapObj {
duke@435 26 protected:
jcoomes@1342 27 // Internal type for indexing the queue; also used for the tag.
jcoomes@1342 28 typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
jcoomes@1342 29
jcoomes@1342 30 // The first free element after the last one pushed (mod N).
ysr@976 31 volatile uint _bottom;
duke@435 32
jcoomes@1342 33 enum {
jcoomes@1342 34 N = 1 << NOT_LP64(14) LP64_ONLY(17), // Queue size: 16K or 128K
jcoomes@1342 35 MOD_N_MASK = N - 1 // To compute x mod N efficiently.
duke@435 36 };
duke@435 37
jcoomes@1342 38 class Age {
jcoomes@1342 39 public:
jcoomes@1342 40 Age(size_t data = 0) { _data = data; }
jcoomes@1342 41 Age(const Age& age) { _data = age._data; }
jcoomes@1342 42 Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
duke@435 43
jcoomes@1342 44 Age get() const volatile { return _data; }
jcoomes@1342 45 void set(Age age) volatile { _data = age._data; }
duke@435 46
jcoomes@1342 47 idx_t top() const volatile { return _fields._top; }
jcoomes@1342 48 idx_t tag() const volatile { return _fields._tag; }
duke@435 49
jcoomes@1342 50 // Increment top; if it wraps, increment tag also.
jcoomes@1342 51 void increment() {
jcoomes@1342 52 _fields._top = increment_index(_fields._top);
jcoomes@1342 53 if (_fields._top == 0) ++_fields._tag;
jcoomes@1342 54 }
duke@435 55
jcoomes@1342 56 Age cmpxchg(const Age new_age, const Age old_age) volatile {
jcoomes@1342 57 return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
jcoomes@1342 58 (volatile intptr_t *)&_data,
jcoomes@1342 59 (intptr_t)old_age._data);
duke@435 60 }
jcoomes@1342 61
jcoomes@1342 62 bool operator ==(const Age& other) const { return _data == other._data; }
jcoomes@1342 63
jcoomes@1342 64 private:
jcoomes@1342 65 struct fields {
jcoomes@1342 66 idx_t _top;
jcoomes@1342 67 idx_t _tag;
jcoomes@1342 68 };
jcoomes@1342 69 union {
jcoomes@1342 70 size_t _data;
jcoomes@1342 71 fields _fields;
jcoomes@1342 72 };
duke@435 73 };
jcoomes@1342 74
jcoomes@1342 75 volatile Age _age;
jcoomes@1342 76
jcoomes@1342 77 // These both operate mod N.
jcoomes@1342 78 static uint increment_index(uint ind) {
jcoomes@1342 79 return (ind + 1) & MOD_N_MASK;
duke@435 80 }
jcoomes@1342 81 static uint decrement_index(uint ind) {
jcoomes@1342 82 return (ind - 1) & MOD_N_MASK;
duke@435 83 }
duke@435 84
jcoomes@1342 85 // Returns a number in the range [0..N). If the result is "N-1", it should be
jcoomes@1342 86 // interpreted as 0.
ysr@976 87 uint dirty_size(uint bot, uint top) {
jcoomes@1342 88 return (bot - top) & MOD_N_MASK;
duke@435 89 }
duke@435 90
duke@435 91 // Returns the size corresponding to the given "bot" and "top".
ysr@976 92 uint size(uint bot, uint top) {
ysr@976 93 uint sz = dirty_size(bot, top);
jcoomes@1342 94 // Has the queue "wrapped", so that bottom is less than top? There's a
jcoomes@1342 95 // complicated special case here. A pair of threads could perform pop_local
jcoomes@1342 96 // and pop_global operations concurrently, starting from a state in which
jcoomes@1342 97 // _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
jcoomes@1342 98 // and the pop_global in incrementing _top (in which case the pop_global
jcoomes@1342 99 // will be awarded the contested queue element.) The resulting state must
jcoomes@1342 100 // be interpreted as an empty queue. (We only need to worry about one such
jcoomes@1342 101 // event: only the queue owner performs pop_local's, and several concurrent
jcoomes@1342 102 // threads attempting to perform the pop_global will all perform the same
jcoomes@1342 103 // CAS, and only one can succeed.) Any stealing thread that reads after
jcoomes@1342 104 // either the increment or decrement will see an empty queue, and will not
jcoomes@1342 105 // join the competitors. The "sz == -1 || sz == N-1" state will not be
jcoomes@1342 106 // modified by concurrent queues, so the owner thread can reset the state to
jcoomes@1342 107 // _bottom == top so subsequent pushes will be performed normally.
jcoomes@1342 108 return (sz == N - 1) ? 0 : sz;
duke@435 109 }
duke@435 110
duke@435 111 public:
duke@435 112 TaskQueueSuper() : _bottom(0), _age() {}
duke@435 113
duke@435 114 // Return "true" if the TaskQueue contains any tasks.
duke@435 115 bool peek();
duke@435 116
duke@435 117 // Return an estimate of the number of elements in the queue.
duke@435 118 // The "careful" version admits the possibility of pop_local/pop_global
duke@435 119 // races.
ysr@976 120 uint size() {
jcoomes@1342 121 return size(_bottom, _age.top());
duke@435 122 }
duke@435 123
ysr@976 124 uint dirty_size() {
jcoomes@1342 125 return dirty_size(_bottom, _age.top());
duke@435 126 }
duke@435 127
ysr@777 128 void set_empty() {
ysr@777 129 _bottom = 0;
jcoomes@1342 130 _age.set(0);
ysr@777 131 }
ysr@777 132
duke@435 133 // Maximum number of elements allowed in the queue. This is two less
duke@435 134 // than the actual queue size, for somewhat complicated reasons.
jcoomes@1342 135 uint max_elems() { return N - 2; }
duke@435 136 };
duke@435 137
duke@435 138 template<class E> class GenericTaskQueue: public TaskQueueSuper {
duke@435 139 private:
duke@435 140 // Slow paths for push, pop_local. (pop_global has no fast path.)
ysr@976 141 bool push_slow(E t, uint dirty_n_elems);
ysr@976 142 bool pop_local_slow(uint localBot, Age oldAge);
duke@435 143
duke@435 144 public:
duke@435 145 // Initializes the queue to empty.
duke@435 146 GenericTaskQueue();
duke@435 147
duke@435 148 void initialize();
duke@435 149
duke@435 150 // Push the task "t" on the queue. Returns "false" iff the queue is
duke@435 151 // full.
duke@435 152 inline bool push(E t);
duke@435 153
duke@435 154 // If succeeds in claiming a task (from the 'local' end, that is, the
duke@435 155 // most recently pushed task), returns "true" and sets "t" to that task.
duke@435 156 // Otherwise, the queue is empty and returns false.
duke@435 157 inline bool pop_local(E& t);
duke@435 158
duke@435 159 // If succeeds in claiming a task (from the 'global' end, that is, the
duke@435 160 // least recently pushed task), returns "true" and sets "t" to that task.
duke@435 161 // Otherwise, the queue is empty and returns false.
duke@435 162 bool pop_global(E& t);
duke@435 163
duke@435 164 // Delete any resource associated with the queue.
duke@435 165 ~GenericTaskQueue();
duke@435 166
ysr@777 167 // apply the closure to all elements in the task queue
ysr@777 168 void oops_do(OopClosure* f);
ysr@777 169
duke@435 170 private:
duke@435 171 // Element array.
duke@435 172 volatile E* _elems;
duke@435 173 };
duke@435 174
duke@435 175 template<class E>
duke@435 176 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
jcoomes@1342 177 assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
duke@435 178 }
duke@435 179
duke@435 180 template<class E>
duke@435 181 void GenericTaskQueue<E>::initialize() {
jcoomes@1342 182 _elems = NEW_C_HEAP_ARRAY(E, N);
duke@435 183 guarantee(_elems != NULL, "Allocation failed.");
duke@435 184 }
duke@435 185
duke@435 186 template<class E>
ysr@777 187 void GenericTaskQueue<E>::oops_do(OopClosure* f) {
ysr@777 188 // tty->print_cr("START OopTaskQueue::oops_do");
ysr@976 189 uint iters = size();
ysr@976 190 uint index = _bottom;
ysr@976 191 for (uint i = 0; i < iters; ++i) {
ysr@777 192 index = decrement_index(index);
ysr@777 193 // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
ysr@777 194 // index, &_elems[index], _elems[index]);
ysr@777 195 E* t = (E*)&_elems[index]; // cast away volatility
ysr@777 196 oop* p = (oop*)t;
ysr@777 197 assert((*t)->is_oop_or_null(), "Not an oop or null");
ysr@777 198 f->do_oop(p);
ysr@777 199 }
ysr@777 200 // tty->print_cr("END OopTaskQueue::oops_do");
ysr@777 201 }
ysr@777 202
ysr@777 203
ysr@777 204 template<class E>
ysr@976 205 bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
jcoomes@1342 206 if (dirty_n_elems == N - 1) {
duke@435 207 // Actually means 0, so do the push.
ysr@976 208 uint localBot = _bottom;
duke@435 209 _elems[localBot] = t;
bobv@1459 210 OrderAccess::release_store(&_bottom, increment_index(localBot));
duke@435 211 return true;
jcoomes@1342 212 }
jcoomes@1342 213 return false;
duke@435 214 }
duke@435 215
duke@435 216 template<class E>
duke@435 217 bool GenericTaskQueue<E>::
ysr@976 218 pop_local_slow(uint localBot, Age oldAge) {
duke@435 219 // This queue was observed to contain exactly one element; either this
duke@435 220 // thread will claim it, or a competing "pop_global". In either case,
duke@435 221 // the queue will be logically empty afterwards. Create a new Age value
duke@435 222 // that represents the empty queue for the given value of "_bottom". (We
duke@435 223 // must also increment "tag" because of the case where "bottom == 1",
duke@435 224 // "top == 0". A pop_global could read the queue element in that case,
duke@435 225 // then have the owner thread do a pop followed by another push. Without
duke@435 226 // the incrementing of "tag", the pop_global's CAS could succeed,
duke@435 227 // allowing it to believe it has claimed the stale element.)
jcoomes@1342 228 Age newAge((idx_t)localBot, oldAge.tag() + 1);
duke@435 229 // Perhaps a competing pop_global has already incremented "top", in which
duke@435 230 // case it wins the element.
duke@435 231 if (localBot == oldAge.top()) {
duke@435 232 // No competing pop_global has yet incremented "top"; we'll try to
duke@435 233 // install new_age, thus claiming the element.
jcoomes@1342 234 Age tempAge = _age.cmpxchg(newAge, oldAge);
duke@435 235 if (tempAge == oldAge) {
duke@435 236 // We win.
jcoomes@1342 237 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
duke@435 238 return true;
duke@435 239 }
duke@435 240 }
jcoomes@1342 241 // We lose; a completing pop_global gets the element. But the queue is empty
jcoomes@1342 242 // and top is greater than bottom. Fix this representation of the empty queue
jcoomes@1342 243 // to become the canonical one.
jcoomes@1342 244 _age.set(newAge);
jcoomes@1342 245 assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
duke@435 246 return false;
duke@435 247 }
duke@435 248
duke@435 249 template<class E>
duke@435 250 bool GenericTaskQueue<E>::pop_global(E& t) {
jcoomes@1342 251 Age oldAge = _age.get();
ysr@976 252 uint localBot = _bottom;
ysr@976 253 uint n_elems = size(localBot, oldAge.top());
duke@435 254 if (n_elems == 0) {
duke@435 255 return false;
duke@435 256 }
jcoomes@1342 257
duke@435 258 t = _elems[oldAge.top()];
jcoomes@1342 259 Age newAge(oldAge);
jcoomes@1342 260 newAge.increment();
jcoomes@1342 261 Age resAge = _age.cmpxchg(newAge, oldAge);
jcoomes@1342 262
duke@435 263 // Note that using "_bottom" here might fail, since a pop_local might
duke@435 264 // have decremented it.
jcoomes@1342 265 assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
jcoomes@1342 266 return resAge == oldAge;
duke@435 267 }
duke@435 268
duke@435 269 template<class E>
duke@435 270 GenericTaskQueue<E>::~GenericTaskQueue() {
duke@435 271 FREE_C_HEAP_ARRAY(E, _elems);
duke@435 272 }
duke@435 273
duke@435 274 // Inherits the typedef of "Task" from above.
duke@435 275 class TaskQueueSetSuper: public CHeapObj {
duke@435 276 protected:
duke@435 277 static int randomParkAndMiller(int* seed0);
duke@435 278 public:
duke@435 279 // Returns "true" if some TaskQueue in the set contains a task.
duke@435 280 virtual bool peek() = 0;
duke@435 281 };
duke@435 282
duke@435 283 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
duke@435 284 private:
ysr@976 285 uint _n;
duke@435 286 GenericTaskQueue<E>** _queues;
duke@435 287
duke@435 288 public:
duke@435 289 GenericTaskQueueSet(int n) : _n(n) {
duke@435 290 typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
duke@435 291 _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
duke@435 292 guarantee(_queues != NULL, "Allocation failure.");
duke@435 293 for (int i = 0; i < n; i++) {
duke@435 294 _queues[i] = NULL;
duke@435 295 }
duke@435 296 }
duke@435 297
ysr@976 298 bool steal_1_random(uint queue_num, int* seed, E& t);
ysr@976 299 bool steal_best_of_2(uint queue_num, int* seed, E& t);
ysr@976 300 bool steal_best_of_all(uint queue_num, int* seed, E& t);
duke@435 301
ysr@976 302 void register_queue(uint i, GenericTaskQueue<E>* q);
duke@435 303
ysr@976 304 GenericTaskQueue<E>* queue(uint n);
duke@435 305
duke@435 306 // The thread with queue number "queue_num" (and whose random number seed
duke@435 307 // is at "seed") is trying to steal a task from some other queue. (It
duke@435 308 // may try several queues, according to some configuration parameter.)
duke@435 309 // If some steal succeeds, returns "true" and sets "t" the stolen task,
duke@435 310 // otherwise returns false.
ysr@976 311 bool steal(uint queue_num, int* seed, E& t);
duke@435 312
duke@435 313 bool peek();
duke@435 314 };
duke@435 315
duke@435 316 template<class E>
ysr@976 317 void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
ysr@976 318 assert(i < _n, "index out of range.");
duke@435 319 _queues[i] = q;
duke@435 320 }
duke@435 321
duke@435 322 template<class E>
ysr@976 323 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
duke@435 324 return _queues[i];
duke@435 325 }
duke@435 326
duke@435 327 template<class E>
ysr@976 328 bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
ysr@976 329 for (uint i = 0; i < 2 * _n; i++)
duke@435 330 if (steal_best_of_2(queue_num, seed, t))
duke@435 331 return true;
duke@435 332 return false;
duke@435 333 }
duke@435 334
duke@435 335 template<class E>
ysr@976 336 bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
duke@435 337 if (_n > 2) {
duke@435 338 int best_k;
ysr@976 339 uint best_sz = 0;
ysr@976 340 for (uint k = 0; k < _n; k++) {
duke@435 341 if (k == queue_num) continue;
ysr@976 342 uint sz = _queues[k]->size();
duke@435 343 if (sz > best_sz) {
duke@435 344 best_sz = sz;
duke@435 345 best_k = k;
duke@435 346 }
duke@435 347 }
duke@435 348 return best_sz > 0 && _queues[best_k]->pop_global(t);
duke@435 349 } else if (_n == 2) {
duke@435 350 // Just try the other one.
duke@435 351 int k = (queue_num + 1) % 2;
duke@435 352 return _queues[k]->pop_global(t);
duke@435 353 } else {
duke@435 354 assert(_n == 1, "can't be zero.");
duke@435 355 return false;
duke@435 356 }
duke@435 357 }
duke@435 358
duke@435 359 template<class E>
ysr@976 360 bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
duke@435 361 if (_n > 2) {
ysr@976 362 uint k = queue_num;
duke@435 363 while (k == queue_num) k = randomParkAndMiller(seed) % _n;
duke@435 364 return _queues[2]->pop_global(t);
duke@435 365 } else if (_n == 2) {
duke@435 366 // Just try the other one.
duke@435 367 int k = (queue_num + 1) % 2;
duke@435 368 return _queues[k]->pop_global(t);
duke@435 369 } else {
duke@435 370 assert(_n == 1, "can't be zero.");
duke@435 371 return false;
duke@435 372 }
duke@435 373 }
duke@435 374
duke@435 375 template<class E>
ysr@976 376 bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
duke@435 377 if (_n > 2) {
ysr@976 378 uint k1 = queue_num;
duke@435 379 while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
ysr@976 380 uint k2 = queue_num;
duke@435 381 while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
duke@435 382 // Sample both and try the larger.
ysr@976 383 uint sz1 = _queues[k1]->size();
ysr@976 384 uint sz2 = _queues[k2]->size();
duke@435 385 if (sz2 > sz1) return _queues[k2]->pop_global(t);
duke@435 386 else return _queues[k1]->pop_global(t);
duke@435 387 } else if (_n == 2) {
duke@435 388 // Just try the other one.
ysr@976 389 uint k = (queue_num + 1) % 2;
duke@435 390 return _queues[k]->pop_global(t);
duke@435 391 } else {
duke@435 392 assert(_n == 1, "can't be zero.");
duke@435 393 return false;
duke@435 394 }
duke@435 395 }
duke@435 396
duke@435 397 template<class E>
duke@435 398 bool GenericTaskQueueSet<E>::peek() {
duke@435 399 // Try all the queues.
ysr@976 400 for (uint j = 0; j < _n; j++) {
duke@435 401 if (_queues[j]->peek())
duke@435 402 return true;
duke@435 403 }
duke@435 404 return false;
duke@435 405 }
duke@435 406
ysr@777 407 // When to terminate from the termination protocol.
ysr@777 408 class TerminatorTerminator: public CHeapObj {
ysr@777 409 public:
ysr@777 410 virtual bool should_exit_termination() = 0;
ysr@777 411 };
ysr@777 412
duke@435 413 // A class to aid in the termination of a set of parallel tasks using
duke@435 414 // TaskQueueSet's for work stealing.
duke@435 415
jmasa@981 416 #undef TRACESPINNING
jmasa@981 417
duke@435 418 class ParallelTaskTerminator: public StackObj {
duke@435 419 private:
duke@435 420 int _n_threads;
duke@435 421 TaskQueueSetSuper* _queue_set;
ysr@976 422 int _offered_termination;
duke@435 423
jmasa@981 424 #ifdef TRACESPINNING
jmasa@981 425 static uint _total_yields;
jmasa@981 426 static uint _total_spins;
jmasa@981 427 static uint _total_peeks;
jmasa@981 428 #endif
jmasa@981 429
duke@435 430 bool peek_in_queue_set();
duke@435 431 protected:
duke@435 432 virtual void yield();
duke@435 433 void sleep(uint millis);
duke@435 434
duke@435 435 public:
duke@435 436
duke@435 437 // "n_threads" is the number of threads to be terminated. "queue_set" is a
duke@435 438 // queue sets of work queues of other threads.
duke@435 439 ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
duke@435 440
duke@435 441 // The current thread has no work, and is ready to terminate if everyone
duke@435 442 // else is. If returns "true", all threads are terminated. If returns
duke@435 443 // "false", available work has been observed in one of the task queues,
duke@435 444 // so the global task is not complete.
ysr@777 445 bool offer_termination() {
ysr@777 446 return offer_termination(NULL);
ysr@777 447 }
ysr@777 448
jcoomes@1342 449 // As above, but it also terminates if the should_exit_termination()
ysr@777 450 // method of the terminator parameter returns true. If terminator is
ysr@777 451 // NULL, then it is ignored.
ysr@777 452 bool offer_termination(TerminatorTerminator* terminator);
duke@435 453
duke@435 454 // Reset the terminator, so that it may be reused again.
duke@435 455 // The caller is responsible for ensuring that this is done
duke@435 456 // in an MT-safe manner, once the previous round of use of
duke@435 457 // the terminator is finished.
duke@435 458 void reset_for_reuse();
duke@435 459
jmasa@981 460 #ifdef TRACESPINNING
jmasa@981 461 static uint total_yields() { return _total_yields; }
jmasa@981 462 static uint total_spins() { return _total_spins; }
jmasa@981 463 static uint total_peeks() { return _total_peeks; }
jmasa@981 464 static void print_termination_counts();
jmasa@981 465 #endif
duke@435 466 };
duke@435 467
duke@435 468 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
ysr@976 469 uint localBot = _bottom;
jcoomes@1342 470 assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
jcoomes@1342 471 idx_t top = _age.top();
ysr@976 472 uint dirty_n_elems = dirty_size(localBot, top);
jcoomes@1342 473 assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
duke@435 474 if (dirty_n_elems < max_elems()) {
duke@435 475 _elems[localBot] = t;
bobv@1459 476 OrderAccess::release_store(&_bottom, increment_index(localBot));
duke@435 477 return true;
duke@435 478 } else {
duke@435 479 return push_slow(t, dirty_n_elems);
duke@435 480 }
duke@435 481 }
duke@435 482
duke@435 483 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
ysr@976 484 uint localBot = _bottom;
jcoomes@1342 485 // This value cannot be N-1. That can only occur as a result of
duke@435 486 // the assignment to bottom in this method. If it does, this method
duke@435 487 // resets the size( to 0 before the next call (which is sequential,
duke@435 488 // since this is pop_local.)
jcoomes@1342 489 uint dirty_n_elems = dirty_size(localBot, _age.top());
jcoomes@1342 490 assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
duke@435 491 if (dirty_n_elems == 0) return false;
duke@435 492 localBot = decrement_index(localBot);
duke@435 493 _bottom = localBot;
duke@435 494 // This is necessary to prevent any read below from being reordered
duke@435 495 // before the store just above.
duke@435 496 OrderAccess::fence();
duke@435 497 t = _elems[localBot];
duke@435 498 // This is a second read of "age"; the "size()" above is the first.
duke@435 499 // If there's still at least one element in the queue, based on the
duke@435 500 // "_bottom" and "age" we've read, then there can be no interference with
duke@435 501 // a "pop_global" operation, and we're done.
jcoomes@1342 502 idx_t tp = _age.top(); // XXX
duke@435 503 if (size(localBot, tp) > 0) {
jcoomes@1342 504 assert(dirty_size(localBot, tp) != N - 1, "sanity");
duke@435 505 return true;
duke@435 506 } else {
duke@435 507 // Otherwise, the queue contained exactly one element; we take the slow
duke@435 508 // path.
jcoomes@1342 509 return pop_local_slow(localBot, _age.get());
duke@435 510 }
duke@435 511 }
duke@435 512
duke@435 513 typedef oop Task;
duke@435 514 typedef GenericTaskQueue<Task> OopTaskQueue;
duke@435 515 typedef GenericTaskQueueSet<Task> OopTaskQueueSet;
duke@435 516
coleenp@548 517
coleenp@548 518 #define COMPRESSED_OOP_MASK 1
coleenp@548 519
coleenp@548 520 // This is a container class for either an oop* or a narrowOop*.
coleenp@548 521 // Both are pushed onto a task queue and the consumer will test is_narrow()
coleenp@548 522 // to determine which should be processed.
coleenp@548 523 class StarTask {
coleenp@548 524 void* _holder; // either union oop* or narrowOop*
coleenp@548 525 public:
ysr@1280 526 StarTask(narrowOop* p) {
ysr@1280 527 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 528 _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
ysr@1280 529 }
ysr@1280 530 StarTask(oop* p) {
ysr@1280 531 assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
ysr@1280 532 _holder = (void*)p;
ysr@1280 533 }
coleenp@548 534 StarTask() { _holder = NULL; }
coleenp@548 535 operator oop*() { return (oop*)_holder; }
coleenp@548 536 operator narrowOop*() {
coleenp@548 537 return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
coleenp@548 538 }
coleenp@548 539
coleenp@548 540 // Operators to preserve const/volatile in assignments required by gcc
coleenp@548 541 void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
coleenp@548 542
coleenp@548 543 bool is_narrow() const {
coleenp@548 544 return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
coleenp@548 545 }
coleenp@548 546 };
coleenp@548 547
duke@435 548 typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
duke@435 549 typedef GenericTaskQueueSet<StarTask> OopStarTaskQueueSet;
duke@435 550
jcoomes@810 551 typedef size_t RegionTask; // index for region
jcoomes@810 552 typedef GenericTaskQueue<RegionTask> RegionTaskQueue;
jcoomes@810 553 typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
duke@435 554
jcoomes@810 555 class RegionTaskQueueWithOverflow: public CHeapObj {
duke@435 556 protected:
jcoomes@810 557 RegionTaskQueue _region_queue;
jcoomes@810 558 GrowableArray<RegionTask>* _overflow_stack;
duke@435 559
duke@435 560 public:
jcoomes@810 561 RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
duke@435 562 // Initialize both stealable queue and overflow
duke@435 563 void initialize();
duke@435 564 // Save first to stealable queue and then to overflow
jcoomes@810 565 void save(RegionTask t);
duke@435 566 // Retrieve first from overflow and then from stealable queue
jcoomes@810 567 bool retrieve(RegionTask& region_index);
duke@435 568 // Retrieve from stealable queue
jcoomes@810 569 bool retrieve_from_stealable_queue(RegionTask& region_index);
duke@435 570 // Retrieve from overflow
jcoomes@810 571 bool retrieve_from_overflow(RegionTask& region_index);
duke@435 572 bool is_empty();
duke@435 573 bool stealable_is_empty();
duke@435 574 bool overflow_is_empty();
ysr@976 575 uint stealable_size() { return _region_queue.size(); }
jcoomes@810 576 RegionTaskQueue* task_queue() { return &_region_queue; }
duke@435 577 };
duke@435 578
jcoomes@810 579 #define USE_RegionTaskQueueWithOverflow

mercurial