src/cpu/x86/vm/vm_version_x86.hpp

Mon, 31 Mar 2014 13:08:03 -0700

author
kvn
date
Mon, 31 Mar 2014 13:08:03 -0700
changeset 6537
0118c8c7b80f
parent 6429
606acabe7b5c
child 6876
710a3c8b516e
child 7088
999824269b71
permissions
-rw-r--r--

8038633: crash in VM_Version::get_processor_features() on startup
Summary: Windows need an exception wrapper around getPsrInfo_stub() call in order to properly handle SEGV for YMM registers test.
Reviewed-by: iveresov, iignatyev

twisti@1020 1 /*
drchase@5353 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
twisti@1020 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
twisti@1020 4 *
twisti@1020 5 * This code is free software; you can redistribute it and/or modify it
twisti@1020 6 * under the terms of the GNU General Public License version 2 only, as
twisti@1020 7 * published by the Free Software Foundation.
twisti@1020 8 *
twisti@1020 9 * This code is distributed in the hope that it will be useful, but WITHOUT
twisti@1020 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
twisti@1020 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
twisti@1020 12 * version 2 for more details (a copy is included in the LICENSE file that
twisti@1020 13 * accompanied this code).
twisti@1020 14 *
twisti@1020 15 * You should have received a copy of the GNU General Public License version
twisti@1020 16 * 2 along with this work; if not, write to the Free Software Foundation,
twisti@1020 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
twisti@1020 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
twisti@1020 22 *
twisti@1020 23 */
twisti@1020 24
stefank@2314 25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
stefank@2314 26 #define CPU_X86_VM_VM_VERSION_X86_HPP
stefank@2314 27
stefank@2314 28 #include "runtime/globals_extension.hpp"
stefank@2314 29 #include "runtime/vm_version.hpp"
stefank@2314 30
twisti@1020 31 class VM_Version : public Abstract_VM_Version {
twisti@1020 32 public:
twisti@1020 33 // cpuid result register layouts. These are all unions of a uint32_t
twisti@1020 34 // (in case anyone wants access to the register as a whole) and a bitfield.
twisti@1020 35
twisti@1020 36 union StdCpuid1Eax {
twisti@1020 37 uint32_t value;
twisti@1020 38 struct {
twisti@1020 39 uint32_t stepping : 4,
twisti@1020 40 model : 4,
twisti@1020 41 family : 4,
twisti@1020 42 proc_type : 2,
twisti@1020 43 : 2,
twisti@1020 44 ext_model : 4,
twisti@1020 45 ext_family : 8,
twisti@1020 46 : 4;
twisti@1020 47 } bits;
twisti@1020 48 };
twisti@1020 49
twisti@1020 50 union StdCpuid1Ebx { // example, unused
twisti@1020 51 uint32_t value;
twisti@1020 52 struct {
twisti@1020 53 uint32_t brand_id : 8,
twisti@1020 54 clflush_size : 8,
twisti@1020 55 threads_per_cpu : 8,
twisti@1020 56 apic_id : 8;
twisti@1020 57 } bits;
twisti@1020 58 };
twisti@1020 59
twisti@1020 60 union StdCpuid1Ecx {
twisti@1020 61 uint32_t value;
twisti@1020 62 struct {
twisti@1020 63 uint32_t sse3 : 1,
drchase@5353 64 clmul : 1,
drchase@5353 65 : 1,
twisti@1020 66 monitor : 1,
twisti@1020 67 : 1,
twisti@1020 68 vmx : 1,
twisti@1020 69 : 1,
twisti@1020 70 est : 1,
twisti@1020 71 : 1,
twisti@1020 72 ssse3 : 1,
twisti@1020 73 cid : 1,
twisti@1020 74 : 2,
twisti@1020 75 cmpxchg16: 1,
twisti@1020 76 : 4,
twisti@1020 77 dca : 1,
twisti@1020 78 sse4_1 : 1,
twisti@1020 79 sse4_2 : 1,
twisti@1078 80 : 2,
twisti@1078 81 popcnt : 1,
kvn@4205 82 : 1,
kvn@4205 83 aes : 1,
kvn@4205 84 : 1,
kvn@3388 85 osxsave : 1,
kvn@3388 86 avx : 1,
kvn@3388 87 : 3;
twisti@1020 88 } bits;
twisti@1020 89 };
twisti@1020 90
twisti@1020 91 union StdCpuid1Edx {
twisti@1020 92 uint32_t value;
twisti@1020 93 struct {
twisti@1020 94 uint32_t : 4,
twisti@1020 95 tsc : 1,
twisti@1020 96 : 3,
twisti@1020 97 cmpxchg8 : 1,
twisti@1020 98 : 6,
twisti@1020 99 cmov : 1,
kvn@2984 100 : 3,
kvn@2984 101 clflush : 1,
kvn@2984 102 : 3,
twisti@1020 103 mmx : 1,
twisti@1020 104 fxsr : 1,
twisti@1020 105 sse : 1,
twisti@1020 106 sse2 : 1,
twisti@1020 107 : 1,
twisti@1020 108 ht : 1,
twisti@1020 109 : 3;
twisti@1020 110 } bits;
twisti@1020 111 };
twisti@1020 112
twisti@1020 113 union DcpCpuid4Eax {
twisti@1020 114 uint32_t value;
twisti@1020 115 struct {
twisti@1020 116 uint32_t cache_type : 5,
twisti@1020 117 : 21,
twisti@1020 118 cores_per_cpu : 6;
twisti@1020 119 } bits;
twisti@1020 120 };
twisti@1020 121
twisti@1020 122 union DcpCpuid4Ebx {
twisti@1020 123 uint32_t value;
twisti@1020 124 struct {
twisti@1020 125 uint32_t L1_line_size : 12,
twisti@1020 126 partitions : 10,
twisti@1020 127 associativity : 10;
twisti@1020 128 } bits;
twisti@1020 129 };
twisti@1020 130
kvn@1977 131 union TplCpuidBEbx {
kvn@1977 132 uint32_t value;
kvn@1977 133 struct {
kvn@1977 134 uint32_t logical_cpus : 16,
kvn@1977 135 : 16;
kvn@1977 136 } bits;
kvn@1977 137 };
kvn@1977 138
twisti@1020 139 union ExtCpuid1Ecx {
twisti@1020 140 uint32_t value;
twisti@1020 141 struct {
twisti@1020 142 uint32_t LahfSahf : 1,
twisti@1020 143 CmpLegacy : 1,
iveresov@6378 144 : 3,
iveresov@6378 145 lzcnt_intel : 1,
twisti@1210 146 lzcnt : 1,
twisti@1020 147 sse4a : 1,
twisti@1020 148 misalignsse : 1,
twisti@1020 149 prefetchw : 1,
twisti@1020 150 : 22;
twisti@1020 151 } bits;
twisti@1020 152 };
twisti@1020 153
twisti@1020 154 union ExtCpuid1Edx {
twisti@1020 155 uint32_t value;
twisti@1020 156 struct {
twisti@1020 157 uint32_t : 22,
twisti@1020 158 mmx_amd : 1,
twisti@1020 159 mmx : 1,
twisti@1020 160 fxsr : 1,
twisti@1020 161 : 4,
twisti@1020 162 long_mode : 1,
twisti@1020 163 tdnow2 : 1,
twisti@1020 164 tdnow : 1;
twisti@1020 165 } bits;
twisti@1020 166 };
twisti@1020 167
twisti@1020 168 union ExtCpuid5Ex {
twisti@1020 169 uint32_t value;
twisti@1020 170 struct {
twisti@1020 171 uint32_t L1_line_size : 8,
twisti@1020 172 L1_tag_lines : 8,
twisti@1020 173 L1_assoc : 8,
twisti@1020 174 L1_size : 8;
twisti@1020 175 } bits;
twisti@1020 176 };
twisti@1020 177
kvn@3400 178 union ExtCpuid7Edx {
kvn@3400 179 uint32_t value;
kvn@3400 180 struct {
kvn@3400 181 uint32_t : 8,
kvn@3400 182 tsc_invariance : 1,
kvn@3400 183 : 23;
kvn@3400 184 } bits;
kvn@3400 185 };
kvn@3400 186
twisti@1020 187 union ExtCpuid8Ecx {
twisti@1020 188 uint32_t value;
twisti@1020 189 struct {
twisti@1020 190 uint32_t cores_per_cpu : 8,
twisti@1020 191 : 24;
twisti@1020 192 } bits;
twisti@1020 193 };
twisti@1020 194
kvn@3388 195 union SefCpuid7Eax {
kvn@3388 196 uint32_t value;
kvn@3388 197 };
kvn@3388 198
kvn@3388 199 union SefCpuid7Ebx {
kvn@3388 200 uint32_t value;
kvn@3388 201 struct {
kvn@3388 202 uint32_t fsgsbase : 1,
kvn@3388 203 : 2,
kvn@3388 204 bmi1 : 1,
kvn@3388 205 : 1,
kvn@3388 206 avx2 : 1,
kvn@3388 207 : 2,
kvn@3388 208 bmi2 : 1,
kvn@4410 209 erms : 1,
kvn@6429 210 : 1,
kvn@6429 211 rtm : 1,
kvn@6429 212 : 20;
kvn@3388 213 } bits;
kvn@3388 214 };
kvn@3388 215
kvn@3388 216 union XemXcr0Eax {
kvn@3388 217 uint32_t value;
kvn@3388 218 struct {
kvn@3388 219 uint32_t x87 : 1,
kvn@3388 220 sse : 1,
kvn@3388 221 ymm : 1,
kvn@3388 222 : 29;
kvn@3388 223 } bits;
kvn@3388 224 };
kvn@3388 225
twisti@1020 226 protected:
phh@3378 227 static int _cpu;
phh@3378 228 static int _model;
phh@3378 229 static int _stepping;
phh@3378 230 static int _cpuFeatures; // features returned by the "cpuid" instruction
phh@3378 231 // 0 if this instruction is not available
phh@3378 232 static const char* _features_str;
twisti@1020 233
kvn@6388 234 static address _cpuinfo_segv_addr; // address of instruction which causes SEGV
kvn@6388 235 static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
kvn@6388 236
phh@3378 237 enum {
phh@3378 238 CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
phh@3378 239 CPU_CMOV = (1 << 1),
phh@3378 240 CPU_FXSR = (1 << 2),
phh@3378 241 CPU_HT = (1 << 3),
phh@3378 242 CPU_MMX = (1 << 4),
phh@3378 243 CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
phh@3378 244 // may not necessarily support other 3dnow instructions
phh@3378 245 CPU_SSE = (1 << 6),
phh@3378 246 CPU_SSE2 = (1 << 7),
phh@3378 247 CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
phh@3378 248 CPU_SSSE3 = (1 << 9),
phh@3378 249 CPU_SSE4A = (1 << 10),
phh@3378 250 CPU_SSE4_1 = (1 << 11),
phh@3378 251 CPU_SSE4_2 = (1 << 12),
phh@3378 252 CPU_POPCNT = (1 << 13),
phh@3378 253 CPU_LZCNT = (1 << 14),
phh@3378 254 CPU_TSC = (1 << 15),
kvn@3400 255 CPU_TSCINV = (1 << 16),
kvn@3400 256 CPU_AVX = (1 << 17),
kvn@4205 257 CPU_AVX2 = (1 << 18),
kvn@4410 258 CPU_AES = (1 << 19),
drchase@5353 259 CPU_ERMS = (1 << 20), // enhanced 'rep movsb/stosb' instructions
iveresov@6378 260 CPU_CLMUL = (1 << 21), // carryless multiply for CRC
iveresov@6378 261 CPU_BMI1 = (1 << 22),
kvn@6429 262 CPU_BMI2 = (1 << 23),
kvn@6429 263 CPU_RTM = (1 << 24) // Restricted Transactional Memory instructions
phh@3378 264 } cpuFeatureFlags;
phh@3378 265
phh@3378 266 enum {
phh@3378 267 // AMD
phh@3560 268 CPU_FAMILY_AMD_11H = 0x11,
phh@3378 269 // Intel
phh@3378 270 CPU_FAMILY_INTEL_CORE = 6,
phh@3560 271 CPU_MODEL_NEHALEM = 0x1e,
phh@3560 272 CPU_MODEL_NEHALEM_EP = 0x1a,
phh@3560 273 CPU_MODEL_NEHALEM_EX = 0x2e,
phh@3560 274 CPU_MODEL_WESTMERE = 0x25,
phh@3560 275 CPU_MODEL_WESTMERE_EP = 0x2c,
phh@3560 276 CPU_MODEL_WESTMERE_EX = 0x2f,
phh@3560 277 CPU_MODEL_SANDYBRIDGE = 0x2a,
phh@3560 278 CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
phh@3560 279 CPU_MODEL_IVYBRIDGE_EP = 0x3a
phh@3378 280 } cpuExtendedFamily;
twisti@1020 281
twisti@1020 282 // cpuid information block. All info derived from executing cpuid with
twisti@1020 283 // various function numbers is stored here. Intel and AMD info is
twisti@1020 284 // merged in this block: accessor methods disentangle it.
twisti@1020 285 //
twisti@1020 286 // The info block is laid out in subblocks of 4 dwords corresponding to
twisti@1020 287 // eax, ebx, ecx and edx, whether or not they contain anything useful.
twisti@1020 288 struct CpuidInfo {
twisti@1020 289 // cpuid function 0
twisti@1020 290 uint32_t std_max_function;
twisti@1020 291 uint32_t std_vendor_name_0;
twisti@1020 292 uint32_t std_vendor_name_1;
twisti@1020 293 uint32_t std_vendor_name_2;
twisti@1020 294
twisti@1020 295 // cpuid function 1
twisti@1020 296 StdCpuid1Eax std_cpuid1_eax;
twisti@1020 297 StdCpuid1Ebx std_cpuid1_ebx;
twisti@1020 298 StdCpuid1Ecx std_cpuid1_ecx;
twisti@1020 299 StdCpuid1Edx std_cpuid1_edx;
twisti@1020 300
twisti@1020 301 // cpuid function 4 (deterministic cache parameters)
twisti@1020 302 DcpCpuid4Eax dcp_cpuid4_eax;
twisti@1020 303 DcpCpuid4Ebx dcp_cpuid4_ebx;
twisti@1020 304 uint32_t dcp_cpuid4_ecx; // unused currently
twisti@1020 305 uint32_t dcp_cpuid4_edx; // unused currently
twisti@1020 306
kvn@3388 307 // cpuid function 7 (structured extended features)
kvn@3388 308 SefCpuid7Eax sef_cpuid7_eax;
kvn@3388 309 SefCpuid7Ebx sef_cpuid7_ebx;
kvn@3388 310 uint32_t sef_cpuid7_ecx; // unused currently
kvn@3388 311 uint32_t sef_cpuid7_edx; // unused currently
kvn@3388 312
kvn@1977 313 // cpuid function 0xB (processor topology)
kvn@1977 314 // ecx = 0
kvn@1977 315 uint32_t tpl_cpuidB0_eax;
kvn@1977 316 TplCpuidBEbx tpl_cpuidB0_ebx;
kvn@1977 317 uint32_t tpl_cpuidB0_ecx; // unused currently
kvn@1977 318 uint32_t tpl_cpuidB0_edx; // unused currently
kvn@1977 319
kvn@1977 320 // ecx = 1
kvn@1977 321 uint32_t tpl_cpuidB1_eax;
kvn@1977 322 TplCpuidBEbx tpl_cpuidB1_ebx;
kvn@1977 323 uint32_t tpl_cpuidB1_ecx; // unused currently
kvn@1977 324 uint32_t tpl_cpuidB1_edx; // unused currently
kvn@1977 325
kvn@1977 326 // ecx = 2
kvn@1977 327 uint32_t tpl_cpuidB2_eax;
kvn@1977 328 TplCpuidBEbx tpl_cpuidB2_ebx;
kvn@1977 329 uint32_t tpl_cpuidB2_ecx; // unused currently
kvn@1977 330 uint32_t tpl_cpuidB2_edx; // unused currently
kvn@1977 331
twisti@1020 332 // cpuid function 0x80000000 // example, unused
twisti@1020 333 uint32_t ext_max_function;
twisti@1020 334 uint32_t ext_vendor_name_0;
twisti@1020 335 uint32_t ext_vendor_name_1;
twisti@1020 336 uint32_t ext_vendor_name_2;
twisti@1020 337
twisti@1020 338 // cpuid function 0x80000001
twisti@1020 339 uint32_t ext_cpuid1_eax; // reserved
twisti@1020 340 uint32_t ext_cpuid1_ebx; // reserved
twisti@1020 341 ExtCpuid1Ecx ext_cpuid1_ecx;
twisti@1020 342 ExtCpuid1Edx ext_cpuid1_edx;
twisti@1020 343
twisti@1020 344 // cpuid functions 0x80000002 thru 0x80000004: example, unused
twisti@1020 345 uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
twisti@1020 346 uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
twisti@1020 347 uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
twisti@1020 348
phh@3560 349 // cpuid function 0x80000005 // AMD L1, Intel reserved
twisti@1020 350 uint32_t ext_cpuid5_eax; // unused currently
twisti@1020 351 uint32_t ext_cpuid5_ebx; // reserved
twisti@1020 352 ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD)
twisti@1020 353 ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD)
twisti@1020 354
phh@3378 355 // cpuid function 0x80000007
phh@3378 356 uint32_t ext_cpuid7_eax; // reserved
phh@3378 357 uint32_t ext_cpuid7_ebx; // reserved
phh@3378 358 uint32_t ext_cpuid7_ecx; // reserved
phh@3378 359 ExtCpuid7Edx ext_cpuid7_edx; // tscinv
phh@3378 360
twisti@1020 361 // cpuid function 0x80000008
twisti@1020 362 uint32_t ext_cpuid8_eax; // unused currently
twisti@1020 363 uint32_t ext_cpuid8_ebx; // reserved
twisti@1020 364 ExtCpuid8Ecx ext_cpuid8_ecx;
twisti@1020 365 uint32_t ext_cpuid8_edx; // reserved
kvn@3388 366
kvn@3388 367 // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
kvn@3388 368 XemXcr0Eax xem_xcr0_eax;
kvn@3388 369 uint32_t xem_xcr0_edx; // reserved
kvn@6388 370
kvn@6388 371 // Space to save ymm registers after signal handle
kvn@6388 372 int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
twisti@1020 373 };
twisti@1020 374
twisti@1020 375 // The actual cpuid info block
twisti@1020 376 static CpuidInfo _cpuid_info;
twisti@1020 377
twisti@1020 378 // Extractors and predicates
twisti@1020 379 static uint32_t extended_cpu_family() {
twisti@1020 380 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
twisti@1020 381 result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
twisti@1020 382 return result;
twisti@1020 383 }
phh@3378 384
twisti@1020 385 static uint32_t extended_cpu_model() {
twisti@1020 386 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
twisti@1020 387 result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
twisti@1020 388 return result;
twisti@1020 389 }
phh@3378 390
twisti@1020 391 static uint32_t cpu_stepping() {
twisti@1020 392 uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
twisti@1020 393 return result;
twisti@1020 394 }
phh@3378 395
twisti@1020 396 static uint logical_processor_count() {
twisti@1020 397 uint result = threads_per_core();
twisti@1020 398 return result;
twisti@1020 399 }
phh@3378 400
twisti@1020 401 static uint32_t feature_flags() {
twisti@1020 402 uint32_t result = 0;
twisti@1020 403 if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
twisti@1020 404 result |= CPU_CX8;
twisti@1020 405 if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
twisti@1020 406 result |= CPU_CMOV;
twisti@2144 407 if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
twisti@2144 408 _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
twisti@1020 409 result |= CPU_FXSR;
twisti@1020 410 // HT flag is set for multi-core processors also.
twisti@1020 411 if (threads_per_core() > 1)
twisti@1020 412 result |= CPU_HT;
twisti@2144 413 if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
twisti@2144 414 _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
twisti@1020 415 result |= CPU_MMX;
twisti@1020 416 if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
twisti@1020 417 result |= CPU_SSE;
twisti@1020 418 if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
twisti@1020 419 result |= CPU_SSE2;
twisti@1020 420 if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
twisti@1020 421 result |= CPU_SSE3;
twisti@1020 422 if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
twisti@1020 423 result |= CPU_SSSE3;
twisti@1020 424 if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
twisti@1020 425 result |= CPU_SSE4_1;
twisti@1020 426 if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
twisti@1020 427 result |= CPU_SSE4_2;
twisti@1078 428 if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
twisti@1078 429 result |= CPU_POPCNT;
kvn@3388 430 if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
kvn@3388 431 _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
kvn@3388 432 _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
kvn@3388 433 _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
kvn@3388 434 result |= CPU_AVX;
kvn@3388 435 if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
kvn@3388 436 result |= CPU_AVX2;
kvn@3388 437 }
iveresov@6378 438 if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
iveresov@6378 439 result |= CPU_BMI1;
phh@3378 440 if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
phh@3378 441 result |= CPU_TSC;
phh@3378 442 if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
phh@3378 443 result |= CPU_TSCINV;
kvn@4205 444 if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
kvn@4205 445 result |= CPU_AES;
kvn@4410 446 if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
kvn@4410 447 result |= CPU_ERMS;
drchase@5353 448 if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
drchase@5353 449 result |= CPU_CLMUL;
kvn@6429 450 if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
kvn@6429 451 result |= CPU_RTM;
twisti@1210 452
twisti@1210 453 // AMD features.
twisti@1210 454 if (is_amd()) {
kvn@2761 455 if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
kvn@2761 456 (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
kvn@2761 457 result |= CPU_3DNOW_PREFETCH;
twisti@1210 458 if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
twisti@1210 459 result |= CPU_LZCNT;
twisti@1210 460 if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
twisti@1210 461 result |= CPU_SSE4A;
twisti@1210 462 }
iveresov@6378 463 // Intel features.
iveresov@6378 464 if(is_intel()) {
iveresov@6378 465 if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
iveresov@6378 466 result |= CPU_BMI2;
iveresov@6378 467 if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
iveresov@6378 468 result |= CPU_LZCNT;
iveresov@6378 469 }
twisti@1210 470
twisti@1020 471 return result;
twisti@1020 472 }
twisti@1020 473
kvn@6388 474 static bool os_supports_avx_vectors() {
kvn@6388 475 if (!supports_avx()) {
kvn@6388 476 return false;
kvn@6388 477 }
kvn@6388 478 // Verify that OS save/restore all bits of AVX registers
kvn@6388 479 // during signal processing.
kvn@6388 480 int nreg = 2 LP64_ONLY(+2);
kvn@6388 481 for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
kvn@6388 482 if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
kvn@6388 483 return false;
kvn@6388 484 }
kvn@6388 485 }
kvn@6388 486 return true;
kvn@6388 487 }
kvn@6388 488
twisti@1020 489 static void get_processor_features();
twisti@1020 490
twisti@1020 491 public:
twisti@1020 492 // Offsets for cpuid asm stub
twisti@1020 493 static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
twisti@1020 494 static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
twisti@1020 495 static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
kvn@3388 496 static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
twisti@1020 497 static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
twisti@1020 498 static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
phh@3378 499 static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
twisti@1020 500 static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
kvn@1977 501 static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
kvn@1977 502 static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
kvn@1977 503 static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
kvn@3388 504 static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
kvn@6388 505 static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
kvn@6388 506
kvn@6388 507 // The value used to check ymm register after signal handle
kvn@6388 508 static int ymm_test_value() { return 0xCAFEBABE; }
kvn@6388 509
kvn@6537 510 static void get_cpu_info_wrapper();
kvn@6388 511 static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
kvn@6388 512 static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
kvn@6388 513 static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
kvn@6388 514 static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; }
kvn@6388 515
kvn@6388 516 static void clean_cpuFeatures() { _cpuFeatures = 0; }
kvn@6388 517 static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
kvn@6388 518
twisti@1020 519
twisti@1020 520 // Initialization
twisti@1020 521 static void initialize();
twisti@1020 522
kvn@6429 523 // Override Abstract_VM_Version implementation
kvn@6429 524 static bool use_biased_locking();
kvn@6429 525
twisti@1020 526 // Asserts
twisti@1020 527 static void assert_is_initialized() {
twisti@1020 528 assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
twisti@1020 529 }
twisti@1020 530
twisti@1020 531 //
twisti@1020 532 // Processor family:
twisti@1020 533 // 3 - 386
twisti@1020 534 // 4 - 486
twisti@1020 535 // 5 - Pentium
twisti@1020 536 // 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
twisti@1020 537 // Pentium M, Core Solo, Core Duo, Core2 Duo
twisti@1020 538 // family 6 model: 9, 13, 14, 15
twisti@1020 539 // 0x0f - Pentium 4, Opteron
twisti@1020 540 //
twisti@1020 541 // Note: The cpu family should be used to select between
twisti@1020 542 // instruction sequences which are valid on all Intel
twisti@1020 543 // processors. Use the feature test functions below to
twisti@1020 544 // determine whether a particular instruction is supported.
twisti@1020 545 //
twisti@1020 546 static int cpu_family() { return _cpu;}
twisti@1020 547 static bool is_P6() { return cpu_family() >= 6; }
twisti@1020 548 static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
twisti@1020 549 static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
twisti@1020 550
kvn@2002 551 static bool supports_processor_topology() {
kvn@2002 552 return (_cpuid_info.std_max_function >= 0xB) &&
kvn@2002 553 // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
kvn@2002 554 // Some cpus have max cpuid >= 0xB but do not support processor topology.
kvn@4410 555 (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
kvn@2002 556 }
kvn@2002 557
twisti@1020 558 static uint cores_per_cpu() {
twisti@1020 559 uint result = 1;
twisti@1020 560 if (is_intel()) {
kvn@2002 561 if (supports_processor_topology()) {
kvn@1977 562 result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
kvn@1977 563 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
kvn@1977 564 } else {
kvn@1977 565 result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
kvn@1977 566 }
twisti@1020 567 } else if (is_amd()) {
twisti@1020 568 result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
twisti@1020 569 }
twisti@1020 570 return result;
twisti@1020 571 }
twisti@1020 572
twisti@1020 573 static uint threads_per_core() {
twisti@1020 574 uint result = 1;
kvn@2002 575 if (is_intel() && supports_processor_topology()) {
kvn@1977 576 result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
kvn@1977 577 } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
twisti@1020 578 result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
twisti@1020 579 cores_per_cpu();
twisti@1020 580 }
twisti@1020 581 return result;
twisti@1020 582 }
twisti@1020 583
kvn@3052 584 static intx prefetch_data_size() {
twisti@1020 585 intx result = 0;
twisti@1020 586 if (is_intel()) {
twisti@1020 587 result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
twisti@1020 588 } else if (is_amd()) {
twisti@1020 589 result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
twisti@1020 590 }
twisti@1020 591 if (result < 32) // not defined ?
twisti@1020 592 result = 32; // 32 bytes by default on x86 and other x64
twisti@1020 593 return result;
twisti@1020 594 }
twisti@1020 595
twisti@1020 596 //
twisti@1020 597 // Feature identification
twisti@1020 598 //
twisti@1020 599 static bool supports_cpuid() { return _cpuFeatures != 0; }
twisti@1020 600 static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
twisti@1020 601 static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; }
twisti@1020 602 static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; }
twisti@1020 603 static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; }
twisti@1020 604 static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; }
twisti@1020 605 static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; }
twisti@1020 606 static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
twisti@1020 607 static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
twisti@1020 608 static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
twisti@1020 609 static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
twisti@1020 610 static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
twisti@1078 611 static bool supports_popcnt() { return (_cpuFeatures & CPU_POPCNT) != 0; }
kvn@3388 612 static bool supports_avx() { return (_cpuFeatures & CPU_AVX) != 0; }
kvn@3388 613 static bool supports_avx2() { return (_cpuFeatures & CPU_AVX2) != 0; }
phh@3378 614 static bool supports_tsc() { return (_cpuFeatures & CPU_TSC) != 0; }
kvn@4205 615 static bool supports_aes() { return (_cpuFeatures & CPU_AES) != 0; }
kvn@4410 616 static bool supports_erms() { return (_cpuFeatures & CPU_ERMS) != 0; }
drchase@5353 617 static bool supports_clmul() { return (_cpuFeatures & CPU_CLMUL) != 0; }
kvn@6429 618 static bool supports_rtm() { return (_cpuFeatures & CPU_RTM) != 0; }
iveresov@6378 619 static bool supports_bmi1() { return (_cpuFeatures & CPU_BMI1) != 0; }
iveresov@6378 620 static bool supports_bmi2() { return (_cpuFeatures & CPU_BMI2) != 0; }
phh@3378 621 // Intel features
phh@3378 622 static bool is_intel_family_core() { return is_intel() &&
phh@3378 623 extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
phh@3378 624
phh@3378 625 static bool is_intel_tsc_synched_at_init() {
phh@3378 626 if (is_intel_family_core()) {
phh@3378 627 uint32_t ext_model = extended_cpu_model();
phh@3560 628 if (ext_model == CPU_MODEL_NEHALEM_EP ||
phh@3560 629 ext_model == CPU_MODEL_WESTMERE_EP ||
phh@3560 630 ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
phh@3560 631 ext_model == CPU_MODEL_IVYBRIDGE_EP) {
phh@3560 632 // <= 2-socket invariant tsc support. EX versions are usually used
phh@3560 633 // in > 2-socket systems and likely don't synchronize tscs at
phh@3560 634 // initialization.
phh@3560 635 // Code that uses tsc values must be prepared for them to arbitrarily
phh@3560 636 // jump forward or backward.
phh@3378 637 return true;
phh@3378 638 }
phh@3378 639 }
phh@3378 640 return false;
phh@3378 641 }
phh@3378 642
twisti@1020 643 // AMD features
kvn@2761 644 static bool supports_3dnow_prefetch() { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
twisti@1020 645 static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
twisti@1210 646 static bool supports_lzcnt() { return (_cpuFeatures & CPU_LZCNT) != 0; }
twisti@1020 647 static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; }
twisti@1020 648
phh@3378 649 static bool is_amd_Barcelona() { return is_amd() &&
phh@3378 650 extended_cpu_family() == CPU_FAMILY_AMD_11H; }
phh@3378 651
phh@3378 652 // Intel and AMD newer cores support fast timestamps well
phh@3378 653 static bool supports_tscinv_bit() {
phh@3378 654 return (_cpuFeatures & CPU_TSCINV) != 0;
phh@3378 655 }
phh@3378 656 static bool supports_tscinv() {
phh@3378 657 return supports_tscinv_bit() &&
phh@3378 658 ( (is_amd() && !is_amd_Barcelona()) ||
phh@3378 659 is_intel_tsc_synched_at_init() );
phh@3378 660 }
phh@3378 661
kvn@2269 662 // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
kvn@2269 663 static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 &&
kvn@2269 664 supports_sse3() && _model != 0x1C; }
kvn@2269 665
twisti@1020 666 static bool supports_compare_and_exchange() { return true; }
twisti@1020 667
twisti@1020 668 static const char* cpu_features() { return _features_str; }
twisti@1020 669
twisti@1020 670 static intx allocate_prefetch_distance() {
twisti@1020 671 // This method should be called before allocate_prefetch_style().
twisti@1020 672 //
twisti@1020 673 // Hardware prefetching (distance/size in bytes):
twisti@1020 674 // Pentium 3 - 64 / 32
twisti@1020 675 // Pentium 4 - 256 / 128
twisti@1020 676 // Athlon - 64 / 32 ????
twisti@1020 677 // Opteron - 128 / 64 only when 2 sequential cache lines accessed
twisti@1020 678 // Core - 128 / 64
twisti@1020 679 //
twisti@1020 680 // Software prefetching (distance in bytes / instruction with best score):
twisti@1020 681 // Pentium 3 - 128 / prefetchnta
twisti@1020 682 // Pentium 4 - 512 / prefetchnta
twisti@1020 683 // Athlon - 128 / prefetchnta
twisti@1020 684 // Opteron - 256 / prefetchnta
twisti@1020 685 // Core - 256 / prefetchnta
twisti@1020 686 // It will be used only when AllocatePrefetchStyle > 0
twisti@1020 687
twisti@1020 688 intx count = AllocatePrefetchDistance;
twisti@1020 689 if (count < 0) { // default ?
twisti@1020 690 if (is_amd()) { // AMD
twisti@1020 691 if (supports_sse2())
twisti@1020 692 count = 256; // Opteron
twisti@1020 693 else
twisti@1020 694 count = 128; // Athlon
twisti@1020 695 } else { // Intel
twisti@1020 696 if (supports_sse2())
twisti@1020 697 if (cpu_family() == 6) {
twisti@1020 698 count = 256; // Pentium M, Core, Core2
twisti@1020 699 } else {
twisti@1020 700 count = 512; // Pentium 4
twisti@1020 701 }
twisti@1020 702 else
twisti@1020 703 count = 128; // Pentium 3 (and all other old CPUs)
twisti@1020 704 }
twisti@1020 705 }
twisti@1020 706 return count;
twisti@1020 707 }
twisti@1020 708 static intx allocate_prefetch_style() {
twisti@1020 709 assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
twisti@1020 710 // Return 0 if AllocatePrefetchDistance was not defined.
twisti@1020 711 return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
twisti@1020 712 }
twisti@1020 713
twisti@1020 714 // Prefetch interval for gc copy/scan == 9 dcache lines. Derived from
twisti@1020 715 // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
twisti@1020 716 // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
twisti@1020 717 // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
twisti@1020 718
twisti@1020 719 // gc copy/scan is disabled if prefetchw isn't supported, because
twisti@1020 720 // Prefetch::write emits an inlined prefetchw on Linux.
twisti@1020 721 // Do not use the 3dnow prefetchw instruction. It isn't supported on em64t.
twisti@1020 722 // The used prefetcht0 instruction works for both amd64 and em64t.
twisti@1020 723 static intx prefetch_copy_interval_in_bytes() {
twisti@1020 724 intx interval = PrefetchCopyIntervalInBytes;
twisti@1020 725 return interval >= 0 ? interval : 576;
twisti@1020 726 }
twisti@1020 727 static intx prefetch_scan_interval_in_bytes() {
twisti@1020 728 intx interval = PrefetchScanIntervalInBytes;
twisti@1020 729 return interval >= 0 ? interval : 576;
twisti@1020 730 }
twisti@1020 731 static intx prefetch_fields_ahead() {
twisti@1020 732 intx count = PrefetchFieldsAhead;
twisti@1020 733 return count >= 0 ? count : 1;
twisti@1020 734 }
twisti@1020 735 };
stefank@2314 736
stefank@2314 737 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial