duke@1: /* jjg@1492: * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved. duke@1: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@1: * duke@1: * This code is free software; you can redistribute it and/or modify it duke@1: * under the terms of the GNU General Public License version 2 only, as ohair@554: * published by the Free Software Foundation. Oracle designates this duke@1: * particular file as subject to the "Classpath" exception as provided ohair@554: * by Oracle in the LICENSE file that accompanied this code. duke@1: * duke@1: * This code is distributed in the hope that it will be useful, but WITHOUT duke@1: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@1: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@1: * version 2 for more details (a copy is included in the LICENSE file that duke@1: * accompanied this code). duke@1: * duke@1: * You should have received a copy of the GNU General Public License version duke@1: * 2 along with this work; if not, write to the Free Software Foundation, duke@1: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@1: * ohair@554: * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ohair@554: * or visit www.oracle.com if you need additional information or have any ohair@554: * questions. duke@1: */ duke@1: duke@1: package com.sun.tools.javac.comp; duke@1: jjg@1357: import java.util.*; jjg@1357: import java.util.Set; jjg@1357: jjg@1357: import javax.lang.model.element.ElementKind; jjg@1357: import javax.tools.JavaFileObject; duke@1: duke@1: import com.sun.source.tree.IdentifierTree; mcimadamore@1352: import com.sun.source.tree.MemberReferenceTree.ReferenceMode; duke@1: import com.sun.source.tree.MemberSelectTree; duke@1: import com.sun.source.tree.TreeVisitor; duke@1: import com.sun.source.util.SimpleTreeVisitor; jjg@1357: import com.sun.tools.javac.code.*; jjg@1357: import com.sun.tools.javac.code.Lint.LintCategory; jjg@1357: import com.sun.tools.javac.code.Symbol.*; jjg@1357: import com.sun.tools.javac.code.Type.*; jjg@1357: import com.sun.tools.javac.comp.Check.CheckContext; jjg@1357: import com.sun.tools.javac.comp.DeferredAttr.AttrMode; jjg@1357: import com.sun.tools.javac.comp.Infer.InferenceContext; jjg@1357: import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener; jjg@1357: import com.sun.tools.javac.jvm.*; jjg@1357: import com.sun.tools.javac.jvm.Target; jjg@1357: import com.sun.tools.javac.tree.*; jjg@1357: import com.sun.tools.javac.tree.JCTree.*; mcimadamore@1510: import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; jjg@1357: import com.sun.tools.javac.util.*; jjg@1357: import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; jjg@1357: import com.sun.tools.javac.util.List; duke@1: import static com.sun.tools.javac.code.Flags.*; jjg@1127: import static com.sun.tools.javac.code.Flags.ANNOTATION; jjg@1127: import static com.sun.tools.javac.code.Flags.BLOCK; duke@1: import static com.sun.tools.javac.code.Kinds.*; jjg@1127: import static com.sun.tools.javac.code.Kinds.ERRONEOUS; jjg@1374: import static com.sun.tools.javac.code.TypeTag.*; jjg@1374: import static com.sun.tools.javac.code.TypeTag.WILDCARD; jjg@1127: import static com.sun.tools.javac.tree.JCTree.Tag.*; duke@1: duke@1: /** This is the main context-dependent analysis phase in GJC. It duke@1: * encompasses name resolution, type checking and constant folding as duke@1: * subtasks. Some subtasks involve auxiliary classes. duke@1: * @see Check duke@1: * @see Resolve duke@1: * @see ConstFold duke@1: * @see Infer duke@1: * jjg@581: *

This is NOT part of any supported API. jjg@581: * If you write code that depends on this, you do so at your own risk. duke@1: * This code and its internal interfaces are subject to change or duke@1: * deletion without notice. duke@1: */ duke@1: public class Attr extends JCTree.Visitor { duke@1: protected static final Context.Key attrKey = duke@1: new Context.Key(); duke@1: jjg@113: final Names names; duke@1: final Log log; duke@1: final Symtab syms; duke@1: final Resolve rs; mcimadamore@537: final Infer infer; mcimadamore@1347: final DeferredAttr deferredAttr; duke@1: final Check chk; mcimadamore@1348: final Flow flow; duke@1: final MemberEnter memberEnter; duke@1: final TreeMaker make; duke@1: final ConstFold cfolder; duke@1: final Enter enter; duke@1: final Target target; duke@1: final Types types; mcimadamore@89: final JCDiagnostic.Factory diags; duke@1: final Annotate annotate; mcimadamore@852: final DeferredLintHandler deferredLintHandler; duke@1: duke@1: public static Attr instance(Context context) { duke@1: Attr instance = context.get(attrKey); duke@1: if (instance == null) duke@1: instance = new Attr(context); duke@1: return instance; duke@1: } duke@1: duke@1: protected Attr(Context context) { duke@1: context.put(attrKey, this); duke@1: jjg@113: names = Names.instance(context); duke@1: log = Log.instance(context); duke@1: syms = Symtab.instance(context); duke@1: rs = Resolve.instance(context); duke@1: chk = Check.instance(context); mcimadamore@1348: flow = Flow.instance(context); duke@1: memberEnter = MemberEnter.instance(context); duke@1: make = TreeMaker.instance(context); duke@1: enter = Enter.instance(context); mcimadamore@537: infer = Infer.instance(context); mcimadamore@1347: deferredAttr = DeferredAttr.instance(context); duke@1: cfolder = ConstFold.instance(context); duke@1: target = Target.instance(context); duke@1: types = Types.instance(context); mcimadamore@89: diags = JCDiagnostic.Factory.instance(context); duke@1: annotate = Annotate.instance(context); mcimadamore@852: deferredLintHandler = DeferredLintHandler.instance(context); duke@1: duke@1: Options options = Options.instance(context); duke@1: duke@1: Source source = Source.instance(context); duke@1: allowGenerics = source.allowGenerics(); duke@1: allowVarargs = source.allowVarargs(); duke@1: allowEnums = source.allowEnums(); duke@1: allowBoxing = source.allowBoxing(); duke@1: allowCovariantReturns = source.allowCovariantReturns(); duke@1: allowAnonOuterThis = source.allowAnonOuterThis(); darcy@430: allowStringsInSwitch = source.allowStringsInSwitch(); mcimadamore@1415: allowPoly = source.allowPoly(); mcimadamore@1348: allowLambda = source.allowLambda(); mcimadamore@1393: allowDefaultMethods = source.allowDefaultMethods(); darcy@430: sourceName = source.name; jjg@700: relax = (options.isSet("-retrofit") || jjg@700: options.isSet("-relax")); mcimadamore@731: findDiamonds = options.get("findDiamond") != null && mcimadamore@731: source.allowDiamond(); jjg@700: useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); mcimadamore@1348: identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false); mcimadamore@1238: mcimadamore@1238: statInfo = new ResultInfo(NIL, Type.noType); mcimadamore@1238: varInfo = new ResultInfo(VAR, Type.noType); mcimadamore@1238: unknownExprInfo = new ResultInfo(VAL, Type.noType); mcimadamore@1238: unknownTypeInfo = new ResultInfo(TYP, Type.noType); mcimadamore@1348: recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); duke@1: } duke@1: duke@1: /** Switch: relax some constraints for retrofit mode. duke@1: */ duke@1: boolean relax; duke@1: mcimadamore@1347: /** Switch: support target-typing inference mcimadamore@1347: */ mcimadamore@1347: boolean allowPoly; mcimadamore@1347: duke@1: /** Switch: support generics? duke@1: */ duke@1: boolean allowGenerics; duke@1: duke@1: /** Switch: allow variable-arity methods. duke@1: */ duke@1: boolean allowVarargs; duke@1: duke@1: /** Switch: support enums? duke@1: */ duke@1: boolean allowEnums; duke@1: duke@1: /** Switch: support boxing and unboxing? duke@1: */ duke@1: boolean allowBoxing; duke@1: duke@1: /** Switch: support covariant result types? duke@1: */ duke@1: boolean allowCovariantReturns; duke@1: mcimadamore@1415: /** Switch: support lambda expressions ? mcimadamore@1415: */ mcimadamore@1415: boolean allowLambda; mcimadamore@1415: mcimadamore@1393: /** Switch: support default methods ? mcimadamore@1393: */ mcimadamore@1393: boolean allowDefaultMethods; mcimadamore@1393: duke@1: /** Switch: allow references to surrounding object from anonymous duke@1: * objects during constructor call? duke@1: */ duke@1: boolean allowAnonOuterThis; duke@1: mcimadamore@731: /** Switch: generates a warning if diamond can be safely applied mcimadamore@731: * to a given new expression mcimadamore@731: */ mcimadamore@731: boolean findDiamonds; mcimadamore@731: mcimadamore@731: /** mcimadamore@731: * Internally enables/disables diamond finder feature mcimadamore@731: */ mcimadamore@731: static final boolean allowDiamondFinder = true; mcimadamore@731: duke@1: /** duke@1: * Switch: warn about use of variable before declaration? duke@1: * RFE: 6425594 duke@1: */ duke@1: boolean useBeforeDeclarationWarning; duke@1: jjg@377: /** mcimadamore@1348: * Switch: generate warnings whenever an anonymous inner class that is convertible mcimadamore@1348: * to a lambda expression is found mcimadamore@1348: */ mcimadamore@1348: boolean identifyLambdaCandidate; mcimadamore@1348: mcimadamore@1348: /** darcy@430: * Switch: allow strings in switch? darcy@430: */ darcy@430: boolean allowStringsInSwitch; darcy@430: darcy@430: /** darcy@430: * Switch: name of source level; used for error reporting. darcy@430: */ darcy@430: String sourceName; darcy@430: duke@1: /** Check kind and type of given tree against protokind and prototype. duke@1: * If check succeeds, store type in tree and return it. duke@1: * If check fails, store errType in tree and return it. duke@1: * No checks are performed if the prototype is a method type. jjg@110: * It is not necessary in this case since we know that kind and type duke@1: * are correct. duke@1: * duke@1: * @param tree The tree whose kind and type is checked duke@1: * @param ownkind The computed kind of the tree mcimadamore@1220: * @param resultInfo The expected result of the tree duke@1: */ mcimadamore@1347: Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) { mcimadamore@1347: InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); mcimadamore@1347: Type owntype = found; jjg@1374: if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) { mcimadamore@1347: if (inferenceContext.free(found)) { mcimadamore@1347: inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() { mcimadamore@1347: @Override mcimadamore@1347: public void typesInferred(InferenceContext inferenceContext) { mcimadamore@1347: ResultInfo pendingResult = mcimadamore@1347: resultInfo.dup(inferenceContext.asInstType(resultInfo.pt, types)); mcimadamore@1347: check(tree, inferenceContext.asInstType(found, types), ownkind, pendingResult); mcimadamore@1347: } mcimadamore@1347: }); mcimadamore@1347: return tree.type = resultInfo.pt; duke@1: } else { mcimadamore@1347: if ((ownkind & ~resultInfo.pkind) == 0) { mcimadamore@1347: owntype = resultInfo.check(tree, owntype); mcimadamore@1347: } else { mcimadamore@1347: log.error(tree.pos(), "unexpected.type", mcimadamore@1347: kindNames(resultInfo.pkind), mcimadamore@1347: kindName(ownkind)); mcimadamore@1347: owntype = types.createErrorType(owntype); mcimadamore@1347: } duke@1: } duke@1: } duke@1: tree.type = owntype; duke@1: return owntype; duke@1: } duke@1: duke@1: /** Is given blank final variable assignable, i.e. in a scope where it duke@1: * may be assigned to even though it is final? duke@1: * @param v The blank final variable. duke@1: * @param env The current environment. duke@1: */ duke@1: boolean isAssignableAsBlankFinal(VarSymbol v, Env env) { mcimadamore@1297: Symbol owner = owner(env); duke@1: // owner refers to the innermost variable, method or duke@1: // initializer block declaration at this point. duke@1: return duke@1: v.owner == owner duke@1: || duke@1: ((owner.name == names.init || // i.e. we are in a constructor duke@1: owner.kind == VAR || // i.e. we are in a variable initializer duke@1: (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block duke@1: && duke@1: v.owner == owner.owner duke@1: && duke@1: ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); duke@1: } duke@1: mcimadamore@1297: /** mcimadamore@1297: * Return the innermost enclosing owner symbol in a given attribution context mcimadamore@1297: */ mcimadamore@1297: Symbol owner(Env env) { mcimadamore@1297: while (true) { mcimadamore@1297: switch (env.tree.getTag()) { mcimadamore@1297: case VARDEF: mcimadamore@1297: //a field can be owner mcimadamore@1297: VarSymbol vsym = ((JCVariableDecl)env.tree).sym; mcimadamore@1297: if (vsym.owner.kind == TYP) { mcimadamore@1297: return vsym; mcimadamore@1297: } mcimadamore@1297: break; mcimadamore@1297: case METHODDEF: mcimadamore@1297: //method def is always an owner mcimadamore@1297: return ((JCMethodDecl)env.tree).sym; mcimadamore@1297: case CLASSDEF: mcimadamore@1297: //class def is always an owner mcimadamore@1297: return ((JCClassDecl)env.tree).sym; mcimadamore@1348: case LAMBDA: mcimadamore@1348: //a lambda is an owner - return a fresh synthetic method symbol mcimadamore@1348: return new MethodSymbol(0, names.empty, null, syms.methodClass); mcimadamore@1297: case BLOCK: mcimadamore@1297: //static/instance init blocks are owner mcimadamore@1297: Symbol blockSym = env.info.scope.owner; mcimadamore@1297: if ((blockSym.flags() & BLOCK) != 0) { mcimadamore@1297: return blockSym; mcimadamore@1297: } mcimadamore@1297: break; mcimadamore@1297: case TOPLEVEL: mcimadamore@1297: //toplevel is always an owner (for pkge decls) mcimadamore@1297: return env.info.scope.owner; mcimadamore@1297: } mcimadamore@1297: Assert.checkNonNull(env.next); mcimadamore@1297: env = env.next; mcimadamore@1297: } mcimadamore@1297: } mcimadamore@1297: duke@1: /** Check that variable can be assigned to. duke@1: * @param pos The current source code position. duke@1: * @param v The assigned varaible duke@1: * @param base If the variable is referred to in a Select, the part duke@1: * to the left of the `.', null otherwise. duke@1: * @param env The current environment. duke@1: */ duke@1: void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env env) { duke@1: if ((v.flags() & FINAL) != 0 && duke@1: ((v.flags() & HASINIT) != 0 duke@1: || duke@1: !((base == null || jjg@1127: (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) && duke@1: isAssignableAsBlankFinal(v, env)))) { darcy@609: if (v.isResourceVariable()) { //TWR resource mcimadamore@743: log.error(pos, "try.resource.may.not.be.assigned", v); darcy@609: } else { darcy@609: log.error(pos, "cant.assign.val.to.final.var", v); darcy@609: } duke@1: } duke@1: } duke@1: duke@1: /** Does tree represent a static reference to an identifier? duke@1: * It is assumed that tree is either a SELECT or an IDENT. duke@1: * We have to weed out selects from non-type names here. duke@1: * @param tree The candidate tree. duke@1: */ duke@1: boolean isStaticReference(JCTree tree) { jjg@1127: if (tree.hasTag(SELECT)) { duke@1: Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); duke@1: if (lsym == null || lsym.kind != TYP) { duke@1: return false; duke@1: } duke@1: } duke@1: return true; duke@1: } duke@1: duke@1: /** Is this symbol a type? duke@1: */ duke@1: static boolean isType(Symbol sym) { duke@1: return sym != null && sym.kind == TYP; duke@1: } duke@1: duke@1: /** The current `this' symbol. duke@1: * @param env The current environment. duke@1: */ duke@1: Symbol thisSym(DiagnosticPosition pos, Env env) { duke@1: return rs.resolveSelf(pos, env, env.enclClass.sym, names._this); duke@1: } duke@1: duke@1: /** Attribute a parsed identifier. duke@1: * @param tree Parsed identifier name duke@1: * @param topLevel The toplevel to use duke@1: */ duke@1: public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { duke@1: Env localEnv = enter.topLevelEnv(topLevel); duke@1: localEnv.enclClass = make.ClassDef(make.Modifiers(0), duke@1: syms.errSymbol.name, duke@1: null, null, null, null); duke@1: localEnv.enclClass.sym = syms.errSymbol; duke@1: return tree.accept(identAttributer, localEnv); duke@1: } duke@1: // where duke@1: private TreeVisitor> identAttributer = new IdentAttributer(); duke@1: private class IdentAttributer extends SimpleTreeVisitor> { duke@1: @Override duke@1: public Symbol visitMemberSelect(MemberSelectTree node, Env env) { duke@1: Symbol site = visit(node.getExpression(), env); duke@1: if (site.kind == ERR) duke@1: return site; duke@1: Name name = (Name)node.getIdentifier(); duke@1: if (site.kind == PCK) { duke@1: env.toplevel.packge = (PackageSymbol)site; duke@1: return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK); duke@1: } else { duke@1: env.enclClass.sym = (ClassSymbol)site; duke@1: return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); duke@1: } duke@1: } duke@1: duke@1: @Override duke@1: public Symbol visitIdentifier(IdentifierTree node, Env env) { duke@1: return rs.findIdent(env, (Name)node.getName(), TYP | PCK); duke@1: } duke@1: } duke@1: duke@1: public Type coerce(Type etype, Type ttype) { duke@1: return cfolder.coerce(etype, ttype); duke@1: } duke@1: duke@1: public Type attribType(JCTree node, TypeSymbol sym) { duke@1: Env env = enter.typeEnvs.get(sym); duke@1: Env localEnv = env.dup(node, env.info.dup()); mcimadamore@1220: return attribTree(node, localEnv, unknownTypeInfo); mcimadamore@1220: } mcimadamore@1220: mcimadamore@1220: public Type attribImportQualifier(JCImport tree, Env env) { mcimadamore@1220: // Attribute qualifying package or class. mcimadamore@1220: JCFieldAccess s = (JCFieldAccess)tree.qualid; mcimadamore@1220: return attribTree(s.selected, mcimadamore@1220: env, mcimadamore@1220: new ResultInfo(tree.staticImport ? TYP : (TYP | PCK), mcimadamore@1220: Type.noType)); duke@1: } duke@1: duke@1: public Env attribExprToTree(JCTree expr, Env env, JCTree tree) { duke@1: breakTree = tree; mcimadamore@303: JavaFileObject prev = log.useSource(env.toplevel.sourcefile); duke@1: try { duke@1: attribExpr(expr, env); duke@1: } catch (BreakAttr b) { duke@1: return b.env; sundar@669: } catch (AssertionError ae) { sundar@669: if (ae.getCause() instanceof BreakAttr) { sundar@669: return ((BreakAttr)(ae.getCause())).env; sundar@669: } else { sundar@669: throw ae; sundar@669: } duke@1: } finally { duke@1: breakTree = null; duke@1: log.useSource(prev); duke@1: } duke@1: return env; duke@1: } duke@1: duke@1: public Env attribStatToTree(JCTree stmt, Env env, JCTree tree) { duke@1: breakTree = tree; mcimadamore@303: JavaFileObject prev = log.useSource(env.toplevel.sourcefile); duke@1: try { duke@1: attribStat(stmt, env); duke@1: } catch (BreakAttr b) { duke@1: return b.env; sundar@669: } catch (AssertionError ae) { sundar@669: if (ae.getCause() instanceof BreakAttr) { sundar@669: return ((BreakAttr)(ae.getCause())).env; sundar@669: } else { sundar@669: throw ae; sundar@669: } duke@1: } finally { duke@1: breakTree = null; duke@1: log.useSource(prev); duke@1: } duke@1: return env; duke@1: } duke@1: duke@1: private JCTree breakTree = null; duke@1: duke@1: private static class BreakAttr extends RuntimeException { duke@1: static final long serialVersionUID = -6924771130405446405L; duke@1: private Env env; duke@1: private BreakAttr(Env env) { mcimadamore@1347: this.env = copyEnv(env); mcimadamore@1347: } mcimadamore@1347: mcimadamore@1347: private Env copyEnv(Env env) { mcimadamore@1347: Env newEnv = mcimadamore@1347: env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); mcimadamore@1347: if (newEnv.outer != null) { mcimadamore@1347: newEnv.outer = copyEnv(newEnv.outer); mcimadamore@1347: } mcimadamore@1347: return newEnv; mcimadamore@1347: } mcimadamore@1347: mcimadamore@1347: private Scope copyScope(Scope sc) { mcimadamore@1347: Scope newScope = new Scope(sc.owner); mcimadamore@1347: List elemsList = List.nil(); mcimadamore@1347: while (sc != null) { mcimadamore@1347: for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) { mcimadamore@1347: elemsList = elemsList.prepend(e.sym); mcimadamore@1347: } mcimadamore@1347: sc = sc.next; mcimadamore@1347: } mcimadamore@1347: for (Symbol s : elemsList) { mcimadamore@1347: newScope.enter(s); mcimadamore@1347: } mcimadamore@1347: return newScope; duke@1: } duke@1: } duke@1: mcimadamore@1238: class ResultInfo { mcimadamore@1347: final int pkind; mcimadamore@1347: final Type pt; mcimadamore@1347: final CheckContext checkContext; mcimadamore@1220: mcimadamore@1220: ResultInfo(int pkind, Type pt) { mcimadamore@1238: this(pkind, pt, chk.basicHandler); mcimadamore@1238: } mcimadamore@1238: mcimadamore@1238: protected ResultInfo(int pkind, Type pt, CheckContext checkContext) { mcimadamore@1220: this.pkind = pkind; mcimadamore@1220: this.pt = pt; mcimadamore@1238: this.checkContext = checkContext; mcimadamore@1238: } mcimadamore@1238: mcimadamore@1347: protected Type check(final DiagnosticPosition pos, final Type found) { mcimadamore@1238: return chk.checkType(pos, found, pt, checkContext); mcimadamore@1220: } mcimadamore@1347: mcimadamore@1347: protected ResultInfo dup(Type newPt) { mcimadamore@1347: return new ResultInfo(pkind, newPt, checkContext); mcimadamore@1347: } mcimadamore@1415: mcimadamore@1415: protected ResultInfo dup(CheckContext newContext) { mcimadamore@1415: return new ResultInfo(pkind, pt, newContext); mcimadamore@1415: } mcimadamore@1220: } mcimadamore@1220: mcimadamore@1348: class RecoveryInfo extends ResultInfo { mcimadamore@1348: mcimadamore@1348: public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { mcimadamore@1348: super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) { mcimadamore@1348: @Override mcimadamore@1348: public DeferredAttr.DeferredAttrContext deferredAttrContext() { mcimadamore@1348: return deferredAttrContext; mcimadamore@1348: } mcimadamore@1348: @Override mcimadamore@1348: public boolean compatible(Type found, Type req, Warner warn) { mcimadamore@1348: return true; mcimadamore@1348: } mcimadamore@1348: @Override mcimadamore@1348: public void report(DiagnosticPosition pos, JCDiagnostic details) { mcimadamore@1415: chk.basicHandler.report(pos, details); mcimadamore@1348: } mcimadamore@1348: }); mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: @Override mcimadamore@1348: protected Type check(DiagnosticPosition pos, Type found) { mcimadamore@1348: return chk.checkNonVoid(pos, super.check(pos, found)); mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: mcimadamore@1347: final ResultInfo statInfo; mcimadamore@1347: final ResultInfo varInfo; mcimadamore@1347: final ResultInfo unknownExprInfo; mcimadamore@1347: final ResultInfo unknownTypeInfo; mcimadamore@1348: final ResultInfo recoveryInfo; mcimadamore@1220: mcimadamore@1220: Type pt() { mcimadamore@1220: return resultInfo.pt; mcimadamore@1220: } mcimadamore@1220: mcimadamore@1220: int pkind() { mcimadamore@1220: return resultInfo.pkind; mcimadamore@1220: } duke@1: duke@1: /* ************************************************************************ duke@1: * Visitor methods duke@1: *************************************************************************/ duke@1: duke@1: /** Visitor argument: the current environment. duke@1: */ duke@1: Env env; duke@1: mcimadamore@1220: /** Visitor argument: the currently expected attribution result. duke@1: */ mcimadamore@1220: ResultInfo resultInfo; duke@1: duke@1: /** Visitor result: the computed type. duke@1: */ duke@1: Type result; duke@1: duke@1: /** Visitor method: attribute a tree, catching any completion failure duke@1: * exceptions. Return the tree's type. duke@1: * duke@1: * @param tree The tree to be visited. duke@1: * @param env The environment visitor argument. mcimadamore@1220: * @param resultInfo The result info visitor argument. duke@1: */ mcimadamore@1347: Type attribTree(JCTree tree, Env env, ResultInfo resultInfo) { duke@1: Env prevEnv = this.env; mcimadamore@1220: ResultInfo prevResult = this.resultInfo; duke@1: try { duke@1: this.env = env; mcimadamore@1220: this.resultInfo = resultInfo; duke@1: tree.accept(this); mcimadamore@1415: if (tree == breakTree && mcimadamore@1415: resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { duke@1: throw new BreakAttr(env); mcimadamore@1415: } duke@1: return result; duke@1: } catch (CompletionFailure ex) { duke@1: tree.type = syms.errType; duke@1: return chk.completionError(tree.pos(), ex); duke@1: } finally { duke@1: this.env = prevEnv; mcimadamore@1220: this.resultInfo = prevResult; duke@1: } duke@1: } duke@1: duke@1: /** Derived visitor method: attribute an expression tree. duke@1: */ duke@1: public Type attribExpr(JCTree tree, Env env, Type pt) { jjg@1374: return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); darcy@609: } darcy@609: duke@1: /** Derived visitor method: attribute an expression tree with duke@1: * no constraints on the computed type. duke@1: */ jjg@1409: public Type attribExpr(JCTree tree, Env env) { mcimadamore@1220: return attribTree(tree, env, unknownExprInfo); duke@1: } duke@1: duke@1: /** Derived visitor method: attribute a type tree. duke@1: */ jjg@1409: public Type attribType(JCTree tree, Env env) { mcimadamore@537: Type result = attribType(tree, env, Type.noType); mcimadamore@537: return result; mcimadamore@537: } mcimadamore@537: mcimadamore@537: /** Derived visitor method: attribute a type tree. mcimadamore@537: */ mcimadamore@537: Type attribType(JCTree tree, Env env, Type pt) { mcimadamore@1220: Type result = attribTree(tree, env, new ResultInfo(TYP, pt)); duke@1: return result; duke@1: } duke@1: duke@1: /** Derived visitor method: attribute a statement or definition tree. duke@1: */ duke@1: public Type attribStat(JCTree tree, Env env) { mcimadamore@1220: return attribTree(tree, env, statInfo); duke@1: } duke@1: duke@1: /** Attribute a list of expressions, returning a list of types. duke@1: */ duke@1: List attribExprs(List trees, Env env, Type pt) { duke@1: ListBuffer ts = new ListBuffer(); duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) duke@1: ts.append(attribExpr(l.head, env, pt)); duke@1: return ts.toList(); duke@1: } duke@1: duke@1: /** Attribute a list of statements, returning nothing. duke@1: */ duke@1: void attribStats(List trees, Env env) { duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) duke@1: attribStat(l.head, env); duke@1: } duke@1: duke@1: /** Attribute the arguments in a method call, returning a list of types. duke@1: */ duke@1: List attribArgs(List trees, Env env) { duke@1: ListBuffer argtypes = new ListBuffer(); mcimadamore@1347: for (JCExpression arg : trees) { mcimadamore@1347: Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ? mcimadamore@1347: deferredAttr.new DeferredType(arg, env) : mcimadamore@1347: chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly)); mcimadamore@1347: argtypes.append(argtype); mcimadamore@1347: } duke@1: return argtypes.toList(); duke@1: } duke@1: duke@1: /** Attribute a type argument list, returning a list of types. jrose@267: * Caller is responsible for calling checkRefTypes. duke@1: */ jrose@267: List attribAnyTypes(List trees, Env env) { duke@1: ListBuffer argtypes = new ListBuffer(); duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) jrose@267: argtypes.append(attribType(l.head, env)); duke@1: return argtypes.toList(); duke@1: } duke@1: jrose@267: /** Attribute a type argument list, returning a list of types. jrose@267: * Check that all the types are references. jrose@267: */ jrose@267: List attribTypes(List trees, Env env) { jrose@267: List types = attribAnyTypes(trees, env); jrose@267: return chk.checkRefTypes(trees, types); jrose@267: } duke@1: duke@1: /** duke@1: * Attribute type variables (of generic classes or methods). duke@1: * Compound types are attributed later in attribBounds. duke@1: * @param typarams the type variables to enter duke@1: * @param env the current environment duke@1: */ duke@1: void attribTypeVariables(List typarams, Env env) { duke@1: for (JCTypeParameter tvar : typarams) { duke@1: TypeVar a = (TypeVar)tvar.type; mcimadamore@42: a.tsym.flags_field |= UNATTRIBUTED; mcimadamore@42: a.bound = Type.noType; duke@1: if (!tvar.bounds.isEmpty()) { duke@1: List bounds = List.of(attribType(tvar.bounds.head, env)); duke@1: for (JCExpression bound : tvar.bounds.tail) duke@1: bounds = bounds.prepend(attribType(bound, env)); duke@1: types.setBounds(a, bounds.reverse()); duke@1: } else { duke@1: // if no bounds are given, assume a single bound of duke@1: // java.lang.Object. duke@1: types.setBounds(a, List.of(syms.objectType)); duke@1: } mcimadamore@42: a.tsym.flags_field &= ~UNATTRIBUTED; duke@1: } mcimadamore@1436: for (JCTypeParameter tvar : typarams) { duke@1: chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); duke@1: } duke@1: } duke@1: duke@1: /** duke@1: * Attribute the type references in a list of annotations. duke@1: */ duke@1: void attribAnnotationTypes(List annotations, duke@1: Env env) { duke@1: for (List al = annotations; al.nonEmpty(); al = al.tail) { duke@1: JCAnnotation a = al.head; duke@1: attribType(a.annotationType, env); duke@1: } duke@1: } duke@1: jjg@841: /** jjg@841: * Attribute a "lazy constant value". jjg@841: * @param env The env for the const value jjg@841: * @param initializer The initializer for the const value jjg@841: * @param type The expected type, or null jjg@1358: * @see VarSymbol#setLazyConstValue jjg@841: */ jjg@841: public Object attribLazyConstantValue(Env env, jjg@841: JCTree.JCExpression initializer, jjg@841: Type type) { jjg@841: jjg@841: // in case no lint value has been set up for this env, scan up jjg@841: // env stack looking for smallest enclosing env for which it is set. jjg@841: Env lintEnv = env; jjg@841: while (lintEnv.info.lint == null) jjg@841: lintEnv = lintEnv.next; jjg@841: jjg@841: // Having found the enclosing lint value, we can initialize the lint value for this class jjg@1078: // ... but ... jjg@1078: // There's a problem with evaluating annotations in the right order, such that jjg@1078: // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be jjg@1078: // null. In that case, calling augment will throw an NPE. To avoid this, for now we jjg@1078: // revert to the jdk 6 behavior and ignore the (unevaluated) attributes. jfranck@1313: if (env.info.enclVar.annotations.pendingCompletion()) { jjg@1078: env.info.lint = lintEnv.info.lint; jfranck@1313: } else { jfranck@1313: env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations, jfranck@1313: env.info.enclVar.flags()); jfranck@1313: } jjg@841: jjg@841: Lint prevLint = chk.setLint(env.info.lint); jjg@841: JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); jjg@841: jjg@841: try { jjg@841: Type itype = attribExpr(initializer, env, type); jjg@841: if (itype.constValue() != null) jjg@841: return coerce(itype, type).constValue(); jjg@841: else jjg@841: return null; jjg@841: } finally { jjg@841: env.info.lint = prevLint; jjg@841: log.useSource(prevSource); jjg@841: } jjg@841: } jjg@841: duke@1: /** Attribute type reference in an `extends' or `implements' clause. mcimadamore@537: * Supertypes of anonymous inner classes are usually already attributed. duke@1: * duke@1: * @param tree The tree making up the type reference. duke@1: * @param env The environment current at the reference. duke@1: * @param classExpected true if only a class is expected here. duke@1: * @param interfaceExpected true if only an interface is expected here. duke@1: */ duke@1: Type attribBase(JCTree tree, duke@1: Env env, duke@1: boolean classExpected, duke@1: boolean interfaceExpected, duke@1: boolean checkExtensible) { mcimadamore@537: Type t = tree.type != null ? mcimadamore@537: tree.type : mcimadamore@537: attribType(tree, env); duke@1: return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); duke@1: } duke@1: Type checkBase(Type t, duke@1: JCTree tree, duke@1: Env env, duke@1: boolean classExpected, duke@1: boolean interfaceExpected, duke@1: boolean checkExtensible) { jjg@664: if (t.isErroneous()) jjg@664: return t; jjg@1374: if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { duke@1: // check that type variable is already visible duke@1: if (t.getUpperBound() == null) { duke@1: log.error(tree.pos(), "illegal.forward.ref"); jjg@110: return types.createErrorType(t); duke@1: } duke@1: } else { duke@1: t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics); duke@1: } duke@1: if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { duke@1: log.error(tree.pos(), "intf.expected.here"); duke@1: // return errType is necessary since otherwise there might duke@1: // be undetected cycles which cause attribution to loop jjg@110: return types.createErrorType(t); duke@1: } else if (checkExtensible && duke@1: classExpected && duke@1: (t.tsym.flags() & INTERFACE) != 0) { jjg@664: log.error(tree.pos(), "no.intf.expected.here"); jjg@110: return types.createErrorType(t); duke@1: } duke@1: if (checkExtensible && duke@1: ((t.tsym.flags() & FINAL) != 0)) { duke@1: log.error(tree.pos(), duke@1: "cant.inherit.from.final", t.tsym); duke@1: } duke@1: chk.checkNonCyclic(tree.pos(), t); duke@1: return t; duke@1: } duke@1: mcimadamore@1269: Type attribIdentAsEnumType(Env env, JCIdent id) { mcimadamore@1269: Assert.check((env.enclClass.sym.flags() & ENUM) != 0); mcimadamore@1269: id.type = env.info.scope.owner.type; mcimadamore@1269: id.sym = env.info.scope.owner; mcimadamore@1269: return id.type; mcimadamore@1269: } mcimadamore@1269: duke@1: public void visitClassDef(JCClassDecl tree) { duke@1: // Local classes have not been entered yet, so we need to do it now: duke@1: if ((env.info.scope.owner.kind & (VAR | MTH)) != 0) duke@1: enter.classEnter(tree, env); duke@1: duke@1: ClassSymbol c = tree.sym; duke@1: if (c == null) { duke@1: // exit in case something drastic went wrong during enter. duke@1: result = null; duke@1: } else { duke@1: // make sure class has been completed: duke@1: c.complete(); duke@1: duke@1: // If this class appears as an anonymous class duke@1: // in a superclass constructor call where duke@1: // no explicit outer instance is given, duke@1: // disable implicit outer instance from being passed. duke@1: // (This would be an illegal access to "this before super"). duke@1: if (env.info.isSelfCall && jjg@1127: env.tree.hasTag(NEWCLASS) && duke@1: ((JCNewClass) env.tree).encl == null) duke@1: { duke@1: c.flags_field |= NOOUTERTHIS; duke@1: } duke@1: attribClass(tree.pos(), c); duke@1: result = tree.type = c.type; duke@1: } duke@1: } duke@1: duke@1: public void visitMethodDef(JCMethodDecl tree) { duke@1: MethodSymbol m = tree.sym; mcimadamore@1366: boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; duke@1: jfranck@1313: Lint lint = env.info.lint.augment(m.annotations, m.flags()); duke@1: Lint prevLint = chk.setLint(lint); mcimadamore@795: MethodSymbol prevMethod = chk.setMethod(m); duke@1: try { mcimadamore@852: deferredLintHandler.flush(tree.pos()); duke@1: chk.checkDeprecatedAnnotation(tree.pos(), m); duke@1: mcimadamore@1436: // Create a new environment with local scope mcimadamore@1436: // for attributing the method. mcimadamore@1436: Env localEnv = memberEnter.methodEnv(tree, env); mcimadamore@1436: localEnv.info.lint = lint; mcimadamore@1436: mcimadamore@1436: attribStats(tree.typarams, localEnv); duke@1: duke@1: // If we override any other methods, check that we do so properly. duke@1: // JLS ??? mcimadamore@858: if (m.isStatic()) { mcimadamore@858: chk.checkHideClashes(tree.pos(), env.enclClass.type, m); mcimadamore@858: } else { mcimadamore@858: chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); mcimadamore@858: } duke@1: chk.checkOverride(tree, m); duke@1: mcimadamore@1415: if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { mcimadamore@1393: log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location()); mcimadamore@1393: } mcimadamore@1393: duke@1: // Enter all type parameters into the local method scope. duke@1: for (List l = tree.typarams; l.nonEmpty(); l = l.tail) duke@1: localEnv.info.scope.enterIfAbsent(l.head.type.tsym); duke@1: duke@1: ClassSymbol owner = env.enclClass.sym; duke@1: if ((owner.flags() & ANNOTATION) != 0 && duke@1: tree.params.nonEmpty()) duke@1: log.error(tree.params.head.pos(), duke@1: "intf.annotation.members.cant.have.params"); duke@1: duke@1: // Attribute all value parameters. duke@1: for (List l = tree.params; l.nonEmpty(); l = l.tail) { duke@1: attribStat(l.head, localEnv); duke@1: } duke@1: mcimadamore@795: chk.checkVarargsMethodDecl(localEnv, tree); mcimadamore@580: duke@1: // Check that type parameters are well-formed. mcimadamore@122: chk.validate(tree.typarams, localEnv); duke@1: duke@1: // Check that result type is well-formed. mcimadamore@122: chk.validate(tree.restype, localEnv); mcimadamore@629: mcimadamore@629: // annotation method checks mcimadamore@629: if ((owner.flags() & ANNOTATION) != 0) { mcimadamore@629: // annotation method cannot have throws clause mcimadamore@629: if (tree.thrown.nonEmpty()) { mcimadamore@629: log.error(tree.thrown.head.pos(), mcimadamore@629: "throws.not.allowed.in.intf.annotation"); mcimadamore@629: } mcimadamore@629: // annotation method cannot declare type-parameters mcimadamore@629: if (tree.typarams.nonEmpty()) { mcimadamore@629: log.error(tree.typarams.head.pos(), mcimadamore@629: "intf.annotation.members.cant.have.type.params"); mcimadamore@629: } mcimadamore@629: // validate annotation method's return type (could be an annotation type) duke@1: chk.validateAnnotationType(tree.restype); mcimadamore@629: // ensure that annotation method does not clash with members of Object/Annotation duke@1: chk.validateAnnotationMethod(tree.pos(), m); duke@1: mcimadamore@634: if (tree.defaultValue != null) { mcimadamore@634: // if default value is an annotation, check it is a well-formed mcimadamore@634: // annotation value (e.g. no duplicate values, no missing values, etc.) mcimadamore@634: chk.validateAnnotationTree(tree.defaultValue); mcimadamore@634: } mcimadamore@629: } mcimadamore@629: duke@1: for (List l = tree.thrown; l.nonEmpty(); l = l.tail) duke@1: chk.checkType(l.head.pos(), l.head.type, syms.throwableType); duke@1: duke@1: if (tree.body == null) { duke@1: // Empty bodies are only allowed for duke@1: // abstract, native, or interface methods, or for methods duke@1: // in a retrofit signature class. mcimadamore@1366: if (isDefaultMethod || ((owner.flags() & INTERFACE) == 0 && mcimadamore@1366: (tree.mods.flags & (ABSTRACT | NATIVE)) == 0) && duke@1: !relax) duke@1: log.error(tree.pos(), "missing.meth.body.or.decl.abstract"); duke@1: if (tree.defaultValue != null) { duke@1: if ((owner.flags() & ANNOTATION) == 0) duke@1: log.error(tree.pos(), duke@1: "default.allowed.in.intf.annotation.member"); duke@1: } mcimadamore@1393: } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) { mcimadamore@1393: if ((owner.flags() & INTERFACE) != 0) { mcimadamore@1393: log.error(tree.body.pos(), "intf.meth.cant.have.body"); mcimadamore@1393: } else { mcimadamore@1393: log.error(tree.pos(), "abstract.meth.cant.have.body"); mcimadamore@1393: } duke@1: } else if ((tree.mods.flags & NATIVE) != 0) { duke@1: log.error(tree.pos(), "native.meth.cant.have.body"); duke@1: } else { duke@1: // Add an implicit super() call unless an explicit call to duke@1: // super(...) or this(...) is given duke@1: // or we are compiling class java.lang.Object. duke@1: if (tree.name == names.init && owner.type != syms.objectType) { duke@1: JCBlock body = tree.body; duke@1: if (body.stats.isEmpty() || duke@1: !TreeInfo.isSelfCall(body.stats.head)) { duke@1: body.stats = body.stats. duke@1: prepend(memberEnter.SuperCall(make.at(body.pos), duke@1: List.nil(), duke@1: List.nil(), duke@1: false)); duke@1: } else if ((env.enclClass.sym.flags() & ENUM) != 0 && duke@1: (tree.mods.flags & GENERATEDCONSTR) == 0 && duke@1: TreeInfo.isSuperCall(body.stats.head)) { duke@1: // enum constructors are not allowed to call super duke@1: // directly, so make sure there aren't any super calls duke@1: // in enum constructors, except in the compiler duke@1: // generated one. duke@1: log.error(tree.body.stats.head.pos(), duke@1: "call.to.super.not.allowed.in.enum.ctor", duke@1: env.enclClass.sym); duke@1: } duke@1: } duke@1: duke@1: // Attribute method body. duke@1: attribStat(tree.body, localEnv); duke@1: } duke@1: localEnv.info.scope.leave(); duke@1: result = tree.type = m.type; duke@1: chk.validateAnnotations(tree.mods.annotations, m); duke@1: } duke@1: finally { duke@1: chk.setLint(prevLint); mcimadamore@795: chk.setMethod(prevMethod); duke@1: } duke@1: } duke@1: duke@1: public void visitVarDef(JCVariableDecl tree) { duke@1: // Local variables have not been entered yet, so we need to do it now: duke@1: if (env.info.scope.owner.kind == MTH) { duke@1: if (tree.sym != null) { duke@1: // parameters have already been entered duke@1: env.info.scope.enter(tree.sym); duke@1: } else { duke@1: memberEnter.memberEnter(tree, env); duke@1: annotate.flush(); duke@1: } duke@1: } duke@1: duke@1: VarSymbol v = tree.sym; jfranck@1313: Lint lint = env.info.lint.augment(v.annotations, v.flags()); duke@1: Lint prevLint = chk.setLint(lint); duke@1: mcimadamore@165: // Check that the variable's declared type is well-formed. mcimadamore@165: chk.validate(tree.vartype, env); mcimadamore@852: deferredLintHandler.flush(tree.pos()); mcimadamore@165: duke@1: try { duke@1: chk.checkDeprecatedAnnotation(tree.pos(), v); duke@1: duke@1: if (tree.init != null) { mcimadamore@1348: if ((v.flags_field & FINAL) != 0 && mcimadamore@1348: !tree.init.hasTag(NEWCLASS) && mcimadamore@1352: !tree.init.hasTag(LAMBDA) && mcimadamore@1352: !tree.init.hasTag(REFERENCE)) { duke@1: // In this case, `v' is final. Ensure that it's initializer is duke@1: // evaluated. duke@1: v.getConstValue(); // ensure initializer is evaluated duke@1: } else { duke@1: // Attribute initializer in a new environment duke@1: // with the declared variable as owner. duke@1: // Check that initializer conforms to variable's declared type. duke@1: Env initEnv = memberEnter.initEnv(tree, env); duke@1: initEnv.info.lint = lint; duke@1: // In order to catch self-references, we set the variable's duke@1: // declaration position to maximal possible value, effectively duke@1: // marking the variable as undefined. mcimadamore@94: initEnv.info.enclVar = v; duke@1: attribExpr(tree.init, initEnv, v.type); duke@1: } duke@1: } duke@1: result = tree.type = v.type; duke@1: chk.validateAnnotations(tree.mods.annotations, v); duke@1: } duke@1: finally { duke@1: chk.setLint(prevLint); duke@1: } duke@1: } duke@1: duke@1: public void visitSkip(JCSkip tree) { duke@1: result = null; duke@1: } duke@1: duke@1: public void visitBlock(JCBlock tree) { duke@1: if (env.info.scope.owner.kind == TYP) { duke@1: // Block is a static or instance initializer; duke@1: // let the owner of the environment be a freshly duke@1: // created BLOCK-method. duke@1: Env localEnv = duke@1: env.dup(tree, env.info.dup(env.info.scope.dupUnshared())); duke@1: localEnv.info.scope.owner = duke@1: new MethodSymbol(tree.flags | BLOCK, names.empty, null, duke@1: env.info.scope.owner); duke@1: if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; duke@1: attribStats(tree.stats, localEnv); duke@1: } else { duke@1: // Create a new local environment with a local scope. duke@1: Env localEnv = duke@1: env.dup(tree, env.info.dup(env.info.scope.dup())); mcimadamore@1347: try { mcimadamore@1347: attribStats(tree.stats, localEnv); mcimadamore@1347: } finally { mcimadamore@1347: localEnv.info.scope.leave(); mcimadamore@1347: } duke@1: } duke@1: result = null; duke@1: } duke@1: duke@1: public void visitDoLoop(JCDoWhileLoop tree) { duke@1: attribStat(tree.body, env.dup(tree)); duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitWhileLoop(JCWhileLoop tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: attribStat(tree.body, env.dup(tree)); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitForLoop(JCForLoop tree) { duke@1: Env loopEnv = duke@1: env.dup(env.tree, env.info.dup(env.info.scope.dup())); mcimadamore@1347: try { mcimadamore@1347: attribStats(tree.init, loopEnv); mcimadamore@1347: if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType); mcimadamore@1347: loopEnv.tree = tree; // before, we were not in loop! mcimadamore@1347: attribStats(tree.step, loopEnv); mcimadamore@1347: attribStat(tree.body, loopEnv); mcimadamore@1347: result = null; mcimadamore@1347: } mcimadamore@1347: finally { mcimadamore@1347: loopEnv.info.scope.leave(); mcimadamore@1347: } duke@1: } duke@1: duke@1: public void visitForeachLoop(JCEnhancedForLoop tree) { duke@1: Env loopEnv = duke@1: env.dup(env.tree, env.info.dup(env.info.scope.dup())); mcimadamore@1347: try { mcimadamore@1347: attribStat(tree.var, loopEnv); mcimadamore@1347: Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv)); mcimadamore@1347: chk.checkNonVoid(tree.pos(), exprType); mcimadamore@1347: Type elemtype = types.elemtype(exprType); // perhaps expr is an array? mcimadamore@1347: if (elemtype == null) { mcimadamore@1347: // or perhaps expr implements Iterable? mcimadamore@1347: Type base = types.asSuper(exprType, syms.iterableType.tsym); mcimadamore@1347: if (base == null) { mcimadamore@1347: log.error(tree.expr.pos(), mcimadamore@1347: "foreach.not.applicable.to.type", mcimadamore@1347: exprType, mcimadamore@1347: diags.fragment("type.req.array.or.iterable")); mcimadamore@1347: elemtype = types.createErrorType(exprType); mcimadamore@1347: } else { mcimadamore@1347: List iterableParams = base.allparams(); mcimadamore@1347: elemtype = iterableParams.isEmpty() mcimadamore@1347: ? syms.objectType mcimadamore@1347: : types.upperBound(iterableParams.head); mcimadamore@1347: } duke@1: } mcimadamore@1347: chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); mcimadamore@1347: loopEnv.tree = tree; // before, we were not in loop! mcimadamore@1347: attribStat(tree.body, loopEnv); mcimadamore@1347: result = null; duke@1: } mcimadamore@1347: finally { mcimadamore@1347: loopEnv.info.scope.leave(); mcimadamore@1347: } duke@1: } duke@1: duke@1: public void visitLabelled(JCLabeledStatement tree) { duke@1: // Check that label is not used in an enclosing statement duke@1: Env env1 = env; jjg@1127: while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { jjg@1127: if (env1.tree.hasTag(LABELLED) && duke@1: ((JCLabeledStatement) env1.tree).label == tree.label) { duke@1: log.error(tree.pos(), "label.already.in.use", duke@1: tree.label); duke@1: break; duke@1: } duke@1: env1 = env1.next; duke@1: } duke@1: duke@1: attribStat(tree.body, env.dup(tree)); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitSwitch(JCSwitch tree) { duke@1: Type seltype = attribExpr(tree.selector, env); duke@1: duke@1: Env switchEnv = duke@1: env.dup(tree, env.info.dup(env.info.scope.dup())); duke@1: mcimadamore@1347: try { mcimadamore@1347: mcimadamore@1347: boolean enumSwitch = mcimadamore@1347: allowEnums && mcimadamore@1347: (seltype.tsym.flags() & Flags.ENUM) != 0; mcimadamore@1347: boolean stringSwitch = false; mcimadamore@1347: if (types.isSameType(seltype, syms.stringType)) { mcimadamore@1347: if (allowStringsInSwitch) { mcimadamore@1347: stringSwitch = true; mcimadamore@1347: } else { mcimadamore@1347: log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName); mcimadamore@1347: } darcy@430: } mcimadamore@1347: if (!enumSwitch && !stringSwitch) mcimadamore@1347: seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType); mcimadamore@1347: mcimadamore@1347: // Attribute all cases and mcimadamore@1347: // check that there are no duplicate case labels or default clauses. mcimadamore@1347: Set labels = new HashSet(); // The set of case labels. mcimadamore@1347: boolean hasDefault = false; // Is there a default label? mcimadamore@1347: for (List l = tree.cases; l.nonEmpty(); l = l.tail) { mcimadamore@1347: JCCase c = l.head; mcimadamore@1347: Env caseEnv = mcimadamore@1347: switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup())); mcimadamore@1347: try { mcimadamore@1347: if (c.pat != null) { mcimadamore@1347: if (enumSwitch) { mcimadamore@1347: Symbol sym = enumConstant(c.pat, seltype); mcimadamore@1347: if (sym == null) { mcimadamore@1347: log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum"); mcimadamore@1347: } else if (!labels.add(sym)) { mcimadamore@1347: log.error(c.pos(), "duplicate.case.label"); mcimadamore@1347: } mcimadamore@1347: } else { mcimadamore@1347: Type pattype = attribExpr(c.pat, switchEnv, seltype); jjg@1374: if (!pattype.hasTag(ERROR)) { mcimadamore@1347: if (pattype.constValue() == null) { mcimadamore@1347: log.error(c.pat.pos(), mcimadamore@1347: (stringSwitch ? "string.const.req" : "const.expr.req")); mcimadamore@1347: } else if (labels.contains(pattype.constValue())) { mcimadamore@1347: log.error(c.pos(), "duplicate.case.label"); mcimadamore@1347: } else { mcimadamore@1347: labels.add(pattype.constValue()); mcimadamore@1347: } mcimadamore@1347: } mcimadamore@1347: } mcimadamore@1347: } else if (hasDefault) { mcimadamore@1347: log.error(c.pos(), "duplicate.default.label"); mcimadamore@1347: } else { mcimadamore@1347: hasDefault = true; mcimadamore@1347: } mcimadamore@1347: attribStats(c.stats, caseEnv); mcimadamore@1347: } finally { mcimadamore@1347: caseEnv.info.scope.leave(); mcimadamore@1347: addVars(c.stats, switchEnv.info.scope); mcimadamore@1347: } mcimadamore@1347: } mcimadamore@1347: mcimadamore@1347: result = null; darcy@430: } mcimadamore@1347: finally { mcimadamore@1347: switchEnv.info.scope.leave(); duke@1: } duke@1: } duke@1: // where duke@1: /** Add any variables defined in stats to the switch scope. */ duke@1: private static void addVars(List stats, Scope switchScope) { duke@1: for (;stats.nonEmpty(); stats = stats.tail) { duke@1: JCTree stat = stats.head; jjg@1127: if (stat.hasTag(VARDEF)) duke@1: switchScope.enter(((JCVariableDecl) stat).sym); duke@1: } duke@1: } duke@1: // where duke@1: /** Return the selected enumeration constant symbol, or null. */ duke@1: private Symbol enumConstant(JCTree tree, Type enumType) { jjg@1127: if (!tree.hasTag(IDENT)) { duke@1: log.error(tree.pos(), "enum.label.must.be.unqualified.enum"); duke@1: return syms.errSymbol; duke@1: } duke@1: JCIdent ident = (JCIdent)tree; duke@1: Name name = ident.name; duke@1: for (Scope.Entry e = enumType.tsym.members().lookup(name); duke@1: e.scope != null; e = e.next()) { duke@1: if (e.sym.kind == VAR) { duke@1: Symbol s = ident.sym = e.sym; duke@1: ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated duke@1: ident.type = s.type; duke@1: return ((s.flags_field & Flags.ENUM) == 0) duke@1: ? null : s; duke@1: } duke@1: } duke@1: return null; duke@1: } duke@1: duke@1: public void visitSynchronized(JCSynchronized tree) { duke@1: chk.checkRefType(tree.pos(), attribExpr(tree.lock, env)); duke@1: attribStat(tree.body, env); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitTry(JCTry tree) { darcy@609: // Create a new local environment with a local darcy@609: Env localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); mcimadamore@1347: try { mcimadamore@1347: boolean isTryWithResource = tree.resources.nonEmpty(); mcimadamore@1347: // Create a nested environment for attributing the try block if needed mcimadamore@1347: Env tryEnv = isTryWithResource ? mcimadamore@1347: env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : mcimadamore@1347: localEnv; mcimadamore@1347: try { mcimadamore@1347: // Attribute resource declarations mcimadamore@1347: for (JCTree resource : tree.resources) { mcimadamore@1347: CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { mcimadamore@1347: @Override mcimadamore@1347: public void report(DiagnosticPosition pos, JCDiagnostic details) { mcimadamore@1347: chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details)); mcimadamore@1347: } mcimadamore@1347: }; mcimadamore@1347: ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext); mcimadamore@1347: if (resource.hasTag(VARDEF)) { mcimadamore@1347: attribStat(resource, tryEnv); mcimadamore@1347: twrResult.check(resource, resource.type); mcimadamore@1347: mcimadamore@1347: //check that resource type cannot throw InterruptedException mcimadamore@1347: checkAutoCloseable(resource.pos(), localEnv, resource.type); mcimadamore@1347: mcimadamore@1347: VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource); mcimadamore@1347: var.setData(ElementKind.RESOURCE_VARIABLE); mcimadamore@1347: } else { mcimadamore@1347: attribTree(resource, tryEnv, twrResult); mcimadamore@1347: } mcimadamore@1238: } mcimadamore@1347: // Attribute body mcimadamore@1347: attribStat(tree.body, tryEnv); mcimadamore@1347: } finally { mcimadamore@1347: if (isTryWithResource) mcimadamore@1347: tryEnv.info.scope.leave(); darcy@609: } mcimadamore@1347: mcimadamore@1347: // Attribute catch clauses mcimadamore@1347: for (List l = tree.catchers; l.nonEmpty(); l = l.tail) { mcimadamore@1347: JCCatch c = l.head; mcimadamore@1347: Env catchEnv = mcimadamore@1347: localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); mcimadamore@1347: try { mcimadamore@1347: Type ctype = attribStat(c.param, catchEnv); mcimadamore@1347: if (TreeInfo.isMultiCatch(c)) { mcimadamore@1347: //multi-catch parameter is implicitly marked as final mcimadamore@1347: c.param.sym.flags_field |= FINAL | UNION; mcimadamore@1347: } mcimadamore@1347: if (c.param.sym.kind == Kinds.VAR) { mcimadamore@1347: c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); mcimadamore@1347: } mcimadamore@1347: chk.checkType(c.param.vartype.pos(), mcimadamore@1347: chk.checkClassType(c.param.vartype.pos(), ctype), mcimadamore@1347: syms.throwableType); mcimadamore@1347: attribStat(c.body, catchEnv); mcimadamore@1347: } finally { mcimadamore@1347: catchEnv.info.scope.leave(); mcimadamore@1347: } mcimadamore@1347: } mcimadamore@1347: mcimadamore@1347: // Attribute finalizer mcimadamore@1347: if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); mcimadamore@1347: result = null; darcy@609: } mcimadamore@1347: finally { mcimadamore@1347: localEnv.info.scope.leave(); duke@1: } duke@1: } duke@1: mcimadamore@951: void checkAutoCloseable(DiagnosticPosition pos, Env env, Type resource) { mcimadamore@951: if (!resource.isErroneous() && darcy@1207: types.asSuper(resource, syms.autoCloseableType.tsym) != null && darcy@1207: !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself mcimadamore@951: Symbol close = syms.noSymbol; jjg@1406: Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log); mcimadamore@951: try { mcimadamore@951: close = rs.resolveQualifiedMethod(pos, mcimadamore@951: env, mcimadamore@951: resource, mcimadamore@951: names.close, mcimadamore@951: List.nil(), mcimadamore@951: List.nil()); mcimadamore@951: } mcimadamore@951: finally { jjg@1406: log.popDiagnosticHandler(discardHandler); mcimadamore@951: } mcimadamore@951: if (close.kind == MTH && mcimadamore@951: close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && mcimadamore@951: chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) && mcimadamore@951: env.info.lint.isEnabled(LintCategory.TRY)) { mcimadamore@951: log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource); mcimadamore@951: } mcimadamore@951: } mcimadamore@951: } mcimadamore@951: duke@1: public void visitConditional(JCConditional tree) { mcimadamore@1347: Type condtype = attribExpr(tree.cond, env, syms.booleanType); mcimadamore@1347: mcimadamore@1510: tree.polyKind = (!allowPoly || jjg@1374: pt().hasTag(NONE) && pt() != Type.recoveryType || mcimadamore@1510: isBooleanOrNumeric(env, tree)) ? mcimadamore@1510: PolyKind.STANDALONE : PolyKind.POLY; mcimadamore@1510: mcimadamore@1510: if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { mcimadamore@1347: //cannot get here (i.e. it means we are returning from void method - which is already an error) mcimadamore@1415: resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void")); mcimadamore@1347: result = tree.type = types.createErrorType(resultInfo.pt); mcimadamore@1347: return; mcimadamore@1347: } mcimadamore@1347: mcimadamore@1510: ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? mcimadamore@1347: unknownExprInfo : mcimadamore@1415: resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) { mcimadamore@1347: //this will use enclosing check context to check compatibility of mcimadamore@1347: //subexpression against target type; if we are in a method check context, mcimadamore@1347: //depending on whether boxing is allowed, we could have incompatibilities mcimadamore@1347: @Override mcimadamore@1347: public void report(DiagnosticPosition pos, JCDiagnostic details) { mcimadamore@1347: enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details)); mcimadamore@1347: } mcimadamore@1347: }); mcimadamore@1347: mcimadamore@1347: Type truetype = attribTree(tree.truepart, env, condInfo); mcimadamore@1347: Type falsetype = attribTree(tree.falsepart, env, condInfo); mcimadamore@1347: mcimadamore@1510: Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt(); mcimadamore@1347: if (condtype.constValue() != null && mcimadamore@1347: truetype.constValue() != null && mcimadamore@1456: falsetype.constValue() != null && mcimadamore@1456: !owntype.hasTag(NONE)) { mcimadamore@1347: //constant folding mcimadamore@1347: owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); mcimadamore@1347: } mcimadamore@1347: result = check(tree, owntype, VAL, resultInfo); duke@1: } duke@1: //where mcimadamore@1347: private boolean isBooleanOrNumeric(Env env, JCExpression tree) { mcimadamore@1347: switch (tree.getTag()) { jjg@1374: case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || mcimadamore@1415: ((JCLiteral)tree).typetag == BOOLEAN || mcimadamore@1415: ((JCLiteral)tree).typetag == BOT; mcimadamore@1347: case LAMBDA: case REFERENCE: return false; mcimadamore@1347: case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); mcimadamore@1347: case CONDEXPR: mcimadamore@1347: JCConditional condTree = (JCConditional)tree; mcimadamore@1347: return isBooleanOrNumeric(env, condTree.truepart) && mcimadamore@1347: isBooleanOrNumeric(env, condTree.falsepart); mcimadamore@1510: case APPLY: mcimadamore@1510: JCMethodInvocation speculativeMethodTree = mcimadamore@1510: (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo); mcimadamore@1510: Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType(); mcimadamore@1510: return types.unboxedTypeOrType(owntype).isPrimitive(); mcimadamore@1510: case NEWCLASS: mcimadamore@1510: JCExpression className = mcimadamore@1510: removeClassParams.translate(((JCNewClass)tree).clazz); mcimadamore@1510: JCExpression speculativeNewClassTree = mcimadamore@1510: (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo); mcimadamore@1510: return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive(); mcimadamore@1347: default: mcimadamore@1347: Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type; mcimadamore@1347: speculativeType = types.unboxedTypeOrType(speculativeType); jjg@1374: return speculativeType.isPrimitive(); mcimadamore@1347: } mcimadamore@1347: } mcimadamore@1510: //where mcimadamore@1510: TreeTranslator removeClassParams = new TreeTranslator() { mcimadamore@1510: @Override mcimadamore@1510: public void visitTypeApply(JCTypeApply tree) { mcimadamore@1510: result = translate(tree.clazz); mcimadamore@1510: } mcimadamore@1510: }; mcimadamore@1347: duke@1: /** Compute the type of a conditional expression, after mcimadamore@1347: * checking that it exists. See JLS 15.25. Does not take into duke@1: * account the special case where condition and both arms duke@1: * are constants. duke@1: * duke@1: * @param pos The source position to be used for error duke@1: * diagnostics. duke@1: * @param thentype The type of the expression's then-part. duke@1: * @param elsetype The type of the expression's else-part. duke@1: */ mcimadamore@1347: private Type condType(DiagnosticPosition pos, duke@1: Type thentype, Type elsetype) { duke@1: // If same type, that is the result duke@1: if (types.isSameType(thentype, elsetype)) duke@1: return thentype.baseType(); duke@1: duke@1: Type thenUnboxed = (!allowBoxing || thentype.isPrimitive()) duke@1: ? thentype : types.unboxedType(thentype); duke@1: Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive()) duke@1: ? elsetype : types.unboxedType(elsetype); duke@1: duke@1: // Otherwise, if both arms can be converted to a numeric duke@1: // type, return the least numeric type that fits both arms duke@1: // (i.e. return larger of the two, or return int if one duke@1: // arm is short, the other is char). duke@1: if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) { duke@1: // If one arm has an integer subrange type (i.e., byte, duke@1: // short, or char), and the other is an integer constant duke@1: // that fits into the subrange, return the subrange type. jjg@1374: if (thenUnboxed.getTag().isStrictSubRangeOf(INT) && elseUnboxed.hasTag(INT) && duke@1: types.isAssignable(elseUnboxed, thenUnboxed)) duke@1: return thenUnboxed.baseType(); jjg@1374: if (elseUnboxed.getTag().isStrictSubRangeOf(INT) && thenUnboxed.hasTag(INT) && duke@1: types.isAssignable(thenUnboxed, elseUnboxed)) duke@1: return elseUnboxed.baseType(); duke@1: jjg@1374: for (TypeTag tag : TypeTag.values()) { jjg@1374: if (tag.ordinal() >= TypeTag.getTypeTagCount()) break; jjg@1374: Type candidate = syms.typeOfTag[tag.ordinal()]; jjg@1374: if (candidate != null && jjg@1374: candidate.isPrimitive() && jjg@1374: types.isSubtype(thenUnboxed, candidate) && duke@1: types.isSubtype(elseUnboxed, candidate)) duke@1: return candidate; duke@1: } duke@1: } duke@1: duke@1: // Those were all the cases that could result in a primitive duke@1: if (allowBoxing) { duke@1: if (thentype.isPrimitive()) duke@1: thentype = types.boxedClass(thentype).type; duke@1: if (elsetype.isPrimitive()) duke@1: elsetype = types.boxedClass(elsetype).type; duke@1: } duke@1: duke@1: if (types.isSubtype(thentype, elsetype)) duke@1: return elsetype.baseType(); duke@1: if (types.isSubtype(elsetype, thentype)) duke@1: return thentype.baseType(); duke@1: jjg@1374: if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) { duke@1: log.error(pos, "neither.conditional.subtype", duke@1: thentype, elsetype); duke@1: return thentype.baseType(); duke@1: } duke@1: duke@1: // both are known to be reference types. The result is duke@1: // lub(thentype,elsetype). This cannot fail, as it will duke@1: // always be possible to infer "Object" if nothing better. duke@1: return types.lub(thentype.baseType(), elsetype.baseType()); duke@1: } duke@1: duke@1: public void visitIf(JCIf tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: attribStat(tree.thenpart, env); duke@1: if (tree.elsepart != null) duke@1: attribStat(tree.elsepart, env); duke@1: chk.checkEmptyIf(tree); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitExec(JCExpressionStatement tree) { mcimadamore@674: //a fresh environment is required for 292 inference to work properly --- mcimadamore@674: //see Infer.instantiatePolymorphicSignatureInstance() mcimadamore@674: Env localEnv = env.dup(tree); mcimadamore@674: attribExpr(tree.expr, localEnv); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitBreak(JCBreak tree) { duke@1: tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitContinue(JCContinue tree) { duke@1: tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); duke@1: result = null; duke@1: } duke@1: //where duke@1: /** Return the target of a break or continue statement, if it exists, duke@1: * report an error if not. duke@1: * Note: The target of a labelled break or continue is the duke@1: * (non-labelled) statement tree referred to by the label, duke@1: * not the tree representing the labelled statement itself. duke@1: * duke@1: * @param pos The position to be used for error diagnostics duke@1: * @param tag The tag of the jump statement. This is either duke@1: * Tree.BREAK or Tree.CONTINUE. duke@1: * @param label The label of the jump statement, or null if no duke@1: * label is given. duke@1: * @param env The environment current at the jump statement. duke@1: */ duke@1: private JCTree findJumpTarget(DiagnosticPosition pos, jjg@1127: JCTree.Tag tag, duke@1: Name label, duke@1: Env env) { duke@1: // Search environments outwards from the point of jump. duke@1: Env env1 = env; duke@1: LOOP: duke@1: while (env1 != null) { duke@1: switch (env1.tree.getTag()) { mcimadamore@1348: case LABELLED: mcimadamore@1348: JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; mcimadamore@1348: if (label == labelled.label) { mcimadamore@1348: // If jump is a continue, check that target is a loop. mcimadamore@1348: if (tag == CONTINUE) { mcimadamore@1348: if (!labelled.body.hasTag(DOLOOP) && mcimadamore@1348: !labelled.body.hasTag(WHILELOOP) && mcimadamore@1348: !labelled.body.hasTag(FORLOOP) && mcimadamore@1348: !labelled.body.hasTag(FOREACHLOOP)) mcimadamore@1348: log.error(pos, "not.loop.label", label); mcimadamore@1348: // Found labelled statement target, now go inwards mcimadamore@1348: // to next non-labelled tree. mcimadamore@1348: return TreeInfo.referencedStatement(labelled); mcimadamore@1348: } else { mcimadamore@1348: return labelled; mcimadamore@1348: } duke@1: } mcimadamore@1348: break; mcimadamore@1348: case DOLOOP: mcimadamore@1348: case WHILELOOP: mcimadamore@1348: case FORLOOP: mcimadamore@1348: case FOREACHLOOP: mcimadamore@1348: if (label == null) return env1.tree; mcimadamore@1348: break; mcimadamore@1348: case SWITCH: mcimadamore@1348: if (label == null && tag == BREAK) return env1.tree; mcimadamore@1348: break; mcimadamore@1348: case LAMBDA: mcimadamore@1348: case METHODDEF: mcimadamore@1348: case CLASSDEF: mcimadamore@1348: break LOOP; mcimadamore@1348: default: duke@1: } duke@1: env1 = env1.next; duke@1: } duke@1: if (label != null) duke@1: log.error(pos, "undef.label", label); jjg@1127: else if (tag == CONTINUE) duke@1: log.error(pos, "cont.outside.loop"); duke@1: else duke@1: log.error(pos, "break.outside.switch.loop"); duke@1: return null; duke@1: } duke@1: duke@1: public void visitReturn(JCReturn tree) { duke@1: // Check that there is an enclosing method which is duke@1: // nested within than the enclosing class. mcimadamore@1347: if (env.info.returnResult == null) { duke@1: log.error(tree.pos(), "ret.outside.meth"); duke@1: } else { duke@1: // Attribute return expression, if it exists, and check that duke@1: // it conforms to result type of enclosing method. mcimadamore@1347: if (tree.expr != null) { jjg@1374: if (env.info.returnResult.pt.hasTag(VOID)) { mcimadamore@1415: env.info.returnResult.checkContext.report(tree.expr.pos(), mcimadamore@1415: diags.fragment("unexpected.ret.val")); mcimadamore@1347: } mcimadamore@1347: attribTree(tree.expr, env, env.info.returnResult); jjg@1374: } else if (!env.info.returnResult.pt.hasTag(VOID)) { mcimadamore@1415: env.info.returnResult.checkContext.report(tree.pos(), mcimadamore@1415: diags.fragment("missing.ret.val")); duke@1: } duke@1: } duke@1: result = null; duke@1: } duke@1: duke@1: public void visitThrow(JCThrow tree) { mcimadamore@1415: Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType); mcimadamore@1415: if (allowPoly) { mcimadamore@1415: chk.checkType(tree, owntype, syms.throwableType); mcimadamore@1415: } duke@1: result = null; duke@1: } duke@1: duke@1: public void visitAssert(JCAssert tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: if (tree.detail != null) { duke@1: chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); duke@1: } duke@1: result = null; duke@1: } duke@1: duke@1: /** Visitor method for method invocations. duke@1: * NOTE: The method part of an application will have in its type field duke@1: * the return type of the method, not the method's type itself! duke@1: */ duke@1: public void visitApply(JCMethodInvocation tree) { duke@1: // The local environment of a method application is duke@1: // a new environment nested in the current one. duke@1: Env localEnv = env.dup(tree, env.info.dup()); duke@1: duke@1: // The types of the actual method arguments. duke@1: List argtypes; duke@1: duke@1: // The types of the actual method type arguments. duke@1: List typeargtypes = null; duke@1: duke@1: Name methName = TreeInfo.name(tree.meth); duke@1: duke@1: boolean isConstructorCall = duke@1: methName == names._this || methName == names._super; duke@1: duke@1: if (isConstructorCall) { duke@1: // We are seeing a ...this(...) or ...super(...) call. duke@1: // Check that this is the first statement in a constructor. duke@1: if (checkFirstConstructorStat(tree, env)) { duke@1: duke@1: // Record the fact duke@1: // that this is a constructor call (using isSelfCall). duke@1: localEnv.info.isSelfCall = true; duke@1: duke@1: // Attribute arguments, yielding list of argument types. duke@1: argtypes = attribArgs(tree.args, localEnv); duke@1: typeargtypes = attribTypes(tree.typeargs, localEnv); duke@1: duke@1: // Variable `site' points to the class in which the called duke@1: // constructor is defined. duke@1: Type site = env.enclClass.sym.type; duke@1: if (methName == names._super) { duke@1: if (site == syms.objectType) { duke@1: log.error(tree.meth.pos(), "no.superclass", site); jjg@110: site = types.createErrorType(syms.objectType); duke@1: } else { duke@1: site = types.supertype(site); duke@1: } duke@1: } duke@1: jjg@1374: if (site.hasTag(CLASS)) { mcimadamore@361: Type encl = site.getEnclosingType(); jjg@1374: while (encl != null && encl.hasTag(TYPEVAR)) mcimadamore@361: encl = encl.getUpperBound(); jjg@1374: if (encl.hasTag(CLASS)) { duke@1: // we are calling a nested class duke@1: jjg@1127: if (tree.meth.hasTag(SELECT)) { duke@1: JCTree qualifier = ((JCFieldAccess) tree.meth).selected; duke@1: duke@1: // We are seeing a prefixed call, of the form duke@1: // .super(...). duke@1: // Check that the prefix expression conforms duke@1: // to the outer instance type of the class. duke@1: chk.checkRefType(qualifier.pos(), duke@1: attribExpr(qualifier, localEnv, mcimadamore@361: encl)); duke@1: } else if (methName == names._super) { duke@1: // qualifier omitted; check for existence duke@1: // of an appropriate implicit qualifier. duke@1: rs.resolveImplicitThis(tree.meth.pos(), mcimadamore@901: localEnv, site, true); duke@1: } jjg@1127: } else if (tree.meth.hasTag(SELECT)) { duke@1: log.error(tree.meth.pos(), "illegal.qual.not.icls", duke@1: site.tsym); duke@1: } duke@1: duke@1: // if we're calling a java.lang.Enum constructor, duke@1: // prefix the implicit String and int parameters duke@1: if (site.tsym == syms.enumSym && allowEnums) duke@1: argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); duke@1: duke@1: // Resolve the called constructor under the assumption duke@1: // that we are referring to a superclass instance of the duke@1: // current instance (JLS ???). duke@1: boolean selectSuperPrev = localEnv.info.selectSuper; duke@1: localEnv.info.selectSuper = true; mcimadamore@1347: localEnv.info.pendingResolutionPhase = null; duke@1: Symbol sym = rs.resolveConstructor( duke@1: tree.meth.pos(), localEnv, site, argtypes, typeargtypes); duke@1: localEnv.info.selectSuper = selectSuperPrev; duke@1: duke@1: // Set method symbol to resolved constructor... duke@1: TreeInfo.setSymbol(tree.meth, sym); duke@1: duke@1: // ...and check that it is legal in the current context. duke@1: // (this will also set the tree's type) mcimadamore@1268: Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); mcimadamore@1347: checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt)); duke@1: } duke@1: // Otherwise, `site' is an error type and we do nothing duke@1: } duke@1: result = tree.type = syms.voidType; duke@1: } else { duke@1: // Otherwise, we are seeing a regular method call. duke@1: // Attribute the arguments, yielding list of argument types, ... duke@1: argtypes = attribArgs(tree.args, localEnv); jrose@267: typeargtypes = attribAnyTypes(tree.typeargs, localEnv); duke@1: duke@1: // ... and attribute the method using as a prototype a methodtype duke@1: // whose formal argument types is exactly the list of actual duke@1: // arguments (this will also set the method symbol). mcimadamore@1268: Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); mcimadamore@1347: localEnv.info.pendingResolutionPhase = null; mcimadamore@1347: Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext)); duke@1: duke@1: // Compute the result type. duke@1: Type restype = mtype.getReturnType(); jjg@1374: if (restype.hasTag(WILDCARD)) mcimadamore@689: throw new AssertionError(mtype); duke@1: mcimadamore@1352: Type qualifier = (tree.meth.hasTag(SELECT)) duke@1: ? ((JCFieldAccess) tree.meth).selected.type duke@1: : env.enclClass.sym.type; mcimadamore@1352: restype = adjustMethodReturnType(qualifier, methName, argtypes, restype); duke@1: mcimadamore@820: chk.checkRefTypes(tree.typeargs, typeargtypes); jrose@267: duke@1: // Check that value of resulting type is admissible in the duke@1: // current context. Also, capture the return type mcimadamore@1220: result = check(tree, capture(restype), VAL, resultInfo); mcimadamore@1219: mcimadamore@1347: if (localEnv.info.lastResolveVarargs()) mcimadamore@1219: Assert.check(result.isErroneous() || tree.varargsElement != null); duke@1: } mcimadamore@122: chk.validate(tree.typeargs, localEnv); duke@1: } duke@1: //where mcimadamore@1352: Type adjustMethodReturnType(Type qualifierType, Name methodName, List argtypes, Type restype) { mcimadamore@1352: if (allowCovariantReturns && mcimadamore@1352: methodName == names.clone && mcimadamore@1352: types.isArray(qualifierType)) { mcimadamore@1352: // as a special case, array.clone() has a result that is mcimadamore@1352: // the same as static type of the array being cloned mcimadamore@1352: return qualifierType; mcimadamore@1352: } else if (allowGenerics && mcimadamore@1352: methodName == names.getClass && mcimadamore@1352: argtypes.isEmpty()) { mcimadamore@1352: // as a special case, x.getClass() has type Class mcimadamore@1352: return new ClassType(restype.getEnclosingType(), mcimadamore@1352: List.of(new WildcardType(types.erasure(qualifierType), mcimadamore@1352: BoundKind.EXTENDS, mcimadamore@1352: syms.boundClass)), mcimadamore@1352: restype.tsym); mcimadamore@1352: } else { mcimadamore@1352: return restype; mcimadamore@1352: } mcimadamore@1352: } mcimadamore@1352: duke@1: /** Check that given application node appears as first statement duke@1: * in a constructor call. duke@1: * @param tree The application node duke@1: * @param env The environment current at the application. duke@1: */ duke@1: boolean checkFirstConstructorStat(JCMethodInvocation tree, Env env) { duke@1: JCMethodDecl enclMethod = env.enclMethod; duke@1: if (enclMethod != null && enclMethod.name == names.init) { duke@1: JCBlock body = enclMethod.body; jjg@1127: if (body.stats.head.hasTag(EXEC) && duke@1: ((JCExpressionStatement) body.stats.head).expr == tree) duke@1: return true; duke@1: } duke@1: log.error(tree.pos(),"call.must.be.first.stmt.in.ctor", duke@1: TreeInfo.name(tree.meth)); duke@1: return false; duke@1: } duke@1: duke@1: /** Obtain a method type with given argument types. duke@1: */ mcimadamore@1268: Type newMethodTemplate(Type restype, List argtypes, List typeargtypes) { mcimadamore@1347: MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); duke@1: return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); duke@1: } duke@1: mcimadamore@1347: public void visitNewClass(final JCNewClass tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: duke@1: // The local environment of a class creation is duke@1: // a new environment nested in the current one. duke@1: Env localEnv = env.dup(tree, env.info.dup()); duke@1: duke@1: // The anonymous inner class definition of the new expression, duke@1: // if one is defined by it. duke@1: JCClassDecl cdef = tree.def; duke@1: duke@1: // If enclosing class is given, attribute it, and duke@1: // complete class name to be fully qualified duke@1: JCExpression clazz = tree.clazz; // Class field following new duke@1: JCExpression clazzid = // Identifier in class field jjg@1127: (clazz.hasTag(TYPEAPPLY)) duke@1: ? ((JCTypeApply) clazz).clazz duke@1: : clazz; duke@1: duke@1: JCExpression clazzid1 = clazzid; // The same in fully qualified form duke@1: duke@1: if (tree.encl != null) { duke@1: // We are seeing a qualified new, of the form duke@1: // .new C <...> (...) ... duke@1: // In this case, we let clazz stand for the name of the duke@1: // allocated class C prefixed with the type of the qualifier duke@1: // expression, so that we can duke@1: // resolve it with standard techniques later. I.e., if duke@1: // has type T, then .new C <...> (...) duke@1: // yields a clazz T.C. duke@1: Type encltype = chk.checkRefType(tree.encl.pos(), duke@1: attribExpr(tree.encl, env)); duke@1: clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), duke@1: ((JCIdent) clazzid).name); jjg@1127: if (clazz.hasTag(TYPEAPPLY)) duke@1: clazz = make.at(tree.pos). duke@1: TypeApply(clazzid1, duke@1: ((JCTypeApply) clazz).arguments); duke@1: else duke@1: clazz = clazzid1; duke@1: } duke@1: duke@1: // Attribute clazz expression and store duke@1: // symbol + type back into the attributed tree. mcimadamore@1269: Type clazztype = TreeInfo.isEnumInit(env.tree) ? mcimadamore@1269: attribIdentAsEnumType(env, (JCIdent)clazz) : mcimadamore@1269: attribType(clazz, env); mcimadamore@1269: mcimadamore@914: clazztype = chk.checkDiamond(tree, clazztype); mcimadamore@122: chk.validate(clazz, localEnv); duke@1: if (tree.encl != null) { duke@1: // We have to work in this case to store duke@1: // symbol + type back into the attributed tree. duke@1: tree.clazz.type = clazztype; duke@1: TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); duke@1: clazzid.type = ((JCIdent) clazzid).sym.type; duke@1: if (!clazztype.isErroneous()) { duke@1: if (cdef != null && clazztype.tsym.isInterface()) { duke@1: log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new"); duke@1: } else if (clazztype.tsym.isStatic()) { duke@1: log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym); duke@1: } duke@1: } duke@1: } else if (!clazztype.tsym.isInterface() && jjg@1374: clazztype.getEnclosingType().hasTag(CLASS)) { duke@1: // Check for the existence of an apropos outer instance duke@1: rs.resolveImplicitThis(tree.pos(), env, clazztype); duke@1: } duke@1: duke@1: // Attribute constructor arguments. duke@1: List argtypes = attribArgs(tree.args, localEnv); duke@1: List typeargtypes = attribTypes(tree.typeargs, localEnv); duke@1: duke@1: // If we have made no mistakes in the class type... jjg@1374: if (clazztype.hasTag(CLASS)) { duke@1: // Enums may not be instantiated except implicitly duke@1: if (allowEnums && duke@1: (clazztype.tsym.flags_field&Flags.ENUM) != 0 && jjg@1127: (!env.tree.hasTag(VARDEF) || duke@1: (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 || duke@1: ((JCVariableDecl) env.tree).init != tree)) duke@1: log.error(tree.pos(), "enum.cant.be.instantiated"); duke@1: // Check that class is not abstract duke@1: if (cdef == null && duke@1: (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { duke@1: log.error(tree.pos(), "abstract.cant.be.instantiated", duke@1: clazztype.tsym); duke@1: } else if (cdef != null && clazztype.tsym.isInterface()) { duke@1: // Check that no constructor arguments are given to duke@1: // anonymous classes implementing an interface duke@1: if (!argtypes.isEmpty()) duke@1: log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args"); duke@1: duke@1: if (!typeargtypes.isEmpty()) duke@1: log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs"); duke@1: duke@1: // Error recovery: pretend no arguments were supplied. duke@1: argtypes = List.nil(); duke@1: typeargtypes = List.nil(); mcimadamore@1347: } else if (TreeInfo.isDiamond(tree)) { mcimadamore@1347: ClassType site = new ClassType(clazztype.getEnclosingType(), mcimadamore@1347: clazztype.tsym.type.getTypeArguments(), mcimadamore@1347: clazztype.tsym); mcimadamore@1347: mcimadamore@1347: Env diamondEnv = localEnv.dup(tree); mcimadamore@1347: diamondEnv.info.selectSuper = cdef != null; mcimadamore@1347: diamondEnv.info.pendingResolutionPhase = null; mcimadamore@1347: mcimadamore@1347: //if the type of the instance creation expression is a class type mcimadamore@1347: //apply method resolution inference (JLS 15.12.2.7). The return type mcimadamore@1347: //of the resolved constructor will be a partially instantiated type mcimadamore@1347: Symbol constructor = rs.resolveDiamond(tree.pos(), mcimadamore@1347: diamondEnv, mcimadamore@1347: site, mcimadamore@1347: argtypes, mcimadamore@1347: typeargtypes); mcimadamore@1347: tree.constructor = constructor.baseSymbol(); mcimadamore@1347: mcimadamore@1347: final TypeSymbol csym = clazztype.tsym; mcimadamore@1347: ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) { mcimadamore@1347: @Override mcimadamore@1347: public void report(DiagnosticPosition _unused, JCDiagnostic details) { mcimadamore@1347: enclosingContext.report(tree.clazz, mcimadamore@1347: diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details)); mcimadamore@1347: } mcimadamore@1347: }); mcimadamore@1347: Type constructorType = tree.constructorType = types.createErrorType(clazztype); mcimadamore@1347: constructorType = checkId(tree, site, mcimadamore@1347: constructor, mcimadamore@1347: diamondEnv, mcimadamore@1347: diamondResult); mcimadamore@1347: mcimadamore@1347: tree.clazz.type = types.createErrorType(clazztype); mcimadamore@1347: if (!constructorType.isErroneous()) { mcimadamore@1347: tree.clazz.type = clazztype = constructorType.getReturnType(); mcimadamore@1347: tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); mcimadamore@1347: } mcimadamore@1347: clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); duke@1: } duke@1: duke@1: // Resolve the called constructor under the assumption duke@1: // that we are referring to a superclass instance of the duke@1: // current instance (JLS ???). mcimadamore@1347: else { mcimadamore@1010: //the following code alters some of the fields in the current mcimadamore@1010: //AttrContext - hence, the current context must be dup'ed in mcimadamore@1010: //order to avoid downstream failures mcimadamore@1010: Env rsEnv = localEnv.dup(tree); mcimadamore@1010: rsEnv.info.selectSuper = cdef != null; mcimadamore@1347: rsEnv.info.pendingResolutionPhase = null; duke@1: tree.constructor = rs.resolveConstructor( mcimadamore@1010: tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); mcimadamore@1341: if (cdef == null) { //do not check twice! mcimadamore@1341: tree.constructorType = checkId(tree, mcimadamore@1341: clazztype, mcimadamore@1341: tree.constructor, mcimadamore@1341: rsEnv, mcimadamore@1347: new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes))); mcimadamore@1347: if (rsEnv.info.lastResolveVarargs()) mcimadamore@1341: Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); mcimadamore@1341: } mcimadamore@1347: findDiamondIfNeeded(localEnv, tree, clazztype); duke@1: } duke@1: duke@1: if (cdef != null) { duke@1: // We are seeing an anonymous class instance creation. duke@1: // In this case, the class instance creation duke@1: // expression duke@1: // duke@1: // E.new C(args) { ... } duke@1: // duke@1: // is represented internally as duke@1: // duke@1: // E . new C(args) ( class { ... } ) . duke@1: // duke@1: // This expression is then *transformed* as follows: duke@1: // duke@1: // (1) add a STATIC flag to the class definition duke@1: // if the current environment is static duke@1: // (2) add an extends or implements clause duke@1: // (3) add a constructor. duke@1: // duke@1: // For instance, if C is a class, and ET is the type of E, duke@1: // the expression duke@1: // duke@1: // E.new C(args) { ... } duke@1: // duke@1: // is translated to (where X is a fresh name and typarams is the duke@1: // parameter list of the super constructor): duke@1: // duke@1: // new X(<*nullchk*>E, args) where duke@1: // X extends C { duke@1: // X(ET e, args) { duke@1: // e.super(args) duke@1: // } duke@1: // ... duke@1: // } duke@1: if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC; mcimadamore@536: duke@1: if (clazztype.tsym.isInterface()) { duke@1: cdef.implementing = List.of(clazz); duke@1: } else { duke@1: cdef.extending = clazz; duke@1: } duke@1: duke@1: attribStat(cdef, localEnv); duke@1: mcimadamore@1348: checkLambdaCandidate(tree, cdef.sym, clazztype); mcimadamore@1348: duke@1: // If an outer instance is given, duke@1: // prefix it to the constructor arguments duke@1: // and delete it from the new expression duke@1: if (tree.encl != null && !clazztype.tsym.isInterface()) { duke@1: tree.args = tree.args.prepend(makeNullCheck(tree.encl)); duke@1: argtypes = argtypes.prepend(tree.encl.type); duke@1: tree.encl = null; duke@1: } duke@1: duke@1: // Reassign clazztype and recompute constructor. duke@1: clazztype = cdef.sym.type; mcimadamore@1341: Symbol sym = tree.constructor = rs.resolveConstructor( mcimadamore@1341: tree.pos(), localEnv, clazztype, argtypes, typeargtypes); mcimadamore@1341: Assert.check(sym.kind < AMBIGUOUS); duke@1: tree.constructor = sym; mcimadamore@1341: tree.constructorType = checkId(tree, mcimadamore@1341: clazztype, mcimadamore@1341: tree.constructor, mcimadamore@1341: localEnv, mcimadamore@1347: new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes))); duke@1: } duke@1: duke@1: if (tree.constructor != null && tree.constructor.kind == MTH) duke@1: owntype = clazztype; duke@1: } mcimadamore@1220: result = check(tree, owntype, VAL, resultInfo); mcimadamore@122: chk.validate(tree.typeargs, localEnv); duke@1: } mcimadamore@1347: //where mcimadamore@1347: void findDiamondIfNeeded(Env env, JCNewClass tree, Type clazztype) { mcimadamore@1347: if (tree.def == null && mcimadamore@1347: !clazztype.isErroneous() && mcimadamore@1347: clazztype.getTypeArguments().nonEmpty() && mcimadamore@1347: findDiamonds) { mcimadamore@1347: JCTypeApply ta = (JCTypeApply)tree.clazz; mcimadamore@1347: List prevTypeargs = ta.arguments; mcimadamore@1347: try { mcimadamore@1347: //create a 'fake' diamond AST node by removing type-argument trees mcimadamore@1347: ta.arguments = List.nil(); mcimadamore@1347: ResultInfo findDiamondResult = new ResultInfo(VAL, mcimadamore@1347: resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt()); mcimadamore@1347: Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type; mcimadamore@1347: if (!inferred.isErroneous() && mcimadamore@1415: types.isAssignable(inferred, pt().hasTag(NONE) ? syms.objectType : pt(), types.noWarnings)) { mcimadamore@1347: String key = types.isSameType(clazztype, inferred) ? mcimadamore@1347: "diamond.redundant.args" : mcimadamore@1347: "diamond.redundant.args.1"; mcimadamore@1347: log.warning(tree.clazz.pos(), key, clazztype, inferred); mcimadamore@1347: } mcimadamore@1347: } finally { mcimadamore@1347: ta.arguments = prevTypeargs; mcimadamore@1347: } mcimadamore@1347: } mcimadamore@537: } mcimadamore@950: mcimadamore@1348: private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) { mcimadamore@1348: if (allowLambda && mcimadamore@1348: identifyLambdaCandidate && jjg@1374: clazztype.hasTag(CLASS) && jjg@1374: !pt().hasTag(NONE) && mcimadamore@1348: types.isFunctionalInterface(clazztype.tsym)) { mcimadamore@1348: Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym); mcimadamore@1348: int count = 0; mcimadamore@1348: boolean found = false; mcimadamore@1348: for (Symbol sym : csym.members().getElements()) { mcimadamore@1348: if ((sym.flags() & SYNTHETIC) != 0 || mcimadamore@1348: sym.isConstructor()) continue; mcimadamore@1348: count++; mcimadamore@1348: if (sym.kind != MTH || mcimadamore@1348: !sym.name.equals(descriptor.name)) continue; mcimadamore@1348: Type mtype = types.memberType(clazztype, sym); mcimadamore@1348: if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) { mcimadamore@1348: found = true; mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: if (found && count == 1) { mcimadamore@1348: log.note(tree.def, "potential.lambda.found"); mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: duke@1: /** Make an attributed null check tree. duke@1: */ duke@1: public JCExpression makeNullCheck(JCExpression arg) { duke@1: // optimization: X.this is never null; skip null check duke@1: Name name = TreeInfo.name(arg); duke@1: if (name == names._this || name == names._super) return arg; duke@1: jjg@1127: JCTree.Tag optag = NULLCHK; duke@1: JCUnary tree = make.at(arg.pos).Unary(optag, arg); duke@1: tree.operator = syms.nullcheck; duke@1: tree.type = arg.type; duke@1: return tree; duke@1: } duke@1: duke@1: public void visitNewArray(JCNewArray tree) { jjg@110: Type owntype = types.createErrorType(tree.type); mcimadamore@1347: Env localEnv = env.dup(tree); duke@1: Type elemtype; duke@1: if (tree.elemtype != null) { mcimadamore@1347: elemtype = attribType(tree.elemtype, localEnv); mcimadamore@1347: chk.validate(tree.elemtype, localEnv); duke@1: owntype = elemtype; duke@1: for (List l = tree.dims; l.nonEmpty(); l = l.tail) { mcimadamore@1347: attribExpr(l.head, localEnv, syms.intType); duke@1: owntype = new ArrayType(owntype, syms.arrayClass); duke@1: } duke@1: } else { duke@1: // we are seeing an untyped aggregate { ... } duke@1: // this is allowed only if the prototype is an array jjg@1374: if (pt().hasTag(ARRAY)) { mcimadamore@1220: elemtype = types.elemtype(pt()); duke@1: } else { jjg@1374: if (!pt().hasTag(ERROR)) { duke@1: log.error(tree.pos(), "illegal.initializer.for.type", mcimadamore@1220: pt()); duke@1: } mcimadamore@1220: elemtype = types.createErrorType(pt()); duke@1: } duke@1: } duke@1: if (tree.elems != null) { mcimadamore@1347: attribExprs(tree.elems, localEnv, elemtype); duke@1: owntype = new ArrayType(elemtype, syms.arrayClass); duke@1: } duke@1: if (!types.isReifiable(elemtype)) duke@1: log.error(tree.pos(), "generic.array.creation"); mcimadamore@1220: result = check(tree, owntype, VAL, resultInfo); duke@1: } duke@1: mcimadamore@1348: /* mcimadamore@1348: * A lambda expression can only be attributed when a target-type is available. mcimadamore@1348: * In addition, if the target-type is that of a functional interface whose mcimadamore@1348: * descriptor contains inference variables in argument position the lambda expression mcimadamore@1348: * is 'stuck' (see DeferredAttr). mcimadamore@1348: */ mcimadamore@1144: @Override mcimadamore@1348: public void visitLambda(final JCLambda that) { jjg@1374: if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { jjg@1374: if (pt().hasTag(NONE)) { mcimadamore@1348: //lambda only allowed in assignment or method invocation/cast context mcimadamore@1348: log.error(that.pos(), "unexpected.lambda"); mcimadamore@1348: } mcimadamore@1348: result = that.type = types.createErrorType(pt()); mcimadamore@1348: return; mcimadamore@1348: } mcimadamore@1348: //create an environment for attribution of the lambda expression mcimadamore@1348: final Env localEnv = lambdaEnv(that, env); mcimadamore@1415: boolean needsRecovery = mcimadamore@1348: resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; mcimadamore@1348: try { mcimadamore@1510: Type target = pt(); mcimadamore@1348: List explicitParamTypes = null; mcimadamore@1510: if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { mcimadamore@1348: //attribute lambda parameters mcimadamore@1348: attribStats(that.params, localEnv); mcimadamore@1348: explicitParamTypes = TreeInfo.types(that.params); mcimadamore@1510: target = infer.instantiateFunctionalInterface(that, target, explicitParamTypes, resultInfo.checkContext); mcimadamore@1348: } mcimadamore@1348: mcimadamore@1415: Type lambdaType; mcimadamore@1415: if (pt() != Type.recoveryType) { mcimadamore@1510: target = checkIntersectionTarget(that, target, resultInfo.checkContext); mcimadamore@1415: lambdaType = types.findDescriptorType(target); mcimadamore@1415: chk.checkFunctionalInterface(that, target); mcimadamore@1415: } else { mcimadamore@1415: target = Type.recoveryType; mcimadamore@1415: lambdaType = fallbackDescriptorType(that); mcimadamore@1415: } mcimadamore@1348: mcimadamore@1510: setFunctionalInfo(that, pt(), lambdaType, resultInfo.checkContext.inferenceContext()); mcimadamore@1510: mcimadamore@1434: if (lambdaType.hasTag(FORALL)) { mcimadamore@1434: //lambda expression target desc cannot be a generic method mcimadamore@1434: resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target", mcimadamore@1434: lambdaType, kindName(target.tsym), target.tsym)); mcimadamore@1434: result = that.type = types.createErrorType(pt()); mcimadamore@1434: return; mcimadamore@1434: } mcimadamore@1434: mcimadamore@1510: if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { mcimadamore@1348: //add param type info in the AST mcimadamore@1348: List actuals = lambdaType.getParameterTypes(); mcimadamore@1348: List params = that.params; mcimadamore@1348: mcimadamore@1348: boolean arityMismatch = false; mcimadamore@1348: mcimadamore@1348: while (params.nonEmpty()) { mcimadamore@1348: if (actuals.isEmpty()) { mcimadamore@1348: //not enough actuals to perform lambda parameter inference mcimadamore@1348: arityMismatch = true; mcimadamore@1348: } mcimadamore@1348: //reset previously set info mcimadamore@1348: Type argType = arityMismatch ? mcimadamore@1348: syms.errType : mcimadamore@1348: actuals.head; mcimadamore@1348: params.head.vartype = make.Type(argType); mcimadamore@1348: params.head.sym = null; mcimadamore@1348: actuals = actuals.isEmpty() ? mcimadamore@1348: actuals : mcimadamore@1348: actuals.tail; mcimadamore@1348: params = params.tail; mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: //attribute lambda parameters mcimadamore@1348: attribStats(that.params, localEnv); mcimadamore@1348: mcimadamore@1348: if (arityMismatch) { mcimadamore@1348: resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda")); mcimadamore@1348: result = that.type = types.createErrorType(target); mcimadamore@1348: return; mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: //from this point on, no recovery is needed; if we are in assignment context mcimadamore@1348: //we will be able to attribute the whole lambda body, regardless of errors; mcimadamore@1348: //if we are in a 'check' method context, and the lambda is not compatible mcimadamore@1348: //with the target-type, it will be recovered anyway in Attr.checkId mcimadamore@1348: needsRecovery = false; mcimadamore@1348: mcimadamore@1433: FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? mcimadamore@1433: new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : mcimadamore@1433: new FunctionalReturnContext(resultInfo.checkContext); mcimadamore@1433: mcimadamore@1348: ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ? mcimadamore@1348: recoveryInfo : mcimadamore@1433: new ResultInfo(VAL, lambdaType.getReturnType(), funcContext); mcimadamore@1348: localEnv.info.returnResult = bodyResultInfo; mcimadamore@1348: mcimadamore@1348: if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { mcimadamore@1348: attribTree(that.getBody(), localEnv, bodyResultInfo); mcimadamore@1348: } else { mcimadamore@1348: JCBlock body = (JCBlock)that.body; mcimadamore@1348: attribStats(body.stats, localEnv); mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: result = check(that, target, VAL, resultInfo); mcimadamore@1348: mcimadamore@1348: boolean isSpeculativeRound = mcimadamore@1348: resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; mcimadamore@1348: mcimadamore@1348: postAttr(that); mcimadamore@1348: flow.analyzeLambda(env, that, make, isSpeculativeRound); mcimadamore@1348: mcimadamore@1348: checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound); mcimadamore@1348: mcimadamore@1348: if (!isSpeculativeRound) { mcimadamore@1415: checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, target); mcimadamore@1348: } mcimadamore@1348: result = check(that, target, VAL, resultInfo); mcimadamore@1348: } catch (Types.FunctionDescriptorLookupError ex) { mcimadamore@1348: JCDiagnostic cause = ex.getDiagnostic(); mcimadamore@1348: resultInfo.checkContext.report(that, cause); mcimadamore@1348: result = that.type = types.createErrorType(pt()); mcimadamore@1348: return; mcimadamore@1348: } finally { mcimadamore@1348: localEnv.info.scope.leave(); mcimadamore@1348: if (needsRecovery) { mcimadamore@1348: attribTree(that, env, recoveryInfo); mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1144: } mcimadamore@1436: mcimadamore@1510: private Type checkIntersectionTarget(DiagnosticPosition pos, Type pt, CheckContext checkContext) { mcimadamore@1436: if (pt != Type.recoveryType && pt.isCompound()) { mcimadamore@1436: IntersectionClassType ict = (IntersectionClassType)pt; mcimadamore@1436: List bounds = ict.allInterfaces ? mcimadamore@1436: ict.getComponents().tail : mcimadamore@1436: ict.getComponents(); mcimadamore@1436: types.findDescriptorType(bounds.head); //propagate exception outwards! mcimadamore@1436: for (Type bound : bounds.tail) { mcimadamore@1436: if (!types.isMarkerInterface(bound)) { mcimadamore@1510: checkContext.report(pos, diags.fragment("secondary.bound.must.be.marker.intf", bound)); mcimadamore@1436: } mcimadamore@1436: } mcimadamore@1436: //for now (translation doesn't support intersection types) mcimadamore@1436: return bounds.head; mcimadamore@1436: } else { mcimadamore@1436: return pt; mcimadamore@1436: } mcimadamore@1436: } mcimadamore@1348: //where mcimadamore@1348: private Type fallbackDescriptorType(JCExpression tree) { mcimadamore@1348: switch (tree.getTag()) { mcimadamore@1348: case LAMBDA: mcimadamore@1348: JCLambda lambda = (JCLambda)tree; mcimadamore@1348: List argtypes = List.nil(); mcimadamore@1348: for (JCVariableDecl param : lambda.params) { mcimadamore@1348: argtypes = param.vartype != null ? mcimadamore@1348: argtypes.append(param.vartype.type) : mcimadamore@1348: argtypes.append(syms.errType); mcimadamore@1348: } mcimadamore@1348: return new MethodType(argtypes, Type.recoveryType, List.nil(), syms.methodClass); mcimadamore@1348: case REFERENCE: mcimadamore@1348: return new MethodType(List.nil(), Type.recoveryType, List.nil(), syms.methodClass); mcimadamore@1348: default: mcimadamore@1348: Assert.error("Cannot get here!"); mcimadamore@1348: } mcimadamore@1348: return null; mcimadamore@1348: } mcimadamore@1348: mcimadamore@1415: private void checkAccessibleTypes(final DiagnosticPosition pos, final Env env, final InferenceContext inferenceContext, final Type... ts) { mcimadamore@1415: checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); mcimadamore@1415: } mcimadamore@1415: mcimadamore@1415: private void checkAccessibleTypes(final DiagnosticPosition pos, final Env env, final InferenceContext inferenceContext, final List ts) { mcimadamore@1415: if (inferenceContext.free(ts)) { mcimadamore@1415: inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() { mcimadamore@1348: @Override mcimadamore@1348: public void typesInferred(InferenceContext inferenceContext) { mcimadamore@1415: checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts, types)); mcimadamore@1348: } mcimadamore@1348: }); mcimadamore@1348: } else { mcimadamore@1415: for (Type t : ts) { mcimadamore@1415: rs.checkAccessibleType(env, t); mcimadamore@1415: } mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: /** mcimadamore@1348: * Lambda/method reference have a special check context that ensures mcimadamore@1348: * that i.e. a lambda return type is compatible with the expected mcimadamore@1348: * type according to both the inherited context and the assignment mcimadamore@1348: * context. mcimadamore@1348: */ mcimadamore@1433: class FunctionalReturnContext extends Check.NestedCheckContext { mcimadamore@1433: mcimadamore@1433: FunctionalReturnContext(CheckContext enclosingContext) { mcimadamore@1348: super(enclosingContext); mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: @Override mcimadamore@1348: public boolean compatible(Type found, Type req, Warner warn) { mcimadamore@1348: //return type must be compatible in both current context and assignment context mcimadamore@1510: return chk.basicHandler.compatible(found, inferenceContext().asFree(req, types), warn); mcimadamore@1348: } mcimadamore@1510: mcimadamore@1348: @Override mcimadamore@1348: public void report(DiagnosticPosition pos, JCDiagnostic details) { mcimadamore@1348: enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details)); mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: mcimadamore@1433: class ExpressionLambdaReturnContext extends FunctionalReturnContext { mcimadamore@1433: mcimadamore@1433: JCExpression expr; mcimadamore@1433: mcimadamore@1433: ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { mcimadamore@1433: super(enclosingContext); mcimadamore@1433: this.expr = expr; mcimadamore@1433: } mcimadamore@1433: mcimadamore@1433: @Override mcimadamore@1433: public boolean compatible(Type found, Type req, Warner warn) { mcimadamore@1433: //a void return is compatible with an expression statement lambda mcimadamore@1433: return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) || mcimadamore@1433: super.compatible(found, req, warn); mcimadamore@1433: } mcimadamore@1433: } mcimadamore@1433: mcimadamore@1348: /** mcimadamore@1348: * Lambda compatibility. Check that given return types, thrown types, parameter types mcimadamore@1348: * are compatible with the expected functional interface descriptor. This means that: mcimadamore@1348: * (i) parameter types must be identical to those of the target descriptor; (ii) return mcimadamore@1348: * types must be compatible with the return type of the expected descriptor; mcimadamore@1348: * (iii) thrown types must be 'included' in the thrown types list of the expected mcimadamore@1348: * descriptor. mcimadamore@1348: */ mcimadamore@1348: private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) { mcimadamore@1348: Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types); mcimadamore@1348: mcimadamore@1348: //return values have already been checked - but if lambda has no return mcimadamore@1348: //values, we must ensure that void/value compatibility is correct; mcimadamore@1348: //this amounts at checking that, if a lambda body can complete normally, mcimadamore@1348: //the descriptor's return type must be void mcimadamore@1348: if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && jjg@1374: !returnType.hasTag(VOID) && returnType != Type.recoveryType) { mcimadamore@1348: checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda", mcimadamore@1348: diags.fragment("missing.ret.val", returnType))); mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: List argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes(), types); mcimadamore@1348: if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { mcimadamore@1348: checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda")); mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: if (!speculativeAttr) { mcimadamore@1348: List thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types); mcimadamore@1348: if (chk.unhandled(tree.inferredThrownTypes == null ? List.nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) { mcimadamore@1348: log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes); mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: } mcimadamore@1348: mcimadamore@1348: private Env lambdaEnv(JCLambda that, Env env) { mcimadamore@1348: Env lambdaEnv; mcimadamore@1348: Symbol owner = env.info.scope.owner; mcimadamore@1348: if (owner.kind == VAR && owner.owner.kind == TYP) { mcimadamore@1348: //field initializer mcimadamore@1348: lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared())); mcimadamore@1348: lambdaEnv.info.scope.owner = mcimadamore@1348: new MethodSymbol(0, names.empty, null, mcimadamore@1348: env.info.scope.owner); mcimadamore@1348: } else { mcimadamore@1348: lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); mcimadamore@1348: } mcimadamore@1348: return lambdaEnv; mcimadamore@1348: } mcimadamore@1145: mcimadamore@1352: @Override mcimadamore@1352: public void visitReference(final JCMemberReference that) { jjg@1374: if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { jjg@1374: if (pt().hasTag(NONE)) { mcimadamore@1352: //method reference only allowed in assignment or method invocation/cast context mcimadamore@1352: log.error(that.pos(), "unexpected.mref"); mcimadamore@1352: } mcimadamore@1352: result = that.type = types.createErrorType(pt()); mcimadamore@1352: return; mcimadamore@1352: } mcimadamore@1352: final Env localEnv = env.dup(that); mcimadamore@1352: try { mcimadamore@1352: //attribute member reference qualifier - if this is a constructor mcimadamore@1352: //reference, the expected kind must be a type mcimadamore@1352: Type exprType = attribTree(that.expr, mcimadamore@1352: env, new ResultInfo(that.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType)); mcimadamore@1352: mcimadamore@1352: if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { mcimadamore@1352: exprType = chk.checkConstructorRefType(that.expr, exprType); mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: if (exprType.isErroneous()) { mcimadamore@1352: //if the qualifier expression contains problems, mcimadamore@1352: //give up atttribution of method reference mcimadamore@1352: result = that.type = exprType; mcimadamore@1352: return; mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: if (TreeInfo.isStaticSelector(that.expr, names) && mcimadamore@1352: (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) { mcimadamore@1352: //if the qualifier is a type, validate it mcimadamore@1352: chk.validate(that.expr, env); mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: //attrib type-arguments mcimadamore@1435: List typeargtypes = List.nil(); mcimadamore@1352: if (that.typeargs != null) { mcimadamore@1352: typeargtypes = attribTypes(that.typeargs, localEnv); mcimadamore@1352: } mcimadamore@1352: mcimadamore@1415: Type target; mcimadamore@1415: Type desc; mcimadamore@1415: if (pt() != Type.recoveryType) { mcimadamore@1510: target = checkIntersectionTarget(that, pt(), resultInfo.checkContext); mcimadamore@1415: desc = types.findDescriptorType(target); mcimadamore@1415: chk.checkFunctionalInterface(that, target); mcimadamore@1415: } else { mcimadamore@1415: target = Type.recoveryType; mcimadamore@1415: desc = fallbackDescriptorType(that); mcimadamore@1415: } mcimadamore@1352: mcimadamore@1510: setFunctionalInfo(that, pt(), desc, resultInfo.checkContext.inferenceContext()); mcimadamore@1352: List argtypes = desc.getParameterTypes(); mcimadamore@1352: mcimadamore@1352: Pair refResult = rs.resolveMemberReference(that.pos(), localEnv, that, mcimadamore@1510: that.expr.type, that.name, argtypes, typeargtypes, true); mcimadamore@1352: mcimadamore@1352: Symbol refSym = refResult.fst; mcimadamore@1352: Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; mcimadamore@1352: mcimadamore@1352: if (refSym.kind != MTH) { mcimadamore@1352: boolean targetError; mcimadamore@1352: switch (refSym.kind) { mcimadamore@1352: case ABSENT_MTH: mcimadamore@1352: targetError = false; mcimadamore@1352: break; mcimadamore@1352: case WRONG_MTH: mcimadamore@1352: case WRONG_MTHS: mcimadamore@1352: case AMBIGUOUS: mcimadamore@1352: case HIDDEN: mcimadamore@1352: case STATICERR: mcimadamore@1352: case MISSING_ENCL: mcimadamore@1352: targetError = true; mcimadamore@1352: break; mcimadamore@1352: default: mcimadamore@1352: Assert.error("unexpected result kind " + refSym.kind); mcimadamore@1352: targetError = false; mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, mcimadamore@1352: that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); mcimadamore@1352: mcimadamore@1352: JCDiagnostic.DiagnosticType diagKind = targetError ? mcimadamore@1352: JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR; mcimadamore@1352: mcimadamore@1352: JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that, mcimadamore@1352: "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag); mcimadamore@1352: mcimadamore@1415: if (targetError && target == Type.recoveryType) { mcimadamore@1415: //a target error doesn't make sense during recovery stage mcimadamore@1415: //as we don't know what actual parameter types are mcimadamore@1415: result = that.type = target; mcimadamore@1415: return; mcimadamore@1352: } else { mcimadamore@1415: if (targetError) { mcimadamore@1415: resultInfo.checkContext.report(that, diag); mcimadamore@1415: } else { mcimadamore@1415: log.report(diag); mcimadamore@1415: } mcimadamore@1415: result = that.type = types.createErrorType(target); mcimadamore@1415: return; mcimadamore@1352: } mcimadamore@1352: } mcimadamore@1352: mcimadamore@1435: if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { mcimadamore@1435: if (refSym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && mcimadamore@1435: exprType.getTypeArguments().nonEmpty()) { mcimadamore@1435: //static ref with class type-args mcimadamore@1435: log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()), mcimadamore@1435: diags.fragment("static.mref.with.targs")); mcimadamore@1435: result = that.type = types.createErrorType(target); mcimadamore@1435: return; mcimadamore@1435: } mcimadamore@1435: mcimadamore@1435: if (refSym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) && mcimadamore@1435: !lookupHelper.referenceKind(refSym).isUnbound()) { mcimadamore@1435: //no static bound mrefs mcimadamore@1435: log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()), mcimadamore@1435: diags.fragment("static.bound.mref")); mcimadamore@1435: result = that.type = types.createErrorType(target); mcimadamore@1435: return; mcimadamore@1435: } mcimadamore@1435: } mcimadamore@1435: mcimadamore@1352: if (desc.getReturnType() == Type.recoveryType) { mcimadamore@1352: // stop here mcimadamore@1415: result = that.type = target; mcimadamore@1352: return; mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: that.sym = refSym.baseSymbol(); mcimadamore@1352: that.kind = lookupHelper.referenceKind(that.sym); mcimadamore@1352: mcimadamore@1352: ResultInfo checkInfo = mcimadamore@1352: resultInfo.dup(newMethodTemplate( jjg@1374: desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), mcimadamore@1352: lookupHelper.argtypes, mcimadamore@1352: typeargtypes)); mcimadamore@1352: mcimadamore@1352: Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); mcimadamore@1352: mcimadamore@1352: if (!refType.isErroneous()) { mcimadamore@1352: refType = types.createMethodTypeWithReturn(refType, mcimadamore@1352: adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: //go ahead with standard method reference compatibility check - note that param check mcimadamore@1352: //is a no-op (as this has been taken care during method applicability) mcimadamore@1352: boolean isSpeculativeRound = mcimadamore@1352: resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; mcimadamore@1352: checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); mcimadamore@1352: if (!isSpeculativeRound) { mcimadamore@1415: checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target); mcimadamore@1352: } mcimadamore@1352: result = check(that, target, VAL, resultInfo); mcimadamore@1352: } catch (Types.FunctionDescriptorLookupError ex) { mcimadamore@1352: JCDiagnostic cause = ex.getDiagnostic(); mcimadamore@1352: resultInfo.checkContext.report(that, cause); mcimadamore@1352: result = that.type = types.createErrorType(pt()); mcimadamore@1352: return; mcimadamore@1352: } mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: @SuppressWarnings("fallthrough") mcimadamore@1352: void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { mcimadamore@1352: Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types); mcimadamore@1352: mcimadamore@1352: Type resType; mcimadamore@1352: switch (tree.getMode()) { mcimadamore@1352: case NEW: mcimadamore@1352: if (!tree.expr.type.isRaw()) { mcimadamore@1352: resType = tree.expr.type; mcimadamore@1352: break; mcimadamore@1352: } mcimadamore@1352: default: mcimadamore@1352: resType = refType.getReturnType(); mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: Type incompatibleReturnType = resType; mcimadamore@1352: jjg@1374: if (returnType.hasTag(VOID)) { mcimadamore@1352: incompatibleReturnType = null; mcimadamore@1352: } mcimadamore@1352: jjg@1374: if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { mcimadamore@1352: if (resType.isErroneous() || mcimadamore@1433: new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) { mcimadamore@1352: incompatibleReturnType = null; mcimadamore@1352: } mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: if (incompatibleReturnType != null) { mcimadamore@1352: checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref", mcimadamore@1352: diags.fragment("inconvertible.types", resType, descriptor.getReturnType()))); mcimadamore@1352: } mcimadamore@1352: mcimadamore@1352: if (!speculativeAttr) { mcimadamore@1352: List thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types); mcimadamore@1352: if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) { mcimadamore@1352: log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes()); mcimadamore@1352: } mcimadamore@1352: } mcimadamore@1352: } mcimadamore@1352: mcimadamore@1510: /** mcimadamore@1510: * Set functional type info on the underlying AST. Note: as the target descriptor mcimadamore@1510: * might contain inference variables, we might need to register an hook in the mcimadamore@1510: * current inference context. mcimadamore@1510: */ mcimadamore@1510: private void setFunctionalInfo(final JCFunctionalExpression fExpr, final Type pt, final Type descriptorType, InferenceContext inferenceContext) { mcimadamore@1510: if (inferenceContext.free(descriptorType)) { mcimadamore@1510: inferenceContext.addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() { mcimadamore@1510: public void typesInferred(InferenceContext inferenceContext) { mcimadamore@1510: setFunctionalInfo(fExpr, pt, inferenceContext.asInstType(descriptorType, types), inferenceContext); mcimadamore@1510: } mcimadamore@1510: }); mcimadamore@1510: } else { mcimadamore@1510: ListBuffer targets = ListBuffer.lb(); mcimadamore@1510: if (pt.hasTag(CLASS)) { mcimadamore@1510: if (pt.isCompound()) { mcimadamore@1510: for (Type t : ((IntersectionClassType)pt()).interfaces_field) { mcimadamore@1510: targets.append(t.tsym); mcimadamore@1510: } mcimadamore@1510: } else { mcimadamore@1510: targets.append(pt.tsym); mcimadamore@1510: } mcimadamore@1510: } mcimadamore@1510: fExpr.targets = targets.toList(); mcimadamore@1510: fExpr.descriptorType = descriptorType; mcimadamore@1510: } mcimadamore@1510: } mcimadamore@1510: duke@1: public void visitParens(JCParens tree) { mcimadamore@1220: Type owntype = attribTree(tree.expr, env, resultInfo); mcimadamore@1220: result = check(tree, owntype, pkind(), resultInfo); duke@1: Symbol sym = TreeInfo.symbol(tree); duke@1: if (sym != null && (sym.kind&(TYP|PCK)) != 0) duke@1: log.error(tree.pos(), "illegal.start.of.type"); duke@1: } duke@1: duke@1: public void visitAssign(JCAssign tree) { mcimadamore@1220: Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo); duke@1: Type capturedType = capture(owntype); duke@1: attribExpr(tree.rhs, env, owntype); mcimadamore@1220: result = check(tree, capturedType, VAL, resultInfo); duke@1: } duke@1: duke@1: public void visitAssignop(JCAssignOp tree) { duke@1: // Attribute arguments. mcimadamore@1220: Type owntype = attribTree(tree.lhs, env, varInfo); duke@1: Type operand = attribExpr(tree.rhs, env); duke@1: // Find operator. duke@1: Symbol operator = tree.operator = rs.resolveBinaryOperator( jjg@1127: tree.pos(), tree.getTag().noAssignOp(), env, duke@1: owntype, operand); duke@1: mcimadamore@853: if (operator.kind == MTH && mcimadamore@853: !owntype.isErroneous() && mcimadamore@853: !operand.isErroneous()) { duke@1: chk.checkOperator(tree.pos(), duke@1: (OperatorSymbol)operator, jjg@1127: tree.getTag().noAssignOp(), duke@1: owntype, duke@1: operand); jjg@9: chk.checkDivZero(tree.rhs.pos(), operator, operand); jjg@9: chk.checkCastable(tree.rhs.pos(), jjg@9: operator.type.getReturnType(), jjg@9: owntype); duke@1: } mcimadamore@1220: result = check(tree, owntype, VAL, resultInfo); duke@1: } duke@1: duke@1: public void visitUnary(JCUnary tree) { duke@1: // Attribute arguments. jjg@1127: Type argtype = (tree.getTag().isIncOrDecUnaryOp()) mcimadamore@1220: ? attribTree(tree.arg, env, varInfo) duke@1: : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); duke@1: duke@1: // Find operator. duke@1: Symbol operator = tree.operator = duke@1: rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype); duke@1: jjg@110: Type owntype = types.createErrorType(tree.type); mcimadamore@853: if (operator.kind == MTH && mcimadamore@853: !argtype.isErroneous()) { jjg@1127: owntype = (tree.getTag().isIncOrDecUnaryOp()) duke@1: ? tree.arg.type duke@1: : operator.type.getReturnType(); duke@1: int opc = ((OperatorSymbol)operator).opcode; duke@1: duke@1: // If the argument is constant, fold it. duke@1: if (argtype.constValue() != null) { duke@1: Type ctype = cfolder.fold1(opc, argtype); duke@1: if (ctype != null) { duke@1: owntype = cfolder.coerce(ctype, owntype); duke@1: duke@1: // Remove constant types from arguments to duke@1: // conserve space. The parser will fold concatenations duke@1: // of string literals; the code here also duke@1: // gets rid of intermediate results when some of the duke@1: // operands are constant identifiers. duke@1: if (tree.arg.type.tsym == syms.stringType.tsym) { duke@1: tree.arg.type = syms.stringType; duke@1: } duke@1: } duke@1: } duke@1: } mcimadamore@1220: result = check(tree, owntype, VAL, resultInfo); duke@1: } duke@1: duke@1: public void visitBinary(JCBinary tree) { duke@1: // Attribute arguments. duke@1: Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); duke@1: Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env)); duke@1: duke@1: // Find operator. duke@1: Symbol operator = tree.operator = duke@1: rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right); duke@1: jjg@110: Type owntype = types.createErrorType(tree.type); mcimadamore@853: if (operator.kind == MTH && mcimadamore@853: !left.isErroneous() && mcimadamore@853: !right.isErroneous()) { duke@1: owntype = operator.type.getReturnType(); duke@1: int opc = chk.checkOperator(tree.lhs.pos(), duke@1: (OperatorSymbol)operator, duke@1: tree.getTag(), duke@1: left, duke@1: right); duke@1: duke@1: // If both arguments are constants, fold them. duke@1: if (left.constValue() != null && right.constValue() != null) { duke@1: Type ctype = cfolder.fold2(opc, left, right); duke@1: if (ctype != null) { duke@1: owntype = cfolder.coerce(ctype, owntype); duke@1: duke@1: // Remove constant types from arguments to duke@1: // conserve space. The parser will fold concatenations duke@1: // of string literals; the code here also duke@1: // gets rid of intermediate results when some of the duke@1: // operands are constant identifiers. duke@1: if (tree.lhs.type.tsym == syms.stringType.tsym) { duke@1: tree.lhs.type = syms.stringType; duke@1: } duke@1: if (tree.rhs.type.tsym == syms.stringType.tsym) { duke@1: tree.rhs.type = syms.stringType; duke@1: } duke@1: } duke@1: } duke@1: duke@1: // Check that argument types of a reference ==, != are duke@1: // castable to each other, (JLS???). duke@1: if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { duke@1: if (!types.isCastable(left, right, new Warner(tree.pos()))) { duke@1: log.error(tree.pos(), "incomparable.types", left, right); duke@1: } duke@1: } duke@1: duke@1: chk.checkDivZero(tree.rhs.pos(), operator, right); duke@1: } mcimadamore@1220: result = check(tree, owntype, VAL, resultInfo); duke@1: } duke@1: mcimadamore@1347: public void visitTypeCast(final JCTypeCast tree) { duke@1: Type clazztype = attribType(tree.clazz, env); mcimadamore@638: chk.validate(tree.clazz, env, false); mcimadamore@674: //a fresh environment is required for 292 inference to work properly --- mcimadamore@674: //see Infer.instantiatePolymorphicSignatureInstance() mcimadamore@674: Env localEnv = env.dup(tree); mcimadamore@1347: //should we propagate the target type? mcimadamore@1347: final ResultInfo castInfo; mcimadamore@1347: final boolean isPoly = TreeInfo.isPoly(tree.expr, tree); mcimadamore@1347: if (isPoly) { mcimadamore@1347: //expression is a poly - we need to propagate target type info mcimadamore@1347: castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) { mcimadamore@1347: @Override mcimadamore@1347: public boolean compatible(Type found, Type req, Warner warn) { mcimadamore@1347: return types.isCastable(found, req, warn); mcimadamore@1347: } mcimadamore@1347: }); mcimadamore@1347: } else { mcimadamore@1347: //standalone cast - target-type info is not propagated mcimadamore@1347: castInfo = unknownExprInfo; mcimadamore@1347: } mcimadamore@1347: Type exprtype = attribTree(tree.expr, localEnv, castInfo); mcimadamore@1347: Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); duke@1: if (exprtype.constValue() != null) duke@1: owntype = cfolder.coerce(exprtype, owntype); mcimadamore@1220: result = check(tree, capture(owntype), VAL, resultInfo); mcimadamore@1347: if (!isPoly) mcimadamore@1347: chk.checkRedundantCast(localEnv, tree); duke@1: } duke@1: duke@1: public void visitTypeTest(JCInstanceOf tree) { duke@1: Type exprtype = chk.checkNullOrRefType( duke@1: tree.expr.pos(), attribExpr(tree.expr, env)); duke@1: Type clazztype = chk.checkReifiableReferenceType( duke@1: tree.clazz.pos(), attribType(tree.clazz, env)); mcimadamore@638: chk.validate(tree.clazz, env, false); duke@1: chk.checkCastable(tree.expr.pos(), exprtype, clazztype); mcimadamore@1220: result = check(tree, syms.booleanType, VAL, resultInfo); duke@1: } duke@1: duke@1: public void visitIndexed(JCArrayAccess tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: Type atype = attribExpr(tree.indexed, env); duke@1: attribExpr(tree.index, env, syms.intType); duke@1: if (types.isArray(atype)) duke@1: owntype = types.elemtype(atype); jjg@1374: else if (!atype.hasTag(ERROR)) duke@1: log.error(tree.pos(), "array.req.but.found", atype); mcimadamore@1220: if ((pkind() & VAR) == 0) owntype = capture(owntype); mcimadamore@1220: result = check(tree, owntype, VAR, resultInfo); duke@1: } duke@1: duke@1: public void visitIdent(JCIdent tree) { duke@1: Symbol sym; duke@1: duke@1: // Find symbol jjg@1374: if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { duke@1: // If we are looking for a method, the prototype `pt' will be a duke@1: // method type with the type of the call's arguments as parameters. mcimadamore@1347: env.info.pendingResolutionPhase = null; mcimadamore@1220: sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); duke@1: } else if (tree.sym != null && tree.sym.kind != VAR) { duke@1: sym = tree.sym; duke@1: } else { mcimadamore@1220: sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); duke@1: } duke@1: tree.sym = sym; duke@1: duke@1: // (1) Also find the environment current for the class where duke@1: // sym is defined (`symEnv'). duke@1: // Only for pre-tiger versions (1.4 and earlier): duke@1: // (2) Also determine whether we access symbol out of an anonymous duke@1: // class in a this or super call. This is illegal for instance duke@1: // members since such classes don't carry a this$n link. duke@1: // (`noOuterThisPath'). duke@1: Env symEnv = env; duke@1: boolean noOuterThisPath = false; duke@1: if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class duke@1: (sym.kind & (VAR | MTH | TYP)) != 0 && duke@1: sym.owner.kind == TYP && duke@1: tree.name != names._this && tree.name != names._super) { duke@1: duke@1: // Find environment in which identifier is defined. duke@1: while (symEnv.outer != null && duke@1: !sym.isMemberOf(symEnv.enclClass.sym, types)) { duke@1: if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0) duke@1: noOuterThisPath = !allowAnonOuterThis; duke@1: symEnv = symEnv.outer; duke@1: } duke@1: } duke@1: duke@1: // If symbol is a variable, ... duke@1: if (sym.kind == VAR) { duke@1: VarSymbol v = (VarSymbol)sym; duke@1: duke@1: // ..., evaluate its initializer, if it has one, and check for duke@1: // illegal forward reference. duke@1: checkInit(tree, env, v, false); duke@1: duke@1: // If we are expecting a variable (as opposed to a value), check duke@1: // that the variable is assignable in the current environment. mcimadamore@1220: if (pkind() == VAR) duke@1: checkAssignable(tree.pos(), v, null, env); duke@1: } duke@1: duke@1: // In a constructor body, duke@1: // if symbol is a field or instance method, check that it is duke@1: // not accessed before the supertype constructor is called. duke@1: if ((symEnv.info.isSelfCall || noOuterThisPath) && duke@1: (sym.kind & (VAR | MTH)) != 0 && duke@1: sym.owner.kind == TYP && duke@1: (sym.flags() & STATIC) == 0) { duke@1: chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env)); duke@1: } duke@1: Env env1 = env; mcimadamore@28: if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) { duke@1: // If the found symbol is inaccessible, then it is duke@1: // accessed through an enclosing instance. Locate this duke@1: // enclosing instance: duke@1: while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) duke@1: env1 = env1.outer; duke@1: } mcimadamore@1347: result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); duke@1: } duke@1: duke@1: public void visitSelect(JCFieldAccess tree) { duke@1: // Determine the expected kind of the qualifier expression. duke@1: int skind = 0; duke@1: if (tree.name == names._this || tree.name == names._super || duke@1: tree.name == names._class) duke@1: { duke@1: skind = TYP; duke@1: } else { mcimadamore@1220: if ((pkind() & PCK) != 0) skind = skind | PCK; mcimadamore@1220: if ((pkind() & TYP) != 0) skind = skind | TYP | PCK; mcimadamore@1220: if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP; duke@1: } duke@1: duke@1: // Attribute the qualifier expression, and determine its symbol (if any). mcimadamore@1220: Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly)); mcimadamore@1220: if ((pkind() & (PCK | TYP)) == 0) duke@1: site = capture(site); // Capture field access duke@1: duke@1: // don't allow T.class T[].class, etc duke@1: if (skind == TYP) { duke@1: Type elt = site; jjg@1374: while (elt.hasTag(ARRAY)) duke@1: elt = ((ArrayType)elt).elemtype; jjg@1374: if (elt.hasTag(TYPEVAR)) { duke@1: log.error(tree.pos(), "type.var.cant.be.deref"); jjg@110: result = types.createErrorType(tree.type); duke@1: return; duke@1: } duke@1: } duke@1: duke@1: // If qualifier symbol is a type or `super', assert `selectSuper' duke@1: // for the selection. This is relevant for determining whether duke@1: // protected symbols are accessible. duke@1: Symbol sitesym = TreeInfo.symbol(tree.selected); duke@1: boolean selectSuperPrev = env.info.selectSuper; duke@1: env.info.selectSuper = duke@1: sitesym != null && duke@1: sitesym.name == names._super; duke@1: duke@1: // Determine the symbol represented by the selection. mcimadamore@1347: env.info.pendingResolutionPhase = null; mcimadamore@1220: Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); mcimadamore@1220: if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) { duke@1: site = capture(site); mcimadamore@1220: sym = selectSym(tree, sitesym, site, env, resultInfo); duke@1: } mcimadamore@1347: boolean varArgs = env.info.lastResolveVarargs(); duke@1: tree.sym = sym; duke@1: jjg@1374: if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { jjg@1374: while (site.hasTag(TYPEVAR)) site = site.getUpperBound(); mcimadamore@27: site = capture(site); mcimadamore@27: } duke@1: duke@1: // If that symbol is a variable, ... duke@1: if (sym.kind == VAR) { duke@1: VarSymbol v = (VarSymbol)sym; duke@1: duke@1: // ..., evaluate its initializer, if it has one, and check for duke@1: // illegal forward reference. duke@1: checkInit(tree, env, v, true); duke@1: duke@1: // If we are expecting a variable (as opposed to a value), check duke@1: // that the variable is assignable in the current environment. mcimadamore@1220: if (pkind() == VAR) duke@1: checkAssignable(tree.pos(), v, tree.selected, env); duke@1: } duke@1: darcy@609: if (sitesym != null && darcy@609: sitesym.kind == VAR && darcy@609: ((VarSymbol)sitesym).isResourceVariable() && darcy@609: sym.kind == MTH && mcimadamore@954: sym.name.equals(names.close) && darcy@609: sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) && mcimadamore@795: env.info.lint.isEnabled(LintCategory.TRY)) { mcimadamore@795: log.warning(LintCategory.TRY, tree, "try.explicit.close.call"); darcy@609: } darcy@609: duke@1: // Disallow selecting a type from an expression duke@1: if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) { mcimadamore@1220: tree.type = check(tree.selected, pt(), mcimadamore@1220: sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt())); duke@1: } duke@1: duke@1: if (isType(sitesym)) { duke@1: if (sym.name == names._this) { duke@1: // If `C' is the currently compiled class, check that duke@1: // C.this' does not appear in a call to a super(...) duke@1: if (env.info.isSelfCall && duke@1: site.tsym == env.enclClass.sym) { duke@1: chk.earlyRefError(tree.pos(), sym); duke@1: } duke@1: } else { duke@1: // Check if type-qualified fields or methods are static (JLS) duke@1: if ((sym.flags() & STATIC) == 0 && mcimadamore@1352: !env.next.tree.hasTag(REFERENCE) && duke@1: sym.name != names._super && duke@1: (sym.kind == VAR || sym.kind == MTH)) { mcimadamore@1347: rs.accessBase(rs.new StaticError(sym), duke@1: tree.pos(), site, sym.name, true); duke@1: } duke@1: } jjg@505: } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) { jjg@505: // If the qualified item is not a type and the selected item is static, report jjg@505: // a warning. Make allowance for the class of an array type e.g. Object[].class) jjg@505: chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner); duke@1: } duke@1: duke@1: // If we are selecting an instance member via a `super', ... duke@1: if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { duke@1: duke@1: // Check that super-qualified symbols are not abstract (JLS) duke@1: rs.checkNonAbstract(tree.pos(), sym); duke@1: duke@1: if (site.isRaw()) { duke@1: // Determine argument types for site. duke@1: Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); duke@1: if (site1 != null) site = site1; duke@1: } duke@1: } duke@1: duke@1: env.info.selectSuper = selectSuperPrev; mcimadamore@1347: result = checkId(tree, site, sym, env, resultInfo); duke@1: } duke@1: //where duke@1: /** Determine symbol referenced by a Select expression, duke@1: * duke@1: * @param tree The select tree. duke@1: * @param site The type of the selected expression, duke@1: * @param env The current environment. mcimadamore@1220: * @param resultInfo The current result. duke@1: */ duke@1: private Symbol selectSym(JCFieldAccess tree, mcimadamore@829: Symbol location, duke@1: Type site, duke@1: Env env, mcimadamore@1220: ResultInfo resultInfo) { duke@1: DiagnosticPosition pos = tree.pos(); duke@1: Name name = tree.name; jjg@1374: switch (site.getTag()) { duke@1: case PACKAGE: mcimadamore@1347: return rs.accessBase( mcimadamore@1220: rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind), mcimadamore@829: pos, location, site, name, true); duke@1: case ARRAY: duke@1: case CLASS: jjg@1374: if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { duke@1: return rs.resolveQualifiedMethod( mcimadamore@1220: pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); duke@1: } else if (name == names._this || name == names._super) { duke@1: return rs.resolveSelf(pos, env, site.tsym, name); duke@1: } else if (name == names._class) { duke@1: // In this case, we have already made sure in duke@1: // visitSelect that qualifier expression is a type. duke@1: Type t = syms.classType; duke@1: List typeargs = allowGenerics duke@1: ? List.of(types.erasure(site)) duke@1: : List.nil(); duke@1: t = new ClassType(t.getEnclosingType(), typeargs, t.tsym); duke@1: return new VarSymbol( duke@1: STATIC | PUBLIC | FINAL, names._class, t, site.tsym); duke@1: } else { duke@1: // We are seeing a plain identifier as selector. mcimadamore@1220: Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind); mcimadamore@1220: if ((resultInfo.pkind & ERRONEOUS) == 0) mcimadamore@1347: sym = rs.accessBase(sym, pos, location, site, name, true); duke@1: return sym; duke@1: } duke@1: case WILDCARD: duke@1: throw new AssertionError(tree); duke@1: case TYPEVAR: duke@1: // Normally, site.getUpperBound() shouldn't be null. duke@1: // It should only happen during memberEnter/attribBase mcimadamore@829: // when determining the super type which *must* beac duke@1: // done before attributing the type variables. In duke@1: // other words, we are seeing this illegal program: duke@1: // class B extends A {} duke@1: Symbol sym = (site.getUpperBound() != null) mcimadamore@1220: ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) duke@1: : null; mcimadamore@361: if (sym == null) { duke@1: log.error(pos, "type.var.cant.be.deref"); duke@1: return syms.errSymbol; duke@1: } else { mcimadamore@155: Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? mcimadamore@155: rs.new AccessError(env, site, sym) : mcimadamore@155: sym; mcimadamore@1347: rs.accessBase(sym2, pos, location, site, name, true); duke@1: return sym; duke@1: } duke@1: case ERROR: duke@1: // preserve identifier names through errors jjg@110: return types.createErrorType(name, site.tsym, site).tsym; duke@1: default: duke@1: // The qualifier expression is of a primitive type -- only duke@1: // .class is allowed for these. duke@1: if (name == names._class) { duke@1: // In this case, we have already made sure in Select that duke@1: // qualifier expression is a type. duke@1: Type t = syms.classType; duke@1: Type arg = types.boxedClass(site).type; duke@1: t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym); duke@1: return new VarSymbol( duke@1: STATIC | PUBLIC | FINAL, names._class, t, site.tsym); duke@1: } else { duke@1: log.error(pos, "cant.deref", site); duke@1: return syms.errSymbol; duke@1: } duke@1: } duke@1: } duke@1: duke@1: /** Determine type of identifier or select expression and check that duke@1: * (1) the referenced symbol is not deprecated duke@1: * (2) the symbol's type is safe (@see checkSafe) duke@1: * (3) if symbol is a variable, check that its type and kind are duke@1: * compatible with the prototype and protokind. duke@1: * (4) if symbol is an instance field of a raw type, duke@1: * which is being assigned to, issue an unchecked warning if its duke@1: * type changes under erasure. duke@1: * (5) if symbol is an instance method of a raw type, issue an duke@1: * unchecked warning if its argument types change under erasure. duke@1: * If checks succeed: duke@1: * If symbol is a constant, return its constant type duke@1: * else if symbol is a method, return its result type duke@1: * otherwise return its type. duke@1: * Otherwise return errType. duke@1: * duke@1: * @param tree The syntax tree representing the identifier duke@1: * @param site If this is a select, the type of the selected duke@1: * expression, otherwise the type of the current class. duke@1: * @param sym The symbol representing the identifier. duke@1: * @param env The current environment. mcimadamore@1220: * @param resultInfo The expected result duke@1: */ duke@1: Type checkId(JCTree tree, duke@1: Type site, duke@1: Symbol sym, duke@1: Env env, mcimadamore@1347: ResultInfo resultInfo) { mcimadamore@1415: return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? mcimadamore@1415: checkMethodId(tree, site, sym, env, resultInfo) : mcimadamore@1415: checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); mcimadamore@1415: } mcimadamore@1415: mcimadamore@1415: Type checkMethodId(JCTree tree, mcimadamore@1415: Type site, mcimadamore@1415: Symbol sym, mcimadamore@1415: Env env, mcimadamore@1415: ResultInfo resultInfo) { mcimadamore@1415: boolean isPolymorhicSignature = mcimadamore@1415: sym.kind == MTH && ((MethodSymbol)sym.baseSymbol()).isSignaturePolymorphic(types); mcimadamore@1415: return isPolymorhicSignature ? mcimadamore@1415: checkSigPolyMethodId(tree, site, sym, env, resultInfo) : mcimadamore@1415: checkMethodIdInternal(tree, site, sym, env, resultInfo); mcimadamore@1415: } mcimadamore@1415: mcimadamore@1415: Type checkSigPolyMethodId(JCTree tree, mcimadamore@1415: Type site, mcimadamore@1415: Symbol sym, mcimadamore@1415: Env env, mcimadamore@1415: ResultInfo resultInfo) { mcimadamore@1415: //recover original symbol for signature polymorphic methods mcimadamore@1415: checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo); mcimadamore@1415: env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC; mcimadamore@1415: return sym.type; mcimadamore@1415: } mcimadamore@1415: mcimadamore@1415: Type checkMethodIdInternal(JCTree tree, mcimadamore@1415: Type site, mcimadamore@1415: Symbol sym, mcimadamore@1415: Env env, mcimadamore@1415: ResultInfo resultInfo) { mcimadamore@1415: Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase)); mcimadamore@1415: Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo); mcimadamore@1415: resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); mcimadamore@1415: return owntype; mcimadamore@1415: } mcimadamore@1415: mcimadamore@1415: Type checkIdInternal(JCTree tree, mcimadamore@1415: Type site, mcimadamore@1415: Symbol sym, mcimadamore@1415: Type pt, mcimadamore@1415: Env env, mcimadamore@1415: ResultInfo resultInfo) { mcimadamore@1347: if (pt.isErroneous()) { mcimadamore@1347: return types.createErrorType(site); mcimadamore@1347: } duke@1: Type owntype; // The computed type of this identifier occurrence. duke@1: switch (sym.kind) { duke@1: case TYP: duke@1: // For types, the computed type equals the symbol's type, duke@1: // except for two situations: duke@1: owntype = sym.type; jjg@1374: if (owntype.hasTag(CLASS)) { ohrstrom@1384: chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); duke@1: Type ownOuter = owntype.getEnclosingType(); duke@1: duke@1: // (a) If the symbol's type is parameterized, erase it duke@1: // because no type parameters were given. duke@1: // We recover generic outer type later in visitTypeApply. duke@1: if (owntype.tsym.type.getTypeArguments().nonEmpty()) { duke@1: owntype = types.erasure(owntype); duke@1: } duke@1: duke@1: // (b) If the symbol's type is an inner class, then duke@1: // we have to interpret its outer type as a superclass duke@1: // of the site type. Example: duke@1: // duke@1: // class Tree { class Visitor { ... } } duke@1: // class PointTree extends Tree { ... } duke@1: // ...PointTree.Visitor... duke@1: // duke@1: // Then the type of the last expression above is duke@1: // Tree.Visitor. jjg@1374: else if (ownOuter.hasTag(CLASS) && site != ownOuter) { duke@1: Type normOuter = site; jjg@1374: if (normOuter.hasTag(CLASS)) duke@1: normOuter = types.asEnclosingSuper(site, ownOuter.tsym); duke@1: if (normOuter == null) // perhaps from an import duke@1: normOuter = types.erasure(ownOuter); duke@1: if (normOuter != ownOuter) duke@1: owntype = new ClassType( duke@1: normOuter, List.nil(), owntype.tsym); duke@1: } duke@1: } duke@1: break; duke@1: case VAR: duke@1: VarSymbol v = (VarSymbol)sym; duke@1: // Test (4): if symbol is an instance field of a raw type, duke@1: // which is being assigned to, issue an unchecked warning if duke@1: // its type changes under erasure. duke@1: if (allowGenerics && mcimadamore@1220: resultInfo.pkind == VAR && duke@1: v.owner.kind == TYP && duke@1: (v.flags() & STATIC) == 0 && jjg@1374: (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { duke@1: Type s = types.asOuterSuper(site, v.owner); duke@1: if (s != null && duke@1: s.isRaw() && duke@1: !types.isSameType(v.type, v.erasure(types))) { duke@1: chk.warnUnchecked(tree.pos(), duke@1: "unchecked.assign.to.var", duke@1: v, s); duke@1: } duke@1: } duke@1: // The computed type of a variable is the type of the duke@1: // variable symbol, taken as a member of the site type. duke@1: owntype = (sym.owner.kind == TYP && duke@1: sym.name != names._this && sym.name != names._super) duke@1: ? types.memberType(site, sym) duke@1: : sym.type; duke@1: duke@1: // If the variable is a constant, record constant value in duke@1: // computed type. duke@1: if (v.getConstValue() != null && isStaticReference(tree)) duke@1: owntype = owntype.constType(v.getConstValue()); duke@1: mcimadamore@1220: if (resultInfo.pkind == VAL) { duke@1: owntype = capture(owntype); // capture "names as expressions" duke@1: } duke@1: break; duke@1: case MTH: { mcimadamore@1268: owntype = checkMethod(site, sym, mcimadamore@1268: new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext), mcimadamore@1341: env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), mcimadamore@1347: resultInfo.pt.getTypeArguments()); duke@1: break; duke@1: } duke@1: case PCK: case ERR: duke@1: owntype = sym.type; duke@1: break; duke@1: default: duke@1: throw new AssertionError("unexpected kind: " + sym.kind + duke@1: " in tree " + tree); duke@1: } duke@1: duke@1: // Test (1): emit a `deprecation' warning if symbol is deprecated. duke@1: // (for constructors, the error was given when the constructor was duke@1: // resolved) mcimadamore@852: mcimadamore@852: if (sym.name != names.init) { mcimadamore@852: chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); mcimadamore@852: chk.checkSunAPI(tree.pos(), sym); jjg@377: } duke@1: duke@1: // Test (3): if symbol is a variable, check that its type and duke@1: // kind are compatible with the prototype and protokind. mcimadamore@1220: return check(tree, owntype, sym.kind, resultInfo); duke@1: } duke@1: duke@1: /** Check that variable is initialized and evaluate the variable's duke@1: * initializer, if not yet done. Also check that variable is not duke@1: * referenced before it is defined. duke@1: * @param tree The tree making up the variable reference. duke@1: * @param env The current environment. duke@1: * @param v The variable's symbol. duke@1: */ duke@1: private void checkInit(JCTree tree, duke@1: Env env, duke@1: VarSymbol v, duke@1: boolean onlyWarning) { duke@1: // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " + duke@1: // tree.pos + " " + v.pos + " " + duke@1: // Resolve.isStatic(env));//DEBUG duke@1: duke@1: // A forward reference is diagnosed if the declaration position duke@1: // of the variable is greater than the current tree position duke@1: // and the tree and variable definition occur in the same class duke@1: // definition. Note that writes don't count as references. duke@1: // This check applies only to class and instance duke@1: // variables. Local variables follow different scope rules, duke@1: // and are subject to definite assignment checking. mcimadamore@94: if ((env.info.enclVar == v || v.pos > tree.pos) && duke@1: v.owner.kind == TYP && mcimadamore@1297: canOwnInitializer(owner(env)) && duke@1: v.owner == env.info.scope.owner.enclClass() && duke@1: ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && jjg@1127: (!env.tree.hasTag(ASSIGN) || duke@1: TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { mcimadamore@94: String suffix = (env.info.enclVar == v) ? mcimadamore@94: "self.ref" : "forward.ref"; mcimadamore@18: if (!onlyWarning || isStaticEnumField(v)) { mcimadamore@94: log.error(tree.pos(), "illegal." + suffix); duke@1: } else if (useBeforeDeclarationWarning) { mcimadamore@94: log.warning(tree.pos(), suffix, v); duke@1: } duke@1: } duke@1: duke@1: v.getConstValue(); // ensure initializer is evaluated duke@1: duke@1: checkEnumInitializer(tree, env, v); duke@1: } duke@1: duke@1: /** duke@1: * Check for illegal references to static members of enum. In duke@1: * an enum type, constructors and initializers may not duke@1: * reference its static members unless they are constant. duke@1: * duke@1: * @param tree The tree making up the variable reference. duke@1: * @param env The current environment. duke@1: * @param v The variable's symbol. jjh@972: * @jls section 8.9 Enums duke@1: */ duke@1: private void checkEnumInitializer(JCTree tree, Env env, VarSymbol v) { jjh@972: // JLS: duke@1: // duke@1: // "It is a compile-time error to reference a static field duke@1: // of an enum type that is not a compile-time constant duke@1: // (15.28) from constructors, instance initializer blocks, duke@1: // or instance variable initializer expressions of that duke@1: // type. It is a compile-time error for the constructors, duke@1: // instance initializer blocks, or instance variable duke@1: // initializer expressions of an enum constant e to refer duke@1: // to itself or to an enum constant of the same type that duke@1: // is declared to the right of e." mcimadamore@18: if (isStaticEnumField(v)) { duke@1: ClassSymbol enclClass = env.info.scope.owner.enclClass(); duke@1: duke@1: if (enclClass == null || enclClass.owner == null) duke@1: return; duke@1: duke@1: // See if the enclosing class is the enum (or a duke@1: // subclass thereof) declaring v. If not, this duke@1: // reference is OK. duke@1: if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) duke@1: return; duke@1: duke@1: // If the reference isn't from an initializer, then duke@1: // the reference is OK. duke@1: if (!Resolve.isInitializer(env)) duke@1: return; duke@1: duke@1: log.error(tree.pos(), "illegal.enum.static.ref"); duke@1: } duke@1: } duke@1: mcimadamore@18: /** Is the given symbol a static, non-constant field of an Enum? mcimadamore@18: * Note: enum literals should not be regarded as such mcimadamore@18: */ mcimadamore@18: private boolean isStaticEnumField(VarSymbol v) { mcimadamore@18: return Flags.isEnum(v.owner) && mcimadamore@18: Flags.isStatic(v) && mcimadamore@18: !Flags.isConstant(v) && mcimadamore@18: v.name != names._class; duke@1: } duke@1: duke@1: /** Can the given symbol be the owner of code which forms part duke@1: * if class initialization? This is the case if the symbol is duke@1: * a type or field, or if the symbol is the synthetic method. duke@1: * owning a block. duke@1: */ duke@1: private boolean canOwnInitializer(Symbol sym) { duke@1: return duke@1: (sym.kind & (VAR | TYP)) != 0 || duke@1: (sym.kind == MTH && (sym.flags() & BLOCK) != 0); duke@1: } duke@1: duke@1: Warner noteWarner = new Warner(); duke@1: duke@1: /** mcimadamore@1219: * Check that method arguments conform to its instantiation. duke@1: **/ duke@1: public Type checkMethod(Type site, duke@1: Symbol sym, mcimadamore@1268: ResultInfo resultInfo, mcimadamore@1268: Env env, mcimadamore@1268: final List argtrees, mcimadamore@1268: List argtypes, mcimadamore@1347: List typeargtypes) { duke@1: // Test (5): if symbol is an instance method of a raw type, issue duke@1: // an unchecked warning if its argument types change under erasure. duke@1: if (allowGenerics && duke@1: (sym.flags() & STATIC) == 0 && jjg@1374: (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { duke@1: Type s = types.asOuterSuper(site, sym.owner); duke@1: if (s != null && s.isRaw() && duke@1: !types.isSameTypes(sym.type.getParameterTypes(), duke@1: sym.erasure(types).getParameterTypes())) { duke@1: chk.warnUnchecked(env.tree.pos(), duke@1: "unchecked.call.mbr.of.raw.type", duke@1: sym, s); duke@1: } duke@1: } duke@1: mcimadamore@1415: if (env.info.defaultSuperCallSite != null) { mcimadamore@1415: for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { mcimadamore@1415: if (!sup.tsym.isSubClass(sym.enclClass(), types) || mcimadamore@1415: types.isSameType(sup, env.info.defaultSuperCallSite)) continue; mcimadamore@1415: List icand_sup = mcimadamore@1415: types.interfaceCandidates(sup, (MethodSymbol)sym); mcimadamore@1415: if (icand_sup.nonEmpty() && mcimadamore@1415: icand_sup.head != sym && mcimadamore@1415: icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { mcimadamore@1415: log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite, mcimadamore@1415: diags.fragment("overridden.default", sym, sup)); mcimadamore@1415: break; mcimadamore@1393: } mcimadamore@1393: } mcimadamore@1415: env.info.defaultSuperCallSite = null; mcimadamore@1393: } mcimadamore@1393: duke@1: // Compute the identifier's instantiated type. duke@1: // For methods, we need to compute the instance type by duke@1: // Resolve.instantiate from the symbol's type as well as duke@1: // any type arguments and value arguments. mcimadamore@795: noteWarner.clear(); mcimadamore@1296: try { mcimadamore@1347: Type owntype = rs.checkMethod( mcimadamore@1296: env, mcimadamore@1296: site, mcimadamore@1296: sym, mcimadamore@1296: resultInfo, mcimadamore@1296: argtypes, mcimadamore@1296: typeargtypes, mcimadamore@1296: noteWarner); mcimadamore@1296: mcimadamore@1347: return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), mcimadamore@1296: noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)); mcimadamore@1296: } catch (Infer.InferenceException ex) { mcimadamore@1296: //invalid target type - propagate exception outwards or report error mcimadamore@1296: //depending on the current check context mcimadamore@1296: resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); mcimadamore@1296: return types.createErrorType(site); mcimadamore@1296: } catch (Resolve.InapplicableMethodException ex) { mcimadamore@1347: Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault())); mcimadamore@1296: return null; mcimadamore@1296: } mcimadamore@1219: } mcimadamore@1219: duke@1: public void visitLiteral(JCLiteral tree) { duke@1: result = check( mcimadamore@1220: tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo); duke@1: } duke@1: //where duke@1: /** Return the type of a literal with given type tag. duke@1: */ jjg@1374: Type litType(TypeTag tag) { jjg@1374: return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; duke@1: } duke@1: duke@1: public void visitTypeIdent(JCPrimitiveTypeTree tree) { jjg@1374: result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo); duke@1: } duke@1: duke@1: public void visitTypeArray(JCArrayTypeTree tree) { duke@1: Type etype = attribType(tree.elemtype, env); duke@1: Type type = new ArrayType(etype, syms.arrayClass); mcimadamore@1220: result = check(tree, type, TYP, resultInfo); duke@1: } duke@1: duke@1: /** Visitor method for parameterized types. duke@1: * Bound checking is left until later, since types are attributed duke@1: * before supertype structure is completely known duke@1: */ duke@1: public void visitTypeApply(JCTypeApply tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: duke@1: // Attribute functor part of application and make sure it's a class. duke@1: Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); duke@1: duke@1: // Attribute type parameters duke@1: List actuals = attribTypes(tree.arguments, env); duke@1: jjg@1374: if (clazztype.hasTag(CLASS)) { duke@1: List formals = clazztype.tsym.type.getTypeArguments(); mcimadamore@1060: if (actuals.isEmpty()) //diamond mcimadamore@1060: actuals = formals; mcimadamore@1060: mcimadamore@1060: if (actuals.length() == formals.length()) { duke@1: List a = actuals; duke@1: List f = formals; duke@1: while (a.nonEmpty()) { duke@1: a.head = a.head.withTypeVar(f.head); duke@1: a = a.tail; duke@1: f = f.tail; duke@1: } duke@1: // Compute the proper generic outer duke@1: Type clazzOuter = clazztype.getEnclosingType(); jjg@1374: if (clazzOuter.hasTag(CLASS)) { duke@1: Type site; jjg@308: JCExpression clazz = TreeInfo.typeIn(tree.clazz); jjg@1127: if (clazz.hasTag(IDENT)) { duke@1: site = env.enclClass.sym.type; jjg@1127: } else if (clazz.hasTag(SELECT)) { jjg@308: site = ((JCFieldAccess) clazz).selected.type; duke@1: } else throw new AssertionError(""+tree); jjg@1374: if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { jjg@1374: if (site.hasTag(CLASS)) duke@1: site = types.asOuterSuper(site, clazzOuter.tsym); duke@1: if (site == null) duke@1: site = types.erasure(clazzOuter); duke@1: clazzOuter = site; duke@1: } duke@1: } mcimadamore@536: owntype = new ClassType(clazzOuter, actuals, clazztype.tsym); duke@1: } else { duke@1: if (formals.length() != 0) { duke@1: log.error(tree.pos(), "wrong.number.type.args", duke@1: Integer.toString(formals.length())); duke@1: } else { duke@1: log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym); duke@1: } jjg@110: owntype = types.createErrorType(tree.type); duke@1: } duke@1: } mcimadamore@1220: result = check(tree, owntype, TYP, resultInfo); duke@1: } duke@1: darcy@969: public void visitTypeUnion(JCTypeUnion tree) { mcimadamore@774: ListBuffer multicatchTypes = ListBuffer.lb(); jjg@988: ListBuffer all_multicatchTypes = null; // lazy, only if needed mcimadamore@774: for (JCExpression typeTree : tree.alternatives) { mcimadamore@774: Type ctype = attribType(typeTree, env); mcimadamore@774: ctype = chk.checkType(typeTree.pos(), mcimadamore@774: chk.checkClassType(typeTree.pos(), ctype), mcimadamore@774: syms.throwableType); mcimadamore@949: if (!ctype.isErroneous()) { darcy@969: //check that alternatives of a union type are pairwise mcimadamore@949: //unrelated w.r.t. subtyping mcimadamore@949: if (chk.intersects(ctype, multicatchTypes.toList())) { mcimadamore@949: for (Type t : multicatchTypes) { mcimadamore@949: boolean sub = types.isSubtype(ctype, t); mcimadamore@949: boolean sup = types.isSubtype(t, ctype); mcimadamore@949: if (sub || sup) { mcimadamore@949: //assume 'a' <: 'b' mcimadamore@949: Type a = sub ? ctype : t; mcimadamore@949: Type b = sub ? t : ctype; mcimadamore@949: log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b); mcimadamore@949: } mcimadamore@949: } mcimadamore@949: } mcimadamore@949: multicatchTypes.append(ctype); jjg@988: if (all_multicatchTypes != null) jjg@988: all_multicatchTypes.append(ctype); jjg@988: } else { jjg@988: if (all_multicatchTypes == null) { jjg@988: all_multicatchTypes = ListBuffer.lb(); jjg@988: all_multicatchTypes.appendList(multicatchTypes); jjg@988: } jjg@988: all_multicatchTypes.append(ctype); mcimadamore@949: } mcimadamore@774: } mcimadamore@1220: Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo); jjg@1374: if (t.hasTag(CLASS)) { jjg@988: List alternatives = jjg@988: ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); jjg@988: t = new UnionClassType((ClassType) t, alternatives); jjg@988: } jjg@988: tree.type = result = t; mcimadamore@550: } mcimadamore@550: mcimadamore@1436: public void visitTypeIntersection(JCTypeIntersection tree) { mcimadamore@1436: attribTypes(tree.bounds, env); mcimadamore@1436: tree.type = result = checkIntersection(tree, tree.bounds); mcimadamore@1436: } mcimadamore@1436: mcimadamore@1436: public void visitTypeParameter(JCTypeParameter tree) { mcimadamore@1436: TypeVar typeVar = (TypeVar)tree.type; mcimadamore@1436: if (!typeVar.bound.isErroneous()) { mcimadamore@1436: //fixup type-parameter bound computed in 'attribTypeVariables' mcimadamore@1436: typeVar.bound = checkIntersection(tree, tree.bounds); mcimadamore@1436: } mcimadamore@1436: } mcimadamore@1436: mcimadamore@1436: Type checkIntersection(JCTree tree, List bounds) { duke@1: Set boundSet = new HashSet(); mcimadamore@1436: if (bounds.nonEmpty()) { duke@1: // accept class or interface or typevar as first bound. mcimadamore@1436: bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); mcimadamore@1436: boundSet.add(types.erasure(bounds.head.type)); mcimadamore@1436: if (bounds.head.type.isErroneous()) { mcimadamore@1436: return bounds.head.type; mcimadamore@159: } mcimadamore@1436: else if (bounds.head.type.hasTag(TYPEVAR)) { duke@1: // if first bound was a typevar, do not accept further bounds. mcimadamore@1436: if (bounds.tail.nonEmpty()) { mcimadamore@1436: log.error(bounds.tail.head.pos(), duke@1: "type.var.may.not.be.followed.by.other.bounds"); mcimadamore@1436: return bounds.head.type; duke@1: } duke@1: } else { duke@1: // if first bound was a class or interface, accept only interfaces duke@1: // as further bounds. mcimadamore@1436: for (JCExpression bound : bounds.tail) { mcimadamore@1436: bound.type = checkBase(bound.type, bound, env, false, true, false); mcimadamore@1436: if (bound.type.isErroneous()) { mcimadamore@1436: bounds = List.of(bound); mcimadamore@1436: } mcimadamore@1436: else if (bound.type.hasTag(CLASS)) { mcimadamore@1436: chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); mcimadamore@1436: } duke@1: } duke@1: } duke@1: } mcimadamore@1436: mcimadamore@1436: if (bounds.length() == 0) { mcimadamore@1436: return syms.objectType; mcimadamore@1436: } else if (bounds.length() == 1) { mcimadamore@1436: return bounds.head.type; mcimadamore@1436: } else { mcimadamore@1436: Type owntype = types.makeCompoundType(TreeInfo.types(bounds)); mcimadamore@1436: if (tree.hasTag(TYPEINTERSECTION)) { mcimadamore@1436: ((IntersectionClassType)owntype).intersectionKind = mcimadamore@1436: IntersectionClassType.IntersectionKind.EXPLICIT; mcimadamore@1436: } duke@1: // ... the variable's bound is a class type flagged COMPOUND duke@1: // (see comment for TypeVar.bound). duke@1: // In this case, generate a class tree that represents the duke@1: // bound class, ... jjg@904: JCExpression extending; duke@1: List implementing; mcimadamore@1436: if (!bounds.head.type.isInterface()) { mcimadamore@1436: extending = bounds.head; mcimadamore@1436: implementing = bounds.tail; duke@1: } else { duke@1: extending = null; mcimadamore@1436: implementing = bounds; duke@1: } mcimadamore@1436: JCClassDecl cd = make.at(tree).ClassDef( duke@1: make.Modifiers(PUBLIC | ABSTRACT), mcimadamore@1436: names.empty, List.nil(), duke@1: extending, implementing, List.nil()); duke@1: mcimadamore@1436: ClassSymbol c = (ClassSymbol)owntype.tsym; jjg@816: Assert.check((c.flags() & COMPOUND) != 0); duke@1: cd.sym = c; duke@1: c.sourcefile = env.toplevel.sourcefile; duke@1: duke@1: // ... and attribute the bound class duke@1: c.flags_field |= UNATTRIBUTED; duke@1: Env cenv = enter.classEnv(cd, env); duke@1: enter.typeEnvs.put(c, cenv); mcimadamore@1436: attribClass(c); mcimadamore@1436: return owntype; duke@1: } duke@1: } duke@1: duke@1: public void visitWildcard(JCWildcard tree) { duke@1: //- System.err.println("visitWildcard("+tree+");");//DEBUG duke@1: Type type = (tree.kind.kind == BoundKind.UNBOUND) duke@1: ? syms.objectType duke@1: : attribType(tree.inner, env); duke@1: result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), duke@1: tree.kind.kind, duke@1: syms.boundClass), mcimadamore@1220: TYP, resultInfo); duke@1: } duke@1: duke@1: public void visitAnnotation(JCAnnotation tree) { mcimadamore@1220: log.error(tree.pos(), "annotation.not.valid.for.type", pt()); duke@1: result = tree.type = syms.errType; duke@1: } duke@1: duke@1: public void visitErroneous(JCErroneous tree) { duke@1: if (tree.errs != null) duke@1: for (JCTree err : tree.errs) mcimadamore@1220: attribTree(err, env, new ResultInfo(ERR, pt())); duke@1: result = tree.type = syms.errType; duke@1: } duke@1: duke@1: /** Default visitor method for all other trees. duke@1: */ duke@1: public void visitTree(JCTree tree) { duke@1: throw new AssertionError(); duke@1: } duke@1: jjg@931: /** jjg@931: * Attribute an env for either a top level tree or class declaration. jjg@931: */ jjg@931: public void attrib(Env env) { jjg@1127: if (env.tree.hasTag(TOPLEVEL)) jjg@931: attribTopLevel(env); jjg@931: else jjg@931: attribClass(env.tree.pos(), env.enclClass.sym); jjg@931: } jjg@931: jjg@931: /** jjg@931: * Attribute a top level tree. These trees are encountered when the jjg@931: * package declaration has annotations. jjg@931: */ jjg@931: public void attribTopLevel(Env env) { jjg@931: JCCompilationUnit toplevel = env.toplevel; jjg@931: try { jjg@931: annotate.flush(); jjg@931: chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge); jjg@931: } catch (CompletionFailure ex) { jjg@931: chk.completionError(toplevel.pos(), ex); jjg@931: } jjg@931: } jjg@931: duke@1: /** Main method: attribute class definition associated with given class symbol. duke@1: * reporting completion failures at the given position. duke@1: * @param pos The source position at which completion errors are to be duke@1: * reported. duke@1: * @param c The class symbol whose definition will be attributed. duke@1: */ duke@1: public void attribClass(DiagnosticPosition pos, ClassSymbol c) { duke@1: try { duke@1: annotate.flush(); duke@1: attribClass(c); duke@1: } catch (CompletionFailure ex) { duke@1: chk.completionError(pos, ex); duke@1: } duke@1: } duke@1: duke@1: /** Attribute class definition associated with given class symbol. duke@1: * @param c The class symbol whose definition will be attributed. duke@1: */ duke@1: void attribClass(ClassSymbol c) throws CompletionFailure { jjg@1374: if (c.type.hasTag(ERROR)) return; duke@1: duke@1: // Check for cycles in the inheritance graph, which can arise from duke@1: // ill-formed class files. duke@1: chk.checkNonCyclic(null, c.type); duke@1: duke@1: Type st = types.supertype(c.type); duke@1: if ((c.flags_field & Flags.COMPOUND) == 0) { duke@1: // First, attribute superclass. jjg@1374: if (st.hasTag(CLASS)) duke@1: attribClass((ClassSymbol)st.tsym); duke@1: duke@1: // Next attribute owner, if it is a class. jjg@1374: if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) duke@1: attribClass((ClassSymbol)c.owner); duke@1: } duke@1: duke@1: // The previous operations might have attributed the current class duke@1: // if there was a cycle. So we test first whether the class is still duke@1: // UNATTRIBUTED. duke@1: if ((c.flags_field & UNATTRIBUTED) != 0) { duke@1: c.flags_field &= ~UNATTRIBUTED; duke@1: duke@1: // Get environment current at the point of class definition. duke@1: Env env = enter.typeEnvs.get(c); duke@1: duke@1: // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized, duke@1: // because the annotations were not available at the time the env was created. Therefore, duke@1: // we look up the environment chain for the first enclosing environment for which the duke@1: // lint value is set. Typically, this is the parent env, but might be further if there duke@1: // are any envs created as a result of TypeParameter nodes. duke@1: Env lintEnv = env; duke@1: while (lintEnv.info.lint == null) duke@1: lintEnv = lintEnv.next; duke@1: duke@1: // Having found the enclosing lint value, we can initialize the lint value for this class jfranck@1313: env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags()); duke@1: duke@1: Lint prevLint = chk.setLint(env.info.lint); duke@1: JavaFileObject prev = log.useSource(c.sourcefile); mcimadamore@1347: ResultInfo prevReturnRes = env.info.returnResult; duke@1: duke@1: try { mcimadamore@1347: env.info.returnResult = null; duke@1: // java.lang.Enum may not be subclassed by a non-enum duke@1: if (st.tsym == syms.enumSym && duke@1: ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) duke@1: log.error(env.tree.pos(), "enum.no.subclassing"); duke@1: duke@1: // Enums may not be extended by source-level classes duke@1: if (st.tsym != null && duke@1: ((st.tsym.flags_field & Flags.ENUM) != 0) && mcimadamore@82: ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) && duke@1: !target.compilerBootstrap(c)) { duke@1: log.error(env.tree.pos(), "enum.types.not.extensible"); duke@1: } duke@1: attribClassBody(env, c); duke@1: duke@1: chk.checkDeprecatedAnnotation(env.tree.pos(), c); duke@1: } finally { mcimadamore@1347: env.info.returnResult = prevReturnRes; duke@1: log.useSource(prev); duke@1: chk.setLint(prevLint); duke@1: } duke@1: duke@1: } duke@1: } duke@1: duke@1: public void visitImport(JCImport tree) { duke@1: // nothing to do duke@1: } duke@1: duke@1: /** Finish the attribution of a class. */ duke@1: private void attribClassBody(Env env, ClassSymbol c) { duke@1: JCClassDecl tree = (JCClassDecl)env.tree; jjg@816: Assert.check(c == tree.sym); duke@1: duke@1: // Validate annotations duke@1: chk.validateAnnotations(tree.mods.annotations, c); duke@1: duke@1: // Validate type parameters, supertype and interfaces. mcimadamore@1436: attribStats(tree.typarams, env); mcimadamore@537: if (!c.isAnonymous()) { mcimadamore@537: //already checked if anonymous mcimadamore@537: chk.validate(tree.typarams, env); mcimadamore@537: chk.validate(tree.extending, env); mcimadamore@537: chk.validate(tree.implementing, env); mcimadamore@537: } duke@1: duke@1: // If this is a non-abstract class, check that it has no abstract duke@1: // methods or unimplemented methods of an implemented interface. duke@1: if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { duke@1: if (!relax) duke@1: chk.checkAllDefined(tree.pos(), c); duke@1: } duke@1: duke@1: if ((c.flags() & ANNOTATION) != 0) { duke@1: if (tree.implementing.nonEmpty()) duke@1: log.error(tree.implementing.head.pos(), duke@1: "cant.extend.intf.annotation"); duke@1: if (tree.typarams.nonEmpty()) duke@1: log.error(tree.typarams.head.pos(), duke@1: "intf.annotation.cant.have.type.params"); jfranck@1313: jjg@1492: // If this annotation has a @Repeatable, validate jjg@1492: Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym); jjg@1492: if (repeatable != null) { jjg@1492: // get diagnostic position for error reporting jjg@1492: DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); jfranck@1313: Assert.checkNonNull(cbPos); jfranck@1313: jjg@1492: chk.validateRepeatable(c, repeatable, cbPos); jfranck@1313: } duke@1: } else { duke@1: // Check that all extended classes and interfaces duke@1: // are compatible (i.e. no two define methods with same arguments duke@1: // yet different return types). (JLS 8.4.6.3) duke@1: chk.checkCompatibleSupertypes(tree.pos(), c.type); mcimadamore@1393: if (allowDefaultMethods) { mcimadamore@1393: chk.checkDefaultMethodClashes(tree.pos(), c.type); mcimadamore@1393: } duke@1: } duke@1: duke@1: // Check that class does not import the same parameterized interface duke@1: // with two different argument lists. duke@1: chk.checkClassBounds(tree.pos(), c.type); duke@1: duke@1: tree.type = c.type; duke@1: jjg@816: for (List l = tree.typarams; jjg@816: l.nonEmpty(); l = l.tail) { jjg@816: Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope); duke@1: } duke@1: duke@1: // Check that a generic class doesn't extend Throwable duke@1: if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) duke@1: log.error(tree.extending.pos(), "generic.throwable"); duke@1: duke@1: // Check that all methods which implement some duke@1: // method conform to the method they implement. duke@1: chk.checkImplementations(tree); duke@1: mcimadamore@951: //check that a resource implementing AutoCloseable cannot throw InterruptedException mcimadamore@951: checkAutoCloseable(tree.pos(), env, c.type); mcimadamore@951: duke@1: for (List l = tree.defs; l.nonEmpty(); l = l.tail) { duke@1: // Attribute declaration duke@1: attribStat(l.head, env); duke@1: // Check that declarations in inner classes are not static (JLS 8.1.2) duke@1: // Make an exception for static constants. duke@1: if (c.owner.kind != PCK && duke@1: ((c.flags() & STATIC) == 0 || c.name == names.empty) && duke@1: (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { duke@1: Symbol sym = null; jjg@1127: if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; duke@1: if (sym == null || duke@1: sym.kind != VAR || duke@1: ((VarSymbol) sym).getConstValue() == null) mcimadamore@855: log.error(l.head.pos(), "icls.cant.have.static.decl", c); duke@1: } duke@1: } duke@1: duke@1: // Check for cycles among non-initial constructors. duke@1: chk.checkCyclicConstructors(tree); duke@1: duke@1: // Check for cycles among annotation elements. duke@1: chk.checkNonCyclicElements(tree); duke@1: duke@1: // Check for proper use of serialVersionUID mcimadamore@795: if (env.info.lint.isEnabled(LintCategory.SERIAL) && duke@1: isSerializable(c) && duke@1: (c.flags() & Flags.ENUM) == 0 && duke@1: (c.flags() & ABSTRACT) == 0) { duke@1: checkSerialVersionUID(tree, c); duke@1: } duke@1: } duke@1: // where jfranck@1313: /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ jfranck@1313: private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { jfranck@1313: for(List al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { jfranck@1313: if (types.isSameType(al.head.annotationType.type, t)) jfranck@1313: return al.head.pos(); jfranck@1313: } jfranck@1313: jfranck@1313: return null; jfranck@1313: } jfranck@1313: duke@1: /** check if a class is a subtype of Serializable, if that is available. */ duke@1: private boolean isSerializable(ClassSymbol c) { duke@1: try { duke@1: syms.serializableType.complete(); duke@1: } duke@1: catch (CompletionFailure e) { duke@1: return false; duke@1: } duke@1: return types.isSubtype(c.type, syms.serializableType); duke@1: } duke@1: duke@1: /** Check that an appropriate serialVersionUID member is defined. */ duke@1: private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) { duke@1: duke@1: // check for presence of serialVersionUID duke@1: Scope.Entry e = c.members().lookup(names.serialVersionUID); duke@1: while (e.scope != null && e.sym.kind != VAR) e = e.next(); duke@1: if (e.scope == null) { mcimadamore@795: log.warning(LintCategory.SERIAL, jjg@612: tree.pos(), "missing.SVUID", c); duke@1: return; duke@1: } duke@1: duke@1: // check that it is static final duke@1: VarSymbol svuid = (VarSymbol)e.sym; duke@1: if ((svuid.flags() & (STATIC | FINAL)) != duke@1: (STATIC | FINAL)) mcimadamore@795: log.warning(LintCategory.SERIAL, jjg@612: TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c); duke@1: duke@1: // check that it is long jjg@1374: else if (!svuid.type.hasTag(LONG)) mcimadamore@795: log.warning(LintCategory.SERIAL, jjg@612: TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c); duke@1: duke@1: // check constant duke@1: else if (svuid.getConstValue() == null) mcimadamore@795: log.warning(LintCategory.SERIAL, jjg@612: TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c); duke@1: } duke@1: duke@1: private Type capture(Type type) { duke@1: return types.capture(type); duke@1: } jjg@308: mcimadamore@676: // mcimadamore@676: mcimadamore@676: /** mcimadamore@676: * Handle missing types/symbols in an AST. This routine is useful when mcimadamore@676: * the compiler has encountered some errors (which might have ended up mcimadamore@676: * terminating attribution abruptly); if the compiler is used in fail-over mcimadamore@676: * mode (e.g. by an IDE) and the AST contains semantic errors, this routine mcimadamore@676: * prevents NPE to be progagated during subsequent compilation steps. mcimadamore@676: */ mcimadamore@1348: public void postAttr(JCTree tree) { mcimadamore@1348: new PostAttrAnalyzer().scan(tree); mcimadamore@676: } mcimadamore@676: mcimadamore@676: class PostAttrAnalyzer extends TreeScanner { mcimadamore@676: mcimadamore@676: private void initTypeIfNeeded(JCTree that) { mcimadamore@676: if (that.type == null) { mcimadamore@676: that.type = syms.unknownType; mcimadamore@676: } mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void scan(JCTree tree) { mcimadamore@676: if (tree == null) return; mcimadamore@676: if (tree instanceof JCExpression) { mcimadamore@676: initTypeIfNeeded(tree); mcimadamore@676: } mcimadamore@676: super.scan(tree); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitIdent(JCIdent that) { mcimadamore@676: if (that.sym == null) { mcimadamore@676: that.sym = syms.unknownSymbol; mcimadamore@676: } mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitSelect(JCFieldAccess that) { mcimadamore@676: if (that.sym == null) { mcimadamore@676: that.sym = syms.unknownSymbol; mcimadamore@676: } mcimadamore@676: super.visitSelect(that); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitClassDef(JCClassDecl that) { mcimadamore@676: initTypeIfNeeded(that); mcimadamore@676: if (that.sym == null) { mcimadamore@676: that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); mcimadamore@676: } mcimadamore@676: super.visitClassDef(that); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitMethodDef(JCMethodDecl that) { mcimadamore@676: initTypeIfNeeded(that); mcimadamore@676: if (that.sym == null) { mcimadamore@676: that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); mcimadamore@676: } mcimadamore@676: super.visitMethodDef(that); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitVarDef(JCVariableDecl that) { mcimadamore@676: initTypeIfNeeded(that); mcimadamore@676: if (that.sym == null) { mcimadamore@676: that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); mcimadamore@676: that.sym.adr = 0; mcimadamore@676: } mcimadamore@676: super.visitVarDef(that); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitNewClass(JCNewClass that) { mcimadamore@676: if (that.constructor == null) { mcimadamore@676: that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol); mcimadamore@676: } mcimadamore@676: if (that.constructorType == null) { mcimadamore@676: that.constructorType = syms.unknownType; mcimadamore@676: } mcimadamore@676: super.visitNewClass(that); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override jjg@1049: public void visitAssignop(JCAssignOp that) { jjg@1049: if (that.operator == null) jjg@1049: that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol); jjg@1049: super.visitAssignop(that); jjg@1049: } jjg@1049: jjg@1049: @Override mcimadamore@676: public void visitBinary(JCBinary that) { mcimadamore@676: if (that.operator == null) mcimadamore@676: that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol); mcimadamore@676: super.visitBinary(that); mcimadamore@676: } mcimadamore@676: mcimadamore@676: @Override mcimadamore@676: public void visitUnary(JCUnary that) { mcimadamore@676: if (that.operator == null) mcimadamore@676: that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol); mcimadamore@676: super.visitUnary(that); mcimadamore@676: } mcimadamore@1352: mcimadamore@1352: @Override mcimadamore@1510: public void visitLambda(JCLambda that) { mcimadamore@1510: super.visitLambda(that); mcimadamore@1510: if (that.descriptorType == null) { mcimadamore@1510: that.descriptorType = syms.unknownType; mcimadamore@1510: } mcimadamore@1510: if (that.targets == null) { mcimadamore@1510: that.targets = List.nil(); mcimadamore@1510: } mcimadamore@1510: } mcimadamore@1510: mcimadamore@1510: @Override mcimadamore@1352: public void visitReference(JCMemberReference that) { mcimadamore@1352: super.visitReference(that); mcimadamore@1352: if (that.sym == null) { mcimadamore@1352: that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol); mcimadamore@1352: } mcimadamore@1510: if (that.descriptorType == null) { mcimadamore@1510: that.descriptorType = syms.unknownType; mcimadamore@1510: } mcimadamore@1510: if (that.targets == null) { mcimadamore@1510: that.targets = List.nil(); mcimadamore@1510: } mcimadamore@1352: } mcimadamore@676: } mcimadamore@676: // duke@1: }