duke@1: /* xdono@54: * Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved. duke@1: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@1: * duke@1: * This code is free software; you can redistribute it and/or modify it duke@1: * under the terms of the GNU General Public License version 2 only, as duke@1: * published by the Free Software Foundation. Sun designates this duke@1: * particular file as subject to the "Classpath" exception as provided duke@1: * by Sun in the LICENSE file that accompanied this code. duke@1: * duke@1: * This code is distributed in the hope that it will be useful, but WITHOUT duke@1: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@1: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@1: * version 2 for more details (a copy is included in the LICENSE file that duke@1: * accompanied this code). duke@1: * duke@1: * You should have received a copy of the GNU General Public License version duke@1: * 2 along with this work; if not, write to the Free Software Foundation, duke@1: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@1: * duke@1: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@1: * CA 95054 USA or visit www.sun.com if you need additional information or duke@1: * have any questions. duke@1: */ duke@1: duke@1: package com.sun.tools.javac.comp; duke@1: duke@1: import java.util.*; duke@1: import java.util.Set; duke@1: import javax.lang.model.element.ElementKind; duke@1: import javax.tools.JavaFileObject; duke@1: duke@1: import com.sun.tools.javac.code.*; duke@1: import com.sun.tools.javac.jvm.*; duke@1: import com.sun.tools.javac.tree.*; duke@1: import com.sun.tools.javac.util.*; duke@1: import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; duke@1: import com.sun.tools.javac.util.List; duke@1: duke@1: import com.sun.tools.javac.jvm.Target; duke@1: import com.sun.tools.javac.code.Symbol.*; duke@1: import com.sun.tools.javac.tree.JCTree.*; duke@1: import com.sun.tools.javac.code.Type.*; duke@1: duke@1: import com.sun.source.tree.IdentifierTree; duke@1: import com.sun.source.tree.MemberSelectTree; duke@1: import com.sun.source.tree.TreeVisitor; duke@1: import com.sun.source.util.SimpleTreeVisitor; duke@1: duke@1: import static com.sun.tools.javac.code.Flags.*; duke@1: import static com.sun.tools.javac.code.Kinds.*; duke@1: import static com.sun.tools.javac.code.TypeTags.*; duke@1: duke@1: /** This is the main context-dependent analysis phase in GJC. It duke@1: * encompasses name resolution, type checking and constant folding as duke@1: * subtasks. Some subtasks involve auxiliary classes. duke@1: * @see Check duke@1: * @see Resolve duke@1: * @see ConstFold duke@1: * @see Infer duke@1: * duke@1: *

This is NOT part of any API supported by Sun Microsystems. If duke@1: * you write code that depends on this, you do so at your own risk. duke@1: * This code and its internal interfaces are subject to change or duke@1: * deletion without notice. duke@1: */ duke@1: public class Attr extends JCTree.Visitor { duke@1: protected static final Context.Key attrKey = duke@1: new Context.Key(); duke@1: jjg@113: final Names names; duke@1: final Log log; duke@1: final Symtab syms; duke@1: final Resolve rs; duke@1: final Check chk; duke@1: final MemberEnter memberEnter; duke@1: final TreeMaker make; duke@1: final ConstFold cfolder; duke@1: final Enter enter; duke@1: final Target target; duke@1: final Types types; mcimadamore@89: final JCDiagnostic.Factory diags; duke@1: final Annotate annotate; duke@1: duke@1: public static Attr instance(Context context) { duke@1: Attr instance = context.get(attrKey); duke@1: if (instance == null) duke@1: instance = new Attr(context); duke@1: return instance; duke@1: } duke@1: duke@1: protected Attr(Context context) { duke@1: context.put(attrKey, this); duke@1: jjg@113: names = Names.instance(context); duke@1: log = Log.instance(context); duke@1: syms = Symtab.instance(context); duke@1: rs = Resolve.instance(context); duke@1: chk = Check.instance(context); duke@1: memberEnter = MemberEnter.instance(context); duke@1: make = TreeMaker.instance(context); duke@1: enter = Enter.instance(context); duke@1: cfolder = ConstFold.instance(context); duke@1: target = Target.instance(context); duke@1: types = Types.instance(context); mcimadamore@89: diags = JCDiagnostic.Factory.instance(context); duke@1: annotate = Annotate.instance(context); duke@1: duke@1: Options options = Options.instance(context); duke@1: duke@1: Source source = Source.instance(context); duke@1: allowGenerics = source.allowGenerics(); duke@1: allowVarargs = source.allowVarargs(); duke@1: allowEnums = source.allowEnums(); duke@1: allowBoxing = source.allowBoxing(); duke@1: allowCovariantReturns = source.allowCovariantReturns(); duke@1: allowAnonOuterThis = source.allowAnonOuterThis(); duke@1: relax = (options.get("-retrofit") != null || duke@1: options.get("-relax") != null); duke@1: useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null; duke@1: } duke@1: duke@1: /** Switch: relax some constraints for retrofit mode. duke@1: */ duke@1: boolean relax; duke@1: duke@1: /** Switch: support generics? duke@1: */ duke@1: boolean allowGenerics; duke@1: duke@1: /** Switch: allow variable-arity methods. duke@1: */ duke@1: boolean allowVarargs; duke@1: duke@1: /** Switch: support enums? duke@1: */ duke@1: boolean allowEnums; duke@1: duke@1: /** Switch: support boxing and unboxing? duke@1: */ duke@1: boolean allowBoxing; duke@1: duke@1: /** Switch: support covariant result types? duke@1: */ duke@1: boolean allowCovariantReturns; duke@1: duke@1: /** Switch: allow references to surrounding object from anonymous duke@1: * objects during constructor call? duke@1: */ duke@1: boolean allowAnonOuterThis; duke@1: duke@1: /** duke@1: * Switch: warn about use of variable before declaration? duke@1: * RFE: 6425594 duke@1: */ duke@1: boolean useBeforeDeclarationWarning; duke@1: duke@1: /** Check kind and type of given tree against protokind and prototype. duke@1: * If check succeeds, store type in tree and return it. duke@1: * If check fails, store errType in tree and return it. duke@1: * No checks are performed if the prototype is a method type. jjg@110: * It is not necessary in this case since we know that kind and type duke@1: * are correct. duke@1: * duke@1: * @param tree The tree whose kind and type is checked duke@1: * @param owntype The computed type of the tree duke@1: * @param ownkind The computed kind of the tree duke@1: * @param pkind The expected kind (or: protokind) of the tree duke@1: * @param pt The expected type (or: prototype) of the tree duke@1: */ duke@1: Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) { duke@1: if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) { duke@1: if ((ownkind & ~pkind) == 0) { duke@1: owntype = chk.checkType(tree.pos(), owntype, pt); duke@1: } else { duke@1: log.error(tree.pos(), "unexpected.type", mcimadamore@80: kindNames(pkind), mcimadamore@80: kindName(ownkind)); jjg@110: owntype = types.createErrorType(owntype); duke@1: } duke@1: } duke@1: tree.type = owntype; duke@1: return owntype; duke@1: } duke@1: duke@1: /** Is given blank final variable assignable, i.e. in a scope where it duke@1: * may be assigned to even though it is final? duke@1: * @param v The blank final variable. duke@1: * @param env The current environment. duke@1: */ duke@1: boolean isAssignableAsBlankFinal(VarSymbol v, Env env) { duke@1: Symbol owner = env.info.scope.owner; duke@1: // owner refers to the innermost variable, method or duke@1: // initializer block declaration at this point. duke@1: return duke@1: v.owner == owner duke@1: || duke@1: ((owner.name == names.init || // i.e. we are in a constructor duke@1: owner.kind == VAR || // i.e. we are in a variable initializer duke@1: (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block duke@1: && duke@1: v.owner == owner.owner duke@1: && duke@1: ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); duke@1: } duke@1: duke@1: /** Check that variable can be assigned to. duke@1: * @param pos The current source code position. duke@1: * @param v The assigned varaible duke@1: * @param base If the variable is referred to in a Select, the part duke@1: * to the left of the `.', null otherwise. duke@1: * @param env The current environment. duke@1: */ duke@1: void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env env) { duke@1: if ((v.flags() & FINAL) != 0 && duke@1: ((v.flags() & HASINIT) != 0 duke@1: || duke@1: !((base == null || duke@1: (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) && duke@1: isAssignableAsBlankFinal(v, env)))) { duke@1: log.error(pos, "cant.assign.val.to.final.var", v); duke@1: } duke@1: } duke@1: duke@1: /** Does tree represent a static reference to an identifier? duke@1: * It is assumed that tree is either a SELECT or an IDENT. duke@1: * We have to weed out selects from non-type names here. duke@1: * @param tree The candidate tree. duke@1: */ duke@1: boolean isStaticReference(JCTree tree) { duke@1: if (tree.getTag() == JCTree.SELECT) { duke@1: Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); duke@1: if (lsym == null || lsym.kind != TYP) { duke@1: return false; duke@1: } duke@1: } duke@1: return true; duke@1: } duke@1: duke@1: /** Is this symbol a type? duke@1: */ duke@1: static boolean isType(Symbol sym) { duke@1: return sym != null && sym.kind == TYP; duke@1: } duke@1: duke@1: /** The current `this' symbol. duke@1: * @param env The current environment. duke@1: */ duke@1: Symbol thisSym(DiagnosticPosition pos, Env env) { duke@1: return rs.resolveSelf(pos, env, env.enclClass.sym, names._this); duke@1: } duke@1: duke@1: /** Attribute a parsed identifier. duke@1: * @param tree Parsed identifier name duke@1: * @param topLevel The toplevel to use duke@1: */ duke@1: public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { duke@1: Env localEnv = enter.topLevelEnv(topLevel); duke@1: localEnv.enclClass = make.ClassDef(make.Modifiers(0), duke@1: syms.errSymbol.name, duke@1: null, null, null, null); duke@1: localEnv.enclClass.sym = syms.errSymbol; duke@1: return tree.accept(identAttributer, localEnv); duke@1: } duke@1: // where duke@1: private TreeVisitor> identAttributer = new IdentAttributer(); duke@1: private class IdentAttributer extends SimpleTreeVisitor> { duke@1: @Override duke@1: public Symbol visitMemberSelect(MemberSelectTree node, Env env) { duke@1: Symbol site = visit(node.getExpression(), env); duke@1: if (site.kind == ERR) duke@1: return site; duke@1: Name name = (Name)node.getIdentifier(); duke@1: if (site.kind == PCK) { duke@1: env.toplevel.packge = (PackageSymbol)site; duke@1: return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK); duke@1: } else { duke@1: env.enclClass.sym = (ClassSymbol)site; duke@1: return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); duke@1: } duke@1: } duke@1: duke@1: @Override duke@1: public Symbol visitIdentifier(IdentifierTree node, Env env) { duke@1: return rs.findIdent(env, (Name)node.getName(), TYP | PCK); duke@1: } duke@1: } duke@1: duke@1: public Type coerce(Type etype, Type ttype) { duke@1: return cfolder.coerce(etype, ttype); duke@1: } duke@1: duke@1: public Type attribType(JCTree node, TypeSymbol sym) { duke@1: Env env = enter.typeEnvs.get(sym); duke@1: Env localEnv = env.dup(node, env.info.dup()); duke@1: return attribTree(node, localEnv, Kinds.TYP, Type.noType); duke@1: } duke@1: duke@1: public Env attribExprToTree(JCTree expr, Env env, JCTree tree) { duke@1: breakTree = tree; duke@1: JavaFileObject prev = log.useSource(null); duke@1: try { duke@1: attribExpr(expr, env); duke@1: } catch (BreakAttr b) { duke@1: return b.env; duke@1: } finally { duke@1: breakTree = null; duke@1: log.useSource(prev); duke@1: } duke@1: return env; duke@1: } duke@1: duke@1: public Env attribStatToTree(JCTree stmt, Env env, JCTree tree) { duke@1: breakTree = tree; duke@1: JavaFileObject prev = log.useSource(null); duke@1: try { duke@1: attribStat(stmt, env); duke@1: } catch (BreakAttr b) { duke@1: return b.env; duke@1: } finally { duke@1: breakTree = null; duke@1: log.useSource(prev); duke@1: } duke@1: return env; duke@1: } duke@1: duke@1: private JCTree breakTree = null; duke@1: duke@1: private static class BreakAttr extends RuntimeException { duke@1: static final long serialVersionUID = -6924771130405446405L; duke@1: private Env env; duke@1: private BreakAttr(Env env) { duke@1: this.env = env; duke@1: } duke@1: } duke@1: duke@1: duke@1: /* ************************************************************************ duke@1: * Visitor methods duke@1: *************************************************************************/ duke@1: duke@1: /** Visitor argument: the current environment. duke@1: */ duke@1: Env env; duke@1: duke@1: /** Visitor argument: the currently expected proto-kind. duke@1: */ duke@1: int pkind; duke@1: duke@1: /** Visitor argument: the currently expected proto-type. duke@1: */ duke@1: Type pt; duke@1: duke@1: /** Visitor result: the computed type. duke@1: */ duke@1: Type result; duke@1: duke@1: /** Visitor method: attribute a tree, catching any completion failure duke@1: * exceptions. Return the tree's type. duke@1: * duke@1: * @param tree The tree to be visited. duke@1: * @param env The environment visitor argument. duke@1: * @param pkind The protokind visitor argument. duke@1: * @param pt The prototype visitor argument. duke@1: */ duke@1: Type attribTree(JCTree tree, Env env, int pkind, Type pt) { duke@1: Env prevEnv = this.env; duke@1: int prevPkind = this.pkind; duke@1: Type prevPt = this.pt; duke@1: try { duke@1: this.env = env; duke@1: this.pkind = pkind; duke@1: this.pt = pt; duke@1: tree.accept(this); duke@1: if (tree == breakTree) duke@1: throw new BreakAttr(env); duke@1: return result; duke@1: } catch (CompletionFailure ex) { duke@1: tree.type = syms.errType; duke@1: return chk.completionError(tree.pos(), ex); duke@1: } finally { duke@1: this.env = prevEnv; duke@1: this.pkind = prevPkind; duke@1: this.pt = prevPt; duke@1: } duke@1: } duke@1: duke@1: /** Derived visitor method: attribute an expression tree. duke@1: */ duke@1: public Type attribExpr(JCTree tree, Env env, Type pt) { duke@1: return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType); duke@1: } duke@1: duke@1: /** Derived visitor method: attribute an expression tree with duke@1: * no constraints on the computed type. duke@1: */ duke@1: Type attribExpr(JCTree tree, Env env) { duke@1: return attribTree(tree, env, VAL, Type.noType); duke@1: } duke@1: duke@1: /** Derived visitor method: attribute a type tree. duke@1: */ duke@1: Type attribType(JCTree tree, Env env) { duke@1: Type result = attribTree(tree, env, TYP, Type.noType); duke@1: return result; duke@1: } duke@1: duke@1: /** Derived visitor method: attribute a statement or definition tree. duke@1: */ duke@1: public Type attribStat(JCTree tree, Env env) { duke@1: return attribTree(tree, env, NIL, Type.noType); duke@1: } duke@1: duke@1: /** Attribute a list of expressions, returning a list of types. duke@1: */ duke@1: List attribExprs(List trees, Env env, Type pt) { duke@1: ListBuffer ts = new ListBuffer(); duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) duke@1: ts.append(attribExpr(l.head, env, pt)); duke@1: return ts.toList(); duke@1: } duke@1: duke@1: /** Attribute a list of statements, returning nothing. duke@1: */ duke@1: void attribStats(List trees, Env env) { duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) duke@1: attribStat(l.head, env); duke@1: } duke@1: duke@1: /** Attribute the arguments in a method call, returning a list of types. duke@1: */ duke@1: List attribArgs(List trees, Env env) { duke@1: ListBuffer argtypes = new ListBuffer(); duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) duke@1: argtypes.append(chk.checkNonVoid( duke@1: l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly)))); duke@1: return argtypes.toList(); duke@1: } duke@1: duke@1: /** Attribute a type argument list, returning a list of types. duke@1: */ duke@1: List attribTypes(List trees, Env env) { duke@1: ListBuffer argtypes = new ListBuffer(); duke@1: for (List l = trees; l.nonEmpty(); l = l.tail) duke@1: argtypes.append(chk.checkRefType(l.head.pos(), attribType(l.head, env))); duke@1: return argtypes.toList(); duke@1: } duke@1: duke@1: duke@1: /** duke@1: * Attribute type variables (of generic classes or methods). duke@1: * Compound types are attributed later in attribBounds. duke@1: * @param typarams the type variables to enter duke@1: * @param env the current environment duke@1: */ duke@1: void attribTypeVariables(List typarams, Env env) { duke@1: for (JCTypeParameter tvar : typarams) { duke@1: TypeVar a = (TypeVar)tvar.type; mcimadamore@42: a.tsym.flags_field |= UNATTRIBUTED; mcimadamore@42: a.bound = Type.noType; duke@1: if (!tvar.bounds.isEmpty()) { duke@1: List bounds = List.of(attribType(tvar.bounds.head, env)); duke@1: for (JCExpression bound : tvar.bounds.tail) duke@1: bounds = bounds.prepend(attribType(bound, env)); duke@1: types.setBounds(a, bounds.reverse()); duke@1: } else { duke@1: // if no bounds are given, assume a single bound of duke@1: // java.lang.Object. duke@1: types.setBounds(a, List.of(syms.objectType)); duke@1: } mcimadamore@42: a.tsym.flags_field &= ~UNATTRIBUTED; duke@1: } duke@1: for (JCTypeParameter tvar : typarams) duke@1: chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); duke@1: attribStats(typarams, env); mcimadamore@42: } mcimadamore@42: mcimadamore@42: void attribBounds(List typarams) { duke@1: for (JCTypeParameter typaram : typarams) { duke@1: Type bound = typaram.type.getUpperBound(); duke@1: if (bound != null && bound.tsym instanceof ClassSymbol) { duke@1: ClassSymbol c = (ClassSymbol)bound.tsym; duke@1: if ((c.flags_field & COMPOUND) != 0) { duke@1: assert (c.flags_field & UNATTRIBUTED) != 0 : c; duke@1: attribClass(typaram.pos(), c); duke@1: } duke@1: } duke@1: } duke@1: } duke@1: duke@1: /** duke@1: * Attribute the type references in a list of annotations. duke@1: */ duke@1: void attribAnnotationTypes(List annotations, duke@1: Env env) { duke@1: for (List al = annotations; al.nonEmpty(); al = al.tail) { duke@1: JCAnnotation a = al.head; duke@1: attribType(a.annotationType, env); duke@1: } duke@1: } duke@1: duke@1: /** Attribute type reference in an `extends' or `implements' clause. duke@1: * duke@1: * @param tree The tree making up the type reference. duke@1: * @param env The environment current at the reference. duke@1: * @param classExpected true if only a class is expected here. duke@1: * @param interfaceExpected true if only an interface is expected here. duke@1: */ duke@1: Type attribBase(JCTree tree, duke@1: Env env, duke@1: boolean classExpected, duke@1: boolean interfaceExpected, duke@1: boolean checkExtensible) { duke@1: Type t = attribType(tree, env); duke@1: return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); duke@1: } duke@1: Type checkBase(Type t, duke@1: JCTree tree, duke@1: Env env, duke@1: boolean classExpected, duke@1: boolean interfaceExpected, duke@1: boolean checkExtensible) { duke@1: if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) { duke@1: // check that type variable is already visible duke@1: if (t.getUpperBound() == null) { duke@1: log.error(tree.pos(), "illegal.forward.ref"); jjg@110: return types.createErrorType(t); duke@1: } duke@1: } else { duke@1: t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics); duke@1: } duke@1: if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { duke@1: log.error(tree.pos(), "intf.expected.here"); duke@1: // return errType is necessary since otherwise there might duke@1: // be undetected cycles which cause attribution to loop jjg@110: return types.createErrorType(t); duke@1: } else if (checkExtensible && duke@1: classExpected && duke@1: (t.tsym.flags() & INTERFACE) != 0) { duke@1: log.error(tree.pos(), "no.intf.expected.here"); jjg@110: return types.createErrorType(t); duke@1: } duke@1: if (checkExtensible && duke@1: ((t.tsym.flags() & FINAL) != 0)) { duke@1: log.error(tree.pos(), duke@1: "cant.inherit.from.final", t.tsym); duke@1: } duke@1: chk.checkNonCyclic(tree.pos(), t); duke@1: return t; duke@1: } duke@1: duke@1: public void visitClassDef(JCClassDecl tree) { duke@1: // Local classes have not been entered yet, so we need to do it now: duke@1: if ((env.info.scope.owner.kind & (VAR | MTH)) != 0) duke@1: enter.classEnter(tree, env); duke@1: duke@1: ClassSymbol c = tree.sym; duke@1: if (c == null) { duke@1: // exit in case something drastic went wrong during enter. duke@1: result = null; duke@1: } else { duke@1: // make sure class has been completed: duke@1: c.complete(); duke@1: duke@1: // If this class appears as an anonymous class duke@1: // in a superclass constructor call where duke@1: // no explicit outer instance is given, duke@1: // disable implicit outer instance from being passed. duke@1: // (This would be an illegal access to "this before super"). duke@1: if (env.info.isSelfCall && duke@1: env.tree.getTag() == JCTree.NEWCLASS && duke@1: ((JCNewClass) env.tree).encl == null) duke@1: { duke@1: c.flags_field |= NOOUTERTHIS; duke@1: } duke@1: attribClass(tree.pos(), c); duke@1: result = tree.type = c.type; duke@1: } duke@1: } duke@1: duke@1: public void visitMethodDef(JCMethodDecl tree) { duke@1: MethodSymbol m = tree.sym; duke@1: duke@1: Lint lint = env.info.lint.augment(m.attributes_field, m.flags()); duke@1: Lint prevLint = chk.setLint(lint); duke@1: try { duke@1: chk.checkDeprecatedAnnotation(tree.pos(), m); duke@1: mcimadamore@42: attribBounds(tree.typarams); duke@1: duke@1: // If we override any other methods, check that we do so properly. duke@1: // JLS ??? duke@1: chk.checkOverride(tree, m); duke@1: duke@1: // Create a new environment with local scope duke@1: // for attributing the method. duke@1: Env localEnv = memberEnter.methodEnv(tree, env); duke@1: duke@1: localEnv.info.lint = lint; duke@1: duke@1: // Enter all type parameters into the local method scope. duke@1: for (List l = tree.typarams; l.nonEmpty(); l = l.tail) duke@1: localEnv.info.scope.enterIfAbsent(l.head.type.tsym); duke@1: duke@1: ClassSymbol owner = env.enclClass.sym; duke@1: if ((owner.flags() & ANNOTATION) != 0 && duke@1: tree.params.nonEmpty()) duke@1: log.error(tree.params.head.pos(), duke@1: "intf.annotation.members.cant.have.params"); duke@1: duke@1: // Attribute all value parameters. duke@1: for (List l = tree.params; l.nonEmpty(); l = l.tail) { duke@1: attribStat(l.head, localEnv); duke@1: } duke@1: duke@1: // Check that type parameters are well-formed. mcimadamore@122: chk.validate(tree.typarams, localEnv); duke@1: if ((owner.flags() & ANNOTATION) != 0 && duke@1: tree.typarams.nonEmpty()) duke@1: log.error(tree.typarams.head.pos(), duke@1: "intf.annotation.members.cant.have.type.params"); duke@1: duke@1: // Check that result type is well-formed. mcimadamore@122: chk.validate(tree.restype, localEnv); duke@1: if ((owner.flags() & ANNOTATION) != 0) duke@1: chk.validateAnnotationType(tree.restype); duke@1: duke@1: if ((owner.flags() & ANNOTATION) != 0) duke@1: chk.validateAnnotationMethod(tree.pos(), m); duke@1: duke@1: // Check that all exceptions mentioned in the throws clause extend duke@1: // java.lang.Throwable. duke@1: if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty()) duke@1: log.error(tree.thrown.head.pos(), duke@1: "throws.not.allowed.in.intf.annotation"); duke@1: for (List l = tree.thrown; l.nonEmpty(); l = l.tail) duke@1: chk.checkType(l.head.pos(), l.head.type, syms.throwableType); duke@1: duke@1: if (tree.body == null) { duke@1: // Empty bodies are only allowed for duke@1: // abstract, native, or interface methods, or for methods duke@1: // in a retrofit signature class. duke@1: if ((owner.flags() & INTERFACE) == 0 && duke@1: (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 && duke@1: !relax) duke@1: log.error(tree.pos(), "missing.meth.body.or.decl.abstract"); duke@1: if (tree.defaultValue != null) { duke@1: if ((owner.flags() & ANNOTATION) == 0) duke@1: log.error(tree.pos(), duke@1: "default.allowed.in.intf.annotation.member"); duke@1: } duke@1: } else if ((owner.flags() & INTERFACE) != 0) { duke@1: log.error(tree.body.pos(), "intf.meth.cant.have.body"); duke@1: } else if ((tree.mods.flags & ABSTRACT) != 0) { duke@1: log.error(tree.pos(), "abstract.meth.cant.have.body"); duke@1: } else if ((tree.mods.flags & NATIVE) != 0) { duke@1: log.error(tree.pos(), "native.meth.cant.have.body"); duke@1: } else { duke@1: // Add an implicit super() call unless an explicit call to duke@1: // super(...) or this(...) is given duke@1: // or we are compiling class java.lang.Object. duke@1: if (tree.name == names.init && owner.type != syms.objectType) { duke@1: JCBlock body = tree.body; duke@1: if (body.stats.isEmpty() || duke@1: !TreeInfo.isSelfCall(body.stats.head)) { duke@1: body.stats = body.stats. duke@1: prepend(memberEnter.SuperCall(make.at(body.pos), duke@1: List.nil(), duke@1: List.nil(), duke@1: false)); duke@1: } else if ((env.enclClass.sym.flags() & ENUM) != 0 && duke@1: (tree.mods.flags & GENERATEDCONSTR) == 0 && duke@1: TreeInfo.isSuperCall(body.stats.head)) { duke@1: // enum constructors are not allowed to call super duke@1: // directly, so make sure there aren't any super calls duke@1: // in enum constructors, except in the compiler duke@1: // generated one. duke@1: log.error(tree.body.stats.head.pos(), duke@1: "call.to.super.not.allowed.in.enum.ctor", duke@1: env.enclClass.sym); duke@1: } duke@1: } duke@1: duke@1: // Attribute method body. duke@1: attribStat(tree.body, localEnv); duke@1: } duke@1: localEnv.info.scope.leave(); duke@1: result = tree.type = m.type; duke@1: chk.validateAnnotations(tree.mods.annotations, m); duke@1: duke@1: } duke@1: finally { duke@1: chk.setLint(prevLint); duke@1: } duke@1: } duke@1: duke@1: public void visitVarDef(JCVariableDecl tree) { duke@1: // Local variables have not been entered yet, so we need to do it now: duke@1: if (env.info.scope.owner.kind == MTH) { duke@1: if (tree.sym != null) { duke@1: // parameters have already been entered duke@1: env.info.scope.enter(tree.sym); duke@1: } else { duke@1: memberEnter.memberEnter(tree, env); duke@1: annotate.flush(); duke@1: } duke@1: } duke@1: duke@1: VarSymbol v = tree.sym; duke@1: Lint lint = env.info.lint.augment(v.attributes_field, v.flags()); duke@1: Lint prevLint = chk.setLint(lint); duke@1: mcimadamore@165: // Check that the variable's declared type is well-formed. mcimadamore@165: chk.validate(tree.vartype, env); mcimadamore@165: duke@1: try { duke@1: chk.checkDeprecatedAnnotation(tree.pos(), v); duke@1: duke@1: if (tree.init != null) { duke@1: if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) { duke@1: // In this case, `v' is final. Ensure that it's initializer is duke@1: // evaluated. duke@1: v.getConstValue(); // ensure initializer is evaluated duke@1: } else { duke@1: // Attribute initializer in a new environment duke@1: // with the declared variable as owner. duke@1: // Check that initializer conforms to variable's declared type. duke@1: Env initEnv = memberEnter.initEnv(tree, env); duke@1: initEnv.info.lint = lint; duke@1: // In order to catch self-references, we set the variable's duke@1: // declaration position to maximal possible value, effectively duke@1: // marking the variable as undefined. mcimadamore@94: initEnv.info.enclVar = v; duke@1: attribExpr(tree.init, initEnv, v.type); duke@1: } duke@1: } duke@1: result = tree.type = v.type; duke@1: chk.validateAnnotations(tree.mods.annotations, v); duke@1: } duke@1: finally { duke@1: chk.setLint(prevLint); duke@1: } duke@1: } duke@1: duke@1: public void visitSkip(JCSkip tree) { duke@1: result = null; duke@1: } duke@1: duke@1: public void visitBlock(JCBlock tree) { duke@1: if (env.info.scope.owner.kind == TYP) { duke@1: // Block is a static or instance initializer; duke@1: // let the owner of the environment be a freshly duke@1: // created BLOCK-method. duke@1: Env localEnv = duke@1: env.dup(tree, env.info.dup(env.info.scope.dupUnshared())); duke@1: localEnv.info.scope.owner = duke@1: new MethodSymbol(tree.flags | BLOCK, names.empty, null, duke@1: env.info.scope.owner); duke@1: if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++; duke@1: attribStats(tree.stats, localEnv); duke@1: } else { duke@1: // Create a new local environment with a local scope. duke@1: Env localEnv = duke@1: env.dup(tree, env.info.dup(env.info.scope.dup())); duke@1: attribStats(tree.stats, localEnv); duke@1: localEnv.info.scope.leave(); duke@1: } duke@1: result = null; duke@1: } duke@1: duke@1: public void visitDoLoop(JCDoWhileLoop tree) { duke@1: attribStat(tree.body, env.dup(tree)); duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitWhileLoop(JCWhileLoop tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: attribStat(tree.body, env.dup(tree)); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitForLoop(JCForLoop tree) { duke@1: Env loopEnv = duke@1: env.dup(env.tree, env.info.dup(env.info.scope.dup())); duke@1: attribStats(tree.init, loopEnv); duke@1: if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType); duke@1: loopEnv.tree = tree; // before, we were not in loop! duke@1: attribStats(tree.step, loopEnv); duke@1: attribStat(tree.body, loopEnv); duke@1: loopEnv.info.scope.leave(); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitForeachLoop(JCEnhancedForLoop tree) { duke@1: Env loopEnv = duke@1: env.dup(env.tree, env.info.dup(env.info.scope.dup())); duke@1: attribStat(tree.var, loopEnv); duke@1: Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv)); duke@1: chk.checkNonVoid(tree.pos(), exprType); duke@1: Type elemtype = types.elemtype(exprType); // perhaps expr is an array? duke@1: if (elemtype == null) { duke@1: // or perhaps expr implements Iterable? duke@1: Type base = types.asSuper(exprType, syms.iterableType.tsym); duke@1: if (base == null) { duke@1: log.error(tree.expr.pos(), "foreach.not.applicable.to.type"); jjg@110: elemtype = types.createErrorType(exprType); duke@1: } else { duke@1: List iterableParams = base.allparams(); duke@1: elemtype = iterableParams.isEmpty() duke@1: ? syms.objectType duke@1: : types.upperBound(iterableParams.head); duke@1: } duke@1: } duke@1: chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); duke@1: loopEnv.tree = tree; // before, we were not in loop! duke@1: attribStat(tree.body, loopEnv); duke@1: loopEnv.info.scope.leave(); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitLabelled(JCLabeledStatement tree) { duke@1: // Check that label is not used in an enclosing statement duke@1: Env env1 = env; duke@1: while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) { duke@1: if (env1.tree.getTag() == JCTree.LABELLED && duke@1: ((JCLabeledStatement) env1.tree).label == tree.label) { duke@1: log.error(tree.pos(), "label.already.in.use", duke@1: tree.label); duke@1: break; duke@1: } duke@1: env1 = env1.next; duke@1: } duke@1: duke@1: attribStat(tree.body, env.dup(tree)); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitSwitch(JCSwitch tree) { duke@1: Type seltype = attribExpr(tree.selector, env); duke@1: duke@1: Env switchEnv = duke@1: env.dup(tree, env.info.dup(env.info.scope.dup())); duke@1: duke@1: boolean enumSwitch = duke@1: allowEnums && duke@1: (seltype.tsym.flags() & Flags.ENUM) != 0; duke@1: if (!enumSwitch) duke@1: seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType); duke@1: duke@1: // Attribute all cases and duke@1: // check that there are no duplicate case labels or default clauses. duke@1: Set labels = new HashSet(); // The set of case labels. duke@1: boolean hasDefault = false; // Is there a default label? duke@1: for (List l = tree.cases; l.nonEmpty(); l = l.tail) { duke@1: JCCase c = l.head; duke@1: Env caseEnv = duke@1: switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup())); duke@1: if (c.pat != null) { duke@1: if (enumSwitch) { duke@1: Symbol sym = enumConstant(c.pat, seltype); duke@1: if (sym == null) { duke@1: log.error(c.pat.pos(), "enum.const.req"); duke@1: } else if (!labels.add(sym)) { duke@1: log.error(c.pos(), "duplicate.case.label"); duke@1: } duke@1: } else { duke@1: Type pattype = attribExpr(c.pat, switchEnv, seltype); duke@1: if (pattype.tag != ERROR) { duke@1: if (pattype.constValue() == null) { duke@1: log.error(c.pat.pos(), "const.expr.req"); duke@1: } else if (labels.contains(pattype.constValue())) { duke@1: log.error(c.pos(), "duplicate.case.label"); duke@1: } else { duke@1: labels.add(pattype.constValue()); duke@1: } duke@1: } duke@1: } duke@1: } else if (hasDefault) { duke@1: log.error(c.pos(), "duplicate.default.label"); duke@1: } else { duke@1: hasDefault = true; duke@1: } duke@1: attribStats(c.stats, caseEnv); duke@1: caseEnv.info.scope.leave(); duke@1: addVars(c.stats, switchEnv.info.scope); duke@1: } duke@1: duke@1: switchEnv.info.scope.leave(); duke@1: result = null; duke@1: } duke@1: // where duke@1: /** Add any variables defined in stats to the switch scope. */ duke@1: private static void addVars(List stats, Scope switchScope) { duke@1: for (;stats.nonEmpty(); stats = stats.tail) { duke@1: JCTree stat = stats.head; duke@1: if (stat.getTag() == JCTree.VARDEF) duke@1: switchScope.enter(((JCVariableDecl) stat).sym); duke@1: } duke@1: } duke@1: // where duke@1: /** Return the selected enumeration constant symbol, or null. */ duke@1: private Symbol enumConstant(JCTree tree, Type enumType) { duke@1: if (tree.getTag() != JCTree.IDENT) { duke@1: log.error(tree.pos(), "enum.label.must.be.unqualified.enum"); duke@1: return syms.errSymbol; duke@1: } duke@1: JCIdent ident = (JCIdent)tree; duke@1: Name name = ident.name; duke@1: for (Scope.Entry e = enumType.tsym.members().lookup(name); duke@1: e.scope != null; e = e.next()) { duke@1: if (e.sym.kind == VAR) { duke@1: Symbol s = ident.sym = e.sym; duke@1: ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated duke@1: ident.type = s.type; duke@1: return ((s.flags_field & Flags.ENUM) == 0) duke@1: ? null : s; duke@1: } duke@1: } duke@1: return null; duke@1: } duke@1: duke@1: public void visitSynchronized(JCSynchronized tree) { duke@1: chk.checkRefType(tree.pos(), attribExpr(tree.lock, env)); duke@1: attribStat(tree.body, env); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitTry(JCTry tree) { duke@1: // Attribute body duke@1: attribStat(tree.body, env.dup(tree, env.info.dup())); duke@1: duke@1: // Attribute catch clauses duke@1: for (List l = tree.catchers; l.nonEmpty(); l = l.tail) { duke@1: JCCatch c = l.head; duke@1: Env catchEnv = duke@1: env.dup(c, env.info.dup(env.info.scope.dup())); duke@1: Type ctype = attribStat(c.param, catchEnv); duke@1: if (c.param.type.tsym.kind == Kinds.VAR) { duke@1: c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); duke@1: } duke@1: chk.checkType(c.param.vartype.pos(), duke@1: chk.checkClassType(c.param.vartype.pos(), ctype), duke@1: syms.throwableType); duke@1: attribStat(c.body, catchEnv); duke@1: catchEnv.info.scope.leave(); duke@1: } duke@1: duke@1: // Attribute finalizer duke@1: if (tree.finalizer != null) attribStat(tree.finalizer, env); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitConditional(JCConditional tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: attribExpr(tree.truepart, env); duke@1: attribExpr(tree.falsepart, env); duke@1: result = check(tree, duke@1: capture(condType(tree.pos(), tree.cond.type, duke@1: tree.truepart.type, tree.falsepart.type)), duke@1: VAL, pkind, pt); duke@1: } duke@1: //where duke@1: /** Compute the type of a conditional expression, after duke@1: * checking that it exists. See Spec 15.25. duke@1: * duke@1: * @param pos The source position to be used for duke@1: * error diagnostics. duke@1: * @param condtype The type of the expression's condition. duke@1: * @param thentype The type of the expression's then-part. duke@1: * @param elsetype The type of the expression's else-part. duke@1: */ duke@1: private Type condType(DiagnosticPosition pos, duke@1: Type condtype, duke@1: Type thentype, duke@1: Type elsetype) { duke@1: Type ctype = condType1(pos, condtype, thentype, elsetype); duke@1: duke@1: // If condition and both arms are numeric constants, duke@1: // evaluate at compile-time. duke@1: return ((condtype.constValue() != null) && duke@1: (thentype.constValue() != null) && duke@1: (elsetype.constValue() != null)) duke@1: ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype) duke@1: : ctype; duke@1: } duke@1: /** Compute the type of a conditional expression, after duke@1: * checking that it exists. Does not take into duke@1: * account the special case where condition and both arms duke@1: * are constants. duke@1: * duke@1: * @param pos The source position to be used for error duke@1: * diagnostics. duke@1: * @param condtype The type of the expression's condition. duke@1: * @param thentype The type of the expression's then-part. duke@1: * @param elsetype The type of the expression's else-part. duke@1: */ duke@1: private Type condType1(DiagnosticPosition pos, Type condtype, duke@1: Type thentype, Type elsetype) { duke@1: // If same type, that is the result duke@1: if (types.isSameType(thentype, elsetype)) duke@1: return thentype.baseType(); duke@1: duke@1: Type thenUnboxed = (!allowBoxing || thentype.isPrimitive()) duke@1: ? thentype : types.unboxedType(thentype); duke@1: Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive()) duke@1: ? elsetype : types.unboxedType(elsetype); duke@1: duke@1: // Otherwise, if both arms can be converted to a numeric duke@1: // type, return the least numeric type that fits both arms duke@1: // (i.e. return larger of the two, or return int if one duke@1: // arm is short, the other is char). duke@1: if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) { duke@1: // If one arm has an integer subrange type (i.e., byte, duke@1: // short, or char), and the other is an integer constant duke@1: // that fits into the subrange, return the subrange type. duke@1: if (thenUnboxed.tag < INT && elseUnboxed.tag == INT && duke@1: types.isAssignable(elseUnboxed, thenUnboxed)) duke@1: return thenUnboxed.baseType(); duke@1: if (elseUnboxed.tag < INT && thenUnboxed.tag == INT && duke@1: types.isAssignable(thenUnboxed, elseUnboxed)) duke@1: return elseUnboxed.baseType(); duke@1: duke@1: for (int i = BYTE; i < VOID; i++) { duke@1: Type candidate = syms.typeOfTag[i]; duke@1: if (types.isSubtype(thenUnboxed, candidate) && duke@1: types.isSubtype(elseUnboxed, candidate)) duke@1: return candidate; duke@1: } duke@1: } duke@1: duke@1: // Those were all the cases that could result in a primitive duke@1: if (allowBoxing) { duke@1: if (thentype.isPrimitive()) duke@1: thentype = types.boxedClass(thentype).type; duke@1: if (elsetype.isPrimitive()) duke@1: elsetype = types.boxedClass(elsetype).type; duke@1: } duke@1: duke@1: if (types.isSubtype(thentype, elsetype)) duke@1: return elsetype.baseType(); duke@1: if (types.isSubtype(elsetype, thentype)) duke@1: return thentype.baseType(); duke@1: duke@1: if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) { duke@1: log.error(pos, "neither.conditional.subtype", duke@1: thentype, elsetype); duke@1: return thentype.baseType(); duke@1: } duke@1: duke@1: // both are known to be reference types. The result is duke@1: // lub(thentype,elsetype). This cannot fail, as it will duke@1: // always be possible to infer "Object" if nothing better. duke@1: return types.lub(thentype.baseType(), elsetype.baseType()); duke@1: } duke@1: duke@1: public void visitIf(JCIf tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: attribStat(tree.thenpart, env); duke@1: if (tree.elsepart != null) duke@1: attribStat(tree.elsepart, env); duke@1: chk.checkEmptyIf(tree); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitExec(JCExpressionStatement tree) { duke@1: attribExpr(tree.expr, env); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitBreak(JCBreak tree) { duke@1: tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitContinue(JCContinue tree) { duke@1: tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); duke@1: result = null; duke@1: } duke@1: //where duke@1: /** Return the target of a break or continue statement, if it exists, duke@1: * report an error if not. duke@1: * Note: The target of a labelled break or continue is the duke@1: * (non-labelled) statement tree referred to by the label, duke@1: * not the tree representing the labelled statement itself. duke@1: * duke@1: * @param pos The position to be used for error diagnostics duke@1: * @param tag The tag of the jump statement. This is either duke@1: * Tree.BREAK or Tree.CONTINUE. duke@1: * @param label The label of the jump statement, or null if no duke@1: * label is given. duke@1: * @param env The environment current at the jump statement. duke@1: */ duke@1: private JCTree findJumpTarget(DiagnosticPosition pos, duke@1: int tag, duke@1: Name label, duke@1: Env env) { duke@1: // Search environments outwards from the point of jump. duke@1: Env env1 = env; duke@1: LOOP: duke@1: while (env1 != null) { duke@1: switch (env1.tree.getTag()) { duke@1: case JCTree.LABELLED: duke@1: JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; duke@1: if (label == labelled.label) { duke@1: // If jump is a continue, check that target is a loop. duke@1: if (tag == JCTree.CONTINUE) { duke@1: if (labelled.body.getTag() != JCTree.DOLOOP && duke@1: labelled.body.getTag() != JCTree.WHILELOOP && duke@1: labelled.body.getTag() != JCTree.FORLOOP && duke@1: labelled.body.getTag() != JCTree.FOREACHLOOP) duke@1: log.error(pos, "not.loop.label", label); duke@1: // Found labelled statement target, now go inwards duke@1: // to next non-labelled tree. duke@1: return TreeInfo.referencedStatement(labelled); duke@1: } else { duke@1: return labelled; duke@1: } duke@1: } duke@1: break; duke@1: case JCTree.DOLOOP: duke@1: case JCTree.WHILELOOP: duke@1: case JCTree.FORLOOP: duke@1: case JCTree.FOREACHLOOP: duke@1: if (label == null) return env1.tree; duke@1: break; duke@1: case JCTree.SWITCH: duke@1: if (label == null && tag == JCTree.BREAK) return env1.tree; duke@1: break; duke@1: case JCTree.METHODDEF: duke@1: case JCTree.CLASSDEF: duke@1: break LOOP; duke@1: default: duke@1: } duke@1: env1 = env1.next; duke@1: } duke@1: if (label != null) duke@1: log.error(pos, "undef.label", label); duke@1: else if (tag == JCTree.CONTINUE) duke@1: log.error(pos, "cont.outside.loop"); duke@1: else duke@1: log.error(pos, "break.outside.switch.loop"); duke@1: return null; duke@1: } duke@1: duke@1: public void visitReturn(JCReturn tree) { duke@1: // Check that there is an enclosing method which is duke@1: // nested within than the enclosing class. duke@1: if (env.enclMethod == null || duke@1: env.enclMethod.sym.owner != env.enclClass.sym) { duke@1: log.error(tree.pos(), "ret.outside.meth"); duke@1: duke@1: } else { duke@1: // Attribute return expression, if it exists, and check that duke@1: // it conforms to result type of enclosing method. duke@1: Symbol m = env.enclMethod.sym; duke@1: if (m.type.getReturnType().tag == VOID) { duke@1: if (tree.expr != null) duke@1: log.error(tree.expr.pos(), duke@1: "cant.ret.val.from.meth.decl.void"); duke@1: } else if (tree.expr == null) { duke@1: log.error(tree.pos(), "missing.ret.val"); duke@1: } else { duke@1: attribExpr(tree.expr, env, m.type.getReturnType()); duke@1: } duke@1: } duke@1: result = null; duke@1: } duke@1: duke@1: public void visitThrow(JCThrow tree) { duke@1: attribExpr(tree.expr, env, syms.throwableType); duke@1: result = null; duke@1: } duke@1: duke@1: public void visitAssert(JCAssert tree) { duke@1: attribExpr(tree.cond, env, syms.booleanType); duke@1: if (tree.detail != null) { duke@1: chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); duke@1: } duke@1: result = null; duke@1: } duke@1: duke@1: /** Visitor method for method invocations. duke@1: * NOTE: The method part of an application will have in its type field duke@1: * the return type of the method, not the method's type itself! duke@1: */ duke@1: public void visitApply(JCMethodInvocation tree) { duke@1: // The local environment of a method application is duke@1: // a new environment nested in the current one. duke@1: Env localEnv = env.dup(tree, env.info.dup()); duke@1: duke@1: // The types of the actual method arguments. duke@1: List argtypes; duke@1: duke@1: // The types of the actual method type arguments. duke@1: List typeargtypes = null; duke@1: duke@1: Name methName = TreeInfo.name(tree.meth); duke@1: duke@1: boolean isConstructorCall = duke@1: methName == names._this || methName == names._super; duke@1: duke@1: if (isConstructorCall) { duke@1: // We are seeing a ...this(...) or ...super(...) call. duke@1: // Check that this is the first statement in a constructor. duke@1: if (checkFirstConstructorStat(tree, env)) { duke@1: duke@1: // Record the fact duke@1: // that this is a constructor call (using isSelfCall). duke@1: localEnv.info.isSelfCall = true; duke@1: duke@1: // Attribute arguments, yielding list of argument types. duke@1: argtypes = attribArgs(tree.args, localEnv); duke@1: typeargtypes = attribTypes(tree.typeargs, localEnv); duke@1: duke@1: // Variable `site' points to the class in which the called duke@1: // constructor is defined. duke@1: Type site = env.enclClass.sym.type; duke@1: if (methName == names._super) { duke@1: if (site == syms.objectType) { duke@1: log.error(tree.meth.pos(), "no.superclass", site); jjg@110: site = types.createErrorType(syms.objectType); duke@1: } else { duke@1: site = types.supertype(site); duke@1: } duke@1: } duke@1: duke@1: if (site.tag == CLASS) { duke@1: if (site.getEnclosingType().tag == CLASS) { duke@1: // we are calling a nested class duke@1: duke@1: if (tree.meth.getTag() == JCTree.SELECT) { duke@1: JCTree qualifier = ((JCFieldAccess) tree.meth).selected; duke@1: duke@1: // We are seeing a prefixed call, of the form duke@1: // .super(...). duke@1: // Check that the prefix expression conforms duke@1: // to the outer instance type of the class. duke@1: chk.checkRefType(qualifier.pos(), duke@1: attribExpr(qualifier, localEnv, duke@1: site.getEnclosingType())); duke@1: } else if (methName == names._super) { duke@1: // qualifier omitted; check for existence duke@1: // of an appropriate implicit qualifier. duke@1: rs.resolveImplicitThis(tree.meth.pos(), duke@1: localEnv, site); duke@1: } duke@1: } else if (tree.meth.getTag() == JCTree.SELECT) { duke@1: log.error(tree.meth.pos(), "illegal.qual.not.icls", duke@1: site.tsym); duke@1: } duke@1: duke@1: // if we're calling a java.lang.Enum constructor, duke@1: // prefix the implicit String and int parameters duke@1: if (site.tsym == syms.enumSym && allowEnums) duke@1: argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); duke@1: duke@1: // Resolve the called constructor under the assumption duke@1: // that we are referring to a superclass instance of the duke@1: // current instance (JLS ???). duke@1: boolean selectSuperPrev = localEnv.info.selectSuper; duke@1: localEnv.info.selectSuper = true; duke@1: localEnv.info.varArgs = false; duke@1: Symbol sym = rs.resolveConstructor( duke@1: tree.meth.pos(), localEnv, site, argtypes, typeargtypes); duke@1: localEnv.info.selectSuper = selectSuperPrev; duke@1: duke@1: // Set method symbol to resolved constructor... duke@1: TreeInfo.setSymbol(tree.meth, sym); duke@1: duke@1: // ...and check that it is legal in the current context. duke@1: // (this will also set the tree's type) duke@1: Type mpt = newMethTemplate(argtypes, typeargtypes); duke@1: checkId(tree.meth, site, sym, localEnv, MTH, duke@1: mpt, tree.varargsElement != null); duke@1: } duke@1: // Otherwise, `site' is an error type and we do nothing duke@1: } duke@1: result = tree.type = syms.voidType; duke@1: } else { duke@1: // Otherwise, we are seeing a regular method call. duke@1: // Attribute the arguments, yielding list of argument types, ... duke@1: argtypes = attribArgs(tree.args, localEnv); duke@1: typeargtypes = attribTypes(tree.typeargs, localEnv); duke@1: duke@1: // ... and attribute the method using as a prototype a methodtype duke@1: // whose formal argument types is exactly the list of actual duke@1: // arguments (this will also set the method symbol). duke@1: Type mpt = newMethTemplate(argtypes, typeargtypes); duke@1: localEnv.info.varArgs = false; duke@1: Type mtype = attribExpr(tree.meth, localEnv, mpt); duke@1: if (localEnv.info.varArgs) duke@1: assert mtype.isErroneous() || tree.varargsElement != null; duke@1: duke@1: // Compute the result type. duke@1: Type restype = mtype.getReturnType(); duke@1: assert restype.tag != WILDCARD : mtype; duke@1: duke@1: // as a special case, array.clone() has a result that is duke@1: // the same as static type of the array being cloned duke@1: if (tree.meth.getTag() == JCTree.SELECT && duke@1: allowCovariantReturns && duke@1: methName == names.clone && duke@1: types.isArray(((JCFieldAccess) tree.meth).selected.type)) duke@1: restype = ((JCFieldAccess) tree.meth).selected.type; duke@1: duke@1: // as a special case, x.getClass() has type Class duke@1: if (allowGenerics && duke@1: methName == names.getClass && tree.args.isEmpty()) { duke@1: Type qualifier = (tree.meth.getTag() == JCTree.SELECT) duke@1: ? ((JCFieldAccess) tree.meth).selected.type duke@1: : env.enclClass.sym.type; duke@1: restype = new duke@1: ClassType(restype.getEnclosingType(), duke@1: List.of(new WildcardType(types.erasure(qualifier), duke@1: BoundKind.EXTENDS, duke@1: syms.boundClass)), duke@1: restype.tsym); duke@1: } duke@1: duke@1: // Check that value of resulting type is admissible in the duke@1: // current context. Also, capture the return type duke@1: result = check(tree, capture(restype), VAL, pkind, pt); duke@1: } mcimadamore@122: chk.validate(tree.typeargs, localEnv); duke@1: } duke@1: //where duke@1: /** Check that given application node appears as first statement duke@1: * in a constructor call. duke@1: * @param tree The application node duke@1: * @param env The environment current at the application. duke@1: */ duke@1: boolean checkFirstConstructorStat(JCMethodInvocation tree, Env env) { duke@1: JCMethodDecl enclMethod = env.enclMethod; duke@1: if (enclMethod != null && enclMethod.name == names.init) { duke@1: JCBlock body = enclMethod.body; duke@1: if (body.stats.head.getTag() == JCTree.EXEC && duke@1: ((JCExpressionStatement) body.stats.head).expr == tree) duke@1: return true; duke@1: } duke@1: log.error(tree.pos(),"call.must.be.first.stmt.in.ctor", duke@1: TreeInfo.name(tree.meth)); duke@1: return false; duke@1: } duke@1: duke@1: /** Obtain a method type with given argument types. duke@1: */ duke@1: Type newMethTemplate(List argtypes, List typeargtypes) { duke@1: MethodType mt = new MethodType(argtypes, null, null, syms.methodClass); duke@1: return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); duke@1: } duke@1: duke@1: public void visitNewClass(JCNewClass tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: duke@1: // The local environment of a class creation is duke@1: // a new environment nested in the current one. duke@1: Env localEnv = env.dup(tree, env.info.dup()); duke@1: duke@1: // The anonymous inner class definition of the new expression, duke@1: // if one is defined by it. duke@1: JCClassDecl cdef = tree.def; duke@1: duke@1: // If enclosing class is given, attribute it, and duke@1: // complete class name to be fully qualified duke@1: JCExpression clazz = tree.clazz; // Class field following new duke@1: JCExpression clazzid = // Identifier in class field duke@1: (clazz.getTag() == JCTree.TYPEAPPLY) duke@1: ? ((JCTypeApply) clazz).clazz duke@1: : clazz; duke@1: duke@1: JCExpression clazzid1 = clazzid; // The same in fully qualified form duke@1: duke@1: if (tree.encl != null) { duke@1: // We are seeing a qualified new, of the form duke@1: // .new C <...> (...) ... duke@1: // In this case, we let clazz stand for the name of the duke@1: // allocated class C prefixed with the type of the qualifier duke@1: // expression, so that we can duke@1: // resolve it with standard techniques later. I.e., if duke@1: // has type T, then .new C <...> (...) duke@1: // yields a clazz T.C. duke@1: Type encltype = chk.checkRefType(tree.encl.pos(), duke@1: attribExpr(tree.encl, env)); duke@1: clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), duke@1: ((JCIdent) clazzid).name); duke@1: if (clazz.getTag() == JCTree.TYPEAPPLY) duke@1: clazz = make.at(tree.pos). duke@1: TypeApply(clazzid1, duke@1: ((JCTypeApply) clazz).arguments); duke@1: else duke@1: clazz = clazzid1; duke@1: // System.out.println(clazz + " generated.");//DEBUG duke@1: } duke@1: duke@1: // Attribute clazz expression and store duke@1: // symbol + type back into the attributed tree. duke@1: Type clazztype = chk.checkClassType( duke@1: tree.clazz.pos(), attribType(clazz, env), true); mcimadamore@122: chk.validate(clazz, localEnv); duke@1: if (tree.encl != null) { duke@1: // We have to work in this case to store duke@1: // symbol + type back into the attributed tree. duke@1: tree.clazz.type = clazztype; duke@1: TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); duke@1: clazzid.type = ((JCIdent) clazzid).sym.type; duke@1: if (!clazztype.isErroneous()) { duke@1: if (cdef != null && clazztype.tsym.isInterface()) { duke@1: log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new"); duke@1: } else if (clazztype.tsym.isStatic()) { duke@1: log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym); duke@1: } duke@1: } duke@1: } else if (!clazztype.tsym.isInterface() && duke@1: clazztype.getEnclosingType().tag == CLASS) { duke@1: // Check for the existence of an apropos outer instance duke@1: rs.resolveImplicitThis(tree.pos(), env, clazztype); duke@1: } duke@1: duke@1: // Attribute constructor arguments. duke@1: List argtypes = attribArgs(tree.args, localEnv); duke@1: List typeargtypes = attribTypes(tree.typeargs, localEnv); duke@1: duke@1: // If we have made no mistakes in the class type... duke@1: if (clazztype.tag == CLASS) { duke@1: // Enums may not be instantiated except implicitly duke@1: if (allowEnums && duke@1: (clazztype.tsym.flags_field&Flags.ENUM) != 0 && duke@1: (env.tree.getTag() != JCTree.VARDEF || duke@1: (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 || duke@1: ((JCVariableDecl) env.tree).init != tree)) duke@1: log.error(tree.pos(), "enum.cant.be.instantiated"); duke@1: // Check that class is not abstract duke@1: if (cdef == null && duke@1: (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { duke@1: log.error(tree.pos(), "abstract.cant.be.instantiated", duke@1: clazztype.tsym); duke@1: } else if (cdef != null && clazztype.tsym.isInterface()) { duke@1: // Check that no constructor arguments are given to duke@1: // anonymous classes implementing an interface duke@1: if (!argtypes.isEmpty()) duke@1: log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args"); duke@1: duke@1: if (!typeargtypes.isEmpty()) duke@1: log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs"); duke@1: duke@1: // Error recovery: pretend no arguments were supplied. duke@1: argtypes = List.nil(); duke@1: typeargtypes = List.nil(); duke@1: } duke@1: duke@1: // Resolve the called constructor under the assumption duke@1: // that we are referring to a superclass instance of the duke@1: // current instance (JLS ???). duke@1: else { duke@1: localEnv.info.selectSuper = cdef != null; duke@1: localEnv.info.varArgs = false; duke@1: tree.constructor = rs.resolveConstructor( duke@1: tree.pos(), localEnv, clazztype, argtypes, typeargtypes); duke@1: Type ctorType = checkMethod(clazztype, duke@1: tree.constructor, duke@1: localEnv, duke@1: tree.args, duke@1: argtypes, duke@1: typeargtypes, duke@1: localEnv.info.varArgs); duke@1: if (localEnv.info.varArgs) duke@1: assert ctorType.isErroneous() || tree.varargsElement != null; duke@1: } duke@1: duke@1: if (cdef != null) { duke@1: // We are seeing an anonymous class instance creation. duke@1: // In this case, the class instance creation duke@1: // expression duke@1: // duke@1: // E.new C(args) { ... } duke@1: // duke@1: // is represented internally as duke@1: // duke@1: // E . new C(args) ( class { ... } ) . duke@1: // duke@1: // This expression is then *transformed* as follows: duke@1: // duke@1: // (1) add a STATIC flag to the class definition duke@1: // if the current environment is static duke@1: // (2) add an extends or implements clause duke@1: // (3) add a constructor. duke@1: // duke@1: // For instance, if C is a class, and ET is the type of E, duke@1: // the expression duke@1: // duke@1: // E.new C(args) { ... } duke@1: // duke@1: // is translated to (where X is a fresh name and typarams is the duke@1: // parameter list of the super constructor): duke@1: // duke@1: // new X(<*nullchk*>E, args) where duke@1: // X extends C { duke@1: // X(ET e, args) { duke@1: // e.super(args) duke@1: // } duke@1: // ... duke@1: // } duke@1: if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC; duke@1: duke@1: if (clazztype.tsym.isInterface()) { duke@1: cdef.implementing = List.of(clazz); duke@1: } else { duke@1: cdef.extending = clazz; duke@1: } duke@1: duke@1: attribStat(cdef, localEnv); duke@1: duke@1: // If an outer instance is given, duke@1: // prefix it to the constructor arguments duke@1: // and delete it from the new expression duke@1: if (tree.encl != null && !clazztype.tsym.isInterface()) { duke@1: tree.args = tree.args.prepend(makeNullCheck(tree.encl)); duke@1: argtypes = argtypes.prepend(tree.encl.type); duke@1: tree.encl = null; duke@1: } duke@1: duke@1: // Reassign clazztype and recompute constructor. duke@1: clazztype = cdef.sym.type; duke@1: Symbol sym = rs.resolveConstructor( duke@1: tree.pos(), localEnv, clazztype, argtypes, duke@1: typeargtypes, true, tree.varargsElement != null); duke@1: assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous(); duke@1: tree.constructor = sym; duke@1: } duke@1: duke@1: if (tree.constructor != null && tree.constructor.kind == MTH) duke@1: owntype = clazztype; duke@1: } duke@1: result = check(tree, owntype, VAL, pkind, pt); mcimadamore@122: chk.validate(tree.typeargs, localEnv); duke@1: } duke@1: duke@1: /** Make an attributed null check tree. duke@1: */ duke@1: public JCExpression makeNullCheck(JCExpression arg) { duke@1: // optimization: X.this is never null; skip null check duke@1: Name name = TreeInfo.name(arg); duke@1: if (name == names._this || name == names._super) return arg; duke@1: duke@1: int optag = JCTree.NULLCHK; duke@1: JCUnary tree = make.at(arg.pos).Unary(optag, arg); duke@1: tree.operator = syms.nullcheck; duke@1: tree.type = arg.type; duke@1: return tree; duke@1: } duke@1: duke@1: public void visitNewArray(JCNewArray tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: Type elemtype; duke@1: if (tree.elemtype != null) { duke@1: elemtype = attribType(tree.elemtype, env); mcimadamore@122: chk.validate(tree.elemtype, env); duke@1: owntype = elemtype; duke@1: for (List l = tree.dims; l.nonEmpty(); l = l.tail) { duke@1: attribExpr(l.head, env, syms.intType); duke@1: owntype = new ArrayType(owntype, syms.arrayClass); duke@1: } duke@1: } else { duke@1: // we are seeing an untyped aggregate { ... } duke@1: // this is allowed only if the prototype is an array duke@1: if (pt.tag == ARRAY) { duke@1: elemtype = types.elemtype(pt); duke@1: } else { duke@1: if (pt.tag != ERROR) { duke@1: log.error(tree.pos(), "illegal.initializer.for.type", duke@1: pt); duke@1: } jjg@110: elemtype = types.createErrorType(pt); duke@1: } duke@1: } duke@1: if (tree.elems != null) { duke@1: attribExprs(tree.elems, env, elemtype); duke@1: owntype = new ArrayType(elemtype, syms.arrayClass); duke@1: } duke@1: if (!types.isReifiable(elemtype)) duke@1: log.error(tree.pos(), "generic.array.creation"); duke@1: result = check(tree, owntype, VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitParens(JCParens tree) { duke@1: Type owntype = attribTree(tree.expr, env, pkind, pt); duke@1: result = check(tree, owntype, pkind, pkind, pt); duke@1: Symbol sym = TreeInfo.symbol(tree); duke@1: if (sym != null && (sym.kind&(TYP|PCK)) != 0) duke@1: log.error(tree.pos(), "illegal.start.of.type"); duke@1: } duke@1: duke@1: public void visitAssign(JCAssign tree) { duke@1: Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType); duke@1: Type capturedType = capture(owntype); duke@1: attribExpr(tree.rhs, env, owntype); duke@1: result = check(tree, capturedType, VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitAssignop(JCAssignOp tree) { duke@1: // Attribute arguments. duke@1: Type owntype = attribTree(tree.lhs, env, VAR, Type.noType); duke@1: Type operand = attribExpr(tree.rhs, env); duke@1: // Find operator. duke@1: Symbol operator = tree.operator = rs.resolveBinaryOperator( duke@1: tree.pos(), tree.getTag() - JCTree.ASGOffset, env, duke@1: owntype, operand); duke@1: duke@1: if (operator.kind == MTH) { duke@1: chk.checkOperator(tree.pos(), duke@1: (OperatorSymbol)operator, duke@1: tree.getTag() - JCTree.ASGOffset, duke@1: owntype, duke@1: operand); jjg@9: chk.checkDivZero(tree.rhs.pos(), operator, operand); jjg@9: chk.checkCastable(tree.rhs.pos(), jjg@9: operator.type.getReturnType(), jjg@9: owntype); duke@1: } duke@1: result = check(tree, owntype, VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitUnary(JCUnary tree) { duke@1: // Attribute arguments. duke@1: Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC) duke@1: ? attribTree(tree.arg, env, VAR, Type.noType) duke@1: : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); duke@1: duke@1: // Find operator. duke@1: Symbol operator = tree.operator = duke@1: rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype); duke@1: jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: if (operator.kind == MTH) { duke@1: owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC) duke@1: ? tree.arg.type duke@1: : operator.type.getReturnType(); duke@1: int opc = ((OperatorSymbol)operator).opcode; duke@1: duke@1: // If the argument is constant, fold it. duke@1: if (argtype.constValue() != null) { duke@1: Type ctype = cfolder.fold1(opc, argtype); duke@1: if (ctype != null) { duke@1: owntype = cfolder.coerce(ctype, owntype); duke@1: duke@1: // Remove constant types from arguments to duke@1: // conserve space. The parser will fold concatenations duke@1: // of string literals; the code here also duke@1: // gets rid of intermediate results when some of the duke@1: // operands are constant identifiers. duke@1: if (tree.arg.type.tsym == syms.stringType.tsym) { duke@1: tree.arg.type = syms.stringType; duke@1: } duke@1: } duke@1: } duke@1: } duke@1: result = check(tree, owntype, VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitBinary(JCBinary tree) { duke@1: // Attribute arguments. duke@1: Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); duke@1: Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env)); duke@1: duke@1: // Find operator. duke@1: Symbol operator = tree.operator = duke@1: rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right); duke@1: jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: if (operator.kind == MTH) { duke@1: owntype = operator.type.getReturnType(); duke@1: int opc = chk.checkOperator(tree.lhs.pos(), duke@1: (OperatorSymbol)operator, duke@1: tree.getTag(), duke@1: left, duke@1: right); duke@1: duke@1: // If both arguments are constants, fold them. duke@1: if (left.constValue() != null && right.constValue() != null) { duke@1: Type ctype = cfolder.fold2(opc, left, right); duke@1: if (ctype != null) { duke@1: owntype = cfolder.coerce(ctype, owntype); duke@1: duke@1: // Remove constant types from arguments to duke@1: // conserve space. The parser will fold concatenations duke@1: // of string literals; the code here also duke@1: // gets rid of intermediate results when some of the duke@1: // operands are constant identifiers. duke@1: if (tree.lhs.type.tsym == syms.stringType.tsym) { duke@1: tree.lhs.type = syms.stringType; duke@1: } duke@1: if (tree.rhs.type.tsym == syms.stringType.tsym) { duke@1: tree.rhs.type = syms.stringType; duke@1: } duke@1: } duke@1: } duke@1: duke@1: // Check that argument types of a reference ==, != are duke@1: // castable to each other, (JLS???). duke@1: if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { duke@1: if (!types.isCastable(left, right, new Warner(tree.pos()))) { duke@1: log.error(tree.pos(), "incomparable.types", left, right); duke@1: } duke@1: } duke@1: duke@1: chk.checkDivZero(tree.rhs.pos(), operator, right); duke@1: } duke@1: result = check(tree, owntype, VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitTypeCast(JCTypeCast tree) { duke@1: Type clazztype = attribType(tree.clazz, env); mcimadamore@122: chk.validate(tree.clazz, env); duke@1: Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly); duke@1: Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype); duke@1: if (exprtype.constValue() != null) duke@1: owntype = cfolder.coerce(exprtype, owntype); duke@1: result = check(tree, capture(owntype), VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitTypeTest(JCInstanceOf tree) { duke@1: Type exprtype = chk.checkNullOrRefType( duke@1: tree.expr.pos(), attribExpr(tree.expr, env)); duke@1: Type clazztype = chk.checkReifiableReferenceType( duke@1: tree.clazz.pos(), attribType(tree.clazz, env)); mcimadamore@122: chk.validate(tree.clazz, env); duke@1: chk.checkCastable(tree.expr.pos(), exprtype, clazztype); duke@1: result = check(tree, syms.booleanType, VAL, pkind, pt); duke@1: } duke@1: duke@1: public void visitIndexed(JCArrayAccess tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: Type atype = attribExpr(tree.indexed, env); duke@1: attribExpr(tree.index, env, syms.intType); duke@1: if (types.isArray(atype)) duke@1: owntype = types.elemtype(atype); duke@1: else if (atype.tag != ERROR) duke@1: log.error(tree.pos(), "array.req.but.found", atype); duke@1: if ((pkind & VAR) == 0) owntype = capture(owntype); duke@1: result = check(tree, owntype, VAR, pkind, pt); duke@1: } duke@1: duke@1: public void visitIdent(JCIdent tree) { duke@1: Symbol sym; duke@1: boolean varArgs = false; duke@1: duke@1: // Find symbol duke@1: if (pt.tag == METHOD || pt.tag == FORALL) { duke@1: // If we are looking for a method, the prototype `pt' will be a duke@1: // method type with the type of the call's arguments as parameters. duke@1: env.info.varArgs = false; duke@1: sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments()); duke@1: varArgs = env.info.varArgs; duke@1: } else if (tree.sym != null && tree.sym.kind != VAR) { duke@1: sym = tree.sym; duke@1: } else { duke@1: sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind); duke@1: } duke@1: tree.sym = sym; duke@1: duke@1: // (1) Also find the environment current for the class where duke@1: // sym is defined (`symEnv'). duke@1: // Only for pre-tiger versions (1.4 and earlier): duke@1: // (2) Also determine whether we access symbol out of an anonymous duke@1: // class in a this or super call. This is illegal for instance duke@1: // members since such classes don't carry a this$n link. duke@1: // (`noOuterThisPath'). duke@1: Env symEnv = env; duke@1: boolean noOuterThisPath = false; duke@1: if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class duke@1: (sym.kind & (VAR | MTH | TYP)) != 0 && duke@1: sym.owner.kind == TYP && duke@1: tree.name != names._this && tree.name != names._super) { duke@1: duke@1: // Find environment in which identifier is defined. duke@1: while (symEnv.outer != null && duke@1: !sym.isMemberOf(symEnv.enclClass.sym, types)) { duke@1: if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0) duke@1: noOuterThisPath = !allowAnonOuterThis; duke@1: symEnv = symEnv.outer; duke@1: } duke@1: } duke@1: duke@1: // If symbol is a variable, ... duke@1: if (sym.kind == VAR) { duke@1: VarSymbol v = (VarSymbol)sym; duke@1: duke@1: // ..., evaluate its initializer, if it has one, and check for duke@1: // illegal forward reference. duke@1: checkInit(tree, env, v, false); duke@1: duke@1: // If symbol is a local variable accessed from an embedded duke@1: // inner class check that it is final. duke@1: if (v.owner.kind == MTH && duke@1: v.owner != env.info.scope.owner && duke@1: (v.flags_field & FINAL) == 0) { duke@1: log.error(tree.pos(), duke@1: "local.var.accessed.from.icls.needs.final", duke@1: v); duke@1: } duke@1: duke@1: // If we are expecting a variable (as opposed to a value), check duke@1: // that the variable is assignable in the current environment. duke@1: if (pkind == VAR) duke@1: checkAssignable(tree.pos(), v, null, env); duke@1: } duke@1: duke@1: // In a constructor body, duke@1: // if symbol is a field or instance method, check that it is duke@1: // not accessed before the supertype constructor is called. duke@1: if ((symEnv.info.isSelfCall || noOuterThisPath) && duke@1: (sym.kind & (VAR | MTH)) != 0 && duke@1: sym.owner.kind == TYP && duke@1: (sym.flags() & STATIC) == 0) { duke@1: chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env)); duke@1: } duke@1: Env env1 = env; mcimadamore@28: if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) { duke@1: // If the found symbol is inaccessible, then it is duke@1: // accessed through an enclosing instance. Locate this duke@1: // enclosing instance: duke@1: while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) duke@1: env1 = env1.outer; duke@1: } duke@1: result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs); duke@1: } duke@1: duke@1: public void visitSelect(JCFieldAccess tree) { duke@1: // Determine the expected kind of the qualifier expression. duke@1: int skind = 0; duke@1: if (tree.name == names._this || tree.name == names._super || duke@1: tree.name == names._class) duke@1: { duke@1: skind = TYP; duke@1: } else { duke@1: if ((pkind & PCK) != 0) skind = skind | PCK; duke@1: if ((pkind & TYP) != 0) skind = skind | TYP | PCK; duke@1: if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP; duke@1: } duke@1: duke@1: // Attribute the qualifier expression, and determine its symbol (if any). duke@1: Type site = attribTree(tree.selected, env, skind, Infer.anyPoly); duke@1: if ((pkind & (PCK | TYP)) == 0) duke@1: site = capture(site); // Capture field access duke@1: duke@1: // don't allow T.class T[].class, etc duke@1: if (skind == TYP) { duke@1: Type elt = site; duke@1: while (elt.tag == ARRAY) duke@1: elt = ((ArrayType)elt).elemtype; duke@1: if (elt.tag == TYPEVAR) { duke@1: log.error(tree.pos(), "type.var.cant.be.deref"); jjg@110: result = types.createErrorType(tree.type); duke@1: return; duke@1: } duke@1: } duke@1: duke@1: // If qualifier symbol is a type or `super', assert `selectSuper' duke@1: // for the selection. This is relevant for determining whether duke@1: // protected symbols are accessible. duke@1: Symbol sitesym = TreeInfo.symbol(tree.selected); duke@1: boolean selectSuperPrev = env.info.selectSuper; duke@1: env.info.selectSuper = duke@1: sitesym != null && duke@1: sitesym.name == names._super; duke@1: duke@1: // If selected expression is polymorphic, strip duke@1: // type parameters and remember in env.info.tvars, so that duke@1: // they can be added later (in Attr.checkId and Infer.instantiateMethod). duke@1: if (tree.selected.type.tag == FORALL) { duke@1: ForAll pstype = (ForAll)tree.selected.type; duke@1: env.info.tvars = pstype.tvars; duke@1: site = tree.selected.type = pstype.qtype; duke@1: } duke@1: duke@1: // Determine the symbol represented by the selection. duke@1: env.info.varArgs = false; duke@1: Symbol sym = selectSym(tree, site, env, pt, pkind); duke@1: if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) { duke@1: site = capture(site); duke@1: sym = selectSym(tree, site, env, pt, pkind); duke@1: } duke@1: boolean varArgs = env.info.varArgs; duke@1: tree.sym = sym; duke@1: mcimadamore@27: if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) { mcimadamore@27: while (site.tag == TYPEVAR) site = site.getUpperBound(); mcimadamore@27: site = capture(site); mcimadamore@27: } duke@1: duke@1: // If that symbol is a variable, ... duke@1: if (sym.kind == VAR) { duke@1: VarSymbol v = (VarSymbol)sym; duke@1: duke@1: // ..., evaluate its initializer, if it has one, and check for duke@1: // illegal forward reference. duke@1: checkInit(tree, env, v, true); duke@1: duke@1: // If we are expecting a variable (as opposed to a value), check duke@1: // that the variable is assignable in the current environment. duke@1: if (pkind == VAR) duke@1: checkAssignable(tree.pos(), v, tree.selected, env); duke@1: } duke@1: duke@1: // Disallow selecting a type from an expression duke@1: if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) { duke@1: tree.type = check(tree.selected, pt, duke@1: sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt); duke@1: } duke@1: duke@1: if (isType(sitesym)) { duke@1: if (sym.name == names._this) { duke@1: // If `C' is the currently compiled class, check that duke@1: // C.this' does not appear in a call to a super(...) duke@1: if (env.info.isSelfCall && duke@1: site.tsym == env.enclClass.sym) { duke@1: chk.earlyRefError(tree.pos(), sym); duke@1: } duke@1: } else { duke@1: // Check if type-qualified fields or methods are static (JLS) duke@1: if ((sym.flags() & STATIC) == 0 && duke@1: sym.name != names._super && duke@1: (sym.kind == VAR || sym.kind == MTH)) { duke@1: rs.access(rs.new StaticError(sym), duke@1: tree.pos(), site, sym.name, true); duke@1: } duke@1: } duke@1: } duke@1: duke@1: // If we are selecting an instance member via a `super', ... duke@1: if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { duke@1: duke@1: // Check that super-qualified symbols are not abstract (JLS) duke@1: rs.checkNonAbstract(tree.pos(), sym); duke@1: duke@1: if (site.isRaw()) { duke@1: // Determine argument types for site. duke@1: Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); duke@1: if (site1 != null) site = site1; duke@1: } duke@1: } duke@1: duke@1: env.info.selectSuper = selectSuperPrev; duke@1: result = checkId(tree, site, sym, env, pkind, pt, varArgs); duke@1: env.info.tvars = List.nil(); duke@1: } duke@1: //where duke@1: /** Determine symbol referenced by a Select expression, duke@1: * duke@1: * @param tree The select tree. duke@1: * @param site The type of the selected expression, duke@1: * @param env The current environment. duke@1: * @param pt The current prototype. duke@1: * @param pkind The expected kind(s) of the Select expression. duke@1: */ duke@1: private Symbol selectSym(JCFieldAccess tree, duke@1: Type site, duke@1: Env env, duke@1: Type pt, duke@1: int pkind) { duke@1: DiagnosticPosition pos = tree.pos(); duke@1: Name name = tree.name; duke@1: duke@1: switch (site.tag) { duke@1: case PACKAGE: duke@1: return rs.access( duke@1: rs.findIdentInPackage(env, site.tsym, name, pkind), duke@1: pos, site, name, true); duke@1: case ARRAY: duke@1: case CLASS: duke@1: if (pt.tag == METHOD || pt.tag == FORALL) { duke@1: return rs.resolveQualifiedMethod( duke@1: pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments()); duke@1: } else if (name == names._this || name == names._super) { duke@1: return rs.resolveSelf(pos, env, site.tsym, name); duke@1: } else if (name == names._class) { duke@1: // In this case, we have already made sure in duke@1: // visitSelect that qualifier expression is a type. duke@1: Type t = syms.classType; duke@1: List typeargs = allowGenerics duke@1: ? List.of(types.erasure(site)) duke@1: : List.nil(); duke@1: t = new ClassType(t.getEnclosingType(), typeargs, t.tsym); duke@1: return new VarSymbol( duke@1: STATIC | PUBLIC | FINAL, names._class, t, site.tsym); duke@1: } else { duke@1: // We are seeing a plain identifier as selector. duke@1: Symbol sym = rs.findIdentInType(env, site, name, pkind); duke@1: if ((pkind & ERRONEOUS) == 0) duke@1: sym = rs.access(sym, pos, site, name, true); duke@1: return sym; duke@1: } duke@1: case WILDCARD: duke@1: throw new AssertionError(tree); duke@1: case TYPEVAR: duke@1: // Normally, site.getUpperBound() shouldn't be null. duke@1: // It should only happen during memberEnter/attribBase duke@1: // when determining the super type which *must* be duke@1: // done before attributing the type variables. In duke@1: // other words, we are seeing this illegal program: duke@1: // class B extends A {} duke@1: Symbol sym = (site.getUpperBound() != null) duke@1: ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind) duke@1: : null; duke@1: if (sym == null || isType(sym)) { duke@1: log.error(pos, "type.var.cant.be.deref"); duke@1: return syms.errSymbol; duke@1: } else { mcimadamore@155: Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? mcimadamore@155: rs.new AccessError(env, site, sym) : mcimadamore@155: sym; mcimadamore@155: rs.access(sym2, pos, site, name, true); duke@1: return sym; duke@1: } duke@1: case ERROR: duke@1: // preserve identifier names through errors jjg@110: return types.createErrorType(name, site.tsym, site).tsym; duke@1: default: duke@1: // The qualifier expression is of a primitive type -- only duke@1: // .class is allowed for these. duke@1: if (name == names._class) { duke@1: // In this case, we have already made sure in Select that duke@1: // qualifier expression is a type. duke@1: Type t = syms.classType; duke@1: Type arg = types.boxedClass(site).type; duke@1: t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym); duke@1: return new VarSymbol( duke@1: STATIC | PUBLIC | FINAL, names._class, t, site.tsym); duke@1: } else { duke@1: log.error(pos, "cant.deref", site); duke@1: return syms.errSymbol; duke@1: } duke@1: } duke@1: } duke@1: duke@1: /** Determine type of identifier or select expression and check that duke@1: * (1) the referenced symbol is not deprecated duke@1: * (2) the symbol's type is safe (@see checkSafe) duke@1: * (3) if symbol is a variable, check that its type and kind are duke@1: * compatible with the prototype and protokind. duke@1: * (4) if symbol is an instance field of a raw type, duke@1: * which is being assigned to, issue an unchecked warning if its duke@1: * type changes under erasure. duke@1: * (5) if symbol is an instance method of a raw type, issue an duke@1: * unchecked warning if its argument types change under erasure. duke@1: * If checks succeed: duke@1: * If symbol is a constant, return its constant type duke@1: * else if symbol is a method, return its result type duke@1: * otherwise return its type. duke@1: * Otherwise return errType. duke@1: * duke@1: * @param tree The syntax tree representing the identifier duke@1: * @param site If this is a select, the type of the selected duke@1: * expression, otherwise the type of the current class. duke@1: * @param sym The symbol representing the identifier. duke@1: * @param env The current environment. duke@1: * @param pkind The set of expected kinds. duke@1: * @param pt The expected type. duke@1: */ duke@1: Type checkId(JCTree tree, duke@1: Type site, duke@1: Symbol sym, duke@1: Env env, duke@1: int pkind, duke@1: Type pt, duke@1: boolean useVarargs) { jjg@110: if (pt.isErroneous()) return types.createErrorType(site); duke@1: Type owntype; // The computed type of this identifier occurrence. duke@1: switch (sym.kind) { duke@1: case TYP: duke@1: // For types, the computed type equals the symbol's type, duke@1: // except for two situations: duke@1: owntype = sym.type; duke@1: if (owntype.tag == CLASS) { duke@1: Type ownOuter = owntype.getEnclosingType(); duke@1: duke@1: // (a) If the symbol's type is parameterized, erase it duke@1: // because no type parameters were given. duke@1: // We recover generic outer type later in visitTypeApply. duke@1: if (owntype.tsym.type.getTypeArguments().nonEmpty()) { duke@1: owntype = types.erasure(owntype); duke@1: } duke@1: duke@1: // (b) If the symbol's type is an inner class, then duke@1: // we have to interpret its outer type as a superclass duke@1: // of the site type. Example: duke@1: // duke@1: // class Tree { class Visitor { ... } } duke@1: // class PointTree extends Tree { ... } duke@1: // ...PointTree.Visitor... duke@1: // duke@1: // Then the type of the last expression above is duke@1: // Tree.Visitor. duke@1: else if (ownOuter.tag == CLASS && site != ownOuter) { duke@1: Type normOuter = site; duke@1: if (normOuter.tag == CLASS) duke@1: normOuter = types.asEnclosingSuper(site, ownOuter.tsym); duke@1: if (normOuter == null) // perhaps from an import duke@1: normOuter = types.erasure(ownOuter); duke@1: if (normOuter != ownOuter) duke@1: owntype = new ClassType( duke@1: normOuter, List.nil(), owntype.tsym); duke@1: } duke@1: } duke@1: break; duke@1: case VAR: duke@1: VarSymbol v = (VarSymbol)sym; duke@1: // Test (4): if symbol is an instance field of a raw type, duke@1: // which is being assigned to, issue an unchecked warning if duke@1: // its type changes under erasure. duke@1: if (allowGenerics && duke@1: pkind == VAR && duke@1: v.owner.kind == TYP && duke@1: (v.flags() & STATIC) == 0 && duke@1: (site.tag == CLASS || site.tag == TYPEVAR)) { duke@1: Type s = types.asOuterSuper(site, v.owner); duke@1: if (s != null && duke@1: s.isRaw() && duke@1: !types.isSameType(v.type, v.erasure(types))) { duke@1: chk.warnUnchecked(tree.pos(), duke@1: "unchecked.assign.to.var", duke@1: v, s); duke@1: } duke@1: } duke@1: // The computed type of a variable is the type of the duke@1: // variable symbol, taken as a member of the site type. duke@1: owntype = (sym.owner.kind == TYP && duke@1: sym.name != names._this && sym.name != names._super) duke@1: ? types.memberType(site, sym) duke@1: : sym.type; duke@1: duke@1: if (env.info.tvars.nonEmpty()) { duke@1: Type owntype1 = new ForAll(env.info.tvars, owntype); duke@1: for (List l = env.info.tvars; l.nonEmpty(); l = l.tail) duke@1: if (!owntype.contains(l.head)) { duke@1: log.error(tree.pos(), "undetermined.type", owntype1); jjg@110: owntype1 = types.createErrorType(owntype1); duke@1: } duke@1: owntype = owntype1; duke@1: } duke@1: duke@1: // If the variable is a constant, record constant value in duke@1: // computed type. duke@1: if (v.getConstValue() != null && isStaticReference(tree)) duke@1: owntype = owntype.constType(v.getConstValue()); duke@1: duke@1: if (pkind == VAL) { duke@1: owntype = capture(owntype); // capture "names as expressions" duke@1: } duke@1: break; duke@1: case MTH: { duke@1: JCMethodInvocation app = (JCMethodInvocation)env.tree; duke@1: owntype = checkMethod(site, sym, env, app.args, duke@1: pt.getParameterTypes(), pt.getTypeArguments(), duke@1: env.info.varArgs); duke@1: break; duke@1: } duke@1: case PCK: case ERR: duke@1: owntype = sym.type; duke@1: break; duke@1: default: duke@1: throw new AssertionError("unexpected kind: " + sym.kind + duke@1: " in tree " + tree); duke@1: } duke@1: duke@1: // Test (1): emit a `deprecation' warning if symbol is deprecated. duke@1: // (for constructors, the error was given when the constructor was duke@1: // resolved) duke@1: if (sym.name != names.init && duke@1: (sym.flags() & DEPRECATED) != 0 && duke@1: (env.info.scope.owner.flags() & DEPRECATED) == 0 && duke@1: sym.outermostClass() != env.info.scope.owner.outermostClass()) duke@1: chk.warnDeprecated(tree.pos(), sym); duke@1: duke@1: if ((sym.flags() & PROPRIETARY) != 0) duke@1: log.strictWarning(tree.pos(), "sun.proprietary", sym); duke@1: duke@1: // Test (3): if symbol is a variable, check that its type and duke@1: // kind are compatible with the prototype and protokind. duke@1: return check(tree, owntype, sym.kind, pkind, pt); duke@1: } duke@1: duke@1: /** Check that variable is initialized and evaluate the variable's duke@1: * initializer, if not yet done. Also check that variable is not duke@1: * referenced before it is defined. duke@1: * @param tree The tree making up the variable reference. duke@1: * @param env The current environment. duke@1: * @param v The variable's symbol. duke@1: */ duke@1: private void checkInit(JCTree tree, duke@1: Env env, duke@1: VarSymbol v, duke@1: boolean onlyWarning) { duke@1: // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " + duke@1: // tree.pos + " " + v.pos + " " + duke@1: // Resolve.isStatic(env));//DEBUG duke@1: duke@1: // A forward reference is diagnosed if the declaration position duke@1: // of the variable is greater than the current tree position duke@1: // and the tree and variable definition occur in the same class duke@1: // definition. Note that writes don't count as references. duke@1: // This check applies only to class and instance duke@1: // variables. Local variables follow different scope rules, duke@1: // and are subject to definite assignment checking. mcimadamore@94: if ((env.info.enclVar == v || v.pos > tree.pos) && duke@1: v.owner.kind == TYP && duke@1: canOwnInitializer(env.info.scope.owner) && duke@1: v.owner == env.info.scope.owner.enclClass() && duke@1: ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && duke@1: (env.tree.getTag() != JCTree.ASSIGN || duke@1: TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { mcimadamore@94: String suffix = (env.info.enclVar == v) ? mcimadamore@94: "self.ref" : "forward.ref"; mcimadamore@18: if (!onlyWarning || isStaticEnumField(v)) { mcimadamore@94: log.error(tree.pos(), "illegal." + suffix); duke@1: } else if (useBeforeDeclarationWarning) { mcimadamore@94: log.warning(tree.pos(), suffix, v); duke@1: } duke@1: } duke@1: duke@1: v.getConstValue(); // ensure initializer is evaluated duke@1: duke@1: checkEnumInitializer(tree, env, v); duke@1: } duke@1: duke@1: /** duke@1: * Check for illegal references to static members of enum. In duke@1: * an enum type, constructors and initializers may not duke@1: * reference its static members unless they are constant. duke@1: * duke@1: * @param tree The tree making up the variable reference. duke@1: * @param env The current environment. duke@1: * @param v The variable's symbol. duke@1: * @see JLS 3rd Ed. (8.9 Enums) duke@1: */ duke@1: private void checkEnumInitializer(JCTree tree, Env env, VarSymbol v) { duke@1: // JLS 3rd Ed.: duke@1: // duke@1: // "It is a compile-time error to reference a static field duke@1: // of an enum type that is not a compile-time constant duke@1: // (15.28) from constructors, instance initializer blocks, duke@1: // or instance variable initializer expressions of that duke@1: // type. It is a compile-time error for the constructors, duke@1: // instance initializer blocks, or instance variable duke@1: // initializer expressions of an enum constant e to refer duke@1: // to itself or to an enum constant of the same type that duke@1: // is declared to the right of e." mcimadamore@18: if (isStaticEnumField(v)) { duke@1: ClassSymbol enclClass = env.info.scope.owner.enclClass(); duke@1: duke@1: if (enclClass == null || enclClass.owner == null) duke@1: return; duke@1: duke@1: // See if the enclosing class is the enum (or a duke@1: // subclass thereof) declaring v. If not, this duke@1: // reference is OK. duke@1: if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) duke@1: return; duke@1: duke@1: // If the reference isn't from an initializer, then duke@1: // the reference is OK. duke@1: if (!Resolve.isInitializer(env)) duke@1: return; duke@1: duke@1: log.error(tree.pos(), "illegal.enum.static.ref"); duke@1: } duke@1: } duke@1: mcimadamore@18: /** Is the given symbol a static, non-constant field of an Enum? mcimadamore@18: * Note: enum literals should not be regarded as such mcimadamore@18: */ mcimadamore@18: private boolean isStaticEnumField(VarSymbol v) { mcimadamore@18: return Flags.isEnum(v.owner) && mcimadamore@18: Flags.isStatic(v) && mcimadamore@18: !Flags.isConstant(v) && mcimadamore@18: v.name != names._class; duke@1: } duke@1: duke@1: /** Can the given symbol be the owner of code which forms part duke@1: * if class initialization? This is the case if the symbol is duke@1: * a type or field, or if the symbol is the synthetic method. duke@1: * owning a block. duke@1: */ duke@1: private boolean canOwnInitializer(Symbol sym) { duke@1: return duke@1: (sym.kind & (VAR | TYP)) != 0 || duke@1: (sym.kind == MTH && (sym.flags() & BLOCK) != 0); duke@1: } duke@1: duke@1: Warner noteWarner = new Warner(); duke@1: duke@1: /** duke@1: * Check that method arguments conform to its instantation. duke@1: **/ duke@1: public Type checkMethod(Type site, duke@1: Symbol sym, duke@1: Env env, duke@1: final List argtrees, duke@1: List argtypes, duke@1: List typeargtypes, duke@1: boolean useVarargs) { duke@1: // Test (5): if symbol is an instance method of a raw type, issue duke@1: // an unchecked warning if its argument types change under erasure. duke@1: if (allowGenerics && duke@1: (sym.flags() & STATIC) == 0 && duke@1: (site.tag == CLASS || site.tag == TYPEVAR)) { duke@1: Type s = types.asOuterSuper(site, sym.owner); duke@1: if (s != null && s.isRaw() && duke@1: !types.isSameTypes(sym.type.getParameterTypes(), duke@1: sym.erasure(types).getParameterTypes())) { duke@1: chk.warnUnchecked(env.tree.pos(), duke@1: "unchecked.call.mbr.of.raw.type", duke@1: sym, s); duke@1: } duke@1: } duke@1: duke@1: // Compute the identifier's instantiated type. duke@1: // For methods, we need to compute the instance type by duke@1: // Resolve.instantiate from the symbol's type as well as duke@1: // any type arguments and value arguments. duke@1: noteWarner.warned = false; duke@1: Type owntype = rs.instantiate(env, duke@1: site, duke@1: sym, duke@1: argtypes, duke@1: typeargtypes, duke@1: true, duke@1: useVarargs, duke@1: noteWarner); duke@1: boolean warned = noteWarner.warned; duke@1: duke@1: // If this fails, something went wrong; we should not have duke@1: // found the identifier in the first place. duke@1: if (owntype == null) { duke@1: if (!pt.isErroneous()) duke@1: log.error(env.tree.pos(), duke@1: "internal.error.cant.instantiate", duke@1: sym, site, duke@1: Type.toString(pt.getParameterTypes())); jjg@110: owntype = types.createErrorType(site); duke@1: } else { duke@1: // System.out.println("call : " + env.tree); duke@1: // System.out.println("method : " + owntype); duke@1: // System.out.println("actuals: " + argtypes); duke@1: List formals = owntype.getParameterTypes(); duke@1: Type last = useVarargs ? formals.last() : null; duke@1: if (sym.name==names.init && duke@1: sym.owner == syms.enumSym) duke@1: formals = formals.tail.tail; duke@1: List args = argtrees; duke@1: while (formals.head != last) { duke@1: JCTree arg = args.head; duke@1: Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head); duke@1: assertConvertible(arg, arg.type, formals.head, warn); duke@1: warned |= warn.warned; duke@1: args = args.tail; duke@1: formals = formals.tail; duke@1: } duke@1: if (useVarargs) { duke@1: Type varArg = types.elemtype(last); duke@1: while (args.tail != null) { duke@1: JCTree arg = args.head; duke@1: Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg); duke@1: assertConvertible(arg, arg.type, varArg, warn); duke@1: warned |= warn.warned; duke@1: args = args.tail; duke@1: } duke@1: } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) { duke@1: // non-varargs call to varargs method duke@1: Type varParam = owntype.getParameterTypes().last(); duke@1: Type lastArg = argtypes.last(); duke@1: if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) && duke@1: !types.isSameType(types.erasure(varParam), types.erasure(lastArg))) duke@1: log.warning(argtrees.last().pos(), "inexact.non-varargs.call", duke@1: types.elemtype(varParam), duke@1: varParam); duke@1: } duke@1: duke@1: if (warned && sym.type.tag == FORALL) { duke@1: chk.warnUnchecked(env.tree.pos(), duke@1: "unchecked.meth.invocation.applied", mcimadamore@161: kindName(sym), mcimadamore@161: sym.name, mcimadamore@161: rs.methodArguments(sym.type.getParameterTypes()), mcimadamore@161: rs.methodArguments(argtypes), mcimadamore@161: kindName(sym.location()), mcimadamore@161: sym.location()); duke@1: owntype = new MethodType(owntype.getParameterTypes(), duke@1: types.erasure(owntype.getReturnType()), duke@1: owntype.getThrownTypes(), duke@1: syms.methodClass); duke@1: } duke@1: if (useVarargs) { duke@1: JCTree tree = env.tree; duke@1: Type argtype = owntype.getParameterTypes().last(); duke@1: if (!types.isReifiable(argtype)) duke@1: chk.warnUnchecked(env.tree.pos(), duke@1: "unchecked.generic.array.creation", duke@1: argtype); duke@1: Type elemtype = types.elemtype(argtype); duke@1: switch (tree.getTag()) { duke@1: case JCTree.APPLY: duke@1: ((JCMethodInvocation) tree).varargsElement = elemtype; duke@1: break; duke@1: case JCTree.NEWCLASS: duke@1: ((JCNewClass) tree).varargsElement = elemtype; duke@1: break; duke@1: default: duke@1: throw new AssertionError(""+tree); duke@1: } duke@1: } duke@1: } duke@1: return owntype; duke@1: } duke@1: duke@1: private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) { duke@1: if (types.isConvertible(actual, formal, warn)) duke@1: return; duke@1: duke@1: if (formal.isCompound() duke@1: && types.isSubtype(actual, types.supertype(formal)) duke@1: && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn)) duke@1: return; duke@1: duke@1: if (false) { duke@1: // TODO: make assertConvertible work mcimadamore@89: chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal); duke@1: throw new AssertionError("Tree: " + tree duke@1: + " actual:" + actual duke@1: + " formal: " + formal); duke@1: } duke@1: } duke@1: duke@1: public void visitLiteral(JCLiteral tree) { duke@1: result = check( duke@1: tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt); duke@1: } duke@1: //where duke@1: /** Return the type of a literal with given type tag. duke@1: */ duke@1: Type litType(int tag) { duke@1: return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag]; duke@1: } duke@1: duke@1: public void visitTypeIdent(JCPrimitiveTypeTree tree) { duke@1: result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt); duke@1: } duke@1: duke@1: public void visitTypeArray(JCArrayTypeTree tree) { duke@1: Type etype = attribType(tree.elemtype, env); duke@1: Type type = new ArrayType(etype, syms.arrayClass); duke@1: result = check(tree, type, TYP, pkind, pt); duke@1: } duke@1: duke@1: /** Visitor method for parameterized types. duke@1: * Bound checking is left until later, since types are attributed duke@1: * before supertype structure is completely known duke@1: */ duke@1: public void visitTypeApply(JCTypeApply tree) { jjg@110: Type owntype = types.createErrorType(tree.type); duke@1: duke@1: // Attribute functor part of application and make sure it's a class. duke@1: Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); duke@1: duke@1: // Attribute type parameters duke@1: List actuals = attribTypes(tree.arguments, env); duke@1: duke@1: if (clazztype.tag == CLASS) { duke@1: List formals = clazztype.tsym.type.getTypeArguments(); duke@1: duke@1: if (actuals.length() == formals.length()) { duke@1: List a = actuals; duke@1: List f = formals; duke@1: while (a.nonEmpty()) { duke@1: a.head = a.head.withTypeVar(f.head); duke@1: a = a.tail; duke@1: f = f.tail; duke@1: } duke@1: // Compute the proper generic outer duke@1: Type clazzOuter = clazztype.getEnclosingType(); duke@1: if (clazzOuter.tag == CLASS) { duke@1: Type site; duke@1: if (tree.clazz.getTag() == JCTree.IDENT) { duke@1: site = env.enclClass.sym.type; duke@1: } else if (tree.clazz.getTag() == JCTree.SELECT) { duke@1: site = ((JCFieldAccess) tree.clazz).selected.type; duke@1: } else throw new AssertionError(""+tree); duke@1: if (clazzOuter.tag == CLASS && site != clazzOuter) { duke@1: if (site.tag == CLASS) duke@1: site = types.asOuterSuper(site, clazzOuter.tsym); duke@1: if (site == null) duke@1: site = types.erasure(clazzOuter); duke@1: clazzOuter = site; duke@1: } duke@1: } duke@1: owntype = new ClassType(clazzOuter, actuals, clazztype.tsym); duke@1: } else { duke@1: if (formals.length() != 0) { duke@1: log.error(tree.pos(), "wrong.number.type.args", duke@1: Integer.toString(formals.length())); duke@1: } else { duke@1: log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym); duke@1: } jjg@110: owntype = types.createErrorType(tree.type); duke@1: } duke@1: } duke@1: result = check(tree, owntype, TYP, pkind, pt); duke@1: } duke@1: duke@1: public void visitTypeParameter(JCTypeParameter tree) { duke@1: TypeVar a = (TypeVar)tree.type; duke@1: Set boundSet = new HashSet(); duke@1: if (a.bound.isErroneous()) duke@1: return; duke@1: List bs = types.getBounds(a); duke@1: if (tree.bounds.nonEmpty()) { duke@1: // accept class or interface or typevar as first bound. duke@1: Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false); duke@1: boundSet.add(types.erasure(b)); mcimadamore@159: if (b.isErroneous()) { mcimadamore@159: a.bound = b; mcimadamore@159: } mcimadamore@159: else if (b.tag == TYPEVAR) { duke@1: // if first bound was a typevar, do not accept further bounds. duke@1: if (tree.bounds.tail.nonEmpty()) { duke@1: log.error(tree.bounds.tail.head.pos(), duke@1: "type.var.may.not.be.followed.by.other.bounds"); duke@1: tree.bounds = List.of(tree.bounds.head); mcimadamore@7: a.bound = bs.head; duke@1: } duke@1: } else { duke@1: // if first bound was a class or interface, accept only interfaces duke@1: // as further bounds. duke@1: for (JCExpression bound : tree.bounds.tail) { duke@1: bs = bs.tail; duke@1: Type i = checkBase(bs.head, bound, env, false, true, false); mcimadamore@159: if (i.isErroneous()) mcimadamore@159: a.bound = i; mcimadamore@159: else if (i.tag == CLASS) duke@1: chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet); duke@1: } duke@1: } duke@1: } duke@1: bs = types.getBounds(a); duke@1: duke@1: // in case of multiple bounds ... duke@1: if (bs.length() > 1) { duke@1: // ... the variable's bound is a class type flagged COMPOUND duke@1: // (see comment for TypeVar.bound). duke@1: // In this case, generate a class tree that represents the duke@1: // bound class, ... duke@1: JCTree extending; duke@1: List implementing; duke@1: if ((bs.head.tsym.flags() & INTERFACE) == 0) { duke@1: extending = tree.bounds.head; duke@1: implementing = tree.bounds.tail; duke@1: } else { duke@1: extending = null; duke@1: implementing = tree.bounds; duke@1: } duke@1: JCClassDecl cd = make.at(tree.pos).ClassDef( duke@1: make.Modifiers(PUBLIC | ABSTRACT), duke@1: tree.name, List.nil(), duke@1: extending, implementing, List.nil()); duke@1: duke@1: ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym; duke@1: assert (c.flags() & COMPOUND) != 0; duke@1: cd.sym = c; duke@1: c.sourcefile = env.toplevel.sourcefile; duke@1: duke@1: // ... and attribute the bound class duke@1: c.flags_field |= UNATTRIBUTED; duke@1: Env cenv = enter.classEnv(cd, env); duke@1: enter.typeEnvs.put(c, cenv); duke@1: } duke@1: } duke@1: duke@1: duke@1: public void visitWildcard(JCWildcard tree) { duke@1: //- System.err.println("visitWildcard("+tree+");");//DEBUG duke@1: Type type = (tree.kind.kind == BoundKind.UNBOUND) duke@1: ? syms.objectType duke@1: : attribType(tree.inner, env); duke@1: result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), duke@1: tree.kind.kind, duke@1: syms.boundClass), duke@1: TYP, pkind, pt); duke@1: } duke@1: duke@1: public void visitAnnotation(JCAnnotation tree) { duke@1: log.error(tree.pos(), "annotation.not.valid.for.type", pt); duke@1: result = tree.type = syms.errType; duke@1: } duke@1: duke@1: public void visitErroneous(JCErroneous tree) { duke@1: if (tree.errs != null) duke@1: for (JCTree err : tree.errs) duke@1: attribTree(err, env, ERR, pt); duke@1: result = tree.type = syms.errType; duke@1: } duke@1: duke@1: /** Default visitor method for all other trees. duke@1: */ duke@1: public void visitTree(JCTree tree) { duke@1: throw new AssertionError(); duke@1: } duke@1: duke@1: /** Main method: attribute class definition associated with given class symbol. duke@1: * reporting completion failures at the given position. duke@1: * @param pos The source position at which completion errors are to be duke@1: * reported. duke@1: * @param c The class symbol whose definition will be attributed. duke@1: */ duke@1: public void attribClass(DiagnosticPosition pos, ClassSymbol c) { duke@1: try { duke@1: annotate.flush(); duke@1: attribClass(c); duke@1: } catch (CompletionFailure ex) { duke@1: chk.completionError(pos, ex); duke@1: } duke@1: } duke@1: duke@1: /** Attribute class definition associated with given class symbol. duke@1: * @param c The class symbol whose definition will be attributed. duke@1: */ duke@1: void attribClass(ClassSymbol c) throws CompletionFailure { duke@1: if (c.type.tag == ERROR) return; duke@1: duke@1: // Check for cycles in the inheritance graph, which can arise from duke@1: // ill-formed class files. duke@1: chk.checkNonCyclic(null, c.type); duke@1: duke@1: Type st = types.supertype(c.type); duke@1: if ((c.flags_field & Flags.COMPOUND) == 0) { duke@1: // First, attribute superclass. duke@1: if (st.tag == CLASS) duke@1: attribClass((ClassSymbol)st.tsym); duke@1: duke@1: // Next attribute owner, if it is a class. duke@1: if (c.owner.kind == TYP && c.owner.type.tag == CLASS) duke@1: attribClass((ClassSymbol)c.owner); duke@1: } duke@1: duke@1: // The previous operations might have attributed the current class duke@1: // if there was a cycle. So we test first whether the class is still duke@1: // UNATTRIBUTED. duke@1: if ((c.flags_field & UNATTRIBUTED) != 0) { duke@1: c.flags_field &= ~UNATTRIBUTED; duke@1: duke@1: // Get environment current at the point of class definition. duke@1: Env env = enter.typeEnvs.get(c); duke@1: duke@1: // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized, duke@1: // because the annotations were not available at the time the env was created. Therefore, duke@1: // we look up the environment chain for the first enclosing environment for which the duke@1: // lint value is set. Typically, this is the parent env, but might be further if there duke@1: // are any envs created as a result of TypeParameter nodes. duke@1: Env lintEnv = env; duke@1: while (lintEnv.info.lint == null) duke@1: lintEnv = lintEnv.next; duke@1: duke@1: // Having found the enclosing lint value, we can initialize the lint value for this class duke@1: env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags()); duke@1: duke@1: Lint prevLint = chk.setLint(env.info.lint); duke@1: JavaFileObject prev = log.useSource(c.sourcefile); duke@1: duke@1: try { duke@1: // java.lang.Enum may not be subclassed by a non-enum duke@1: if (st.tsym == syms.enumSym && duke@1: ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) duke@1: log.error(env.tree.pos(), "enum.no.subclassing"); duke@1: duke@1: // Enums may not be extended by source-level classes duke@1: if (st.tsym != null && duke@1: ((st.tsym.flags_field & Flags.ENUM) != 0) && mcimadamore@82: ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) && duke@1: !target.compilerBootstrap(c)) { duke@1: log.error(env.tree.pos(), "enum.types.not.extensible"); duke@1: } duke@1: attribClassBody(env, c); duke@1: duke@1: chk.checkDeprecatedAnnotation(env.tree.pos(), c); duke@1: } finally { duke@1: log.useSource(prev); duke@1: chk.setLint(prevLint); duke@1: } duke@1: duke@1: } duke@1: } duke@1: duke@1: public void visitImport(JCImport tree) { duke@1: // nothing to do duke@1: } duke@1: duke@1: /** Finish the attribution of a class. */ duke@1: private void attribClassBody(Env env, ClassSymbol c) { duke@1: JCClassDecl tree = (JCClassDecl)env.tree; duke@1: assert c == tree.sym; duke@1: duke@1: // Validate annotations duke@1: chk.validateAnnotations(tree.mods.annotations, c); duke@1: duke@1: // Validate type parameters, supertype and interfaces. mcimadamore@42: attribBounds(tree.typarams); mcimadamore@122: chk.validate(tree.typarams, env); mcimadamore@122: chk.validate(tree.extending, env); mcimadamore@122: chk.validate(tree.implementing, env); duke@1: duke@1: // If this is a non-abstract class, check that it has no abstract duke@1: // methods or unimplemented methods of an implemented interface. duke@1: if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { duke@1: if (!relax) duke@1: chk.checkAllDefined(tree.pos(), c); duke@1: } duke@1: duke@1: if ((c.flags() & ANNOTATION) != 0) { duke@1: if (tree.implementing.nonEmpty()) duke@1: log.error(tree.implementing.head.pos(), duke@1: "cant.extend.intf.annotation"); duke@1: if (tree.typarams.nonEmpty()) duke@1: log.error(tree.typarams.head.pos(), duke@1: "intf.annotation.cant.have.type.params"); duke@1: } else { duke@1: // Check that all extended classes and interfaces duke@1: // are compatible (i.e. no two define methods with same arguments duke@1: // yet different return types). (JLS 8.4.6.3) duke@1: chk.checkCompatibleSupertypes(tree.pos(), c.type); duke@1: } duke@1: duke@1: // Check that class does not import the same parameterized interface duke@1: // with two different argument lists. duke@1: chk.checkClassBounds(tree.pos(), c.type); duke@1: duke@1: tree.type = c.type; duke@1: duke@1: boolean assertsEnabled = false; duke@1: assert assertsEnabled = true; duke@1: if (assertsEnabled) { duke@1: for (List l = tree.typarams; duke@1: l.nonEmpty(); l = l.tail) duke@1: assert env.info.scope.lookup(l.head.name).scope != null; duke@1: } duke@1: duke@1: // Check that a generic class doesn't extend Throwable duke@1: if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) duke@1: log.error(tree.extending.pos(), "generic.throwable"); duke@1: duke@1: // Check that all methods which implement some duke@1: // method conform to the method they implement. duke@1: chk.checkImplementations(tree); duke@1: duke@1: for (List l = tree.defs; l.nonEmpty(); l = l.tail) { duke@1: // Attribute declaration duke@1: attribStat(l.head, env); duke@1: // Check that declarations in inner classes are not static (JLS 8.1.2) duke@1: // Make an exception for static constants. duke@1: if (c.owner.kind != PCK && duke@1: ((c.flags() & STATIC) == 0 || c.name == names.empty) && duke@1: (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { duke@1: Symbol sym = null; duke@1: if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym; duke@1: if (sym == null || duke@1: sym.kind != VAR || duke@1: ((VarSymbol) sym).getConstValue() == null) duke@1: log.error(l.head.pos(), "icls.cant.have.static.decl"); duke@1: } duke@1: } duke@1: duke@1: // Check for cycles among non-initial constructors. duke@1: chk.checkCyclicConstructors(tree); duke@1: duke@1: // Check for cycles among annotation elements. duke@1: chk.checkNonCyclicElements(tree); duke@1: duke@1: // Check for proper use of serialVersionUID duke@1: if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) && duke@1: isSerializable(c) && duke@1: (c.flags() & Flags.ENUM) == 0 && duke@1: (c.flags() & ABSTRACT) == 0) { duke@1: checkSerialVersionUID(tree, c); duke@1: } duke@1: } duke@1: // where duke@1: /** check if a class is a subtype of Serializable, if that is available. */ duke@1: private boolean isSerializable(ClassSymbol c) { duke@1: try { duke@1: syms.serializableType.complete(); duke@1: } duke@1: catch (CompletionFailure e) { duke@1: return false; duke@1: } duke@1: return types.isSubtype(c.type, syms.serializableType); duke@1: } duke@1: duke@1: /** Check that an appropriate serialVersionUID member is defined. */ duke@1: private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) { duke@1: duke@1: // check for presence of serialVersionUID duke@1: Scope.Entry e = c.members().lookup(names.serialVersionUID); duke@1: while (e.scope != null && e.sym.kind != VAR) e = e.next(); duke@1: if (e.scope == null) { duke@1: log.warning(tree.pos(), "missing.SVUID", c); duke@1: return; duke@1: } duke@1: duke@1: // check that it is static final duke@1: VarSymbol svuid = (VarSymbol)e.sym; duke@1: if ((svuid.flags() & (STATIC | FINAL)) != duke@1: (STATIC | FINAL)) duke@1: log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c); duke@1: duke@1: // check that it is long duke@1: else if (svuid.type.tag != TypeTags.LONG) duke@1: log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c); duke@1: duke@1: // check constant duke@1: else if (svuid.getConstValue() == null) duke@1: log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c); duke@1: } duke@1: duke@1: private Type capture(Type type) { duke@1: return types.capture(type); duke@1: } duke@1: }