src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 12 Aug 2013 17:25:07 +0100

author
mcimadamore
date
Mon, 12 Aug 2013 17:25:07 +0100
changeset 1945
f7f271bd74a2
parent 1919
3155e77d2676
child 1973
7a4717f3ea7b
permissions
-rw-r--r--

6537020: JCK tests: a compile-time error should be given in case of ambiguously imported fields (types, methods)
Summary: Hiding check does not support interface multiple inheritance
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.HashSet;
    30 import java.util.HashMap;
    31 import java.util.Locale;
    32 import java.util.Map;
    33 import java.util.Set;
    34 import java.util.WeakHashMap;
    36 import javax.tools.JavaFileObject;
    38 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    41 import com.sun.tools.javac.comp.AttrContext;
    42 import com.sun.tools.javac.comp.Check;
    43 import com.sun.tools.javac.comp.Enter;
    44 import com.sun.tools.javac.comp.Env;
    45 import com.sun.tools.javac.jvm.ClassReader;
    46 import com.sun.tools.javac.util.*;
    47 import static com.sun.tools.javac.code.BoundKind.*;
    48 import static com.sun.tools.javac.code.Flags.*;
    49 import static com.sun.tools.javac.code.Scope.*;
    50 import static com.sun.tools.javac.code.Symbol.*;
    51 import static com.sun.tools.javac.code.Type.*;
    52 import static com.sun.tools.javac.code.TypeTag.*;
    53 import static com.sun.tools.javac.jvm.ClassFile.externalize;
    54 import static com.sun.tools.javac.util.ListBuffer.lb;
    56 /**
    57  * Utility class containing various operations on types.
    58  *
    59  * <p>Unless other names are more illustrative, the following naming
    60  * conventions should be observed in this file:
    61  *
    62  * <dl>
    63  * <dt>t</dt>
    64  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    65  * <dt>s</dt>
    66  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    67  * <dt>ts</dt>
    68  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    69  * <dt>ss</dt>
    70  * <dd>A second list of types should be named ss.</dd>
    71  * </dl>
    72  *
    73  * <p><b>This is NOT part of any supported API.
    74  * If you write code that depends on this, you do so at your own risk.
    75  * This code and its internal interfaces are subject to change or
    76  * deletion without notice.</b>
    77  */
    78 public class Types {
    79     protected static final Context.Key<Types> typesKey =
    80         new Context.Key<Types>();
    82     final Symtab syms;
    83     final JavacMessages messages;
    84     final Names names;
    85     final boolean allowBoxing;
    86     final boolean allowCovariantReturns;
    87     final boolean allowObjectToPrimitiveCast;
    88     final boolean allowDefaultMethods;
    89     final ClassReader reader;
    90     final Check chk;
    91     final Enter enter;
    92     JCDiagnostic.Factory diags;
    93     List<Warner> warnStack = List.nil();
    94     final Name capturedName;
    95     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    97     public final Warner noWarnings;
    99     // <editor-fold defaultstate="collapsed" desc="Instantiating">
   100     public static Types instance(Context context) {
   101         Types instance = context.get(typesKey);
   102         if (instance == null)
   103             instance = new Types(context);
   104         return instance;
   105     }
   107     protected Types(Context context) {
   108         context.put(typesKey, this);
   109         syms = Symtab.instance(context);
   110         names = Names.instance(context);
   111         Source source = Source.instance(context);
   112         allowBoxing = source.allowBoxing();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   115         allowDefaultMethods = source.allowDefaultMethods();
   116         reader = ClassReader.instance(context);
   117         chk = Check.instance(context);
   118         enter = Enter.instance(context);
   119         capturedName = names.fromString("<captured wildcard>");
   120         messages = JavacMessages.instance(context);
   121         diags = JCDiagnostic.Factory.instance(context);
   122         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   123         noWarnings = new Warner(null);
   124     }
   125     // </editor-fold>
   127     // <editor-fold defaultstate="collapsed" desc="upperBound">
   128     /**
   129      * The "rvalue conversion".<br>
   130      * The upper bound of most types is the type
   131      * itself.  Wildcards, on the other hand have upper
   132      * and lower bounds.
   133      * @param t a type
   134      * @return the upper bound of the given type
   135      */
   136     public Type upperBound(Type t) {
   137         return upperBound.visit(t).unannotatedType();
   138     }
   139     // where
   140         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   142             @Override
   143             public Type visitWildcardType(WildcardType t, Void ignored) {
   144                 if (t.isSuperBound())
   145                     return t.bound == null ? syms.objectType : t.bound.bound;
   146                 else
   147                     return visit(t.type);
   148             }
   150             @Override
   151             public Type visitCapturedType(CapturedType t, Void ignored) {
   152                 return visit(t.bound);
   153             }
   154         };
   155     // </editor-fold>
   157     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   158     /**
   159      * The "lvalue conversion".<br>
   160      * The lower bound of most types is the type
   161      * itself.  Wildcards, on the other hand have upper
   162      * and lower bounds.
   163      * @param t a type
   164      * @return the lower bound of the given type
   165      */
   166     public Type lowerBound(Type t) {
   167         return lowerBound.visit(t);
   168     }
   169     // where
   170         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   172             @Override
   173             public Type visitWildcardType(WildcardType t, Void ignored) {
   174                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   175             }
   177             @Override
   178             public Type visitCapturedType(CapturedType t, Void ignored) {
   179                 return visit(t.getLowerBound());
   180             }
   181         };
   182     // </editor-fold>
   184     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   185     /**
   186      * Checks that all the arguments to a class are unbounded
   187      * wildcards or something else that doesn't make any restrictions
   188      * on the arguments. If a class isUnbounded, a raw super- or
   189      * subclass can be cast to it without a warning.
   190      * @param t a type
   191      * @return true iff the given type is unbounded or raw
   192      */
   193     public boolean isUnbounded(Type t) {
   194         return isUnbounded.visit(t);
   195     }
   196     // where
   197         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   199             public Boolean visitType(Type t, Void ignored) {
   200                 return true;
   201             }
   203             @Override
   204             public Boolean visitClassType(ClassType t, Void ignored) {
   205                 List<Type> parms = t.tsym.type.allparams();
   206                 List<Type> args = t.allparams();
   207                 while (parms.nonEmpty()) {
   208                     WildcardType unb = new WildcardType(syms.objectType,
   209                                                         BoundKind.UNBOUND,
   210                                                         syms.boundClass,
   211                                                         (TypeVar)parms.head.unannotatedType());
   212                     if (!containsType(args.head, unb))
   213                         return false;
   214                     parms = parms.tail;
   215                     args = args.tail;
   216                 }
   217                 return true;
   218             }
   219         };
   220     // </editor-fold>
   222     // <editor-fold defaultstate="collapsed" desc="asSub">
   223     /**
   224      * Return the least specific subtype of t that starts with symbol
   225      * sym.  If none exists, return null.  The least specific subtype
   226      * is determined as follows:
   227      *
   228      * <p>If there is exactly one parameterized instance of sym that is a
   229      * subtype of t, that parameterized instance is returned.<br>
   230      * Otherwise, if the plain type or raw type `sym' is a subtype of
   231      * type t, the type `sym' itself is returned.  Otherwise, null is
   232      * returned.
   233      */
   234     public Type asSub(Type t, Symbol sym) {
   235         return asSub.visit(t, sym);
   236     }
   237     // where
   238         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   240             public Type visitType(Type t, Symbol sym) {
   241                 return null;
   242             }
   244             @Override
   245             public Type visitClassType(ClassType t, Symbol sym) {
   246                 if (t.tsym == sym)
   247                     return t;
   248                 Type base = asSuper(sym.type, t.tsym);
   249                 if (base == null)
   250                     return null;
   251                 ListBuffer<Type> from = new ListBuffer<Type>();
   252                 ListBuffer<Type> to = new ListBuffer<Type>();
   253                 try {
   254                     adapt(base, t, from, to);
   255                 } catch (AdaptFailure ex) {
   256                     return null;
   257                 }
   258                 Type res = subst(sym.type, from.toList(), to.toList());
   259                 if (!isSubtype(res, t))
   260                     return null;
   261                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   262                 for (List<Type> l = sym.type.allparams();
   263                      l.nonEmpty(); l = l.tail)
   264                     if (res.contains(l.head) && !t.contains(l.head))
   265                         openVars.append(l.head);
   266                 if (openVars.nonEmpty()) {
   267                     if (t.isRaw()) {
   268                         // The subtype of a raw type is raw
   269                         res = erasure(res);
   270                     } else {
   271                         // Unbound type arguments default to ?
   272                         List<Type> opens = openVars.toList();
   273                         ListBuffer<Type> qs = new ListBuffer<Type>();
   274                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   275                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
   276                         }
   277                         res = subst(res, opens, qs.toList());
   278                     }
   279                 }
   280                 return res;
   281             }
   283             @Override
   284             public Type visitErrorType(ErrorType t, Symbol sym) {
   285                 return t;
   286             }
   287         };
   288     // </editor-fold>
   290     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   291     /**
   292      * Is t a subtype of or convertible via boxing/unboxing
   293      * conversion to s?
   294      */
   295     public boolean isConvertible(Type t, Type s, Warner warn) {
   296         if (t.hasTag(ERROR)) {
   297             return true;
   298         }
   299         boolean tPrimitive = t.isPrimitive();
   300         boolean sPrimitive = s.isPrimitive();
   301         if (tPrimitive == sPrimitive) {
   302             return isSubtypeUnchecked(t, s, warn);
   303         }
   304         if (!allowBoxing) return false;
   305         return tPrimitive
   306             ? isSubtype(boxedClass(t).type, s)
   307             : isSubtype(unboxedType(t), s);
   308     }
   310     /**
   311      * Is t a subtype of or convertiable via boxing/unboxing
   312      * convertions to s?
   313      */
   314     public boolean isConvertible(Type t, Type s) {
   315         return isConvertible(t, s, noWarnings);
   316     }
   317     // </editor-fold>
   319     // <editor-fold defaultstate="collapsed" desc="findSam">
   321     /**
   322      * Exception used to report a function descriptor lookup failure. The exception
   323      * wraps a diagnostic that can be used to generate more details error
   324      * messages.
   325      */
   326     public static class FunctionDescriptorLookupError extends RuntimeException {
   327         private static final long serialVersionUID = 0;
   329         JCDiagnostic diagnostic;
   331         FunctionDescriptorLookupError() {
   332             this.diagnostic = null;
   333         }
   335         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   336             this.diagnostic = diag;
   337             return this;
   338         }
   340         public JCDiagnostic getDiagnostic() {
   341             return diagnostic;
   342         }
   343     }
   345     /**
   346      * A cache that keeps track of function descriptors associated with given
   347      * functional interfaces.
   348      */
   349     class DescriptorCache {
   351         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   353         class FunctionDescriptor {
   354             Symbol descSym;
   356             FunctionDescriptor(Symbol descSym) {
   357                 this.descSym = descSym;
   358             }
   360             public Symbol getSymbol() {
   361                 return descSym;
   362             }
   364             public Type getType(Type site) {
   365                 site = removeWildcards(site);
   366                 if (!chk.checkValidGenericType(site)) {
   367                     //if the inferred functional interface type is not well-formed,
   368                     //or if it's not a subtype of the original target, issue an error
   369                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   370                 }
   371                 return memberType(site, descSym);
   372             }
   373         }
   375         class Entry {
   376             final FunctionDescriptor cachedDescRes;
   377             final int prevMark;
   379             public Entry(FunctionDescriptor cachedDescRes,
   380                     int prevMark) {
   381                 this.cachedDescRes = cachedDescRes;
   382                 this.prevMark = prevMark;
   383             }
   385             boolean matches(int mark) {
   386                 return  this.prevMark == mark;
   387             }
   388         }
   390         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   391             Entry e = _map.get(origin);
   392             CompoundScope members = membersClosure(origin.type, false);
   393             if (e == null ||
   394                     !e.matches(members.getMark())) {
   395                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   396                 _map.put(origin, new Entry(descRes, members.getMark()));
   397                 return descRes;
   398             }
   399             else {
   400                 return e.cachedDescRes;
   401             }
   402         }
   404         /**
   405          * Compute the function descriptor associated with a given functional interface
   406          */
   407         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
   408                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
   409             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   410                 //t must be an interface
   411                 throw failure("not.a.functional.intf", origin);
   412             }
   414             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   415             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   416                 Type mtype = memberType(origin.type, sym);
   417                 if (abstracts.isEmpty() ||
   418                         (sym.name == abstracts.first().name &&
   419                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   420                     abstracts.append(sym);
   421                 } else {
   422                     //the target method(s) should be the only abstract members of t
   423                     throw failure("not.a.functional.intf.1",  origin,
   424                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   425                 }
   426             }
   427             if (abstracts.isEmpty()) {
   428                 //t must define a suitable non-generic method
   429                 throw failure("not.a.functional.intf.1", origin,
   430                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   431             } else if (abstracts.size() == 1) {
   432                 return new FunctionDescriptor(abstracts.first());
   433             } else { // size > 1
   434                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   435                 if (descRes == null) {
   436                     //we can get here if the functional interface is ill-formed
   437                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   438                     for (Symbol desc : abstracts) {
   439                         String key = desc.type.getThrownTypes().nonEmpty() ?
   440                                 "descriptor.throws" : "descriptor";
   441                         descriptors.append(diags.fragment(key, desc.name,
   442                                 desc.type.getParameterTypes(),
   443                                 desc.type.getReturnType(),
   444                                 desc.type.getThrownTypes()));
   445                     }
   446                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   447                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   448                             Kinds.kindName(origin), origin), descriptors.toList());
   449                     throw failure(incompatibleDescriptors);
   450                 }
   451                 return descRes;
   452             }
   453         }
   455         /**
   456          * Compute a synthetic type for the target descriptor given a list
   457          * of override-equivalent methods in the functional interface type.
   458          * The resulting method type is a method type that is override-equivalent
   459          * and return-type substitutable with each method in the original list.
   460          */
   461         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   462             //pick argument types - simply take the signature that is a
   463             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   464             List<Symbol> mostSpecific = List.nil();
   465             outer: for (Symbol msym1 : methodSyms) {
   466                 Type mt1 = memberType(origin.type, msym1);
   467                 for (Symbol msym2 : methodSyms) {
   468                     Type mt2 = memberType(origin.type, msym2);
   469                     if (!isSubSignature(mt1, mt2)) {
   470                         continue outer;
   471                     }
   472                 }
   473                 mostSpecific = mostSpecific.prepend(msym1);
   474             }
   475             if (mostSpecific.isEmpty()) {
   476                 return null;
   477             }
   480             //pick return types - this is done in two phases: (i) first, the most
   481             //specific return type is chosen using strict subtyping; if this fails,
   482             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   483             boolean phase2 = false;
   484             Symbol bestSoFar = null;
   485             while (bestSoFar == null) {
   486                 outer: for (Symbol msym1 : mostSpecific) {
   487                     Type mt1 = memberType(origin.type, msym1);
   488                     for (Symbol msym2 : methodSyms) {
   489                         Type mt2 = memberType(origin.type, msym2);
   490                         if (phase2 ?
   491                                 !returnTypeSubstitutable(mt1, mt2) :
   492                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   493                             continue outer;
   494                         }
   495                     }
   496                     bestSoFar = msym1;
   497                 }
   498                 if (phase2) {
   499                     break;
   500                 } else {
   501                     phase2 = true;
   502                 }
   503             }
   504             if (bestSoFar == null) return null;
   506             //merge thrown types - form the intersection of all the thrown types in
   507             //all the signatures in the list
   508             List<Type> thrown = null;
   509             for (Symbol msym1 : methodSyms) {
   510                 Type mt1 = memberType(origin.type, msym1);
   511                 thrown = (thrown == null) ?
   512                     mt1.getThrownTypes() :
   513                     chk.intersect(mt1.getThrownTypes(), thrown);
   514             }
   516             final List<Type> thrown1 = thrown;
   517             return new FunctionDescriptor(bestSoFar) {
   518                 @Override
   519                 public Type getType(Type origin) {
   520                     Type mt = memberType(origin, getSymbol());
   521                     return createMethodTypeWithThrown(mt, thrown1);
   522                 }
   523             };
   524         }
   526         boolean isSubtypeInternal(Type s, Type t) {
   527             return (s.isPrimitive() && t.isPrimitive()) ?
   528                     isSameType(t, s) :
   529                     isSubtype(s, t);
   530         }
   532         FunctionDescriptorLookupError failure(String msg, Object... args) {
   533             return failure(diags.fragment(msg, args));
   534         }
   536         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   537             return functionDescriptorLookupError.setMessage(diag);
   538         }
   539     }
   541     private DescriptorCache descCache = new DescriptorCache();
   543     /**
   544      * Find the method descriptor associated to this class symbol - if the
   545      * symbol 'origin' is not a functional interface, an exception is thrown.
   546      */
   547     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   548         return descCache.get(origin).getSymbol();
   549     }
   551     /**
   552      * Find the type of the method descriptor associated to this class symbol -
   553      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   554      */
   555     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   556         return descCache.get(origin.tsym).getType(origin);
   557     }
   559     /**
   560      * Is given type a functional interface?
   561      */
   562     public boolean isFunctionalInterface(TypeSymbol tsym) {
   563         try {
   564             findDescriptorSymbol(tsym);
   565             return true;
   566         } catch (FunctionDescriptorLookupError ex) {
   567             return false;
   568         }
   569     }
   571     public boolean isFunctionalInterface(Type site) {
   572         try {
   573             findDescriptorType(site);
   574             return true;
   575         } catch (FunctionDescriptorLookupError ex) {
   576             return false;
   577         }
   578     }
   580     public Type removeWildcards(Type site) {
   581         Type capturedSite = capture(site);
   582         if (capturedSite != site) {
   583             Type formalInterface = site.tsym.type;
   584             ListBuffer<Type> typeargs = ListBuffer.lb();
   585             List<Type> actualTypeargs = site.getTypeArguments();
   586             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
   587             //simply replace the wildcards with its bound
   588             for (Type t : formalInterface.getTypeArguments()) {
   589                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   590                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
   591                     Type bound;
   592                     switch (wt.kind) {
   593                         case EXTENDS:
   594                         case UNBOUND:
   595                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
   596                             //use declared bound if it doesn't depend on formal type-args
   597                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
   598                                     wt.type : capVar.bound;
   599                             break;
   600                         default:
   601                             bound = wt.type;
   602                     }
   603                     typeargs.append(bound);
   604                 } else {
   605                     typeargs.append(actualTypeargs.head);
   606                 }
   607                 actualTypeargs = actualTypeargs.tail;
   608                 capturedTypeargs = capturedTypeargs.tail;
   609             }
   610             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   611         } else {
   612             return site;
   613         }
   614     }
   616     /**
   617      * Create a symbol for a class that implements a given functional interface
   618      * and overrides its functional descriptor. This routine is used for two
   619      * main purposes: (i) checking well-formedness of a functional interface;
   620      * (ii) perform functional interface bridge calculation.
   621      */
   622     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
   623         if (targets.isEmpty() || !isFunctionalInterface(targets.head)) {
   624             return null;
   625         }
   626         Symbol descSym = findDescriptorSymbol(targets.head.tsym);
   627         Type descType = findDescriptorType(targets.head);
   628         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
   629         csym.completer = null;
   630         csym.members_field = new Scope(csym);
   631         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
   632         csym.members_field.enter(instDescSym);
   633         Type.ClassType ctype = new Type.ClassType(Type.noType, List.<Type>nil(), csym);
   634         ctype.supertype_field = syms.objectType;
   635         ctype.interfaces_field = targets;
   636         csym.type = ctype;
   637         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
   638         return csym;
   639     }
   641     /**
   642      * Find the minimal set of methods that are overridden by the functional
   643      * descriptor in 'origin'. All returned methods are assumed to have different
   644      * erased signatures.
   645      */
   646     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
   647         Assert.check(isFunctionalInterface(origin));
   648         Symbol descSym = findDescriptorSymbol(origin);
   649         CompoundScope members = membersClosure(origin.type, false);
   650         ListBuffer<Symbol> overridden = ListBuffer.lb();
   651         outer: for (Symbol m2 : members.getElementsByName(descSym.name, bridgeFilter)) {
   652             if (m2 == descSym) continue;
   653             else if (descSym.overrides(m2, origin, Types.this, false)) {
   654                 for (Symbol m3 : overridden) {
   655                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
   656                             (m3.overrides(m2, origin, Types.this, false) &&
   657                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
   658                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
   659                         continue outer;
   660                     }
   661                 }
   662                 overridden.add(m2);
   663             }
   664         }
   665         return overridden.toList();
   666     }
   667     //where
   668         private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
   669             public boolean accepts(Symbol t) {
   670                 return t.kind == Kinds.MTH &&
   671                         t.name != names.init &&
   672                         t.name != names.clinit &&
   673                         (t.flags() & SYNTHETIC) == 0;
   674             }
   675         };
   676         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
   677             //a symbol will be completed from a classfile if (a) symbol has
   678             //an associated file object with CLASS kind and (b) the symbol has
   679             //not been entered
   680             if (origin.classfile != null &&
   681                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
   682                     enter.getEnv(origin) == null) {
   683                 return false;
   684             }
   685             if (origin == s) {
   686                 return true;
   687             }
   688             for (Type t : interfaces(origin.type)) {
   689                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
   690                     return true;
   691                 }
   692             }
   693             return false;
   694         }
   695     // </editor-fold>
   697    /**
   698     * Scope filter used to skip methods that should be ignored (such as methods
   699     * overridden by j.l.Object) during function interface conversion interface check
   700     */
   701     class DescriptorFilter implements Filter<Symbol> {
   703        TypeSymbol origin;
   705        DescriptorFilter(TypeSymbol origin) {
   706            this.origin = origin;
   707        }
   709        @Override
   710        public boolean accepts(Symbol sym) {
   711            return sym.kind == Kinds.MTH &&
   712                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   713                    !overridesObjectMethod(origin, sym) &&
   714                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   715        }
   716     };
   718     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   719     /**
   720      * Is t an unchecked subtype of s?
   721      */
   722     public boolean isSubtypeUnchecked(Type t, Type s) {
   723         return isSubtypeUnchecked(t, s, noWarnings);
   724     }
   725     /**
   726      * Is t an unchecked subtype of s?
   727      */
   728     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   729         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   730         if (result) {
   731             checkUnsafeVarargsConversion(t, s, warn);
   732         }
   733         return result;
   734     }
   735     //where
   736         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   737             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   738                 t = t.unannotatedType();
   739                 s = s.unannotatedType();
   740                 if (((ArrayType)t).elemtype.isPrimitive()) {
   741                     return isSameType(elemtype(t), elemtype(s));
   742                 } else {
   743                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   744                 }
   745             } else if (isSubtype(t, s)) {
   746                 return true;
   747             } else if (t.hasTag(TYPEVAR)) {
   748                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   749             } else if (!s.isRaw()) {
   750                 Type t2 = asSuper(t, s.tsym);
   751                 if (t2 != null && t2.isRaw()) {
   752                     if (isReifiable(s)) {
   753                         warn.silentWarn(LintCategory.UNCHECKED);
   754                     } else {
   755                         warn.warn(LintCategory.UNCHECKED);
   756                     }
   757                     return true;
   758                 }
   759             }
   760             return false;
   761         }
   763         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   764             if (!t.hasTag(ARRAY) || isReifiable(t)) {
   765                 return;
   766             }
   767             t = t.unannotatedType();
   768             s = s.unannotatedType();
   769             ArrayType from = (ArrayType)t;
   770             boolean shouldWarn = false;
   771             switch (s.getTag()) {
   772                 case ARRAY:
   773                     ArrayType to = (ArrayType)s;
   774                     shouldWarn = from.isVarargs() &&
   775                             !to.isVarargs() &&
   776                             !isReifiable(from);
   777                     break;
   778                 case CLASS:
   779                     shouldWarn = from.isVarargs();
   780                     break;
   781             }
   782             if (shouldWarn) {
   783                 warn.warn(LintCategory.VARARGS);
   784             }
   785         }
   787     /**
   788      * Is t a subtype of s?<br>
   789      * (not defined for Method and ForAll types)
   790      */
   791     final public boolean isSubtype(Type t, Type s) {
   792         return isSubtype(t, s, true);
   793     }
   794     final public boolean isSubtypeNoCapture(Type t, Type s) {
   795         return isSubtype(t, s, false);
   796     }
   797     public boolean isSubtype(Type t, Type s, boolean capture) {
   798         if (t == s)
   799             return true;
   801         t = t.unannotatedType();
   802         s = s.unannotatedType();
   804         if (t == s)
   805             return true;
   807         if (s.isPartial())
   808             return isSuperType(s, t);
   810         if (s.isCompound()) {
   811             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   812                 if (!isSubtype(t, s2, capture))
   813                     return false;
   814             }
   815             return true;
   816         }
   818         Type lower = lowerBound(s);
   819         if (s != lower)
   820             return isSubtype(capture ? capture(t) : t, lower, false);
   822         return isSubtype.visit(capture ? capture(t) : t, s);
   823     }
   824     // where
   825         private TypeRelation isSubtype = new TypeRelation()
   826         {
   827             @Override
   828             public Boolean visitType(Type t, Type s) {
   829                 switch (t.getTag()) {
   830                  case BYTE:
   831                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   832                  case CHAR:
   833                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   834                  case SHORT: case INT: case LONG:
   835                  case FLOAT: case DOUBLE:
   836                      return t.getTag().isSubRangeOf(s.getTag());
   837                  case BOOLEAN: case VOID:
   838                      return t.hasTag(s.getTag());
   839                  case TYPEVAR:
   840                      return isSubtypeNoCapture(t.getUpperBound(), s);
   841                  case BOT:
   842                      return
   843                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   844                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   845                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   846                  case NONE:
   847                      return false;
   848                  default:
   849                      throw new AssertionError("isSubtype " + t.getTag());
   850                  }
   851             }
   853             private Set<TypePair> cache = new HashSet<TypePair>();
   855             private boolean containsTypeRecursive(Type t, Type s) {
   856                 TypePair pair = new TypePair(t, s);
   857                 if (cache.add(pair)) {
   858                     try {
   859                         return containsType(t.getTypeArguments(),
   860                                             s.getTypeArguments());
   861                     } finally {
   862                         cache.remove(pair);
   863                     }
   864                 } else {
   865                     return containsType(t.getTypeArguments(),
   866                                         rewriteSupers(s).getTypeArguments());
   867                 }
   868             }
   870             private Type rewriteSupers(Type t) {
   871                 if (!t.isParameterized())
   872                     return t;
   873                 ListBuffer<Type> from = lb();
   874                 ListBuffer<Type> to = lb();
   875                 adaptSelf(t, from, to);
   876                 if (from.isEmpty())
   877                     return t;
   878                 ListBuffer<Type> rewrite = lb();
   879                 boolean changed = false;
   880                 for (Type orig : to.toList()) {
   881                     Type s = rewriteSupers(orig);
   882                     if (s.isSuperBound() && !s.isExtendsBound()) {
   883                         s = new WildcardType(syms.objectType,
   884                                              BoundKind.UNBOUND,
   885                                              syms.boundClass);
   886                         changed = true;
   887                     } else if (s != orig) {
   888                         s = new WildcardType(upperBound(s),
   889                                              BoundKind.EXTENDS,
   890                                              syms.boundClass);
   891                         changed = true;
   892                     }
   893                     rewrite.append(s);
   894                 }
   895                 if (changed)
   896                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   897                 else
   898                     return t;
   899             }
   901             @Override
   902             public Boolean visitClassType(ClassType t, Type s) {
   903                 Type sup = asSuper(t, s.tsym);
   904                 return sup != null
   905                     && sup.tsym == s.tsym
   906                     // You're not allowed to write
   907                     //     Vector<Object> vec = new Vector<String>();
   908                     // But with wildcards you can write
   909                     //     Vector<? extends Object> vec = new Vector<String>();
   910                     // which means that subtype checking must be done
   911                     // here instead of same-type checking (via containsType).
   912                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   913                     && isSubtypeNoCapture(sup.getEnclosingType(),
   914                                           s.getEnclosingType());
   915             }
   917             @Override
   918             public Boolean visitArrayType(ArrayType t, Type s) {
   919                 if (s.hasTag(ARRAY)) {
   920                     if (t.elemtype.isPrimitive())
   921                         return isSameType(t.elemtype, elemtype(s));
   922                     else
   923                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   924                 }
   926                 if (s.hasTag(CLASS)) {
   927                     Name sname = s.tsym.getQualifiedName();
   928                     return sname == names.java_lang_Object
   929                         || sname == names.java_lang_Cloneable
   930                         || sname == names.java_io_Serializable;
   931                 }
   933                 return false;
   934             }
   936             @Override
   937             public Boolean visitUndetVar(UndetVar t, Type s) {
   938                 //todo: test against origin needed? or replace with substitution?
   939                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
   940                     return true;
   941                 } else if (s.hasTag(BOT)) {
   942                     //if 's' is 'null' there's no instantiated type U for which
   943                     //U <: s (but 'null' itself, which is not a valid type)
   944                     return false;
   945                 }
   947                 t.addBound(InferenceBound.UPPER, s, Types.this);
   948                 return true;
   949             }
   951             @Override
   952             public Boolean visitErrorType(ErrorType t, Type s) {
   953                 return true;
   954             }
   955         };
   957     /**
   958      * Is t a subtype of every type in given list `ts'?<br>
   959      * (not defined for Method and ForAll types)<br>
   960      * Allows unchecked conversions.
   961      */
   962     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   963         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   964             if (!isSubtypeUnchecked(t, l.head, warn))
   965                 return false;
   966         return true;
   967     }
   969     /**
   970      * Are corresponding elements of ts subtypes of ss?  If lists are
   971      * of different length, return false.
   972      */
   973     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   974         while (ts.tail != null && ss.tail != null
   975                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   976                isSubtype(ts.head, ss.head)) {
   977             ts = ts.tail;
   978             ss = ss.tail;
   979         }
   980         return ts.tail == null && ss.tail == null;
   981         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   982     }
   984     /**
   985      * Are corresponding elements of ts subtypes of ss, allowing
   986      * unchecked conversions?  If lists are of different length,
   987      * return false.
   988      **/
   989     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   990         while (ts.tail != null && ss.tail != null
   991                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   992                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   993             ts = ts.tail;
   994             ss = ss.tail;
   995         }
   996         return ts.tail == null && ss.tail == null;
   997         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   998     }
   999     // </editor-fold>
  1001     // <editor-fold defaultstate="collapsed" desc="isSuperType">
  1002     /**
  1003      * Is t a supertype of s?
  1004      */
  1005     public boolean isSuperType(Type t, Type s) {
  1006         switch (t.getTag()) {
  1007         case ERROR:
  1008             return true;
  1009         case UNDETVAR: {
  1010             UndetVar undet = (UndetVar)t;
  1011             if (t == s ||
  1012                 undet.qtype == s ||
  1013                 s.hasTag(ERROR) ||
  1014                 s.hasTag(BOT)) {
  1015                 return true;
  1017             undet.addBound(InferenceBound.LOWER, s, this);
  1018             return true;
  1020         default:
  1021             return isSubtype(s, t);
  1024     // </editor-fold>
  1026     // <editor-fold defaultstate="collapsed" desc="isSameType">
  1027     /**
  1028      * Are corresponding elements of the lists the same type?  If
  1029      * lists are of different length, return false.
  1030      */
  1031     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
  1032         return isSameTypes(ts, ss, false);
  1034     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
  1035         while (ts.tail != null && ss.tail != null
  1036                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
  1037                isSameType(ts.head, ss.head, strict)) {
  1038             ts = ts.tail;
  1039             ss = ss.tail;
  1041         return ts.tail == null && ss.tail == null;
  1042         /*inlined: ts.isEmpty() && ss.isEmpty();*/
  1045     /**
  1046     * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
  1047     * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
  1048     * a single variable arity parameter (iii) whose declared type is Object[],
  1049     * (iv) has a return type of Object and (v) is native.
  1050     */
  1051    public boolean isSignaturePolymorphic(MethodSymbol msym) {
  1052        List<Type> argtypes = msym.type.getParameterTypes();
  1053        return (msym.flags_field & NATIVE) != 0 &&
  1054                msym.owner == syms.methodHandleType.tsym &&
  1055                argtypes.tail.tail == null &&
  1056                argtypes.head.hasTag(TypeTag.ARRAY) &&
  1057                msym.type.getReturnType().tsym == syms.objectType.tsym &&
  1058                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
  1061     /**
  1062      * Is t the same type as s?
  1063      */
  1064     public boolean isSameType(Type t, Type s) {
  1065         return isSameType(t, s, false);
  1067     public boolean isSameType(Type t, Type s, boolean strict) {
  1068         return strict ?
  1069                 isSameTypeStrict.visit(t, s) :
  1070                 isSameTypeLoose.visit(t, s);
  1072     public boolean isSameAnnotatedType(Type t, Type s) {
  1073         return isSameAnnotatedType.visit(t, s);
  1075     // where
  1076         abstract class SameTypeVisitor extends TypeRelation {
  1078             public Boolean visitType(Type t, Type s) {
  1079                 if (t == s)
  1080                     return true;
  1082                 if (s.isPartial())
  1083                     return visit(s, t);
  1085                 switch (t.getTag()) {
  1086                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1087                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
  1088                     return t.hasTag(s.getTag());
  1089                 case TYPEVAR: {
  1090                     if (s.hasTag(TYPEVAR)) {
  1091                         //type-substitution does not preserve type-var types
  1092                         //check that type var symbols and bounds are indeed the same
  1093                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
  1095                     else {
  1096                         //special case for s == ? super X, where upper(s) = u
  1097                         //check that u == t, where u has been set by Type.withTypeVar
  1098                         return s.isSuperBound() &&
  1099                                 !s.isExtendsBound() &&
  1100                                 visit(t, upperBound(s));
  1103                 default:
  1104                     throw new AssertionError("isSameType " + t.getTag());
  1108             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1110             @Override
  1111             public Boolean visitWildcardType(WildcardType t, Type s) {
  1112                 if (s.isPartial())
  1113                     return visit(s, t);
  1114                 else
  1115                     return false;
  1118             @Override
  1119             public Boolean visitClassType(ClassType t, Type s) {
  1120                 if (t == s)
  1121                     return true;
  1123                 if (s.isPartial())
  1124                     return visit(s, t);
  1126                 if (s.isSuperBound() && !s.isExtendsBound())
  1127                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1129                 if (t.isCompound() && s.isCompound()) {
  1130                     if (!visit(supertype(t), supertype(s)))
  1131                         return false;
  1133                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1134                     for (Type x : interfaces(t))
  1135                         set.add(new UniqueType(x.unannotatedType(), Types.this));
  1136                     for (Type x : interfaces(s)) {
  1137                         if (!set.remove(new UniqueType(x.unannotatedType(), Types.this)))
  1138                             return false;
  1140                     return (set.isEmpty());
  1142                 return t.tsym == s.tsym
  1143                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1144                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1147             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1149             @Override
  1150             public Boolean visitArrayType(ArrayType t, Type s) {
  1151                 if (t == s)
  1152                     return true;
  1154                 if (s.isPartial())
  1155                     return visit(s, t);
  1157                 return s.hasTag(ARRAY)
  1158                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1161             @Override
  1162             public Boolean visitMethodType(MethodType t, Type s) {
  1163                 // isSameType for methods does not take thrown
  1164                 // exceptions into account!
  1165                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1168             @Override
  1169             public Boolean visitPackageType(PackageType t, Type s) {
  1170                 return t == s;
  1173             @Override
  1174             public Boolean visitForAll(ForAll t, Type s) {
  1175                 if (!s.hasTag(FORALL)) {
  1176                     return false;
  1179                 ForAll forAll = (ForAll)s;
  1180                 return hasSameBounds(t, forAll)
  1181                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1184             @Override
  1185             public Boolean visitUndetVar(UndetVar t, Type s) {
  1186                 if (s.hasTag(WILDCARD)) {
  1187                     // FIXME, this might be leftovers from before capture conversion
  1188                     return false;
  1191                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
  1192                     return true;
  1195                 t.addBound(InferenceBound.EQ, s, Types.this);
  1197                 return true;
  1200             @Override
  1201             public Boolean visitErrorType(ErrorType t, Type s) {
  1202                 return true;
  1206         /**
  1207          * Standard type-equality relation - type variables are considered
  1208          * equals if they share the same type symbol.
  1209          */
  1210         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
  1212         private class LooseSameTypeVisitor extends SameTypeVisitor {
  1213             @Override
  1214             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1215                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
  1217             @Override
  1218             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1219                 return containsTypeEquivalent(ts1, ts2);
  1221         };
  1223         /**
  1224          * Strict type-equality relation - type variables are considered
  1225          * equals if they share the same object identity.
  1226          */
  1227         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1228             @Override
  1229             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1230                 return tv1 == tv2;
  1232             @Override
  1233             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1234                 return isSameTypes(ts1, ts2, true);
  1237             @Override
  1238             public Boolean visitWildcardType(WildcardType t, Type s) {
  1239                 if (!s.hasTag(WILDCARD)) {
  1240                     return false;
  1241                 } else {
  1242                     WildcardType t2 = (WildcardType)s.unannotatedType();
  1243                     return t.kind == t2.kind &&
  1244                             isSameType(t.type, t2.type, true);
  1247         };
  1249         /**
  1250          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
  1251          * into account.
  1252          */
  1253         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
  1254             @Override
  1255             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
  1256                 if (!s.isAnnotated())
  1257                     return false;
  1258                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
  1259                     return false;
  1260                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
  1261                     return false;
  1262                 return visit(t.underlyingType, s);
  1264         };
  1265     // </editor-fold>
  1267     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1268     public boolean containedBy(Type t, Type s) {
  1269         switch (t.getTag()) {
  1270         case UNDETVAR:
  1271             if (s.hasTag(WILDCARD)) {
  1272                 UndetVar undetvar = (UndetVar)t;
  1273                 WildcardType wt = (WildcardType)s.unannotatedType();
  1274                 switch(wt.kind) {
  1275                     case UNBOUND: //similar to ? extends Object
  1276                     case EXTENDS: {
  1277                         Type bound = upperBound(s);
  1278                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1279                         break;
  1281                     case SUPER: {
  1282                         Type bound = lowerBound(s);
  1283                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1284                         break;
  1287                 return true;
  1288             } else {
  1289                 return isSameType(t, s);
  1291         case ERROR:
  1292             return true;
  1293         default:
  1294             return containsType(s, t);
  1298     boolean containsType(List<Type> ts, List<Type> ss) {
  1299         while (ts.nonEmpty() && ss.nonEmpty()
  1300                && containsType(ts.head, ss.head)) {
  1301             ts = ts.tail;
  1302             ss = ss.tail;
  1304         return ts.isEmpty() && ss.isEmpty();
  1307     /**
  1308      * Check if t contains s.
  1310      * <p>T contains S if:
  1312      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1314      * <p>This relation is only used by ClassType.isSubtype(), that
  1315      * is,
  1317      * <p>{@code C<S> <: C<T> if T contains S.}
  1319      * <p>Because of F-bounds, this relation can lead to infinite
  1320      * recursion.  Thus we must somehow break that recursion.  Notice
  1321      * that containsType() is only called from ClassType.isSubtype().
  1322      * Since the arguments have already been checked against their
  1323      * bounds, we know:
  1325      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1327      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1329      * @param t a type
  1330      * @param s a type
  1331      */
  1332     public boolean containsType(Type t, Type s) {
  1333         return containsType.visit(t, s);
  1335     // where
  1336         private TypeRelation containsType = new TypeRelation() {
  1338             private Type U(Type t) {
  1339                 while (t.hasTag(WILDCARD)) {
  1340                     WildcardType w = (WildcardType)t.unannotatedType();
  1341                     if (w.isSuperBound())
  1342                         return w.bound == null ? syms.objectType : w.bound.bound;
  1343                     else
  1344                         t = w.type;
  1346                 return t;
  1349             private Type L(Type t) {
  1350                 while (t.hasTag(WILDCARD)) {
  1351                     WildcardType w = (WildcardType)t.unannotatedType();
  1352                     if (w.isExtendsBound())
  1353                         return syms.botType;
  1354                     else
  1355                         t = w.type;
  1357                 return t;
  1360             public Boolean visitType(Type t, Type s) {
  1361                 if (s.isPartial())
  1362                     return containedBy(s, t);
  1363                 else
  1364                     return isSameType(t, s);
  1367 //            void debugContainsType(WildcardType t, Type s) {
  1368 //                System.err.println();
  1369 //                System.err.format(" does %s contain %s?%n", t, s);
  1370 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1371 //                                  upperBound(s), s, t, U(t),
  1372 //                                  t.isSuperBound()
  1373 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1374 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1375 //                                  L(t), t, s, lowerBound(s),
  1376 //                                  t.isExtendsBound()
  1377 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1378 //                System.err.println();
  1379 //            }
  1381             @Override
  1382             public Boolean visitWildcardType(WildcardType t, Type s) {
  1383                 if (s.isPartial())
  1384                     return containedBy(s, t);
  1385                 else {
  1386 //                    debugContainsType(t, s);
  1387                     return isSameWildcard(t, s)
  1388                         || isCaptureOf(s, t)
  1389                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1390                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1394             @Override
  1395             public Boolean visitUndetVar(UndetVar t, Type s) {
  1396                 if (!s.hasTag(WILDCARD)) {
  1397                     return isSameType(t, s);
  1398                 } else {
  1399                     return false;
  1403             @Override
  1404             public Boolean visitErrorType(ErrorType t, Type s) {
  1405                 return true;
  1407         };
  1409     public boolean isCaptureOf(Type s, WildcardType t) {
  1410         if (!s.hasTag(TYPEVAR) || !((TypeVar)s.unannotatedType()).isCaptured())
  1411             return false;
  1412         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
  1415     public boolean isSameWildcard(WildcardType t, Type s) {
  1416         if (!s.hasTag(WILDCARD))
  1417             return false;
  1418         WildcardType w = (WildcardType)s.unannotatedType();
  1419         return w.kind == t.kind && w.type == t.type;
  1422     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1423         while (ts.nonEmpty() && ss.nonEmpty()
  1424                && containsTypeEquivalent(ts.head, ss.head)) {
  1425             ts = ts.tail;
  1426             ss = ss.tail;
  1428         return ts.isEmpty() && ss.isEmpty();
  1430     // </editor-fold>
  1432     /**
  1433      * Can t and s be compared for equality?  Any primitive ==
  1434      * primitive or primitive == object comparisons here are an error.
  1435      * Unboxing and correct primitive == primitive comparisons are
  1436      * already dealt with in Attr.visitBinary.
  1438      */
  1439     public boolean isEqualityComparable(Type s, Type t, Warner warn) {
  1440         if (t.isNumeric() && s.isNumeric())
  1441             return true;
  1443         boolean tPrimitive = t.isPrimitive();
  1444         boolean sPrimitive = s.isPrimitive();
  1445         if (!tPrimitive && !sPrimitive) {
  1446             return isCastable(s, t, warn) || isCastable(t, s, warn);
  1447         } else {
  1448             return false;
  1452     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1453     public boolean isCastable(Type t, Type s) {
  1454         return isCastable(t, s, noWarnings);
  1457     /**
  1458      * Is t is castable to s?<br>
  1459      * s is assumed to be an erased type.<br>
  1460      * (not defined for Method and ForAll types).
  1461      */
  1462     public boolean isCastable(Type t, Type s, Warner warn) {
  1463         if (t == s)
  1464             return true;
  1466         if (t.isPrimitive() != s.isPrimitive())
  1467             return allowBoxing && (
  1468                     isConvertible(t, s, warn)
  1469                     || (allowObjectToPrimitiveCast &&
  1470                         s.isPrimitive() &&
  1471                         isSubtype(boxedClass(s).type, t)));
  1472         if (warn != warnStack.head) {
  1473             try {
  1474                 warnStack = warnStack.prepend(warn);
  1475                 checkUnsafeVarargsConversion(t, s, warn);
  1476                 return isCastable.visit(t,s);
  1477             } finally {
  1478                 warnStack = warnStack.tail;
  1480         } else {
  1481             return isCastable.visit(t,s);
  1484     // where
  1485         private TypeRelation isCastable = new TypeRelation() {
  1487             public Boolean visitType(Type t, Type s) {
  1488                 if (s.hasTag(ERROR))
  1489                     return true;
  1491                 switch (t.getTag()) {
  1492                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1493                 case DOUBLE:
  1494                     return s.isNumeric();
  1495                 case BOOLEAN:
  1496                     return s.hasTag(BOOLEAN);
  1497                 case VOID:
  1498                     return false;
  1499                 case BOT:
  1500                     return isSubtype(t, s);
  1501                 default:
  1502                     throw new AssertionError();
  1506             @Override
  1507             public Boolean visitWildcardType(WildcardType t, Type s) {
  1508                 return isCastable(upperBound(t), s, warnStack.head);
  1511             @Override
  1512             public Boolean visitClassType(ClassType t, Type s) {
  1513                 if (s.hasTag(ERROR) || s.hasTag(BOT))
  1514                     return true;
  1516                 if (s.hasTag(TYPEVAR)) {
  1517                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1518                         warnStack.head.warn(LintCategory.UNCHECKED);
  1519                         return true;
  1520                     } else {
  1521                         return false;
  1525                 if (t.isCompound() || s.isCompound()) {
  1526                     return !t.isCompound() ?
  1527                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
  1528                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
  1531                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
  1532                     boolean upcast;
  1533                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1534                         || isSubtype(erasure(s), erasure(t))) {
  1535                         if (!upcast && s.hasTag(ARRAY)) {
  1536                             if (!isReifiable(s))
  1537                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1538                             return true;
  1539                         } else if (s.isRaw()) {
  1540                             return true;
  1541                         } else if (t.isRaw()) {
  1542                             if (!isUnbounded(s))
  1543                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1544                             return true;
  1546                         // Assume |a| <: |b|
  1547                         final Type a = upcast ? t : s;
  1548                         final Type b = upcast ? s : t;
  1549                         final boolean HIGH = true;
  1550                         final boolean LOW = false;
  1551                         final boolean DONT_REWRITE_TYPEVARS = false;
  1552                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1553                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1554                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1555                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1556                         Type lowSub = asSub(bLow, aLow.tsym);
  1557                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1558                         if (highSub == null) {
  1559                             final boolean REWRITE_TYPEVARS = true;
  1560                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1561                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1562                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1563                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1564                             lowSub = asSub(bLow, aLow.tsym);
  1565                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1567                         if (highSub != null) {
  1568                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1569                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1571                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1572                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1573                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1574                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1575                                 if (upcast ? giveWarning(a, b) :
  1576                                     giveWarning(b, a))
  1577                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1578                                 return true;
  1581                         if (isReifiable(s))
  1582                             return isSubtypeUnchecked(a, b);
  1583                         else
  1584                             return isSubtypeUnchecked(a, b, warnStack.head);
  1587                     // Sidecast
  1588                     if (s.hasTag(CLASS)) {
  1589                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1590                             return ((t.tsym.flags() & FINAL) == 0)
  1591                                 ? sideCast(t, s, warnStack.head)
  1592                                 : sideCastFinal(t, s, warnStack.head);
  1593                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1594                             return ((s.tsym.flags() & FINAL) == 0)
  1595                                 ? sideCast(t, s, warnStack.head)
  1596                                 : sideCastFinal(t, s, warnStack.head);
  1597                         } else {
  1598                             // unrelated class types
  1599                             return false;
  1603                 return false;
  1606             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
  1607                 Warner warn = noWarnings;
  1608                 for (Type c : ict.getComponents()) {
  1609                     warn.clear();
  1610                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
  1611                         return false;
  1613                 if (warn.hasLint(LintCategory.UNCHECKED))
  1614                     warnStack.head.warn(LintCategory.UNCHECKED);
  1615                 return true;
  1618             @Override
  1619             public Boolean visitArrayType(ArrayType t, Type s) {
  1620                 switch (s.getTag()) {
  1621                 case ERROR:
  1622                 case BOT:
  1623                     return true;
  1624                 case TYPEVAR:
  1625                     if (isCastable(s, t, noWarnings)) {
  1626                         warnStack.head.warn(LintCategory.UNCHECKED);
  1627                         return true;
  1628                     } else {
  1629                         return false;
  1631                 case CLASS:
  1632                     return isSubtype(t, s);
  1633                 case ARRAY:
  1634                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1635                         return elemtype(t).hasTag(elemtype(s).getTag());
  1636                     } else {
  1637                         return visit(elemtype(t), elemtype(s));
  1639                 default:
  1640                     return false;
  1644             @Override
  1645             public Boolean visitTypeVar(TypeVar t, Type s) {
  1646                 switch (s.getTag()) {
  1647                 case ERROR:
  1648                 case BOT:
  1649                     return true;
  1650                 case TYPEVAR:
  1651                     if (isSubtype(t, s)) {
  1652                         return true;
  1653                     } else if (isCastable(t.bound, s, noWarnings)) {
  1654                         warnStack.head.warn(LintCategory.UNCHECKED);
  1655                         return true;
  1656                     } else {
  1657                         return false;
  1659                 default:
  1660                     return isCastable(t.bound, s, warnStack.head);
  1664             @Override
  1665             public Boolean visitErrorType(ErrorType t, Type s) {
  1666                 return true;
  1668         };
  1669     // </editor-fold>
  1671     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1672     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1673         while (ts.tail != null && ss.tail != null) {
  1674             if (disjointType(ts.head, ss.head)) return true;
  1675             ts = ts.tail;
  1676             ss = ss.tail;
  1678         return false;
  1681     /**
  1682      * Two types or wildcards are considered disjoint if it can be
  1683      * proven that no type can be contained in both. It is
  1684      * conservative in that it is allowed to say that two types are
  1685      * not disjoint, even though they actually are.
  1687      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1688      * {@code X} and {@code Y} are not disjoint.
  1689      */
  1690     public boolean disjointType(Type t, Type s) {
  1691         return disjointType.visit(t, s);
  1693     // where
  1694         private TypeRelation disjointType = new TypeRelation() {
  1696             private Set<TypePair> cache = new HashSet<TypePair>();
  1698             @Override
  1699             public Boolean visitType(Type t, Type s) {
  1700                 if (s.hasTag(WILDCARD))
  1701                     return visit(s, t);
  1702                 else
  1703                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1706             private boolean isCastableRecursive(Type t, Type s) {
  1707                 TypePair pair = new TypePair(t, s);
  1708                 if (cache.add(pair)) {
  1709                     try {
  1710                         return Types.this.isCastable(t, s);
  1711                     } finally {
  1712                         cache.remove(pair);
  1714                 } else {
  1715                     return true;
  1719             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1720                 TypePair pair = new TypePair(t, s);
  1721                 if (cache.add(pair)) {
  1722                     try {
  1723                         return Types.this.notSoftSubtype(t, s);
  1724                     } finally {
  1725                         cache.remove(pair);
  1727                 } else {
  1728                     return false;
  1732             @Override
  1733             public Boolean visitWildcardType(WildcardType t, Type s) {
  1734                 if (t.isUnbound())
  1735                     return false;
  1737                 if (!s.hasTag(WILDCARD)) {
  1738                     if (t.isExtendsBound())
  1739                         return notSoftSubtypeRecursive(s, t.type);
  1740                     else
  1741                         return notSoftSubtypeRecursive(t.type, s);
  1744                 if (s.isUnbound())
  1745                     return false;
  1747                 if (t.isExtendsBound()) {
  1748                     if (s.isExtendsBound())
  1749                         return !isCastableRecursive(t.type, upperBound(s));
  1750                     else if (s.isSuperBound())
  1751                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1752                 } else if (t.isSuperBound()) {
  1753                     if (s.isExtendsBound())
  1754                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1756                 return false;
  1758         };
  1759     // </editor-fold>
  1761     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1762     /**
  1763      * Returns the lower bounds of the formals of a method.
  1764      */
  1765     public List<Type> lowerBoundArgtypes(Type t) {
  1766         return lowerBounds(t.getParameterTypes());
  1768     public List<Type> lowerBounds(List<Type> ts) {
  1769         return map(ts, lowerBoundMapping);
  1771     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1772             public Type apply(Type t) {
  1773                 return lowerBound(t);
  1775         };
  1776     // </editor-fold>
  1778     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1779     /**
  1780      * This relation answers the question: is impossible that
  1781      * something of type `t' can be a subtype of `s'? This is
  1782      * different from the question "is `t' not a subtype of `s'?"
  1783      * when type variables are involved: Integer is not a subtype of T
  1784      * where {@code <T extends Number>} but it is not true that Integer cannot
  1785      * possibly be a subtype of T.
  1786      */
  1787     public boolean notSoftSubtype(Type t, Type s) {
  1788         if (t == s) return false;
  1789         if (t.hasTag(TYPEVAR)) {
  1790             TypeVar tv = (TypeVar) t;
  1791             return !isCastable(tv.bound,
  1792                                relaxBound(s),
  1793                                noWarnings);
  1795         if (!s.hasTag(WILDCARD))
  1796             s = upperBound(s);
  1798         return !isSubtype(t, relaxBound(s));
  1801     private Type relaxBound(Type t) {
  1802         if (t.hasTag(TYPEVAR)) {
  1803             while (t.hasTag(TYPEVAR))
  1804                 t = t.getUpperBound();
  1805             t = rewriteQuantifiers(t, true, true);
  1807         return t;
  1809     // </editor-fold>
  1811     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1812     public boolean isReifiable(Type t) {
  1813         return isReifiable.visit(t);
  1815     // where
  1816         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1818             public Boolean visitType(Type t, Void ignored) {
  1819                 return true;
  1822             @Override
  1823             public Boolean visitClassType(ClassType t, Void ignored) {
  1824                 if (t.isCompound())
  1825                     return false;
  1826                 else {
  1827                     if (!t.isParameterized())
  1828                         return true;
  1830                     for (Type param : t.allparams()) {
  1831                         if (!param.isUnbound())
  1832                             return false;
  1834                     return true;
  1838             @Override
  1839             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1840                 return visit(t.elemtype);
  1843             @Override
  1844             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1845                 return false;
  1847         };
  1848     // </editor-fold>
  1850     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1851     public boolean isArray(Type t) {
  1852         while (t.hasTag(WILDCARD))
  1853             t = upperBound(t);
  1854         return t.hasTag(ARRAY);
  1857     /**
  1858      * The element type of an array.
  1859      */
  1860     public Type elemtype(Type t) {
  1861         switch (t.getTag()) {
  1862         case WILDCARD:
  1863             return elemtype(upperBound(t));
  1864         case ARRAY:
  1865             t = t.unannotatedType();
  1866             return ((ArrayType)t).elemtype;
  1867         case FORALL:
  1868             return elemtype(((ForAll)t).qtype);
  1869         case ERROR:
  1870             return t;
  1871         default:
  1872             return null;
  1876     public Type elemtypeOrType(Type t) {
  1877         Type elemtype = elemtype(t);
  1878         return elemtype != null ?
  1879             elemtype :
  1880             t;
  1883     /**
  1884      * Mapping to take element type of an arraytype
  1885      */
  1886     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1887         public Type apply(Type t) { return elemtype(t); }
  1888     };
  1890     /**
  1891      * The number of dimensions of an array type.
  1892      */
  1893     public int dimensions(Type t) {
  1894         int result = 0;
  1895         while (t.hasTag(ARRAY)) {
  1896             result++;
  1897             t = elemtype(t);
  1899         return result;
  1902     /**
  1903      * Returns an ArrayType with the component type t
  1905      * @param t The component type of the ArrayType
  1906      * @return the ArrayType for the given component
  1907      */
  1908     public ArrayType makeArrayType(Type t) {
  1909         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
  1910             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1912         return new ArrayType(t, syms.arrayClass);
  1914     // </editor-fold>
  1916     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1917     /**
  1918      * Return the (most specific) base type of t that starts with the
  1919      * given symbol.  If none exists, return null.
  1921      * @param t a type
  1922      * @param sym a symbol
  1923      */
  1924     public Type asSuper(Type t, Symbol sym) {
  1925         return asSuper.visit(t, sym);
  1927     // where
  1928         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1930             public Type visitType(Type t, Symbol sym) {
  1931                 return null;
  1934             @Override
  1935             public Type visitClassType(ClassType t, Symbol sym) {
  1936                 if (t.tsym == sym)
  1937                     return t;
  1939                 Type st = supertype(t);
  1940                 if (st.hasTag(CLASS) || st.hasTag(TYPEVAR) || st.hasTag(ERROR)) {
  1941                     Type x = asSuper(st, sym);
  1942                     if (x != null)
  1943                         return x;
  1945                 if ((sym.flags() & INTERFACE) != 0) {
  1946                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1947                         Type x = asSuper(l.head, sym);
  1948                         if (x != null)
  1949                             return x;
  1952                 return null;
  1955             @Override
  1956             public Type visitArrayType(ArrayType t, Symbol sym) {
  1957                 return isSubtype(t, sym.type) ? sym.type : null;
  1960             @Override
  1961             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1962                 if (t.tsym == sym)
  1963                     return t;
  1964                 else
  1965                     return asSuper(t.bound, sym);
  1968             @Override
  1969             public Type visitErrorType(ErrorType t, Symbol sym) {
  1970                 return t;
  1972         };
  1974     /**
  1975      * Return the base type of t or any of its outer types that starts
  1976      * with the given symbol.  If none exists, return null.
  1978      * @param t a type
  1979      * @param sym a symbol
  1980      */
  1981     public Type asOuterSuper(Type t, Symbol sym) {
  1982         switch (t.getTag()) {
  1983         case CLASS:
  1984             do {
  1985                 Type s = asSuper(t, sym);
  1986                 if (s != null) return s;
  1987                 t = t.getEnclosingType();
  1988             } while (t.hasTag(CLASS));
  1989             return null;
  1990         case ARRAY:
  1991             return isSubtype(t, sym.type) ? sym.type : null;
  1992         case TYPEVAR:
  1993             return asSuper(t, sym);
  1994         case ERROR:
  1995             return t;
  1996         default:
  1997             return null;
  2001     /**
  2002      * Return the base type of t or any of its enclosing types that
  2003      * starts with the given symbol.  If none exists, return null.
  2005      * @param t a type
  2006      * @param sym a symbol
  2007      */
  2008     public Type asEnclosingSuper(Type t, Symbol sym) {
  2009         switch (t.getTag()) {
  2010         case CLASS:
  2011             do {
  2012                 Type s = asSuper(t, sym);
  2013                 if (s != null) return s;
  2014                 Type outer = t.getEnclosingType();
  2015                 t = (outer.hasTag(CLASS)) ? outer :
  2016                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  2017                     Type.noType;
  2018             } while (t.hasTag(CLASS));
  2019             return null;
  2020         case ARRAY:
  2021             return isSubtype(t, sym.type) ? sym.type : null;
  2022         case TYPEVAR:
  2023             return asSuper(t, sym);
  2024         case ERROR:
  2025             return t;
  2026         default:
  2027             return null;
  2030     // </editor-fold>
  2032     // <editor-fold defaultstate="collapsed" desc="memberType">
  2033     /**
  2034      * The type of given symbol, seen as a member of t.
  2036      * @param t a type
  2037      * @param sym a symbol
  2038      */
  2039     public Type memberType(Type t, Symbol sym) {
  2040         return (sym.flags() & STATIC) != 0
  2041             ? sym.type
  2042             : memberType.visit(t, sym);
  2044     // where
  2045         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  2047             public Type visitType(Type t, Symbol sym) {
  2048                 return sym.type;
  2051             @Override
  2052             public Type visitWildcardType(WildcardType t, Symbol sym) {
  2053                 return memberType(upperBound(t), sym);
  2056             @Override
  2057             public Type visitClassType(ClassType t, Symbol sym) {
  2058                 Symbol owner = sym.owner;
  2059                 long flags = sym.flags();
  2060                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  2061                     Type base = asOuterSuper(t, owner);
  2062                     //if t is an intersection type T = CT & I1 & I2 ... & In
  2063                     //its supertypes CT, I1, ... In might contain wildcards
  2064                     //so we need to go through capture conversion
  2065                     base = t.isCompound() ? capture(base) : base;
  2066                     if (base != null) {
  2067                         List<Type> ownerParams = owner.type.allparams();
  2068                         List<Type> baseParams = base.allparams();
  2069                         if (ownerParams.nonEmpty()) {
  2070                             if (baseParams.isEmpty()) {
  2071                                 // then base is a raw type
  2072                                 return erasure(sym.type);
  2073                             } else {
  2074                                 return subst(sym.type, ownerParams, baseParams);
  2079                 return sym.type;
  2082             @Override
  2083             public Type visitTypeVar(TypeVar t, Symbol sym) {
  2084                 return memberType(t.bound, sym);
  2087             @Override
  2088             public Type visitErrorType(ErrorType t, Symbol sym) {
  2089                 return t;
  2091         };
  2092     // </editor-fold>
  2094     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  2095     public boolean isAssignable(Type t, Type s) {
  2096         return isAssignable(t, s, noWarnings);
  2099     /**
  2100      * Is t assignable to s?<br>
  2101      * Equivalent to subtype except for constant values and raw
  2102      * types.<br>
  2103      * (not defined for Method and ForAll types)
  2104      */
  2105     public boolean isAssignable(Type t, Type s, Warner warn) {
  2106         if (t.hasTag(ERROR))
  2107             return true;
  2108         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
  2109             int value = ((Number)t.constValue()).intValue();
  2110             switch (s.getTag()) {
  2111             case BYTE:
  2112                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  2113                     return true;
  2114                 break;
  2115             case CHAR:
  2116                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  2117                     return true;
  2118                 break;
  2119             case SHORT:
  2120                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2121                     return true;
  2122                 break;
  2123             case INT:
  2124                 return true;
  2125             case CLASS:
  2126                 switch (unboxedType(s).getTag()) {
  2127                 case BYTE:
  2128                 case CHAR:
  2129                 case SHORT:
  2130                     return isAssignable(t, unboxedType(s), warn);
  2132                 break;
  2135         return isConvertible(t, s, warn);
  2137     // </editor-fold>
  2139     // <editor-fold defaultstate="collapsed" desc="erasure">
  2140     /**
  2141      * The erasure of t {@code |t|} -- the type that results when all
  2142      * type parameters in t are deleted.
  2143      */
  2144     public Type erasure(Type t) {
  2145         return eraseNotNeeded(t)? t : erasure(t, false);
  2147     //where
  2148     private boolean eraseNotNeeded(Type t) {
  2149         // We don't want to erase primitive types and String type as that
  2150         // operation is idempotent. Also, erasing these could result in loss
  2151         // of information such as constant values attached to such types.
  2152         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2155     private Type erasure(Type t, boolean recurse) {
  2156         if (t.isPrimitive())
  2157             return t; /* fast special case */
  2158         else
  2159             return erasure.visit(t, recurse);
  2161     // where
  2162         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2163             public Type visitType(Type t, Boolean recurse) {
  2164                 if (t.isPrimitive())
  2165                     return t; /*fast special case*/
  2166                 else
  2167                     return t.map(recurse ? erasureRecFun : erasureFun);
  2170             @Override
  2171             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2172                 return erasure(upperBound(t), recurse);
  2175             @Override
  2176             public Type visitClassType(ClassType t, Boolean recurse) {
  2177                 Type erased = t.tsym.erasure(Types.this);
  2178                 if (recurse) {
  2179                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2181                 return erased;
  2184             @Override
  2185             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2186                 return erasure(t.bound, recurse);
  2189             @Override
  2190             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2191                 return t;
  2194             @Override
  2195             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2196                 Type erased = erasure(t.underlyingType, recurse);
  2197                 if (erased.isAnnotated()) {
  2198                     // This can only happen when the underlying type is a
  2199                     // type variable and the upper bound of it is annotated.
  2200                     // The annotation on the type variable overrides the one
  2201                     // on the bound.
  2202                     erased = ((AnnotatedType)erased).underlyingType;
  2204                 return new AnnotatedType(t.typeAnnotations, erased);
  2206         };
  2208     private Mapping erasureFun = new Mapping ("erasure") {
  2209             public Type apply(Type t) { return erasure(t); }
  2210         };
  2212     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2213         public Type apply(Type t) { return erasureRecursive(t); }
  2214     };
  2216     public List<Type> erasure(List<Type> ts) {
  2217         return Type.map(ts, erasureFun);
  2220     public Type erasureRecursive(Type t) {
  2221         return erasure(t, true);
  2224     public List<Type> erasureRecursive(List<Type> ts) {
  2225         return Type.map(ts, erasureRecFun);
  2227     // </editor-fold>
  2229     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2230     /**
  2231      * Make a compound type from non-empty list of types
  2233      * @param bounds            the types from which the compound type is formed
  2234      * @param supertype         is objectType if all bounds are interfaces,
  2235      *                          null otherwise.
  2236      */
  2237     public Type makeCompoundType(List<Type> bounds) {
  2238         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2240     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2241         Assert.check(bounds.nonEmpty());
  2242         Type firstExplicitBound = bounds.head;
  2243         if (allInterfaces) {
  2244             bounds = bounds.prepend(syms.objectType);
  2246         ClassSymbol bc =
  2247             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2248                             Type.moreInfo
  2249                                 ? names.fromString(bounds.toString())
  2250                                 : names.empty,
  2251                             null,
  2252                             syms.noSymbol);
  2253         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2254         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
  2255                 syms.objectType : // error condition, recover
  2256                 erasure(firstExplicitBound);
  2257         bc.members_field = new Scope(bc);
  2258         return bc.type;
  2261     /**
  2262      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2263      * arguments are converted to a list and passed to the other
  2264      * method.  Note that this might cause a symbol completion.
  2265      * Hence, this version of makeCompoundType may not be called
  2266      * during a classfile read.
  2267      */
  2268     public Type makeCompoundType(Type bound1, Type bound2) {
  2269         return makeCompoundType(List.of(bound1, bound2));
  2271     // </editor-fold>
  2273     // <editor-fold defaultstate="collapsed" desc="supertype">
  2274     public Type supertype(Type t) {
  2275         return supertype.visit(t);
  2277     // where
  2278         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2280             public Type visitType(Type t, Void ignored) {
  2281                 // A note on wildcards: there is no good way to
  2282                 // determine a supertype for a super bounded wildcard.
  2283                 return null;
  2286             @Override
  2287             public Type visitClassType(ClassType t, Void ignored) {
  2288                 if (t.supertype_field == null) {
  2289                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2290                     // An interface has no superclass; its supertype is Object.
  2291                     if (t.isInterface())
  2292                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2293                     if (t.supertype_field == null) {
  2294                         List<Type> actuals = classBound(t).allparams();
  2295                         List<Type> formals = t.tsym.type.allparams();
  2296                         if (t.hasErasedSupertypes()) {
  2297                             t.supertype_field = erasureRecursive(supertype);
  2298                         } else if (formals.nonEmpty()) {
  2299                             t.supertype_field = subst(supertype, formals, actuals);
  2301                         else {
  2302                             t.supertype_field = supertype;
  2306                 return t.supertype_field;
  2309             /**
  2310              * The supertype is always a class type. If the type
  2311              * variable's bounds start with a class type, this is also
  2312              * the supertype.  Otherwise, the supertype is
  2313              * java.lang.Object.
  2314              */
  2315             @Override
  2316             public Type visitTypeVar(TypeVar t, Void ignored) {
  2317                 if (t.bound.hasTag(TYPEVAR) ||
  2318                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2319                     return t.bound;
  2320                 } else {
  2321                     return supertype(t.bound);
  2325             @Override
  2326             public Type visitArrayType(ArrayType t, Void ignored) {
  2327                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2328                     return arraySuperType();
  2329                 else
  2330                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2333             @Override
  2334             public Type visitErrorType(ErrorType t, Void ignored) {
  2335                 return Type.noType;
  2337         };
  2338     // </editor-fold>
  2340     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2341     /**
  2342      * Return the interfaces implemented by this class.
  2343      */
  2344     public List<Type> interfaces(Type t) {
  2345         return interfaces.visit(t);
  2347     // where
  2348         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2350             public List<Type> visitType(Type t, Void ignored) {
  2351                 return List.nil();
  2354             @Override
  2355             public List<Type> visitClassType(ClassType t, Void ignored) {
  2356                 if (t.interfaces_field == null) {
  2357                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2358                     if (t.interfaces_field == null) {
  2359                         // If t.interfaces_field is null, then t must
  2360                         // be a parameterized type (not to be confused
  2361                         // with a generic type declaration).
  2362                         // Terminology:
  2363                         //    Parameterized type: List<String>
  2364                         //    Generic type declaration: class List<E> { ... }
  2365                         // So t corresponds to List<String> and
  2366                         // t.tsym.type corresponds to List<E>.
  2367                         // The reason t must be parameterized type is
  2368                         // that completion will happen as a side
  2369                         // effect of calling
  2370                         // ClassSymbol.getInterfaces.  Since
  2371                         // t.interfaces_field is null after
  2372                         // completion, we can assume that t is not the
  2373                         // type of a class/interface declaration.
  2374                         Assert.check(t != t.tsym.type, t);
  2375                         List<Type> actuals = t.allparams();
  2376                         List<Type> formals = t.tsym.type.allparams();
  2377                         if (t.hasErasedSupertypes()) {
  2378                             t.interfaces_field = erasureRecursive(interfaces);
  2379                         } else if (formals.nonEmpty()) {
  2380                             t.interfaces_field =
  2381                                 upperBounds(subst(interfaces, formals, actuals));
  2383                         else {
  2384                             t.interfaces_field = interfaces;
  2388                 return t.interfaces_field;
  2391             @Override
  2392             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2393                 if (t.bound.isCompound())
  2394                     return interfaces(t.bound);
  2396                 if (t.bound.isInterface())
  2397                     return List.of(t.bound);
  2399                 return List.nil();
  2401         };
  2403     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2404         for (Type i2 : interfaces(origin.type)) {
  2405             if (isym == i2.tsym) return true;
  2407         return false;
  2409     // </editor-fold>
  2411     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2412     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2414     public boolean isDerivedRaw(Type t) {
  2415         Boolean result = isDerivedRawCache.get(t);
  2416         if (result == null) {
  2417             result = isDerivedRawInternal(t);
  2418             isDerivedRawCache.put(t, result);
  2420         return result;
  2423     public boolean isDerivedRawInternal(Type t) {
  2424         if (t.isErroneous())
  2425             return false;
  2426         return
  2427             t.isRaw() ||
  2428             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2429             isDerivedRaw(interfaces(t));
  2432     public boolean isDerivedRaw(List<Type> ts) {
  2433         List<Type> l = ts;
  2434         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2435         return l.nonEmpty();
  2437     // </editor-fold>
  2439     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2440     /**
  2441      * Set the bounds field of the given type variable to reflect a
  2442      * (possibly multiple) list of bounds.
  2443      * @param t                 a type variable
  2444      * @param bounds            the bounds, must be nonempty
  2445      * @param supertype         is objectType if all bounds are interfaces,
  2446      *                          null otherwise.
  2447      */
  2448     public void setBounds(TypeVar t, List<Type> bounds) {
  2449         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2452     /**
  2453      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2454      * third parameter is computed directly, as follows: if all
  2455      * all bounds are interface types, the computed supertype is Object,
  2456      * otherwise the supertype is simply left null (in this case, the supertype
  2457      * is assumed to be the head of the bound list passed as second argument).
  2458      * Note that this check might cause a symbol completion. Hence, this version of
  2459      * setBounds may not be called during a classfile read.
  2460      */
  2461     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2462         t.bound = bounds.tail.isEmpty() ?
  2463                 bounds.head :
  2464                 makeCompoundType(bounds, allInterfaces);
  2465         t.rank_field = -1;
  2467     // </editor-fold>
  2469     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2470     /**
  2471      * Return list of bounds of the given type variable.
  2472      */
  2473     public List<Type> getBounds(TypeVar t) {
  2474         if (t.bound.hasTag(NONE))
  2475             return List.nil();
  2476         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2477             return List.of(t.bound);
  2478         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2479             return interfaces(t).prepend(supertype(t));
  2480         else
  2481             // No superclass was given in bounds.
  2482             // In this case, supertype is Object, erasure is first interface.
  2483             return interfaces(t);
  2485     // </editor-fold>
  2487     // <editor-fold defaultstate="collapsed" desc="classBound">
  2488     /**
  2489      * If the given type is a (possibly selected) type variable,
  2490      * return the bounding class of this type, otherwise return the
  2491      * type itself.
  2492      */
  2493     public Type classBound(Type t) {
  2494         return classBound.visit(t);
  2496     // where
  2497         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2499             public Type visitType(Type t, Void ignored) {
  2500                 return t;
  2503             @Override
  2504             public Type visitClassType(ClassType t, Void ignored) {
  2505                 Type outer1 = classBound(t.getEnclosingType());
  2506                 if (outer1 != t.getEnclosingType())
  2507                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2508                 else
  2509                     return t;
  2512             @Override
  2513             public Type visitTypeVar(TypeVar t, Void ignored) {
  2514                 return classBound(supertype(t));
  2517             @Override
  2518             public Type visitErrorType(ErrorType t, Void ignored) {
  2519                 return t;
  2521         };
  2522     // </editor-fold>
  2524     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2525     /**
  2526      * Returns true iff the first signature is a <em>sub
  2527      * signature</em> of the other.  This is <b>not</b> an equivalence
  2528      * relation.
  2530      * @jls section 8.4.2.
  2531      * @see #overrideEquivalent(Type t, Type s)
  2532      * @param t first signature (possibly raw).
  2533      * @param s second signature (could be subjected to erasure).
  2534      * @return true if t is a sub signature of s.
  2535      */
  2536     public boolean isSubSignature(Type t, Type s) {
  2537         return isSubSignature(t, s, true);
  2540     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2541         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2544     /**
  2545      * Returns true iff these signatures are related by <em>override
  2546      * equivalence</em>.  This is the natural extension of
  2547      * isSubSignature to an equivalence relation.
  2549      * @jls section 8.4.2.
  2550      * @see #isSubSignature(Type t, Type s)
  2551      * @param t a signature (possible raw, could be subjected to
  2552      * erasure).
  2553      * @param s a signature (possible raw, could be subjected to
  2554      * erasure).
  2555      * @return true if either argument is a sub signature of the other.
  2556      */
  2557     public boolean overrideEquivalent(Type t, Type s) {
  2558         return hasSameArgs(t, s) ||
  2559             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2562     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2563         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2564             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2565                 return true;
  2568         return false;
  2571     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2572     class ImplementationCache {
  2574         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2575                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2577         class Entry {
  2578             final MethodSymbol cachedImpl;
  2579             final Filter<Symbol> implFilter;
  2580             final boolean checkResult;
  2581             final int prevMark;
  2583             public Entry(MethodSymbol cachedImpl,
  2584                     Filter<Symbol> scopeFilter,
  2585                     boolean checkResult,
  2586                     int prevMark) {
  2587                 this.cachedImpl = cachedImpl;
  2588                 this.implFilter = scopeFilter;
  2589                 this.checkResult = checkResult;
  2590                 this.prevMark = prevMark;
  2593             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2594                 return this.implFilter == scopeFilter &&
  2595                         this.checkResult == checkResult &&
  2596                         this.prevMark == mark;
  2600         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2601             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2602             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2603             if (cache == null) {
  2604                 cache = new HashMap<TypeSymbol, Entry>();
  2605                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2607             Entry e = cache.get(origin);
  2608             CompoundScope members = membersClosure(origin.type, true);
  2609             if (e == null ||
  2610                     !e.matches(implFilter, checkResult, members.getMark())) {
  2611                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2612                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2613                 return impl;
  2615             else {
  2616                 return e.cachedImpl;
  2620         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2621             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
  2622                 while (t.hasTag(TYPEVAR))
  2623                     t = t.getUpperBound();
  2624                 TypeSymbol c = t.tsym;
  2625                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2626                      e.scope != null;
  2627                      e = e.next(implFilter)) {
  2628                     if (e.sym != null &&
  2629                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2630                         return (MethodSymbol)e.sym;
  2633             return null;
  2637     private ImplementationCache implCache = new ImplementationCache();
  2639     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2640         return implCache.get(ms, origin, checkResult, implFilter);
  2642     // </editor-fold>
  2644     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2645     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2647         private WeakHashMap<TypeSymbol, Entry> _map =
  2648                 new WeakHashMap<TypeSymbol, Entry>();
  2650         class Entry {
  2651             final boolean skipInterfaces;
  2652             final CompoundScope compoundScope;
  2654             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2655                 this.skipInterfaces = skipInterfaces;
  2656                 this.compoundScope = compoundScope;
  2659             boolean matches(boolean skipInterfaces) {
  2660                 return this.skipInterfaces == skipInterfaces;
  2664         List<TypeSymbol> seenTypes = List.nil();
  2666         /** members closure visitor methods **/
  2668         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2669             return null;
  2672         @Override
  2673         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2674             if (seenTypes.contains(t.tsym)) {
  2675                 //this is possible when an interface is implemented in multiple
  2676                 //superclasses, or when a classs hierarchy is circular - in such
  2677                 //cases we don't need to recurse (empty scope is returned)
  2678                 return new CompoundScope(t.tsym);
  2680             try {
  2681                 seenTypes = seenTypes.prepend(t.tsym);
  2682                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2683                 Entry e = _map.get(csym);
  2684                 if (e == null || !e.matches(skipInterface)) {
  2685                     CompoundScope membersClosure = new CompoundScope(csym);
  2686                     if (!skipInterface) {
  2687                         for (Type i : interfaces(t)) {
  2688                             membersClosure.addSubScope(visit(i, skipInterface));
  2691                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2692                     membersClosure.addSubScope(csym.members());
  2693                     e = new Entry(skipInterface, membersClosure);
  2694                     _map.put(csym, e);
  2696                 return e.compoundScope;
  2698             finally {
  2699                 seenTypes = seenTypes.tail;
  2703         @Override
  2704         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2705             return visit(t.getUpperBound(), skipInterface);
  2709     private MembersClosureCache membersCache = new MembersClosureCache();
  2711     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2712         return membersCache.visit(site, skipInterface);
  2714     // </editor-fold>
  2717     //where
  2718     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2719         Filter<Symbol> filter = new MethodFilter(ms, site);
  2720         List<MethodSymbol> candidates = List.nil();
  2721             for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2722                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2723                     return List.of((MethodSymbol)s);
  2724                 } else if (!candidates.contains(s)) {
  2725                     candidates = candidates.prepend((MethodSymbol)s);
  2728             return prune(candidates);
  2731     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2732         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2733         for (MethodSymbol m1 : methods) {
  2734             boolean isMin_m1 = true;
  2735             for (MethodSymbol m2 : methods) {
  2736                 if (m1 == m2) continue;
  2737                 if (m2.owner != m1.owner &&
  2738                         asSuper(m2.owner.type, m1.owner) != null) {
  2739                     isMin_m1 = false;
  2740                     break;
  2743             if (isMin_m1)
  2744                 methodsMin.append(m1);
  2746         return methodsMin.toList();
  2748     // where
  2749             private class MethodFilter implements Filter<Symbol> {
  2751                 Symbol msym;
  2752                 Type site;
  2754                 MethodFilter(Symbol msym, Type site) {
  2755                     this.msym = msym;
  2756                     this.site = site;
  2759                 public boolean accepts(Symbol s) {
  2760                     return s.kind == Kinds.MTH &&
  2761                             s.name == msym.name &&
  2762                             (s.flags() & SYNTHETIC) == 0 &&
  2763                             s.isInheritedIn(site.tsym, Types.this) &&
  2764                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2766             };
  2767     // </editor-fold>
  2769     /**
  2770      * Does t have the same arguments as s?  It is assumed that both
  2771      * types are (possibly polymorphic) method types.  Monomorphic
  2772      * method types "have the same arguments", if their argument lists
  2773      * are equal.  Polymorphic method types "have the same arguments",
  2774      * if they have the same arguments after renaming all type
  2775      * variables of one to corresponding type variables in the other,
  2776      * where correspondence is by position in the type parameter list.
  2777      */
  2778     public boolean hasSameArgs(Type t, Type s) {
  2779         return hasSameArgs(t, s, true);
  2782     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2783         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2786     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2787         return hasSameArgs.visit(t, s);
  2789     // where
  2790         private class HasSameArgs extends TypeRelation {
  2792             boolean strict;
  2794             public HasSameArgs(boolean strict) {
  2795                 this.strict = strict;
  2798             public Boolean visitType(Type t, Type s) {
  2799                 throw new AssertionError();
  2802             @Override
  2803             public Boolean visitMethodType(MethodType t, Type s) {
  2804                 return s.hasTag(METHOD)
  2805                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2808             @Override
  2809             public Boolean visitForAll(ForAll t, Type s) {
  2810                 if (!s.hasTag(FORALL))
  2811                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2813                 ForAll forAll = (ForAll)s;
  2814                 return hasSameBounds(t, forAll)
  2815                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2818             @Override
  2819             public Boolean visitErrorType(ErrorType t, Type s) {
  2820                 return false;
  2822         };
  2824         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2825         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2827     // </editor-fold>
  2829     // <editor-fold defaultstate="collapsed" desc="subst">
  2830     public List<Type> subst(List<Type> ts,
  2831                             List<Type> from,
  2832                             List<Type> to) {
  2833         return new Subst(from, to).subst(ts);
  2836     /**
  2837      * Substitute all occurrences of a type in `from' with the
  2838      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2839      * from the right: If lists have different length, discard leading
  2840      * elements of the longer list.
  2841      */
  2842     public Type subst(Type t, List<Type> from, List<Type> to) {
  2843         return new Subst(from, to).subst(t);
  2846     private class Subst extends UnaryVisitor<Type> {
  2847         List<Type> from;
  2848         List<Type> to;
  2850         public Subst(List<Type> from, List<Type> to) {
  2851             int fromLength = from.length();
  2852             int toLength = to.length();
  2853             while (fromLength > toLength) {
  2854                 fromLength--;
  2855                 from = from.tail;
  2857             while (fromLength < toLength) {
  2858                 toLength--;
  2859                 to = to.tail;
  2861             this.from = from;
  2862             this.to = to;
  2865         Type subst(Type t) {
  2866             if (from.tail == null)
  2867                 return t;
  2868             else
  2869                 return visit(t);
  2872         List<Type> subst(List<Type> ts) {
  2873             if (from.tail == null)
  2874                 return ts;
  2875             boolean wild = false;
  2876             if (ts.nonEmpty() && from.nonEmpty()) {
  2877                 Type head1 = subst(ts.head);
  2878                 List<Type> tail1 = subst(ts.tail);
  2879                 if (head1 != ts.head || tail1 != ts.tail)
  2880                     return tail1.prepend(head1);
  2882             return ts;
  2885         public Type visitType(Type t, Void ignored) {
  2886             return t;
  2889         @Override
  2890         public Type visitMethodType(MethodType t, Void ignored) {
  2891             List<Type> argtypes = subst(t.argtypes);
  2892             Type restype = subst(t.restype);
  2893             List<Type> thrown = subst(t.thrown);
  2894             if (argtypes == t.argtypes &&
  2895                 restype == t.restype &&
  2896                 thrown == t.thrown)
  2897                 return t;
  2898             else
  2899                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2902         @Override
  2903         public Type visitTypeVar(TypeVar t, Void ignored) {
  2904             for (List<Type> from = this.from, to = this.to;
  2905                  from.nonEmpty();
  2906                  from = from.tail, to = to.tail) {
  2907                 if (t == from.head) {
  2908                     return to.head.withTypeVar(t);
  2911             return t;
  2914         @Override
  2915         public Type visitClassType(ClassType t, Void ignored) {
  2916             if (!t.isCompound()) {
  2917                 List<Type> typarams = t.getTypeArguments();
  2918                 List<Type> typarams1 = subst(typarams);
  2919                 Type outer = t.getEnclosingType();
  2920                 Type outer1 = subst(outer);
  2921                 if (typarams1 == typarams && outer1 == outer)
  2922                     return t;
  2923                 else
  2924                     return new ClassType(outer1, typarams1, t.tsym);
  2925             } else {
  2926                 Type st = subst(supertype(t));
  2927                 List<Type> is = upperBounds(subst(interfaces(t)));
  2928                 if (st == supertype(t) && is == interfaces(t))
  2929                     return t;
  2930                 else
  2931                     return makeCompoundType(is.prepend(st));
  2935         @Override
  2936         public Type visitWildcardType(WildcardType t, Void ignored) {
  2937             Type bound = t.type;
  2938             if (t.kind != BoundKind.UNBOUND)
  2939                 bound = subst(bound);
  2940             if (bound == t.type) {
  2941                 return t;
  2942             } else {
  2943                 if (t.isExtendsBound() && bound.isExtendsBound())
  2944                     bound = upperBound(bound);
  2945                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2949         @Override
  2950         public Type visitArrayType(ArrayType t, Void ignored) {
  2951             Type elemtype = subst(t.elemtype);
  2952             if (elemtype == t.elemtype)
  2953                 return t;
  2954             else
  2955                 return new ArrayType(elemtype, t.tsym);
  2958         @Override
  2959         public Type visitForAll(ForAll t, Void ignored) {
  2960             if (Type.containsAny(to, t.tvars)) {
  2961                 //perform alpha-renaming of free-variables in 't'
  2962                 //if 'to' types contain variables that are free in 't'
  2963                 List<Type> freevars = newInstances(t.tvars);
  2964                 t = new ForAll(freevars,
  2965                         Types.this.subst(t.qtype, t.tvars, freevars));
  2967             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2968             Type qtype1 = subst(t.qtype);
  2969             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2970                 return t;
  2971             } else if (tvars1 == t.tvars) {
  2972                 return new ForAll(tvars1, qtype1);
  2973             } else {
  2974                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2978         @Override
  2979         public Type visitErrorType(ErrorType t, Void ignored) {
  2980             return t;
  2984     public List<Type> substBounds(List<Type> tvars,
  2985                                   List<Type> from,
  2986                                   List<Type> to) {
  2987         if (tvars.isEmpty())
  2988             return tvars;
  2989         ListBuffer<Type> newBoundsBuf = lb();
  2990         boolean changed = false;
  2991         // calculate new bounds
  2992         for (Type t : tvars) {
  2993             TypeVar tv = (TypeVar) t;
  2994             Type bound = subst(tv.bound, from, to);
  2995             if (bound != tv.bound)
  2996                 changed = true;
  2997             newBoundsBuf.append(bound);
  2999         if (!changed)
  3000             return tvars;
  3001         ListBuffer<Type> newTvars = lb();
  3002         // create new type variables without bounds
  3003         for (Type t : tvars) {
  3004             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  3006         // the new bounds should use the new type variables in place
  3007         // of the old
  3008         List<Type> newBounds = newBoundsBuf.toList();
  3009         from = tvars;
  3010         to = newTvars.toList();
  3011         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  3012             newBounds.head = subst(newBounds.head, from, to);
  3014         newBounds = newBoundsBuf.toList();
  3015         // set the bounds of new type variables to the new bounds
  3016         for (Type t : newTvars.toList()) {
  3017             TypeVar tv = (TypeVar) t;
  3018             tv.bound = newBounds.head;
  3019             newBounds = newBounds.tail;
  3021         return newTvars.toList();
  3024     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  3025         Type bound1 = subst(t.bound, from, to);
  3026         if (bound1 == t.bound)
  3027             return t;
  3028         else {
  3029             // create new type variable without bounds
  3030             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  3031             // the new bound should use the new type variable in place
  3032             // of the old
  3033             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  3034             return tv;
  3037     // </editor-fold>
  3039     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  3040     /**
  3041      * Does t have the same bounds for quantified variables as s?
  3042      */
  3043     boolean hasSameBounds(ForAll t, ForAll s) {
  3044         List<Type> l1 = t.tvars;
  3045         List<Type> l2 = s.tvars;
  3046         while (l1.nonEmpty() && l2.nonEmpty() &&
  3047                isSameType(l1.head.getUpperBound(),
  3048                           subst(l2.head.getUpperBound(),
  3049                                 s.tvars,
  3050                                 t.tvars))) {
  3051             l1 = l1.tail;
  3052             l2 = l2.tail;
  3054         return l1.isEmpty() && l2.isEmpty();
  3056     // </editor-fold>
  3058     // <editor-fold defaultstate="collapsed" desc="newInstances">
  3059     /** Create new vector of type variables from list of variables
  3060      *  changing all recursive bounds from old to new list.
  3061      */
  3062     public List<Type> newInstances(List<Type> tvars) {
  3063         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  3064         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  3065             TypeVar tv = (TypeVar) l.head;
  3066             tv.bound = subst(tv.bound, tvars, tvars1);
  3068         return tvars1;
  3070     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  3071             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  3072         };
  3073     // </editor-fold>
  3075     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  3076         return original.accept(methodWithParameters, newParams);
  3078     // where
  3079         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  3080             public Type visitType(Type t, List<Type> newParams) {
  3081                 throw new IllegalArgumentException("Not a method type: " + t);
  3083             public Type visitMethodType(MethodType t, List<Type> newParams) {
  3084                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  3086             public Type visitForAll(ForAll t, List<Type> newParams) {
  3087                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  3089         };
  3091     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  3092         return original.accept(methodWithThrown, newThrown);
  3094     // where
  3095         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  3096             public Type visitType(Type t, List<Type> newThrown) {
  3097                 throw new IllegalArgumentException("Not a method type: " + t);
  3099             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  3100                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  3102             public Type visitForAll(ForAll t, List<Type> newThrown) {
  3103                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  3105         };
  3107     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  3108         return original.accept(methodWithReturn, newReturn);
  3110     // where
  3111         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  3112             public Type visitType(Type t, Type newReturn) {
  3113                 throw new IllegalArgumentException("Not a method type: " + t);
  3115             public Type visitMethodType(MethodType t, Type newReturn) {
  3116                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  3118             public Type visitForAll(ForAll t, Type newReturn) {
  3119                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3121         };
  3123     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3124     public Type createErrorType(Type originalType) {
  3125         return new ErrorType(originalType, syms.errSymbol);
  3128     public Type createErrorType(ClassSymbol c, Type originalType) {
  3129         return new ErrorType(c, originalType);
  3132     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3133         return new ErrorType(name, container, originalType);
  3135     // </editor-fold>
  3137     // <editor-fold defaultstate="collapsed" desc="rank">
  3138     /**
  3139      * The rank of a class is the length of the longest path between
  3140      * the class and java.lang.Object in the class inheritance
  3141      * graph. Undefined for all but reference types.
  3142      */
  3143     public int rank(Type t) {
  3144         t = t.unannotatedType();
  3145         switch(t.getTag()) {
  3146         case CLASS: {
  3147             ClassType cls = (ClassType)t;
  3148             if (cls.rank_field < 0) {
  3149                 Name fullname = cls.tsym.getQualifiedName();
  3150                 if (fullname == names.java_lang_Object)
  3151                     cls.rank_field = 0;
  3152                 else {
  3153                     int r = rank(supertype(cls));
  3154                     for (List<Type> l = interfaces(cls);
  3155                          l.nonEmpty();
  3156                          l = l.tail) {
  3157                         if (rank(l.head) > r)
  3158                             r = rank(l.head);
  3160                     cls.rank_field = r + 1;
  3163             return cls.rank_field;
  3165         case TYPEVAR: {
  3166             TypeVar tvar = (TypeVar)t;
  3167             if (tvar.rank_field < 0) {
  3168                 int r = rank(supertype(tvar));
  3169                 for (List<Type> l = interfaces(tvar);
  3170                      l.nonEmpty();
  3171                      l = l.tail) {
  3172                     if (rank(l.head) > r) r = rank(l.head);
  3174                 tvar.rank_field = r + 1;
  3176             return tvar.rank_field;
  3178         case ERROR:
  3179             return 0;
  3180         default:
  3181             throw new AssertionError();
  3184     // </editor-fold>
  3186     /**
  3187      * Helper method for generating a string representation of a given type
  3188      * accordingly to a given locale
  3189      */
  3190     public String toString(Type t, Locale locale) {
  3191         return Printer.createStandardPrinter(messages).visit(t, locale);
  3194     /**
  3195      * Helper method for generating a string representation of a given type
  3196      * accordingly to a given locale
  3197      */
  3198     public String toString(Symbol t, Locale locale) {
  3199         return Printer.createStandardPrinter(messages).visit(t, locale);
  3202     // <editor-fold defaultstate="collapsed" desc="toString">
  3203     /**
  3204      * This toString is slightly more descriptive than the one on Type.
  3206      * @deprecated Types.toString(Type t, Locale l) provides better support
  3207      * for localization
  3208      */
  3209     @Deprecated
  3210     public String toString(Type t) {
  3211         if (t.hasTag(FORALL)) {
  3212             ForAll forAll = (ForAll)t;
  3213             return typaramsString(forAll.tvars) + forAll.qtype;
  3215         return "" + t;
  3217     // where
  3218         private String typaramsString(List<Type> tvars) {
  3219             StringBuilder s = new StringBuilder();
  3220             s.append('<');
  3221             boolean first = true;
  3222             for (Type t : tvars) {
  3223                 if (!first) s.append(", ");
  3224                 first = false;
  3225                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
  3227             s.append('>');
  3228             return s.toString();
  3230         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3231             buf.append(t);
  3232             if (t.bound == null ||
  3233                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3234                 return;
  3235             buf.append(" extends "); // Java syntax; no need for i18n
  3236             Type bound = t.bound;
  3237             if (!bound.isCompound()) {
  3238                 buf.append(bound);
  3239             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3240                 buf.append(supertype(t));
  3241                 for (Type intf : interfaces(t)) {
  3242                     buf.append('&');
  3243                     buf.append(intf);
  3245             } else {
  3246                 // No superclass was given in bounds.
  3247                 // In this case, supertype is Object, erasure is first interface.
  3248                 boolean first = true;
  3249                 for (Type intf : interfaces(t)) {
  3250                     if (!first) buf.append('&');
  3251                     first = false;
  3252                     buf.append(intf);
  3256     // </editor-fold>
  3258     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3259     /**
  3260      * A cache for closures.
  3262      * <p>A closure is a list of all the supertypes and interfaces of
  3263      * a class or interface type, ordered by ClassSymbol.precedes
  3264      * (that is, subclasses come first, arbitrary but fixed
  3265      * otherwise).
  3266      */
  3267     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3269     /**
  3270      * Returns the closure of a class or interface type.
  3271      */
  3272     public List<Type> closure(Type t) {
  3273         List<Type> cl = closureCache.get(t);
  3274         if (cl == null) {
  3275             Type st = supertype(t);
  3276             if (!t.isCompound()) {
  3277                 if (st.hasTag(CLASS)) {
  3278                     cl = insert(closure(st), t);
  3279                 } else if (st.hasTag(TYPEVAR)) {
  3280                     cl = closure(st).prepend(t);
  3281                 } else {
  3282                     cl = List.of(t);
  3284             } else {
  3285                 cl = closure(supertype(t));
  3287             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3288                 cl = union(cl, closure(l.head));
  3289             closureCache.put(t, cl);
  3291         return cl;
  3294     /**
  3295      * Insert a type in a closure
  3296      */
  3297     public List<Type> insert(List<Type> cl, Type t) {
  3298         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3299             return cl.prepend(t);
  3300         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3301             return insert(cl.tail, t).prepend(cl.head);
  3302         } else {
  3303             return cl;
  3307     /**
  3308      * Form the union of two closures
  3309      */
  3310     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3311         if (cl1.isEmpty()) {
  3312             return cl2;
  3313         } else if (cl2.isEmpty()) {
  3314             return cl1;
  3315         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3316             return union(cl1.tail, cl2).prepend(cl1.head);
  3317         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3318             return union(cl1, cl2.tail).prepend(cl2.head);
  3319         } else {
  3320             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3324     /**
  3325      * Intersect two closures
  3326      */
  3327     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3328         if (cl1 == cl2)
  3329             return cl1;
  3330         if (cl1.isEmpty() || cl2.isEmpty())
  3331             return List.nil();
  3332         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3333             return intersect(cl1.tail, cl2);
  3334         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3335             return intersect(cl1, cl2.tail);
  3336         if (isSameType(cl1.head, cl2.head))
  3337             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3338         if (cl1.head.tsym == cl2.head.tsym &&
  3339             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
  3340             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3341                 Type merge = merge(cl1.head,cl2.head);
  3342                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3344             if (cl1.head.isRaw() || cl2.head.isRaw())
  3345                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3347         return intersect(cl1.tail, cl2.tail);
  3349     // where
  3350         class TypePair {
  3351             final Type t1;
  3352             final Type t2;
  3353             TypePair(Type t1, Type t2) {
  3354                 this.t1 = t1;
  3355                 this.t2 = t2;
  3357             @Override
  3358             public int hashCode() {
  3359                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3361             @Override
  3362             public boolean equals(Object obj) {
  3363                 if (!(obj instanceof TypePair))
  3364                     return false;
  3365                 TypePair typePair = (TypePair)obj;
  3366                 return isSameType(t1, typePair.t1)
  3367                     && isSameType(t2, typePair.t2);
  3370         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3371         private Type merge(Type c1, Type c2) {
  3372             ClassType class1 = (ClassType) c1;
  3373             List<Type> act1 = class1.getTypeArguments();
  3374             ClassType class2 = (ClassType) c2;
  3375             List<Type> act2 = class2.getTypeArguments();
  3376             ListBuffer<Type> merged = new ListBuffer<Type>();
  3377             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3379             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3380                 if (containsType(act1.head, act2.head)) {
  3381                     merged.append(act1.head);
  3382                 } else if (containsType(act2.head, act1.head)) {
  3383                     merged.append(act2.head);
  3384                 } else {
  3385                     TypePair pair = new TypePair(c1, c2);
  3386                     Type m;
  3387                     if (mergeCache.add(pair)) {
  3388                         m = new WildcardType(lub(upperBound(act1.head),
  3389                                                  upperBound(act2.head)),
  3390                                              BoundKind.EXTENDS,
  3391                                              syms.boundClass);
  3392                         mergeCache.remove(pair);
  3393                     } else {
  3394                         m = new WildcardType(syms.objectType,
  3395                                              BoundKind.UNBOUND,
  3396                                              syms.boundClass);
  3398                     merged.append(m.withTypeVar(typarams.head));
  3400                 act1 = act1.tail;
  3401                 act2 = act2.tail;
  3402                 typarams = typarams.tail;
  3404             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3405             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3408     /**
  3409      * Return the minimum type of a closure, a compound type if no
  3410      * unique minimum exists.
  3411      */
  3412     private Type compoundMin(List<Type> cl) {
  3413         if (cl.isEmpty()) return syms.objectType;
  3414         List<Type> compound = closureMin(cl);
  3415         if (compound.isEmpty())
  3416             return null;
  3417         else if (compound.tail.isEmpty())
  3418             return compound.head;
  3419         else
  3420             return makeCompoundType(compound);
  3423     /**
  3424      * Return the minimum types of a closure, suitable for computing
  3425      * compoundMin or glb.
  3426      */
  3427     private List<Type> closureMin(List<Type> cl) {
  3428         ListBuffer<Type> classes = lb();
  3429         ListBuffer<Type> interfaces = lb();
  3430         while (!cl.isEmpty()) {
  3431             Type current = cl.head;
  3432             if (current.isInterface())
  3433                 interfaces.append(current);
  3434             else
  3435                 classes.append(current);
  3436             ListBuffer<Type> candidates = lb();
  3437             for (Type t : cl.tail) {
  3438                 if (!isSubtypeNoCapture(current, t))
  3439                     candidates.append(t);
  3441             cl = candidates.toList();
  3443         return classes.appendList(interfaces).toList();
  3446     /**
  3447      * Return the least upper bound of pair of types.  if the lub does
  3448      * not exist return null.
  3449      */
  3450     public Type lub(Type t1, Type t2) {
  3451         return lub(List.of(t1, t2));
  3454     /**
  3455      * Return the least upper bound (lub) of set of types.  If the lub
  3456      * does not exist return the type of null (bottom).
  3457      */
  3458     public Type lub(List<Type> ts) {
  3459         final int ARRAY_BOUND = 1;
  3460         final int CLASS_BOUND = 2;
  3461         int boundkind = 0;
  3462         for (Type t : ts) {
  3463             switch (t.getTag()) {
  3464             case CLASS:
  3465                 boundkind |= CLASS_BOUND;
  3466                 break;
  3467             case ARRAY:
  3468                 boundkind |= ARRAY_BOUND;
  3469                 break;
  3470             case  TYPEVAR:
  3471                 do {
  3472                     t = t.getUpperBound();
  3473                 } while (t.hasTag(TYPEVAR));
  3474                 if (t.hasTag(ARRAY)) {
  3475                     boundkind |= ARRAY_BOUND;
  3476                 } else {
  3477                     boundkind |= CLASS_BOUND;
  3479                 break;
  3480             default:
  3481                 if (t.isPrimitive())
  3482                     return syms.errType;
  3485         switch (boundkind) {
  3486         case 0:
  3487             return syms.botType;
  3489         case ARRAY_BOUND:
  3490             // calculate lub(A[], B[])
  3491             List<Type> elements = Type.map(ts, elemTypeFun);
  3492             for (Type t : elements) {
  3493                 if (t.isPrimitive()) {
  3494                     // if a primitive type is found, then return
  3495                     // arraySuperType unless all the types are the
  3496                     // same
  3497                     Type first = ts.head;
  3498                     for (Type s : ts.tail) {
  3499                         if (!isSameType(first, s)) {
  3500                              // lub(int[], B[]) is Cloneable & Serializable
  3501                             return arraySuperType();
  3504                     // all the array types are the same, return one
  3505                     // lub(int[], int[]) is int[]
  3506                     return first;
  3509             // lub(A[], B[]) is lub(A, B)[]
  3510             return new ArrayType(lub(elements), syms.arrayClass);
  3512         case CLASS_BOUND:
  3513             // calculate lub(A, B)
  3514             while (!ts.head.hasTag(CLASS) && !ts.head.hasTag(TYPEVAR)) {
  3515                 ts = ts.tail;
  3517             Assert.check(!ts.isEmpty());
  3518             //step 1 - compute erased candidate set (EC)
  3519             List<Type> cl = erasedSupertypes(ts.head);
  3520             for (Type t : ts.tail) {
  3521                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
  3522                     cl = intersect(cl, erasedSupertypes(t));
  3524             //step 2 - compute minimal erased candidate set (MEC)
  3525             List<Type> mec = closureMin(cl);
  3526             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3527             List<Type> candidates = List.nil();
  3528             for (Type erasedSupertype : mec) {
  3529                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3530                 for (Type t : ts) {
  3531                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3533                 candidates = candidates.appendList(lci);
  3535             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3536             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3537             return compoundMin(candidates);
  3539         default:
  3540             // calculate lub(A, B[])
  3541             List<Type> classes = List.of(arraySuperType());
  3542             for (Type t : ts) {
  3543                 if (!t.hasTag(ARRAY)) // Filter out any arrays
  3544                     classes = classes.prepend(t);
  3546             // lub(A, B[]) is lub(A, arraySuperType)
  3547             return lub(classes);
  3550     // where
  3551         List<Type> erasedSupertypes(Type t) {
  3552             ListBuffer<Type> buf = lb();
  3553             for (Type sup : closure(t)) {
  3554                 if (sup.hasTag(TYPEVAR)) {
  3555                     buf.append(sup);
  3556                 } else {
  3557                     buf.append(erasure(sup));
  3560             return buf.toList();
  3563         private Type arraySuperType = null;
  3564         private Type arraySuperType() {
  3565             // initialized lazily to avoid problems during compiler startup
  3566             if (arraySuperType == null) {
  3567                 synchronized (this) {
  3568                     if (arraySuperType == null) {
  3569                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3570                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3571                                                                   syms.cloneableType), true);
  3575             return arraySuperType;
  3577     // </editor-fold>
  3579     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3580     public Type glb(List<Type> ts) {
  3581         Type t1 = ts.head;
  3582         for (Type t2 : ts.tail) {
  3583             if (t1.isErroneous())
  3584                 return t1;
  3585             t1 = glb(t1, t2);
  3587         return t1;
  3589     //where
  3590     public Type glb(Type t, Type s) {
  3591         if (s == null)
  3592             return t;
  3593         else if (t.isPrimitive() || s.isPrimitive())
  3594             return syms.errType;
  3595         else if (isSubtypeNoCapture(t, s))
  3596             return t;
  3597         else if (isSubtypeNoCapture(s, t))
  3598             return s;
  3600         List<Type> closure = union(closure(t), closure(s));
  3601         List<Type> bounds = closureMin(closure);
  3603         if (bounds.isEmpty()) {             // length == 0
  3604             return syms.objectType;
  3605         } else if (bounds.tail.isEmpty()) { // length == 1
  3606             return bounds.head;
  3607         } else {                            // length > 1
  3608             int classCount = 0;
  3609             for (Type bound : bounds)
  3610                 if (!bound.isInterface())
  3611                     classCount++;
  3612             if (classCount > 1)
  3613                 return createErrorType(t);
  3615         return makeCompoundType(bounds);
  3617     // </editor-fold>
  3619     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3620     /**
  3621      * Compute a hash code on a type.
  3622      */
  3623     public int hashCode(Type t) {
  3624         return hashCode.visit(t);
  3626     // where
  3627         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3629             public Integer visitType(Type t, Void ignored) {
  3630                 return t.getTag().ordinal();
  3633             @Override
  3634             public Integer visitClassType(ClassType t, Void ignored) {
  3635                 int result = visit(t.getEnclosingType());
  3636                 result *= 127;
  3637                 result += t.tsym.flatName().hashCode();
  3638                 for (Type s : t.getTypeArguments()) {
  3639                     result *= 127;
  3640                     result += visit(s);
  3642                 return result;
  3645             @Override
  3646             public Integer visitMethodType(MethodType t, Void ignored) {
  3647                 int h = METHOD.ordinal();
  3648                 for (List<Type> thisargs = t.argtypes;
  3649                      thisargs.tail != null;
  3650                      thisargs = thisargs.tail)
  3651                     h = (h << 5) + visit(thisargs.head);
  3652                 return (h << 5) + visit(t.restype);
  3655             @Override
  3656             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3657                 int result = t.kind.hashCode();
  3658                 if (t.type != null) {
  3659                     result *= 127;
  3660                     result += visit(t.type);
  3662                 return result;
  3665             @Override
  3666             public Integer visitArrayType(ArrayType t, Void ignored) {
  3667                 return visit(t.elemtype) + 12;
  3670             @Override
  3671             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3672                 return System.identityHashCode(t.tsym);
  3675             @Override
  3676             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3677                 return System.identityHashCode(t);
  3680             @Override
  3681             public Integer visitErrorType(ErrorType t, Void ignored) {
  3682                 return 0;
  3684         };
  3685     // </editor-fold>
  3687     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3688     /**
  3689      * Does t have a result that is a subtype of the result type of s,
  3690      * suitable for covariant returns?  It is assumed that both types
  3691      * are (possibly polymorphic) method types.  Monomorphic method
  3692      * types are handled in the obvious way.  Polymorphic method types
  3693      * require renaming all type variables of one to corresponding
  3694      * type variables in the other, where correspondence is by
  3695      * position in the type parameter list. */
  3696     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3697         List<Type> tvars = t.getTypeArguments();
  3698         List<Type> svars = s.getTypeArguments();
  3699         Type tres = t.getReturnType();
  3700         Type sres = subst(s.getReturnType(), svars, tvars);
  3701         return covariantReturnType(tres, sres, warner);
  3704     /**
  3705      * Return-Type-Substitutable.
  3706      * @jls section 8.4.5
  3707      */
  3708     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3709         if (hasSameArgs(r1, r2))
  3710             return resultSubtype(r1, r2, noWarnings);
  3711         else
  3712             return covariantReturnType(r1.getReturnType(),
  3713                                        erasure(r2.getReturnType()),
  3714                                        noWarnings);
  3717     public boolean returnTypeSubstitutable(Type r1,
  3718                                            Type r2, Type r2res,
  3719                                            Warner warner) {
  3720         if (isSameType(r1.getReturnType(), r2res))
  3721             return true;
  3722         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3723             return false;
  3725         if (hasSameArgs(r1, r2))
  3726             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3727         if (!allowCovariantReturns)
  3728             return false;
  3729         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3730             return true;
  3731         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3732             return false;
  3733         warner.warn(LintCategory.UNCHECKED);
  3734         return true;
  3737     /**
  3738      * Is t an appropriate return type in an overrider for a
  3739      * method that returns s?
  3740      */
  3741     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3742         return
  3743             isSameType(t, s) ||
  3744             allowCovariantReturns &&
  3745             !t.isPrimitive() &&
  3746             !s.isPrimitive() &&
  3747             isAssignable(t, s, warner);
  3749     // </editor-fold>
  3751     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3752     /**
  3753      * Return the class that boxes the given primitive.
  3754      */
  3755     public ClassSymbol boxedClass(Type t) {
  3756         return reader.enterClass(syms.boxedName[t.getTag().ordinal()]);
  3759     /**
  3760      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3761      */
  3762     public Type boxedTypeOrType(Type t) {
  3763         return t.isPrimitive() ?
  3764             boxedClass(t).type :
  3765             t;
  3768     /**
  3769      * Return the primitive type corresponding to a boxed type.
  3770      */
  3771     public Type unboxedType(Type t) {
  3772         if (allowBoxing) {
  3773             for (int i=0; i<syms.boxedName.length; i++) {
  3774                 Name box = syms.boxedName[i];
  3775                 if (box != null &&
  3776                     asSuper(t, reader.enterClass(box)) != null)
  3777                     return syms.typeOfTag[i];
  3780         return Type.noType;
  3783     /**
  3784      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3785      */
  3786     public Type unboxedTypeOrType(Type t) {
  3787         Type unboxedType = unboxedType(t);
  3788         return unboxedType.hasTag(NONE) ? t : unboxedType;
  3790     // </editor-fold>
  3792     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3793     /*
  3794      * JLS 5.1.10 Capture Conversion:
  3796      * Let G name a generic type declaration with n formal type
  3797      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3798      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3799      * where, for 1 <= i <= n:
  3801      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3802      *   Si is a fresh type variable whose upper bound is
  3803      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3804      *   type.
  3806      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3807      *   then Si is a fresh type variable whose upper bound is
  3808      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3809      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3810      *   a compile-time error if for any two classes (not interfaces)
  3811      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3813      * + If Ti is a wildcard type argument of the form ? super Bi,
  3814      *   then Si is a fresh type variable whose upper bound is
  3815      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3817      * + Otherwise, Si = Ti.
  3819      * Capture conversion on any type other than a parameterized type
  3820      * (4.5) acts as an identity conversion (5.1.1). Capture
  3821      * conversions never require a special action at run time and
  3822      * therefore never throw an exception at run time.
  3824      * Capture conversion is not applied recursively.
  3825      */
  3826     /**
  3827      * Capture conversion as specified by the JLS.
  3828      */
  3830     public List<Type> capture(List<Type> ts) {
  3831         List<Type> buf = List.nil();
  3832         for (Type t : ts) {
  3833             buf = buf.prepend(capture(t));
  3835         return buf.reverse();
  3837     public Type capture(Type t) {
  3838         if (!t.hasTag(CLASS))
  3839             return t;
  3840         if (t.getEnclosingType() != Type.noType) {
  3841             Type capturedEncl = capture(t.getEnclosingType());
  3842             if (capturedEncl != t.getEnclosingType()) {
  3843                 Type type1 = memberType(capturedEncl, t.tsym);
  3844                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3847         t = t.unannotatedType();
  3848         ClassType cls = (ClassType)t;
  3849         if (cls.isRaw() || !cls.isParameterized())
  3850             return cls;
  3852         ClassType G = (ClassType)cls.asElement().asType();
  3853         List<Type> A = G.getTypeArguments();
  3854         List<Type> T = cls.getTypeArguments();
  3855         List<Type> S = freshTypeVariables(T);
  3857         List<Type> currentA = A;
  3858         List<Type> currentT = T;
  3859         List<Type> currentS = S;
  3860         boolean captured = false;
  3861         while (!currentA.isEmpty() &&
  3862                !currentT.isEmpty() &&
  3863                !currentS.isEmpty()) {
  3864             if (currentS.head != currentT.head) {
  3865                 captured = true;
  3866                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
  3867                 Type Ui = currentA.head.getUpperBound();
  3868                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
  3869                 if (Ui == null)
  3870                     Ui = syms.objectType;
  3871                 switch (Ti.kind) {
  3872                 case UNBOUND:
  3873                     Si.bound = subst(Ui, A, S);
  3874                     Si.lower = syms.botType;
  3875                     break;
  3876                 case EXTENDS:
  3877                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3878                     Si.lower = syms.botType;
  3879                     break;
  3880                 case SUPER:
  3881                     Si.bound = subst(Ui, A, S);
  3882                     Si.lower = Ti.getSuperBound();
  3883                     break;
  3885                 if (Si.bound == Si.lower)
  3886                     currentS.head = Si.bound;
  3888             currentA = currentA.tail;
  3889             currentT = currentT.tail;
  3890             currentS = currentS.tail;
  3892         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3893             return erasure(t); // some "rare" type involved
  3895         if (captured)
  3896             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3897         else
  3898             return t;
  3900     // where
  3901         public List<Type> freshTypeVariables(List<Type> types) {
  3902             ListBuffer<Type> result = lb();
  3903             for (Type t : types) {
  3904                 if (t.hasTag(WILDCARD)) {
  3905                     t = t.unannotatedType();
  3906                     Type bound = ((WildcardType)t).getExtendsBound();
  3907                     if (bound == null)
  3908                         bound = syms.objectType;
  3909                     result.append(new CapturedType(capturedName,
  3910                                                    syms.noSymbol,
  3911                                                    bound,
  3912                                                    syms.botType,
  3913                                                    (WildcardType)t));
  3914                 } else {
  3915                     result.append(t);
  3918             return result.toList();
  3920     // </editor-fold>
  3922     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3923     private List<Type> upperBounds(List<Type> ss) {
  3924         if (ss.isEmpty()) return ss;
  3925         Type head = upperBound(ss.head);
  3926         List<Type> tail = upperBounds(ss.tail);
  3927         if (head != ss.head || tail != ss.tail)
  3928             return tail.prepend(head);
  3929         else
  3930             return ss;
  3933     private boolean sideCast(Type from, Type to, Warner warn) {
  3934         // We are casting from type $from$ to type $to$, which are
  3935         // non-final unrelated types.  This method
  3936         // tries to reject a cast by transferring type parameters
  3937         // from $to$ to $from$ by common superinterfaces.
  3938         boolean reverse = false;
  3939         Type target = to;
  3940         if ((to.tsym.flags() & INTERFACE) == 0) {
  3941             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3942             reverse = true;
  3943             to = from;
  3944             from = target;
  3946         List<Type> commonSupers = superClosure(to, erasure(from));
  3947         boolean giveWarning = commonSupers.isEmpty();
  3948         // The arguments to the supers could be unified here to
  3949         // get a more accurate analysis
  3950         while (commonSupers.nonEmpty()) {
  3951             Type t1 = asSuper(from, commonSupers.head.tsym);
  3952             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3953             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3954                 return false;
  3955             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3956             commonSupers = commonSupers.tail;
  3958         if (giveWarning && !isReifiable(reverse ? from : to))
  3959             warn.warn(LintCategory.UNCHECKED);
  3960         if (!allowCovariantReturns)
  3961             // reject if there is a common method signature with
  3962             // incompatible return types.
  3963             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3964         return true;
  3967     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3968         // We are casting from type $from$ to type $to$, which are
  3969         // unrelated types one of which is final and the other of
  3970         // which is an interface.  This method
  3971         // tries to reject a cast by transferring type parameters
  3972         // from the final class to the interface.
  3973         boolean reverse = false;
  3974         Type target = to;
  3975         if ((to.tsym.flags() & INTERFACE) == 0) {
  3976             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3977             reverse = true;
  3978             to = from;
  3979             from = target;
  3981         Assert.check((from.tsym.flags() & FINAL) != 0);
  3982         Type t1 = asSuper(from, to.tsym);
  3983         if (t1 == null) return false;
  3984         Type t2 = to;
  3985         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3986             return false;
  3987         if (!allowCovariantReturns)
  3988             // reject if there is a common method signature with
  3989             // incompatible return types.
  3990             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3991         if (!isReifiable(target) &&
  3992             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3993             warn.warn(LintCategory.UNCHECKED);
  3994         return true;
  3997     private boolean giveWarning(Type from, Type to) {
  3998         List<Type> bounds = to.isCompound() ?
  3999                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
  4000         for (Type b : bounds) {
  4001             Type subFrom = asSub(from, b.tsym);
  4002             if (b.isParameterized() &&
  4003                     (!(isUnbounded(b) ||
  4004                     isSubtype(from, b) ||
  4005                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
  4006                 return true;
  4009         return false;
  4012     private List<Type> superClosure(Type t, Type s) {
  4013         List<Type> cl = List.nil();
  4014         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  4015             if (isSubtype(s, erasure(l.head))) {
  4016                 cl = insert(cl, l.head);
  4017             } else {
  4018                 cl = union(cl, superClosure(l.head, s));
  4021         return cl;
  4024     private boolean containsTypeEquivalent(Type t, Type s) {
  4025         return
  4026             isSameType(t, s) || // shortcut
  4027             containsType(t, s) && containsType(s, t);
  4030     // <editor-fold defaultstate="collapsed" desc="adapt">
  4031     /**
  4032      * Adapt a type by computing a substitution which maps a source
  4033      * type to a target type.
  4035      * @param source    the source type
  4036      * @param target    the target type
  4037      * @param from      the type variables of the computed substitution
  4038      * @param to        the types of the computed substitution.
  4039      */
  4040     public void adapt(Type source,
  4041                        Type target,
  4042                        ListBuffer<Type> from,
  4043                        ListBuffer<Type> to) throws AdaptFailure {
  4044         new Adapter(from, to).adapt(source, target);
  4047     class Adapter extends SimpleVisitor<Void, Type> {
  4049         ListBuffer<Type> from;
  4050         ListBuffer<Type> to;
  4051         Map<Symbol,Type> mapping;
  4053         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  4054             this.from = from;
  4055             this.to = to;
  4056             mapping = new HashMap<Symbol,Type>();
  4059         public void adapt(Type source, Type target) throws AdaptFailure {
  4060             visit(source, target);
  4061             List<Type> fromList = from.toList();
  4062             List<Type> toList = to.toList();
  4063             while (!fromList.isEmpty()) {
  4064                 Type val = mapping.get(fromList.head.tsym);
  4065                 if (toList.head != val)
  4066                     toList.head = val;
  4067                 fromList = fromList.tail;
  4068                 toList = toList.tail;
  4072         @Override
  4073         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  4074             if (target.hasTag(CLASS))
  4075                 adaptRecursive(source.allparams(), target.allparams());
  4076             return null;
  4079         @Override
  4080         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  4081             if (target.hasTag(ARRAY))
  4082                 adaptRecursive(elemtype(source), elemtype(target));
  4083             return null;
  4086         @Override
  4087         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  4088             if (source.isExtendsBound())
  4089                 adaptRecursive(upperBound(source), upperBound(target));
  4090             else if (source.isSuperBound())
  4091                 adaptRecursive(lowerBound(source), lowerBound(target));
  4092             return null;
  4095         @Override
  4096         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  4097             // Check to see if there is
  4098             // already a mapping for $source$, in which case
  4099             // the old mapping will be merged with the new
  4100             Type val = mapping.get(source.tsym);
  4101             if (val != null) {
  4102                 if (val.isSuperBound() && target.isSuperBound()) {
  4103                     val = isSubtype(lowerBound(val), lowerBound(target))
  4104                         ? target : val;
  4105                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  4106                     val = isSubtype(upperBound(val), upperBound(target))
  4107                         ? val : target;
  4108                 } else if (!isSameType(val, target)) {
  4109                     throw new AdaptFailure();
  4111             } else {
  4112                 val = target;
  4113                 from.append(source);
  4114                 to.append(target);
  4116             mapping.put(source.tsym, val);
  4117             return null;
  4120         @Override
  4121         public Void visitType(Type source, Type target) {
  4122             return null;
  4125         private Set<TypePair> cache = new HashSet<TypePair>();
  4127         private void adaptRecursive(Type source, Type target) {
  4128             TypePair pair = new TypePair(source, target);
  4129             if (cache.add(pair)) {
  4130                 try {
  4131                     visit(source, target);
  4132                 } finally {
  4133                     cache.remove(pair);
  4138         private void adaptRecursive(List<Type> source, List<Type> target) {
  4139             if (source.length() == target.length()) {
  4140                 while (source.nonEmpty()) {
  4141                     adaptRecursive(source.head, target.head);
  4142                     source = source.tail;
  4143                     target = target.tail;
  4149     public static class AdaptFailure extends RuntimeException {
  4150         static final long serialVersionUID = -7490231548272701566L;
  4153     private void adaptSelf(Type t,
  4154                            ListBuffer<Type> from,
  4155                            ListBuffer<Type> to) {
  4156         try {
  4157             //if (t.tsym.type != t)
  4158                 adapt(t.tsym.type, t, from, to);
  4159         } catch (AdaptFailure ex) {
  4160             // Adapt should never fail calculating a mapping from
  4161             // t.tsym.type to t as there can be no merge problem.
  4162             throw new AssertionError(ex);
  4165     // </editor-fold>
  4167     /**
  4168      * Rewrite all type variables (universal quantifiers) in the given
  4169      * type to wildcards (existential quantifiers).  This is used to
  4170      * determine if a cast is allowed.  For example, if high is true
  4171      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4172      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4173      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4174      * List<Integer>} with a warning.
  4175      * @param t a type
  4176      * @param high if true return an upper bound; otherwise a lower
  4177      * bound
  4178      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4179      * otherwise rewrite all type variables
  4180      * @return the type rewritten with wildcards (existential
  4181      * quantifiers) only
  4182      */
  4183     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4184         return new Rewriter(high, rewriteTypeVars).visit(t);
  4187     class Rewriter extends UnaryVisitor<Type> {
  4189         boolean high;
  4190         boolean rewriteTypeVars;
  4192         Rewriter(boolean high, boolean rewriteTypeVars) {
  4193             this.high = high;
  4194             this.rewriteTypeVars = rewriteTypeVars;
  4197         @Override
  4198         public Type visitClassType(ClassType t, Void s) {
  4199             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4200             boolean changed = false;
  4201             for (Type arg : t.allparams()) {
  4202                 Type bound = visit(arg);
  4203                 if (arg != bound) {
  4204                     changed = true;
  4206                 rewritten.append(bound);
  4208             if (changed)
  4209                 return subst(t.tsym.type,
  4210                         t.tsym.type.allparams(),
  4211                         rewritten.toList());
  4212             else
  4213                 return t;
  4216         public Type visitType(Type t, Void s) {
  4217             return high ? upperBound(t) : lowerBound(t);
  4220         @Override
  4221         public Type visitCapturedType(CapturedType t, Void s) {
  4222             Type w_bound = t.wildcard.type;
  4223             Type bound = w_bound.contains(t) ?
  4224                         erasure(w_bound) :
  4225                         visit(w_bound);
  4226             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4229         @Override
  4230         public Type visitTypeVar(TypeVar t, Void s) {
  4231             if (rewriteTypeVars) {
  4232                 Type bound = t.bound.contains(t) ?
  4233                         erasure(t.bound) :
  4234                         visit(t.bound);
  4235                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4236             } else {
  4237                 return t;
  4241         @Override
  4242         public Type visitWildcardType(WildcardType t, Void s) {
  4243             Type bound2 = visit(t.type);
  4244             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4247         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4248             switch (bk) {
  4249                case EXTENDS: return high ?
  4250                        makeExtendsWildcard(B(bound), formal) :
  4251                        makeExtendsWildcard(syms.objectType, formal);
  4252                case SUPER: return high ?
  4253                        makeSuperWildcard(syms.botType, formal) :
  4254                        makeSuperWildcard(B(bound), formal);
  4255                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4256                default:
  4257                    Assert.error("Invalid bound kind " + bk);
  4258                    return null;
  4262         Type B(Type t) {
  4263             while (t.hasTag(WILDCARD)) {
  4264                 WildcardType w = (WildcardType)t.unannotatedType();
  4265                 t = high ?
  4266                     w.getExtendsBound() :
  4267                     w.getSuperBound();
  4268                 if (t == null) {
  4269                     t = high ? syms.objectType : syms.botType;
  4272             return t;
  4277     /**
  4278      * Create a wildcard with the given upper (extends) bound; create
  4279      * an unbounded wildcard if bound is Object.
  4281      * @param bound the upper bound
  4282      * @param formal the formal type parameter that will be
  4283      * substituted by the wildcard
  4284      */
  4285     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4286         if (bound == syms.objectType) {
  4287             return new WildcardType(syms.objectType,
  4288                                     BoundKind.UNBOUND,
  4289                                     syms.boundClass,
  4290                                     formal);
  4291         } else {
  4292             return new WildcardType(bound,
  4293                                     BoundKind.EXTENDS,
  4294                                     syms.boundClass,
  4295                                     formal);
  4299     /**
  4300      * Create a wildcard with the given lower (super) bound; create an
  4301      * unbounded wildcard if bound is bottom (type of {@code null}).
  4303      * @param bound the lower bound
  4304      * @param formal the formal type parameter that will be
  4305      * substituted by the wildcard
  4306      */
  4307     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4308         if (bound.hasTag(BOT)) {
  4309             return new WildcardType(syms.objectType,
  4310                                     BoundKind.UNBOUND,
  4311                                     syms.boundClass,
  4312                                     formal);
  4313         } else {
  4314             return new WildcardType(bound,
  4315                                     BoundKind.SUPER,
  4316                                     syms.boundClass,
  4317                                     formal);
  4321     /**
  4322      * A wrapper for a type that allows use in sets.
  4323      */
  4324     public static class UniqueType {
  4325         public final Type type;
  4326         final Types types;
  4328         public UniqueType(Type type, Types types) {
  4329             this.type = type;
  4330             this.types = types;
  4333         public int hashCode() {
  4334             return types.hashCode(type);
  4337         public boolean equals(Object obj) {
  4338             return (obj instanceof UniqueType) &&
  4339                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
  4342         public String toString() {
  4343             return type.toString();
  4347     // </editor-fold>
  4349     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4350     /**
  4351      * A default visitor for types.  All visitor methods except
  4352      * visitType are implemented by delegating to visitType.  Concrete
  4353      * subclasses must provide an implementation of visitType and can
  4354      * override other methods as needed.
  4356      * @param <R> the return type of the operation implemented by this
  4357      * visitor; use Void if no return type is needed.
  4358      * @param <S> the type of the second argument (the first being the
  4359      * type itself) of the operation implemented by this visitor; use
  4360      * Void if a second argument is not needed.
  4361      */
  4362     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4363         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4364         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4365         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4366         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4367         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4368         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4369         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4370         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4371         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4372         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4373         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4374         // Pretend annotations don't exist
  4375         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
  4378     /**
  4379      * A default visitor for symbols.  All visitor methods except
  4380      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4381      * subclasses must provide an implementation of visitSymbol and can
  4382      * override other methods as needed.
  4384      * @param <R> the return type of the operation implemented by this
  4385      * visitor; use Void if no return type is needed.
  4386      * @param <S> the type of the second argument (the first being the
  4387      * symbol itself) of the operation implemented by this visitor; use
  4388      * Void if a second argument is not needed.
  4389      */
  4390     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4391         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4392         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4393         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4394         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4395         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4396         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4397         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4400     /**
  4401      * A <em>simple</em> visitor for types.  This visitor is simple as
  4402      * captured wildcards, for-all types (generic methods), and
  4403      * undetermined type variables (part of inference) are hidden.
  4404      * Captured wildcards are hidden by treating them as type
  4405      * variables and the rest are hidden by visiting their qtypes.
  4407      * @param <R> the return type of the operation implemented by this
  4408      * visitor; use Void if no return type is needed.
  4409      * @param <S> the type of the second argument (the first being the
  4410      * type itself) of the operation implemented by this visitor; use
  4411      * Void if a second argument is not needed.
  4412      */
  4413     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4414         @Override
  4415         public R visitCapturedType(CapturedType t, S s) {
  4416             return visitTypeVar(t, s);
  4418         @Override
  4419         public R visitForAll(ForAll t, S s) {
  4420             return visit(t.qtype, s);
  4422         @Override
  4423         public R visitUndetVar(UndetVar t, S s) {
  4424             return visit(t.qtype, s);
  4428     /**
  4429      * A plain relation on types.  That is a 2-ary function on the
  4430      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4431      * <!-- In plain text: Type x Type -> Boolean -->
  4432      */
  4433     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4435     /**
  4436      * A convenience visitor for implementing operations that only
  4437      * require one argument (the type itself), that is, unary
  4438      * operations.
  4440      * @param <R> the return type of the operation implemented by this
  4441      * visitor; use Void if no return type is needed.
  4442      */
  4443     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4444         final public R visit(Type t) { return t.accept(this, null); }
  4447     /**
  4448      * A visitor for implementing a mapping from types to types.  The
  4449      * default behavior of this class is to implement the identity
  4450      * mapping (mapping a type to itself).  This can be overridden in
  4451      * subclasses.
  4453      * @param <S> the type of the second argument (the first being the
  4454      * type itself) of this mapping; use Void if a second argument is
  4455      * not needed.
  4456      */
  4457     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4458         final public Type visit(Type t) { return t.accept(this, null); }
  4459         public Type visitType(Type t, S s) { return t; }
  4461     // </editor-fold>
  4464     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4466     public RetentionPolicy getRetention(Attribute.Compound a) {
  4467         return getRetention(a.type.tsym);
  4470     public RetentionPolicy getRetention(Symbol sym) {
  4471         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4472         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4473         if (c != null) {
  4474             Attribute value = c.member(names.value);
  4475             if (value != null && value instanceof Attribute.Enum) {
  4476                 Name levelName = ((Attribute.Enum)value).value.name;
  4477                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4478                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4479                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4480                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4483         return vis;
  4485     // </editor-fold>
  4487     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
  4489     public static abstract class SignatureGenerator {
  4491         private final Types types;
  4493         protected abstract void append(char ch);
  4494         protected abstract void append(byte[] ba);
  4495         protected abstract void append(Name name);
  4496         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
  4498         protected SignatureGenerator(Types types) {
  4499             this.types = types;
  4502         /**
  4503          * Assemble signature of given type in string buffer.
  4504          */
  4505         public void assembleSig(Type type) {
  4506             type = type.unannotatedType();
  4507             switch (type.getTag()) {
  4508                 case BYTE:
  4509                     append('B');
  4510                     break;
  4511                 case SHORT:
  4512                     append('S');
  4513                     break;
  4514                 case CHAR:
  4515                     append('C');
  4516                     break;
  4517                 case INT:
  4518                     append('I');
  4519                     break;
  4520                 case LONG:
  4521                     append('J');
  4522                     break;
  4523                 case FLOAT:
  4524                     append('F');
  4525                     break;
  4526                 case DOUBLE:
  4527                     append('D');
  4528                     break;
  4529                 case BOOLEAN:
  4530                     append('Z');
  4531                     break;
  4532                 case VOID:
  4533                     append('V');
  4534                     break;
  4535                 case CLASS:
  4536                     append('L');
  4537                     assembleClassSig(type);
  4538                     append(';');
  4539                     break;
  4540                 case ARRAY:
  4541                     ArrayType at = (ArrayType) type;
  4542                     append('[');
  4543                     assembleSig(at.elemtype);
  4544                     break;
  4545                 case METHOD:
  4546                     MethodType mt = (MethodType) type;
  4547                     append('(');
  4548                     assembleSig(mt.argtypes);
  4549                     append(')');
  4550                     assembleSig(mt.restype);
  4551                     if (hasTypeVar(mt.thrown)) {
  4552                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
  4553                             append('^');
  4554                             assembleSig(l.head);
  4557                     break;
  4558                 case WILDCARD: {
  4559                     Type.WildcardType ta = (Type.WildcardType) type;
  4560                     switch (ta.kind) {
  4561                         case SUPER:
  4562                             append('-');
  4563                             assembleSig(ta.type);
  4564                             break;
  4565                         case EXTENDS:
  4566                             append('+');
  4567                             assembleSig(ta.type);
  4568                             break;
  4569                         case UNBOUND:
  4570                             append('*');
  4571                             break;
  4572                         default:
  4573                             throw new AssertionError(ta.kind);
  4575                     break;
  4577                 case TYPEVAR:
  4578                     append('T');
  4579                     append(type.tsym.name);
  4580                     append(';');
  4581                     break;
  4582                 case FORALL:
  4583                     Type.ForAll ft = (Type.ForAll) type;
  4584                     assembleParamsSig(ft.tvars);
  4585                     assembleSig(ft.qtype);
  4586                     break;
  4587                 default:
  4588                     throw new AssertionError("typeSig " + type.getTag());
  4592         public boolean hasTypeVar(List<Type> l) {
  4593             while (l.nonEmpty()) {
  4594                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
  4595                     return true;
  4597                 l = l.tail;
  4599             return false;
  4602         public void assembleClassSig(Type type) {
  4603             type = type.unannotatedType();
  4604             ClassType ct = (ClassType) type;
  4605             ClassSymbol c = (ClassSymbol) ct.tsym;
  4606             classReference(c);
  4607             Type outer = ct.getEnclosingType();
  4608             if (outer.allparams().nonEmpty()) {
  4609                 boolean rawOuter =
  4610                         c.owner.kind == Kinds.MTH || // either a local class
  4611                         c.name == types.names.empty; // or anonymous
  4612                 assembleClassSig(rawOuter
  4613                         ? types.erasure(outer)
  4614                         : outer);
  4615                 append('.');
  4616                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
  4617                 append(rawOuter
  4618                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
  4619                         : c.name);
  4620             } else {
  4621                 append(externalize(c.flatname));
  4623             if (ct.getTypeArguments().nonEmpty()) {
  4624                 append('<');
  4625                 assembleSig(ct.getTypeArguments());
  4626                 append('>');
  4630         public void assembleParamsSig(List<Type> typarams) {
  4631             append('<');
  4632             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
  4633                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
  4634                 append(tvar.tsym.name);
  4635                 List<Type> bounds = types.getBounds(tvar);
  4636                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
  4637                     append(':');
  4639                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
  4640                     append(':');
  4641                     assembleSig(l.head);
  4644             append('>');
  4647         private void assembleSig(List<Type> types) {
  4648             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
  4649                 assembleSig(ts.head);
  4653     // </editor-fold>

mercurial