src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 29 Mar 2011 16:40:51 +0100

author
mcimadamore
date
Tue, 29 Mar 2011 16:40:51 +0100
changeset 950
f5b5112ee1cc
parent 949
ddec8c712e85
child 951
de1c65ecfec2
permissions
-rw-r--r--

7030150: Type inference for generic instance creation failed for formal type parameter
Summary: Problem when explicit generic constructor type-arguments are used in conjunction with diamond
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.tools.JavaFileObject;
    33 import com.sun.tools.javac.code.*;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.jvm.Target;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Symbol.*;
    43 import com.sun.tools.javac.tree.JCTree.*;
    44 import com.sun.tools.javac.code.Type.*;
    46 import com.sun.source.tree.IdentifierTree;
    47 import com.sun.source.tree.MemberSelectTree;
    48 import com.sun.source.tree.TreeVisitor;
    49 import com.sun.source.util.SimpleTreeVisitor;
    51 import static com.sun.tools.javac.code.Flags.*;
    52 import static com.sun.tools.javac.code.Kinds.*;
    53 import static com.sun.tools.javac.code.TypeTags.*;
    55 /** This is the main context-dependent analysis phase in GJC. It
    56  *  encompasses name resolution, type checking and constant folding as
    57  *  subtasks. Some subtasks involve auxiliary classes.
    58  *  @see Check
    59  *  @see Resolve
    60  *  @see ConstFold
    61  *  @see Infer
    62  *
    63  *  <p><b>This is NOT part of any supported API.
    64  *  If you write code that depends on this, you do so at your own risk.
    65  *  This code and its internal interfaces are subject to change or
    66  *  deletion without notice.</b>
    67  */
    68 public class Attr extends JCTree.Visitor {
    69     protected static final Context.Key<Attr> attrKey =
    70         new Context.Key<Attr>();
    72     final Names names;
    73     final Log log;
    74     final Symtab syms;
    75     final Resolve rs;
    76     final Infer infer;
    77     final Check chk;
    78     final MemberEnter memberEnter;
    79     final TreeMaker make;
    80     final ConstFold cfolder;
    81     final Enter enter;
    82     final Target target;
    83     final Types types;
    84     final JCDiagnostic.Factory diags;
    85     final Annotate annotate;
    86     final DeferredLintHandler deferredLintHandler;
    88     public static Attr instance(Context context) {
    89         Attr instance = context.get(attrKey);
    90         if (instance == null)
    91             instance = new Attr(context);
    92         return instance;
    93     }
    95     protected Attr(Context context) {
    96         context.put(attrKey, this);
    98         names = Names.instance(context);
    99         log = Log.instance(context);
   100         syms = Symtab.instance(context);
   101         rs = Resolve.instance(context);
   102         chk = Check.instance(context);
   103         memberEnter = MemberEnter.instance(context);
   104         make = TreeMaker.instance(context);
   105         enter = Enter.instance(context);
   106         infer = Infer.instance(context);
   107         cfolder = ConstFold.instance(context);
   108         target = Target.instance(context);
   109         types = Types.instance(context);
   110         diags = JCDiagnostic.Factory.instance(context);
   111         annotate = Annotate.instance(context);
   112         deferredLintHandler = DeferredLintHandler.instance(context);
   114         Options options = Options.instance(context);
   116         Source source = Source.instance(context);
   117         allowGenerics = source.allowGenerics();
   118         allowVarargs = source.allowVarargs();
   119         allowEnums = source.allowEnums();
   120         allowBoxing = source.allowBoxing();
   121         allowCovariantReturns = source.allowCovariantReturns();
   122         allowAnonOuterThis = source.allowAnonOuterThis();
   123         allowStringsInSwitch = source.allowStringsInSwitch();
   124         sourceName = source.name;
   125         relax = (options.isSet("-retrofit") ||
   126                  options.isSet("-relax"));
   127         findDiamonds = options.get("findDiamond") != null &&
   128                  source.allowDiamond();
   129         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   130     }
   132     /** Switch: relax some constraints for retrofit mode.
   133      */
   134     boolean relax;
   136     /** Switch: support generics?
   137      */
   138     boolean allowGenerics;
   140     /** Switch: allow variable-arity methods.
   141      */
   142     boolean allowVarargs;
   144     /** Switch: support enums?
   145      */
   146     boolean allowEnums;
   148     /** Switch: support boxing and unboxing?
   149      */
   150     boolean allowBoxing;
   152     /** Switch: support covariant result types?
   153      */
   154     boolean allowCovariantReturns;
   156     /** Switch: allow references to surrounding object from anonymous
   157      * objects during constructor call?
   158      */
   159     boolean allowAnonOuterThis;
   161     /** Switch: generates a warning if diamond can be safely applied
   162      *  to a given new expression
   163      */
   164     boolean findDiamonds;
   166     /**
   167      * Internally enables/disables diamond finder feature
   168      */
   169     static final boolean allowDiamondFinder = true;
   171     /**
   172      * Switch: warn about use of variable before declaration?
   173      * RFE: 6425594
   174      */
   175     boolean useBeforeDeclarationWarning;
   177     /**
   178      * Switch: allow strings in switch?
   179      */
   180     boolean allowStringsInSwitch;
   182     /**
   183      * Switch: name of source level; used for error reporting.
   184      */
   185     String sourceName;
   187     /** Check kind and type of given tree against protokind and prototype.
   188      *  If check succeeds, store type in tree and return it.
   189      *  If check fails, store errType in tree and return it.
   190      *  No checks are performed if the prototype is a method type.
   191      *  It is not necessary in this case since we know that kind and type
   192      *  are correct.
   193      *
   194      *  @param tree     The tree whose kind and type is checked
   195      *  @param owntype  The computed type of the tree
   196      *  @param ownkind  The computed kind of the tree
   197      *  @param pkind    The expected kind (or: protokind) of the tree
   198      *  @param pt       The expected type (or: prototype) of the tree
   199      */
   200     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
   201         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
   202             if ((ownkind & ~pkind) == 0) {
   203                 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
   204             } else {
   205                 log.error(tree.pos(), "unexpected.type",
   206                           kindNames(pkind),
   207                           kindName(ownkind));
   208                 owntype = types.createErrorType(owntype);
   209             }
   210         }
   211         tree.type = owntype;
   212         return owntype;
   213     }
   215     /** Is given blank final variable assignable, i.e. in a scope where it
   216      *  may be assigned to even though it is final?
   217      *  @param v      The blank final variable.
   218      *  @param env    The current environment.
   219      */
   220     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   221         Symbol owner = env.info.scope.owner;
   222            // owner refers to the innermost variable, method or
   223            // initializer block declaration at this point.
   224         return
   225             v.owner == owner
   226             ||
   227             ((owner.name == names.init ||    // i.e. we are in a constructor
   228               owner.kind == VAR ||           // i.e. we are in a variable initializer
   229               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   230              &&
   231              v.owner == owner.owner
   232              &&
   233              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   234     }
   236     /** Check that variable can be assigned to.
   237      *  @param pos    The current source code position.
   238      *  @param v      The assigned varaible
   239      *  @param base   If the variable is referred to in a Select, the part
   240      *                to the left of the `.', null otherwise.
   241      *  @param env    The current environment.
   242      */
   243     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   244         if ((v.flags() & FINAL) != 0 &&
   245             ((v.flags() & HASINIT) != 0
   246              ||
   247              !((base == null ||
   248                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
   249                isAssignableAsBlankFinal(v, env)))) {
   250             if (v.isResourceVariable()) { //TWR resource
   251                 log.error(pos, "try.resource.may.not.be.assigned", v);
   252             } else {
   253                 log.error(pos, "cant.assign.val.to.final.var", v);
   254             }
   255         } else if ((v.flags() & EFFECTIVELY_FINAL) != 0) {
   256             v.flags_field &= ~EFFECTIVELY_FINAL;
   257         }
   258     }
   260     /** Does tree represent a static reference to an identifier?
   261      *  It is assumed that tree is either a SELECT or an IDENT.
   262      *  We have to weed out selects from non-type names here.
   263      *  @param tree    The candidate tree.
   264      */
   265     boolean isStaticReference(JCTree tree) {
   266         if (tree.getTag() == JCTree.SELECT) {
   267             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   268             if (lsym == null || lsym.kind != TYP) {
   269                 return false;
   270             }
   271         }
   272         return true;
   273     }
   275     /** Is this symbol a type?
   276      */
   277     static boolean isType(Symbol sym) {
   278         return sym != null && sym.kind == TYP;
   279     }
   281     /** The current `this' symbol.
   282      *  @param env    The current environment.
   283      */
   284     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   285         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   286     }
   288     /** Attribute a parsed identifier.
   289      * @param tree Parsed identifier name
   290      * @param topLevel The toplevel to use
   291      */
   292     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   293         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   294         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   295                                            syms.errSymbol.name,
   296                                            null, null, null, null);
   297         localEnv.enclClass.sym = syms.errSymbol;
   298         return tree.accept(identAttributer, localEnv);
   299     }
   300     // where
   301         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   302         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   303             @Override
   304             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   305                 Symbol site = visit(node.getExpression(), env);
   306                 if (site.kind == ERR)
   307                     return site;
   308                 Name name = (Name)node.getIdentifier();
   309                 if (site.kind == PCK) {
   310                     env.toplevel.packge = (PackageSymbol)site;
   311                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   312                 } else {
   313                     env.enclClass.sym = (ClassSymbol)site;
   314                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   315                 }
   316             }
   318             @Override
   319             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   320                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   321             }
   322         }
   324     public Type coerce(Type etype, Type ttype) {
   325         return cfolder.coerce(etype, ttype);
   326     }
   328     public Type attribType(JCTree node, TypeSymbol sym) {
   329         Env<AttrContext> env = enter.typeEnvs.get(sym);
   330         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   331         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
   332     }
   334     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   335         breakTree = tree;
   336         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   337         try {
   338             attribExpr(expr, env);
   339         } catch (BreakAttr b) {
   340             return b.env;
   341         } catch (AssertionError ae) {
   342             if (ae.getCause() instanceof BreakAttr) {
   343                 return ((BreakAttr)(ae.getCause())).env;
   344             } else {
   345                 throw ae;
   346             }
   347         } finally {
   348             breakTree = null;
   349             log.useSource(prev);
   350         }
   351         return env;
   352     }
   354     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   355         breakTree = tree;
   356         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   357         try {
   358             attribStat(stmt, env);
   359         } catch (BreakAttr b) {
   360             return b.env;
   361         } catch (AssertionError ae) {
   362             if (ae.getCause() instanceof BreakAttr) {
   363                 return ((BreakAttr)(ae.getCause())).env;
   364             } else {
   365                 throw ae;
   366             }
   367         } finally {
   368             breakTree = null;
   369             log.useSource(prev);
   370         }
   371         return env;
   372     }
   374     private JCTree breakTree = null;
   376     private static class BreakAttr extends RuntimeException {
   377         static final long serialVersionUID = -6924771130405446405L;
   378         private Env<AttrContext> env;
   379         private BreakAttr(Env<AttrContext> env) {
   380             this.env = env;
   381         }
   382     }
   385 /* ************************************************************************
   386  * Visitor methods
   387  *************************************************************************/
   389     /** Visitor argument: the current environment.
   390      */
   391     Env<AttrContext> env;
   393     /** Visitor argument: the currently expected proto-kind.
   394      */
   395     int pkind;
   397     /** Visitor argument: the currently expected proto-type.
   398      */
   399     Type pt;
   401     /** Visitor argument: the error key to be generated when a type error occurs
   402      */
   403     String errKey;
   405     /** Visitor result: the computed type.
   406      */
   407     Type result;
   409     /** Visitor method: attribute a tree, catching any completion failure
   410      *  exceptions. Return the tree's type.
   411      *
   412      *  @param tree    The tree to be visited.
   413      *  @param env     The environment visitor argument.
   414      *  @param pkind   The protokind visitor argument.
   415      *  @param pt      The prototype visitor argument.
   416      */
   417     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
   418         return attribTree(tree, env, pkind, pt, "incompatible.types");
   419     }
   421     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
   422         Env<AttrContext> prevEnv = this.env;
   423         int prevPkind = this.pkind;
   424         Type prevPt = this.pt;
   425         String prevErrKey = this.errKey;
   426         try {
   427             this.env = env;
   428             this.pkind = pkind;
   429             this.pt = pt;
   430             this.errKey = errKey;
   431             tree.accept(this);
   432             if (tree == breakTree)
   433                 throw new BreakAttr(env);
   434             return result;
   435         } catch (CompletionFailure ex) {
   436             tree.type = syms.errType;
   437             return chk.completionError(tree.pos(), ex);
   438         } finally {
   439             this.env = prevEnv;
   440             this.pkind = prevPkind;
   441             this.pt = prevPt;
   442             this.errKey = prevErrKey;
   443         }
   444     }
   446     /** Derived visitor method: attribute an expression tree.
   447      */
   448     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   449         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
   450     }
   452     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
   453         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
   454     }
   456     /** Derived visitor method: attribute an expression tree with
   457      *  no constraints on the computed type.
   458      */
   459     Type attribExpr(JCTree tree, Env<AttrContext> env) {
   460         return attribTree(tree, env, VAL, Type.noType);
   461     }
   463     /** Derived visitor method: attribute a type tree.
   464      */
   465     Type attribType(JCTree tree, Env<AttrContext> env) {
   466         Type result = attribType(tree, env, Type.noType);
   467         return result;
   468     }
   470     /** Derived visitor method: attribute a type tree.
   471      */
   472     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   473         Type result = attribTree(tree, env, TYP, pt);
   474         return result;
   475     }
   477     /** Derived visitor method: attribute a statement or definition tree.
   478      */
   479     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   480         return attribTree(tree, env, NIL, Type.noType);
   481     }
   483     /** Attribute a list of expressions, returning a list of types.
   484      */
   485     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   486         ListBuffer<Type> ts = new ListBuffer<Type>();
   487         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   488             ts.append(attribExpr(l.head, env, pt));
   489         return ts.toList();
   490     }
   492     /** Attribute a list of statements, returning nothing.
   493      */
   494     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   495         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   496             attribStat(l.head, env);
   497     }
   499     /** Attribute the arguments in a method call, returning a list of types.
   500      */
   501     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   502         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   503         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   504             argtypes.append(chk.checkNonVoid(
   505                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
   506         return argtypes.toList();
   507     }
   509     /** Attribute a type argument list, returning a list of types.
   510      *  Caller is responsible for calling checkRefTypes.
   511      */
   512     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   513         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   514         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   515             argtypes.append(attribType(l.head, env));
   516         return argtypes.toList();
   517     }
   519     /** Attribute a type argument list, returning a list of types.
   520      *  Check that all the types are references.
   521      */
   522     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   523         List<Type> types = attribAnyTypes(trees, env);
   524         return chk.checkRefTypes(trees, types);
   525     }
   527     /**
   528      * Attribute type variables (of generic classes or methods).
   529      * Compound types are attributed later in attribBounds.
   530      * @param typarams the type variables to enter
   531      * @param env      the current environment
   532      */
   533     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   534         for (JCTypeParameter tvar : typarams) {
   535             TypeVar a = (TypeVar)tvar.type;
   536             a.tsym.flags_field |= UNATTRIBUTED;
   537             a.bound = Type.noType;
   538             if (!tvar.bounds.isEmpty()) {
   539                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   540                 for (JCExpression bound : tvar.bounds.tail)
   541                     bounds = bounds.prepend(attribType(bound, env));
   542                 types.setBounds(a, bounds.reverse());
   543             } else {
   544                 // if no bounds are given, assume a single bound of
   545                 // java.lang.Object.
   546                 types.setBounds(a, List.of(syms.objectType));
   547             }
   548             a.tsym.flags_field &= ~UNATTRIBUTED;
   549         }
   550         for (JCTypeParameter tvar : typarams)
   551             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   552         attribStats(typarams, env);
   553     }
   555     void attribBounds(List<JCTypeParameter> typarams) {
   556         for (JCTypeParameter typaram : typarams) {
   557             Type bound = typaram.type.getUpperBound();
   558             if (bound != null && bound.tsym instanceof ClassSymbol) {
   559                 ClassSymbol c = (ClassSymbol)bound.tsym;
   560                 if ((c.flags_field & COMPOUND) != 0) {
   561                     Assert.check((c.flags_field & UNATTRIBUTED) != 0, c);
   562                     attribClass(typaram.pos(), c);
   563                 }
   564             }
   565         }
   566     }
   568     /**
   569      * Attribute the type references in a list of annotations.
   570      */
   571     void attribAnnotationTypes(List<JCAnnotation> annotations,
   572                                Env<AttrContext> env) {
   573         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   574             JCAnnotation a = al.head;
   575             attribType(a.annotationType, env);
   576         }
   577     }
   579     /**
   580      * Attribute a "lazy constant value".
   581      *  @param env         The env for the const value
   582      *  @param initializer The initializer for the const value
   583      *  @param type        The expected type, or null
   584      *  @see VarSymbol#setlazyConstValue
   585      */
   586     public Object attribLazyConstantValue(Env<AttrContext> env,
   587                                       JCTree.JCExpression initializer,
   588                                       Type type) {
   590         // in case no lint value has been set up for this env, scan up
   591         // env stack looking for smallest enclosing env for which it is set.
   592         Env<AttrContext> lintEnv = env;
   593         while (lintEnv.info.lint == null)
   594             lintEnv = lintEnv.next;
   596         // Having found the enclosing lint value, we can initialize the lint value for this class
   597         env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.attributes_field, env.info.enclVar.flags());
   599         Lint prevLint = chk.setLint(env.info.lint);
   600         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   602         try {
   603             Type itype = attribExpr(initializer, env, type);
   604             if (itype.constValue() != null)
   605                 return coerce(itype, type).constValue();
   606             else
   607                 return null;
   608         } finally {
   609             env.info.lint = prevLint;
   610             log.useSource(prevSource);
   611         }
   612     }
   614     /** Attribute type reference in an `extends' or `implements' clause.
   615      *  Supertypes of anonymous inner classes are usually already attributed.
   616      *
   617      *  @param tree              The tree making up the type reference.
   618      *  @param env               The environment current at the reference.
   619      *  @param classExpected     true if only a class is expected here.
   620      *  @param interfaceExpected true if only an interface is expected here.
   621      */
   622     Type attribBase(JCTree tree,
   623                     Env<AttrContext> env,
   624                     boolean classExpected,
   625                     boolean interfaceExpected,
   626                     boolean checkExtensible) {
   627         Type t = tree.type != null ?
   628             tree.type :
   629             attribType(tree, env);
   630         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   631     }
   632     Type checkBase(Type t,
   633                    JCTree tree,
   634                    Env<AttrContext> env,
   635                    boolean classExpected,
   636                    boolean interfaceExpected,
   637                    boolean checkExtensible) {
   638         if (t.isErroneous())
   639             return t;
   640         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
   641             // check that type variable is already visible
   642             if (t.getUpperBound() == null) {
   643                 log.error(tree.pos(), "illegal.forward.ref");
   644                 return types.createErrorType(t);
   645             }
   646         } else {
   647             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   648         }
   649         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   650             log.error(tree.pos(), "intf.expected.here");
   651             // return errType is necessary since otherwise there might
   652             // be undetected cycles which cause attribution to loop
   653             return types.createErrorType(t);
   654         } else if (checkExtensible &&
   655                    classExpected &&
   656                    (t.tsym.flags() & INTERFACE) != 0) {
   657                 log.error(tree.pos(), "no.intf.expected.here");
   658             return types.createErrorType(t);
   659         }
   660         if (checkExtensible &&
   661             ((t.tsym.flags() & FINAL) != 0)) {
   662             log.error(tree.pos(),
   663                       "cant.inherit.from.final", t.tsym);
   664         }
   665         chk.checkNonCyclic(tree.pos(), t);
   666         return t;
   667     }
   669     public void visitClassDef(JCClassDecl tree) {
   670         // Local classes have not been entered yet, so we need to do it now:
   671         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   672             enter.classEnter(tree, env);
   674         ClassSymbol c = tree.sym;
   675         if (c == null) {
   676             // exit in case something drastic went wrong during enter.
   677             result = null;
   678         } else {
   679             // make sure class has been completed:
   680             c.complete();
   682             // If this class appears as an anonymous class
   683             // in a superclass constructor call where
   684             // no explicit outer instance is given,
   685             // disable implicit outer instance from being passed.
   686             // (This would be an illegal access to "this before super").
   687             if (env.info.isSelfCall &&
   688                 env.tree.getTag() == JCTree.NEWCLASS &&
   689                 ((JCNewClass) env.tree).encl == null)
   690             {
   691                 c.flags_field |= NOOUTERTHIS;
   692             }
   693             attribClass(tree.pos(), c);
   694             result = tree.type = c.type;
   695         }
   696     }
   698     public void visitMethodDef(JCMethodDecl tree) {
   699         MethodSymbol m = tree.sym;
   701         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
   702         Lint prevLint = chk.setLint(lint);
   703         MethodSymbol prevMethod = chk.setMethod(m);
   704         try {
   705             deferredLintHandler.flush(tree.pos());
   706             chk.checkDeprecatedAnnotation(tree.pos(), m);
   708             attribBounds(tree.typarams);
   710             // If we override any other methods, check that we do so properly.
   711             // JLS ???
   712             if (m.isStatic()) {
   713                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   714             } else {
   715                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   716             }
   717             chk.checkOverride(tree, m);
   719             // Create a new environment with local scope
   720             // for attributing the method.
   721             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   723             localEnv.info.lint = lint;
   725             // Enter all type parameters into the local method scope.
   726             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   727                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   729             ClassSymbol owner = env.enclClass.sym;
   730             if ((owner.flags() & ANNOTATION) != 0 &&
   731                 tree.params.nonEmpty())
   732                 log.error(tree.params.head.pos(),
   733                           "intf.annotation.members.cant.have.params");
   735             // Attribute all value parameters.
   736             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   737                 attribStat(l.head, localEnv);
   738             }
   740             chk.checkVarargsMethodDecl(localEnv, tree);
   742             // Check that type parameters are well-formed.
   743             chk.validate(tree.typarams, localEnv);
   745             // Check that result type is well-formed.
   746             chk.validate(tree.restype, localEnv);
   748             // annotation method checks
   749             if ((owner.flags() & ANNOTATION) != 0) {
   750                 // annotation method cannot have throws clause
   751                 if (tree.thrown.nonEmpty()) {
   752                     log.error(tree.thrown.head.pos(),
   753                             "throws.not.allowed.in.intf.annotation");
   754                 }
   755                 // annotation method cannot declare type-parameters
   756                 if (tree.typarams.nonEmpty()) {
   757                     log.error(tree.typarams.head.pos(),
   758                             "intf.annotation.members.cant.have.type.params");
   759                 }
   760                 // validate annotation method's return type (could be an annotation type)
   761                 chk.validateAnnotationType(tree.restype);
   762                 // ensure that annotation method does not clash with members of Object/Annotation
   763                 chk.validateAnnotationMethod(tree.pos(), m);
   765                 if (tree.defaultValue != null) {
   766                     // if default value is an annotation, check it is a well-formed
   767                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   768                     chk.validateAnnotationTree(tree.defaultValue);
   769                 }
   770             }
   772             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   773                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   775             if (tree.body == null) {
   776                 // Empty bodies are only allowed for
   777                 // abstract, native, or interface methods, or for methods
   778                 // in a retrofit signature class.
   779                 if ((owner.flags() & INTERFACE) == 0 &&
   780                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
   781                     !relax)
   782                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   783                 if (tree.defaultValue != null) {
   784                     if ((owner.flags() & ANNOTATION) == 0)
   785                         log.error(tree.pos(),
   786                                   "default.allowed.in.intf.annotation.member");
   787                 }
   788             } else if ((owner.flags() & INTERFACE) != 0) {
   789                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
   790             } else if ((tree.mods.flags & ABSTRACT) != 0) {
   791                 log.error(tree.pos(), "abstract.meth.cant.have.body");
   792             } else if ((tree.mods.flags & NATIVE) != 0) {
   793                 log.error(tree.pos(), "native.meth.cant.have.body");
   794             } else {
   795                 // Add an implicit super() call unless an explicit call to
   796                 // super(...) or this(...) is given
   797                 // or we are compiling class java.lang.Object.
   798                 if (tree.name == names.init && owner.type != syms.objectType) {
   799                     JCBlock body = tree.body;
   800                     if (body.stats.isEmpty() ||
   801                         !TreeInfo.isSelfCall(body.stats.head)) {
   802                         body.stats = body.stats.
   803                             prepend(memberEnter.SuperCall(make.at(body.pos),
   804                                                           List.<Type>nil(),
   805                                                           List.<JCVariableDecl>nil(),
   806                                                           false));
   807                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   808                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   809                                TreeInfo.isSuperCall(body.stats.head)) {
   810                         // enum constructors are not allowed to call super
   811                         // directly, so make sure there aren't any super calls
   812                         // in enum constructors, except in the compiler
   813                         // generated one.
   814                         log.error(tree.body.stats.head.pos(),
   815                                   "call.to.super.not.allowed.in.enum.ctor",
   816                                   env.enclClass.sym);
   817                     }
   818                 }
   820                 // Attribute method body.
   821                 attribStat(tree.body, localEnv);
   822             }
   823             localEnv.info.scope.leave();
   824             result = tree.type = m.type;
   825             chk.validateAnnotations(tree.mods.annotations, m);
   826         }
   827         finally {
   828             chk.setLint(prevLint);
   829             chk.setMethod(prevMethod);
   830         }
   831     }
   833     public void visitVarDef(JCVariableDecl tree) {
   834         // Local variables have not been entered yet, so we need to do it now:
   835         if (env.info.scope.owner.kind == MTH) {
   836             if (tree.sym != null) {
   837                 // parameters have already been entered
   838                 env.info.scope.enter(tree.sym);
   839             } else {
   840                 memberEnter.memberEnter(tree, env);
   841                 annotate.flush();
   842             }
   843             tree.sym.flags_field |= EFFECTIVELY_FINAL;
   844         }
   846         VarSymbol v = tree.sym;
   847         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
   848         Lint prevLint = chk.setLint(lint);
   850         // Check that the variable's declared type is well-formed.
   851         chk.validate(tree.vartype, env);
   852         deferredLintHandler.flush(tree.pos());
   854         try {
   855             chk.checkDeprecatedAnnotation(tree.pos(), v);
   857             if (tree.init != null) {
   858                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
   859                     // In this case, `v' is final.  Ensure that it's initializer is
   860                     // evaluated.
   861                     v.getConstValue(); // ensure initializer is evaluated
   862                 } else {
   863                     // Attribute initializer in a new environment
   864                     // with the declared variable as owner.
   865                     // Check that initializer conforms to variable's declared type.
   866                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
   867                     initEnv.info.lint = lint;
   868                     // In order to catch self-references, we set the variable's
   869                     // declaration position to maximal possible value, effectively
   870                     // marking the variable as undefined.
   871                     initEnv.info.enclVar = v;
   872                     attribExpr(tree.init, initEnv, v.type);
   873                 }
   874             }
   875             result = tree.type = v.type;
   876             chk.validateAnnotations(tree.mods.annotations, v);
   877         }
   878         finally {
   879             chk.setLint(prevLint);
   880         }
   881     }
   883     public void visitSkip(JCSkip tree) {
   884         result = null;
   885     }
   887     public void visitBlock(JCBlock tree) {
   888         if (env.info.scope.owner.kind == TYP) {
   889             // Block is a static or instance initializer;
   890             // let the owner of the environment be a freshly
   891             // created BLOCK-method.
   892             Env<AttrContext> localEnv =
   893                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
   894             localEnv.info.scope.owner =
   895                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
   896                                  env.info.scope.owner);
   897             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
   898             attribStats(tree.stats, localEnv);
   899         } else {
   900             // Create a new local environment with a local scope.
   901             Env<AttrContext> localEnv =
   902                 env.dup(tree, env.info.dup(env.info.scope.dup()));
   903             attribStats(tree.stats, localEnv);
   904             localEnv.info.scope.leave();
   905         }
   906         result = null;
   907     }
   909     public void visitDoLoop(JCDoWhileLoop tree) {
   910         attribStat(tree.body, env.dup(tree));
   911         attribExpr(tree.cond, env, syms.booleanType);
   912         result = null;
   913     }
   915     public void visitWhileLoop(JCWhileLoop tree) {
   916         attribExpr(tree.cond, env, syms.booleanType);
   917         attribStat(tree.body, env.dup(tree));
   918         result = null;
   919     }
   921     public void visitForLoop(JCForLoop tree) {
   922         Env<AttrContext> loopEnv =
   923             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   924         attribStats(tree.init, loopEnv);
   925         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
   926         loopEnv.tree = tree; // before, we were not in loop!
   927         attribStats(tree.step, loopEnv);
   928         attribStat(tree.body, loopEnv);
   929         loopEnv.info.scope.leave();
   930         result = null;
   931     }
   933     public void visitForeachLoop(JCEnhancedForLoop tree) {
   934         Env<AttrContext> loopEnv =
   935             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
   936         attribStat(tree.var, loopEnv);
   937         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
   938         chk.checkNonVoid(tree.pos(), exprType);
   939         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
   940         if (elemtype == null) {
   941             // or perhaps expr implements Iterable<T>?
   942             Type base = types.asSuper(exprType, syms.iterableType.tsym);
   943             if (base == null) {
   944                 log.error(tree.expr.pos(),
   945                         "foreach.not.applicable.to.type",
   946                         exprType,
   947                         diags.fragment("type.req.array.or.iterable"));
   948                 elemtype = types.createErrorType(exprType);
   949             } else {
   950                 List<Type> iterableParams = base.allparams();
   951                 elemtype = iterableParams.isEmpty()
   952                     ? syms.objectType
   953                     : types.upperBound(iterableParams.head);
   954             }
   955         }
   956         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
   957         loopEnv.tree = tree; // before, we were not in loop!
   958         attribStat(tree.body, loopEnv);
   959         loopEnv.info.scope.leave();
   960         result = null;
   961     }
   963     public void visitLabelled(JCLabeledStatement tree) {
   964         // Check that label is not used in an enclosing statement
   965         Env<AttrContext> env1 = env;
   966         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
   967             if (env1.tree.getTag() == JCTree.LABELLED &&
   968                 ((JCLabeledStatement) env1.tree).label == tree.label) {
   969                 log.error(tree.pos(), "label.already.in.use",
   970                           tree.label);
   971                 break;
   972             }
   973             env1 = env1.next;
   974         }
   976         attribStat(tree.body, env.dup(tree));
   977         result = null;
   978     }
   980     public void visitSwitch(JCSwitch tree) {
   981         Type seltype = attribExpr(tree.selector, env);
   983         Env<AttrContext> switchEnv =
   984             env.dup(tree, env.info.dup(env.info.scope.dup()));
   986         boolean enumSwitch =
   987             allowEnums &&
   988             (seltype.tsym.flags() & Flags.ENUM) != 0;
   989         boolean stringSwitch = false;
   990         if (types.isSameType(seltype, syms.stringType)) {
   991             if (allowStringsInSwitch) {
   992                 stringSwitch = true;
   993             } else {
   994                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
   995             }
   996         }
   997         if (!enumSwitch && !stringSwitch)
   998             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1000         // Attribute all cases and
  1001         // check that there are no duplicate case labels or default clauses.
  1002         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1003         boolean hasDefault = false;      // Is there a default label?
  1004         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1005             JCCase c = l.head;
  1006             Env<AttrContext> caseEnv =
  1007                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1008             if (c.pat != null) {
  1009                 if (enumSwitch) {
  1010                     Symbol sym = enumConstant(c.pat, seltype);
  1011                     if (sym == null) {
  1012                         log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1013                     } else if (!labels.add(sym)) {
  1014                         log.error(c.pos(), "duplicate.case.label");
  1016                 } else {
  1017                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1018                     if (pattype.tag != ERROR) {
  1019                         if (pattype.constValue() == null) {
  1020                             log.error(c.pat.pos(),
  1021                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
  1022                         } else if (labels.contains(pattype.constValue())) {
  1023                             log.error(c.pos(), "duplicate.case.label");
  1024                         } else {
  1025                             labels.add(pattype.constValue());
  1029             } else if (hasDefault) {
  1030                 log.error(c.pos(), "duplicate.default.label");
  1031             } else {
  1032                 hasDefault = true;
  1034             attribStats(c.stats, caseEnv);
  1035             caseEnv.info.scope.leave();
  1036             addVars(c.stats, switchEnv.info.scope);
  1039         switchEnv.info.scope.leave();
  1040         result = null;
  1042     // where
  1043         /** Add any variables defined in stats to the switch scope. */
  1044         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1045             for (;stats.nonEmpty(); stats = stats.tail) {
  1046                 JCTree stat = stats.head;
  1047                 if (stat.getTag() == JCTree.VARDEF)
  1048                     switchScope.enter(((JCVariableDecl) stat).sym);
  1051     // where
  1052     /** Return the selected enumeration constant symbol, or null. */
  1053     private Symbol enumConstant(JCTree tree, Type enumType) {
  1054         if (tree.getTag() != JCTree.IDENT) {
  1055             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1056             return syms.errSymbol;
  1058         JCIdent ident = (JCIdent)tree;
  1059         Name name = ident.name;
  1060         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1061              e.scope != null; e = e.next()) {
  1062             if (e.sym.kind == VAR) {
  1063                 Symbol s = ident.sym = e.sym;
  1064                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1065                 ident.type = s.type;
  1066                 return ((s.flags_field & Flags.ENUM) == 0)
  1067                     ? null : s;
  1070         return null;
  1073     public void visitSynchronized(JCSynchronized tree) {
  1074         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1075         attribStat(tree.body, env);
  1076         result = null;
  1079     public void visitTry(JCTry tree) {
  1080         // Create a new local environment with a local
  1081         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1082         boolean isTryWithResource = tree.resources.nonEmpty();
  1083         // Create a nested environment for attributing the try block if needed
  1084         Env<AttrContext> tryEnv = isTryWithResource ?
  1085             env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1086             localEnv;
  1087         // Attribute resource declarations
  1088         for (JCTree resource : tree.resources) {
  1089             if (resource.getTag() == JCTree.VARDEF) {
  1090                 attribStat(resource, tryEnv);
  1091                 chk.checkType(resource, resource.type, syms.autoCloseableType, "try.not.applicable.to.type");
  1092                 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1093                 var.setData(ElementKind.RESOURCE_VARIABLE);
  1094             } else {
  1095                 attribExpr(resource, tryEnv, syms.autoCloseableType, "try.not.applicable.to.type");
  1098         // Attribute body
  1099         attribStat(tree.body, tryEnv);
  1100         if (isTryWithResource)
  1101             tryEnv.info.scope.leave();
  1103         // Attribute catch clauses
  1104         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1105             JCCatch c = l.head;
  1106             Env<AttrContext> catchEnv =
  1107                 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1108             Type ctype = attribStat(c.param, catchEnv);
  1109             if (TreeInfo.isMultiCatch(c)) {
  1110                 //multi-catch parameter is implicitly marked as final
  1111                 c.param.sym.flags_field |= FINAL | DISJUNCTION;
  1113             if (c.param.sym.kind == Kinds.VAR) {
  1114                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1116             chk.checkType(c.param.vartype.pos(),
  1117                           chk.checkClassType(c.param.vartype.pos(), ctype),
  1118                           syms.throwableType);
  1119             attribStat(c.body, catchEnv);
  1120             catchEnv.info.scope.leave();
  1123         // Attribute finalizer
  1124         if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1126         localEnv.info.scope.leave();
  1127         result = null;
  1130     public void visitConditional(JCConditional tree) {
  1131         attribExpr(tree.cond, env, syms.booleanType);
  1132         attribExpr(tree.truepart, env);
  1133         attribExpr(tree.falsepart, env);
  1134         result = check(tree,
  1135                        capture(condType(tree.pos(), tree.cond.type,
  1136                                         tree.truepart.type, tree.falsepart.type)),
  1137                        VAL, pkind, pt);
  1139     //where
  1140         /** Compute the type of a conditional expression, after
  1141          *  checking that it exists. See Spec 15.25.
  1143          *  @param pos      The source position to be used for
  1144          *                  error diagnostics.
  1145          *  @param condtype The type of the expression's condition.
  1146          *  @param thentype The type of the expression's then-part.
  1147          *  @param elsetype The type of the expression's else-part.
  1148          */
  1149         private Type condType(DiagnosticPosition pos,
  1150                               Type condtype,
  1151                               Type thentype,
  1152                               Type elsetype) {
  1153             Type ctype = condType1(pos, condtype, thentype, elsetype);
  1155             // If condition and both arms are numeric constants,
  1156             // evaluate at compile-time.
  1157             return ((condtype.constValue() != null) &&
  1158                     (thentype.constValue() != null) &&
  1159                     (elsetype.constValue() != null))
  1160                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
  1161                 : ctype;
  1163         /** Compute the type of a conditional expression, after
  1164          *  checking that it exists.  Does not take into
  1165          *  account the special case where condition and both arms
  1166          *  are constants.
  1168          *  @param pos      The source position to be used for error
  1169          *                  diagnostics.
  1170          *  @param condtype The type of the expression's condition.
  1171          *  @param thentype The type of the expression's then-part.
  1172          *  @param elsetype The type of the expression's else-part.
  1173          */
  1174         private Type condType1(DiagnosticPosition pos, Type condtype,
  1175                                Type thentype, Type elsetype) {
  1176             // If same type, that is the result
  1177             if (types.isSameType(thentype, elsetype))
  1178                 return thentype.baseType();
  1180             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1181                 ? thentype : types.unboxedType(thentype);
  1182             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1183                 ? elsetype : types.unboxedType(elsetype);
  1185             // Otherwise, if both arms can be converted to a numeric
  1186             // type, return the least numeric type that fits both arms
  1187             // (i.e. return larger of the two, or return int if one
  1188             // arm is short, the other is char).
  1189             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1190                 // If one arm has an integer subrange type (i.e., byte,
  1191                 // short, or char), and the other is an integer constant
  1192                 // that fits into the subrange, return the subrange type.
  1193                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
  1194                     types.isAssignable(elseUnboxed, thenUnboxed))
  1195                     return thenUnboxed.baseType();
  1196                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
  1197                     types.isAssignable(thenUnboxed, elseUnboxed))
  1198                     return elseUnboxed.baseType();
  1200                 for (int i = BYTE; i < VOID; i++) {
  1201                     Type candidate = syms.typeOfTag[i];
  1202                     if (types.isSubtype(thenUnboxed, candidate) &&
  1203                         types.isSubtype(elseUnboxed, candidate))
  1204                         return candidate;
  1208             // Those were all the cases that could result in a primitive
  1209             if (allowBoxing) {
  1210                 if (thentype.isPrimitive())
  1211                     thentype = types.boxedClass(thentype).type;
  1212                 if (elsetype.isPrimitive())
  1213                     elsetype = types.boxedClass(elsetype).type;
  1216             if (types.isSubtype(thentype, elsetype))
  1217                 return elsetype.baseType();
  1218             if (types.isSubtype(elsetype, thentype))
  1219                 return thentype.baseType();
  1221             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
  1222                 log.error(pos, "neither.conditional.subtype",
  1223                           thentype, elsetype);
  1224                 return thentype.baseType();
  1227             // both are known to be reference types.  The result is
  1228             // lub(thentype,elsetype). This cannot fail, as it will
  1229             // always be possible to infer "Object" if nothing better.
  1230             return types.lub(thentype.baseType(), elsetype.baseType());
  1233     public void visitIf(JCIf tree) {
  1234         attribExpr(tree.cond, env, syms.booleanType);
  1235         attribStat(tree.thenpart, env);
  1236         if (tree.elsepart != null)
  1237             attribStat(tree.elsepart, env);
  1238         chk.checkEmptyIf(tree);
  1239         result = null;
  1242     public void visitExec(JCExpressionStatement tree) {
  1243         //a fresh environment is required for 292 inference to work properly ---
  1244         //see Infer.instantiatePolymorphicSignatureInstance()
  1245         Env<AttrContext> localEnv = env.dup(tree);
  1246         attribExpr(tree.expr, localEnv);
  1247         result = null;
  1250     public void visitBreak(JCBreak tree) {
  1251         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1252         result = null;
  1255     public void visitContinue(JCContinue tree) {
  1256         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1257         result = null;
  1259     //where
  1260         /** Return the target of a break or continue statement, if it exists,
  1261          *  report an error if not.
  1262          *  Note: The target of a labelled break or continue is the
  1263          *  (non-labelled) statement tree referred to by the label,
  1264          *  not the tree representing the labelled statement itself.
  1266          *  @param pos     The position to be used for error diagnostics
  1267          *  @param tag     The tag of the jump statement. This is either
  1268          *                 Tree.BREAK or Tree.CONTINUE.
  1269          *  @param label   The label of the jump statement, or null if no
  1270          *                 label is given.
  1271          *  @param env     The environment current at the jump statement.
  1272          */
  1273         private JCTree findJumpTarget(DiagnosticPosition pos,
  1274                                     int tag,
  1275                                     Name label,
  1276                                     Env<AttrContext> env) {
  1277             // Search environments outwards from the point of jump.
  1278             Env<AttrContext> env1 = env;
  1279             LOOP:
  1280             while (env1 != null) {
  1281                 switch (env1.tree.getTag()) {
  1282                 case JCTree.LABELLED:
  1283                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1284                     if (label == labelled.label) {
  1285                         // If jump is a continue, check that target is a loop.
  1286                         if (tag == JCTree.CONTINUE) {
  1287                             if (labelled.body.getTag() != JCTree.DOLOOP &&
  1288                                 labelled.body.getTag() != JCTree.WHILELOOP &&
  1289                                 labelled.body.getTag() != JCTree.FORLOOP &&
  1290                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
  1291                                 log.error(pos, "not.loop.label", label);
  1292                             // Found labelled statement target, now go inwards
  1293                             // to next non-labelled tree.
  1294                             return TreeInfo.referencedStatement(labelled);
  1295                         } else {
  1296                             return labelled;
  1299                     break;
  1300                 case JCTree.DOLOOP:
  1301                 case JCTree.WHILELOOP:
  1302                 case JCTree.FORLOOP:
  1303                 case JCTree.FOREACHLOOP:
  1304                     if (label == null) return env1.tree;
  1305                     break;
  1306                 case JCTree.SWITCH:
  1307                     if (label == null && tag == JCTree.BREAK) return env1.tree;
  1308                     break;
  1309                 case JCTree.METHODDEF:
  1310                 case JCTree.CLASSDEF:
  1311                     break LOOP;
  1312                 default:
  1314                 env1 = env1.next;
  1316             if (label != null)
  1317                 log.error(pos, "undef.label", label);
  1318             else if (tag == JCTree.CONTINUE)
  1319                 log.error(pos, "cont.outside.loop");
  1320             else
  1321                 log.error(pos, "break.outside.switch.loop");
  1322             return null;
  1325     public void visitReturn(JCReturn tree) {
  1326         // Check that there is an enclosing method which is
  1327         // nested within than the enclosing class.
  1328         if (env.enclMethod == null ||
  1329             env.enclMethod.sym.owner != env.enclClass.sym) {
  1330             log.error(tree.pos(), "ret.outside.meth");
  1332         } else {
  1333             // Attribute return expression, if it exists, and check that
  1334             // it conforms to result type of enclosing method.
  1335             Symbol m = env.enclMethod.sym;
  1336             if (m.type.getReturnType().tag == VOID) {
  1337                 if (tree.expr != null)
  1338                     log.error(tree.expr.pos(),
  1339                               "cant.ret.val.from.meth.decl.void");
  1340             } else if (tree.expr == null) {
  1341                 log.error(tree.pos(), "missing.ret.val");
  1342             } else {
  1343                 attribExpr(tree.expr, env, m.type.getReturnType());
  1346         result = null;
  1349     public void visitThrow(JCThrow tree) {
  1350         attribExpr(tree.expr, env, syms.throwableType);
  1351         result = null;
  1354     public void visitAssert(JCAssert tree) {
  1355         attribExpr(tree.cond, env, syms.booleanType);
  1356         if (tree.detail != null) {
  1357             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1359         result = null;
  1362      /** Visitor method for method invocations.
  1363      *  NOTE: The method part of an application will have in its type field
  1364      *        the return type of the method, not the method's type itself!
  1365      */
  1366     public void visitApply(JCMethodInvocation tree) {
  1367         // The local environment of a method application is
  1368         // a new environment nested in the current one.
  1369         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1371         // The types of the actual method arguments.
  1372         List<Type> argtypes;
  1374         // The types of the actual method type arguments.
  1375         List<Type> typeargtypes = null;
  1377         Name methName = TreeInfo.name(tree.meth);
  1379         boolean isConstructorCall =
  1380             methName == names._this || methName == names._super;
  1382         if (isConstructorCall) {
  1383             // We are seeing a ...this(...) or ...super(...) call.
  1384             // Check that this is the first statement in a constructor.
  1385             if (checkFirstConstructorStat(tree, env)) {
  1387                 // Record the fact
  1388                 // that this is a constructor call (using isSelfCall).
  1389                 localEnv.info.isSelfCall = true;
  1391                 // Attribute arguments, yielding list of argument types.
  1392                 argtypes = attribArgs(tree.args, localEnv);
  1393                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1395                 // Variable `site' points to the class in which the called
  1396                 // constructor is defined.
  1397                 Type site = env.enclClass.sym.type;
  1398                 if (methName == names._super) {
  1399                     if (site == syms.objectType) {
  1400                         log.error(tree.meth.pos(), "no.superclass", site);
  1401                         site = types.createErrorType(syms.objectType);
  1402                     } else {
  1403                         site = types.supertype(site);
  1407                 if (site.tag == CLASS) {
  1408                     Type encl = site.getEnclosingType();
  1409                     while (encl != null && encl.tag == TYPEVAR)
  1410                         encl = encl.getUpperBound();
  1411                     if (encl.tag == CLASS) {
  1412                         // we are calling a nested class
  1414                         if (tree.meth.getTag() == JCTree.SELECT) {
  1415                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1417                             // We are seeing a prefixed call, of the form
  1418                             //     <expr>.super(...).
  1419                             // Check that the prefix expression conforms
  1420                             // to the outer instance type of the class.
  1421                             chk.checkRefType(qualifier.pos(),
  1422                                              attribExpr(qualifier, localEnv,
  1423                                                         encl));
  1424                         } else if (methName == names._super) {
  1425                             // qualifier omitted; check for existence
  1426                             // of an appropriate implicit qualifier.
  1427                             rs.resolveImplicitThis(tree.meth.pos(),
  1428                                                    localEnv, site, true);
  1430                     } else if (tree.meth.getTag() == JCTree.SELECT) {
  1431                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1432                                   site.tsym);
  1435                     // if we're calling a java.lang.Enum constructor,
  1436                     // prefix the implicit String and int parameters
  1437                     if (site.tsym == syms.enumSym && allowEnums)
  1438                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1440                     // Resolve the called constructor under the assumption
  1441                     // that we are referring to a superclass instance of the
  1442                     // current instance (JLS ???).
  1443                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1444                     localEnv.info.selectSuper = true;
  1445                     localEnv.info.varArgs = false;
  1446                     Symbol sym = rs.resolveConstructor(
  1447                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1448                     localEnv.info.selectSuper = selectSuperPrev;
  1450                     // Set method symbol to resolved constructor...
  1451                     TreeInfo.setSymbol(tree.meth, sym);
  1453                     // ...and check that it is legal in the current context.
  1454                     // (this will also set the tree's type)
  1455                     Type mpt = newMethTemplate(argtypes, typeargtypes);
  1456                     checkId(tree.meth, site, sym, localEnv, MTH,
  1457                             mpt, tree.varargsElement != null);
  1459                 // Otherwise, `site' is an error type and we do nothing
  1461             result = tree.type = syms.voidType;
  1462         } else {
  1463             // Otherwise, we are seeing a regular method call.
  1464             // Attribute the arguments, yielding list of argument types, ...
  1465             argtypes = attribArgs(tree.args, localEnv);
  1466             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1468             // ... and attribute the method using as a prototype a methodtype
  1469             // whose formal argument types is exactly the list of actual
  1470             // arguments (this will also set the method symbol).
  1471             Type mpt = newMethTemplate(argtypes, typeargtypes);
  1472             localEnv.info.varArgs = false;
  1473             Type mtype = attribExpr(tree.meth, localEnv, mpt);
  1474             if (localEnv.info.varArgs)
  1475                 Assert.check(mtype.isErroneous() || tree.varargsElement != null);
  1477             // Compute the result type.
  1478             Type restype = mtype.getReturnType();
  1479             if (restype.tag == WILDCARD)
  1480                 throw new AssertionError(mtype);
  1482             // as a special case, array.clone() has a result that is
  1483             // the same as static type of the array being cloned
  1484             if (tree.meth.getTag() == JCTree.SELECT &&
  1485                 allowCovariantReturns &&
  1486                 methName == names.clone &&
  1487                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
  1488                 restype = ((JCFieldAccess) tree.meth).selected.type;
  1490             // as a special case, x.getClass() has type Class<? extends |X|>
  1491             if (allowGenerics &&
  1492                 methName == names.getClass && tree.args.isEmpty()) {
  1493                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
  1494                     ? ((JCFieldAccess) tree.meth).selected.type
  1495                     : env.enclClass.sym.type;
  1496                 restype = new
  1497                     ClassType(restype.getEnclosingType(),
  1498                               List.<Type>of(new WildcardType(types.erasure(qualifier),
  1499                                                                BoundKind.EXTENDS,
  1500                                                                syms.boundClass)),
  1501                               restype.tsym);
  1504             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1506             // Check that value of resulting type is admissible in the
  1507             // current context.  Also, capture the return type
  1508             result = check(tree, capture(restype), VAL, pkind, pt);
  1510         chk.validate(tree.typeargs, localEnv);
  1512     //where
  1513         /** Check that given application node appears as first statement
  1514          *  in a constructor call.
  1515          *  @param tree   The application node
  1516          *  @param env    The environment current at the application.
  1517          */
  1518         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1519             JCMethodDecl enclMethod = env.enclMethod;
  1520             if (enclMethod != null && enclMethod.name == names.init) {
  1521                 JCBlock body = enclMethod.body;
  1522                 if (body.stats.head.getTag() == JCTree.EXEC &&
  1523                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1524                     return true;
  1526             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1527                       TreeInfo.name(tree.meth));
  1528             return false;
  1531         /** Obtain a method type with given argument types.
  1532          */
  1533         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
  1534             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
  1535             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1538     public void visitNewClass(JCNewClass tree) {
  1539         Type owntype = types.createErrorType(tree.type);
  1541         // The local environment of a class creation is
  1542         // a new environment nested in the current one.
  1543         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1545         // The anonymous inner class definition of the new expression,
  1546         // if one is defined by it.
  1547         JCClassDecl cdef = tree.def;
  1549         // If enclosing class is given, attribute it, and
  1550         // complete class name to be fully qualified
  1551         JCExpression clazz = tree.clazz; // Class field following new
  1552         JCExpression clazzid =          // Identifier in class field
  1553             (clazz.getTag() == JCTree.TYPEAPPLY)
  1554             ? ((JCTypeApply) clazz).clazz
  1555             : clazz;
  1557         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1559         if (tree.encl != null) {
  1560             // We are seeing a qualified new, of the form
  1561             //    <expr>.new C <...> (...) ...
  1562             // In this case, we let clazz stand for the name of the
  1563             // allocated class C prefixed with the type of the qualifier
  1564             // expression, so that we can
  1565             // resolve it with standard techniques later. I.e., if
  1566             // <expr> has type T, then <expr>.new C <...> (...)
  1567             // yields a clazz T.C.
  1568             Type encltype = chk.checkRefType(tree.encl.pos(),
  1569                                              attribExpr(tree.encl, env));
  1570             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1571                                                  ((JCIdent) clazzid).name);
  1572             if (clazz.getTag() == JCTree.TYPEAPPLY)
  1573                 clazz = make.at(tree.pos).
  1574                     TypeApply(clazzid1,
  1575                               ((JCTypeApply) clazz).arguments);
  1576             else
  1577                 clazz = clazzid1;
  1580         // Attribute clazz expression and store
  1581         // symbol + type back into the attributed tree.
  1582         Type clazztype = attribType(clazz, env);
  1583         Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
  1584         clazztype = chk.checkDiamond(tree, clazztype);
  1585         chk.validate(clazz, localEnv);
  1586         if (tree.encl != null) {
  1587             // We have to work in this case to store
  1588             // symbol + type back into the attributed tree.
  1589             tree.clazz.type = clazztype;
  1590             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1591             clazzid.type = ((JCIdent) clazzid).sym.type;
  1592             if (!clazztype.isErroneous()) {
  1593                 if (cdef != null && clazztype.tsym.isInterface()) {
  1594                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1595                 } else if (clazztype.tsym.isStatic()) {
  1596                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1599         } else if (!clazztype.tsym.isInterface() &&
  1600                    clazztype.getEnclosingType().tag == CLASS) {
  1601             // Check for the existence of an apropos outer instance
  1602             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1605         // Attribute constructor arguments.
  1606         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1607         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1609         if (TreeInfo.isDiamond(tree) && !clazztype.isErroneous()) {
  1610             clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
  1611             clazz.type = clazztype;
  1612         } else if (allowDiamondFinder &&
  1613                 tree.def == null &&
  1614                 !clazztype.isErroneous() &&
  1615                 clazztype.getTypeArguments().nonEmpty() &&
  1616                 findDiamonds) {
  1617             boolean prevDeferDiags = log.deferDiagnostics;
  1618             Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
  1619             Type inferred = null;
  1620             try {
  1621                 //disable diamond-related diagnostics
  1622                 log.deferDiagnostics = true;
  1623                 log.deferredDiagnostics = ListBuffer.lb();
  1624                 inferred = attribDiamond(localEnv,
  1625                         tree,
  1626                         clazztype,
  1627                         mapping,
  1628                         argtypes,
  1629                         typeargtypes);
  1631             finally {
  1632                 log.deferDiagnostics = prevDeferDiags;
  1633                 log.deferredDiagnostics = prevDeferredDiags;
  1635             if (inferred != null &&
  1636                     !inferred.isErroneous() &&
  1637                     inferred.tag == CLASS &&
  1638                     types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings)) {
  1639                 String key = types.isSameType(clazztype, inferred) ?
  1640                     "diamond.redundant.args" :
  1641                     "diamond.redundant.args.1";
  1642                 log.warning(tree.clazz.pos(), key, clazztype, inferred);
  1646         // If we have made no mistakes in the class type...
  1647         if (clazztype.tag == CLASS) {
  1648             // Enums may not be instantiated except implicitly
  1649             if (allowEnums &&
  1650                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1651                 (env.tree.getTag() != JCTree.VARDEF ||
  1652                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1653                  ((JCVariableDecl) env.tree).init != tree))
  1654                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1655             // Check that class is not abstract
  1656             if (cdef == null &&
  1657                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1658                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1659                           clazztype.tsym);
  1660             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1661                 // Check that no constructor arguments are given to
  1662                 // anonymous classes implementing an interface
  1663                 if (!argtypes.isEmpty())
  1664                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1666                 if (!typeargtypes.isEmpty())
  1667                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1669                 // Error recovery: pretend no arguments were supplied.
  1670                 argtypes = List.nil();
  1671                 typeargtypes = List.nil();
  1674             // Resolve the called constructor under the assumption
  1675             // that we are referring to a superclass instance of the
  1676             // current instance (JLS ???).
  1677             else {
  1678                 localEnv.info.selectSuper = cdef != null;
  1679                 localEnv.info.varArgs = false;
  1680                 tree.constructor = rs.resolveConstructor(
  1681                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  1682                 tree.constructorType = tree.constructor.type.isErroneous() ?
  1683                     syms.errType :
  1684                     checkMethod(clazztype,
  1685                         tree.constructor,
  1686                         localEnv,
  1687                         tree.args,
  1688                         argtypes,
  1689                         typeargtypes,
  1690                         localEnv.info.varArgs);
  1691                 if (localEnv.info.varArgs)
  1692                     Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  1695             if (cdef != null) {
  1696                 // We are seeing an anonymous class instance creation.
  1697                 // In this case, the class instance creation
  1698                 // expression
  1699                 //
  1700                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1701                 //
  1702                 // is represented internally as
  1703                 //
  1704                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1705                 //
  1706                 // This expression is then *transformed* as follows:
  1707                 //
  1708                 // (1) add a STATIC flag to the class definition
  1709                 //     if the current environment is static
  1710                 // (2) add an extends or implements clause
  1711                 // (3) add a constructor.
  1712                 //
  1713                 // For instance, if C is a class, and ET is the type of E,
  1714                 // the expression
  1715                 //
  1716                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1717                 //
  1718                 // is translated to (where X is a fresh name and typarams is the
  1719                 // parameter list of the super constructor):
  1720                 //
  1721                 //   new <typeargs1>X(<*nullchk*>E, args) where
  1722                 //     X extends C<typargs2> {
  1723                 //       <typarams> X(ET e, args) {
  1724                 //         e.<typeargs1>super(args)
  1725                 //       }
  1726                 //       ...
  1727                 //     }
  1728                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  1730                 if (clazztype.tsym.isInterface()) {
  1731                     cdef.implementing = List.of(clazz);
  1732                 } else {
  1733                     cdef.extending = clazz;
  1736                 attribStat(cdef, localEnv);
  1738                 // If an outer instance is given,
  1739                 // prefix it to the constructor arguments
  1740                 // and delete it from the new expression
  1741                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  1742                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  1743                     argtypes = argtypes.prepend(tree.encl.type);
  1744                     tree.encl = null;
  1747                 // Reassign clazztype and recompute constructor.
  1748                 clazztype = cdef.sym.type;
  1749                 Symbol sym = rs.resolveConstructor(
  1750                     tree.pos(), localEnv, clazztype, argtypes,
  1751                     typeargtypes, true, tree.varargsElement != null);
  1752                 Assert.check(sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous());
  1753                 tree.constructor = sym;
  1754                 if (tree.constructor.kind > ERRONEOUS) {
  1755                     tree.constructorType =  syms.errType;
  1757                 else {
  1758                     tree.constructorType = checkMethod(clazztype,
  1759                             tree.constructor,
  1760                             localEnv,
  1761                             tree.args,
  1762                             argtypes,
  1763                             typeargtypes,
  1764                             localEnv.info.varArgs);
  1768             if (tree.constructor != null && tree.constructor.kind == MTH)
  1769                 owntype = clazztype;
  1771         result = check(tree, owntype, VAL, pkind, pt);
  1772         chk.validate(tree.typeargs, localEnv);
  1775     Type attribDiamond(Env<AttrContext> env,
  1776                         JCNewClass tree,
  1777                         Type clazztype,
  1778                         Pair<Scope, Scope> mapping,
  1779                         List<Type> argtypes,
  1780                         List<Type> typeargtypes) {
  1781         if (clazztype.isErroneous() ||
  1782                 clazztype.isInterface() ||
  1783                 mapping == erroneousMapping) {
  1784             //if the type of the instance creation expression is erroneous,
  1785             //or if it's an interface, or if something prevented us to form a valid
  1786             //mapping, return the (possibly erroneous) type unchanged
  1787             return clazztype;
  1790         //dup attribution environment and augment the set of inference variables
  1791         Env<AttrContext> localEnv = env.dup(tree);
  1792         localEnv.info.tvars = clazztype.tsym.type.getTypeArguments();
  1794         //if the type of the instance creation expression is a class type
  1795         //apply method resolution inference (JLS 15.12.2.7). The return type
  1796         //of the resolved constructor will be a partially instantiated type
  1797         ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
  1798         Symbol constructor;
  1799         try {
  1800             constructor = rs.resolveDiamond(tree.pos(),
  1801                     localEnv,
  1802                     clazztype.tsym.type,
  1803                     argtypes,
  1804                     typeargtypes);
  1805         } finally {
  1806             ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
  1808         if (constructor.kind == MTH) {
  1809             ClassType ct = new ClassType(clazztype.getEnclosingType(),
  1810                     clazztype.tsym.type.getTypeArguments(),
  1811                     clazztype.tsym);
  1812             clazztype = checkMethod(ct,
  1813                     constructor,
  1814                     localEnv,
  1815                     tree.args,
  1816                     argtypes,
  1817                     typeargtypes,
  1818                     localEnv.info.varArgs).getReturnType();
  1819         } else {
  1820             clazztype = syms.errType;
  1823         if (clazztype.tag == FORALL && !pt.isErroneous()) {
  1824             //if the resolved constructor's return type has some uninferred
  1825             //type-variables, infer them using the expected type and declared
  1826             //bounds (JLS 15.12.2.8).
  1827             try {
  1828                 clazztype = infer.instantiateExpr((ForAll) clazztype,
  1829                         pt.tag == NONE ? syms.objectType : pt,
  1830                         Warner.noWarnings);
  1831             } catch (Infer.InferenceException ex) {
  1832                 //an error occurred while inferring uninstantiated type-variables
  1833                 log.error(tree.clazz.pos(),
  1834                         "cant.apply.diamond.1",
  1835                         diags.fragment("diamond", clazztype.tsym),
  1836                         ex.diagnostic);
  1839         return chk.checkClassType(tree.clazz.pos(),
  1840                 clazztype,
  1841                 true);
  1844     /** Creates a synthetic scope containing fake generic constructors.
  1845      *  Assuming that the original scope contains a constructor of the kind:
  1846      *  Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
  1847      *  the synthetic scope is added a generic constructor of the kind:
  1848      *  <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
  1849      *  inference. The inferred return type of the synthetic constructor IS
  1850      *  the inferred type for the diamond operator.
  1851      */
  1852     private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
  1853         if (ctype.tag != CLASS) {
  1854             return erroneousMapping;
  1857         Pair<Scope, Scope> mapping =
  1858                 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
  1860         //for each constructor in the original scope, create a synthetic constructor
  1861         //whose return type is the type of the class in which the constructor is
  1862         //declared, and insert it into the new scope.
  1863         for (Scope.Entry e = mapping.fst.lookup(names.init);
  1864                 e.scope != null;
  1865                 e = e.next()) {
  1866             Type synthRestype = new ClassType(ctype.getEnclosingType(),
  1867                         ctype.tsym.type.getTypeArguments(),
  1868                         ctype.tsym);
  1869             MethodSymbol synhConstr = new MethodSymbol(e.sym.flags(),
  1870                     names.init,
  1871                     types.createMethodTypeWithReturn(e.sym.type, synthRestype),
  1872                     e.sym.owner);
  1873             mapping.snd.enter(synhConstr);
  1875         return mapping;
  1878     private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
  1880     /** Make an attributed null check tree.
  1881      */
  1882     public JCExpression makeNullCheck(JCExpression arg) {
  1883         // optimization: X.this is never null; skip null check
  1884         Name name = TreeInfo.name(arg);
  1885         if (name == names._this || name == names._super) return arg;
  1887         int optag = JCTree.NULLCHK;
  1888         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  1889         tree.operator = syms.nullcheck;
  1890         tree.type = arg.type;
  1891         return tree;
  1894     public void visitNewArray(JCNewArray tree) {
  1895         Type owntype = types.createErrorType(tree.type);
  1896         Type elemtype;
  1897         if (tree.elemtype != null) {
  1898             elemtype = attribType(tree.elemtype, env);
  1899             chk.validate(tree.elemtype, env);
  1900             owntype = elemtype;
  1901             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  1902                 attribExpr(l.head, env, syms.intType);
  1903                 owntype = new ArrayType(owntype, syms.arrayClass);
  1905         } else {
  1906             // we are seeing an untyped aggregate { ... }
  1907             // this is allowed only if the prototype is an array
  1908             if (pt.tag == ARRAY) {
  1909                 elemtype = types.elemtype(pt);
  1910             } else {
  1911                 if (pt.tag != ERROR) {
  1912                     log.error(tree.pos(), "illegal.initializer.for.type",
  1913                               pt);
  1915                 elemtype = types.createErrorType(pt);
  1918         if (tree.elems != null) {
  1919             attribExprs(tree.elems, env, elemtype);
  1920             owntype = new ArrayType(elemtype, syms.arrayClass);
  1922         if (!types.isReifiable(elemtype))
  1923             log.error(tree.pos(), "generic.array.creation");
  1924         result = check(tree, owntype, VAL, pkind, pt);
  1927     public void visitParens(JCParens tree) {
  1928         Type owntype = attribTree(tree.expr, env, pkind, pt);
  1929         result = check(tree, owntype, pkind, pkind, pt);
  1930         Symbol sym = TreeInfo.symbol(tree);
  1931         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  1932             log.error(tree.pos(), "illegal.start.of.type");
  1935     public void visitAssign(JCAssign tree) {
  1936         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
  1937         Type capturedType = capture(owntype);
  1938         attribExpr(tree.rhs, env, owntype);
  1939         result = check(tree, capturedType, VAL, pkind, pt);
  1942     public void visitAssignop(JCAssignOp tree) {
  1943         // Attribute arguments.
  1944         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
  1945         Type operand = attribExpr(tree.rhs, env);
  1946         // Find operator.
  1947         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  1948             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
  1949             owntype, operand);
  1951         if (operator.kind == MTH &&
  1952                 !owntype.isErroneous() &&
  1953                 !operand.isErroneous()) {
  1954             chk.checkOperator(tree.pos(),
  1955                               (OperatorSymbol)operator,
  1956                               tree.getTag() - JCTree.ASGOffset,
  1957                               owntype,
  1958                               operand);
  1959             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  1960             chk.checkCastable(tree.rhs.pos(),
  1961                               operator.type.getReturnType(),
  1962                               owntype);
  1964         result = check(tree, owntype, VAL, pkind, pt);
  1967     public void visitUnary(JCUnary tree) {
  1968         // Attribute arguments.
  1969         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1970             ? attribTree(tree.arg, env, VAR, Type.noType)
  1971             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  1973         // Find operator.
  1974         Symbol operator = tree.operator =
  1975             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  1977         Type owntype = types.createErrorType(tree.type);
  1978         if (operator.kind == MTH &&
  1979                 !argtype.isErroneous()) {
  1980             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
  1981                 ? tree.arg.type
  1982                 : operator.type.getReturnType();
  1983             int opc = ((OperatorSymbol)operator).opcode;
  1985             // If the argument is constant, fold it.
  1986             if (argtype.constValue() != null) {
  1987                 Type ctype = cfolder.fold1(opc, argtype);
  1988                 if (ctype != null) {
  1989                     owntype = cfolder.coerce(ctype, owntype);
  1991                     // Remove constant types from arguments to
  1992                     // conserve space. The parser will fold concatenations
  1993                     // of string literals; the code here also
  1994                     // gets rid of intermediate results when some of the
  1995                     // operands are constant identifiers.
  1996                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  1997                         tree.arg.type = syms.stringType;
  2002         result = check(tree, owntype, VAL, pkind, pt);
  2005     public void visitBinary(JCBinary tree) {
  2006         // Attribute arguments.
  2007         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2008         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2010         // Find operator.
  2011         Symbol operator = tree.operator =
  2012             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2014         Type owntype = types.createErrorType(tree.type);
  2015         if (operator.kind == MTH &&
  2016                 !left.isErroneous() &&
  2017                 !right.isErroneous()) {
  2018             owntype = operator.type.getReturnType();
  2019             int opc = chk.checkOperator(tree.lhs.pos(),
  2020                                         (OperatorSymbol)operator,
  2021                                         tree.getTag(),
  2022                                         left,
  2023                                         right);
  2025             // If both arguments are constants, fold them.
  2026             if (left.constValue() != null && right.constValue() != null) {
  2027                 Type ctype = cfolder.fold2(opc, left, right);
  2028                 if (ctype != null) {
  2029                     owntype = cfolder.coerce(ctype, owntype);
  2031                     // Remove constant types from arguments to
  2032                     // conserve space. The parser will fold concatenations
  2033                     // of string literals; the code here also
  2034                     // gets rid of intermediate results when some of the
  2035                     // operands are constant identifiers.
  2036                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2037                         tree.lhs.type = syms.stringType;
  2039                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2040                         tree.rhs.type = syms.stringType;
  2045             // Check that argument types of a reference ==, != are
  2046             // castable to each other, (JLS???).
  2047             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2048                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2049                     log.error(tree.pos(), "incomparable.types", left, right);
  2053             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2055         result = check(tree, owntype, VAL, pkind, pt);
  2058     public void visitTypeCast(JCTypeCast tree) {
  2059         Type clazztype = attribType(tree.clazz, env);
  2060         chk.validate(tree.clazz, env, false);
  2061         //a fresh environment is required for 292 inference to work properly ---
  2062         //see Infer.instantiatePolymorphicSignatureInstance()
  2063         Env<AttrContext> localEnv = env.dup(tree);
  2064         Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
  2065         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2066         if (exprtype.constValue() != null)
  2067             owntype = cfolder.coerce(exprtype, owntype);
  2068         result = check(tree, capture(owntype), VAL, pkind, pt);
  2071     public void visitTypeTest(JCInstanceOf tree) {
  2072         Type exprtype = chk.checkNullOrRefType(
  2073             tree.expr.pos(), attribExpr(tree.expr, env));
  2074         Type clazztype = chk.checkReifiableReferenceType(
  2075             tree.clazz.pos(), attribType(tree.clazz, env));
  2076         chk.validate(tree.clazz, env, false);
  2077         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2078         result = check(tree, syms.booleanType, VAL, pkind, pt);
  2081     public void visitIndexed(JCArrayAccess tree) {
  2082         Type owntype = types.createErrorType(tree.type);
  2083         Type atype = attribExpr(tree.indexed, env);
  2084         attribExpr(tree.index, env, syms.intType);
  2085         if (types.isArray(atype))
  2086             owntype = types.elemtype(atype);
  2087         else if (atype.tag != ERROR)
  2088             log.error(tree.pos(), "array.req.but.found", atype);
  2089         if ((pkind & VAR) == 0) owntype = capture(owntype);
  2090         result = check(tree, owntype, VAR, pkind, pt);
  2093     public void visitIdent(JCIdent tree) {
  2094         Symbol sym;
  2095         boolean varArgs = false;
  2097         // Find symbol
  2098         if (pt.tag == METHOD || pt.tag == FORALL) {
  2099             // If we are looking for a method, the prototype `pt' will be a
  2100             // method type with the type of the call's arguments as parameters.
  2101             env.info.varArgs = false;
  2102             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
  2103             varArgs = env.info.varArgs;
  2104         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2105             sym = tree.sym;
  2106         } else {
  2107             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
  2109         tree.sym = sym;
  2111         // (1) Also find the environment current for the class where
  2112         //     sym is defined (`symEnv').
  2113         // Only for pre-tiger versions (1.4 and earlier):
  2114         // (2) Also determine whether we access symbol out of an anonymous
  2115         //     class in a this or super call.  This is illegal for instance
  2116         //     members since such classes don't carry a this$n link.
  2117         //     (`noOuterThisPath').
  2118         Env<AttrContext> symEnv = env;
  2119         boolean noOuterThisPath = false;
  2120         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2121             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2122             sym.owner.kind == TYP &&
  2123             tree.name != names._this && tree.name != names._super) {
  2125             // Find environment in which identifier is defined.
  2126             while (symEnv.outer != null &&
  2127                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2128                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2129                     noOuterThisPath = !allowAnonOuterThis;
  2130                 symEnv = symEnv.outer;
  2134         // If symbol is a variable, ...
  2135         if (sym.kind == VAR) {
  2136             VarSymbol v = (VarSymbol)sym;
  2138             // ..., evaluate its initializer, if it has one, and check for
  2139             // illegal forward reference.
  2140             checkInit(tree, env, v, false);
  2142             // If symbol is a local variable accessed from an embedded
  2143             // inner class check that it is final.
  2144             if (v.owner.kind == MTH &&
  2145                 v.owner != env.info.scope.owner &&
  2146                 (v.flags_field & FINAL) == 0) {
  2147                 log.error(tree.pos(),
  2148                           "local.var.accessed.from.icls.needs.final",
  2149                           v);
  2152             // If we are expecting a variable (as opposed to a value), check
  2153             // that the variable is assignable in the current environment.
  2154             if (pkind == VAR)
  2155                 checkAssignable(tree.pos(), v, null, env);
  2158         // In a constructor body,
  2159         // if symbol is a field or instance method, check that it is
  2160         // not accessed before the supertype constructor is called.
  2161         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2162             (sym.kind & (VAR | MTH)) != 0 &&
  2163             sym.owner.kind == TYP &&
  2164             (sym.flags() & STATIC) == 0) {
  2165             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2167         Env<AttrContext> env1 = env;
  2168         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2169             // If the found symbol is inaccessible, then it is
  2170             // accessed through an enclosing instance.  Locate this
  2171             // enclosing instance:
  2172             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2173                 env1 = env1.outer;
  2175         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
  2178     public void visitSelect(JCFieldAccess tree) {
  2179         // Determine the expected kind of the qualifier expression.
  2180         int skind = 0;
  2181         if (tree.name == names._this || tree.name == names._super ||
  2182             tree.name == names._class)
  2184             skind = TYP;
  2185         } else {
  2186             if ((pkind & PCK) != 0) skind = skind | PCK;
  2187             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
  2188             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2191         // Attribute the qualifier expression, and determine its symbol (if any).
  2192         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
  2193         if ((pkind & (PCK | TYP)) == 0)
  2194             site = capture(site); // Capture field access
  2196         // don't allow T.class T[].class, etc
  2197         if (skind == TYP) {
  2198             Type elt = site;
  2199             while (elt.tag == ARRAY)
  2200                 elt = ((ArrayType)elt).elemtype;
  2201             if (elt.tag == TYPEVAR) {
  2202                 log.error(tree.pos(), "type.var.cant.be.deref");
  2203                 result = types.createErrorType(tree.type);
  2204                 return;
  2208         // If qualifier symbol is a type or `super', assert `selectSuper'
  2209         // for the selection. This is relevant for determining whether
  2210         // protected symbols are accessible.
  2211         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2212         boolean selectSuperPrev = env.info.selectSuper;
  2213         env.info.selectSuper =
  2214             sitesym != null &&
  2215             sitesym.name == names._super;
  2217         // If selected expression is polymorphic, strip
  2218         // type parameters and remember in env.info.tvars, so that
  2219         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
  2220         if (tree.selected.type.tag == FORALL) {
  2221             ForAll pstype = (ForAll)tree.selected.type;
  2222             env.info.tvars = pstype.tvars;
  2223             site = tree.selected.type = pstype.qtype;
  2226         // Determine the symbol represented by the selection.
  2227         env.info.varArgs = false;
  2228         Symbol sym = selectSym(tree, sitesym, site, env, pt, pkind);
  2229         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
  2230             site = capture(site);
  2231             sym = selectSym(tree, sitesym, site, env, pt, pkind);
  2233         boolean varArgs = env.info.varArgs;
  2234         tree.sym = sym;
  2236         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
  2237             while (site.tag == TYPEVAR) site = site.getUpperBound();
  2238             site = capture(site);
  2241         // If that symbol is a variable, ...
  2242         if (sym.kind == VAR) {
  2243             VarSymbol v = (VarSymbol)sym;
  2245             // ..., evaluate its initializer, if it has one, and check for
  2246             // illegal forward reference.
  2247             checkInit(tree, env, v, true);
  2249             // If we are expecting a variable (as opposed to a value), check
  2250             // that the variable is assignable in the current environment.
  2251             if (pkind == VAR)
  2252                 checkAssignable(tree.pos(), v, tree.selected, env);
  2255         if (sitesym != null &&
  2256                 sitesym.kind == VAR &&
  2257                 ((VarSymbol)sitesym).isResourceVariable() &&
  2258                 sym.kind == MTH &&
  2259                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  2260                 env.info.lint.isEnabled(LintCategory.TRY)) {
  2261             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  2264         // Disallow selecting a type from an expression
  2265         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  2266             tree.type = check(tree.selected, pt,
  2267                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
  2270         if (isType(sitesym)) {
  2271             if (sym.name == names._this) {
  2272                 // If `C' is the currently compiled class, check that
  2273                 // C.this' does not appear in a call to a super(...)
  2274                 if (env.info.isSelfCall &&
  2275                     site.tsym == env.enclClass.sym) {
  2276                     chk.earlyRefError(tree.pos(), sym);
  2278             } else {
  2279                 // Check if type-qualified fields or methods are static (JLS)
  2280                 if ((sym.flags() & STATIC) == 0 &&
  2281                     sym.name != names._super &&
  2282                     (sym.kind == VAR || sym.kind == MTH)) {
  2283                     rs.access(rs.new StaticError(sym),
  2284                               tree.pos(), site, sym.name, true);
  2287         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  2288             // If the qualified item is not a type and the selected item is static, report
  2289             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  2290             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  2293         // If we are selecting an instance member via a `super', ...
  2294         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2296             // Check that super-qualified symbols are not abstract (JLS)
  2297             rs.checkNonAbstract(tree.pos(), sym);
  2299             if (site.isRaw()) {
  2300                 // Determine argument types for site.
  2301                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2302                 if (site1 != null) site = site1;
  2306         env.info.selectSuper = selectSuperPrev;
  2307         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
  2308         env.info.tvars = List.nil();
  2310     //where
  2311         /** Determine symbol referenced by a Select expression,
  2313          *  @param tree   The select tree.
  2314          *  @param site   The type of the selected expression,
  2315          *  @param env    The current environment.
  2316          *  @param pt     The current prototype.
  2317          *  @param pkind  The expected kind(s) of the Select expression.
  2318          */
  2319         private Symbol selectSym(JCFieldAccess tree,
  2320                                      Type site,
  2321                                      Env<AttrContext> env,
  2322                                      Type pt,
  2323                                      int pkind) {
  2324             return selectSym(tree, site.tsym, site, env, pt, pkind);
  2326         private Symbol selectSym(JCFieldAccess tree,
  2327                                  Symbol location,
  2328                                  Type site,
  2329                                  Env<AttrContext> env,
  2330                                  Type pt,
  2331                                  int pkind) {
  2332             DiagnosticPosition pos = tree.pos();
  2333             Name name = tree.name;
  2334             switch (site.tag) {
  2335             case PACKAGE:
  2336                 return rs.access(
  2337                     rs.findIdentInPackage(env, site.tsym, name, pkind),
  2338                     pos, location, site, name, true);
  2339             case ARRAY:
  2340             case CLASS:
  2341                 if (pt.tag == METHOD || pt.tag == FORALL) {
  2342                     return rs.resolveQualifiedMethod(
  2343                         pos, env, location, site, name, pt.getParameterTypes(), pt.getTypeArguments());
  2344                 } else if (name == names._this || name == names._super) {
  2345                     return rs.resolveSelf(pos, env, site.tsym, name);
  2346                 } else if (name == names._class) {
  2347                     // In this case, we have already made sure in
  2348                     // visitSelect that qualifier expression is a type.
  2349                     Type t = syms.classType;
  2350                     List<Type> typeargs = allowGenerics
  2351                         ? List.of(types.erasure(site))
  2352                         : List.<Type>nil();
  2353                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2354                     return new VarSymbol(
  2355                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2356                 } else {
  2357                     // We are seeing a plain identifier as selector.
  2358                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
  2359                     if ((pkind & ERRONEOUS) == 0)
  2360                         sym = rs.access(sym, pos, location, site, name, true);
  2361                     return sym;
  2363             case WILDCARD:
  2364                 throw new AssertionError(tree);
  2365             case TYPEVAR:
  2366                 // Normally, site.getUpperBound() shouldn't be null.
  2367                 // It should only happen during memberEnter/attribBase
  2368                 // when determining the super type which *must* beac
  2369                 // done before attributing the type variables.  In
  2370                 // other words, we are seeing this illegal program:
  2371                 // class B<T> extends A<T.foo> {}
  2372                 Symbol sym = (site.getUpperBound() != null)
  2373                     ? selectSym(tree, location, capture(site.getUpperBound()), env, pt, pkind)
  2374                     : null;
  2375                 if (sym == null) {
  2376                     log.error(pos, "type.var.cant.be.deref");
  2377                     return syms.errSymbol;
  2378                 } else {
  2379                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2380                         rs.new AccessError(env, site, sym) :
  2381                                 sym;
  2382                     rs.access(sym2, pos, location, site, name, true);
  2383                     return sym;
  2385             case ERROR:
  2386                 // preserve identifier names through errors
  2387                 return types.createErrorType(name, site.tsym, site).tsym;
  2388             default:
  2389                 // The qualifier expression is of a primitive type -- only
  2390                 // .class is allowed for these.
  2391                 if (name == names._class) {
  2392                     // In this case, we have already made sure in Select that
  2393                     // qualifier expression is a type.
  2394                     Type t = syms.classType;
  2395                     Type arg = types.boxedClass(site).type;
  2396                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  2397                     return new VarSymbol(
  2398                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2399                 } else {
  2400                     log.error(pos, "cant.deref", site);
  2401                     return syms.errSymbol;
  2406         /** Determine type of identifier or select expression and check that
  2407          *  (1) the referenced symbol is not deprecated
  2408          *  (2) the symbol's type is safe (@see checkSafe)
  2409          *  (3) if symbol is a variable, check that its type and kind are
  2410          *      compatible with the prototype and protokind.
  2411          *  (4) if symbol is an instance field of a raw type,
  2412          *      which is being assigned to, issue an unchecked warning if its
  2413          *      type changes under erasure.
  2414          *  (5) if symbol is an instance method of a raw type, issue an
  2415          *      unchecked warning if its argument types change under erasure.
  2416          *  If checks succeed:
  2417          *    If symbol is a constant, return its constant type
  2418          *    else if symbol is a method, return its result type
  2419          *    otherwise return its type.
  2420          *  Otherwise return errType.
  2422          *  @param tree       The syntax tree representing the identifier
  2423          *  @param site       If this is a select, the type of the selected
  2424          *                    expression, otherwise the type of the current class.
  2425          *  @param sym        The symbol representing the identifier.
  2426          *  @param env        The current environment.
  2427          *  @param pkind      The set of expected kinds.
  2428          *  @param pt         The expected type.
  2429          */
  2430         Type checkId(JCTree tree,
  2431                      Type site,
  2432                      Symbol sym,
  2433                      Env<AttrContext> env,
  2434                      int pkind,
  2435                      Type pt,
  2436                      boolean useVarargs) {
  2437             if (pt.isErroneous()) return types.createErrorType(site);
  2438             Type owntype; // The computed type of this identifier occurrence.
  2439             switch (sym.kind) {
  2440             case TYP:
  2441                 // For types, the computed type equals the symbol's type,
  2442                 // except for two situations:
  2443                 owntype = sym.type;
  2444                 if (owntype.tag == CLASS) {
  2445                     Type ownOuter = owntype.getEnclosingType();
  2447                     // (a) If the symbol's type is parameterized, erase it
  2448                     // because no type parameters were given.
  2449                     // We recover generic outer type later in visitTypeApply.
  2450                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  2451                         owntype = types.erasure(owntype);
  2454                     // (b) If the symbol's type is an inner class, then
  2455                     // we have to interpret its outer type as a superclass
  2456                     // of the site type. Example:
  2457                     //
  2458                     // class Tree<A> { class Visitor { ... } }
  2459                     // class PointTree extends Tree<Point> { ... }
  2460                     // ...PointTree.Visitor...
  2461                     //
  2462                     // Then the type of the last expression above is
  2463                     // Tree<Point>.Visitor.
  2464                     else if (ownOuter.tag == CLASS && site != ownOuter) {
  2465                         Type normOuter = site;
  2466                         if (normOuter.tag == CLASS)
  2467                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  2468                         if (normOuter == null) // perhaps from an import
  2469                             normOuter = types.erasure(ownOuter);
  2470                         if (normOuter != ownOuter)
  2471                             owntype = new ClassType(
  2472                                 normOuter, List.<Type>nil(), owntype.tsym);
  2475                 break;
  2476             case VAR:
  2477                 VarSymbol v = (VarSymbol)sym;
  2478                 // Test (4): if symbol is an instance field of a raw type,
  2479                 // which is being assigned to, issue an unchecked warning if
  2480                 // its type changes under erasure.
  2481                 if (allowGenerics &&
  2482                     pkind == VAR &&
  2483                     v.owner.kind == TYP &&
  2484                     (v.flags() & STATIC) == 0 &&
  2485                     (site.tag == CLASS || site.tag == TYPEVAR)) {
  2486                     Type s = types.asOuterSuper(site, v.owner);
  2487                     if (s != null &&
  2488                         s.isRaw() &&
  2489                         !types.isSameType(v.type, v.erasure(types))) {
  2490                         chk.warnUnchecked(tree.pos(),
  2491                                           "unchecked.assign.to.var",
  2492                                           v, s);
  2495                 // The computed type of a variable is the type of the
  2496                 // variable symbol, taken as a member of the site type.
  2497                 owntype = (sym.owner.kind == TYP &&
  2498                            sym.name != names._this && sym.name != names._super)
  2499                     ? types.memberType(site, sym)
  2500                     : sym.type;
  2502                 if (env.info.tvars.nonEmpty()) {
  2503                     Type owntype1 = new ForAll(env.info.tvars, owntype);
  2504                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
  2505                         if (!owntype.contains(l.head)) {
  2506                             log.error(tree.pos(), "undetermined.type", owntype1);
  2507                             owntype1 = types.createErrorType(owntype1);
  2509                     owntype = owntype1;
  2512                 // If the variable is a constant, record constant value in
  2513                 // computed type.
  2514                 if (v.getConstValue() != null && isStaticReference(tree))
  2515                     owntype = owntype.constType(v.getConstValue());
  2517                 if (pkind == VAL) {
  2518                     owntype = capture(owntype); // capture "names as expressions"
  2520                 break;
  2521             case MTH: {
  2522                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
  2523                 owntype = checkMethod(site, sym, env, app.args,
  2524                                       pt.getParameterTypes(), pt.getTypeArguments(),
  2525                                       env.info.varArgs);
  2526                 break;
  2528             case PCK: case ERR:
  2529                 owntype = sym.type;
  2530                 break;
  2531             default:
  2532                 throw new AssertionError("unexpected kind: " + sym.kind +
  2533                                          " in tree " + tree);
  2536             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  2537             // (for constructors, the error was given when the constructor was
  2538             // resolved)
  2540             if (sym.name != names.init) {
  2541                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  2542                 chk.checkSunAPI(tree.pos(), sym);
  2545             // Test (3): if symbol is a variable, check that its type and
  2546             // kind are compatible with the prototype and protokind.
  2547             return check(tree, owntype, sym.kind, pkind, pt);
  2550         /** Check that variable is initialized and evaluate the variable's
  2551          *  initializer, if not yet done. Also check that variable is not
  2552          *  referenced before it is defined.
  2553          *  @param tree    The tree making up the variable reference.
  2554          *  @param env     The current environment.
  2555          *  @param v       The variable's symbol.
  2556          */
  2557         private void checkInit(JCTree tree,
  2558                                Env<AttrContext> env,
  2559                                VarSymbol v,
  2560                                boolean onlyWarning) {
  2561 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  2562 //                             tree.pos + " " + v.pos + " " +
  2563 //                             Resolve.isStatic(env));//DEBUG
  2565             // A forward reference is diagnosed if the declaration position
  2566             // of the variable is greater than the current tree position
  2567             // and the tree and variable definition occur in the same class
  2568             // definition.  Note that writes don't count as references.
  2569             // This check applies only to class and instance
  2570             // variables.  Local variables follow different scope rules,
  2571             // and are subject to definite assignment checking.
  2572             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  2573                 v.owner.kind == TYP &&
  2574                 canOwnInitializer(env.info.scope.owner) &&
  2575                 v.owner == env.info.scope.owner.enclClass() &&
  2576                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  2577                 (env.tree.getTag() != JCTree.ASSIGN ||
  2578                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  2579                 String suffix = (env.info.enclVar == v) ?
  2580                                 "self.ref" : "forward.ref";
  2581                 if (!onlyWarning || isStaticEnumField(v)) {
  2582                     log.error(tree.pos(), "illegal." + suffix);
  2583                 } else if (useBeforeDeclarationWarning) {
  2584                     log.warning(tree.pos(), suffix, v);
  2588             v.getConstValue(); // ensure initializer is evaluated
  2590             checkEnumInitializer(tree, env, v);
  2593         /**
  2594          * Check for illegal references to static members of enum.  In
  2595          * an enum type, constructors and initializers may not
  2596          * reference its static members unless they are constant.
  2598          * @param tree    The tree making up the variable reference.
  2599          * @param env     The current environment.
  2600          * @param v       The variable's symbol.
  2601          * @see JLS 3rd Ed. (8.9 Enums)
  2602          */
  2603         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  2604             // JLS 3rd Ed.:
  2605             //
  2606             // "It is a compile-time error to reference a static field
  2607             // of an enum type that is not a compile-time constant
  2608             // (15.28) from constructors, instance initializer blocks,
  2609             // or instance variable initializer expressions of that
  2610             // type. It is a compile-time error for the constructors,
  2611             // instance initializer blocks, or instance variable
  2612             // initializer expressions of an enum constant e to refer
  2613             // to itself or to an enum constant of the same type that
  2614             // is declared to the right of e."
  2615             if (isStaticEnumField(v)) {
  2616                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  2618                 if (enclClass == null || enclClass.owner == null)
  2619                     return;
  2621                 // See if the enclosing class is the enum (or a
  2622                 // subclass thereof) declaring v.  If not, this
  2623                 // reference is OK.
  2624                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  2625                     return;
  2627                 // If the reference isn't from an initializer, then
  2628                 // the reference is OK.
  2629                 if (!Resolve.isInitializer(env))
  2630                     return;
  2632                 log.error(tree.pos(), "illegal.enum.static.ref");
  2636         /** Is the given symbol a static, non-constant field of an Enum?
  2637          *  Note: enum literals should not be regarded as such
  2638          */
  2639         private boolean isStaticEnumField(VarSymbol v) {
  2640             return Flags.isEnum(v.owner) &&
  2641                    Flags.isStatic(v) &&
  2642                    !Flags.isConstant(v) &&
  2643                    v.name != names._class;
  2646         /** Can the given symbol be the owner of code which forms part
  2647          *  if class initialization? This is the case if the symbol is
  2648          *  a type or field, or if the symbol is the synthetic method.
  2649          *  owning a block.
  2650          */
  2651         private boolean canOwnInitializer(Symbol sym) {
  2652             return
  2653                 (sym.kind & (VAR | TYP)) != 0 ||
  2654                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  2657     Warner noteWarner = new Warner();
  2659     /**
  2660      * Check that method arguments conform to its instantation.
  2661      **/
  2662     public Type checkMethod(Type site,
  2663                             Symbol sym,
  2664                             Env<AttrContext> env,
  2665                             final List<JCExpression> argtrees,
  2666                             List<Type> argtypes,
  2667                             List<Type> typeargtypes,
  2668                             boolean useVarargs) {
  2669         // Test (5): if symbol is an instance method of a raw type, issue
  2670         // an unchecked warning if its argument types change under erasure.
  2671         if (allowGenerics &&
  2672             (sym.flags() & STATIC) == 0 &&
  2673             (site.tag == CLASS || site.tag == TYPEVAR)) {
  2674             Type s = types.asOuterSuper(site, sym.owner);
  2675             if (s != null && s.isRaw() &&
  2676                 !types.isSameTypes(sym.type.getParameterTypes(),
  2677                                    sym.erasure(types).getParameterTypes())) {
  2678                 chk.warnUnchecked(env.tree.pos(),
  2679                                   "unchecked.call.mbr.of.raw.type",
  2680                                   sym, s);
  2684         // Compute the identifier's instantiated type.
  2685         // For methods, we need to compute the instance type by
  2686         // Resolve.instantiate from the symbol's type as well as
  2687         // any type arguments and value arguments.
  2688         noteWarner.clear();
  2689         Type owntype = rs.instantiate(env,
  2690                                       site,
  2691                                       sym,
  2692                                       argtypes,
  2693                                       typeargtypes,
  2694                                       true,
  2695                                       useVarargs,
  2696                                       noteWarner);
  2697         boolean warned = noteWarner.hasNonSilentLint(LintCategory.UNCHECKED);
  2699         // If this fails, something went wrong; we should not have
  2700         // found the identifier in the first place.
  2701         if (owntype == null) {
  2702             if (!pt.isErroneous())
  2703                 log.error(env.tree.pos(),
  2704                           "internal.error.cant.instantiate",
  2705                           sym, site,
  2706                           Type.toString(pt.getParameterTypes()));
  2707             owntype = types.createErrorType(site);
  2708         } else {
  2709             // System.out.println("call   : " + env.tree);
  2710             // System.out.println("method : " + owntype);
  2711             // System.out.println("actuals: " + argtypes);
  2712             List<Type> formals = owntype.getParameterTypes();
  2713             Type last = useVarargs ? formals.last() : null;
  2714             if (sym.name==names.init &&
  2715                 sym.owner == syms.enumSym)
  2716                 formals = formals.tail.tail;
  2717             List<JCExpression> args = argtrees;
  2718             while (formals.head != last) {
  2719                 JCTree arg = args.head;
  2720                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
  2721                 assertConvertible(arg, arg.type, formals.head, warn);
  2722                 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
  2723                 args = args.tail;
  2724                 formals = formals.tail;
  2726             if (useVarargs) {
  2727                 Type varArg = types.elemtype(last);
  2728                 while (args.tail != null) {
  2729                     JCTree arg = args.head;
  2730                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
  2731                     assertConvertible(arg, arg.type, varArg, warn);
  2732                     warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
  2733                     args = args.tail;
  2735             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
  2736                 // non-varargs call to varargs method
  2737                 Type varParam = owntype.getParameterTypes().last();
  2738                 Type lastArg = argtypes.last();
  2739                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
  2740                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
  2741                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
  2742                                 types.elemtype(varParam),
  2743                                 varParam);
  2746             if (warned && sym.type.tag == FORALL) {
  2747                 chk.warnUnchecked(env.tree.pos(),
  2748                                   "unchecked.meth.invocation.applied",
  2749                                   kindName(sym),
  2750                                   sym.name,
  2751                                   rs.methodArguments(sym.type.getParameterTypes()),
  2752                                   rs.methodArguments(argtypes),
  2753                                   kindName(sym.location()),
  2754                                   sym.location());
  2755                 owntype = new MethodType(owntype.getParameterTypes(),
  2756                                          types.erasure(owntype.getReturnType()),
  2757                                          types.erasure(owntype.getThrownTypes()),
  2758                                          syms.methodClass);
  2760             if (useVarargs) {
  2761                 JCTree tree = env.tree;
  2762                 Type argtype = owntype.getParameterTypes().last();
  2763                 if (owntype.getReturnType().tag != FORALL || warned) {
  2764                     chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym);
  2766                 Type elemtype = types.elemtype(argtype);
  2767                 switch (tree.getTag()) {
  2768                 case JCTree.APPLY:
  2769                     ((JCMethodInvocation) tree).varargsElement = elemtype;
  2770                     break;
  2771                 case JCTree.NEWCLASS:
  2772                     ((JCNewClass) tree).varargsElement = elemtype;
  2773                     break;
  2774                 default:
  2775                     throw new AssertionError(""+tree);
  2779         return owntype;
  2782     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
  2783         if (types.isConvertible(actual, formal, warn))
  2784             return;
  2786         if (formal.isCompound()
  2787             && types.isSubtype(actual, types.supertype(formal))
  2788             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
  2789             return;
  2791         if (false) {
  2792             // TODO: make assertConvertible work
  2793             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
  2794             throw new AssertionError("Tree: " + tree
  2795                                      + " actual:" + actual
  2796                                      + " formal: " + formal);
  2800     public void visitLiteral(JCLiteral tree) {
  2801         result = check(
  2802             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
  2804     //where
  2805     /** Return the type of a literal with given type tag.
  2806      */
  2807     Type litType(int tag) {
  2808         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
  2811     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  2812         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
  2815     public void visitTypeArray(JCArrayTypeTree tree) {
  2816         Type etype = attribType(tree.elemtype, env);
  2817         Type type = new ArrayType(etype, syms.arrayClass);
  2818         result = check(tree, type, TYP, pkind, pt);
  2821     /** Visitor method for parameterized types.
  2822      *  Bound checking is left until later, since types are attributed
  2823      *  before supertype structure is completely known
  2824      */
  2825     public void visitTypeApply(JCTypeApply tree) {
  2826         Type owntype = types.createErrorType(tree.type);
  2828         // Attribute functor part of application and make sure it's a class.
  2829         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  2831         // Attribute type parameters
  2832         List<Type> actuals = attribTypes(tree.arguments, env);
  2834         if (clazztype.tag == CLASS) {
  2835             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  2837             if (actuals.length() == formals.length() || actuals.length() == 0) {
  2838                 List<Type> a = actuals;
  2839                 List<Type> f = formals;
  2840                 while (a.nonEmpty()) {
  2841                     a.head = a.head.withTypeVar(f.head);
  2842                     a = a.tail;
  2843                     f = f.tail;
  2845                 // Compute the proper generic outer
  2846                 Type clazzOuter = clazztype.getEnclosingType();
  2847                 if (clazzOuter.tag == CLASS) {
  2848                     Type site;
  2849                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  2850                     if (clazz.getTag() == JCTree.IDENT) {
  2851                         site = env.enclClass.sym.type;
  2852                     } else if (clazz.getTag() == JCTree.SELECT) {
  2853                         site = ((JCFieldAccess) clazz).selected.type;
  2854                     } else throw new AssertionError(""+tree);
  2855                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
  2856                         if (site.tag == CLASS)
  2857                             site = types.asOuterSuper(site, clazzOuter.tsym);
  2858                         if (site == null)
  2859                             site = types.erasure(clazzOuter);
  2860                         clazzOuter = site;
  2863                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  2864             } else {
  2865                 if (formals.length() != 0) {
  2866                     log.error(tree.pos(), "wrong.number.type.args",
  2867                               Integer.toString(formals.length()));
  2868                 } else {
  2869                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  2871                 owntype = types.createErrorType(tree.type);
  2874         result = check(tree, owntype, TYP, pkind, pt);
  2877     public void visitTypeDisjunction(JCTypeDisjunction tree) {
  2878         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  2879         for (JCExpression typeTree : tree.alternatives) {
  2880             Type ctype = attribType(typeTree, env);
  2881             ctype = chk.checkType(typeTree.pos(),
  2882                           chk.checkClassType(typeTree.pos(), ctype),
  2883                           syms.throwableType);
  2884             if (!ctype.isErroneous()) {
  2885                 //check that alternatives of a disjunctive type are pairwise
  2886                 //unrelated w.r.t. subtyping
  2887                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  2888                     for (Type t : multicatchTypes) {
  2889                         boolean sub = types.isSubtype(ctype, t);
  2890                         boolean sup = types.isSubtype(t, ctype);
  2891                         if (sub || sup) {
  2892                             //assume 'a' <: 'b'
  2893                             Type a = sub ? ctype : t;
  2894                             Type b = sub ? t : ctype;
  2895                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  2899                 multicatchTypes.append(ctype);
  2902         tree.type = result = check(tree, types.lub(multicatchTypes.toList()), TYP, pkind, pt);
  2905     public void visitTypeParameter(JCTypeParameter tree) {
  2906         TypeVar a = (TypeVar)tree.type;
  2907         Set<Type> boundSet = new HashSet<Type>();
  2908         if (a.bound.isErroneous())
  2909             return;
  2910         List<Type> bs = types.getBounds(a);
  2911         if (tree.bounds.nonEmpty()) {
  2912             // accept class or interface or typevar as first bound.
  2913             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  2914             boundSet.add(types.erasure(b));
  2915             if (b.isErroneous()) {
  2916                 a.bound = b;
  2918             else if (b.tag == TYPEVAR) {
  2919                 // if first bound was a typevar, do not accept further bounds.
  2920                 if (tree.bounds.tail.nonEmpty()) {
  2921                     log.error(tree.bounds.tail.head.pos(),
  2922                               "type.var.may.not.be.followed.by.other.bounds");
  2923                     tree.bounds = List.of(tree.bounds.head);
  2924                     a.bound = bs.head;
  2926             } else {
  2927                 // if first bound was a class or interface, accept only interfaces
  2928                 // as further bounds.
  2929                 for (JCExpression bound : tree.bounds.tail) {
  2930                     bs = bs.tail;
  2931                     Type i = checkBase(bs.head, bound, env, false, true, false);
  2932                     if (i.isErroneous())
  2933                         a.bound = i;
  2934                     else if (i.tag == CLASS)
  2935                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  2939         bs = types.getBounds(a);
  2941         // in case of multiple bounds ...
  2942         if (bs.length() > 1) {
  2943             // ... the variable's bound is a class type flagged COMPOUND
  2944             // (see comment for TypeVar.bound).
  2945             // In this case, generate a class tree that represents the
  2946             // bound class, ...
  2947             JCExpression extending;
  2948             List<JCExpression> implementing;
  2949             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  2950                 extending = tree.bounds.head;
  2951                 implementing = tree.bounds.tail;
  2952             } else {
  2953                 extending = null;
  2954                 implementing = tree.bounds;
  2956             JCClassDecl cd = make.at(tree.pos).ClassDef(
  2957                 make.Modifiers(PUBLIC | ABSTRACT),
  2958                 tree.name, List.<JCTypeParameter>nil(),
  2959                 extending, implementing, List.<JCTree>nil());
  2961             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  2962             Assert.check((c.flags() & COMPOUND) != 0);
  2963             cd.sym = c;
  2964             c.sourcefile = env.toplevel.sourcefile;
  2966             // ... and attribute the bound class
  2967             c.flags_field |= UNATTRIBUTED;
  2968             Env<AttrContext> cenv = enter.classEnv(cd, env);
  2969             enter.typeEnvs.put(c, cenv);
  2974     public void visitWildcard(JCWildcard tree) {
  2975         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  2976         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  2977             ? syms.objectType
  2978             : attribType(tree.inner, env);
  2979         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  2980                                               tree.kind.kind,
  2981                                               syms.boundClass),
  2982                        TYP, pkind, pt);
  2985     public void visitAnnotation(JCAnnotation tree) {
  2986         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
  2987         result = tree.type = syms.errType;
  2990     public void visitErroneous(JCErroneous tree) {
  2991         if (tree.errs != null)
  2992             for (JCTree err : tree.errs)
  2993                 attribTree(err, env, ERR, pt);
  2994         result = tree.type = syms.errType;
  2997     /** Default visitor method for all other trees.
  2998      */
  2999     public void visitTree(JCTree tree) {
  3000         throw new AssertionError();
  3003     /**
  3004      * Attribute an env for either a top level tree or class declaration.
  3005      */
  3006     public void attrib(Env<AttrContext> env) {
  3007         if (env.tree.getTag() == JCTree.TOPLEVEL)
  3008             attribTopLevel(env);
  3009         else
  3010             attribClass(env.tree.pos(), env.enclClass.sym);
  3013     /**
  3014      * Attribute a top level tree. These trees are encountered when the
  3015      * package declaration has annotations.
  3016      */
  3017     public void attribTopLevel(Env<AttrContext> env) {
  3018         JCCompilationUnit toplevel = env.toplevel;
  3019         try {
  3020             annotate.flush();
  3021             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  3022         } catch (CompletionFailure ex) {
  3023             chk.completionError(toplevel.pos(), ex);
  3027     /** Main method: attribute class definition associated with given class symbol.
  3028      *  reporting completion failures at the given position.
  3029      *  @param pos The source position at which completion errors are to be
  3030      *             reported.
  3031      *  @param c   The class symbol whose definition will be attributed.
  3032      */
  3033     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3034         try {
  3035             annotate.flush();
  3036             attribClass(c);
  3037         } catch (CompletionFailure ex) {
  3038             chk.completionError(pos, ex);
  3042     /** Attribute class definition associated with given class symbol.
  3043      *  @param c   The class symbol whose definition will be attributed.
  3044      */
  3045     void attribClass(ClassSymbol c) throws CompletionFailure {
  3046         if (c.type.tag == ERROR) return;
  3048         // Check for cycles in the inheritance graph, which can arise from
  3049         // ill-formed class files.
  3050         chk.checkNonCyclic(null, c.type);
  3052         Type st = types.supertype(c.type);
  3053         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3054             // First, attribute superclass.
  3055             if (st.tag == CLASS)
  3056                 attribClass((ClassSymbol)st.tsym);
  3058             // Next attribute owner, if it is a class.
  3059             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
  3060                 attribClass((ClassSymbol)c.owner);
  3063         // The previous operations might have attributed the current class
  3064         // if there was a cycle. So we test first whether the class is still
  3065         // UNATTRIBUTED.
  3066         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3067             c.flags_field &= ~UNATTRIBUTED;
  3069             // Get environment current at the point of class definition.
  3070             Env<AttrContext> env = enter.typeEnvs.get(c);
  3072             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3073             // because the annotations were not available at the time the env was created. Therefore,
  3074             // we look up the environment chain for the first enclosing environment for which the
  3075             // lint value is set. Typically, this is the parent env, but might be further if there
  3076             // are any envs created as a result of TypeParameter nodes.
  3077             Env<AttrContext> lintEnv = env;
  3078             while (lintEnv.info.lint == null)
  3079                 lintEnv = lintEnv.next;
  3081             // Having found the enclosing lint value, we can initialize the lint value for this class
  3082             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
  3084             Lint prevLint = chk.setLint(env.info.lint);
  3085             JavaFileObject prev = log.useSource(c.sourcefile);
  3087             try {
  3088                 // java.lang.Enum may not be subclassed by a non-enum
  3089                 if (st.tsym == syms.enumSym &&
  3090                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3091                     log.error(env.tree.pos(), "enum.no.subclassing");
  3093                 // Enums may not be extended by source-level classes
  3094                 if (st.tsym != null &&
  3095                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3096                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3097                     !target.compilerBootstrap(c)) {
  3098                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3100                 attribClassBody(env, c);
  3102                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3103             } finally {
  3104                 log.useSource(prev);
  3105                 chk.setLint(prevLint);
  3111     public void visitImport(JCImport tree) {
  3112         // nothing to do
  3115     /** Finish the attribution of a class. */
  3116     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3117         JCClassDecl tree = (JCClassDecl)env.tree;
  3118         Assert.check(c == tree.sym);
  3120         // Validate annotations
  3121         chk.validateAnnotations(tree.mods.annotations, c);
  3123         // Validate type parameters, supertype and interfaces.
  3124         attribBounds(tree.typarams);
  3125         if (!c.isAnonymous()) {
  3126             //already checked if anonymous
  3127             chk.validate(tree.typarams, env);
  3128             chk.validate(tree.extending, env);
  3129             chk.validate(tree.implementing, env);
  3132         // If this is a non-abstract class, check that it has no abstract
  3133         // methods or unimplemented methods of an implemented interface.
  3134         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3135             if (!relax)
  3136                 chk.checkAllDefined(tree.pos(), c);
  3139         if ((c.flags() & ANNOTATION) != 0) {
  3140             if (tree.implementing.nonEmpty())
  3141                 log.error(tree.implementing.head.pos(),
  3142                           "cant.extend.intf.annotation");
  3143             if (tree.typarams.nonEmpty())
  3144                 log.error(tree.typarams.head.pos(),
  3145                           "intf.annotation.cant.have.type.params");
  3146         } else {
  3147             // Check that all extended classes and interfaces
  3148             // are compatible (i.e. no two define methods with same arguments
  3149             // yet different return types).  (JLS 8.4.6.3)
  3150             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3153         // Check that class does not import the same parameterized interface
  3154         // with two different argument lists.
  3155         chk.checkClassBounds(tree.pos(), c.type);
  3157         tree.type = c.type;
  3159         for (List<JCTypeParameter> l = tree.typarams;
  3160              l.nonEmpty(); l = l.tail) {
  3161              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  3164         // Check that a generic class doesn't extend Throwable
  3165         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3166             log.error(tree.extending.pos(), "generic.throwable");
  3168         // Check that all methods which implement some
  3169         // method conform to the method they implement.
  3170         chk.checkImplementations(tree);
  3172         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3173             // Attribute declaration
  3174             attribStat(l.head, env);
  3175             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3176             // Make an exception for static constants.
  3177             if (c.owner.kind != PCK &&
  3178                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3179                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3180                 Symbol sym = null;
  3181                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
  3182                 if (sym == null ||
  3183                     sym.kind != VAR ||
  3184                     ((VarSymbol) sym).getConstValue() == null)
  3185                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  3189         // Check for cycles among non-initial constructors.
  3190         chk.checkCyclicConstructors(tree);
  3192         // Check for cycles among annotation elements.
  3193         chk.checkNonCyclicElements(tree);
  3195         // Check for proper use of serialVersionUID
  3196         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  3197             isSerializable(c) &&
  3198             (c.flags() & Flags.ENUM) == 0 &&
  3199             (c.flags() & ABSTRACT) == 0) {
  3200             checkSerialVersionUID(tree, c);
  3203         // where
  3204         /** check if a class is a subtype of Serializable, if that is available. */
  3205         private boolean isSerializable(ClassSymbol c) {
  3206             try {
  3207                 syms.serializableType.complete();
  3209             catch (CompletionFailure e) {
  3210                 return false;
  3212             return types.isSubtype(c.type, syms.serializableType);
  3215         /** Check that an appropriate serialVersionUID member is defined. */
  3216         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  3218             // check for presence of serialVersionUID
  3219             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  3220             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  3221             if (e.scope == null) {
  3222                 log.warning(LintCategory.SERIAL,
  3223                         tree.pos(), "missing.SVUID", c);
  3224                 return;
  3227             // check that it is static final
  3228             VarSymbol svuid = (VarSymbol)e.sym;
  3229             if ((svuid.flags() & (STATIC | FINAL)) !=
  3230                 (STATIC | FINAL))
  3231                 log.warning(LintCategory.SERIAL,
  3232                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  3234             // check that it is long
  3235             else if (svuid.type.tag != TypeTags.LONG)
  3236                 log.warning(LintCategory.SERIAL,
  3237                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  3239             // check constant
  3240             else if (svuid.getConstValue() == null)
  3241                 log.warning(LintCategory.SERIAL,
  3242                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  3245     private Type capture(Type type) {
  3246         return types.capture(type);
  3249     // <editor-fold desc="post-attribution visitor">
  3251     /**
  3252      * Handle missing types/symbols in an AST. This routine is useful when
  3253      * the compiler has encountered some errors (which might have ended up
  3254      * terminating attribution abruptly); if the compiler is used in fail-over
  3255      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  3256      * prevents NPE to be progagated during subsequent compilation steps.
  3257      */
  3258     public void postAttr(Env<AttrContext> env) {
  3259         new PostAttrAnalyzer().scan(env.tree);
  3262     class PostAttrAnalyzer extends TreeScanner {
  3264         private void initTypeIfNeeded(JCTree that) {
  3265             if (that.type == null) {
  3266                 that.type = syms.unknownType;
  3270         @Override
  3271         public void scan(JCTree tree) {
  3272             if (tree == null) return;
  3273             if (tree instanceof JCExpression) {
  3274                 initTypeIfNeeded(tree);
  3276             super.scan(tree);
  3279         @Override
  3280         public void visitIdent(JCIdent that) {
  3281             if (that.sym == null) {
  3282                 that.sym = syms.unknownSymbol;
  3286         @Override
  3287         public void visitSelect(JCFieldAccess that) {
  3288             if (that.sym == null) {
  3289                 that.sym = syms.unknownSymbol;
  3291             super.visitSelect(that);
  3294         @Override
  3295         public void visitClassDef(JCClassDecl that) {
  3296             initTypeIfNeeded(that);
  3297             if (that.sym == null) {
  3298                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  3300             super.visitClassDef(that);
  3303         @Override
  3304         public void visitMethodDef(JCMethodDecl that) {
  3305             initTypeIfNeeded(that);
  3306             if (that.sym == null) {
  3307                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  3309             super.visitMethodDef(that);
  3312         @Override
  3313         public void visitVarDef(JCVariableDecl that) {
  3314             initTypeIfNeeded(that);
  3315             if (that.sym == null) {
  3316                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  3317                 that.sym.adr = 0;
  3319             super.visitVarDef(that);
  3322         @Override
  3323         public void visitNewClass(JCNewClass that) {
  3324             if (that.constructor == null) {
  3325                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  3327             if (that.constructorType == null) {
  3328                 that.constructorType = syms.unknownType;
  3330             super.visitNewClass(that);
  3333         @Override
  3334         public void visitBinary(JCBinary that) {
  3335             if (that.operator == null)
  3336                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3337             super.visitBinary(that);
  3340         @Override
  3341         public void visitUnary(JCUnary that) {
  3342             if (that.operator == null)
  3343                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3344             super.visitUnary(that);
  3347     // </editor-fold>

mercurial