src/share/classes/com/sun/tools/javac/comp/Check.java

Tue, 16 Sep 2008 18:35:18 -0700

author
jjg
date
Tue, 16 Sep 2008 18:35:18 -0700
changeset 113
eff38cc97183
parent 110
91eea580fbe9
child 122
1a9276e7cb18
permissions
-rw-r--r--

6574134: Allow for alternative implementation of Name Table with garbage collection of name bytes
Reviewed-by: darcy, mcimadamore

     1 /*
     2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Sun designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Sun in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
    23  * have any questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import com.sun.tools.javac.code.*;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.tree.*;
    34 import com.sun.tools.javac.util.*;
    35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    36 import com.sun.tools.javac.util.List;
    38 import com.sun.tools.javac.tree.JCTree.*;
    39 import com.sun.tools.javac.code.Lint;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Type.*;
    42 import com.sun.tools.javac.code.Symbol.*;
    44 import static com.sun.tools.javac.code.Flags.*;
    45 import static com.sun.tools.javac.code.Kinds.*;
    46 import static com.sun.tools.javac.code.TypeTags.*;
    48 /** Type checking helper class for the attribution phase.
    49  *
    50  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
    51  *  you write code that depends on this, you do so at your own risk.
    52  *  This code and its internal interfaces are subject to change or
    53  *  deletion without notice.</b>
    54  */
    55 public class Check {
    56     protected static final Context.Key<Check> checkKey =
    57         new Context.Key<Check>();
    59     private final Names names;
    60     private final Log log;
    61     private final Symtab syms;
    62     private final Infer infer;
    63     private final Target target;
    64     private final Source source;
    65     private final Types types;
    66     private final JCDiagnostic.Factory diags;
    67     private final boolean skipAnnotations;
    68     private final TreeInfo treeinfo;
    70     // The set of lint options currently in effect. It is initialized
    71     // from the context, and then is set/reset as needed by Attr as it
    72     // visits all the various parts of the trees during attribution.
    73     private Lint lint;
    75     public static Check instance(Context context) {
    76         Check instance = context.get(checkKey);
    77         if (instance == null)
    78             instance = new Check(context);
    79         return instance;
    80     }
    82     protected Check(Context context) {
    83         context.put(checkKey, this);
    85         names = Names.instance(context);
    86         log = Log.instance(context);
    87         syms = Symtab.instance(context);
    88         infer = Infer.instance(context);
    89         this.types = Types.instance(context);
    90         diags = JCDiagnostic.Factory.instance(context);
    91         Options options = Options.instance(context);
    92         target = Target.instance(context);
    93         source = Source.instance(context);
    94         lint = Lint.instance(context);
    95         treeinfo = TreeInfo.instance(context);
    97         Source source = Source.instance(context);
    98         allowGenerics = source.allowGenerics();
    99         allowAnnotations = source.allowAnnotations();
   100         complexInference = options.get("-complexinference") != null;
   101         skipAnnotations = options.get("skipAnnotations") != null;
   103         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   104         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   105         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   107         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   108                 enforceMandatoryWarnings, "deprecated");
   109         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   110                 enforceMandatoryWarnings, "unchecked");
   111     }
   113     /** Switch: generics enabled?
   114      */
   115     boolean allowGenerics;
   117     /** Switch: annotations enabled?
   118      */
   119     boolean allowAnnotations;
   121     /** Switch: -complexinference option set?
   122      */
   123     boolean complexInference;
   125     /** A table mapping flat names of all compiled classes in this run to their
   126      *  symbols; maintained from outside.
   127      */
   128     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   130     /** A handler for messages about deprecated usage.
   131      */
   132     private MandatoryWarningHandler deprecationHandler;
   134     /** A handler for messages about unchecked or unsafe usage.
   135      */
   136     private MandatoryWarningHandler uncheckedHandler;
   139 /* *************************************************************************
   140  * Errors and Warnings
   141  **************************************************************************/
   143     Lint setLint(Lint newLint) {
   144         Lint prev = lint;
   145         lint = newLint;
   146         return prev;
   147     }
   149     /** Warn about deprecated symbol.
   150      *  @param pos        Position to be used for error reporting.
   151      *  @param sym        The deprecated symbol.
   152      */
   153     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   154         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   155             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   156     }
   158     /** Warn about unchecked operation.
   159      *  @param pos        Position to be used for error reporting.
   160      *  @param msg        A string describing the problem.
   161      */
   162     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   163         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   164             uncheckedHandler.report(pos, msg, args);
   165     }
   167     /**
   168      * Report any deferred diagnostics.
   169      */
   170     public void reportDeferredDiagnostics() {
   171         deprecationHandler.reportDeferredDiagnostic();
   172         uncheckedHandler.reportDeferredDiagnostic();
   173     }
   176     /** Report a failure to complete a class.
   177      *  @param pos        Position to be used for error reporting.
   178      *  @param ex         The failure to report.
   179      */
   180     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   181         log.error(pos, "cant.access", ex.sym, ex.getDetailValue());
   182         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
   183         else return syms.errType;
   184     }
   186     /** Report a type error.
   187      *  @param pos        Position to be used for error reporting.
   188      *  @param problem    A string describing the error.
   189      *  @param found      The type that was found.
   190      *  @param req        The type that was required.
   191      */
   192     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
   193         log.error(pos, "prob.found.req",
   194                   problem, found, req);
   195         return types.createErrorType(found);
   196     }
   198     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
   199         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
   200         return types.createErrorType(found);
   201     }
   203     /** Report an error that wrong type tag was found.
   204      *  @param pos        Position to be used for error reporting.
   205      *  @param required   An internationalized string describing the type tag
   206      *                    required.
   207      *  @param found      The type that was found.
   208      */
   209     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   210         log.error(pos, "type.found.req", found, required);
   211         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   212     }
   214     /** Report an error that symbol cannot be referenced before super
   215      *  has been called.
   216      *  @param pos        Position to be used for error reporting.
   217      *  @param sym        The referenced symbol.
   218      */
   219     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   220         log.error(pos, "cant.ref.before.ctor.called", sym);
   221     }
   223     /** Report duplicate declaration error.
   224      */
   225     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   226         if (!sym.type.isErroneous()) {
   227             log.error(pos, "already.defined", sym, sym.location());
   228         }
   229     }
   231     /** Report array/varargs duplicate declaration
   232      */
   233     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   234         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   235             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   236         }
   237     }
   239 /* ************************************************************************
   240  * duplicate declaration checking
   241  *************************************************************************/
   243     /** Check that variable does not hide variable with same name in
   244      *  immediately enclosing local scope.
   245      *  @param pos           Position for error reporting.
   246      *  @param v             The symbol.
   247      *  @param s             The scope.
   248      */
   249     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   250         if (s.next != null) {
   251             for (Scope.Entry e = s.next.lookup(v.name);
   252                  e.scope != null && e.sym.owner == v.owner;
   253                  e = e.next()) {
   254                 if (e.sym.kind == VAR &&
   255                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   256                     v.name != names.error) {
   257                     duplicateError(pos, e.sym);
   258                     return;
   259                 }
   260             }
   261         }
   262     }
   264     /** Check that a class or interface does not hide a class or
   265      *  interface with same name in immediately enclosing local scope.
   266      *  @param pos           Position for error reporting.
   267      *  @param c             The symbol.
   268      *  @param s             The scope.
   269      */
   270     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   271         if (s.next != null) {
   272             for (Scope.Entry e = s.next.lookup(c.name);
   273                  e.scope != null && e.sym.owner == c.owner;
   274                  e = e.next()) {
   275                 if (e.sym.kind == TYP &&
   276                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   277                     c.name != names.error) {
   278                     duplicateError(pos, e.sym);
   279                     return;
   280                 }
   281             }
   282         }
   283     }
   285     /** Check that class does not have the same name as one of
   286      *  its enclosing classes, or as a class defined in its enclosing scope.
   287      *  return true if class is unique in its enclosing scope.
   288      *  @param pos           Position for error reporting.
   289      *  @param name          The class name.
   290      *  @param s             The enclosing scope.
   291      */
   292     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   293         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   294             if (e.sym.kind == TYP && e.sym.name != names.error) {
   295                 duplicateError(pos, e.sym);
   296                 return false;
   297             }
   298         }
   299         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   300             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   301                 duplicateError(pos, sym);
   302                 return true;
   303             }
   304         }
   305         return true;
   306     }
   308 /* *************************************************************************
   309  * Class name generation
   310  **************************************************************************/
   312     /** Return name of local class.
   313      *  This is of the form    <enclClass> $ n <classname>
   314      *  where
   315      *    enclClass is the flat name of the enclosing class,
   316      *    classname is the simple name of the local class
   317      */
   318     Name localClassName(ClassSymbol c) {
   319         for (int i=1; ; i++) {
   320             Name flatname = names.
   321                 fromString("" + c.owner.enclClass().flatname +
   322                            target.syntheticNameChar() + i +
   323                            c.name);
   324             if (compiled.get(flatname) == null) return flatname;
   325         }
   326     }
   328 /* *************************************************************************
   329  * Type Checking
   330  **************************************************************************/
   332     /** Check that a given type is assignable to a given proto-type.
   333      *  If it is, return the type, otherwise return errType.
   334      *  @param pos        Position to be used for error reporting.
   335      *  @param found      The type that was found.
   336      *  @param req        The type that was required.
   337      */
   338     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   339         if (req.tag == ERROR)
   340             return req;
   341         if (found.tag == FORALL)
   342             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
   343         if (req.tag == NONE)
   344             return found;
   345         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
   346             return found;
   347         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
   348             return typeError(pos, diags.fragment("possible.loss.of.precision"), found, req);
   349         if (found.isSuperBound()) {
   350             log.error(pos, "assignment.from.super-bound", found);
   351             return types.createErrorType(found);
   352         }
   353         if (req.isExtendsBound()) {
   354             log.error(pos, "assignment.to.extends-bound", req);
   355             return types.createErrorType(found);
   356         }
   357         return typeError(pos, diags.fragment("incompatible.types"), found, req);
   358     }
   360     /** Instantiate polymorphic type to some prototype, unless
   361      *  prototype is `anyPoly' in which case polymorphic type
   362      *  is returned unchanged.
   363      */
   364     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
   365         if (pt == Infer.anyPoly && complexInference) {
   366             return t;
   367         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
   368             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
   369             return instantiatePoly(pos, t, newpt, warn);
   370         } else if (pt.tag == ERROR) {
   371             return pt;
   372         } else {
   373             try {
   374                 return infer.instantiateExpr(t, pt, warn);
   375             } catch (Infer.NoInstanceException ex) {
   376                 if (ex.isAmbiguous) {
   377                     JCDiagnostic d = ex.getDiagnostic();
   378                     log.error(pos,
   379                               "undetermined.type" + (d!=null ? ".1" : ""),
   380                               t, d);
   381                     return types.createErrorType(pt);
   382                 } else {
   383                     JCDiagnostic d = ex.getDiagnostic();
   384                     return typeError(pos,
   385                                      diags.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
   386                                      t, pt);
   387                 }
   388             }
   389         }
   390     }
   392     /** Check that a given type can be cast to a given target type.
   393      *  Return the result of the cast.
   394      *  @param pos        Position to be used for error reporting.
   395      *  @param found      The type that is being cast.
   396      *  @param req        The target type of the cast.
   397      */
   398     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   399         if (found.tag == FORALL) {
   400             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
   401             return req;
   402         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
   403             return req;
   404         } else {
   405             return typeError(pos,
   406                              diags.fragment("inconvertible.types"),
   407                              found, req);
   408         }
   409     }
   410 //where
   411         /** Is type a type variable, or a (possibly multi-dimensional) array of
   412          *  type variables?
   413          */
   414         boolean isTypeVar(Type t) {
   415             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
   416         }
   418     /** Check that a type is within some bounds.
   419      *
   420      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
   421      *  type argument.
   422      *  @param pos           Position to be used for error reporting.
   423      *  @param a             The type that should be bounded by bs.
   424      *  @param bs            The bound.
   425      */
   426     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
   427         if (a.tag == TYPEVAR && ((TypeVar)a).isCaptured()) {
   428             CapturedType ct = (CapturedType)a;
   429             boolean ok;
   430             if (ct.bound.isErroneous()) {//capture doesn't exist
   431                 ok = false;
   432             }
   433             else {
   434                 switch (ct.wildcard.kind) {
   435                     case EXTENDS:
   436                         ok = types.isCastable(bs.getUpperBound(),
   437                                 types.upperBound(a),
   438                                 Warner.noWarnings);
   439                         break;
   440                     case SUPER:
   441                         ok = !types.notSoftSubtype(types.lowerBound(a),
   442                                 bs.getUpperBound());
   443                         break;
   444                     case UNBOUND:
   445                         ok = true;
   446                         break;
   447                     default:
   448                         throw new AssertionError("Invalid bound kind");
   449                 }
   450             }
   451             if (!ok)
   452                 log.error(pos, "not.within.bounds", a);
   453         }
   454         else {
   455             a = types.upperBound(a);
   456             for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
   457                 if (!types.isSubtype(a, l.head)) {
   458                     log.error(pos, "not.within.bounds", a);
   459                     return;
   460                 }
   461             }
   462         }
   463     }
   465     /** Check that type is different from 'void'.
   466      *  @param pos           Position to be used for error reporting.
   467      *  @param t             The type to be checked.
   468      */
   469     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   470         if (t.tag == VOID) {
   471             log.error(pos, "void.not.allowed.here");
   472             return types.createErrorType(t);
   473         } else {
   474             return t;
   475         }
   476     }
   478     /** Check that type is a class or interface type.
   479      *  @param pos           Position to be used for error reporting.
   480      *  @param t             The type to be checked.
   481      */
   482     Type checkClassType(DiagnosticPosition pos, Type t) {
   483         if (t.tag != CLASS && t.tag != ERROR)
   484             return typeTagError(pos,
   485                                 diags.fragment("type.req.class"),
   486                                 (t.tag == TYPEVAR)
   487                                 ? diags.fragment("type.parameter", t)
   488                                 : t);
   489         else
   490             return t;
   491     }
   493     /** Check that type is a class or interface type.
   494      *  @param pos           Position to be used for error reporting.
   495      *  @param t             The type to be checked.
   496      *  @param noBounds    True if type bounds are illegal here.
   497      */
   498     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   499         t = checkClassType(pos, t);
   500         if (noBounds && t.isParameterized()) {
   501             List<Type> args = t.getTypeArguments();
   502             while (args.nonEmpty()) {
   503                 if (args.head.tag == WILDCARD)
   504                     return typeTagError(pos,
   505                                         log.getLocalizedString("type.req.exact"),
   506                                         args.head);
   507                 args = args.tail;
   508             }
   509         }
   510         return t;
   511     }
   513     /** Check that type is a reifiable class, interface or array type.
   514      *  @param pos           Position to be used for error reporting.
   515      *  @param t             The type to be checked.
   516      */
   517     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
   518         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
   519             return typeTagError(pos,
   520                                 diags.fragment("type.req.class.array"),
   521                                 t);
   522         } else if (!types.isReifiable(t)) {
   523             log.error(pos, "illegal.generic.type.for.instof");
   524             return types.createErrorType(t);
   525         } else {
   526             return t;
   527         }
   528     }
   530     /** Check that type is a reference type, i.e. a class, interface or array type
   531      *  or a type variable.
   532      *  @param pos           Position to be used for error reporting.
   533      *  @param t             The type to be checked.
   534      */
   535     Type checkRefType(DiagnosticPosition pos, Type t) {
   536         switch (t.tag) {
   537         case CLASS:
   538         case ARRAY:
   539         case TYPEVAR:
   540         case WILDCARD:
   541         case ERROR:
   542             return t;
   543         default:
   544             return typeTagError(pos,
   545                                 diags.fragment("type.req.ref"),
   546                                 t);
   547         }
   548     }
   550     /** Check that type is a null or reference type.
   551      *  @param pos           Position to be used for error reporting.
   552      *  @param t             The type to be checked.
   553      */
   554     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   555         switch (t.tag) {
   556         case CLASS:
   557         case ARRAY:
   558         case TYPEVAR:
   559         case WILDCARD:
   560         case BOT:
   561         case ERROR:
   562             return t;
   563         default:
   564             return typeTagError(pos,
   565                                 diags.fragment("type.req.ref"),
   566                                 t);
   567         }
   568     }
   570     /** Check that flag set does not contain elements of two conflicting sets. s
   571      *  Return true if it doesn't.
   572      *  @param pos           Position to be used for error reporting.
   573      *  @param flags         The set of flags to be checked.
   574      *  @param set1          Conflicting flags set #1.
   575      *  @param set2          Conflicting flags set #2.
   576      */
   577     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   578         if ((flags & set1) != 0 && (flags & set2) != 0) {
   579             log.error(pos,
   580                       "illegal.combination.of.modifiers",
   581                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   582                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   583             return false;
   584         } else
   585             return true;
   586     }
   588     /** Check that given modifiers are legal for given symbol and
   589      *  return modifiers together with any implicit modififiers for that symbol.
   590      *  Warning: we can't use flags() here since this method
   591      *  is called during class enter, when flags() would cause a premature
   592      *  completion.
   593      *  @param pos           Position to be used for error reporting.
   594      *  @param flags         The set of modifiers given in a definition.
   595      *  @param sym           The defined symbol.
   596      */
   597     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
   598         long mask;
   599         long implicit = 0;
   600         switch (sym.kind) {
   601         case VAR:
   602             if (sym.owner.kind != TYP)
   603                 mask = LocalVarFlags;
   604             else if ((sym.owner.flags_field & INTERFACE) != 0)
   605                 mask = implicit = InterfaceVarFlags;
   606             else
   607                 mask = VarFlags;
   608             break;
   609         case MTH:
   610             if (sym.name == names.init) {
   611                 if ((sym.owner.flags_field & ENUM) != 0) {
   612                     // enum constructors cannot be declared public or
   613                     // protected and must be implicitly or explicitly
   614                     // private
   615                     implicit = PRIVATE;
   616                     mask = PRIVATE;
   617                 } else
   618                     mask = ConstructorFlags;
   619             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
   620                 mask = implicit = InterfaceMethodFlags;
   621             else {
   622                 mask = MethodFlags;
   623             }
   624             // Imply STRICTFP if owner has STRICTFP set.
   625             if (((flags|implicit) & Flags.ABSTRACT) == 0)
   626               implicit |= sym.owner.flags_field & STRICTFP;
   627             break;
   628         case TYP:
   629             if (sym.isLocal()) {
   630                 mask = LocalClassFlags;
   631                 if (sym.name.isEmpty()) { // Anonymous class
   632                     // Anonymous classes in static methods are themselves static;
   633                     // that's why we admit STATIC here.
   634                     mask |= STATIC;
   635                     // JLS: Anonymous classes are final.
   636                     implicit |= FINAL;
   637                 }
   638                 if ((sym.owner.flags_field & STATIC) == 0 &&
   639                     (flags & ENUM) != 0)
   640                     log.error(pos, "enums.must.be.static");
   641             } else if (sym.owner.kind == TYP) {
   642                 mask = MemberClassFlags;
   643                 if (sym.owner.owner.kind == PCK ||
   644                     (sym.owner.flags_field & STATIC) != 0)
   645                     mask |= STATIC;
   646                 else if ((flags & ENUM) != 0)
   647                     log.error(pos, "enums.must.be.static");
   648                 // Nested interfaces and enums are always STATIC (Spec ???)
   649                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
   650             } else {
   651                 mask = ClassFlags;
   652             }
   653             // Interfaces are always ABSTRACT
   654             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
   656             if ((flags & ENUM) != 0) {
   657                 // enums can't be declared abstract or final
   658                 mask &= ~(ABSTRACT | FINAL);
   659                 implicit |= implicitEnumFinalFlag(tree);
   660             }
   661             // Imply STRICTFP if owner has STRICTFP set.
   662             implicit |= sym.owner.flags_field & STRICTFP;
   663             break;
   664         default:
   665             throw new AssertionError();
   666         }
   667         long illegal = flags & StandardFlags & ~mask;
   668         if (illegal != 0) {
   669             if ((illegal & INTERFACE) != 0) {
   670                 log.error(pos, "intf.not.allowed.here");
   671                 mask |= INTERFACE;
   672             }
   673             else {
   674                 log.error(pos,
   675                           "mod.not.allowed.here", asFlagSet(illegal));
   676             }
   677         }
   678         else if ((sym.kind == TYP ||
   679                   // ISSUE: Disallowing abstract&private is no longer appropriate
   680                   // in the presence of inner classes. Should it be deleted here?
   681                   checkDisjoint(pos, flags,
   682                                 ABSTRACT,
   683                                 PRIVATE | STATIC))
   684                  &&
   685                  checkDisjoint(pos, flags,
   686                                ABSTRACT | INTERFACE,
   687                                FINAL | NATIVE | SYNCHRONIZED)
   688                  &&
   689                  checkDisjoint(pos, flags,
   690                                PUBLIC,
   691                                PRIVATE | PROTECTED)
   692                  &&
   693                  checkDisjoint(pos, flags,
   694                                PRIVATE,
   695                                PUBLIC | PROTECTED)
   696                  &&
   697                  checkDisjoint(pos, flags,
   698                                FINAL,
   699                                VOLATILE)
   700                  &&
   701                  (sym.kind == TYP ||
   702                   checkDisjoint(pos, flags,
   703                                 ABSTRACT | NATIVE,
   704                                 STRICTFP))) {
   705             // skip
   706         }
   707         return flags & (mask | ~StandardFlags) | implicit;
   708     }
   711     /** Determine if this enum should be implicitly final.
   712      *
   713      *  If the enum has no specialized enum contants, it is final.
   714      *
   715      *  If the enum does have specialized enum contants, it is
   716      *  <i>not</i> final.
   717      */
   718     private long implicitEnumFinalFlag(JCTree tree) {
   719         if (tree.getTag() != JCTree.CLASSDEF) return 0;
   720         class SpecialTreeVisitor extends JCTree.Visitor {
   721             boolean specialized;
   722             SpecialTreeVisitor() {
   723                 this.specialized = false;
   724             };
   726             public void visitTree(JCTree tree) { /* no-op */ }
   728             public void visitVarDef(JCVariableDecl tree) {
   729                 if ((tree.mods.flags & ENUM) != 0) {
   730                     if (tree.init instanceof JCNewClass &&
   731                         ((JCNewClass) tree.init).def != null) {
   732                         specialized = true;
   733                     }
   734                 }
   735             }
   736         }
   738         SpecialTreeVisitor sts = new SpecialTreeVisitor();
   739         JCClassDecl cdef = (JCClassDecl) tree;
   740         for (JCTree defs: cdef.defs) {
   741             defs.accept(sts);
   742             if (sts.specialized) return 0;
   743         }
   744         return FINAL;
   745     }
   747 /* *************************************************************************
   748  * Type Validation
   749  **************************************************************************/
   751     /** Validate a type expression. That is,
   752      *  check that all type arguments of a parametric type are within
   753      *  their bounds. This must be done in a second phase after type attributon
   754      *  since a class might have a subclass as type parameter bound. E.g:
   755      *
   756      *  class B<A extends C> { ... }
   757      *  class C extends B<C> { ... }
   758      *
   759      *  and we can't make sure that the bound is already attributed because
   760      *  of possible cycles.
   761      */
   762     private Validator validator = new Validator();
   764     /** Visitor method: Validate a type expression, if it is not null, catching
   765      *  and reporting any completion failures.
   766      */
   767     void validate(JCTree tree) {
   768         try {
   769             if (tree != null) tree.accept(validator);
   770         } catch (CompletionFailure ex) {
   771             completionError(tree.pos(), ex);
   772         }
   773     }
   775     /** Visitor method: Validate a list of type expressions.
   776      */
   777     void validate(List<? extends JCTree> trees) {
   778         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
   779             validate(l.head);
   780     }
   782     /** Visitor method: Validate a list of type parameters.
   783      */
   784     void validateTypeParams(List<JCTypeParameter> trees) {
   785         for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
   786             validate(l.head);
   787     }
   789     /** A visitor class for type validation.
   790      */
   791     class Validator extends JCTree.Visitor {
   793         public void visitTypeArray(JCArrayTypeTree tree) {
   794             validate(tree.elemtype);
   795         }
   797         public void visitTypeApply(JCTypeApply tree) {
   798             if (tree.type.tag == CLASS) {
   799                 List<Type> formals = tree.type.tsym.type.getTypeArguments();
   800                 List<Type> actuals = types.capture(tree.type).getTypeArguments();
   801                 List<JCExpression> args = tree.arguments;
   802                 List<Type> forms = formals;
   803                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
   805                 // For matching pairs of actual argument types `a' and
   806                 // formal type parameters with declared bound `b' ...
   807                 while (args.nonEmpty() && forms.nonEmpty()) {
   808                     validate(args.head);
   810                     // exact type arguments needs to know their
   811                     // bounds (for upper and lower bound
   812                     // calculations).  So we create new TypeVars with
   813                     // bounds substed with actuals.
   814                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
   815                                                       formals,
   816                                                       actuals));
   818                     args = args.tail;
   819                     forms = forms.tail;
   820                 }
   822                 args = tree.arguments;
   823                 List<TypeVar> tvars = tvars_buf.toList();
   824                 while (args.nonEmpty() && tvars.nonEmpty()) {
   825                     // Let the actual arguments know their bound
   826                     args.head.type.withTypeVar(tvars.head);
   827                     args = args.tail;
   828                     tvars = tvars.tail;
   829                 }
   831                 args = tree.arguments;
   832                 tvars = tvars_buf.toList();
   833                 while (args.nonEmpty() && tvars.nonEmpty()) {
   834                     checkExtends(args.head.pos(),
   835                                  actuals.head,
   836                                  tvars.head);
   837                     args = args.tail;
   838                     tvars = tvars.tail;
   839                     actuals = actuals.tail;
   840                 }
   842                 // Check that this type is either fully parameterized, or
   843                 // not parameterized at all.
   844                 if (tree.type.getEnclosingType().isRaw())
   845                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
   846                 if (tree.clazz.getTag() == JCTree.SELECT)
   847                     visitSelectInternal((JCFieldAccess)tree.clazz);
   848             }
   849         }
   851         public void visitTypeParameter(JCTypeParameter tree) {
   852             validate(tree.bounds);
   853             checkClassBounds(tree.pos(), tree.type);
   854         }
   856         @Override
   857         public void visitWildcard(JCWildcard tree) {
   858             if (tree.inner != null)
   859                 validate(tree.inner);
   860         }
   862         public void visitSelect(JCFieldAccess tree) {
   863             if (tree.type.tag == CLASS) {
   864                 visitSelectInternal(tree);
   866                 // Check that this type is either fully parameterized, or
   867                 // not parameterized at all.
   868                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
   869                     log.error(tree.pos(), "improperly.formed.type.param.missing");
   870             }
   871         }
   872         public void visitSelectInternal(JCFieldAccess tree) {
   873             if (tree.type.getEnclosingType().tag != CLASS &&
   874                 tree.selected.type.isParameterized()) {
   875                 // The enclosing type is not a class, so we are
   876                 // looking at a static member type.  However, the
   877                 // qualifying expression is parameterized.
   878                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
   879             } else {
   880                 // otherwise validate the rest of the expression
   881                 validate(tree.selected);
   882             }
   883         }
   885         /** Default visitor method: do nothing.
   886          */
   887         public void visitTree(JCTree tree) {
   888         }
   889     }
   891 /* *************************************************************************
   892  * Exception checking
   893  **************************************************************************/
   895     /* The following methods treat classes as sets that contain
   896      * the class itself and all their subclasses
   897      */
   899     /** Is given type a subtype of some of the types in given list?
   900      */
   901     boolean subset(Type t, List<Type> ts) {
   902         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   903             if (types.isSubtype(t, l.head)) return true;
   904         return false;
   905     }
   907     /** Is given type a subtype or supertype of
   908      *  some of the types in given list?
   909      */
   910     boolean intersects(Type t, List<Type> ts) {
   911         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   912             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
   913         return false;
   914     }
   916     /** Add type set to given type list, unless it is a subclass of some class
   917      *  in the list.
   918      */
   919     List<Type> incl(Type t, List<Type> ts) {
   920         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
   921     }
   923     /** Remove type set from type set list.
   924      */
   925     List<Type> excl(Type t, List<Type> ts) {
   926         if (ts.isEmpty()) {
   927             return ts;
   928         } else {
   929             List<Type> ts1 = excl(t, ts.tail);
   930             if (types.isSubtype(ts.head, t)) return ts1;
   931             else if (ts1 == ts.tail) return ts;
   932             else return ts1.prepend(ts.head);
   933         }
   934     }
   936     /** Form the union of two type set lists.
   937      */
   938     List<Type> union(List<Type> ts1, List<Type> ts2) {
   939         List<Type> ts = ts1;
   940         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   941             ts = incl(l.head, ts);
   942         return ts;
   943     }
   945     /** Form the difference of two type lists.
   946      */
   947     List<Type> diff(List<Type> ts1, List<Type> ts2) {
   948         List<Type> ts = ts1;
   949         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   950             ts = excl(l.head, ts);
   951         return ts;
   952     }
   954     /** Form the intersection of two type lists.
   955      */
   956     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
   957         List<Type> ts = List.nil();
   958         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
   959             if (subset(l.head, ts2)) ts = incl(l.head, ts);
   960         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
   961             if (subset(l.head, ts1)) ts = incl(l.head, ts);
   962         return ts;
   963     }
   965     /** Is exc an exception symbol that need not be declared?
   966      */
   967     boolean isUnchecked(ClassSymbol exc) {
   968         return
   969             exc.kind == ERR ||
   970             exc.isSubClass(syms.errorType.tsym, types) ||
   971             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
   972     }
   974     /** Is exc an exception type that need not be declared?
   975      */
   976     boolean isUnchecked(Type exc) {
   977         return
   978             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
   979             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
   980             exc.tag == BOT;
   981     }
   983     /** Same, but handling completion failures.
   984      */
   985     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
   986         try {
   987             return isUnchecked(exc);
   988         } catch (CompletionFailure ex) {
   989             completionError(pos, ex);
   990             return true;
   991         }
   992     }
   994     /** Is exc handled by given exception list?
   995      */
   996     boolean isHandled(Type exc, List<Type> handled) {
   997         return isUnchecked(exc) || subset(exc, handled);
   998     }
  1000     /** Return all exceptions in thrown list that are not in handled list.
  1001      *  @param thrown     The list of thrown exceptions.
  1002      *  @param handled    The list of handled exceptions.
  1003      */
  1004     List<Type> unHandled(List<Type> thrown, List<Type> handled) {
  1005         List<Type> unhandled = List.nil();
  1006         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1007             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1008         return unhandled;
  1011 /* *************************************************************************
  1012  * Overriding/Implementation checking
  1013  **************************************************************************/
  1015     /** The level of access protection given by a flag set,
  1016      *  where PRIVATE is highest and PUBLIC is lowest.
  1017      */
  1018     static int protection(long flags) {
  1019         switch ((short)(flags & AccessFlags)) {
  1020         case PRIVATE: return 3;
  1021         case PROTECTED: return 1;
  1022         default:
  1023         case PUBLIC: return 0;
  1024         case 0: return 2;
  1028     /** A customized "cannot override" error message.
  1029      *  @param m      The overriding method.
  1030      *  @param other  The overridden method.
  1031      *  @return       An internationalized string.
  1032      */
  1033     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1034         String key;
  1035         if ((other.owner.flags() & INTERFACE) == 0)
  1036             key = "cant.override";
  1037         else if ((m.owner.flags() & INTERFACE) == 0)
  1038             key = "cant.implement";
  1039         else
  1040             key = "clashes.with";
  1041         return diags.fragment(key, m, m.location(), other, other.location());
  1044     /** A customized "override" warning message.
  1045      *  @param m      The overriding method.
  1046      *  @param other  The overridden method.
  1047      *  @return       An internationalized string.
  1048      */
  1049     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1050         String key;
  1051         if ((other.owner.flags() & INTERFACE) == 0)
  1052             key = "unchecked.override";
  1053         else if ((m.owner.flags() & INTERFACE) == 0)
  1054             key = "unchecked.implement";
  1055         else
  1056             key = "unchecked.clash.with";
  1057         return diags.fragment(key, m, m.location(), other, other.location());
  1060     /** A customized "override" warning message.
  1061      *  @param m      The overriding method.
  1062      *  @param other  The overridden method.
  1063      *  @return       An internationalized string.
  1064      */
  1065     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1066         String key;
  1067         if ((other.owner.flags() & INTERFACE) == 0)
  1068             key = "varargs.override";
  1069         else  if ((m.owner.flags() & INTERFACE) == 0)
  1070             key = "varargs.implement";
  1071         else
  1072             key = "varargs.clash.with";
  1073         return diags.fragment(key, m, m.location(), other, other.location());
  1076     /** Check that this method conforms with overridden method 'other'.
  1077      *  where `origin' is the class where checking started.
  1078      *  Complications:
  1079      *  (1) Do not check overriding of synthetic methods
  1080      *      (reason: they might be final).
  1081      *      todo: check whether this is still necessary.
  1082      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1083      *      than the method it implements. Augment the proxy methods with the
  1084      *      undeclared exceptions in this case.
  1085      *  (3) When generics are enabled, admit the case where an interface proxy
  1086      *      has a result type
  1087      *      extended by the result type of the method it implements.
  1088      *      Change the proxies result type to the smaller type in this case.
  1090      *  @param tree         The tree from which positions
  1091      *                      are extracted for errors.
  1092      *  @param m            The overriding method.
  1093      *  @param other        The overridden method.
  1094      *  @param origin       The class of which the overriding method
  1095      *                      is a member.
  1096      */
  1097     void checkOverride(JCTree tree,
  1098                        MethodSymbol m,
  1099                        MethodSymbol other,
  1100                        ClassSymbol origin) {
  1101         // Don't check overriding of synthetic methods or by bridge methods.
  1102         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1103             return;
  1106         // Error if static method overrides instance method (JLS 8.4.6.2).
  1107         if ((m.flags() & STATIC) != 0 &&
  1108                    (other.flags() & STATIC) == 0) {
  1109             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1110                       cannotOverride(m, other));
  1111             return;
  1114         // Error if instance method overrides static or final
  1115         // method (JLS 8.4.6.1).
  1116         if ((other.flags() & FINAL) != 0 ||
  1117                  (m.flags() & STATIC) == 0 &&
  1118                  (other.flags() & STATIC) != 0) {
  1119             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1120                       cannotOverride(m, other),
  1121                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1122             return;
  1125         if ((m.owner.flags() & ANNOTATION) != 0) {
  1126             // handled in validateAnnotationMethod
  1127             return;
  1130         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1131         if ((origin.flags() & INTERFACE) == 0 &&
  1132                  protection(m.flags()) > protection(other.flags())) {
  1133             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1134                       cannotOverride(m, other),
  1135                       other.flags() == 0 ?
  1136                           Flag.PACKAGE :
  1137                           asFlagSet(other.flags() & AccessFlags));
  1138             return;
  1141         Type mt = types.memberType(origin.type, m);
  1142         Type ot = types.memberType(origin.type, other);
  1143         // Error if overriding result type is different
  1144         // (or, in the case of generics mode, not a subtype) of
  1145         // overridden result type. We have to rename any type parameters
  1146         // before comparing types.
  1147         List<Type> mtvars = mt.getTypeArguments();
  1148         List<Type> otvars = ot.getTypeArguments();
  1149         Type mtres = mt.getReturnType();
  1150         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1152         overrideWarner.warned = false;
  1153         boolean resultTypesOK =
  1154             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1155         if (!resultTypesOK) {
  1156             if (!source.allowCovariantReturns() &&
  1157                 m.owner != origin &&
  1158                 m.owner.isSubClass(other.owner, types)) {
  1159                 // allow limited interoperability with covariant returns
  1160             } else {
  1161                 typeError(TreeInfo.diagnosticPositionFor(m, tree),
  1162                           diags.fragment("override.incompatible.ret",
  1163                                          cannotOverride(m, other)),
  1164                           mtres, otres);
  1165                 return;
  1167         } else if (overrideWarner.warned) {
  1168             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1169                           "prob.found.req",
  1170                           diags.fragment("override.unchecked.ret",
  1171                                               uncheckedOverrides(m, other)),
  1172                           mtres, otres);
  1175         // Error if overriding method throws an exception not reported
  1176         // by overridden method.
  1177         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1178         List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
  1179         if (unhandled.nonEmpty()) {
  1180             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1181                       "override.meth.doesnt.throw",
  1182                       cannotOverride(m, other),
  1183                       unhandled.head);
  1184             return;
  1187         // Optional warning if varargs don't agree
  1188         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1189             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
  1190             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1191                         ((m.flags() & Flags.VARARGS) != 0)
  1192                         ? "override.varargs.missing"
  1193                         : "override.varargs.extra",
  1194                         varargsOverrides(m, other));
  1197         // Warn if instance method overrides bridge method (compiler spec ??)
  1198         if ((other.flags() & BRIDGE) != 0) {
  1199             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1200                         uncheckedOverrides(m, other));
  1203         // Warn if a deprecated method overridden by a non-deprecated one.
  1204         if ((other.flags() & DEPRECATED) != 0
  1205             && (m.flags() & DEPRECATED) == 0
  1206             && m.outermostClass() != other.outermostClass()
  1207             && !isDeprecatedOverrideIgnorable(other, origin)) {
  1208             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
  1211     // where
  1212         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1213             // If the method, m, is defined in an interface, then ignore the issue if the method
  1214             // is only inherited via a supertype and also implemented in the supertype,
  1215             // because in that case, we will rediscover the issue when examining the method
  1216             // in the supertype.
  1217             // If the method, m, is not defined in an interface, then the only time we need to
  1218             // address the issue is when the method is the supertype implemementation: any other
  1219             // case, we will have dealt with when examining the supertype classes
  1220             ClassSymbol mc = m.enclClass();
  1221             Type st = types.supertype(origin.type);
  1222             if (st.tag != CLASS)
  1223                 return true;
  1224             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1226             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1227                 List<Type> intfs = types.interfaces(origin.type);
  1228                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1230             else
  1231                 return (stimpl != m);
  1235     // used to check if there were any unchecked conversions
  1236     Warner overrideWarner = new Warner();
  1238     /** Check that a class does not inherit two concrete methods
  1239      *  with the same signature.
  1240      *  @param pos          Position to be used for error reporting.
  1241      *  @param site         The class type to be checked.
  1242      */
  1243     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1244         Type sup = types.supertype(site);
  1245         if (sup.tag != CLASS) return;
  1247         for (Type t1 = sup;
  1248              t1.tsym.type.isParameterized();
  1249              t1 = types.supertype(t1)) {
  1250             for (Scope.Entry e1 = t1.tsym.members().elems;
  1251                  e1 != null;
  1252                  e1 = e1.sibling) {
  1253                 Symbol s1 = e1.sym;
  1254                 if (s1.kind != MTH ||
  1255                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1256                     !s1.isInheritedIn(site.tsym, types) ||
  1257                     ((MethodSymbol)s1).implementation(site.tsym,
  1258                                                       types,
  1259                                                       true) != s1)
  1260                     continue;
  1261                 Type st1 = types.memberType(t1, s1);
  1262                 int s1ArgsLength = st1.getParameterTypes().length();
  1263                 if (st1 == s1.type) continue;
  1265                 for (Type t2 = sup;
  1266                      t2.tag == CLASS;
  1267                      t2 = types.supertype(t2)) {
  1268                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1269                          e2.scope != null;
  1270                          e2 = e2.next()) {
  1271                         Symbol s2 = e2.sym;
  1272                         if (s2 == s1 ||
  1273                             s2.kind != MTH ||
  1274                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1275                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1276                             !s2.isInheritedIn(site.tsym, types) ||
  1277                             ((MethodSymbol)s2).implementation(site.tsym,
  1278                                                               types,
  1279                                                               true) != s2)
  1280                             continue;
  1281                         Type st2 = types.memberType(t2, s2);
  1282                         if (types.overrideEquivalent(st1, st2))
  1283                             log.error(pos, "concrete.inheritance.conflict",
  1284                                       s1, t1, s2, t2, sup);
  1291     /** Check that classes (or interfaces) do not each define an abstract
  1292      *  method with same name and arguments but incompatible return types.
  1293      *  @param pos          Position to be used for error reporting.
  1294      *  @param t1           The first argument type.
  1295      *  @param t2           The second argument type.
  1296      */
  1297     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1298                                             Type t1,
  1299                                             Type t2) {
  1300         return checkCompatibleAbstracts(pos, t1, t2,
  1301                                         types.makeCompoundType(t1, t2));
  1304     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1305                                             Type t1,
  1306                                             Type t2,
  1307                                             Type site) {
  1308         Symbol sym = firstIncompatibility(t1, t2, site);
  1309         if (sym != null) {
  1310             log.error(pos, "types.incompatible.diff.ret",
  1311                       t1, t2, sym.name +
  1312                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
  1313             return false;
  1315         return true;
  1318     /** Return the first method which is defined with same args
  1319      *  but different return types in two given interfaces, or null if none
  1320      *  exists.
  1321      *  @param t1     The first type.
  1322      *  @param t2     The second type.
  1323      *  @param site   The most derived type.
  1324      *  @returns symbol from t2 that conflicts with one in t1.
  1325      */
  1326     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
  1327         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1328         closure(t1, interfaces1);
  1329         Map<TypeSymbol,Type> interfaces2;
  1330         if (t1 == t2)
  1331             interfaces2 = interfaces1;
  1332         else
  1333             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1335         for (Type t3 : interfaces1.values()) {
  1336             for (Type t4 : interfaces2.values()) {
  1337                 Symbol s = firstDirectIncompatibility(t3, t4, site);
  1338                 if (s != null) return s;
  1341         return null;
  1344     /** Compute all the supertypes of t, indexed by type symbol. */
  1345     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1346         if (t.tag != CLASS) return;
  1347         if (typeMap.put(t.tsym, t) == null) {
  1348             closure(types.supertype(t), typeMap);
  1349             for (Type i : types.interfaces(t))
  1350                 closure(i, typeMap);
  1354     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1355     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1356         if (t.tag != CLASS) return;
  1357         if (typesSkip.get(t.tsym) != null) return;
  1358         if (typeMap.put(t.tsym, t) == null) {
  1359             closure(types.supertype(t), typesSkip, typeMap);
  1360             for (Type i : types.interfaces(t))
  1361                 closure(i, typesSkip, typeMap);
  1365     /** Return the first method in t2 that conflicts with a method from t1. */
  1366     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
  1367         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1368             Symbol s1 = e1.sym;
  1369             Type st1 = null;
  1370             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
  1371             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1372             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1373             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1374                 Symbol s2 = e2.sym;
  1375                 if (s1 == s2) continue;
  1376                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
  1377                 if (st1 == null) st1 = types.memberType(t1, s1);
  1378                 Type st2 = types.memberType(t2, s2);
  1379                 if (types.overrideEquivalent(st1, st2)) {
  1380                     List<Type> tvars1 = st1.getTypeArguments();
  1381                     List<Type> tvars2 = st2.getTypeArguments();
  1382                     Type rt1 = st1.getReturnType();
  1383                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1384                     boolean compat =
  1385                         types.isSameType(rt1, rt2) ||
  1386                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
  1387                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
  1388                          types.covariantReturnType(rt2, rt1, Warner.noWarnings)) ||
  1389                          checkCommonOverriderIn(s1,s2,site);
  1390                     if (!compat) return s2;
  1394         return null;
  1396     //WHERE
  1397     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1398         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1399         Type st1 = types.memberType(site, s1);
  1400         Type st2 = types.memberType(site, s2);
  1401         closure(site, supertypes);
  1402         for (Type t : supertypes.values()) {
  1403             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1404                 Symbol s3 = e.sym;
  1405                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1406                 Type st3 = types.memberType(site,s3);
  1407                 if (types.overrideEquivalent(st3, st1) && types.overrideEquivalent(st3, st2)) {
  1408                     if (s3.owner == site.tsym) {
  1409                         return true;
  1411                     List<Type> tvars1 = st1.getTypeArguments();
  1412                     List<Type> tvars2 = st2.getTypeArguments();
  1413                     List<Type> tvars3 = st3.getTypeArguments();
  1414                     Type rt1 = st1.getReturnType();
  1415                     Type rt2 = st2.getReturnType();
  1416                     Type rt13 = types.subst(st3.getReturnType(), tvars3, tvars1);
  1417                     Type rt23 = types.subst(st3.getReturnType(), tvars3, tvars2);
  1418                     boolean compat =
  1419                         rt13.tag >= CLASS && rt23.tag >= CLASS &&
  1420                         (types.covariantReturnType(rt13, rt1, Warner.noWarnings) &&
  1421                          types.covariantReturnType(rt23, rt2, Warner.noWarnings));
  1422                     if (compat)
  1423                         return true;
  1427         return false;
  1430     /** Check that a given method conforms with any method it overrides.
  1431      *  @param tree         The tree from which positions are extracted
  1432      *                      for errors.
  1433      *  @param m            The overriding method.
  1434      */
  1435     void checkOverride(JCTree tree, MethodSymbol m) {
  1436         ClassSymbol origin = (ClassSymbol)m.owner;
  1437         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1438             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1439                 log.error(tree.pos(), "enum.no.finalize");
  1440                 return;
  1442         for (Type t = types.supertype(origin.type); t.tag == CLASS;
  1443              t = types.supertype(t)) {
  1444             TypeSymbol c = t.tsym;
  1445             Scope.Entry e = c.members().lookup(m.name);
  1446             while (e.scope != null) {
  1447                 if (m.overrides(e.sym, origin, types, false))
  1448                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1449                 else if (e.sym.isInheritedIn(origin, types) && !m.isConstructor()) {
  1450                     Type er1 = m.erasure(types);
  1451                     Type er2 = e.sym.erasure(types);
  1452                     if (types.isSameType(er1,er2)) {
  1453                             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1454                                     "name.clash.same.erasure.no.override",
  1455                                     m, m.location(),
  1456                                     e.sym, e.sym.location());
  1459                 e = e.next();
  1464     /** Check that all abstract members of given class have definitions.
  1465      *  @param pos          Position to be used for error reporting.
  1466      *  @param c            The class.
  1467      */
  1468     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  1469         try {
  1470             MethodSymbol undef = firstUndef(c, c);
  1471             if (undef != null) {
  1472                 if ((c.flags() & ENUM) != 0 &&
  1473                     types.supertype(c.type).tsym == syms.enumSym &&
  1474                     (c.flags() & FINAL) == 0) {
  1475                     // add the ABSTRACT flag to an enum
  1476                     c.flags_field |= ABSTRACT;
  1477                 } else {
  1478                     MethodSymbol undef1 =
  1479                         new MethodSymbol(undef.flags(), undef.name,
  1480                                          types.memberType(c.type, undef), undef.owner);
  1481                     log.error(pos, "does.not.override.abstract",
  1482                               c, undef1, undef1.location());
  1485         } catch (CompletionFailure ex) {
  1486             completionError(pos, ex);
  1489 //where
  1490         /** Return first abstract member of class `c' that is not defined
  1491          *  in `impl', null if there is none.
  1492          */
  1493         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
  1494             MethodSymbol undef = null;
  1495             // Do not bother to search in classes that are not abstract,
  1496             // since they cannot have abstract members.
  1497             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1498                 Scope s = c.members();
  1499                 for (Scope.Entry e = s.elems;
  1500                      undef == null && e != null;
  1501                      e = e.sibling) {
  1502                     if (e.sym.kind == MTH &&
  1503                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
  1504                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  1505                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
  1506                         if (implmeth == null || implmeth == absmeth)
  1507                             undef = absmeth;
  1510                 if (undef == null) {
  1511                     Type st = types.supertype(c.type);
  1512                     if (st.tag == CLASS)
  1513                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
  1515                 for (List<Type> l = types.interfaces(c.type);
  1516                      undef == null && l.nonEmpty();
  1517                      l = l.tail) {
  1518                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
  1521             return undef;
  1524     /** Check for cyclic references. Issue an error if the
  1525      *  symbol of the type referred to has a LOCKED flag set.
  1527      *  @param pos      Position to be used for error reporting.
  1528      *  @param t        The type referred to.
  1529      */
  1530     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  1531         checkNonCyclicInternal(pos, t);
  1535     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  1536         checkNonCyclic1(pos, t, new HashSet<TypeVar>());
  1539     private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
  1540         final TypeVar tv;
  1541         if  (t.tag == TYPEVAR && (t.tsym.flags() & UNATTRIBUTED) != 0)
  1542             return;
  1543         if (seen.contains(t)) {
  1544             tv = (TypeVar)t;
  1545             tv.bound = types.createErrorType(t);
  1546             log.error(pos, "cyclic.inheritance", t);
  1547         } else if (t.tag == TYPEVAR) {
  1548             tv = (TypeVar)t;
  1549             seen.add(tv);
  1550             for (Type b : types.getBounds(tv))
  1551                 checkNonCyclic1(pos, b, seen);
  1555     /** Check for cyclic references. Issue an error if the
  1556      *  symbol of the type referred to has a LOCKED flag set.
  1558      *  @param pos      Position to be used for error reporting.
  1559      *  @param t        The type referred to.
  1560      *  @returns        True if the check completed on all attributed classes
  1561      */
  1562     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  1563         boolean complete = true; // was the check complete?
  1564         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  1565         Symbol c = t.tsym;
  1566         if ((c.flags_field & ACYCLIC) != 0) return true;
  1568         if ((c.flags_field & LOCKED) != 0) {
  1569             noteCyclic(pos, (ClassSymbol)c);
  1570         } else if (!c.type.isErroneous()) {
  1571             try {
  1572                 c.flags_field |= LOCKED;
  1573                 if (c.type.tag == CLASS) {
  1574                     ClassType clazz = (ClassType)c.type;
  1575                     if (clazz.interfaces_field != null)
  1576                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  1577                             complete &= checkNonCyclicInternal(pos, l.head);
  1578                     if (clazz.supertype_field != null) {
  1579                         Type st = clazz.supertype_field;
  1580                         if (st != null && st.tag == CLASS)
  1581                             complete &= checkNonCyclicInternal(pos, st);
  1583                     if (c.owner.kind == TYP)
  1584                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  1586             } finally {
  1587                 c.flags_field &= ~LOCKED;
  1590         if (complete)
  1591             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  1592         if (complete) c.flags_field |= ACYCLIC;
  1593         return complete;
  1596     /** Note that we found an inheritance cycle. */
  1597     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  1598         log.error(pos, "cyclic.inheritance", c);
  1599         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  1600             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  1601         Type st = types.supertype(c.type);
  1602         if (st.tag == CLASS)
  1603             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  1604         c.type = types.createErrorType(c, c.type);
  1605         c.flags_field |= ACYCLIC;
  1608     /** Check that all methods which implement some
  1609      *  method conform to the method they implement.
  1610      *  @param tree         The class definition whose members are checked.
  1611      */
  1612     void checkImplementations(JCClassDecl tree) {
  1613         checkImplementations(tree, tree.sym);
  1615 //where
  1616         /** Check that all methods which implement some
  1617          *  method in `ic' conform to the method they implement.
  1618          */
  1619         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
  1620             ClassSymbol origin = tree.sym;
  1621             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  1622                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  1623                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  1624                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  1625                         if (e.sym.kind == MTH &&
  1626                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  1627                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  1628                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  1629                             if (implmeth != null && implmeth != absmeth &&
  1630                                 (implmeth.owner.flags() & INTERFACE) ==
  1631                                 (origin.flags() & INTERFACE)) {
  1632                                 // don't check if implmeth is in a class, yet
  1633                                 // origin is an interface. This case arises only
  1634                                 // if implmeth is declared in Object. The reason is
  1635                                 // that interfaces really don't inherit from
  1636                                 // Object it's just that the compiler represents
  1637                                 // things that way.
  1638                                 checkOverride(tree, implmeth, absmeth, origin);
  1646     /** Check that all abstract methods implemented by a class are
  1647      *  mutually compatible.
  1648      *  @param pos          Position to be used for error reporting.
  1649      *  @param c            The class whose interfaces are checked.
  1650      */
  1651     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  1652         List<Type> supertypes = types.interfaces(c);
  1653         Type supertype = types.supertype(c);
  1654         if (supertype.tag == CLASS &&
  1655             (supertype.tsym.flags() & ABSTRACT) != 0)
  1656             supertypes = supertypes.prepend(supertype);
  1657         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  1658             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  1659                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  1660                 return;
  1661             for (List<Type> m = supertypes; m != l; m = m.tail)
  1662                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  1663                     return;
  1665         checkCompatibleConcretes(pos, c);
  1668     /** Check that class c does not implement directly or indirectly
  1669      *  the same parameterized interface with two different argument lists.
  1670      *  @param pos          Position to be used for error reporting.
  1671      *  @param type         The type whose interfaces are checked.
  1672      */
  1673     void checkClassBounds(DiagnosticPosition pos, Type type) {
  1674         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  1676 //where
  1677         /** Enter all interfaces of type `type' into the hash table `seensofar'
  1678          *  with their class symbol as key and their type as value. Make
  1679          *  sure no class is entered with two different types.
  1680          */
  1681         void checkClassBounds(DiagnosticPosition pos,
  1682                               Map<TypeSymbol,Type> seensofar,
  1683                               Type type) {
  1684             if (type.isErroneous()) return;
  1685             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  1686                 Type it = l.head;
  1687                 Type oldit = seensofar.put(it.tsym, it);
  1688                 if (oldit != null) {
  1689                     List<Type> oldparams = oldit.allparams();
  1690                     List<Type> newparams = it.allparams();
  1691                     if (!types.containsTypeEquivalent(oldparams, newparams))
  1692                         log.error(pos, "cant.inherit.diff.arg",
  1693                                   it.tsym, Type.toString(oldparams),
  1694                                   Type.toString(newparams));
  1696                 checkClassBounds(pos, seensofar, it);
  1698             Type st = types.supertype(type);
  1699             if (st != null) checkClassBounds(pos, seensofar, st);
  1702     /** Enter interface into into set.
  1703      *  If it existed already, issue a "repeated interface" error.
  1704      */
  1705     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  1706         if (its.contains(it))
  1707             log.error(pos, "repeated.interface");
  1708         else {
  1709             its.add(it);
  1713 /* *************************************************************************
  1714  * Check annotations
  1715  **************************************************************************/
  1717     /** Annotation types are restricted to primitives, String, an
  1718      *  enum, an annotation, Class, Class<?>, Class<? extends
  1719      *  Anything>, arrays of the preceding.
  1720      */
  1721     void validateAnnotationType(JCTree restype) {
  1722         // restype may be null if an error occurred, so don't bother validating it
  1723         if (restype != null) {
  1724             validateAnnotationType(restype.pos(), restype.type);
  1728     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  1729         if (type.isPrimitive()) return;
  1730         if (types.isSameType(type, syms.stringType)) return;
  1731         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  1732         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  1733         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
  1734         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  1735             validateAnnotationType(pos, types.elemtype(type));
  1736             return;
  1738         log.error(pos, "invalid.annotation.member.type");
  1741     /**
  1742      * "It is also a compile-time error if any method declared in an
  1743      * annotation type has a signature that is override-equivalent to
  1744      * that of any public or protected method declared in class Object
  1745      * or in the interface annotation.Annotation."
  1747      * @jls3 9.6 Annotation Types
  1748      */
  1749     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  1750         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
  1751             Scope s = sup.tsym.members();
  1752             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  1753                 if (e.sym.kind == MTH &&
  1754                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  1755                     types.overrideEquivalent(m.type, e.sym.type))
  1756                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  1761     /** Check the annotations of a symbol.
  1762      */
  1763     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  1764         if (skipAnnotations) return;
  1765         for (JCAnnotation a : annotations)
  1766             validateAnnotation(a, s);
  1769     /** Check an annotation of a symbol.
  1770      */
  1771     public void validateAnnotation(JCAnnotation a, Symbol s) {
  1772         validateAnnotation(a);
  1774         if (!annotationApplicable(a, s))
  1775             log.error(a.pos(), "annotation.type.not.applicable");
  1777         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1778             if (!isOverrider(s))
  1779                 log.error(a.pos(), "method.does.not.override.superclass");
  1783     /** Is s a method symbol that overrides a method in a superclass? */
  1784     boolean isOverrider(Symbol s) {
  1785         if (s.kind != MTH || s.isStatic())
  1786             return false;
  1787         MethodSymbol m = (MethodSymbol)s;
  1788         TypeSymbol owner = (TypeSymbol)m.owner;
  1789         for (Type sup : types.closure(owner.type)) {
  1790             if (sup == owner.type)
  1791                 continue; // skip "this"
  1792             Scope scope = sup.tsym.members();
  1793             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  1794                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  1795                     return true;
  1798         return false;
  1801     /** Is the annotation applicable to the symbol? */
  1802     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  1803         Attribute.Compound atTarget =
  1804             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  1805         if (atTarget == null) return true;
  1806         Attribute atValue = atTarget.member(names.value);
  1807         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
  1808         Attribute.Array arr = (Attribute.Array) atValue;
  1809         for (Attribute app : arr.values) {
  1810             if (!(app instanceof Attribute.Enum)) return true; // recovery
  1811             Attribute.Enum e = (Attribute.Enum) app;
  1812             if (e.value.name == names.TYPE)
  1813                 { if (s.kind == TYP) return true; }
  1814             else if (e.value.name == names.FIELD)
  1815                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  1816             else if (e.value.name == names.METHOD)
  1817                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  1818             else if (e.value.name == names.PARAMETER)
  1819                 { if (s.kind == VAR &&
  1820                       s.owner.kind == MTH &&
  1821                       (s.flags() & PARAMETER) != 0)
  1822                     return true;
  1824             else if (e.value.name == names.CONSTRUCTOR)
  1825                 { if (s.kind == MTH && s.isConstructor()) return true; }
  1826             else if (e.value.name == names.LOCAL_VARIABLE)
  1827                 { if (s.kind == VAR && s.owner.kind == MTH &&
  1828                       (s.flags() & PARAMETER) == 0)
  1829                     return true;
  1831             else if (e.value.name == names.ANNOTATION_TYPE)
  1832                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  1833                     return true;
  1835             else if (e.value.name == names.PACKAGE)
  1836                 { if (s.kind == PCK) return true; }
  1837             else
  1838                 return true; // recovery
  1840         return false;
  1843     /** Check an annotation value.
  1844      */
  1845     public void validateAnnotation(JCAnnotation a) {
  1846         if (a.type.isErroneous()) return;
  1848         // collect an inventory of the members
  1849         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
  1850         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  1851              e != null;
  1852              e = e.sibling)
  1853             if (e.sym.kind == MTH)
  1854                 members.add((MethodSymbol) e.sym);
  1856         // count them off as they're annotated
  1857         for (JCTree arg : a.args) {
  1858             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
  1859             JCAssign assign = (JCAssign) arg;
  1860             Symbol m = TreeInfo.symbol(assign.lhs);
  1861             if (m == null || m.type.isErroneous()) continue;
  1862             if (!members.remove(m))
  1863                 log.error(arg.pos(), "duplicate.annotation.member.value",
  1864                           m.name, a.type);
  1865             if (assign.rhs.getTag() == ANNOTATION)
  1866                 validateAnnotation((JCAnnotation)assign.rhs);
  1869         // all the remaining ones better have default values
  1870         for (MethodSymbol m : members)
  1871             if (m.defaultValue == null && !m.type.isErroneous())
  1872                 log.error(a.pos(), "annotation.missing.default.value",
  1873                           a.type, m.name);
  1875         // special case: java.lang.annotation.Target must not have
  1876         // repeated values in its value member
  1877         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  1878             a.args.tail == null)
  1879             return;
  1881         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
  1882         JCAssign assign = (JCAssign) a.args.head;
  1883         Symbol m = TreeInfo.symbol(assign.lhs);
  1884         if (m.name != names.value) return;
  1885         JCTree rhs = assign.rhs;
  1886         if (rhs.getTag() != JCTree.NEWARRAY) return;
  1887         JCNewArray na = (JCNewArray) rhs;
  1888         Set<Symbol> targets = new HashSet<Symbol>();
  1889         for (JCTree elem : na.elems) {
  1890             if (!targets.add(TreeInfo.symbol(elem))) {
  1891                 log.error(elem.pos(), "repeated.annotation.target");
  1896     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  1897         if (allowAnnotations &&
  1898             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
  1899             (s.flags() & DEPRECATED) != 0 &&
  1900             !syms.deprecatedType.isErroneous() &&
  1901             s.attribute(syms.deprecatedType.tsym) == null) {
  1902             log.warning(pos, "missing.deprecated.annotation");
  1906 /* *************************************************************************
  1907  * Check for recursive annotation elements.
  1908  **************************************************************************/
  1910     /** Check for cycles in the graph of annotation elements.
  1911      */
  1912     void checkNonCyclicElements(JCClassDecl tree) {
  1913         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  1914         assert (tree.sym.flags_field & LOCKED) == 0;
  1915         try {
  1916             tree.sym.flags_field |= LOCKED;
  1917             for (JCTree def : tree.defs) {
  1918                 if (def.getTag() != JCTree.METHODDEF) continue;
  1919                 JCMethodDecl meth = (JCMethodDecl)def;
  1920                 checkAnnotationResType(meth.pos(), meth.restype.type);
  1922         } finally {
  1923             tree.sym.flags_field &= ~LOCKED;
  1924             tree.sym.flags_field |= ACYCLIC_ANN;
  1928     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  1929         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  1930             return;
  1931         if ((tsym.flags_field & LOCKED) != 0) {
  1932             log.error(pos, "cyclic.annotation.element");
  1933             return;
  1935         try {
  1936             tsym.flags_field |= LOCKED;
  1937             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  1938                 Symbol s = e.sym;
  1939                 if (s.kind != Kinds.MTH)
  1940                     continue;
  1941                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  1943         } finally {
  1944             tsym.flags_field &= ~LOCKED;
  1945             tsym.flags_field |= ACYCLIC_ANN;
  1949     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  1950         switch (type.tag) {
  1951         case TypeTags.CLASS:
  1952             if ((type.tsym.flags() & ANNOTATION) != 0)
  1953                 checkNonCyclicElementsInternal(pos, type.tsym);
  1954             break;
  1955         case TypeTags.ARRAY:
  1956             checkAnnotationResType(pos, types.elemtype(type));
  1957             break;
  1958         default:
  1959             break; // int etc
  1963 /* *************************************************************************
  1964  * Check for cycles in the constructor call graph.
  1965  **************************************************************************/
  1967     /** Check for cycles in the graph of constructors calling other
  1968      *  constructors.
  1969      */
  1970     void checkCyclicConstructors(JCClassDecl tree) {
  1971         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  1973         // enter each constructor this-call into the map
  1974         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  1975             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  1976             if (app == null) continue;
  1977             JCMethodDecl meth = (JCMethodDecl) l.head;
  1978             if (TreeInfo.name(app.meth) == names._this) {
  1979                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  1980             } else {
  1981                 meth.sym.flags_field |= ACYCLIC;
  1985         // Check for cycles in the map
  1986         Symbol[] ctors = new Symbol[0];
  1987         ctors = callMap.keySet().toArray(ctors);
  1988         for (Symbol caller : ctors) {
  1989             checkCyclicConstructor(tree, caller, callMap);
  1993     /** Look in the map to see if the given constructor is part of a
  1994      *  call cycle.
  1995      */
  1996     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  1997                                         Map<Symbol,Symbol> callMap) {
  1998         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  1999             if ((ctor.flags_field & LOCKED) != 0) {
  2000                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  2001                           "recursive.ctor.invocation");
  2002             } else {
  2003                 ctor.flags_field |= LOCKED;
  2004                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  2005                 ctor.flags_field &= ~LOCKED;
  2007             ctor.flags_field |= ACYCLIC;
  2011 /* *************************************************************************
  2012  * Miscellaneous
  2013  **************************************************************************/
  2015     /**
  2016      * Return the opcode of the operator but emit an error if it is an
  2017      * error.
  2018      * @param pos        position for error reporting.
  2019      * @param operator   an operator
  2020      * @param tag        a tree tag
  2021      * @param left       type of left hand side
  2022      * @param right      type of right hand side
  2023      */
  2024     int checkOperator(DiagnosticPosition pos,
  2025                        OperatorSymbol operator,
  2026                        int tag,
  2027                        Type left,
  2028                        Type right) {
  2029         if (operator.opcode == ByteCodes.error) {
  2030             log.error(pos,
  2031                       "operator.cant.be.applied",
  2032                       treeinfo.operatorName(tag),
  2033                       List.of(left, right));
  2035         return operator.opcode;
  2039     /**
  2040      *  Check for division by integer constant zero
  2041      *  @param pos           Position for error reporting.
  2042      *  @param operator      The operator for the expression
  2043      *  @param operand       The right hand operand for the expression
  2044      */
  2045     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  2046         if (operand.constValue() != null
  2047             && lint.isEnabled(Lint.LintCategory.DIVZERO)
  2048             && operand.tag <= LONG
  2049             && ((Number) (operand.constValue())).longValue() == 0) {
  2050             int opc = ((OperatorSymbol)operator).opcode;
  2051             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  2052                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  2053                 log.warning(pos, "div.zero");
  2058     /**
  2059      * Check for empty statements after if
  2060      */
  2061     void checkEmptyIf(JCIf tree) {
  2062         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
  2063             log.warning(tree.thenpart.pos(), "empty.if");
  2066     /** Check that symbol is unique in given scope.
  2067      *  @param pos           Position for error reporting.
  2068      *  @param sym           The symbol.
  2069      *  @param s             The scope.
  2070      */
  2071     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  2072         if (sym.type.isErroneous())
  2073             return true;
  2074         if (sym.owner.name == names.any) return false;
  2075         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  2076             if (sym != e.sym &&
  2077                 sym.kind == e.sym.kind &&
  2078                 sym.name != names.error &&
  2079                 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
  2080                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
  2081                     varargsDuplicateError(pos, sym, e.sym);
  2082                 else
  2083                     duplicateError(pos, e.sym);
  2084                 return false;
  2087         return true;
  2090     /** Check that single-type import is not already imported or top-level defined,
  2091      *  but make an exception for two single-type imports which denote the same type.
  2092      *  @param pos           Position for error reporting.
  2093      *  @param sym           The symbol.
  2094      *  @param s             The scope
  2095      */
  2096     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2097         return checkUniqueImport(pos, sym, s, false);
  2100     /** Check that static single-type import is not already imported or top-level defined,
  2101      *  but make an exception for two single-type imports which denote the same type.
  2102      *  @param pos           Position for error reporting.
  2103      *  @param sym           The symbol.
  2104      *  @param s             The scope
  2105      *  @param staticImport  Whether or not this was a static import
  2106      */
  2107     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  2108         return checkUniqueImport(pos, sym, s, true);
  2111     /** Check that single-type import is not already imported or top-level defined,
  2112      *  but make an exception for two single-type imports which denote the same type.
  2113      *  @param pos           Position for error reporting.
  2114      *  @param sym           The symbol.
  2115      *  @param s             The scope.
  2116      *  @param staticImport  Whether or not this was a static import
  2117      */
  2118     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  2119         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  2120             // is encountered class entered via a class declaration?
  2121             boolean isClassDecl = e.scope == s;
  2122             if ((isClassDecl || sym != e.sym) &&
  2123                 sym.kind == e.sym.kind &&
  2124                 sym.name != names.error) {
  2125                 if (!e.sym.type.isErroneous()) {
  2126                     String what = e.sym.toString();
  2127                     if (!isClassDecl) {
  2128                         if (staticImport)
  2129                             log.error(pos, "already.defined.static.single.import", what);
  2130                         else
  2131                             log.error(pos, "already.defined.single.import", what);
  2133                     else if (sym != e.sym)
  2134                         log.error(pos, "already.defined.this.unit", what);
  2136                 return false;
  2139         return true;
  2142     /** Check that a qualified name is in canonical form (for import decls).
  2143      */
  2144     public void checkCanonical(JCTree tree) {
  2145         if (!isCanonical(tree))
  2146             log.error(tree.pos(), "import.requires.canonical",
  2147                       TreeInfo.symbol(tree));
  2149         // where
  2150         private boolean isCanonical(JCTree tree) {
  2151             while (tree.getTag() == JCTree.SELECT) {
  2152                 JCFieldAccess s = (JCFieldAccess) tree;
  2153                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  2154                     return false;
  2155                 tree = s.selected;
  2157             return true;
  2160     private class ConversionWarner extends Warner {
  2161         final String key;
  2162         final Type found;
  2163         final Type expected;
  2164         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
  2165             super(pos);
  2166             this.key = key;
  2167             this.found = found;
  2168             this.expected = expected;
  2171         public void warnUnchecked() {
  2172             boolean warned = this.warned;
  2173             super.warnUnchecked();
  2174             if (warned) return; // suppress redundant diagnostics
  2175             Object problem = diags.fragment(key);
  2176             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
  2180     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  2181         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  2184     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  2185         return new ConversionWarner(pos, "unchecked.assign", found, expected);

mercurial