src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 17 Jul 2013 10:40:53 -0700

author
lana
date
Wed, 17 Jul 2013 10:40:53 -0700
changeset 1907
e990e6bcecbe
parent 1902
fae8f309ff80
parent 1882
39ec5d8a691b
child 1916
558fe98d1ac0
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.HashSet;
    30 import java.util.HashMap;
    31 import java.util.Locale;
    32 import java.util.Map;
    33 import java.util.Set;
    34 import java.util.WeakHashMap;
    36 import javax.tools.JavaFileObject;
    38 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    41 import com.sun.tools.javac.comp.AttrContext;
    42 import com.sun.tools.javac.comp.Check;
    43 import com.sun.tools.javac.comp.Enter;
    44 import com.sun.tools.javac.comp.Env;
    45 import com.sun.tools.javac.jvm.ClassReader;
    46 import com.sun.tools.javac.util.*;
    47 import static com.sun.tools.javac.code.BoundKind.*;
    48 import static com.sun.tools.javac.code.Flags.*;
    49 import static com.sun.tools.javac.code.Scope.*;
    50 import static com.sun.tools.javac.code.Symbol.*;
    51 import static com.sun.tools.javac.code.Type.*;
    52 import static com.sun.tools.javac.code.TypeTag.*;
    53 import static com.sun.tools.javac.jvm.ClassFile.externalize;
    54 import static com.sun.tools.javac.util.ListBuffer.lb;
    56 /**
    57  * Utility class containing various operations on types.
    58  *
    59  * <p>Unless other names are more illustrative, the following naming
    60  * conventions should be observed in this file:
    61  *
    62  * <dl>
    63  * <dt>t</dt>
    64  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    65  * <dt>s</dt>
    66  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    67  * <dt>ts</dt>
    68  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    69  * <dt>ss</dt>
    70  * <dd>A second list of types should be named ss.</dd>
    71  * </dl>
    72  *
    73  * <p><b>This is NOT part of any supported API.
    74  * If you write code that depends on this, you do so at your own risk.
    75  * This code and its internal interfaces are subject to change or
    76  * deletion without notice.</b>
    77  */
    78 public class Types {
    79     protected static final Context.Key<Types> typesKey =
    80         new Context.Key<Types>();
    82     final Symtab syms;
    83     final JavacMessages messages;
    84     final Names names;
    85     final boolean allowBoxing;
    86     final boolean allowCovariantReturns;
    87     final boolean allowObjectToPrimitiveCast;
    88     final boolean allowDefaultMethods;
    89     final ClassReader reader;
    90     final Check chk;
    91     final Enter enter;
    92     JCDiagnostic.Factory diags;
    93     List<Warner> warnStack = List.nil();
    94     final Name capturedName;
    95     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    97     public final Warner noWarnings;
    99     // <editor-fold defaultstate="collapsed" desc="Instantiating">
   100     public static Types instance(Context context) {
   101         Types instance = context.get(typesKey);
   102         if (instance == null)
   103             instance = new Types(context);
   104         return instance;
   105     }
   107     protected Types(Context context) {
   108         context.put(typesKey, this);
   109         syms = Symtab.instance(context);
   110         names = Names.instance(context);
   111         Source source = Source.instance(context);
   112         allowBoxing = source.allowBoxing();
   113         allowCovariantReturns = source.allowCovariantReturns();
   114         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   115         allowDefaultMethods = source.allowDefaultMethods();
   116         reader = ClassReader.instance(context);
   117         chk = Check.instance(context);
   118         enter = Enter.instance(context);
   119         capturedName = names.fromString("<captured wildcard>");
   120         messages = JavacMessages.instance(context);
   121         diags = JCDiagnostic.Factory.instance(context);
   122         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   123         noWarnings = new Warner(null);
   124     }
   125     // </editor-fold>
   127     // <editor-fold defaultstate="collapsed" desc="upperBound">
   128     /**
   129      * The "rvalue conversion".<br>
   130      * The upper bound of most types is the type
   131      * itself.  Wildcards, on the other hand have upper
   132      * and lower bounds.
   133      * @param t a type
   134      * @return the upper bound of the given type
   135      */
   136     public Type upperBound(Type t) {
   137         return upperBound.visit(t);
   138     }
   139     // where
   140         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   142             @Override
   143             public Type visitWildcardType(WildcardType t, Void ignored) {
   144                 if (t.isSuperBound())
   145                     return t.bound == null ? syms.objectType : t.bound.bound;
   146                 else
   147                     return visit(t.type);
   148             }
   150             @Override
   151             public Type visitCapturedType(CapturedType t, Void ignored) {
   152                 return visit(t.bound);
   153             }
   154         };
   155     // </editor-fold>
   157     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   158     /**
   159      * The "lvalue conversion".<br>
   160      * The lower bound of most types is the type
   161      * itself.  Wildcards, on the other hand have upper
   162      * and lower bounds.
   163      * @param t a type
   164      * @return the lower bound of the given type
   165      */
   166     public Type lowerBound(Type t) {
   167         return lowerBound.visit(t);
   168     }
   169     // where
   170         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   172             @Override
   173             public Type visitWildcardType(WildcardType t, Void ignored) {
   174                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   175             }
   177             @Override
   178             public Type visitCapturedType(CapturedType t, Void ignored) {
   179                 return visit(t.getLowerBound());
   180             }
   181         };
   182     // </editor-fold>
   184     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   185     /**
   186      * Checks that all the arguments to a class are unbounded
   187      * wildcards or something else that doesn't make any restrictions
   188      * on the arguments. If a class isUnbounded, a raw super- or
   189      * subclass can be cast to it without a warning.
   190      * @param t a type
   191      * @return true iff the given type is unbounded or raw
   192      */
   193     public boolean isUnbounded(Type t) {
   194         return isUnbounded.visit(t);
   195     }
   196     // where
   197         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   199             public Boolean visitType(Type t, Void ignored) {
   200                 return true;
   201             }
   203             @Override
   204             public Boolean visitClassType(ClassType t, Void ignored) {
   205                 List<Type> parms = t.tsym.type.allparams();
   206                 List<Type> args = t.allparams();
   207                 while (parms.nonEmpty()) {
   208                     WildcardType unb = new WildcardType(syms.objectType,
   209                                                         BoundKind.UNBOUND,
   210                                                         syms.boundClass,
   211                                                         (TypeVar)parms.head.unannotatedType());
   212                     if (!containsType(args.head, unb))
   213                         return false;
   214                     parms = parms.tail;
   215                     args = args.tail;
   216                 }
   217                 return true;
   218             }
   219         };
   220     // </editor-fold>
   222     // <editor-fold defaultstate="collapsed" desc="asSub">
   223     /**
   224      * Return the least specific subtype of t that starts with symbol
   225      * sym.  If none exists, return null.  The least specific subtype
   226      * is determined as follows:
   227      *
   228      * <p>If there is exactly one parameterized instance of sym that is a
   229      * subtype of t, that parameterized instance is returned.<br>
   230      * Otherwise, if the plain type or raw type `sym' is a subtype of
   231      * type t, the type `sym' itself is returned.  Otherwise, null is
   232      * returned.
   233      */
   234     public Type asSub(Type t, Symbol sym) {
   235         return asSub.visit(t, sym);
   236     }
   237     // where
   238         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   240             public Type visitType(Type t, Symbol sym) {
   241                 return null;
   242             }
   244             @Override
   245             public Type visitClassType(ClassType t, Symbol sym) {
   246                 if (t.tsym == sym)
   247                     return t;
   248                 Type base = asSuper(sym.type, t.tsym);
   249                 if (base == null)
   250                     return null;
   251                 ListBuffer<Type> from = new ListBuffer<Type>();
   252                 ListBuffer<Type> to = new ListBuffer<Type>();
   253                 try {
   254                     adapt(base, t, from, to);
   255                 } catch (AdaptFailure ex) {
   256                     return null;
   257                 }
   258                 Type res = subst(sym.type, from.toList(), to.toList());
   259                 if (!isSubtype(res, t))
   260                     return null;
   261                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   262                 for (List<Type> l = sym.type.allparams();
   263                      l.nonEmpty(); l = l.tail)
   264                     if (res.contains(l.head) && !t.contains(l.head))
   265                         openVars.append(l.head);
   266                 if (openVars.nonEmpty()) {
   267                     if (t.isRaw()) {
   268                         // The subtype of a raw type is raw
   269                         res = erasure(res);
   270                     } else {
   271                         // Unbound type arguments default to ?
   272                         List<Type> opens = openVars.toList();
   273                         ListBuffer<Type> qs = new ListBuffer<Type>();
   274                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   275                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
   276                         }
   277                         res = subst(res, opens, qs.toList());
   278                     }
   279                 }
   280                 return res;
   281             }
   283             @Override
   284             public Type visitErrorType(ErrorType t, Symbol sym) {
   285                 return t;
   286             }
   287         };
   288     // </editor-fold>
   290     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   291     /**
   292      * Is t a subtype of or convertible via boxing/unboxing
   293      * conversion to s?
   294      */
   295     public boolean isConvertible(Type t, Type s, Warner warn) {
   296         if (t.hasTag(ERROR)) {
   297             return true;
   298         }
   299         boolean tPrimitive = t.isPrimitive();
   300         boolean sPrimitive = s.isPrimitive();
   301         if (tPrimitive == sPrimitive) {
   302             return isSubtypeUnchecked(t, s, warn);
   303         }
   304         if (!allowBoxing) return false;
   305         return tPrimitive
   306             ? isSubtype(boxedClass(t).type, s)
   307             : isSubtype(unboxedType(t), s);
   308     }
   310     /**
   311      * Is t a subtype of or convertiable via boxing/unboxing
   312      * convertions to s?
   313      */
   314     public boolean isConvertible(Type t, Type s) {
   315         return isConvertible(t, s, noWarnings);
   316     }
   317     // </editor-fold>
   319     // <editor-fold defaultstate="collapsed" desc="findSam">
   321     /**
   322      * Exception used to report a function descriptor lookup failure. The exception
   323      * wraps a diagnostic that can be used to generate more details error
   324      * messages.
   325      */
   326     public static class FunctionDescriptorLookupError extends RuntimeException {
   327         private static final long serialVersionUID = 0;
   329         JCDiagnostic diagnostic;
   331         FunctionDescriptorLookupError() {
   332             this.diagnostic = null;
   333         }
   335         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   336             this.diagnostic = diag;
   337             return this;
   338         }
   340         public JCDiagnostic getDiagnostic() {
   341             return diagnostic;
   342         }
   343     }
   345     /**
   346      * A cache that keeps track of function descriptors associated with given
   347      * functional interfaces.
   348      */
   349     class DescriptorCache {
   351         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   353         class FunctionDescriptor {
   354             Symbol descSym;
   356             FunctionDescriptor(Symbol descSym) {
   357                 this.descSym = descSym;
   358             }
   360             public Symbol getSymbol() {
   361                 return descSym;
   362             }
   364             public Type getType(Type site) {
   365                 site = removeWildcards(site);
   366                 if (!chk.checkValidGenericType(site)) {
   367                     //if the inferred functional interface type is not well-formed,
   368                     //or if it's not a subtype of the original target, issue an error
   369                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   370                 }
   371                 return memberType(site, descSym);
   372             }
   373         }
   375         class Entry {
   376             final FunctionDescriptor cachedDescRes;
   377             final int prevMark;
   379             public Entry(FunctionDescriptor cachedDescRes,
   380                     int prevMark) {
   381                 this.cachedDescRes = cachedDescRes;
   382                 this.prevMark = prevMark;
   383             }
   385             boolean matches(int mark) {
   386                 return  this.prevMark == mark;
   387             }
   388         }
   390         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   391             Entry e = _map.get(origin);
   392             CompoundScope members = membersClosure(origin.type, false);
   393             if (e == null ||
   394                     !e.matches(members.getMark())) {
   395                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   396                 _map.put(origin, new Entry(descRes, members.getMark()));
   397                 return descRes;
   398             }
   399             else {
   400                 return e.cachedDescRes;
   401             }
   402         }
   404         /**
   405          * Compute the function descriptor associated with a given functional interface
   406          */
   407         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
   408                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
   409             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   410                 //t must be an interface
   411                 throw failure("not.a.functional.intf", origin);
   412             }
   414             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   415             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   416                 Type mtype = memberType(origin.type, sym);
   417                 if (abstracts.isEmpty() ||
   418                         (sym.name == abstracts.first().name &&
   419                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   420                     abstracts.append(sym);
   421                 } else {
   422                     //the target method(s) should be the only abstract members of t
   423                     throw failure("not.a.functional.intf.1",  origin,
   424                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   425                 }
   426             }
   427             if (abstracts.isEmpty()) {
   428                 //t must define a suitable non-generic method
   429                 throw failure("not.a.functional.intf.1", origin,
   430                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   431             } else if (abstracts.size() == 1) {
   432                 return new FunctionDescriptor(abstracts.first());
   433             } else { // size > 1
   434                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   435                 if (descRes == null) {
   436                     //we can get here if the functional interface is ill-formed
   437                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   438                     for (Symbol desc : abstracts) {
   439                         String key = desc.type.getThrownTypes().nonEmpty() ?
   440                                 "descriptor.throws" : "descriptor";
   441                         descriptors.append(diags.fragment(key, desc.name,
   442                                 desc.type.getParameterTypes(),
   443                                 desc.type.getReturnType(),
   444                                 desc.type.getThrownTypes()));
   445                     }
   446                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   447                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   448                             Kinds.kindName(origin), origin), descriptors.toList());
   449                     throw failure(incompatibleDescriptors);
   450                 }
   451                 return descRes;
   452             }
   453         }
   455         /**
   456          * Compute a synthetic type for the target descriptor given a list
   457          * of override-equivalent methods in the functional interface type.
   458          * The resulting method type is a method type that is override-equivalent
   459          * and return-type substitutable with each method in the original list.
   460          */
   461         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   462             //pick argument types - simply take the signature that is a
   463             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   464             List<Symbol> mostSpecific = List.nil();
   465             outer: for (Symbol msym1 : methodSyms) {
   466                 Type mt1 = memberType(origin.type, msym1);
   467                 for (Symbol msym2 : methodSyms) {
   468                     Type mt2 = memberType(origin.type, msym2);
   469                     if (!isSubSignature(mt1, mt2)) {
   470                         continue outer;
   471                     }
   472                 }
   473                 mostSpecific = mostSpecific.prepend(msym1);
   474             }
   475             if (mostSpecific.isEmpty()) {
   476                 return null;
   477             }
   480             //pick return types - this is done in two phases: (i) first, the most
   481             //specific return type is chosen using strict subtyping; if this fails,
   482             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   483             boolean phase2 = false;
   484             Symbol bestSoFar = null;
   485             while (bestSoFar == null) {
   486                 outer: for (Symbol msym1 : mostSpecific) {
   487                     Type mt1 = memberType(origin.type, msym1);
   488                     for (Symbol msym2 : methodSyms) {
   489                         Type mt2 = memberType(origin.type, msym2);
   490                         if (phase2 ?
   491                                 !returnTypeSubstitutable(mt1, mt2) :
   492                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   493                             continue outer;
   494                         }
   495                     }
   496                     bestSoFar = msym1;
   497                 }
   498                 if (phase2) {
   499                     break;
   500                 } else {
   501                     phase2 = true;
   502                 }
   503             }
   504             if (bestSoFar == null) return null;
   506             //merge thrown types - form the intersection of all the thrown types in
   507             //all the signatures in the list
   508             List<Type> thrown = null;
   509             for (Symbol msym1 : methodSyms) {
   510                 Type mt1 = memberType(origin.type, msym1);
   511                 thrown = (thrown == null) ?
   512                     mt1.getThrownTypes() :
   513                     chk.intersect(mt1.getThrownTypes(), thrown);
   514             }
   516             final List<Type> thrown1 = thrown;
   517             return new FunctionDescriptor(bestSoFar) {
   518                 @Override
   519                 public Type getType(Type origin) {
   520                     Type mt = memberType(origin, getSymbol());
   521                     return createMethodTypeWithThrown(mt, thrown1);
   522                 }
   523             };
   524         }
   526         boolean isSubtypeInternal(Type s, Type t) {
   527             return (s.isPrimitive() && t.isPrimitive()) ?
   528                     isSameType(t, s) :
   529                     isSubtype(s, t);
   530         }
   532         FunctionDescriptorLookupError failure(String msg, Object... args) {
   533             return failure(diags.fragment(msg, args));
   534         }
   536         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   537             return functionDescriptorLookupError.setMessage(diag);
   538         }
   539     }
   541     private DescriptorCache descCache = new DescriptorCache();
   543     /**
   544      * Find the method descriptor associated to this class symbol - if the
   545      * symbol 'origin' is not a functional interface, an exception is thrown.
   546      */
   547     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   548         return descCache.get(origin).getSymbol();
   549     }
   551     /**
   552      * Find the type of the method descriptor associated to this class symbol -
   553      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   554      */
   555     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   556         return descCache.get(origin.tsym).getType(origin);
   557     }
   559     /**
   560      * Is given type a functional interface?
   561      */
   562     public boolean isFunctionalInterface(TypeSymbol tsym) {
   563         try {
   564             findDescriptorSymbol(tsym);
   565             return true;
   566         } catch (FunctionDescriptorLookupError ex) {
   567             return false;
   568         }
   569     }
   571     public boolean isFunctionalInterface(Type site) {
   572         try {
   573             findDescriptorType(site);
   574             return true;
   575         } catch (FunctionDescriptorLookupError ex) {
   576             return false;
   577         }
   578     }
   580     public Type removeWildcards(Type site) {
   581         Type capturedSite = capture(site);
   582         if (capturedSite != site) {
   583             Type formalInterface = site.tsym.type;
   584             ListBuffer<Type> typeargs = ListBuffer.lb();
   585             List<Type> actualTypeargs = site.getTypeArguments();
   586             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
   587             //simply replace the wildcards with its bound
   588             for (Type t : formalInterface.getTypeArguments()) {
   589                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   590                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
   591                     Type bound;
   592                     switch (wt.kind) {
   593                         case EXTENDS:
   594                         case UNBOUND:
   595                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
   596                             //use declared bound if it doesn't depend on formal type-args
   597                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
   598                                     wt.type : capVar.bound;
   599                             break;
   600                         default:
   601                             bound = wt.type;
   602                     }
   603                     typeargs.append(bound);
   604                 } else {
   605                     typeargs.append(actualTypeargs.head);
   606                 }
   607                 actualTypeargs = actualTypeargs.tail;
   608                 capturedTypeargs = capturedTypeargs.tail;
   609             }
   610             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   611         } else {
   612             return site;
   613         }
   614     }
   616     /**
   617      * Create a symbol for a class that implements a given functional interface
   618      * and overrides its functional descriptor. This routine is used for two
   619      * main purposes: (i) checking well-formedness of a functional interface;
   620      * (ii) perform functional interface bridge calculation.
   621      */
   622     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
   623         Assert.check(targets.nonEmpty() && isFunctionalInterface(targets.head));
   624         Symbol descSym = findDescriptorSymbol(targets.head.tsym);
   625         Type descType = findDescriptorType(targets.head);
   626         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
   627         csym.completer = null;
   628         csym.members_field = new Scope(csym);
   629         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
   630         csym.members_field.enter(instDescSym);
   631         Type.ClassType ctype = new Type.ClassType(Type.noType, List.<Type>nil(), csym);
   632         ctype.supertype_field = syms.objectType;
   633         ctype.interfaces_field = targets;
   634         csym.type = ctype;
   635         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
   636         return csym;
   637     }
   639     /**
   640      * Find the minimal set of methods that are overridden by the functional
   641      * descriptor in 'origin'. All returned methods are assumed to have different
   642      * erased signatures.
   643      */
   644     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
   645         Assert.check(isFunctionalInterface(origin));
   646         Symbol descSym = findDescriptorSymbol(origin);
   647         CompoundScope members = membersClosure(origin.type, false);
   648         ListBuffer<Symbol> overridden = ListBuffer.lb();
   649         outer: for (Symbol m2 : members.getElementsByName(descSym.name, bridgeFilter)) {
   650             if (m2 == descSym) continue;
   651             else if (descSym.overrides(m2, origin, Types.this, false)) {
   652                 for (Symbol m3 : overridden) {
   653                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
   654                             (m3.overrides(m2, origin, Types.this, false) &&
   655                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
   656                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
   657                         continue outer;
   658                     }
   659                 }
   660                 overridden.add(m2);
   661             }
   662         }
   663         return overridden.toList();
   664     }
   665     //where
   666         private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
   667             public boolean accepts(Symbol t) {
   668                 return t.kind == Kinds.MTH &&
   669                         t.name != names.init &&
   670                         t.name != names.clinit &&
   671                         (t.flags() & SYNTHETIC) == 0;
   672             }
   673         };
   674         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
   675             //a symbol will be completed from a classfile if (a) symbol has
   676             //an associated file object with CLASS kind and (b) the symbol has
   677             //not been entered
   678             if (origin.classfile != null &&
   679                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
   680                     enter.getEnv(origin) == null) {
   681                 return false;
   682             }
   683             if (origin == s) {
   684                 return true;
   685             }
   686             for (Type t : interfaces(origin.type)) {
   687                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
   688                     return true;
   689                 }
   690             }
   691             return false;
   692         }
   693     // </editor-fold>
   695    /**
   696     * Scope filter used to skip methods that should be ignored (such as methods
   697     * overridden by j.l.Object) during function interface conversion interface check
   698     */
   699     class DescriptorFilter implements Filter<Symbol> {
   701        TypeSymbol origin;
   703        DescriptorFilter(TypeSymbol origin) {
   704            this.origin = origin;
   705        }
   707        @Override
   708        public boolean accepts(Symbol sym) {
   709            return sym.kind == Kinds.MTH &&
   710                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   711                    !overridesObjectMethod(origin, sym) &&
   712                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   713        }
   714     };
   716     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   717     /**
   718      * Is t an unchecked subtype of s?
   719      */
   720     public boolean isSubtypeUnchecked(Type t, Type s) {
   721         return isSubtypeUnchecked(t, s, noWarnings);
   722     }
   723     /**
   724      * Is t an unchecked subtype of s?
   725      */
   726     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   727         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   728         if (result) {
   729             checkUnsafeVarargsConversion(t, s, warn);
   730         }
   731         return result;
   732     }
   733     //where
   734         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   735             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   736                 t = t.unannotatedType();
   737                 s = s.unannotatedType();
   738                 if (((ArrayType)t).elemtype.isPrimitive()) {
   739                     return isSameType(elemtype(t), elemtype(s));
   740                 } else {
   741                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   742                 }
   743             } else if (isSubtype(t, s)) {
   744                 return true;
   745             } else if (t.hasTag(TYPEVAR)) {
   746                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   747             } else if (!s.isRaw()) {
   748                 Type t2 = asSuper(t, s.tsym);
   749                 if (t2 != null && t2.isRaw()) {
   750                     if (isReifiable(s)) {
   751                         warn.silentWarn(LintCategory.UNCHECKED);
   752                     } else {
   753                         warn.warn(LintCategory.UNCHECKED);
   754                     }
   755                     return true;
   756                 }
   757             }
   758             return false;
   759         }
   761         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   762             if (!t.hasTag(ARRAY) || isReifiable(t)) {
   763                 return;
   764             }
   765             t = t.unannotatedType();
   766             s = s.unannotatedType();
   767             ArrayType from = (ArrayType)t;
   768             boolean shouldWarn = false;
   769             switch (s.getTag()) {
   770                 case ARRAY:
   771                     ArrayType to = (ArrayType)s;
   772                     shouldWarn = from.isVarargs() &&
   773                             !to.isVarargs() &&
   774                             !isReifiable(from);
   775                     break;
   776                 case CLASS:
   777                     shouldWarn = from.isVarargs();
   778                     break;
   779             }
   780             if (shouldWarn) {
   781                 warn.warn(LintCategory.VARARGS);
   782             }
   783         }
   785     /**
   786      * Is t a subtype of s?<br>
   787      * (not defined for Method and ForAll types)
   788      */
   789     final public boolean isSubtype(Type t, Type s) {
   790         return isSubtype(t, s, true);
   791     }
   792     final public boolean isSubtypeNoCapture(Type t, Type s) {
   793         return isSubtype(t, s, false);
   794     }
   795     public boolean isSubtype(Type t, Type s, boolean capture) {
   796         if (t == s)
   797             return true;
   799         t = t.unannotatedType();
   800         s = s.unannotatedType();
   802         if (t == s)
   803             return true;
   805         if (s.isPartial())
   806             return isSuperType(s, t);
   808         if (s.isCompound()) {
   809             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   810                 if (!isSubtype(t, s2, capture))
   811                     return false;
   812             }
   813             return true;
   814         }
   816         Type lower = lowerBound(s);
   817         if (s != lower)
   818             return isSubtype(capture ? capture(t) : t, lower, false);
   820         return isSubtype.visit(capture ? capture(t) : t, s);
   821     }
   822     // where
   823         private TypeRelation isSubtype = new TypeRelation()
   824         {
   825             @Override
   826             public Boolean visitType(Type t, Type s) {
   827                 switch (t.getTag()) {
   828                  case BYTE:
   829                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   830                  case CHAR:
   831                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   832                  case SHORT: case INT: case LONG:
   833                  case FLOAT: case DOUBLE:
   834                      return t.getTag().isSubRangeOf(s.getTag());
   835                  case BOOLEAN: case VOID:
   836                      return t.hasTag(s.getTag());
   837                  case TYPEVAR:
   838                      return isSubtypeNoCapture(t.getUpperBound(), s);
   839                  case BOT:
   840                      return
   841                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   842                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   843                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   844                  case NONE:
   845                      return false;
   846                  default:
   847                      throw new AssertionError("isSubtype " + t.getTag());
   848                  }
   849             }
   851             private Set<TypePair> cache = new HashSet<TypePair>();
   853             private boolean containsTypeRecursive(Type t, Type s) {
   854                 TypePair pair = new TypePair(t, s);
   855                 if (cache.add(pair)) {
   856                     try {
   857                         return containsType(t.getTypeArguments(),
   858                                             s.getTypeArguments());
   859                     } finally {
   860                         cache.remove(pair);
   861                     }
   862                 } else {
   863                     return containsType(t.getTypeArguments(),
   864                                         rewriteSupers(s).getTypeArguments());
   865                 }
   866             }
   868             private Type rewriteSupers(Type t) {
   869                 if (!t.isParameterized())
   870                     return t;
   871                 ListBuffer<Type> from = lb();
   872                 ListBuffer<Type> to = lb();
   873                 adaptSelf(t, from, to);
   874                 if (from.isEmpty())
   875                     return t;
   876                 ListBuffer<Type> rewrite = lb();
   877                 boolean changed = false;
   878                 for (Type orig : to.toList()) {
   879                     Type s = rewriteSupers(orig);
   880                     if (s.isSuperBound() && !s.isExtendsBound()) {
   881                         s = new WildcardType(syms.objectType,
   882                                              BoundKind.UNBOUND,
   883                                              syms.boundClass);
   884                         changed = true;
   885                     } else if (s != orig) {
   886                         s = new WildcardType(upperBound(s),
   887                                              BoundKind.EXTENDS,
   888                                              syms.boundClass);
   889                         changed = true;
   890                     }
   891                     rewrite.append(s);
   892                 }
   893                 if (changed)
   894                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   895                 else
   896                     return t;
   897             }
   899             @Override
   900             public Boolean visitClassType(ClassType t, Type s) {
   901                 Type sup = asSuper(t, s.tsym);
   902                 return sup != null
   903                     && sup.tsym == s.tsym
   904                     // You're not allowed to write
   905                     //     Vector<Object> vec = new Vector<String>();
   906                     // But with wildcards you can write
   907                     //     Vector<? extends Object> vec = new Vector<String>();
   908                     // which means that subtype checking must be done
   909                     // here instead of same-type checking (via containsType).
   910                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   911                     && isSubtypeNoCapture(sup.getEnclosingType(),
   912                                           s.getEnclosingType());
   913             }
   915             @Override
   916             public Boolean visitArrayType(ArrayType t, Type s) {
   917                 if (s.hasTag(ARRAY)) {
   918                     if (t.elemtype.isPrimitive())
   919                         return isSameType(t.elemtype, elemtype(s));
   920                     else
   921                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   922                 }
   924                 if (s.hasTag(CLASS)) {
   925                     Name sname = s.tsym.getQualifiedName();
   926                     return sname == names.java_lang_Object
   927                         || sname == names.java_lang_Cloneable
   928                         || sname == names.java_io_Serializable;
   929                 }
   931                 return false;
   932             }
   934             @Override
   935             public Boolean visitUndetVar(UndetVar t, Type s) {
   936                 //todo: test against origin needed? or replace with substitution?
   937                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
   938                     return true;
   939                 } else if (s.hasTag(BOT)) {
   940                     //if 's' is 'null' there's no instantiated type U for which
   941                     //U <: s (but 'null' itself, which is not a valid type)
   942                     return false;
   943                 }
   945                 t.addBound(InferenceBound.UPPER, s, Types.this);
   946                 return true;
   947             }
   949             @Override
   950             public Boolean visitErrorType(ErrorType t, Type s) {
   951                 return true;
   952             }
   953         };
   955     /**
   956      * Is t a subtype of every type in given list `ts'?<br>
   957      * (not defined for Method and ForAll types)<br>
   958      * Allows unchecked conversions.
   959      */
   960     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   961         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   962             if (!isSubtypeUnchecked(t, l.head, warn))
   963                 return false;
   964         return true;
   965     }
   967     /**
   968      * Are corresponding elements of ts subtypes of ss?  If lists are
   969      * of different length, return false.
   970      */
   971     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   972         while (ts.tail != null && ss.tail != null
   973                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   974                isSubtype(ts.head, ss.head)) {
   975             ts = ts.tail;
   976             ss = ss.tail;
   977         }
   978         return ts.tail == null && ss.tail == null;
   979         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   980     }
   982     /**
   983      * Are corresponding elements of ts subtypes of ss, allowing
   984      * unchecked conversions?  If lists are of different length,
   985      * return false.
   986      **/
   987     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   988         while (ts.tail != null && ss.tail != null
   989                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   990                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   991             ts = ts.tail;
   992             ss = ss.tail;
   993         }
   994         return ts.tail == null && ss.tail == null;
   995         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   996     }
   997     // </editor-fold>
   999     // <editor-fold defaultstate="collapsed" desc="isSuperType">
  1000     /**
  1001      * Is t a supertype of s?
  1002      */
  1003     public boolean isSuperType(Type t, Type s) {
  1004         switch (t.getTag()) {
  1005         case ERROR:
  1006             return true;
  1007         case UNDETVAR: {
  1008             UndetVar undet = (UndetVar)t;
  1009             if (t == s ||
  1010                 undet.qtype == s ||
  1011                 s.hasTag(ERROR) ||
  1012                 s.hasTag(BOT)) {
  1013                 return true;
  1015             undet.addBound(InferenceBound.LOWER, s, this);
  1016             return true;
  1018         default:
  1019             return isSubtype(s, t);
  1022     // </editor-fold>
  1024     // <editor-fold defaultstate="collapsed" desc="isSameType">
  1025     /**
  1026      * Are corresponding elements of the lists the same type?  If
  1027      * lists are of different length, return false.
  1028      */
  1029     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
  1030         return isSameTypes(ts, ss, false);
  1032     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
  1033         while (ts.tail != null && ss.tail != null
  1034                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
  1035                isSameType(ts.head, ss.head, strict)) {
  1036             ts = ts.tail;
  1037             ss = ss.tail;
  1039         return ts.tail == null && ss.tail == null;
  1040         /*inlined: ts.isEmpty() && ss.isEmpty();*/
  1043     /**
  1044     * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
  1045     * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
  1046     * a single variable arity parameter (iii) whose declared type is Object[],
  1047     * (iv) has a return type of Object and (v) is native.
  1048     */
  1049    public boolean isSignaturePolymorphic(MethodSymbol msym) {
  1050        List<Type> argtypes = msym.type.getParameterTypes();
  1051        return (msym.flags_field & NATIVE) != 0 &&
  1052                msym.owner == syms.methodHandleType.tsym &&
  1053                argtypes.tail.tail == null &&
  1054                argtypes.head.hasTag(TypeTag.ARRAY) &&
  1055                msym.type.getReturnType().tsym == syms.objectType.tsym &&
  1056                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
  1059     /**
  1060      * Is t the same type as s?
  1061      */
  1062     public boolean isSameType(Type t, Type s) {
  1063         return isSameType(t, s, false);
  1065     public boolean isSameType(Type t, Type s, boolean strict) {
  1066         return strict ?
  1067                 isSameTypeStrict.visit(t, s) :
  1068                 isSameTypeLoose.visit(t, s);
  1070     public boolean isSameAnnotatedType(Type t, Type s) {
  1071         return isSameAnnotatedType.visit(t, s);
  1073     // where
  1074         abstract class SameTypeVisitor extends TypeRelation {
  1076             public Boolean visitType(Type t, Type s) {
  1077                 if (t == s)
  1078                     return true;
  1080                 if (s.isPartial())
  1081                     return visit(s, t);
  1083                 switch (t.getTag()) {
  1084                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1085                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
  1086                     return t.hasTag(s.getTag());
  1087                 case TYPEVAR: {
  1088                     if (s.hasTag(TYPEVAR)) {
  1089                         //type-substitution does not preserve type-var types
  1090                         //check that type var symbols and bounds are indeed the same
  1091                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
  1093                     else {
  1094                         //special case for s == ? super X, where upper(s) = u
  1095                         //check that u == t, where u has been set by Type.withTypeVar
  1096                         return s.isSuperBound() &&
  1097                                 !s.isExtendsBound() &&
  1098                                 visit(t, upperBound(s));
  1101                 default:
  1102                     throw new AssertionError("isSameType " + t.getTag());
  1106             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1108             @Override
  1109             public Boolean visitWildcardType(WildcardType t, Type s) {
  1110                 if (s.isPartial())
  1111                     return visit(s, t);
  1112                 else
  1113                     return false;
  1116             @Override
  1117             public Boolean visitClassType(ClassType t, Type s) {
  1118                 if (t == s)
  1119                     return true;
  1121                 if (s.isPartial())
  1122                     return visit(s, t);
  1124                 if (s.isSuperBound() && !s.isExtendsBound())
  1125                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1127                 if (t.isCompound() && s.isCompound()) {
  1128                     if (!visit(supertype(t), supertype(s)))
  1129                         return false;
  1131                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1132                     for (Type x : interfaces(t))
  1133                         set.add(new UniqueType(x, Types.this));
  1134                     for (Type x : interfaces(s)) {
  1135                         if (!set.remove(new UniqueType(x, Types.this)))
  1136                             return false;
  1138                     return (set.isEmpty());
  1140                 return t.tsym == s.tsym
  1141                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1142                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1145             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1147             @Override
  1148             public Boolean visitArrayType(ArrayType t, Type s) {
  1149                 if (t == s)
  1150                     return true;
  1152                 if (s.isPartial())
  1153                     return visit(s, t);
  1155                 return s.hasTag(ARRAY)
  1156                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1159             @Override
  1160             public Boolean visitMethodType(MethodType t, Type s) {
  1161                 // isSameType for methods does not take thrown
  1162                 // exceptions into account!
  1163                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1166             @Override
  1167             public Boolean visitPackageType(PackageType t, Type s) {
  1168                 return t == s;
  1171             @Override
  1172             public Boolean visitForAll(ForAll t, Type s) {
  1173                 if (!s.hasTag(FORALL)) {
  1174                     return false;
  1177                 ForAll forAll = (ForAll)s;
  1178                 return hasSameBounds(t, forAll)
  1179                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1182             @Override
  1183             public Boolean visitUndetVar(UndetVar t, Type s) {
  1184                 if (s.hasTag(WILDCARD)) {
  1185                     // FIXME, this might be leftovers from before capture conversion
  1186                     return false;
  1189                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
  1190                     return true;
  1193                 t.addBound(InferenceBound.EQ, s, Types.this);
  1195                 return true;
  1198             @Override
  1199             public Boolean visitErrorType(ErrorType t, Type s) {
  1200                 return true;
  1204         /**
  1205          * Standard type-equality relation - type variables are considered
  1206          * equals if they share the same type symbol.
  1207          */
  1208         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
  1210         private class LooseSameTypeVisitor extends SameTypeVisitor {
  1211             @Override
  1212             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1213                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
  1215             @Override
  1216             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1217                 return containsTypeEquivalent(ts1, ts2);
  1219         };
  1221         /**
  1222          * Strict type-equality relation - type variables are considered
  1223          * equals if they share the same object identity.
  1224          */
  1225         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1226             @Override
  1227             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1228                 return tv1 == tv2;
  1230             @Override
  1231             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1232                 return isSameTypes(ts1, ts2, true);
  1235             @Override
  1236             public Boolean visitWildcardType(WildcardType t, Type s) {
  1237                 if (!s.hasTag(WILDCARD)) {
  1238                     return false;
  1239                 } else {
  1240                     WildcardType t2 = (WildcardType)s.unannotatedType();
  1241                     return t.kind == t2.kind &&
  1242                             isSameType(t.type, t2.type, true);
  1245         };
  1247         /**
  1248          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
  1249          * into account.
  1250          */
  1251         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
  1252             @Override
  1253             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
  1254                 if (!s.isAnnotated())
  1255                     return false;
  1256                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
  1257                     return false;
  1258                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
  1259                     return false;
  1260                 return visit(t.underlyingType, s);
  1262         };
  1263     // </editor-fold>
  1265     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1266     public boolean containedBy(Type t, Type s) {
  1267         switch (t.getTag()) {
  1268         case UNDETVAR:
  1269             if (s.hasTag(WILDCARD)) {
  1270                 UndetVar undetvar = (UndetVar)t;
  1271                 WildcardType wt = (WildcardType)s.unannotatedType();
  1272                 switch(wt.kind) {
  1273                     case UNBOUND: //similar to ? extends Object
  1274                     case EXTENDS: {
  1275                         Type bound = upperBound(s);
  1276                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1277                         break;
  1279                     case SUPER: {
  1280                         Type bound = lowerBound(s);
  1281                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1282                         break;
  1285                 return true;
  1286             } else {
  1287                 return isSameType(t, s);
  1289         case ERROR:
  1290             return true;
  1291         default:
  1292             return containsType(s, t);
  1296     boolean containsType(List<Type> ts, List<Type> ss) {
  1297         while (ts.nonEmpty() && ss.nonEmpty()
  1298                && containsType(ts.head, ss.head)) {
  1299             ts = ts.tail;
  1300             ss = ss.tail;
  1302         return ts.isEmpty() && ss.isEmpty();
  1305     /**
  1306      * Check if t contains s.
  1308      * <p>T contains S if:
  1310      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1312      * <p>This relation is only used by ClassType.isSubtype(), that
  1313      * is,
  1315      * <p>{@code C<S> <: C<T> if T contains S.}
  1317      * <p>Because of F-bounds, this relation can lead to infinite
  1318      * recursion.  Thus we must somehow break that recursion.  Notice
  1319      * that containsType() is only called from ClassType.isSubtype().
  1320      * Since the arguments have already been checked against their
  1321      * bounds, we know:
  1323      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1325      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1327      * @param t a type
  1328      * @param s a type
  1329      */
  1330     public boolean containsType(Type t, Type s) {
  1331         return containsType.visit(t, s);
  1333     // where
  1334         private TypeRelation containsType = new TypeRelation() {
  1336             private Type U(Type t) {
  1337                 while (t.hasTag(WILDCARD)) {
  1338                     WildcardType w = (WildcardType)t.unannotatedType();
  1339                     if (w.isSuperBound())
  1340                         return w.bound == null ? syms.objectType : w.bound.bound;
  1341                     else
  1342                         t = w.type;
  1344                 return t;
  1347             private Type L(Type t) {
  1348                 while (t.hasTag(WILDCARD)) {
  1349                     WildcardType w = (WildcardType)t.unannotatedType();
  1350                     if (w.isExtendsBound())
  1351                         return syms.botType;
  1352                     else
  1353                         t = w.type;
  1355                 return t;
  1358             public Boolean visitType(Type t, Type s) {
  1359                 if (s.isPartial())
  1360                     return containedBy(s, t);
  1361                 else
  1362                     return isSameType(t, s);
  1365 //            void debugContainsType(WildcardType t, Type s) {
  1366 //                System.err.println();
  1367 //                System.err.format(" does %s contain %s?%n", t, s);
  1368 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1369 //                                  upperBound(s), s, t, U(t),
  1370 //                                  t.isSuperBound()
  1371 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1372 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1373 //                                  L(t), t, s, lowerBound(s),
  1374 //                                  t.isExtendsBound()
  1375 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1376 //                System.err.println();
  1377 //            }
  1379             @Override
  1380             public Boolean visitWildcardType(WildcardType t, Type s) {
  1381                 if (s.isPartial())
  1382                     return containedBy(s, t);
  1383                 else {
  1384 //                    debugContainsType(t, s);
  1385                     return isSameWildcard(t, s)
  1386                         || isCaptureOf(s, t)
  1387                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1388                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1392             @Override
  1393             public Boolean visitUndetVar(UndetVar t, Type s) {
  1394                 if (!s.hasTag(WILDCARD)) {
  1395                     return isSameType(t, s);
  1396                 } else {
  1397                     return false;
  1401             @Override
  1402             public Boolean visitErrorType(ErrorType t, Type s) {
  1403                 return true;
  1405         };
  1407     public boolean isCaptureOf(Type s, WildcardType t) {
  1408         if (!s.hasTag(TYPEVAR) || !((TypeVar)s.unannotatedType()).isCaptured())
  1409             return false;
  1410         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
  1413     public boolean isSameWildcard(WildcardType t, Type s) {
  1414         if (!s.hasTag(WILDCARD))
  1415             return false;
  1416         WildcardType w = (WildcardType)s.unannotatedType();
  1417         return w.kind == t.kind && w.type == t.type;
  1420     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1421         while (ts.nonEmpty() && ss.nonEmpty()
  1422                && containsTypeEquivalent(ts.head, ss.head)) {
  1423             ts = ts.tail;
  1424             ss = ss.tail;
  1426         return ts.isEmpty() && ss.isEmpty();
  1428     // </editor-fold>
  1430     /**
  1431      * Can t and s be compared for equality?  Any primitive ==
  1432      * primitive or primitive == object comparisons here are an error.
  1433      * Unboxing and correct primitive == primitive comparisons are
  1434      * already dealt with in Attr.visitBinary.
  1436      */
  1437     public boolean isEqualityComparable(Type s, Type t, Warner warn) {
  1438         if (t.isNumeric() && s.isNumeric())
  1439             return true;
  1441         boolean tPrimitive = t.isPrimitive();
  1442         boolean sPrimitive = s.isPrimitive();
  1443         if (!tPrimitive && !sPrimitive) {
  1444             return isCastable(s, t, warn) || isCastable(t, s, warn);
  1445         } else {
  1446             return false;
  1450     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1451     public boolean isCastable(Type t, Type s) {
  1452         return isCastable(t, s, noWarnings);
  1455     /**
  1456      * Is t is castable to s?<br>
  1457      * s is assumed to be an erased type.<br>
  1458      * (not defined for Method and ForAll types).
  1459      */
  1460     public boolean isCastable(Type t, Type s, Warner warn) {
  1461         if (t == s)
  1462             return true;
  1464         if (t.isPrimitive() != s.isPrimitive())
  1465             return allowBoxing && (
  1466                     isConvertible(t, s, warn)
  1467                     || (allowObjectToPrimitiveCast &&
  1468                         s.isPrimitive() &&
  1469                         isSubtype(boxedClass(s).type, t)));
  1470         if (warn != warnStack.head) {
  1471             try {
  1472                 warnStack = warnStack.prepend(warn);
  1473                 checkUnsafeVarargsConversion(t, s, warn);
  1474                 return isCastable.visit(t,s);
  1475             } finally {
  1476                 warnStack = warnStack.tail;
  1478         } else {
  1479             return isCastable.visit(t,s);
  1482     // where
  1483         private TypeRelation isCastable = new TypeRelation() {
  1485             public Boolean visitType(Type t, Type s) {
  1486                 if (s.hasTag(ERROR))
  1487                     return true;
  1489                 switch (t.getTag()) {
  1490                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1491                 case DOUBLE:
  1492                     return s.isNumeric();
  1493                 case BOOLEAN:
  1494                     return s.hasTag(BOOLEAN);
  1495                 case VOID:
  1496                     return false;
  1497                 case BOT:
  1498                     return isSubtype(t, s);
  1499                 default:
  1500                     throw new AssertionError();
  1504             @Override
  1505             public Boolean visitWildcardType(WildcardType t, Type s) {
  1506                 return isCastable(upperBound(t), s, warnStack.head);
  1509             @Override
  1510             public Boolean visitClassType(ClassType t, Type s) {
  1511                 if (s.hasTag(ERROR) || s.hasTag(BOT))
  1512                     return true;
  1514                 if (s.hasTag(TYPEVAR)) {
  1515                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1516                         warnStack.head.warn(LintCategory.UNCHECKED);
  1517                         return true;
  1518                     } else {
  1519                         return false;
  1523                 if (t.isCompound() || s.isCompound()) {
  1524                     return !t.isCompound() ?
  1525                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
  1526                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
  1529                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
  1530                     boolean upcast;
  1531                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1532                         || isSubtype(erasure(s), erasure(t))) {
  1533                         if (!upcast && s.hasTag(ARRAY)) {
  1534                             if (!isReifiable(s))
  1535                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1536                             return true;
  1537                         } else if (s.isRaw()) {
  1538                             return true;
  1539                         } else if (t.isRaw()) {
  1540                             if (!isUnbounded(s))
  1541                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1542                             return true;
  1544                         // Assume |a| <: |b|
  1545                         final Type a = upcast ? t : s;
  1546                         final Type b = upcast ? s : t;
  1547                         final boolean HIGH = true;
  1548                         final boolean LOW = false;
  1549                         final boolean DONT_REWRITE_TYPEVARS = false;
  1550                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1551                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1552                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1553                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1554                         Type lowSub = asSub(bLow, aLow.tsym);
  1555                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1556                         if (highSub == null) {
  1557                             final boolean REWRITE_TYPEVARS = true;
  1558                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1559                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1560                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1561                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1562                             lowSub = asSub(bLow, aLow.tsym);
  1563                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1565                         if (highSub != null) {
  1566                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1567                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1569                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1570                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1571                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1572                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1573                                 if (upcast ? giveWarning(a, b) :
  1574                                     giveWarning(b, a))
  1575                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1576                                 return true;
  1579                         if (isReifiable(s))
  1580                             return isSubtypeUnchecked(a, b);
  1581                         else
  1582                             return isSubtypeUnchecked(a, b, warnStack.head);
  1585                     // Sidecast
  1586                     if (s.hasTag(CLASS)) {
  1587                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1588                             return ((t.tsym.flags() & FINAL) == 0)
  1589                                 ? sideCast(t, s, warnStack.head)
  1590                                 : sideCastFinal(t, s, warnStack.head);
  1591                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1592                             return ((s.tsym.flags() & FINAL) == 0)
  1593                                 ? sideCast(t, s, warnStack.head)
  1594                                 : sideCastFinal(t, s, warnStack.head);
  1595                         } else {
  1596                             // unrelated class types
  1597                             return false;
  1601                 return false;
  1604             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
  1605                 Warner warn = noWarnings;
  1606                 for (Type c : ict.getComponents()) {
  1607                     warn.clear();
  1608                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
  1609                         return false;
  1611                 if (warn.hasLint(LintCategory.UNCHECKED))
  1612                     warnStack.head.warn(LintCategory.UNCHECKED);
  1613                 return true;
  1616             @Override
  1617             public Boolean visitArrayType(ArrayType t, Type s) {
  1618                 switch (s.getTag()) {
  1619                 case ERROR:
  1620                 case BOT:
  1621                     return true;
  1622                 case TYPEVAR:
  1623                     if (isCastable(s, t, noWarnings)) {
  1624                         warnStack.head.warn(LintCategory.UNCHECKED);
  1625                         return true;
  1626                     } else {
  1627                         return false;
  1629                 case CLASS:
  1630                     return isSubtype(t, s);
  1631                 case ARRAY:
  1632                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1633                         return elemtype(t).hasTag(elemtype(s).getTag());
  1634                     } else {
  1635                         return visit(elemtype(t), elemtype(s));
  1637                 default:
  1638                     return false;
  1642             @Override
  1643             public Boolean visitTypeVar(TypeVar t, Type s) {
  1644                 switch (s.getTag()) {
  1645                 case ERROR:
  1646                 case BOT:
  1647                     return true;
  1648                 case TYPEVAR:
  1649                     if (isSubtype(t, s)) {
  1650                         return true;
  1651                     } else if (isCastable(t.bound, s, noWarnings)) {
  1652                         warnStack.head.warn(LintCategory.UNCHECKED);
  1653                         return true;
  1654                     } else {
  1655                         return false;
  1657                 default:
  1658                     return isCastable(t.bound, s, warnStack.head);
  1662             @Override
  1663             public Boolean visitErrorType(ErrorType t, Type s) {
  1664                 return true;
  1666         };
  1667     // </editor-fold>
  1669     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1670     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1671         while (ts.tail != null && ss.tail != null) {
  1672             if (disjointType(ts.head, ss.head)) return true;
  1673             ts = ts.tail;
  1674             ss = ss.tail;
  1676         return false;
  1679     /**
  1680      * Two types or wildcards are considered disjoint if it can be
  1681      * proven that no type can be contained in both. It is
  1682      * conservative in that it is allowed to say that two types are
  1683      * not disjoint, even though they actually are.
  1685      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1686      * {@code X} and {@code Y} are not disjoint.
  1687      */
  1688     public boolean disjointType(Type t, Type s) {
  1689         return disjointType.visit(t, s);
  1691     // where
  1692         private TypeRelation disjointType = new TypeRelation() {
  1694             private Set<TypePair> cache = new HashSet<TypePair>();
  1696             @Override
  1697             public Boolean visitType(Type t, Type s) {
  1698                 if (s.hasTag(WILDCARD))
  1699                     return visit(s, t);
  1700                 else
  1701                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1704             private boolean isCastableRecursive(Type t, Type s) {
  1705                 TypePair pair = new TypePair(t, s);
  1706                 if (cache.add(pair)) {
  1707                     try {
  1708                         return Types.this.isCastable(t, s);
  1709                     } finally {
  1710                         cache.remove(pair);
  1712                 } else {
  1713                     return true;
  1717             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1718                 TypePair pair = new TypePair(t, s);
  1719                 if (cache.add(pair)) {
  1720                     try {
  1721                         return Types.this.notSoftSubtype(t, s);
  1722                     } finally {
  1723                         cache.remove(pair);
  1725                 } else {
  1726                     return false;
  1730             @Override
  1731             public Boolean visitWildcardType(WildcardType t, Type s) {
  1732                 if (t.isUnbound())
  1733                     return false;
  1735                 if (!s.hasTag(WILDCARD)) {
  1736                     if (t.isExtendsBound())
  1737                         return notSoftSubtypeRecursive(s, t.type);
  1738                     else
  1739                         return notSoftSubtypeRecursive(t.type, s);
  1742                 if (s.isUnbound())
  1743                     return false;
  1745                 if (t.isExtendsBound()) {
  1746                     if (s.isExtendsBound())
  1747                         return !isCastableRecursive(t.type, upperBound(s));
  1748                     else if (s.isSuperBound())
  1749                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1750                 } else if (t.isSuperBound()) {
  1751                     if (s.isExtendsBound())
  1752                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1754                 return false;
  1756         };
  1757     // </editor-fold>
  1759     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1760     /**
  1761      * Returns the lower bounds of the formals of a method.
  1762      */
  1763     public List<Type> lowerBoundArgtypes(Type t) {
  1764         return lowerBounds(t.getParameterTypes());
  1766     public List<Type> lowerBounds(List<Type> ts) {
  1767         return map(ts, lowerBoundMapping);
  1769     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1770             public Type apply(Type t) {
  1771                 return lowerBound(t);
  1773         };
  1774     // </editor-fold>
  1776     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1777     /**
  1778      * This relation answers the question: is impossible that
  1779      * something of type `t' can be a subtype of `s'? This is
  1780      * different from the question "is `t' not a subtype of `s'?"
  1781      * when type variables are involved: Integer is not a subtype of T
  1782      * where {@code <T extends Number>} but it is not true that Integer cannot
  1783      * possibly be a subtype of T.
  1784      */
  1785     public boolean notSoftSubtype(Type t, Type s) {
  1786         if (t == s) return false;
  1787         if (t.hasTag(TYPEVAR)) {
  1788             TypeVar tv = (TypeVar) t;
  1789             return !isCastable(tv.bound,
  1790                                relaxBound(s),
  1791                                noWarnings);
  1793         if (!s.hasTag(WILDCARD))
  1794             s = upperBound(s);
  1796         return !isSubtype(t, relaxBound(s));
  1799     private Type relaxBound(Type t) {
  1800         if (t.hasTag(TYPEVAR)) {
  1801             while (t.hasTag(TYPEVAR))
  1802                 t = t.getUpperBound();
  1803             t = rewriteQuantifiers(t, true, true);
  1805         return t;
  1807     // </editor-fold>
  1809     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1810     public boolean isReifiable(Type t) {
  1811         return isReifiable.visit(t);
  1813     // where
  1814         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1816             public Boolean visitType(Type t, Void ignored) {
  1817                 return true;
  1820             @Override
  1821             public Boolean visitClassType(ClassType t, Void ignored) {
  1822                 if (t.isCompound())
  1823                     return false;
  1824                 else {
  1825                     if (!t.isParameterized())
  1826                         return true;
  1828                     for (Type param : t.allparams()) {
  1829                         if (!param.isUnbound())
  1830                             return false;
  1832                     return true;
  1836             @Override
  1837             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1838                 return visit(t.elemtype);
  1841             @Override
  1842             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1843                 return false;
  1845         };
  1846     // </editor-fold>
  1848     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1849     public boolean isArray(Type t) {
  1850         while (t.hasTag(WILDCARD))
  1851             t = upperBound(t);
  1852         return t.hasTag(ARRAY);
  1855     /**
  1856      * The element type of an array.
  1857      */
  1858     public Type elemtype(Type t) {
  1859         switch (t.getTag()) {
  1860         case WILDCARD:
  1861             return elemtype(upperBound(t));
  1862         case ARRAY:
  1863             t = t.unannotatedType();
  1864             return ((ArrayType)t).elemtype;
  1865         case FORALL:
  1866             return elemtype(((ForAll)t).qtype);
  1867         case ERROR:
  1868             return t;
  1869         default:
  1870             return null;
  1874     public Type elemtypeOrType(Type t) {
  1875         Type elemtype = elemtype(t);
  1876         return elemtype != null ?
  1877             elemtype :
  1878             t;
  1881     /**
  1882      * Mapping to take element type of an arraytype
  1883      */
  1884     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1885         public Type apply(Type t) { return elemtype(t); }
  1886     };
  1888     /**
  1889      * The number of dimensions of an array type.
  1890      */
  1891     public int dimensions(Type t) {
  1892         int result = 0;
  1893         while (t.hasTag(ARRAY)) {
  1894             result++;
  1895             t = elemtype(t);
  1897         return result;
  1900     /**
  1901      * Returns an ArrayType with the component type t
  1903      * @param t The component type of the ArrayType
  1904      * @return the ArrayType for the given component
  1905      */
  1906     public ArrayType makeArrayType(Type t) {
  1907         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
  1908             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1910         return new ArrayType(t, syms.arrayClass);
  1912     // </editor-fold>
  1914     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1915     /**
  1916      * Return the (most specific) base type of t that starts with the
  1917      * given symbol.  If none exists, return null.
  1919      * @param t a type
  1920      * @param sym a symbol
  1921      */
  1922     public Type asSuper(Type t, Symbol sym) {
  1923         return asSuper.visit(t, sym);
  1925     // where
  1926         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1928             public Type visitType(Type t, Symbol sym) {
  1929                 return null;
  1932             @Override
  1933             public Type visitClassType(ClassType t, Symbol sym) {
  1934                 if (t.tsym == sym)
  1935                     return t;
  1937                 Type st = supertype(t);
  1938                 if (st.hasTag(CLASS) || st.hasTag(TYPEVAR) || st.hasTag(ERROR)) {
  1939                     Type x = asSuper(st, sym);
  1940                     if (x != null)
  1941                         return x;
  1943                 if ((sym.flags() & INTERFACE) != 0) {
  1944                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1945                         Type x = asSuper(l.head, sym);
  1946                         if (x != null)
  1947                             return x;
  1950                 return null;
  1953             @Override
  1954             public Type visitArrayType(ArrayType t, Symbol sym) {
  1955                 return isSubtype(t, sym.type) ? sym.type : null;
  1958             @Override
  1959             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1960                 if (t.tsym == sym)
  1961                     return t;
  1962                 else
  1963                     return asSuper(t.bound, sym);
  1966             @Override
  1967             public Type visitErrorType(ErrorType t, Symbol sym) {
  1968                 return t;
  1970         };
  1972     /**
  1973      * Return the base type of t or any of its outer types that starts
  1974      * with the given symbol.  If none exists, return null.
  1976      * @param t a type
  1977      * @param sym a symbol
  1978      */
  1979     public Type asOuterSuper(Type t, Symbol sym) {
  1980         switch (t.getTag()) {
  1981         case CLASS:
  1982             do {
  1983                 Type s = asSuper(t, sym);
  1984                 if (s != null) return s;
  1985                 t = t.getEnclosingType();
  1986             } while (t.hasTag(CLASS));
  1987             return null;
  1988         case ARRAY:
  1989             return isSubtype(t, sym.type) ? sym.type : null;
  1990         case TYPEVAR:
  1991             return asSuper(t, sym);
  1992         case ERROR:
  1993             return t;
  1994         default:
  1995             return null;
  1999     /**
  2000      * Return the base type of t or any of its enclosing types that
  2001      * starts with the given symbol.  If none exists, return null.
  2003      * @param t a type
  2004      * @param sym a symbol
  2005      */
  2006     public Type asEnclosingSuper(Type t, Symbol sym) {
  2007         switch (t.getTag()) {
  2008         case CLASS:
  2009             do {
  2010                 Type s = asSuper(t, sym);
  2011                 if (s != null) return s;
  2012                 Type outer = t.getEnclosingType();
  2013                 t = (outer.hasTag(CLASS)) ? outer :
  2014                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  2015                     Type.noType;
  2016             } while (t.hasTag(CLASS));
  2017             return null;
  2018         case ARRAY:
  2019             return isSubtype(t, sym.type) ? sym.type : null;
  2020         case TYPEVAR:
  2021             return asSuper(t, sym);
  2022         case ERROR:
  2023             return t;
  2024         default:
  2025             return null;
  2028     // </editor-fold>
  2030     // <editor-fold defaultstate="collapsed" desc="memberType">
  2031     /**
  2032      * The type of given symbol, seen as a member of t.
  2034      * @param t a type
  2035      * @param sym a symbol
  2036      */
  2037     public Type memberType(Type t, Symbol sym) {
  2038         return (sym.flags() & STATIC) != 0
  2039             ? sym.type
  2040             : memberType.visit(t, sym);
  2042     // where
  2043         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  2045             public Type visitType(Type t, Symbol sym) {
  2046                 return sym.type;
  2049             @Override
  2050             public Type visitWildcardType(WildcardType t, Symbol sym) {
  2051                 return memberType(upperBound(t), sym);
  2054             @Override
  2055             public Type visitClassType(ClassType t, Symbol sym) {
  2056                 Symbol owner = sym.owner;
  2057                 long flags = sym.flags();
  2058                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  2059                     Type base = asOuterSuper(t, owner);
  2060                     //if t is an intersection type T = CT & I1 & I2 ... & In
  2061                     //its supertypes CT, I1, ... In might contain wildcards
  2062                     //so we need to go through capture conversion
  2063                     base = t.isCompound() ? capture(base) : base;
  2064                     if (base != null) {
  2065                         List<Type> ownerParams = owner.type.allparams();
  2066                         List<Type> baseParams = base.allparams();
  2067                         if (ownerParams.nonEmpty()) {
  2068                             if (baseParams.isEmpty()) {
  2069                                 // then base is a raw type
  2070                                 return erasure(sym.type);
  2071                             } else {
  2072                                 return subst(sym.type, ownerParams, baseParams);
  2077                 return sym.type;
  2080             @Override
  2081             public Type visitTypeVar(TypeVar t, Symbol sym) {
  2082                 return memberType(t.bound, sym);
  2085             @Override
  2086             public Type visitErrorType(ErrorType t, Symbol sym) {
  2087                 return t;
  2089         };
  2090     // </editor-fold>
  2092     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  2093     public boolean isAssignable(Type t, Type s) {
  2094         return isAssignable(t, s, noWarnings);
  2097     /**
  2098      * Is t assignable to s?<br>
  2099      * Equivalent to subtype except for constant values and raw
  2100      * types.<br>
  2101      * (not defined for Method and ForAll types)
  2102      */
  2103     public boolean isAssignable(Type t, Type s, Warner warn) {
  2104         if (t.hasTag(ERROR))
  2105             return true;
  2106         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
  2107             int value = ((Number)t.constValue()).intValue();
  2108             switch (s.getTag()) {
  2109             case BYTE:
  2110                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  2111                     return true;
  2112                 break;
  2113             case CHAR:
  2114                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  2115                     return true;
  2116                 break;
  2117             case SHORT:
  2118                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2119                     return true;
  2120                 break;
  2121             case INT:
  2122                 return true;
  2123             case CLASS:
  2124                 switch (unboxedType(s).getTag()) {
  2125                 case BYTE:
  2126                 case CHAR:
  2127                 case SHORT:
  2128                     return isAssignable(t, unboxedType(s), warn);
  2130                 break;
  2133         return isConvertible(t, s, warn);
  2135     // </editor-fold>
  2137     // <editor-fold defaultstate="collapsed" desc="erasure">
  2138     /**
  2139      * The erasure of t {@code |t|} -- the type that results when all
  2140      * type parameters in t are deleted.
  2141      */
  2142     public Type erasure(Type t) {
  2143         return eraseNotNeeded(t)? t : erasure(t, false);
  2145     //where
  2146     private boolean eraseNotNeeded(Type t) {
  2147         // We don't want to erase primitive types and String type as that
  2148         // operation is idempotent. Also, erasing these could result in loss
  2149         // of information such as constant values attached to such types.
  2150         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2153     private Type erasure(Type t, boolean recurse) {
  2154         if (t.isPrimitive())
  2155             return t; /* fast special case */
  2156         else
  2157             return erasure.visit(t, recurse);
  2159     // where
  2160         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2161             public Type visitType(Type t, Boolean recurse) {
  2162                 if (t.isPrimitive())
  2163                     return t; /*fast special case*/
  2164                 else
  2165                     return t.map(recurse ? erasureRecFun : erasureFun);
  2168             @Override
  2169             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2170                 return erasure(upperBound(t), recurse);
  2173             @Override
  2174             public Type visitClassType(ClassType t, Boolean recurse) {
  2175                 Type erased = t.tsym.erasure(Types.this);
  2176                 if (recurse) {
  2177                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2179                 return erased;
  2182             @Override
  2183             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2184                 return erasure(t.bound, recurse);
  2187             @Override
  2188             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2189                 return t;
  2192             @Override
  2193             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2194                 Type erased = erasure(t.underlyingType, recurse);
  2195                 if (erased.isAnnotated()) {
  2196                     // This can only happen when the underlying type is a
  2197                     // type variable and the upper bound of it is annotated.
  2198                     // The annotation on the type variable overrides the one
  2199                     // on the bound.
  2200                     erased = ((AnnotatedType)erased).underlyingType;
  2202                 return new AnnotatedType(t.typeAnnotations, erased);
  2204         };
  2206     private Mapping erasureFun = new Mapping ("erasure") {
  2207             public Type apply(Type t) { return erasure(t); }
  2208         };
  2210     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2211         public Type apply(Type t) { return erasureRecursive(t); }
  2212     };
  2214     public List<Type> erasure(List<Type> ts) {
  2215         return Type.map(ts, erasureFun);
  2218     public Type erasureRecursive(Type t) {
  2219         return erasure(t, true);
  2222     public List<Type> erasureRecursive(List<Type> ts) {
  2223         return Type.map(ts, erasureRecFun);
  2225     // </editor-fold>
  2227     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2228     /**
  2229      * Make a compound type from non-empty list of types
  2231      * @param bounds            the types from which the compound type is formed
  2232      * @param supertype         is objectType if all bounds are interfaces,
  2233      *                          null otherwise.
  2234      */
  2235     public Type makeCompoundType(List<Type> bounds) {
  2236         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2238     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2239         Assert.check(bounds.nonEmpty());
  2240         Type firstExplicitBound = bounds.head;
  2241         if (allInterfaces) {
  2242             bounds = bounds.prepend(syms.objectType);
  2244         ClassSymbol bc =
  2245             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2246                             Type.moreInfo
  2247                                 ? names.fromString(bounds.toString())
  2248                                 : names.empty,
  2249                             null,
  2250                             syms.noSymbol);
  2251         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2252         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
  2253                 syms.objectType : // error condition, recover
  2254                 erasure(firstExplicitBound);
  2255         bc.members_field = new Scope(bc);
  2256         return bc.type;
  2259     /**
  2260      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2261      * arguments are converted to a list and passed to the other
  2262      * method.  Note that this might cause a symbol completion.
  2263      * Hence, this version of makeCompoundType may not be called
  2264      * during a classfile read.
  2265      */
  2266     public Type makeCompoundType(Type bound1, Type bound2) {
  2267         return makeCompoundType(List.of(bound1, bound2));
  2269     // </editor-fold>
  2271     // <editor-fold defaultstate="collapsed" desc="supertype">
  2272     public Type supertype(Type t) {
  2273         return supertype.visit(t);
  2275     // where
  2276         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2278             public Type visitType(Type t, Void ignored) {
  2279                 // A note on wildcards: there is no good way to
  2280                 // determine a supertype for a super bounded wildcard.
  2281                 return null;
  2284             @Override
  2285             public Type visitClassType(ClassType t, Void ignored) {
  2286                 if (t.supertype_field == null) {
  2287                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2288                     // An interface has no superclass; its supertype is Object.
  2289                     if (t.isInterface())
  2290                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2291                     if (t.supertype_field == null) {
  2292                         List<Type> actuals = classBound(t).allparams();
  2293                         List<Type> formals = t.tsym.type.allparams();
  2294                         if (t.hasErasedSupertypes()) {
  2295                             t.supertype_field = erasureRecursive(supertype);
  2296                         } else if (formals.nonEmpty()) {
  2297                             t.supertype_field = subst(supertype, formals, actuals);
  2299                         else {
  2300                             t.supertype_field = supertype;
  2304                 return t.supertype_field;
  2307             /**
  2308              * The supertype is always a class type. If the type
  2309              * variable's bounds start with a class type, this is also
  2310              * the supertype.  Otherwise, the supertype is
  2311              * java.lang.Object.
  2312              */
  2313             @Override
  2314             public Type visitTypeVar(TypeVar t, Void ignored) {
  2315                 if (t.bound.hasTag(TYPEVAR) ||
  2316                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2317                     return t.bound;
  2318                 } else {
  2319                     return supertype(t.bound);
  2323             @Override
  2324             public Type visitArrayType(ArrayType t, Void ignored) {
  2325                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2326                     return arraySuperType();
  2327                 else
  2328                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2331             @Override
  2332             public Type visitErrorType(ErrorType t, Void ignored) {
  2333                 return Type.noType;
  2335         };
  2336     // </editor-fold>
  2338     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2339     /**
  2340      * Return the interfaces implemented by this class.
  2341      */
  2342     public List<Type> interfaces(Type t) {
  2343         return interfaces.visit(t);
  2345     // where
  2346         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2348             public List<Type> visitType(Type t, Void ignored) {
  2349                 return List.nil();
  2352             @Override
  2353             public List<Type> visitClassType(ClassType t, Void ignored) {
  2354                 if (t.interfaces_field == null) {
  2355                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2356                     if (t.interfaces_field == null) {
  2357                         // If t.interfaces_field is null, then t must
  2358                         // be a parameterized type (not to be confused
  2359                         // with a generic type declaration).
  2360                         // Terminology:
  2361                         //    Parameterized type: List<String>
  2362                         //    Generic type declaration: class List<E> { ... }
  2363                         // So t corresponds to List<String> and
  2364                         // t.tsym.type corresponds to List<E>.
  2365                         // The reason t must be parameterized type is
  2366                         // that completion will happen as a side
  2367                         // effect of calling
  2368                         // ClassSymbol.getInterfaces.  Since
  2369                         // t.interfaces_field is null after
  2370                         // completion, we can assume that t is not the
  2371                         // type of a class/interface declaration.
  2372                         Assert.check(t != t.tsym.type, t);
  2373                         List<Type> actuals = t.allparams();
  2374                         List<Type> formals = t.tsym.type.allparams();
  2375                         if (t.hasErasedSupertypes()) {
  2376                             t.interfaces_field = erasureRecursive(interfaces);
  2377                         } else if (formals.nonEmpty()) {
  2378                             t.interfaces_field =
  2379                                 upperBounds(subst(interfaces, formals, actuals));
  2381                         else {
  2382                             t.interfaces_field = interfaces;
  2386                 return t.interfaces_field;
  2389             @Override
  2390             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2391                 if (t.bound.isCompound())
  2392                     return interfaces(t.bound);
  2394                 if (t.bound.isInterface())
  2395                     return List.of(t.bound);
  2397                 return List.nil();
  2399         };
  2401     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2402         for (Type i2 : interfaces(origin.type)) {
  2403             if (isym == i2.tsym) return true;
  2405         return false;
  2407     // </editor-fold>
  2409     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2410     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2412     public boolean isDerivedRaw(Type t) {
  2413         Boolean result = isDerivedRawCache.get(t);
  2414         if (result == null) {
  2415             result = isDerivedRawInternal(t);
  2416             isDerivedRawCache.put(t, result);
  2418         return result;
  2421     public boolean isDerivedRawInternal(Type t) {
  2422         if (t.isErroneous())
  2423             return false;
  2424         return
  2425             t.isRaw() ||
  2426             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2427             isDerivedRaw(interfaces(t));
  2430     public boolean isDerivedRaw(List<Type> ts) {
  2431         List<Type> l = ts;
  2432         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2433         return l.nonEmpty();
  2435     // </editor-fold>
  2437     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2438     /**
  2439      * Set the bounds field of the given type variable to reflect a
  2440      * (possibly multiple) list of bounds.
  2441      * @param t                 a type variable
  2442      * @param bounds            the bounds, must be nonempty
  2443      * @param supertype         is objectType if all bounds are interfaces,
  2444      *                          null otherwise.
  2445      */
  2446     public void setBounds(TypeVar t, List<Type> bounds) {
  2447         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2450     /**
  2451      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2452      * third parameter is computed directly, as follows: if all
  2453      * all bounds are interface types, the computed supertype is Object,
  2454      * otherwise the supertype is simply left null (in this case, the supertype
  2455      * is assumed to be the head of the bound list passed as second argument).
  2456      * Note that this check might cause a symbol completion. Hence, this version of
  2457      * setBounds may not be called during a classfile read.
  2458      */
  2459     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2460         t.bound = bounds.tail.isEmpty() ?
  2461                 bounds.head :
  2462                 makeCompoundType(bounds, allInterfaces);
  2463         t.rank_field = -1;
  2465     // </editor-fold>
  2467     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2468     /**
  2469      * Return list of bounds of the given type variable.
  2470      */
  2471     public List<Type> getBounds(TypeVar t) {
  2472         if (t.bound.hasTag(NONE))
  2473             return List.nil();
  2474         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2475             return List.of(t.bound);
  2476         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2477             return interfaces(t).prepend(supertype(t));
  2478         else
  2479             // No superclass was given in bounds.
  2480             // In this case, supertype is Object, erasure is first interface.
  2481             return interfaces(t);
  2483     // </editor-fold>
  2485     // <editor-fold defaultstate="collapsed" desc="classBound">
  2486     /**
  2487      * If the given type is a (possibly selected) type variable,
  2488      * return the bounding class of this type, otherwise return the
  2489      * type itself.
  2490      */
  2491     public Type classBound(Type t) {
  2492         return classBound.visit(t);
  2494     // where
  2495         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2497             public Type visitType(Type t, Void ignored) {
  2498                 return t;
  2501             @Override
  2502             public Type visitClassType(ClassType t, Void ignored) {
  2503                 Type outer1 = classBound(t.getEnclosingType());
  2504                 if (outer1 != t.getEnclosingType())
  2505                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2506                 else
  2507                     return t;
  2510             @Override
  2511             public Type visitTypeVar(TypeVar t, Void ignored) {
  2512                 return classBound(supertype(t));
  2515             @Override
  2516             public Type visitErrorType(ErrorType t, Void ignored) {
  2517                 return t;
  2519         };
  2520     // </editor-fold>
  2522     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2523     /**
  2524      * Returns true iff the first signature is a <em>sub
  2525      * signature</em> of the other.  This is <b>not</b> an equivalence
  2526      * relation.
  2528      * @jls section 8.4.2.
  2529      * @see #overrideEquivalent(Type t, Type s)
  2530      * @param t first signature (possibly raw).
  2531      * @param s second signature (could be subjected to erasure).
  2532      * @return true if t is a sub signature of s.
  2533      */
  2534     public boolean isSubSignature(Type t, Type s) {
  2535         return isSubSignature(t, s, true);
  2538     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2539         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2542     /**
  2543      * Returns true iff these signatures are related by <em>override
  2544      * equivalence</em>.  This is the natural extension of
  2545      * isSubSignature to an equivalence relation.
  2547      * @jls section 8.4.2.
  2548      * @see #isSubSignature(Type t, Type s)
  2549      * @param t a signature (possible raw, could be subjected to
  2550      * erasure).
  2551      * @param s a signature (possible raw, could be subjected to
  2552      * erasure).
  2553      * @return true if either argument is a sub signature of the other.
  2554      */
  2555     public boolean overrideEquivalent(Type t, Type s) {
  2556         return hasSameArgs(t, s) ||
  2557             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2560     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2561         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2562             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2563                 return true;
  2566         return false;
  2569     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2570     class ImplementationCache {
  2572         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2573                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2575         class Entry {
  2576             final MethodSymbol cachedImpl;
  2577             final Filter<Symbol> implFilter;
  2578             final boolean checkResult;
  2579             final int prevMark;
  2581             public Entry(MethodSymbol cachedImpl,
  2582                     Filter<Symbol> scopeFilter,
  2583                     boolean checkResult,
  2584                     int prevMark) {
  2585                 this.cachedImpl = cachedImpl;
  2586                 this.implFilter = scopeFilter;
  2587                 this.checkResult = checkResult;
  2588                 this.prevMark = prevMark;
  2591             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2592                 return this.implFilter == scopeFilter &&
  2593                         this.checkResult == checkResult &&
  2594                         this.prevMark == mark;
  2598         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2599             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2600             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2601             if (cache == null) {
  2602                 cache = new HashMap<TypeSymbol, Entry>();
  2603                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2605             Entry e = cache.get(origin);
  2606             CompoundScope members = membersClosure(origin.type, true);
  2607             if (e == null ||
  2608                     !e.matches(implFilter, checkResult, members.getMark())) {
  2609                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2610                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2611                 return impl;
  2613             else {
  2614                 return e.cachedImpl;
  2618         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2619             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
  2620                 while (t.hasTag(TYPEVAR))
  2621                     t = t.getUpperBound();
  2622                 TypeSymbol c = t.tsym;
  2623                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2624                      e.scope != null;
  2625                      e = e.next(implFilter)) {
  2626                     if (e.sym != null &&
  2627                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2628                         return (MethodSymbol)e.sym;
  2631             return null;
  2635     private ImplementationCache implCache = new ImplementationCache();
  2637     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2638         return implCache.get(ms, origin, checkResult, implFilter);
  2640     // </editor-fold>
  2642     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2643     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2645         private WeakHashMap<TypeSymbol, Entry> _map =
  2646                 new WeakHashMap<TypeSymbol, Entry>();
  2648         class Entry {
  2649             final boolean skipInterfaces;
  2650             final CompoundScope compoundScope;
  2652             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2653                 this.skipInterfaces = skipInterfaces;
  2654                 this.compoundScope = compoundScope;
  2657             boolean matches(boolean skipInterfaces) {
  2658                 return this.skipInterfaces == skipInterfaces;
  2662         List<TypeSymbol> seenTypes = List.nil();
  2664         /** members closure visitor methods **/
  2666         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2667             return null;
  2670         @Override
  2671         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2672             if (seenTypes.contains(t.tsym)) {
  2673                 //this is possible when an interface is implemented in multiple
  2674                 //superclasses, or when a classs hierarchy is circular - in such
  2675                 //cases we don't need to recurse (empty scope is returned)
  2676                 return new CompoundScope(t.tsym);
  2678             try {
  2679                 seenTypes = seenTypes.prepend(t.tsym);
  2680                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2681                 Entry e = _map.get(csym);
  2682                 if (e == null || !e.matches(skipInterface)) {
  2683                     CompoundScope membersClosure = new CompoundScope(csym);
  2684                     if (!skipInterface) {
  2685                         for (Type i : interfaces(t)) {
  2686                             membersClosure.addSubScope(visit(i, skipInterface));
  2689                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2690                     membersClosure.addSubScope(csym.members());
  2691                     e = new Entry(skipInterface, membersClosure);
  2692                     _map.put(csym, e);
  2694                 return e.compoundScope;
  2696             finally {
  2697                 seenTypes = seenTypes.tail;
  2701         @Override
  2702         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2703             return visit(t.getUpperBound(), skipInterface);
  2707     private MembersClosureCache membersCache = new MembersClosureCache();
  2709     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2710         return membersCache.visit(site, skipInterface);
  2712     // </editor-fold>
  2715     //where
  2716     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2717         Filter<Symbol> filter = new MethodFilter(ms, site);
  2718         List<MethodSymbol> candidates = List.nil();
  2719             for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2720                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2721                     return List.of((MethodSymbol)s);
  2722                 } else if (!candidates.contains(s)) {
  2723                     candidates = candidates.prepend((MethodSymbol)s);
  2726             return prune(candidates);
  2729     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2730         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2731         for (MethodSymbol m1 : methods) {
  2732             boolean isMin_m1 = true;
  2733             for (MethodSymbol m2 : methods) {
  2734                 if (m1 == m2) continue;
  2735                 if (m2.owner != m1.owner &&
  2736                         asSuper(m2.owner.type, m1.owner) != null) {
  2737                     isMin_m1 = false;
  2738                     break;
  2741             if (isMin_m1)
  2742                 methodsMin.append(m1);
  2744         return methodsMin.toList();
  2746     // where
  2747             private class MethodFilter implements Filter<Symbol> {
  2749                 Symbol msym;
  2750                 Type site;
  2752                 MethodFilter(Symbol msym, Type site) {
  2753                     this.msym = msym;
  2754                     this.site = site;
  2757                 public boolean accepts(Symbol s) {
  2758                     return s.kind == Kinds.MTH &&
  2759                             s.name == msym.name &&
  2760                             (s.flags() & SYNTHETIC) == 0 &&
  2761                             s.isInheritedIn(site.tsym, Types.this) &&
  2762                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2764             };
  2765     // </editor-fold>
  2767     /**
  2768      * Does t have the same arguments as s?  It is assumed that both
  2769      * types are (possibly polymorphic) method types.  Monomorphic
  2770      * method types "have the same arguments", if their argument lists
  2771      * are equal.  Polymorphic method types "have the same arguments",
  2772      * if they have the same arguments after renaming all type
  2773      * variables of one to corresponding type variables in the other,
  2774      * where correspondence is by position in the type parameter list.
  2775      */
  2776     public boolean hasSameArgs(Type t, Type s) {
  2777         return hasSameArgs(t, s, true);
  2780     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2781         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2784     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2785         return hasSameArgs.visit(t, s);
  2787     // where
  2788         private class HasSameArgs extends TypeRelation {
  2790             boolean strict;
  2792             public HasSameArgs(boolean strict) {
  2793                 this.strict = strict;
  2796             public Boolean visitType(Type t, Type s) {
  2797                 throw new AssertionError();
  2800             @Override
  2801             public Boolean visitMethodType(MethodType t, Type s) {
  2802                 return s.hasTag(METHOD)
  2803                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2806             @Override
  2807             public Boolean visitForAll(ForAll t, Type s) {
  2808                 if (!s.hasTag(FORALL))
  2809                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2811                 ForAll forAll = (ForAll)s;
  2812                 return hasSameBounds(t, forAll)
  2813                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2816             @Override
  2817             public Boolean visitErrorType(ErrorType t, Type s) {
  2818                 return false;
  2820         };
  2822         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2823         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2825     // </editor-fold>
  2827     // <editor-fold defaultstate="collapsed" desc="subst">
  2828     public List<Type> subst(List<Type> ts,
  2829                             List<Type> from,
  2830                             List<Type> to) {
  2831         return new Subst(from, to).subst(ts);
  2834     /**
  2835      * Substitute all occurrences of a type in `from' with the
  2836      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2837      * from the right: If lists have different length, discard leading
  2838      * elements of the longer list.
  2839      */
  2840     public Type subst(Type t, List<Type> from, List<Type> to) {
  2841         return new Subst(from, to).subst(t);
  2844     private class Subst extends UnaryVisitor<Type> {
  2845         List<Type> from;
  2846         List<Type> to;
  2848         public Subst(List<Type> from, List<Type> to) {
  2849             int fromLength = from.length();
  2850             int toLength = to.length();
  2851             while (fromLength > toLength) {
  2852                 fromLength--;
  2853                 from = from.tail;
  2855             while (fromLength < toLength) {
  2856                 toLength--;
  2857                 to = to.tail;
  2859             this.from = from;
  2860             this.to = to;
  2863         Type subst(Type t) {
  2864             if (from.tail == null)
  2865                 return t;
  2866             else
  2867                 return visit(t);
  2870         List<Type> subst(List<Type> ts) {
  2871             if (from.tail == null)
  2872                 return ts;
  2873             boolean wild = false;
  2874             if (ts.nonEmpty() && from.nonEmpty()) {
  2875                 Type head1 = subst(ts.head);
  2876                 List<Type> tail1 = subst(ts.tail);
  2877                 if (head1 != ts.head || tail1 != ts.tail)
  2878                     return tail1.prepend(head1);
  2880             return ts;
  2883         public Type visitType(Type t, Void ignored) {
  2884             return t;
  2887         @Override
  2888         public Type visitMethodType(MethodType t, Void ignored) {
  2889             List<Type> argtypes = subst(t.argtypes);
  2890             Type restype = subst(t.restype);
  2891             List<Type> thrown = subst(t.thrown);
  2892             if (argtypes == t.argtypes &&
  2893                 restype == t.restype &&
  2894                 thrown == t.thrown)
  2895                 return t;
  2896             else
  2897                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2900         @Override
  2901         public Type visitTypeVar(TypeVar t, Void ignored) {
  2902             for (List<Type> from = this.from, to = this.to;
  2903                  from.nonEmpty();
  2904                  from = from.tail, to = to.tail) {
  2905                 if (t == from.head) {
  2906                     return to.head.withTypeVar(t);
  2909             return t;
  2912         @Override
  2913         public Type visitClassType(ClassType t, Void ignored) {
  2914             if (!t.isCompound()) {
  2915                 List<Type> typarams = t.getTypeArguments();
  2916                 List<Type> typarams1 = subst(typarams);
  2917                 Type outer = t.getEnclosingType();
  2918                 Type outer1 = subst(outer);
  2919                 if (typarams1 == typarams && outer1 == outer)
  2920                     return t;
  2921                 else
  2922                     return new ClassType(outer1, typarams1, t.tsym);
  2923             } else {
  2924                 Type st = subst(supertype(t));
  2925                 List<Type> is = upperBounds(subst(interfaces(t)));
  2926                 if (st == supertype(t) && is == interfaces(t))
  2927                     return t;
  2928                 else
  2929                     return makeCompoundType(is.prepend(st));
  2933         @Override
  2934         public Type visitWildcardType(WildcardType t, Void ignored) {
  2935             Type bound = t.type;
  2936             if (t.kind != BoundKind.UNBOUND)
  2937                 bound = subst(bound);
  2938             if (bound == t.type) {
  2939                 return t;
  2940             } else {
  2941                 if (t.isExtendsBound() && bound.isExtendsBound())
  2942                     bound = upperBound(bound);
  2943                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2947         @Override
  2948         public Type visitArrayType(ArrayType t, Void ignored) {
  2949             Type elemtype = subst(t.elemtype);
  2950             if (elemtype == t.elemtype)
  2951                 return t;
  2952             else
  2953                 return new ArrayType(elemtype, t.tsym);
  2956         @Override
  2957         public Type visitForAll(ForAll t, Void ignored) {
  2958             if (Type.containsAny(to, t.tvars)) {
  2959                 //perform alpha-renaming of free-variables in 't'
  2960                 //if 'to' types contain variables that are free in 't'
  2961                 List<Type> freevars = newInstances(t.tvars);
  2962                 t = new ForAll(freevars,
  2963                         Types.this.subst(t.qtype, t.tvars, freevars));
  2965             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2966             Type qtype1 = subst(t.qtype);
  2967             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2968                 return t;
  2969             } else if (tvars1 == t.tvars) {
  2970                 return new ForAll(tvars1, qtype1);
  2971             } else {
  2972                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2976         @Override
  2977         public Type visitErrorType(ErrorType t, Void ignored) {
  2978             return t;
  2982     public List<Type> substBounds(List<Type> tvars,
  2983                                   List<Type> from,
  2984                                   List<Type> to) {
  2985         if (tvars.isEmpty())
  2986             return tvars;
  2987         ListBuffer<Type> newBoundsBuf = lb();
  2988         boolean changed = false;
  2989         // calculate new bounds
  2990         for (Type t : tvars) {
  2991             TypeVar tv = (TypeVar) t;
  2992             Type bound = subst(tv.bound, from, to);
  2993             if (bound != tv.bound)
  2994                 changed = true;
  2995             newBoundsBuf.append(bound);
  2997         if (!changed)
  2998             return tvars;
  2999         ListBuffer<Type> newTvars = lb();
  3000         // create new type variables without bounds
  3001         for (Type t : tvars) {
  3002             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  3004         // the new bounds should use the new type variables in place
  3005         // of the old
  3006         List<Type> newBounds = newBoundsBuf.toList();
  3007         from = tvars;
  3008         to = newTvars.toList();
  3009         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  3010             newBounds.head = subst(newBounds.head, from, to);
  3012         newBounds = newBoundsBuf.toList();
  3013         // set the bounds of new type variables to the new bounds
  3014         for (Type t : newTvars.toList()) {
  3015             TypeVar tv = (TypeVar) t;
  3016             tv.bound = newBounds.head;
  3017             newBounds = newBounds.tail;
  3019         return newTvars.toList();
  3022     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  3023         Type bound1 = subst(t.bound, from, to);
  3024         if (bound1 == t.bound)
  3025             return t;
  3026         else {
  3027             // create new type variable without bounds
  3028             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  3029             // the new bound should use the new type variable in place
  3030             // of the old
  3031             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  3032             return tv;
  3035     // </editor-fold>
  3037     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  3038     /**
  3039      * Does t have the same bounds for quantified variables as s?
  3040      */
  3041     boolean hasSameBounds(ForAll t, ForAll s) {
  3042         List<Type> l1 = t.tvars;
  3043         List<Type> l2 = s.tvars;
  3044         while (l1.nonEmpty() && l2.nonEmpty() &&
  3045                isSameType(l1.head.getUpperBound(),
  3046                           subst(l2.head.getUpperBound(),
  3047                                 s.tvars,
  3048                                 t.tvars))) {
  3049             l1 = l1.tail;
  3050             l2 = l2.tail;
  3052         return l1.isEmpty() && l2.isEmpty();
  3054     // </editor-fold>
  3056     // <editor-fold defaultstate="collapsed" desc="newInstances">
  3057     /** Create new vector of type variables from list of variables
  3058      *  changing all recursive bounds from old to new list.
  3059      */
  3060     public List<Type> newInstances(List<Type> tvars) {
  3061         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  3062         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  3063             TypeVar tv = (TypeVar) l.head;
  3064             tv.bound = subst(tv.bound, tvars, tvars1);
  3066         return tvars1;
  3068     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  3069             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  3070         };
  3071     // </editor-fold>
  3073     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  3074         return original.accept(methodWithParameters, newParams);
  3076     // where
  3077         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  3078             public Type visitType(Type t, List<Type> newParams) {
  3079                 throw new IllegalArgumentException("Not a method type: " + t);
  3081             public Type visitMethodType(MethodType t, List<Type> newParams) {
  3082                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  3084             public Type visitForAll(ForAll t, List<Type> newParams) {
  3085                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  3087         };
  3089     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  3090         return original.accept(methodWithThrown, newThrown);
  3092     // where
  3093         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  3094             public Type visitType(Type t, List<Type> newThrown) {
  3095                 throw new IllegalArgumentException("Not a method type: " + t);
  3097             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  3098                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  3100             public Type visitForAll(ForAll t, List<Type> newThrown) {
  3101                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  3103         };
  3105     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  3106         return original.accept(methodWithReturn, newReturn);
  3108     // where
  3109         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  3110             public Type visitType(Type t, Type newReturn) {
  3111                 throw new IllegalArgumentException("Not a method type: " + t);
  3113             public Type visitMethodType(MethodType t, Type newReturn) {
  3114                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  3116             public Type visitForAll(ForAll t, Type newReturn) {
  3117                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3119         };
  3121     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3122     public Type createErrorType(Type originalType) {
  3123         return new ErrorType(originalType, syms.errSymbol);
  3126     public Type createErrorType(ClassSymbol c, Type originalType) {
  3127         return new ErrorType(c, originalType);
  3130     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3131         return new ErrorType(name, container, originalType);
  3133     // </editor-fold>
  3135     // <editor-fold defaultstate="collapsed" desc="rank">
  3136     /**
  3137      * The rank of a class is the length of the longest path between
  3138      * the class and java.lang.Object in the class inheritance
  3139      * graph. Undefined for all but reference types.
  3140      */
  3141     public int rank(Type t) {
  3142         t = t.unannotatedType();
  3143         switch(t.getTag()) {
  3144         case CLASS: {
  3145             ClassType cls = (ClassType)t;
  3146             if (cls.rank_field < 0) {
  3147                 Name fullname = cls.tsym.getQualifiedName();
  3148                 if (fullname == names.java_lang_Object)
  3149                     cls.rank_field = 0;
  3150                 else {
  3151                     int r = rank(supertype(cls));
  3152                     for (List<Type> l = interfaces(cls);
  3153                          l.nonEmpty();
  3154                          l = l.tail) {
  3155                         if (rank(l.head) > r)
  3156                             r = rank(l.head);
  3158                     cls.rank_field = r + 1;
  3161             return cls.rank_field;
  3163         case TYPEVAR: {
  3164             TypeVar tvar = (TypeVar)t;
  3165             if (tvar.rank_field < 0) {
  3166                 int r = rank(supertype(tvar));
  3167                 for (List<Type> l = interfaces(tvar);
  3168                      l.nonEmpty();
  3169                      l = l.tail) {
  3170                     if (rank(l.head) > r) r = rank(l.head);
  3172                 tvar.rank_field = r + 1;
  3174             return tvar.rank_field;
  3176         case ERROR:
  3177             return 0;
  3178         default:
  3179             throw new AssertionError();
  3182     // </editor-fold>
  3184     /**
  3185      * Helper method for generating a string representation of a given type
  3186      * accordingly to a given locale
  3187      */
  3188     public String toString(Type t, Locale locale) {
  3189         return Printer.createStandardPrinter(messages).visit(t, locale);
  3192     /**
  3193      * Helper method for generating a string representation of a given type
  3194      * accordingly to a given locale
  3195      */
  3196     public String toString(Symbol t, Locale locale) {
  3197         return Printer.createStandardPrinter(messages).visit(t, locale);
  3200     // <editor-fold defaultstate="collapsed" desc="toString">
  3201     /**
  3202      * This toString is slightly more descriptive than the one on Type.
  3204      * @deprecated Types.toString(Type t, Locale l) provides better support
  3205      * for localization
  3206      */
  3207     @Deprecated
  3208     public String toString(Type t) {
  3209         if (t.hasTag(FORALL)) {
  3210             ForAll forAll = (ForAll)t;
  3211             return typaramsString(forAll.tvars) + forAll.qtype;
  3213         return "" + t;
  3215     // where
  3216         private String typaramsString(List<Type> tvars) {
  3217             StringBuilder s = new StringBuilder();
  3218             s.append('<');
  3219             boolean first = true;
  3220             for (Type t : tvars) {
  3221                 if (!first) s.append(", ");
  3222                 first = false;
  3223                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
  3225             s.append('>');
  3226             return s.toString();
  3228         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3229             buf.append(t);
  3230             if (t.bound == null ||
  3231                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3232                 return;
  3233             buf.append(" extends "); // Java syntax; no need for i18n
  3234             Type bound = t.bound;
  3235             if (!bound.isCompound()) {
  3236                 buf.append(bound);
  3237             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3238                 buf.append(supertype(t));
  3239                 for (Type intf : interfaces(t)) {
  3240                     buf.append('&');
  3241                     buf.append(intf);
  3243             } else {
  3244                 // No superclass was given in bounds.
  3245                 // In this case, supertype is Object, erasure is first interface.
  3246                 boolean first = true;
  3247                 for (Type intf : interfaces(t)) {
  3248                     if (!first) buf.append('&');
  3249                     first = false;
  3250                     buf.append(intf);
  3254     // </editor-fold>
  3256     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3257     /**
  3258      * A cache for closures.
  3260      * <p>A closure is a list of all the supertypes and interfaces of
  3261      * a class or interface type, ordered by ClassSymbol.precedes
  3262      * (that is, subclasses come first, arbitrary but fixed
  3263      * otherwise).
  3264      */
  3265     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3267     /**
  3268      * Returns the closure of a class or interface type.
  3269      */
  3270     public List<Type> closure(Type t) {
  3271         List<Type> cl = closureCache.get(t);
  3272         if (cl == null) {
  3273             Type st = supertype(t);
  3274             if (!t.isCompound()) {
  3275                 if (st.hasTag(CLASS)) {
  3276                     cl = insert(closure(st), t);
  3277                 } else if (st.hasTag(TYPEVAR)) {
  3278                     cl = closure(st).prepend(t);
  3279                 } else {
  3280                     cl = List.of(t);
  3282             } else {
  3283                 cl = closure(supertype(t));
  3285             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3286                 cl = union(cl, closure(l.head));
  3287             closureCache.put(t, cl);
  3289         return cl;
  3292     /**
  3293      * Insert a type in a closure
  3294      */
  3295     public List<Type> insert(List<Type> cl, Type t) {
  3296         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3297             return cl.prepend(t);
  3298         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3299             return insert(cl.tail, t).prepend(cl.head);
  3300         } else {
  3301             return cl;
  3305     /**
  3306      * Form the union of two closures
  3307      */
  3308     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3309         if (cl1.isEmpty()) {
  3310             return cl2;
  3311         } else if (cl2.isEmpty()) {
  3312             return cl1;
  3313         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3314             return union(cl1.tail, cl2).prepend(cl1.head);
  3315         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3316             return union(cl1, cl2.tail).prepend(cl2.head);
  3317         } else {
  3318             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3322     /**
  3323      * Intersect two closures
  3324      */
  3325     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3326         if (cl1 == cl2)
  3327             return cl1;
  3328         if (cl1.isEmpty() || cl2.isEmpty())
  3329             return List.nil();
  3330         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3331             return intersect(cl1.tail, cl2);
  3332         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3333             return intersect(cl1, cl2.tail);
  3334         if (isSameType(cl1.head, cl2.head))
  3335             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3336         if (cl1.head.tsym == cl2.head.tsym &&
  3337             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
  3338             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3339                 Type merge = merge(cl1.head,cl2.head);
  3340                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3342             if (cl1.head.isRaw() || cl2.head.isRaw())
  3343                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3345         return intersect(cl1.tail, cl2.tail);
  3347     // where
  3348         class TypePair {
  3349             final Type t1;
  3350             final Type t2;
  3351             TypePair(Type t1, Type t2) {
  3352                 this.t1 = t1;
  3353                 this.t2 = t2;
  3355             @Override
  3356             public int hashCode() {
  3357                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3359             @Override
  3360             public boolean equals(Object obj) {
  3361                 if (!(obj instanceof TypePair))
  3362                     return false;
  3363                 TypePair typePair = (TypePair)obj;
  3364                 return isSameType(t1, typePair.t1)
  3365                     && isSameType(t2, typePair.t2);
  3368         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3369         private Type merge(Type c1, Type c2) {
  3370             ClassType class1 = (ClassType) c1;
  3371             List<Type> act1 = class1.getTypeArguments();
  3372             ClassType class2 = (ClassType) c2;
  3373             List<Type> act2 = class2.getTypeArguments();
  3374             ListBuffer<Type> merged = new ListBuffer<Type>();
  3375             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3377             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3378                 if (containsType(act1.head, act2.head)) {
  3379                     merged.append(act1.head);
  3380                 } else if (containsType(act2.head, act1.head)) {
  3381                     merged.append(act2.head);
  3382                 } else {
  3383                     TypePair pair = new TypePair(c1, c2);
  3384                     Type m;
  3385                     if (mergeCache.add(pair)) {
  3386                         m = new WildcardType(lub(upperBound(act1.head),
  3387                                                  upperBound(act2.head)),
  3388                                              BoundKind.EXTENDS,
  3389                                              syms.boundClass);
  3390                         mergeCache.remove(pair);
  3391                     } else {
  3392                         m = new WildcardType(syms.objectType,
  3393                                              BoundKind.UNBOUND,
  3394                                              syms.boundClass);
  3396                     merged.append(m.withTypeVar(typarams.head));
  3398                 act1 = act1.tail;
  3399                 act2 = act2.tail;
  3400                 typarams = typarams.tail;
  3402             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3403             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3406     /**
  3407      * Return the minimum type of a closure, a compound type if no
  3408      * unique minimum exists.
  3409      */
  3410     private Type compoundMin(List<Type> cl) {
  3411         if (cl.isEmpty()) return syms.objectType;
  3412         List<Type> compound = closureMin(cl);
  3413         if (compound.isEmpty())
  3414             return null;
  3415         else if (compound.tail.isEmpty())
  3416             return compound.head;
  3417         else
  3418             return makeCompoundType(compound);
  3421     /**
  3422      * Return the minimum types of a closure, suitable for computing
  3423      * compoundMin or glb.
  3424      */
  3425     private List<Type> closureMin(List<Type> cl) {
  3426         ListBuffer<Type> classes = lb();
  3427         ListBuffer<Type> interfaces = lb();
  3428         while (!cl.isEmpty()) {
  3429             Type current = cl.head;
  3430             if (current.isInterface())
  3431                 interfaces.append(current);
  3432             else
  3433                 classes.append(current);
  3434             ListBuffer<Type> candidates = lb();
  3435             for (Type t : cl.tail) {
  3436                 if (!isSubtypeNoCapture(current, t))
  3437                     candidates.append(t);
  3439             cl = candidates.toList();
  3441         return classes.appendList(interfaces).toList();
  3444     /**
  3445      * Return the least upper bound of pair of types.  if the lub does
  3446      * not exist return null.
  3447      */
  3448     public Type lub(Type t1, Type t2) {
  3449         return lub(List.of(t1, t2));
  3452     /**
  3453      * Return the least upper bound (lub) of set of types.  If the lub
  3454      * does not exist return the type of null (bottom).
  3455      */
  3456     public Type lub(List<Type> ts) {
  3457         final int ARRAY_BOUND = 1;
  3458         final int CLASS_BOUND = 2;
  3459         int boundkind = 0;
  3460         for (Type t : ts) {
  3461             switch (t.getTag()) {
  3462             case CLASS:
  3463                 boundkind |= CLASS_BOUND;
  3464                 break;
  3465             case ARRAY:
  3466                 boundkind |= ARRAY_BOUND;
  3467                 break;
  3468             case  TYPEVAR:
  3469                 do {
  3470                     t = t.getUpperBound();
  3471                 } while (t.hasTag(TYPEVAR));
  3472                 if (t.hasTag(ARRAY)) {
  3473                     boundkind |= ARRAY_BOUND;
  3474                 } else {
  3475                     boundkind |= CLASS_BOUND;
  3477                 break;
  3478             default:
  3479                 if (t.isPrimitive())
  3480                     return syms.errType;
  3483         switch (boundkind) {
  3484         case 0:
  3485             return syms.botType;
  3487         case ARRAY_BOUND:
  3488             // calculate lub(A[], B[])
  3489             List<Type> elements = Type.map(ts, elemTypeFun);
  3490             for (Type t : elements) {
  3491                 if (t.isPrimitive()) {
  3492                     // if a primitive type is found, then return
  3493                     // arraySuperType unless all the types are the
  3494                     // same
  3495                     Type first = ts.head;
  3496                     for (Type s : ts.tail) {
  3497                         if (!isSameType(first, s)) {
  3498                              // lub(int[], B[]) is Cloneable & Serializable
  3499                             return arraySuperType();
  3502                     // all the array types are the same, return one
  3503                     // lub(int[], int[]) is int[]
  3504                     return first;
  3507             // lub(A[], B[]) is lub(A, B)[]
  3508             return new ArrayType(lub(elements), syms.arrayClass);
  3510         case CLASS_BOUND:
  3511             // calculate lub(A, B)
  3512             while (!ts.head.hasTag(CLASS) && !ts.head.hasTag(TYPEVAR)) {
  3513                 ts = ts.tail;
  3515             Assert.check(!ts.isEmpty());
  3516             //step 1 - compute erased candidate set (EC)
  3517             List<Type> cl = erasedSupertypes(ts.head);
  3518             for (Type t : ts.tail) {
  3519                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
  3520                     cl = intersect(cl, erasedSupertypes(t));
  3522             //step 2 - compute minimal erased candidate set (MEC)
  3523             List<Type> mec = closureMin(cl);
  3524             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3525             List<Type> candidates = List.nil();
  3526             for (Type erasedSupertype : mec) {
  3527                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3528                 for (Type t : ts) {
  3529                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3531                 candidates = candidates.appendList(lci);
  3533             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3534             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3535             return compoundMin(candidates);
  3537         default:
  3538             // calculate lub(A, B[])
  3539             List<Type> classes = List.of(arraySuperType());
  3540             for (Type t : ts) {
  3541                 if (!t.hasTag(ARRAY)) // Filter out any arrays
  3542                     classes = classes.prepend(t);
  3544             // lub(A, B[]) is lub(A, arraySuperType)
  3545             return lub(classes);
  3548     // where
  3549         List<Type> erasedSupertypes(Type t) {
  3550             ListBuffer<Type> buf = lb();
  3551             for (Type sup : closure(t)) {
  3552                 if (sup.hasTag(TYPEVAR)) {
  3553                     buf.append(sup);
  3554                 } else {
  3555                     buf.append(erasure(sup));
  3558             return buf.toList();
  3561         private Type arraySuperType = null;
  3562         private Type arraySuperType() {
  3563             // initialized lazily to avoid problems during compiler startup
  3564             if (arraySuperType == null) {
  3565                 synchronized (this) {
  3566                     if (arraySuperType == null) {
  3567                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3568                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3569                                                                   syms.cloneableType), true);
  3573             return arraySuperType;
  3575     // </editor-fold>
  3577     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3578     public Type glb(List<Type> ts) {
  3579         Type t1 = ts.head;
  3580         for (Type t2 : ts.tail) {
  3581             if (t1.isErroneous())
  3582                 return t1;
  3583             t1 = glb(t1, t2);
  3585         return t1;
  3587     //where
  3588     public Type glb(Type t, Type s) {
  3589         if (s == null)
  3590             return t;
  3591         else if (t.isPrimitive() || s.isPrimitive())
  3592             return syms.errType;
  3593         else if (isSubtypeNoCapture(t, s))
  3594             return t;
  3595         else if (isSubtypeNoCapture(s, t))
  3596             return s;
  3598         List<Type> closure = union(closure(t), closure(s));
  3599         List<Type> bounds = closureMin(closure);
  3601         if (bounds.isEmpty()) {             // length == 0
  3602             return syms.objectType;
  3603         } else if (bounds.tail.isEmpty()) { // length == 1
  3604             return bounds.head;
  3605         } else {                            // length > 1
  3606             int classCount = 0;
  3607             for (Type bound : bounds)
  3608                 if (!bound.isInterface())
  3609                     classCount++;
  3610             if (classCount > 1)
  3611                 return createErrorType(t);
  3613         return makeCompoundType(bounds);
  3615     // </editor-fold>
  3617     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3618     /**
  3619      * Compute a hash code on a type.
  3620      */
  3621     public int hashCode(Type t) {
  3622         return hashCode.visit(t);
  3624     // where
  3625         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3627             public Integer visitType(Type t, Void ignored) {
  3628                 return t.getTag().ordinal();
  3631             @Override
  3632             public Integer visitClassType(ClassType t, Void ignored) {
  3633                 int result = visit(t.getEnclosingType());
  3634                 result *= 127;
  3635                 result += t.tsym.flatName().hashCode();
  3636                 for (Type s : t.getTypeArguments()) {
  3637                     result *= 127;
  3638                     result += visit(s);
  3640                 return result;
  3643             @Override
  3644             public Integer visitMethodType(MethodType t, Void ignored) {
  3645                 int h = METHOD.ordinal();
  3646                 for (List<Type> thisargs = t.argtypes;
  3647                      thisargs.tail != null;
  3648                      thisargs = thisargs.tail)
  3649                     h = (h << 5) + visit(thisargs.head);
  3650                 return (h << 5) + visit(t.restype);
  3653             @Override
  3654             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3655                 int result = t.kind.hashCode();
  3656                 if (t.type != null) {
  3657                     result *= 127;
  3658                     result += visit(t.type);
  3660                 return result;
  3663             @Override
  3664             public Integer visitArrayType(ArrayType t, Void ignored) {
  3665                 return visit(t.elemtype) + 12;
  3668             @Override
  3669             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3670                 return System.identityHashCode(t.tsym);
  3673             @Override
  3674             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3675                 return System.identityHashCode(t);
  3678             @Override
  3679             public Integer visitErrorType(ErrorType t, Void ignored) {
  3680                 return 0;
  3682         };
  3683     // </editor-fold>
  3685     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3686     /**
  3687      * Does t have a result that is a subtype of the result type of s,
  3688      * suitable for covariant returns?  It is assumed that both types
  3689      * are (possibly polymorphic) method types.  Monomorphic method
  3690      * types are handled in the obvious way.  Polymorphic method types
  3691      * require renaming all type variables of one to corresponding
  3692      * type variables in the other, where correspondence is by
  3693      * position in the type parameter list. */
  3694     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3695         List<Type> tvars = t.getTypeArguments();
  3696         List<Type> svars = s.getTypeArguments();
  3697         Type tres = t.getReturnType();
  3698         Type sres = subst(s.getReturnType(), svars, tvars);
  3699         return covariantReturnType(tres, sres, warner);
  3702     /**
  3703      * Return-Type-Substitutable.
  3704      * @jls section 8.4.5
  3705      */
  3706     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3707         if (hasSameArgs(r1, r2))
  3708             return resultSubtype(r1, r2, noWarnings);
  3709         else
  3710             return covariantReturnType(r1.getReturnType(),
  3711                                        erasure(r2.getReturnType()),
  3712                                        noWarnings);
  3715     public boolean returnTypeSubstitutable(Type r1,
  3716                                            Type r2, Type r2res,
  3717                                            Warner warner) {
  3718         if (isSameType(r1.getReturnType(), r2res))
  3719             return true;
  3720         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3721             return false;
  3723         if (hasSameArgs(r1, r2))
  3724             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3725         if (!allowCovariantReturns)
  3726             return false;
  3727         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3728             return true;
  3729         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3730             return false;
  3731         warner.warn(LintCategory.UNCHECKED);
  3732         return true;
  3735     /**
  3736      * Is t an appropriate return type in an overrider for a
  3737      * method that returns s?
  3738      */
  3739     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3740         return
  3741             isSameType(t, s) ||
  3742             allowCovariantReturns &&
  3743             !t.isPrimitive() &&
  3744             !s.isPrimitive() &&
  3745             isAssignable(t, s, warner);
  3747     // </editor-fold>
  3749     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3750     /**
  3751      * Return the class that boxes the given primitive.
  3752      */
  3753     public ClassSymbol boxedClass(Type t) {
  3754         return reader.enterClass(syms.boxedName[t.getTag().ordinal()]);
  3757     /**
  3758      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3759      */
  3760     public Type boxedTypeOrType(Type t) {
  3761         return t.isPrimitive() ?
  3762             boxedClass(t).type :
  3763             t;
  3766     /**
  3767      * Return the primitive type corresponding to a boxed type.
  3768      */
  3769     public Type unboxedType(Type t) {
  3770         if (allowBoxing) {
  3771             for (int i=0; i<syms.boxedName.length; i++) {
  3772                 Name box = syms.boxedName[i];
  3773                 if (box != null &&
  3774                     asSuper(t, reader.enterClass(box)) != null)
  3775                     return syms.typeOfTag[i];
  3778         return Type.noType;
  3781     /**
  3782      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3783      */
  3784     public Type unboxedTypeOrType(Type t) {
  3785         Type unboxedType = unboxedType(t);
  3786         return unboxedType.hasTag(NONE) ? t : unboxedType;
  3788     // </editor-fold>
  3790     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3791     /*
  3792      * JLS 5.1.10 Capture Conversion:
  3794      * Let G name a generic type declaration with n formal type
  3795      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3796      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3797      * where, for 1 <= i <= n:
  3799      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3800      *   Si is a fresh type variable whose upper bound is
  3801      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3802      *   type.
  3804      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3805      *   then Si is a fresh type variable whose upper bound is
  3806      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3807      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3808      *   a compile-time error if for any two classes (not interfaces)
  3809      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3811      * + If Ti is a wildcard type argument of the form ? super Bi,
  3812      *   then Si is a fresh type variable whose upper bound is
  3813      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3815      * + Otherwise, Si = Ti.
  3817      * Capture conversion on any type other than a parameterized type
  3818      * (4.5) acts as an identity conversion (5.1.1). Capture
  3819      * conversions never require a special action at run time and
  3820      * therefore never throw an exception at run time.
  3822      * Capture conversion is not applied recursively.
  3823      */
  3824     /**
  3825      * Capture conversion as specified by the JLS.
  3826      */
  3828     public List<Type> capture(List<Type> ts) {
  3829         List<Type> buf = List.nil();
  3830         for (Type t : ts) {
  3831             buf = buf.prepend(capture(t));
  3833         return buf.reverse();
  3835     public Type capture(Type t) {
  3836         if (!t.hasTag(CLASS))
  3837             return t;
  3838         if (t.getEnclosingType() != Type.noType) {
  3839             Type capturedEncl = capture(t.getEnclosingType());
  3840             if (capturedEncl != t.getEnclosingType()) {
  3841                 Type type1 = memberType(capturedEncl, t.tsym);
  3842                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3845         t = t.unannotatedType();
  3846         ClassType cls = (ClassType)t;
  3847         if (cls.isRaw() || !cls.isParameterized())
  3848             return cls;
  3850         ClassType G = (ClassType)cls.asElement().asType();
  3851         List<Type> A = G.getTypeArguments();
  3852         List<Type> T = cls.getTypeArguments();
  3853         List<Type> S = freshTypeVariables(T);
  3855         List<Type> currentA = A;
  3856         List<Type> currentT = T;
  3857         List<Type> currentS = S;
  3858         boolean captured = false;
  3859         while (!currentA.isEmpty() &&
  3860                !currentT.isEmpty() &&
  3861                !currentS.isEmpty()) {
  3862             if (currentS.head != currentT.head) {
  3863                 captured = true;
  3864                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
  3865                 Type Ui = currentA.head.getUpperBound();
  3866                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
  3867                 if (Ui == null)
  3868                     Ui = syms.objectType;
  3869                 switch (Ti.kind) {
  3870                 case UNBOUND:
  3871                     Si.bound = subst(Ui, A, S);
  3872                     Si.lower = syms.botType;
  3873                     break;
  3874                 case EXTENDS:
  3875                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3876                     Si.lower = syms.botType;
  3877                     break;
  3878                 case SUPER:
  3879                     Si.bound = subst(Ui, A, S);
  3880                     Si.lower = Ti.getSuperBound();
  3881                     break;
  3883                 if (Si.bound == Si.lower)
  3884                     currentS.head = Si.bound;
  3886             currentA = currentA.tail;
  3887             currentT = currentT.tail;
  3888             currentS = currentS.tail;
  3890         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3891             return erasure(t); // some "rare" type involved
  3893         if (captured)
  3894             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3895         else
  3896             return t;
  3898     // where
  3899         public List<Type> freshTypeVariables(List<Type> types) {
  3900             ListBuffer<Type> result = lb();
  3901             for (Type t : types) {
  3902                 if (t.hasTag(WILDCARD)) {
  3903                     t = t.unannotatedType();
  3904                     Type bound = ((WildcardType)t).getExtendsBound();
  3905                     if (bound == null)
  3906                         bound = syms.objectType;
  3907                     result.append(new CapturedType(capturedName,
  3908                                                    syms.noSymbol,
  3909                                                    bound,
  3910                                                    syms.botType,
  3911                                                    (WildcardType)t));
  3912                 } else {
  3913                     result.append(t);
  3916             return result.toList();
  3918     // </editor-fold>
  3920     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3921     private List<Type> upperBounds(List<Type> ss) {
  3922         if (ss.isEmpty()) return ss;
  3923         Type head = upperBound(ss.head);
  3924         List<Type> tail = upperBounds(ss.tail);
  3925         if (head != ss.head || tail != ss.tail)
  3926             return tail.prepend(head);
  3927         else
  3928             return ss;
  3931     private boolean sideCast(Type from, Type to, Warner warn) {
  3932         // We are casting from type $from$ to type $to$, which are
  3933         // non-final unrelated types.  This method
  3934         // tries to reject a cast by transferring type parameters
  3935         // from $to$ to $from$ by common superinterfaces.
  3936         boolean reverse = false;
  3937         Type target = to;
  3938         if ((to.tsym.flags() & INTERFACE) == 0) {
  3939             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3940             reverse = true;
  3941             to = from;
  3942             from = target;
  3944         List<Type> commonSupers = superClosure(to, erasure(from));
  3945         boolean giveWarning = commonSupers.isEmpty();
  3946         // The arguments to the supers could be unified here to
  3947         // get a more accurate analysis
  3948         while (commonSupers.nonEmpty()) {
  3949             Type t1 = asSuper(from, commonSupers.head.tsym);
  3950             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3951             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3952                 return false;
  3953             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3954             commonSupers = commonSupers.tail;
  3956         if (giveWarning && !isReifiable(reverse ? from : to))
  3957             warn.warn(LintCategory.UNCHECKED);
  3958         if (!allowCovariantReturns)
  3959             // reject if there is a common method signature with
  3960             // incompatible return types.
  3961             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3962         return true;
  3965     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3966         // We are casting from type $from$ to type $to$, which are
  3967         // unrelated types one of which is final and the other of
  3968         // which is an interface.  This method
  3969         // tries to reject a cast by transferring type parameters
  3970         // from the final class to the interface.
  3971         boolean reverse = false;
  3972         Type target = to;
  3973         if ((to.tsym.flags() & INTERFACE) == 0) {
  3974             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3975             reverse = true;
  3976             to = from;
  3977             from = target;
  3979         Assert.check((from.tsym.flags() & FINAL) != 0);
  3980         Type t1 = asSuper(from, to.tsym);
  3981         if (t1 == null) return false;
  3982         Type t2 = to;
  3983         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3984             return false;
  3985         if (!allowCovariantReturns)
  3986             // reject if there is a common method signature with
  3987             // incompatible return types.
  3988             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3989         if (!isReifiable(target) &&
  3990             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3991             warn.warn(LintCategory.UNCHECKED);
  3992         return true;
  3995     private boolean giveWarning(Type from, Type to) {
  3996         List<Type> bounds = to.isCompound() ?
  3997                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
  3998         for (Type b : bounds) {
  3999             Type subFrom = asSub(from, b.tsym);
  4000             if (b.isParameterized() &&
  4001                     (!(isUnbounded(b) ||
  4002                     isSubtype(from, b) ||
  4003                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
  4004                 return true;
  4007         return false;
  4010     private List<Type> superClosure(Type t, Type s) {
  4011         List<Type> cl = List.nil();
  4012         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  4013             if (isSubtype(s, erasure(l.head))) {
  4014                 cl = insert(cl, l.head);
  4015             } else {
  4016                 cl = union(cl, superClosure(l.head, s));
  4019         return cl;
  4022     private boolean containsTypeEquivalent(Type t, Type s) {
  4023         return
  4024             isSameType(t, s) || // shortcut
  4025             containsType(t, s) && containsType(s, t);
  4028     // <editor-fold defaultstate="collapsed" desc="adapt">
  4029     /**
  4030      * Adapt a type by computing a substitution which maps a source
  4031      * type to a target type.
  4033      * @param source    the source type
  4034      * @param target    the target type
  4035      * @param from      the type variables of the computed substitution
  4036      * @param to        the types of the computed substitution.
  4037      */
  4038     public void adapt(Type source,
  4039                        Type target,
  4040                        ListBuffer<Type> from,
  4041                        ListBuffer<Type> to) throws AdaptFailure {
  4042         new Adapter(from, to).adapt(source, target);
  4045     class Adapter extends SimpleVisitor<Void, Type> {
  4047         ListBuffer<Type> from;
  4048         ListBuffer<Type> to;
  4049         Map<Symbol,Type> mapping;
  4051         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  4052             this.from = from;
  4053             this.to = to;
  4054             mapping = new HashMap<Symbol,Type>();
  4057         public void adapt(Type source, Type target) throws AdaptFailure {
  4058             visit(source, target);
  4059             List<Type> fromList = from.toList();
  4060             List<Type> toList = to.toList();
  4061             while (!fromList.isEmpty()) {
  4062                 Type val = mapping.get(fromList.head.tsym);
  4063                 if (toList.head != val)
  4064                     toList.head = val;
  4065                 fromList = fromList.tail;
  4066                 toList = toList.tail;
  4070         @Override
  4071         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  4072             if (target.hasTag(CLASS))
  4073                 adaptRecursive(source.allparams(), target.allparams());
  4074             return null;
  4077         @Override
  4078         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  4079             if (target.hasTag(ARRAY))
  4080                 adaptRecursive(elemtype(source), elemtype(target));
  4081             return null;
  4084         @Override
  4085         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  4086             if (source.isExtendsBound())
  4087                 adaptRecursive(upperBound(source), upperBound(target));
  4088             else if (source.isSuperBound())
  4089                 adaptRecursive(lowerBound(source), lowerBound(target));
  4090             return null;
  4093         @Override
  4094         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  4095             // Check to see if there is
  4096             // already a mapping for $source$, in which case
  4097             // the old mapping will be merged with the new
  4098             Type val = mapping.get(source.tsym);
  4099             if (val != null) {
  4100                 if (val.isSuperBound() && target.isSuperBound()) {
  4101                     val = isSubtype(lowerBound(val), lowerBound(target))
  4102                         ? target : val;
  4103                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  4104                     val = isSubtype(upperBound(val), upperBound(target))
  4105                         ? val : target;
  4106                 } else if (!isSameType(val, target)) {
  4107                     throw new AdaptFailure();
  4109             } else {
  4110                 val = target;
  4111                 from.append(source);
  4112                 to.append(target);
  4114             mapping.put(source.tsym, val);
  4115             return null;
  4118         @Override
  4119         public Void visitType(Type source, Type target) {
  4120             return null;
  4123         private Set<TypePair> cache = new HashSet<TypePair>();
  4125         private void adaptRecursive(Type source, Type target) {
  4126             TypePair pair = new TypePair(source, target);
  4127             if (cache.add(pair)) {
  4128                 try {
  4129                     visit(source, target);
  4130                 } finally {
  4131                     cache.remove(pair);
  4136         private void adaptRecursive(List<Type> source, List<Type> target) {
  4137             if (source.length() == target.length()) {
  4138                 while (source.nonEmpty()) {
  4139                     adaptRecursive(source.head, target.head);
  4140                     source = source.tail;
  4141                     target = target.tail;
  4147     public static class AdaptFailure extends RuntimeException {
  4148         static final long serialVersionUID = -7490231548272701566L;
  4151     private void adaptSelf(Type t,
  4152                            ListBuffer<Type> from,
  4153                            ListBuffer<Type> to) {
  4154         try {
  4155             //if (t.tsym.type != t)
  4156                 adapt(t.tsym.type, t, from, to);
  4157         } catch (AdaptFailure ex) {
  4158             // Adapt should never fail calculating a mapping from
  4159             // t.tsym.type to t as there can be no merge problem.
  4160             throw new AssertionError(ex);
  4163     // </editor-fold>
  4165     /**
  4166      * Rewrite all type variables (universal quantifiers) in the given
  4167      * type to wildcards (existential quantifiers).  This is used to
  4168      * determine if a cast is allowed.  For example, if high is true
  4169      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4170      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4171      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4172      * List<Integer>} with a warning.
  4173      * @param t a type
  4174      * @param high if true return an upper bound; otherwise a lower
  4175      * bound
  4176      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4177      * otherwise rewrite all type variables
  4178      * @return the type rewritten with wildcards (existential
  4179      * quantifiers) only
  4180      */
  4181     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4182         return new Rewriter(high, rewriteTypeVars).visit(t);
  4185     class Rewriter extends UnaryVisitor<Type> {
  4187         boolean high;
  4188         boolean rewriteTypeVars;
  4190         Rewriter(boolean high, boolean rewriteTypeVars) {
  4191             this.high = high;
  4192             this.rewriteTypeVars = rewriteTypeVars;
  4195         @Override
  4196         public Type visitClassType(ClassType t, Void s) {
  4197             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4198             boolean changed = false;
  4199             for (Type arg : t.allparams()) {
  4200                 Type bound = visit(arg);
  4201                 if (arg != bound) {
  4202                     changed = true;
  4204                 rewritten.append(bound);
  4206             if (changed)
  4207                 return subst(t.tsym.type,
  4208                         t.tsym.type.allparams(),
  4209                         rewritten.toList());
  4210             else
  4211                 return t;
  4214         public Type visitType(Type t, Void s) {
  4215             return high ? upperBound(t) : lowerBound(t);
  4218         @Override
  4219         public Type visitCapturedType(CapturedType t, Void s) {
  4220             Type w_bound = t.wildcard.type;
  4221             Type bound = w_bound.contains(t) ?
  4222                         erasure(w_bound) :
  4223                         visit(w_bound);
  4224             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4227         @Override
  4228         public Type visitTypeVar(TypeVar t, Void s) {
  4229             if (rewriteTypeVars) {
  4230                 Type bound = t.bound.contains(t) ?
  4231                         erasure(t.bound) :
  4232                         visit(t.bound);
  4233                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4234             } else {
  4235                 return t;
  4239         @Override
  4240         public Type visitWildcardType(WildcardType t, Void s) {
  4241             Type bound2 = visit(t.type);
  4242             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4245         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4246             switch (bk) {
  4247                case EXTENDS: return high ?
  4248                        makeExtendsWildcard(B(bound), formal) :
  4249                        makeExtendsWildcard(syms.objectType, formal);
  4250                case SUPER: return high ?
  4251                        makeSuperWildcard(syms.botType, formal) :
  4252                        makeSuperWildcard(B(bound), formal);
  4253                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4254                default:
  4255                    Assert.error("Invalid bound kind " + bk);
  4256                    return null;
  4260         Type B(Type t) {
  4261             while (t.hasTag(WILDCARD)) {
  4262                 WildcardType w = (WildcardType)t.unannotatedType();
  4263                 t = high ?
  4264                     w.getExtendsBound() :
  4265                     w.getSuperBound();
  4266                 if (t == null) {
  4267                     t = high ? syms.objectType : syms.botType;
  4270             return t;
  4275     /**
  4276      * Create a wildcard with the given upper (extends) bound; create
  4277      * an unbounded wildcard if bound is Object.
  4279      * @param bound the upper bound
  4280      * @param formal the formal type parameter that will be
  4281      * substituted by the wildcard
  4282      */
  4283     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4284         if (bound == syms.objectType) {
  4285             return new WildcardType(syms.objectType,
  4286                                     BoundKind.UNBOUND,
  4287                                     syms.boundClass,
  4288                                     formal);
  4289         } else {
  4290             return new WildcardType(bound,
  4291                                     BoundKind.EXTENDS,
  4292                                     syms.boundClass,
  4293                                     formal);
  4297     /**
  4298      * Create a wildcard with the given lower (super) bound; create an
  4299      * unbounded wildcard if bound is bottom (type of {@code null}).
  4301      * @param bound the lower bound
  4302      * @param formal the formal type parameter that will be
  4303      * substituted by the wildcard
  4304      */
  4305     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4306         if (bound.hasTag(BOT)) {
  4307             return new WildcardType(syms.objectType,
  4308                                     BoundKind.UNBOUND,
  4309                                     syms.boundClass,
  4310                                     formal);
  4311         } else {
  4312             return new WildcardType(bound,
  4313                                     BoundKind.SUPER,
  4314                                     syms.boundClass,
  4315                                     formal);
  4319     /**
  4320      * A wrapper for a type that allows use in sets.
  4321      */
  4322     public static class UniqueType {
  4323         public final Type type;
  4324         final Types types;
  4326         public UniqueType(Type type, Types types) {
  4327             this.type = type;
  4328             this.types = types;
  4331         public int hashCode() {
  4332             return types.hashCode(type);
  4335         public boolean equals(Object obj) {
  4336             return (obj instanceof UniqueType) &&
  4337                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
  4340         public String toString() {
  4341             return type.toString();
  4345     // </editor-fold>
  4347     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4348     /**
  4349      * A default visitor for types.  All visitor methods except
  4350      * visitType are implemented by delegating to visitType.  Concrete
  4351      * subclasses must provide an implementation of visitType and can
  4352      * override other methods as needed.
  4354      * @param <R> the return type of the operation implemented by this
  4355      * visitor; use Void if no return type is needed.
  4356      * @param <S> the type of the second argument (the first being the
  4357      * type itself) of the operation implemented by this visitor; use
  4358      * Void if a second argument is not needed.
  4359      */
  4360     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4361         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4362         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4363         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4364         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4365         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4366         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4367         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4368         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4369         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4370         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4371         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4372         // Pretend annotations don't exist
  4373         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
  4376     /**
  4377      * A default visitor for symbols.  All visitor methods except
  4378      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4379      * subclasses must provide an implementation of visitSymbol and can
  4380      * override other methods as needed.
  4382      * @param <R> the return type of the operation implemented by this
  4383      * visitor; use Void if no return type is needed.
  4384      * @param <S> the type of the second argument (the first being the
  4385      * symbol itself) of the operation implemented by this visitor; use
  4386      * Void if a second argument is not needed.
  4387      */
  4388     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4389         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4390         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4391         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4392         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4393         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4394         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4395         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4398     /**
  4399      * A <em>simple</em> visitor for types.  This visitor is simple as
  4400      * captured wildcards, for-all types (generic methods), and
  4401      * undetermined type variables (part of inference) are hidden.
  4402      * Captured wildcards are hidden by treating them as type
  4403      * variables and the rest are hidden by visiting their qtypes.
  4405      * @param <R> the return type of the operation implemented by this
  4406      * visitor; use Void if no return type is needed.
  4407      * @param <S> the type of the second argument (the first being the
  4408      * type itself) of the operation implemented by this visitor; use
  4409      * Void if a second argument is not needed.
  4410      */
  4411     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4412         @Override
  4413         public R visitCapturedType(CapturedType t, S s) {
  4414             return visitTypeVar(t, s);
  4416         @Override
  4417         public R visitForAll(ForAll t, S s) {
  4418             return visit(t.qtype, s);
  4420         @Override
  4421         public R visitUndetVar(UndetVar t, S s) {
  4422             return visit(t.qtype, s);
  4426     /**
  4427      * A plain relation on types.  That is a 2-ary function on the
  4428      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4429      * <!-- In plain text: Type x Type -> Boolean -->
  4430      */
  4431     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4433     /**
  4434      * A convenience visitor for implementing operations that only
  4435      * require one argument (the type itself), that is, unary
  4436      * operations.
  4438      * @param <R> the return type of the operation implemented by this
  4439      * visitor; use Void if no return type is needed.
  4440      */
  4441     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4442         final public R visit(Type t) { return t.accept(this, null); }
  4445     /**
  4446      * A visitor for implementing a mapping from types to types.  The
  4447      * default behavior of this class is to implement the identity
  4448      * mapping (mapping a type to itself).  This can be overridden in
  4449      * subclasses.
  4451      * @param <S> the type of the second argument (the first being the
  4452      * type itself) of this mapping; use Void if a second argument is
  4453      * not needed.
  4454      */
  4455     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4456         final public Type visit(Type t) { return t.accept(this, null); }
  4457         public Type visitType(Type t, S s) { return t; }
  4459     // </editor-fold>
  4462     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4464     public RetentionPolicy getRetention(Attribute.Compound a) {
  4465         return getRetention(a.type.tsym);
  4468     public RetentionPolicy getRetention(Symbol sym) {
  4469         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4470         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4471         if (c != null) {
  4472             Attribute value = c.member(names.value);
  4473             if (value != null && value instanceof Attribute.Enum) {
  4474                 Name levelName = ((Attribute.Enum)value).value.name;
  4475                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4476                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4477                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4478                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4481         return vis;
  4483     // </editor-fold>
  4485     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
  4487     public static abstract class SignatureGenerator {
  4489         private final Types types;
  4491         protected abstract void append(char ch);
  4492         protected abstract void append(byte[] ba);
  4493         protected abstract void append(Name name);
  4494         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
  4496         protected SignatureGenerator(Types types) {
  4497             this.types = types;
  4500         /**
  4501          * Assemble signature of given type in string buffer.
  4502          */
  4503         public void assembleSig(Type type) {
  4504             type = type.unannotatedType();
  4505             switch (type.getTag()) {
  4506                 case BYTE:
  4507                     append('B');
  4508                     break;
  4509                 case SHORT:
  4510                     append('S');
  4511                     break;
  4512                 case CHAR:
  4513                     append('C');
  4514                     break;
  4515                 case INT:
  4516                     append('I');
  4517                     break;
  4518                 case LONG:
  4519                     append('J');
  4520                     break;
  4521                 case FLOAT:
  4522                     append('F');
  4523                     break;
  4524                 case DOUBLE:
  4525                     append('D');
  4526                     break;
  4527                 case BOOLEAN:
  4528                     append('Z');
  4529                     break;
  4530                 case VOID:
  4531                     append('V');
  4532                     break;
  4533                 case CLASS:
  4534                     append('L');
  4535                     assembleClassSig(type);
  4536                     append(';');
  4537                     break;
  4538                 case ARRAY:
  4539                     ArrayType at = (ArrayType) type;
  4540                     append('[');
  4541                     assembleSig(at.elemtype);
  4542                     break;
  4543                 case METHOD:
  4544                     MethodType mt = (MethodType) type;
  4545                     append('(');
  4546                     assembleSig(mt.argtypes);
  4547                     append(')');
  4548                     assembleSig(mt.restype);
  4549                     if (hasTypeVar(mt.thrown)) {
  4550                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
  4551                             append('^');
  4552                             assembleSig(l.head);
  4555                     break;
  4556                 case WILDCARD: {
  4557                     Type.WildcardType ta = (Type.WildcardType) type;
  4558                     switch (ta.kind) {
  4559                         case SUPER:
  4560                             append('-');
  4561                             assembleSig(ta.type);
  4562                             break;
  4563                         case EXTENDS:
  4564                             append('+');
  4565                             assembleSig(ta.type);
  4566                             break;
  4567                         case UNBOUND:
  4568                             append('*');
  4569                             break;
  4570                         default:
  4571                             throw new AssertionError(ta.kind);
  4573                     break;
  4575                 case TYPEVAR:
  4576                     append('T');
  4577                     append(type.tsym.name);
  4578                     append(';');
  4579                     break;
  4580                 case FORALL:
  4581                     Type.ForAll ft = (Type.ForAll) type;
  4582                     assembleParamsSig(ft.tvars);
  4583                     assembleSig(ft.qtype);
  4584                     break;
  4585                 default:
  4586                     throw new AssertionError("typeSig " + type.getTag());
  4590         public boolean hasTypeVar(List<Type> l) {
  4591             while (l.nonEmpty()) {
  4592                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
  4593                     return true;
  4595                 l = l.tail;
  4597             return false;
  4600         public void assembleClassSig(Type type) {
  4601             type = type.unannotatedType();
  4602             ClassType ct = (ClassType) type;
  4603             ClassSymbol c = (ClassSymbol) ct.tsym;
  4604             classReference(c);
  4605             Type outer = ct.getEnclosingType();
  4606             if (outer.allparams().nonEmpty()) {
  4607                 boolean rawOuter =
  4608                         c.owner.kind == Kinds.MTH || // either a local class
  4609                         c.name == types.names.empty; // or anonymous
  4610                 assembleClassSig(rawOuter
  4611                         ? types.erasure(outer)
  4612                         : outer);
  4613                 append('.');
  4614                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
  4615                 append(rawOuter
  4616                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
  4617                         : c.name);
  4618             } else {
  4619                 append(externalize(c.flatname));
  4621             if (ct.getTypeArguments().nonEmpty()) {
  4622                 append('<');
  4623                 assembleSig(ct.getTypeArguments());
  4624                 append('>');
  4628         public void assembleParamsSig(List<Type> typarams) {
  4629             append('<');
  4630             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
  4631                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
  4632                 append(tvar.tsym.name);
  4633                 List<Type> bounds = types.getBounds(tvar);
  4634                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
  4635                     append(':');
  4637                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
  4638                     append(':');
  4639                     assembleSig(l.head);
  4642             append('>');
  4645         private void assembleSig(List<Type> types) {
  4646             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
  4647                 assembleSig(ts.head);
  4651     // </editor-fold>

mercurial