src/share/classes/com/sun/tools/javac/comp/Attr.java

Sun, 20 Oct 2013 12:01:43 -0700

author
jjg
date
Sun, 20 Oct 2013 12:01:43 -0700
changeset 2149
e5d3cd43c85e
parent 2148
c4292590fc70
child 2157
963c57175e40
permissions
-rw-r--r--

8025109: Better encapsulation for AnnotatedType
Reviewed-by: jjg
Contributed-by: wdietl@gmail.com

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.lang.model.type.TypeKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.tree.*;
    49 import com.sun.tools.javac.tree.JCTree.*;
    50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTag.*;
    60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    61 import static com.sun.tools.javac.code.TypeTag.ARRAY;
    62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    64 /** This is the main context-dependent analysis phase in GJC. It
    65  *  encompasses name resolution, type checking and constant folding as
    66  *  subtasks. Some subtasks involve auxiliary classes.
    67  *  @see Check
    68  *  @see Resolve
    69  *  @see ConstFold
    70  *  @see Infer
    71  *
    72  *  <p><b>This is NOT part of any supported API.
    73  *  If you write code that depends on this, you do so at your own risk.
    74  *  This code and its internal interfaces are subject to change or
    75  *  deletion without notice.</b>
    76  */
    77 public class Attr extends JCTree.Visitor {
    78     protected static final Context.Key<Attr> attrKey =
    79         new Context.Key<Attr>();
    81     final Names names;
    82     final Log log;
    83     final Symtab syms;
    84     final Resolve rs;
    85     final Infer infer;
    86     final DeferredAttr deferredAttr;
    87     final Check chk;
    88     final Flow flow;
    89     final MemberEnter memberEnter;
    90     final TreeMaker make;
    91     final ConstFold cfolder;
    92     final Enter enter;
    93     final Target target;
    94     final Types types;
    95     final JCDiagnostic.Factory diags;
    96     final Annotate annotate;
    97     final TypeAnnotations typeAnnotations;
    98     final DeferredLintHandler deferredLintHandler;
   100     public static Attr instance(Context context) {
   101         Attr instance = context.get(attrKey);
   102         if (instance == null)
   103             instance = new Attr(context);
   104         return instance;
   105     }
   107     protected Attr(Context context) {
   108         context.put(attrKey, this);
   110         names = Names.instance(context);
   111         log = Log.instance(context);
   112         syms = Symtab.instance(context);
   113         rs = Resolve.instance(context);
   114         chk = Check.instance(context);
   115         flow = Flow.instance(context);
   116         memberEnter = MemberEnter.instance(context);
   117         make = TreeMaker.instance(context);
   118         enter = Enter.instance(context);
   119         infer = Infer.instance(context);
   120         deferredAttr = DeferredAttr.instance(context);
   121         cfolder = ConstFold.instance(context);
   122         target = Target.instance(context);
   123         types = Types.instance(context);
   124         diags = JCDiagnostic.Factory.instance(context);
   125         annotate = Annotate.instance(context);
   126         typeAnnotations = TypeAnnotations.instance(context);
   127         deferredLintHandler = DeferredLintHandler.instance(context);
   129         Options options = Options.instance(context);
   131         Source source = Source.instance(context);
   132         allowGenerics = source.allowGenerics();
   133         allowVarargs = source.allowVarargs();
   134         allowEnums = source.allowEnums();
   135         allowBoxing = source.allowBoxing();
   136         allowCovariantReturns = source.allowCovariantReturns();
   137         allowAnonOuterThis = source.allowAnonOuterThis();
   138         allowStringsInSwitch = source.allowStringsInSwitch();
   139         allowPoly = source.allowPoly();
   140         allowTypeAnnos = source.allowTypeAnnotations();
   141         allowLambda = source.allowLambda();
   142         allowDefaultMethods = source.allowDefaultMethods();
   143         sourceName = source.name;
   144         relax = (options.isSet("-retrofit") ||
   145                  options.isSet("-relax"));
   146         findDiamonds = options.get("findDiamond") != null &&
   147                  source.allowDiamond();
   148         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   149         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   151         statInfo = new ResultInfo(NIL, Type.noType);
   152         varInfo = new ResultInfo(VAR, Type.noType);
   153         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   154         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   155         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   156         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   157         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   158     }
   160     /** Switch: relax some constraints for retrofit mode.
   161      */
   162     boolean relax;
   164     /** Switch: support target-typing inference
   165      */
   166     boolean allowPoly;
   168     /** Switch: support type annotations.
   169      */
   170     boolean allowTypeAnnos;
   172     /** Switch: support generics?
   173      */
   174     boolean allowGenerics;
   176     /** Switch: allow variable-arity methods.
   177      */
   178     boolean allowVarargs;
   180     /** Switch: support enums?
   181      */
   182     boolean allowEnums;
   184     /** Switch: support boxing and unboxing?
   185      */
   186     boolean allowBoxing;
   188     /** Switch: support covariant result types?
   189      */
   190     boolean allowCovariantReturns;
   192     /** Switch: support lambda expressions ?
   193      */
   194     boolean allowLambda;
   196     /** Switch: support default methods ?
   197      */
   198     boolean allowDefaultMethods;
   200     /** Switch: allow references to surrounding object from anonymous
   201      * objects during constructor call?
   202      */
   203     boolean allowAnonOuterThis;
   205     /** Switch: generates a warning if diamond can be safely applied
   206      *  to a given new expression
   207      */
   208     boolean findDiamonds;
   210     /**
   211      * Internally enables/disables diamond finder feature
   212      */
   213     static final boolean allowDiamondFinder = true;
   215     /**
   216      * Switch: warn about use of variable before declaration?
   217      * RFE: 6425594
   218      */
   219     boolean useBeforeDeclarationWarning;
   221     /**
   222      * Switch: generate warnings whenever an anonymous inner class that is convertible
   223      * to a lambda expression is found
   224      */
   225     boolean identifyLambdaCandidate;
   227     /**
   228      * Switch: allow strings in switch?
   229      */
   230     boolean allowStringsInSwitch;
   232     /**
   233      * Switch: name of source level; used for error reporting.
   234      */
   235     String sourceName;
   237     /** Check kind and type of given tree against protokind and prototype.
   238      *  If check succeeds, store type in tree and return it.
   239      *  If check fails, store errType in tree and return it.
   240      *  No checks are performed if the prototype is a method type.
   241      *  It is not necessary in this case since we know that kind and type
   242      *  are correct.
   243      *
   244      *  @param tree     The tree whose kind and type is checked
   245      *  @param ownkind  The computed kind of the tree
   246      *  @param resultInfo  The expected result of the tree
   247      */
   248     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   249         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   250         Type owntype = found;
   251         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   252             if (allowPoly && inferenceContext.free(found)) {
   253                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   254                     @Override
   255                     public void typesInferred(InferenceContext inferenceContext) {
   256                         ResultInfo pendingResult =
   257                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   258                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   259                     }
   260                 });
   261                 return tree.type = resultInfo.pt;
   262             } else {
   263                 if ((ownkind & ~resultInfo.pkind) == 0) {
   264                     owntype = resultInfo.check(tree, owntype);
   265                 } else {
   266                     log.error(tree.pos(), "unexpected.type",
   267                             kindNames(resultInfo.pkind),
   268                             kindName(ownkind));
   269                     owntype = types.createErrorType(owntype);
   270                 }
   271             }
   272         }
   273         tree.type = owntype;
   274         return owntype;
   275     }
   277     /** Is given blank final variable assignable, i.e. in a scope where it
   278      *  may be assigned to even though it is final?
   279      *  @param v      The blank final variable.
   280      *  @param env    The current environment.
   281      */
   282     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   283         Symbol owner = owner(env);
   284            // owner refers to the innermost variable, method or
   285            // initializer block declaration at this point.
   286         return
   287             v.owner == owner
   288             ||
   289             ((owner.name == names.init ||    // i.e. we are in a constructor
   290               owner.kind == VAR ||           // i.e. we are in a variable initializer
   291               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   292              &&
   293              v.owner == owner.owner
   294              &&
   295              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   296     }
   298     /**
   299      * Return the innermost enclosing owner symbol in a given attribution context
   300      */
   301     Symbol owner(Env<AttrContext> env) {
   302         while (true) {
   303             switch (env.tree.getTag()) {
   304                 case VARDEF:
   305                     //a field can be owner
   306                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   307                     if (vsym.owner.kind == TYP) {
   308                         return vsym;
   309                     }
   310                     break;
   311                 case METHODDEF:
   312                     //method def is always an owner
   313                     return ((JCMethodDecl)env.tree).sym;
   314                 case CLASSDEF:
   315                     //class def is always an owner
   316                     return ((JCClassDecl)env.tree).sym;
   317                 case BLOCK:
   318                     //static/instance init blocks are owner
   319                     Symbol blockSym = env.info.scope.owner;
   320                     if ((blockSym.flags() & BLOCK) != 0) {
   321                         return blockSym;
   322                     }
   323                     break;
   324                 case TOPLEVEL:
   325                     //toplevel is always an owner (for pkge decls)
   326                     return env.info.scope.owner;
   327             }
   328             Assert.checkNonNull(env.next);
   329             env = env.next;
   330         }
   331     }
   333     /** Check that variable can be assigned to.
   334      *  @param pos    The current source code position.
   335      *  @param v      The assigned varaible
   336      *  @param base   If the variable is referred to in a Select, the part
   337      *                to the left of the `.', null otherwise.
   338      *  @param env    The current environment.
   339      */
   340     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   341         if ((v.flags() & FINAL) != 0 &&
   342             ((v.flags() & HASINIT) != 0
   343              ||
   344              !((base == null ||
   345                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   346                isAssignableAsBlankFinal(v, env)))) {
   347             if (v.isResourceVariable()) { //TWR resource
   348                 log.error(pos, "try.resource.may.not.be.assigned", v);
   349             } else {
   350                 log.error(pos, "cant.assign.val.to.final.var", v);
   351             }
   352         }
   353     }
   355     /** Does tree represent a static reference to an identifier?
   356      *  It is assumed that tree is either a SELECT or an IDENT.
   357      *  We have to weed out selects from non-type names here.
   358      *  @param tree    The candidate tree.
   359      */
   360     boolean isStaticReference(JCTree tree) {
   361         if (tree.hasTag(SELECT)) {
   362             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   363             if (lsym == null || lsym.kind != TYP) {
   364                 return false;
   365             }
   366         }
   367         return true;
   368     }
   370     /** Is this symbol a type?
   371      */
   372     static boolean isType(Symbol sym) {
   373         return sym != null && sym.kind == TYP;
   374     }
   376     /** The current `this' symbol.
   377      *  @param env    The current environment.
   378      */
   379     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   380         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   381     }
   383     /** Attribute a parsed identifier.
   384      * @param tree Parsed identifier name
   385      * @param topLevel The toplevel to use
   386      */
   387     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   388         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   389         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   390                                            syms.errSymbol.name,
   391                                            null, null, null, null);
   392         localEnv.enclClass.sym = syms.errSymbol;
   393         return tree.accept(identAttributer, localEnv);
   394     }
   395     // where
   396         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   397         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   398             @Override
   399             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   400                 Symbol site = visit(node.getExpression(), env);
   401                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   402                     return site;
   403                 Name name = (Name)node.getIdentifier();
   404                 if (site.kind == PCK) {
   405                     env.toplevel.packge = (PackageSymbol)site;
   406                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   407                 } else {
   408                     env.enclClass.sym = (ClassSymbol)site;
   409                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   410                 }
   411             }
   413             @Override
   414             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   415                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   416             }
   417         }
   419     public Type coerce(Type etype, Type ttype) {
   420         return cfolder.coerce(etype, ttype);
   421     }
   423     public Type attribType(JCTree node, TypeSymbol sym) {
   424         Env<AttrContext> env = enter.typeEnvs.get(sym);
   425         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   426         return attribTree(node, localEnv, unknownTypeInfo);
   427     }
   429     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   430         // Attribute qualifying package or class.
   431         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   432         return attribTree(s.selected,
   433                        env,
   434                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   435                        Type.noType));
   436     }
   438     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   439         breakTree = tree;
   440         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   441         try {
   442             attribExpr(expr, env);
   443         } catch (BreakAttr b) {
   444             return b.env;
   445         } catch (AssertionError ae) {
   446             if (ae.getCause() instanceof BreakAttr) {
   447                 return ((BreakAttr)(ae.getCause())).env;
   448             } else {
   449                 throw ae;
   450             }
   451         } finally {
   452             breakTree = null;
   453             log.useSource(prev);
   454         }
   455         return env;
   456     }
   458     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   459         breakTree = tree;
   460         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   461         try {
   462             attribStat(stmt, env);
   463         } catch (BreakAttr b) {
   464             return b.env;
   465         } catch (AssertionError ae) {
   466             if (ae.getCause() instanceof BreakAttr) {
   467                 return ((BreakAttr)(ae.getCause())).env;
   468             } else {
   469                 throw ae;
   470             }
   471         } finally {
   472             breakTree = null;
   473             log.useSource(prev);
   474         }
   475         return env;
   476     }
   478     private JCTree breakTree = null;
   480     private static class BreakAttr extends RuntimeException {
   481         static final long serialVersionUID = -6924771130405446405L;
   482         private Env<AttrContext> env;
   483         private BreakAttr(Env<AttrContext> env) {
   484             this.env = env;
   485         }
   486     }
   488     class ResultInfo {
   489         final int pkind;
   490         final Type pt;
   491         final CheckContext checkContext;
   493         ResultInfo(int pkind, Type pt) {
   494             this(pkind, pt, chk.basicHandler);
   495         }
   497         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   498             this.pkind = pkind;
   499             this.pt = pt;
   500             this.checkContext = checkContext;
   501         }
   503         protected Type check(final DiagnosticPosition pos, final Type found) {
   504             return chk.checkType(pos, found, pt, checkContext);
   505         }
   507         protected ResultInfo dup(Type newPt) {
   508             return new ResultInfo(pkind, newPt, checkContext);
   509         }
   511         protected ResultInfo dup(CheckContext newContext) {
   512             return new ResultInfo(pkind, pt, newContext);
   513         }
   514     }
   516     class RecoveryInfo extends ResultInfo {
   518         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   519             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   520                 @Override
   521                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   522                     return deferredAttrContext;
   523                 }
   524                 @Override
   525                 public boolean compatible(Type found, Type req, Warner warn) {
   526                     return true;
   527                 }
   528                 @Override
   529                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   530                     chk.basicHandler.report(pos, details);
   531                 }
   532             });
   533         }
   534     }
   536     final ResultInfo statInfo;
   537     final ResultInfo varInfo;
   538     final ResultInfo unknownAnyPolyInfo;
   539     final ResultInfo unknownExprInfo;
   540     final ResultInfo unknownTypeInfo;
   541     final ResultInfo unknownTypeExprInfo;
   542     final ResultInfo recoveryInfo;
   544     Type pt() {
   545         return resultInfo.pt;
   546     }
   548     int pkind() {
   549         return resultInfo.pkind;
   550     }
   552 /* ************************************************************************
   553  * Visitor methods
   554  *************************************************************************/
   556     /** Visitor argument: the current environment.
   557      */
   558     Env<AttrContext> env;
   560     /** Visitor argument: the currently expected attribution result.
   561      */
   562     ResultInfo resultInfo;
   564     /** Visitor result: the computed type.
   565      */
   566     Type result;
   568     /** Visitor method: attribute a tree, catching any completion failure
   569      *  exceptions. Return the tree's type.
   570      *
   571      *  @param tree    The tree to be visited.
   572      *  @param env     The environment visitor argument.
   573      *  @param resultInfo   The result info visitor argument.
   574      */
   575     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   576         Env<AttrContext> prevEnv = this.env;
   577         ResultInfo prevResult = this.resultInfo;
   578         try {
   579             this.env = env;
   580             this.resultInfo = resultInfo;
   581             tree.accept(this);
   582             if (tree == breakTree &&
   583                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   584                 throw new BreakAttr(copyEnv(env));
   585             }
   586             return result;
   587         } catch (CompletionFailure ex) {
   588             tree.type = syms.errType;
   589             return chk.completionError(tree.pos(), ex);
   590         } finally {
   591             this.env = prevEnv;
   592             this.resultInfo = prevResult;
   593         }
   594     }
   596     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   597         Env<AttrContext> newEnv =
   598                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   599         if (newEnv.outer != null) {
   600             newEnv.outer = copyEnv(newEnv.outer);
   601         }
   602         return newEnv;
   603     }
   605     Scope copyScope(Scope sc) {
   606         Scope newScope = new Scope(sc.owner);
   607         List<Symbol> elemsList = List.nil();
   608         while (sc != null) {
   609             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   610                 elemsList = elemsList.prepend(e.sym);
   611             }
   612             sc = sc.next;
   613         }
   614         for (Symbol s : elemsList) {
   615             newScope.enter(s);
   616         }
   617         return newScope;
   618     }
   620     /** Derived visitor method: attribute an expression tree.
   621      */
   622     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   623         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   624     }
   626     /** Derived visitor method: attribute an expression tree with
   627      *  no constraints on the computed type.
   628      */
   629     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   630         return attribTree(tree, env, unknownExprInfo);
   631     }
   633     /** Derived visitor method: attribute a type tree.
   634      */
   635     public Type attribType(JCTree tree, Env<AttrContext> env) {
   636         Type result = attribType(tree, env, Type.noType);
   637         return result;
   638     }
   640     /** Derived visitor method: attribute a type tree.
   641      */
   642     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   643         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   644         return result;
   645     }
   647     /** Derived visitor method: attribute a statement or definition tree.
   648      */
   649     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   650         return attribTree(tree, env, statInfo);
   651     }
   653     /** Attribute a list of expressions, returning a list of types.
   654      */
   655     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   656         ListBuffer<Type> ts = new ListBuffer<Type>();
   657         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   658             ts.append(attribExpr(l.head, env, pt));
   659         return ts.toList();
   660     }
   662     /** Attribute a list of statements, returning nothing.
   663      */
   664     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   665         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   666             attribStat(l.head, env);
   667     }
   669     /** Attribute the arguments in a method call, returning the method kind.
   670      */
   671     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   672         int kind = VAL;
   673         for (JCExpression arg : trees) {
   674             Type argtype;
   675             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   676                 argtype = deferredAttr.new DeferredType(arg, env);
   677                 kind |= POLY;
   678             } else {
   679                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   680             }
   681             argtypes.append(argtype);
   682         }
   683         return kind;
   684     }
   686     /** Attribute a type argument list, returning a list of types.
   687      *  Caller is responsible for calling checkRefTypes.
   688      */
   689     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   690         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   691         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   692             argtypes.append(attribType(l.head, env));
   693         return argtypes.toList();
   694     }
   696     /** Attribute a type argument list, returning a list of types.
   697      *  Check that all the types are references.
   698      */
   699     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   700         List<Type> types = attribAnyTypes(trees, env);
   701         return chk.checkRefTypes(trees, types);
   702     }
   704     /**
   705      * Attribute type variables (of generic classes or methods).
   706      * Compound types are attributed later in attribBounds.
   707      * @param typarams the type variables to enter
   708      * @param env      the current environment
   709      */
   710     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   711         for (JCTypeParameter tvar : typarams) {
   712             TypeVar a = (TypeVar)tvar.type;
   713             a.tsym.flags_field |= UNATTRIBUTED;
   714             a.bound = Type.noType;
   715             if (!tvar.bounds.isEmpty()) {
   716                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   717                 for (JCExpression bound : tvar.bounds.tail)
   718                     bounds = bounds.prepend(attribType(bound, env));
   719                 types.setBounds(a, bounds.reverse());
   720             } else {
   721                 // if no bounds are given, assume a single bound of
   722                 // java.lang.Object.
   723                 types.setBounds(a, List.of(syms.objectType));
   724             }
   725             a.tsym.flags_field &= ~UNATTRIBUTED;
   726         }
   727         for (JCTypeParameter tvar : typarams) {
   728             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   729         }
   730     }
   732     /**
   733      * Attribute the type references in a list of annotations.
   734      */
   735     void attribAnnotationTypes(List<JCAnnotation> annotations,
   736                                Env<AttrContext> env) {
   737         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   738             JCAnnotation a = al.head;
   739             attribType(a.annotationType, env);
   740         }
   741     }
   743     /**
   744      * Attribute a "lazy constant value".
   745      *  @param env         The env for the const value
   746      *  @param initializer The initializer for the const value
   747      *  @param type        The expected type, or null
   748      *  @see VarSymbol#setLazyConstValue
   749      */
   750     public Object attribLazyConstantValue(Env<AttrContext> env,
   751                                       JCVariableDecl variable,
   752                                       Type type) {
   754         DiagnosticPosition prevLintPos
   755                 = deferredLintHandler.setPos(variable.pos());
   757         try {
   758             // Use null as symbol to not attach the type annotation to any symbol.
   759             // The initializer will later also be visited and then we'll attach
   760             // to the symbol.
   761             // This prevents having multiple type annotations, just because of
   762             // lazy constant value evaluation.
   763             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   764             annotate.flush();
   765             Type itype = attribExpr(variable.init, env, type);
   766             if (itype.constValue() != null) {
   767                 return coerce(itype, type).constValue();
   768             } else {
   769                 return null;
   770             }
   771         } finally {
   772             deferredLintHandler.setPos(prevLintPos);
   773         }
   774     }
   776     /** Attribute type reference in an `extends' or `implements' clause.
   777      *  Supertypes of anonymous inner classes are usually already attributed.
   778      *
   779      *  @param tree              The tree making up the type reference.
   780      *  @param env               The environment current at the reference.
   781      *  @param classExpected     true if only a class is expected here.
   782      *  @param interfaceExpected true if only an interface is expected here.
   783      */
   784     Type attribBase(JCTree tree,
   785                     Env<AttrContext> env,
   786                     boolean classExpected,
   787                     boolean interfaceExpected,
   788                     boolean checkExtensible) {
   789         Type t = tree.type != null ?
   790             tree.type :
   791             attribType(tree, env);
   792         return checkBase(t, tree, env, classExpected, interfaceExpected, false, checkExtensible);
   793     }
   794     Type checkBase(Type t,
   795                    JCTree tree,
   796                    Env<AttrContext> env,
   797                    boolean classExpected,
   798                    boolean interfacesOnlyExpected,
   799                    boolean interfacesOrArraysExpected,
   800                    boolean checkExtensible) {
   801         if (t.isErroneous())
   802             return t;
   803         if (t.hasTag(TYPEVAR) && !classExpected &&
   804             !interfacesOrArraysExpected && !interfacesOnlyExpected) {
   805             // check that type variable is already visible
   806             if (t.getUpperBound() == null) {
   807                 log.error(tree.pos(), "illegal.forward.ref");
   808                 return types.createErrorType(t);
   809             }
   810         } else if (classExpected) {
   811             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   812         } else {
   813             t = chk.checkClassOrArrayType(tree.pos(), t,
   814                                           checkExtensible|!allowGenerics);
   815         }
   816         if (interfacesOnlyExpected && !t.tsym.isInterface()) {
   817             log.error(tree.pos(), "intf.expected.here");
   818             // return errType is necessary since otherwise there might
   819             // be undetected cycles which cause attribution to loop
   820             return types.createErrorType(t);
   821         } else if (interfacesOrArraysExpected &&
   822             !(t.tsym.isInterface() || t.getTag() == ARRAY)) {
   823             log.error(tree.pos(), "intf.or.array.expected.here");
   824             // return errType is necessary since otherwise there might
   825             // be undetected cycles which cause attribution to loop
   826             return types.createErrorType(t);
   827         } else if (checkExtensible &&
   828                    classExpected &&
   829                    t.tsym.isInterface()) {
   830             log.error(tree.pos(), "no.intf.expected.here");
   831             return types.createErrorType(t);
   832         }
   833         if (checkExtensible &&
   834             ((t.tsym.flags() & FINAL) != 0)) {
   835             log.error(tree.pos(),
   836                       "cant.inherit.from.final", t.tsym);
   837         }
   838         chk.checkNonCyclic(tree.pos(), t);
   839         return t;
   840     }
   841     //where
   842         private Object asTypeParam(Type t) {
   843             return (t.hasTag(TYPEVAR))
   844                                     ? diags.fragment("type.parameter", t)
   845                                     : t;
   846         }
   848     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   849         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   850         id.type = env.info.scope.owner.type;
   851         id.sym = env.info.scope.owner;
   852         return id.type;
   853     }
   855     public void visitClassDef(JCClassDecl tree) {
   856         // Local classes have not been entered yet, so we need to do it now:
   857         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   858             enter.classEnter(tree, env);
   860         ClassSymbol c = tree.sym;
   861         if (c == null) {
   862             // exit in case something drastic went wrong during enter.
   863             result = null;
   864         } else {
   865             // make sure class has been completed:
   866             c.complete();
   868             // If this class appears as an anonymous class
   869             // in a superclass constructor call where
   870             // no explicit outer instance is given,
   871             // disable implicit outer instance from being passed.
   872             // (This would be an illegal access to "this before super").
   873             if (env.info.isSelfCall &&
   874                 env.tree.hasTag(NEWCLASS) &&
   875                 ((JCNewClass) env.tree).encl == null)
   876             {
   877                 c.flags_field |= NOOUTERTHIS;
   878             }
   879             attribClass(tree.pos(), c);
   880             result = tree.type = c.type;
   881         }
   882     }
   884     public void visitMethodDef(JCMethodDecl tree) {
   885         MethodSymbol m = tree.sym;
   886         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   888         Lint lint = env.info.lint.augment(m);
   889         Lint prevLint = chk.setLint(lint);
   890         MethodSymbol prevMethod = chk.setMethod(m);
   891         try {
   892             deferredLintHandler.flush(tree.pos());
   893             chk.checkDeprecatedAnnotation(tree.pos(), m);
   896             // Create a new environment with local scope
   897             // for attributing the method.
   898             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   899             localEnv.info.lint = lint;
   901             attribStats(tree.typarams, localEnv);
   903             // If we override any other methods, check that we do so properly.
   904             // JLS ???
   905             if (m.isStatic()) {
   906                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   907             } else {
   908                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   909             }
   910             chk.checkOverride(tree, m);
   912             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   913                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   914             }
   916             // Enter all type parameters into the local method scope.
   917             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   918                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   920             ClassSymbol owner = env.enclClass.sym;
   921             if ((owner.flags() & ANNOTATION) != 0 &&
   922                 tree.params.nonEmpty())
   923                 log.error(tree.params.head.pos(),
   924                           "intf.annotation.members.cant.have.params");
   926             // Attribute all value parameters.
   927             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   928                 attribStat(l.head, localEnv);
   929             }
   931             chk.checkVarargsMethodDecl(localEnv, tree);
   933             // Check that type parameters are well-formed.
   934             chk.validate(tree.typarams, localEnv);
   936             // Check that result type is well-formed.
   937             chk.validate(tree.restype, localEnv);
   939             // Check that receiver type is well-formed.
   940             if (tree.recvparam != null) {
   941                 // Use a new environment to check the receiver parameter.
   942                 // Otherwise I get "might not have been initialized" errors.
   943                 // Is there a better way?
   944                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   945                 attribType(tree.recvparam, newEnv);
   946                 chk.validate(tree.recvparam, newEnv);
   947             }
   949             // annotation method checks
   950             if ((owner.flags() & ANNOTATION) != 0) {
   951                 // annotation method cannot have throws clause
   952                 if (tree.thrown.nonEmpty()) {
   953                     log.error(tree.thrown.head.pos(),
   954                             "throws.not.allowed.in.intf.annotation");
   955                 }
   956                 // annotation method cannot declare type-parameters
   957                 if (tree.typarams.nonEmpty()) {
   958                     log.error(tree.typarams.head.pos(),
   959                             "intf.annotation.members.cant.have.type.params");
   960                 }
   961                 // validate annotation method's return type (could be an annotation type)
   962                 chk.validateAnnotationType(tree.restype);
   963                 // ensure that annotation method does not clash with members of Object/Annotation
   964                 chk.validateAnnotationMethod(tree.pos(), m);
   965             }
   967             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   968                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   970             if (tree.body == null) {
   971                 // Empty bodies are only allowed for
   972                 // abstract, native, or interface methods, or for methods
   973                 // in a retrofit signature class.
   974                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   975                     !relax)
   976                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   977                 if (tree.defaultValue != null) {
   978                     if ((owner.flags() & ANNOTATION) == 0)
   979                         log.error(tree.pos(),
   980                                   "default.allowed.in.intf.annotation.member");
   981                 }
   982             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
   983                 if ((owner.flags() & INTERFACE) != 0) {
   984                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
   985                 } else {
   986                     log.error(tree.pos(), "abstract.meth.cant.have.body");
   987                 }
   988             } else if ((tree.mods.flags & NATIVE) != 0) {
   989                 log.error(tree.pos(), "native.meth.cant.have.body");
   990             } else {
   991                 // Add an implicit super() call unless an explicit call to
   992                 // super(...) or this(...) is given
   993                 // or we are compiling class java.lang.Object.
   994                 if (tree.name == names.init && owner.type != syms.objectType) {
   995                     JCBlock body = tree.body;
   996                     if (body.stats.isEmpty() ||
   997                         !TreeInfo.isSelfCall(body.stats.head)) {
   998                         body.stats = body.stats.
   999                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1000                                                           List.<Type>nil(),
  1001                                                           List.<JCVariableDecl>nil(),
  1002                                                           false));
  1003                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1004                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1005                                TreeInfo.isSuperCall(body.stats.head)) {
  1006                         // enum constructors are not allowed to call super
  1007                         // directly, so make sure there aren't any super calls
  1008                         // in enum constructors, except in the compiler
  1009                         // generated one.
  1010                         log.error(tree.body.stats.head.pos(),
  1011                                   "call.to.super.not.allowed.in.enum.ctor",
  1012                                   env.enclClass.sym);
  1016                 // Attribute all type annotations in the body
  1017                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1018                 annotate.flush();
  1020                 // Attribute method body.
  1021                 attribStat(tree.body, localEnv);
  1024             localEnv.info.scope.leave();
  1025             result = tree.type = m.type;
  1027         finally {
  1028             chk.setLint(prevLint);
  1029             chk.setMethod(prevMethod);
  1033     public void visitVarDef(JCVariableDecl tree) {
  1034         // Local variables have not been entered yet, so we need to do it now:
  1035         if (env.info.scope.owner.kind == MTH) {
  1036             if (tree.sym != null) {
  1037                 // parameters have already been entered
  1038                 env.info.scope.enter(tree.sym);
  1039             } else {
  1040                 memberEnter.memberEnter(tree, env);
  1041                 annotate.flush();
  1043         } else {
  1044             if (tree.init != null) {
  1045                 // Field initializer expression need to be entered.
  1046                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1047                 annotate.flush();
  1051         VarSymbol v = tree.sym;
  1052         Lint lint = env.info.lint.augment(v);
  1053         Lint prevLint = chk.setLint(lint);
  1055         // Check that the variable's declared type is well-formed.
  1056         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1057                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1058                 (tree.sym.flags() & PARAMETER) != 0;
  1059         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1061         try {
  1062             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1063             deferredLintHandler.flush(tree.pos());
  1064             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1066             if (tree.init != null) {
  1067                 if ((v.flags_field & FINAL) == 0 ||
  1068                     !memberEnter.needsLazyConstValue(tree.init)) {
  1069                     // Not a compile-time constant
  1070                     // Attribute initializer in a new environment
  1071                     // with the declared variable as owner.
  1072                     // Check that initializer conforms to variable's declared type.
  1073                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1074                     initEnv.info.lint = lint;
  1075                     // In order to catch self-references, we set the variable's
  1076                     // declaration position to maximal possible value, effectively
  1077                     // marking the variable as undefined.
  1078                     initEnv.info.enclVar = v;
  1079                     attribExpr(tree.init, initEnv, v.type);
  1082             result = tree.type = v.type;
  1084         finally {
  1085             chk.setLint(prevLint);
  1089     public void visitSkip(JCSkip tree) {
  1090         result = null;
  1093     public void visitBlock(JCBlock tree) {
  1094         if (env.info.scope.owner.kind == TYP) {
  1095             // Block is a static or instance initializer;
  1096             // let the owner of the environment be a freshly
  1097             // created BLOCK-method.
  1098             Env<AttrContext> localEnv =
  1099                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1100             localEnv.info.scope.owner =
  1101                 new MethodSymbol(tree.flags | BLOCK |
  1102                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1103                     env.info.scope.owner);
  1104             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1106             // Attribute all type annotations in the block
  1107             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1108             annotate.flush();
  1111                 // Store init and clinit type annotations with the ClassSymbol
  1112                 // to allow output in Gen.normalizeDefs.
  1113                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1114                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1115                 if ((tree.flags & STATIC) != 0) {
  1116                     cs.appendClassInitTypeAttributes(tas);
  1117                 } else {
  1118                     cs.appendInitTypeAttributes(tas);
  1122             attribStats(tree.stats, localEnv);
  1123         } else {
  1124             // Create a new local environment with a local scope.
  1125             Env<AttrContext> localEnv =
  1126                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1127             try {
  1128                 attribStats(tree.stats, localEnv);
  1129             } finally {
  1130                 localEnv.info.scope.leave();
  1133         result = null;
  1136     public void visitDoLoop(JCDoWhileLoop tree) {
  1137         attribStat(tree.body, env.dup(tree));
  1138         attribExpr(tree.cond, env, syms.booleanType);
  1139         result = null;
  1142     public void visitWhileLoop(JCWhileLoop tree) {
  1143         attribExpr(tree.cond, env, syms.booleanType);
  1144         attribStat(tree.body, env.dup(tree));
  1145         result = null;
  1148     public void visitForLoop(JCForLoop tree) {
  1149         Env<AttrContext> loopEnv =
  1150             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1151         try {
  1152             attribStats(tree.init, loopEnv);
  1153             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1154             loopEnv.tree = tree; // before, we were not in loop!
  1155             attribStats(tree.step, loopEnv);
  1156             attribStat(tree.body, loopEnv);
  1157             result = null;
  1159         finally {
  1160             loopEnv.info.scope.leave();
  1164     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1165         Env<AttrContext> loopEnv =
  1166             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1167         try {
  1168             //the Formal Parameter of a for-each loop is not in the scope when
  1169             //attributing the for-each expression; we mimick this by attributing
  1170             //the for-each expression first (against original scope).
  1171             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1172             attribStat(tree.var, loopEnv);
  1173             chk.checkNonVoid(tree.pos(), exprType);
  1174             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1175             if (elemtype == null) {
  1176                 // or perhaps expr implements Iterable<T>?
  1177                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1178                 if (base == null) {
  1179                     log.error(tree.expr.pos(),
  1180                             "foreach.not.applicable.to.type",
  1181                             exprType,
  1182                             diags.fragment("type.req.array.or.iterable"));
  1183                     elemtype = types.createErrorType(exprType);
  1184                 } else {
  1185                     List<Type> iterableParams = base.allparams();
  1186                     elemtype = iterableParams.isEmpty()
  1187                         ? syms.objectType
  1188                         : types.upperBound(iterableParams.head);
  1191             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1192             loopEnv.tree = tree; // before, we were not in loop!
  1193             attribStat(tree.body, loopEnv);
  1194             result = null;
  1196         finally {
  1197             loopEnv.info.scope.leave();
  1201     public void visitLabelled(JCLabeledStatement tree) {
  1202         // Check that label is not used in an enclosing statement
  1203         Env<AttrContext> env1 = env;
  1204         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1205             if (env1.tree.hasTag(LABELLED) &&
  1206                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1207                 log.error(tree.pos(), "label.already.in.use",
  1208                           tree.label);
  1209                 break;
  1211             env1 = env1.next;
  1214         attribStat(tree.body, env.dup(tree));
  1215         result = null;
  1218     public void visitSwitch(JCSwitch tree) {
  1219         Type seltype = attribExpr(tree.selector, env);
  1221         Env<AttrContext> switchEnv =
  1222             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1224         try {
  1226             boolean enumSwitch =
  1227                 allowEnums &&
  1228                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1229             boolean stringSwitch = false;
  1230             if (types.isSameType(seltype, syms.stringType)) {
  1231                 if (allowStringsInSwitch) {
  1232                     stringSwitch = true;
  1233                 } else {
  1234                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1237             if (!enumSwitch && !stringSwitch)
  1238                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1240             // Attribute all cases and
  1241             // check that there are no duplicate case labels or default clauses.
  1242             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1243             boolean hasDefault = false;      // Is there a default label?
  1244             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1245                 JCCase c = l.head;
  1246                 Env<AttrContext> caseEnv =
  1247                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1248                 try {
  1249                     if (c.pat != null) {
  1250                         if (enumSwitch) {
  1251                             Symbol sym = enumConstant(c.pat, seltype);
  1252                             if (sym == null) {
  1253                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1254                             } else if (!labels.add(sym)) {
  1255                                 log.error(c.pos(), "duplicate.case.label");
  1257                         } else {
  1258                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1259                             if (!pattype.hasTag(ERROR)) {
  1260                                 if (pattype.constValue() == null) {
  1261                                     log.error(c.pat.pos(),
  1262                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1263                                 } else if (labels.contains(pattype.constValue())) {
  1264                                     log.error(c.pos(), "duplicate.case.label");
  1265                                 } else {
  1266                                     labels.add(pattype.constValue());
  1270                     } else if (hasDefault) {
  1271                         log.error(c.pos(), "duplicate.default.label");
  1272                     } else {
  1273                         hasDefault = true;
  1275                     attribStats(c.stats, caseEnv);
  1276                 } finally {
  1277                     caseEnv.info.scope.leave();
  1278                     addVars(c.stats, switchEnv.info.scope);
  1282             result = null;
  1284         finally {
  1285             switchEnv.info.scope.leave();
  1288     // where
  1289         /** Add any variables defined in stats to the switch scope. */
  1290         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1291             for (;stats.nonEmpty(); stats = stats.tail) {
  1292                 JCTree stat = stats.head;
  1293                 if (stat.hasTag(VARDEF))
  1294                     switchScope.enter(((JCVariableDecl) stat).sym);
  1297     // where
  1298     /** Return the selected enumeration constant symbol, or null. */
  1299     private Symbol enumConstant(JCTree tree, Type enumType) {
  1300         if (!tree.hasTag(IDENT)) {
  1301             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1302             return syms.errSymbol;
  1304         JCIdent ident = (JCIdent)tree;
  1305         Name name = ident.name;
  1306         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1307              e.scope != null; e = e.next()) {
  1308             if (e.sym.kind == VAR) {
  1309                 Symbol s = ident.sym = e.sym;
  1310                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1311                 ident.type = s.type;
  1312                 return ((s.flags_field & Flags.ENUM) == 0)
  1313                     ? null : s;
  1316         return null;
  1319     public void visitSynchronized(JCSynchronized tree) {
  1320         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1321         attribStat(tree.body, env);
  1322         result = null;
  1325     public void visitTry(JCTry tree) {
  1326         // Create a new local environment with a local
  1327         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1328         try {
  1329             boolean isTryWithResource = tree.resources.nonEmpty();
  1330             // Create a nested environment for attributing the try block if needed
  1331             Env<AttrContext> tryEnv = isTryWithResource ?
  1332                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1333                 localEnv;
  1334             try {
  1335                 // Attribute resource declarations
  1336                 for (JCTree resource : tree.resources) {
  1337                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1338                         @Override
  1339                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1340                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1342                     };
  1343                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1344                     if (resource.hasTag(VARDEF)) {
  1345                         attribStat(resource, tryEnv);
  1346                         twrResult.check(resource, resource.type);
  1348                         //check that resource type cannot throw InterruptedException
  1349                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1351                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1352                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1353                     } else {
  1354                         attribTree(resource, tryEnv, twrResult);
  1357                 // Attribute body
  1358                 attribStat(tree.body, tryEnv);
  1359             } finally {
  1360                 if (isTryWithResource)
  1361                     tryEnv.info.scope.leave();
  1364             // Attribute catch clauses
  1365             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1366                 JCCatch c = l.head;
  1367                 Env<AttrContext> catchEnv =
  1368                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1369                 try {
  1370                     Type ctype = attribStat(c.param, catchEnv);
  1371                     if (TreeInfo.isMultiCatch(c)) {
  1372                         //multi-catch parameter is implicitly marked as final
  1373                         c.param.sym.flags_field |= FINAL | UNION;
  1375                     if (c.param.sym.kind == Kinds.VAR) {
  1376                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1378                     chk.checkType(c.param.vartype.pos(),
  1379                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1380                                   syms.throwableType);
  1381                     attribStat(c.body, catchEnv);
  1382                 } finally {
  1383                     catchEnv.info.scope.leave();
  1387             // Attribute finalizer
  1388             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1389             result = null;
  1391         finally {
  1392             localEnv.info.scope.leave();
  1396     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1397         if (!resource.isErroneous() &&
  1398             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1399             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1400             Symbol close = syms.noSymbol;
  1401             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1402             try {
  1403                 close = rs.resolveQualifiedMethod(pos,
  1404                         env,
  1405                         resource,
  1406                         names.close,
  1407                         List.<Type>nil(),
  1408                         List.<Type>nil());
  1410             finally {
  1411                 log.popDiagnosticHandler(discardHandler);
  1413             if (close.kind == MTH &&
  1414                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1415                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1416                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1417                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1422     public void visitConditional(JCConditional tree) {
  1423         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1425         tree.polyKind = (!allowPoly ||
  1426                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1427                 isBooleanOrNumeric(env, tree)) ?
  1428                 PolyKind.STANDALONE : PolyKind.POLY;
  1430         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1431             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1432             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1433             result = tree.type = types.createErrorType(resultInfo.pt);
  1434             return;
  1437         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1438                 unknownExprInfo :
  1439                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1440                     //this will use enclosing check context to check compatibility of
  1441                     //subexpression against target type; if we are in a method check context,
  1442                     //depending on whether boxing is allowed, we could have incompatibilities
  1443                     @Override
  1444                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1445                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1447                 });
  1449         Type truetype = attribTree(tree.truepart, env, condInfo);
  1450         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1452         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1453         if (condtype.constValue() != null &&
  1454                 truetype.constValue() != null &&
  1455                 falsetype.constValue() != null &&
  1456                 !owntype.hasTag(NONE)) {
  1457             //constant folding
  1458             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1460         result = check(tree, owntype, VAL, resultInfo);
  1462     //where
  1463         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1464             switch (tree.getTag()) {
  1465                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1466                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1467                               ((JCLiteral)tree).typetag == BOT;
  1468                 case LAMBDA: case REFERENCE: return false;
  1469                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1470                 case CONDEXPR:
  1471                     JCConditional condTree = (JCConditional)tree;
  1472                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1473                             isBooleanOrNumeric(env, condTree.falsepart);
  1474                 case APPLY:
  1475                     JCMethodInvocation speculativeMethodTree =
  1476                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1477                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1478                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1479                 case NEWCLASS:
  1480                     JCExpression className =
  1481                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1482                     JCExpression speculativeNewClassTree =
  1483                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1484                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1485                 default:
  1486                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1487                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1488                     return speculativeType.isPrimitive();
  1491         //where
  1492             TreeTranslator removeClassParams = new TreeTranslator() {
  1493                 @Override
  1494                 public void visitTypeApply(JCTypeApply tree) {
  1495                     result = translate(tree.clazz);
  1497             };
  1499         /** Compute the type of a conditional expression, after
  1500          *  checking that it exists.  See JLS 15.25. Does not take into
  1501          *  account the special case where condition and both arms
  1502          *  are constants.
  1504          *  @param pos      The source position to be used for error
  1505          *                  diagnostics.
  1506          *  @param thentype The type of the expression's then-part.
  1507          *  @param elsetype The type of the expression's else-part.
  1508          */
  1509         private Type condType(DiagnosticPosition pos,
  1510                                Type thentype, Type elsetype) {
  1511             // If same type, that is the result
  1512             if (types.isSameType(thentype, elsetype))
  1513                 return thentype.baseType();
  1515             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1516                 ? thentype : types.unboxedType(thentype);
  1517             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1518                 ? elsetype : types.unboxedType(elsetype);
  1520             // Otherwise, if both arms can be converted to a numeric
  1521             // type, return the least numeric type that fits both arms
  1522             // (i.e. return larger of the two, or return int if one
  1523             // arm is short, the other is char).
  1524             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1525                 // If one arm has an integer subrange type (i.e., byte,
  1526                 // short, or char), and the other is an integer constant
  1527                 // that fits into the subrange, return the subrange type.
  1528                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1529                     elseUnboxed.hasTag(INT) &&
  1530                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1531                     return thenUnboxed.baseType();
  1533                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1534                     thenUnboxed.hasTag(INT) &&
  1535                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1536                     return elseUnboxed.baseType();
  1539                 for (TypeTag tag : primitiveTags) {
  1540                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1541                     if (types.isSubtype(thenUnboxed, candidate) &&
  1542                         types.isSubtype(elseUnboxed, candidate)) {
  1543                         return candidate;
  1548             // Those were all the cases that could result in a primitive
  1549             if (allowBoxing) {
  1550                 if (thentype.isPrimitive())
  1551                     thentype = types.boxedClass(thentype).type;
  1552                 if (elsetype.isPrimitive())
  1553                     elsetype = types.boxedClass(elsetype).type;
  1556             if (types.isSubtype(thentype, elsetype))
  1557                 return elsetype.baseType();
  1558             if (types.isSubtype(elsetype, thentype))
  1559                 return thentype.baseType();
  1561             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1562                 log.error(pos, "neither.conditional.subtype",
  1563                           thentype, elsetype);
  1564                 return thentype.baseType();
  1567             // both are known to be reference types.  The result is
  1568             // lub(thentype,elsetype). This cannot fail, as it will
  1569             // always be possible to infer "Object" if nothing better.
  1570             return types.lub(thentype.baseType(), elsetype.baseType());
  1573     final static TypeTag[] primitiveTags = new TypeTag[]{
  1574         BYTE,
  1575         CHAR,
  1576         SHORT,
  1577         INT,
  1578         LONG,
  1579         FLOAT,
  1580         DOUBLE,
  1581         BOOLEAN,
  1582     };
  1584     public void visitIf(JCIf tree) {
  1585         attribExpr(tree.cond, env, syms.booleanType);
  1586         attribStat(tree.thenpart, env);
  1587         if (tree.elsepart != null)
  1588             attribStat(tree.elsepart, env);
  1589         chk.checkEmptyIf(tree);
  1590         result = null;
  1593     public void visitExec(JCExpressionStatement tree) {
  1594         //a fresh environment is required for 292 inference to work properly ---
  1595         //see Infer.instantiatePolymorphicSignatureInstance()
  1596         Env<AttrContext> localEnv = env.dup(tree);
  1597         attribExpr(tree.expr, localEnv);
  1598         result = null;
  1601     public void visitBreak(JCBreak tree) {
  1602         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1603         result = null;
  1606     public void visitContinue(JCContinue tree) {
  1607         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1608         result = null;
  1610     //where
  1611         /** Return the target of a break or continue statement, if it exists,
  1612          *  report an error if not.
  1613          *  Note: The target of a labelled break or continue is the
  1614          *  (non-labelled) statement tree referred to by the label,
  1615          *  not the tree representing the labelled statement itself.
  1617          *  @param pos     The position to be used for error diagnostics
  1618          *  @param tag     The tag of the jump statement. This is either
  1619          *                 Tree.BREAK or Tree.CONTINUE.
  1620          *  @param label   The label of the jump statement, or null if no
  1621          *                 label is given.
  1622          *  @param env     The environment current at the jump statement.
  1623          */
  1624         private JCTree findJumpTarget(DiagnosticPosition pos,
  1625                                     JCTree.Tag tag,
  1626                                     Name label,
  1627                                     Env<AttrContext> env) {
  1628             // Search environments outwards from the point of jump.
  1629             Env<AttrContext> env1 = env;
  1630             LOOP:
  1631             while (env1 != null) {
  1632                 switch (env1.tree.getTag()) {
  1633                     case LABELLED:
  1634                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1635                         if (label == labelled.label) {
  1636                             // If jump is a continue, check that target is a loop.
  1637                             if (tag == CONTINUE) {
  1638                                 if (!labelled.body.hasTag(DOLOOP) &&
  1639                                         !labelled.body.hasTag(WHILELOOP) &&
  1640                                         !labelled.body.hasTag(FORLOOP) &&
  1641                                         !labelled.body.hasTag(FOREACHLOOP))
  1642                                     log.error(pos, "not.loop.label", label);
  1643                                 // Found labelled statement target, now go inwards
  1644                                 // to next non-labelled tree.
  1645                                 return TreeInfo.referencedStatement(labelled);
  1646                             } else {
  1647                                 return labelled;
  1650                         break;
  1651                     case DOLOOP:
  1652                     case WHILELOOP:
  1653                     case FORLOOP:
  1654                     case FOREACHLOOP:
  1655                         if (label == null) return env1.tree;
  1656                         break;
  1657                     case SWITCH:
  1658                         if (label == null && tag == BREAK) return env1.tree;
  1659                         break;
  1660                     case LAMBDA:
  1661                     case METHODDEF:
  1662                     case CLASSDEF:
  1663                         break LOOP;
  1664                     default:
  1666                 env1 = env1.next;
  1668             if (label != null)
  1669                 log.error(pos, "undef.label", label);
  1670             else if (tag == CONTINUE)
  1671                 log.error(pos, "cont.outside.loop");
  1672             else
  1673                 log.error(pos, "break.outside.switch.loop");
  1674             return null;
  1677     public void visitReturn(JCReturn tree) {
  1678         // Check that there is an enclosing method which is
  1679         // nested within than the enclosing class.
  1680         if (env.info.returnResult == null) {
  1681             log.error(tree.pos(), "ret.outside.meth");
  1682         } else {
  1683             // Attribute return expression, if it exists, and check that
  1684             // it conforms to result type of enclosing method.
  1685             if (tree.expr != null) {
  1686                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1687                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1688                               diags.fragment("unexpected.ret.val"));
  1690                 attribTree(tree.expr, env, env.info.returnResult);
  1691             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1692                     !env.info.returnResult.pt.hasTag(NONE)) {
  1693                 env.info.returnResult.checkContext.report(tree.pos(),
  1694                               diags.fragment("missing.ret.val"));
  1697         result = null;
  1700     public void visitThrow(JCThrow tree) {
  1701         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1702         if (allowPoly) {
  1703             chk.checkType(tree, owntype, syms.throwableType);
  1705         result = null;
  1708     public void visitAssert(JCAssert tree) {
  1709         attribExpr(tree.cond, env, syms.booleanType);
  1710         if (tree.detail != null) {
  1711             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1713         result = null;
  1716      /** Visitor method for method invocations.
  1717      *  NOTE: The method part of an application will have in its type field
  1718      *        the return type of the method, not the method's type itself!
  1719      */
  1720     public void visitApply(JCMethodInvocation tree) {
  1721         // The local environment of a method application is
  1722         // a new environment nested in the current one.
  1723         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1725         // The types of the actual method arguments.
  1726         List<Type> argtypes;
  1728         // The types of the actual method type arguments.
  1729         List<Type> typeargtypes = null;
  1731         Name methName = TreeInfo.name(tree.meth);
  1733         boolean isConstructorCall =
  1734             methName == names._this || methName == names._super;
  1736         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1737         if (isConstructorCall) {
  1738             // We are seeing a ...this(...) or ...super(...) call.
  1739             // Check that this is the first statement in a constructor.
  1740             if (checkFirstConstructorStat(tree, env)) {
  1742                 // Record the fact
  1743                 // that this is a constructor call (using isSelfCall).
  1744                 localEnv.info.isSelfCall = true;
  1746                 // Attribute arguments, yielding list of argument types.
  1747                 attribArgs(tree.args, localEnv, argtypesBuf);
  1748                 argtypes = argtypesBuf.toList();
  1749                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1751                 // Variable `site' points to the class in which the called
  1752                 // constructor is defined.
  1753                 Type site = env.enclClass.sym.type;
  1754                 if (methName == names._super) {
  1755                     if (site == syms.objectType) {
  1756                         log.error(tree.meth.pos(), "no.superclass", site);
  1757                         site = types.createErrorType(syms.objectType);
  1758                     } else {
  1759                         site = types.supertype(site);
  1763                 if (site.hasTag(CLASS)) {
  1764                     Type encl = site.getEnclosingType();
  1765                     while (encl != null && encl.hasTag(TYPEVAR))
  1766                         encl = encl.getUpperBound();
  1767                     if (encl.hasTag(CLASS)) {
  1768                         // we are calling a nested class
  1770                         if (tree.meth.hasTag(SELECT)) {
  1771                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1773                             // We are seeing a prefixed call, of the form
  1774                             //     <expr>.super(...).
  1775                             // Check that the prefix expression conforms
  1776                             // to the outer instance type of the class.
  1777                             chk.checkRefType(qualifier.pos(),
  1778                                              attribExpr(qualifier, localEnv,
  1779                                                         encl));
  1780                         } else if (methName == names._super) {
  1781                             // qualifier omitted; check for existence
  1782                             // of an appropriate implicit qualifier.
  1783                             rs.resolveImplicitThis(tree.meth.pos(),
  1784                                                    localEnv, site, true);
  1786                     } else if (tree.meth.hasTag(SELECT)) {
  1787                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1788                                   site.tsym);
  1791                     // if we're calling a java.lang.Enum constructor,
  1792                     // prefix the implicit String and int parameters
  1793                     if (site.tsym == syms.enumSym && allowEnums)
  1794                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1796                     // Resolve the called constructor under the assumption
  1797                     // that we are referring to a superclass instance of the
  1798                     // current instance (JLS ???).
  1799                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1800                     localEnv.info.selectSuper = true;
  1801                     localEnv.info.pendingResolutionPhase = null;
  1802                     Symbol sym = rs.resolveConstructor(
  1803                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1804                     localEnv.info.selectSuper = selectSuperPrev;
  1806                     // Set method symbol to resolved constructor...
  1807                     TreeInfo.setSymbol(tree.meth, sym);
  1809                     // ...and check that it is legal in the current context.
  1810                     // (this will also set the tree's type)
  1811                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1812                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1814                 // Otherwise, `site' is an error type and we do nothing
  1816             result = tree.type = syms.voidType;
  1817         } else {
  1818             // Otherwise, we are seeing a regular method call.
  1819             // Attribute the arguments, yielding list of argument types, ...
  1820             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
  1821             argtypes = argtypesBuf.toList();
  1822             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1824             // ... and attribute the method using as a prototype a methodtype
  1825             // whose formal argument types is exactly the list of actual
  1826             // arguments (this will also set the method symbol).
  1827             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1828             localEnv.info.pendingResolutionPhase = null;
  1829             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1831             // Compute the result type.
  1832             Type restype = mtype.getReturnType();
  1833             if (restype.hasTag(WILDCARD))
  1834                 throw new AssertionError(mtype);
  1836             Type qualifier = (tree.meth.hasTag(SELECT))
  1837                     ? ((JCFieldAccess) tree.meth).selected.type
  1838                     : env.enclClass.sym.type;
  1839             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1841             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1843             // Check that value of resulting type is admissible in the
  1844             // current context.  Also, capture the return type
  1845             result = check(tree, capture(restype), VAL, resultInfo);
  1847         chk.validate(tree.typeargs, localEnv);
  1849     //where
  1850         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1851             if (allowCovariantReturns &&
  1852                     methodName == names.clone &&
  1853                 types.isArray(qualifierType)) {
  1854                 // as a special case, array.clone() has a result that is
  1855                 // the same as static type of the array being cloned
  1856                 return qualifierType;
  1857             } else if (allowGenerics &&
  1858                     methodName == names.getClass &&
  1859                     argtypes.isEmpty()) {
  1860                 // as a special case, x.getClass() has type Class<? extends |X|>
  1861                 return new ClassType(restype.getEnclosingType(),
  1862                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1863                                                                BoundKind.EXTENDS,
  1864                                                                syms.boundClass)),
  1865                               restype.tsym);
  1866             } else {
  1867                 return restype;
  1871         /** Check that given application node appears as first statement
  1872          *  in a constructor call.
  1873          *  @param tree   The application node
  1874          *  @param env    The environment current at the application.
  1875          */
  1876         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1877             JCMethodDecl enclMethod = env.enclMethod;
  1878             if (enclMethod != null && enclMethod.name == names.init) {
  1879                 JCBlock body = enclMethod.body;
  1880                 if (body.stats.head.hasTag(EXEC) &&
  1881                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1882                     return true;
  1884             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1885                       TreeInfo.name(tree.meth));
  1886             return false;
  1889         /** Obtain a method type with given argument types.
  1890          */
  1891         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1892             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1893             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1896     public void visitNewClass(final JCNewClass tree) {
  1897         Type owntype = types.createErrorType(tree.type);
  1899         // The local environment of a class creation is
  1900         // a new environment nested in the current one.
  1901         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1903         // The anonymous inner class definition of the new expression,
  1904         // if one is defined by it.
  1905         JCClassDecl cdef = tree.def;
  1907         // If enclosing class is given, attribute it, and
  1908         // complete class name to be fully qualified
  1909         JCExpression clazz = tree.clazz; // Class field following new
  1910         JCExpression clazzid;            // Identifier in class field
  1911         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1912         annoclazzid = null;
  1914         if (clazz.hasTag(TYPEAPPLY)) {
  1915             clazzid = ((JCTypeApply) clazz).clazz;
  1916             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1917                 annoclazzid = (JCAnnotatedType) clazzid;
  1918                 clazzid = annoclazzid.underlyingType;
  1920         } else {
  1921             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1922                 annoclazzid = (JCAnnotatedType) clazz;
  1923                 clazzid = annoclazzid.underlyingType;
  1924             } else {
  1925                 clazzid = clazz;
  1929         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1931         if (tree.encl != null) {
  1932             // We are seeing a qualified new, of the form
  1933             //    <expr>.new C <...> (...) ...
  1934             // In this case, we let clazz stand for the name of the
  1935             // allocated class C prefixed with the type of the qualifier
  1936             // expression, so that we can
  1937             // resolve it with standard techniques later. I.e., if
  1938             // <expr> has type T, then <expr>.new C <...> (...)
  1939             // yields a clazz T.C.
  1940             Type encltype = chk.checkRefType(tree.encl.pos(),
  1941                                              attribExpr(tree.encl, env));
  1942             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1943             // from expr to the combined type, or not? Yes, do this.
  1944             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1945                                                  ((JCIdent) clazzid).name);
  1947             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1948             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1949             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1950                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1951                 List<JCAnnotation> annos = annoType.annotations;
  1953                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1954                     clazzid1 = make.at(tree.pos).
  1955                         TypeApply(clazzid1,
  1956                                   ((JCTypeApply) clazz).arguments);
  1959                 clazzid1 = make.at(tree.pos).
  1960                     AnnotatedType(annos, clazzid1);
  1961             } else if (clazz.hasTag(TYPEAPPLY)) {
  1962                 clazzid1 = make.at(tree.pos).
  1963                     TypeApply(clazzid1,
  1964                               ((JCTypeApply) clazz).arguments);
  1967             clazz = clazzid1;
  1970         // Attribute clazz expression and store
  1971         // symbol + type back into the attributed tree.
  1972         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1973             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1974             attribType(clazz, env);
  1976         clazztype = chk.checkDiamond(tree, clazztype);
  1977         chk.validate(clazz, localEnv);
  1978         if (tree.encl != null) {
  1979             // We have to work in this case to store
  1980             // symbol + type back into the attributed tree.
  1981             tree.clazz.type = clazztype;
  1982             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1983             clazzid.type = ((JCIdent) clazzid).sym.type;
  1984             if (annoclazzid != null) {
  1985                 annoclazzid.type = clazzid.type;
  1987             if (!clazztype.isErroneous()) {
  1988                 if (cdef != null && clazztype.tsym.isInterface()) {
  1989                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1990                 } else if (clazztype.tsym.isStatic()) {
  1991                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1994         } else if (!clazztype.tsym.isInterface() &&
  1995                    clazztype.getEnclosingType().hasTag(CLASS)) {
  1996             // Check for the existence of an apropos outer instance
  1997             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  2000         // Attribute constructor arguments.
  2001         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  2002         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
  2003         List<Type> argtypes = argtypesBuf.toList();
  2004         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  2006         // If we have made no mistakes in the class type...
  2007         if (clazztype.hasTag(CLASS)) {
  2008             // Enums may not be instantiated except implicitly
  2009             if (allowEnums &&
  2010                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2011                 (!env.tree.hasTag(VARDEF) ||
  2012                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2013                  ((JCVariableDecl) env.tree).init != tree))
  2014                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2015             // Check that class is not abstract
  2016             if (cdef == null &&
  2017                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2018                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2019                           clazztype.tsym);
  2020             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2021                 // Check that no constructor arguments are given to
  2022                 // anonymous classes implementing an interface
  2023                 if (!argtypes.isEmpty())
  2024                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2026                 if (!typeargtypes.isEmpty())
  2027                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2029                 // Error recovery: pretend no arguments were supplied.
  2030                 argtypes = List.nil();
  2031                 typeargtypes = List.nil();
  2032             } else if (TreeInfo.isDiamond(tree)) {
  2033                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2034                             clazztype.tsym.type.getTypeArguments(),
  2035                             clazztype.tsym);
  2037                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2038                 diamondEnv.info.selectSuper = cdef != null;
  2039                 diamondEnv.info.pendingResolutionPhase = null;
  2041                 //if the type of the instance creation expression is a class type
  2042                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2043                 //of the resolved constructor will be a partially instantiated type
  2044                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2045                             diamondEnv,
  2046                             site,
  2047                             argtypes,
  2048                             typeargtypes);
  2049                 tree.constructor = constructor.baseSymbol();
  2051                 final TypeSymbol csym = clazztype.tsym;
  2052                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2053                     @Override
  2054                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2055                         enclosingContext.report(tree.clazz,
  2056                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2058                 });
  2059                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2060                 constructorType = checkId(tree, site,
  2061                         constructor,
  2062                         diamondEnv,
  2063                         diamondResult);
  2065                 tree.clazz.type = types.createErrorType(clazztype);
  2066                 if (!constructorType.isErroneous()) {
  2067                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2068                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2070                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2073             // Resolve the called constructor under the assumption
  2074             // that we are referring to a superclass instance of the
  2075             // current instance (JLS ???).
  2076             else {
  2077                 //the following code alters some of the fields in the current
  2078                 //AttrContext - hence, the current context must be dup'ed in
  2079                 //order to avoid downstream failures
  2080                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2081                 rsEnv.info.selectSuper = cdef != null;
  2082                 rsEnv.info.pendingResolutionPhase = null;
  2083                 tree.constructor = rs.resolveConstructor(
  2084                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2085                 if (cdef == null) { //do not check twice!
  2086                     tree.constructorType = checkId(tree,
  2087                             clazztype,
  2088                             tree.constructor,
  2089                             rsEnv,
  2090                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2091                     if (rsEnv.info.lastResolveVarargs())
  2092                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2094                 if (cdef == null &&
  2095                         !clazztype.isErroneous() &&
  2096                         clazztype.getTypeArguments().nonEmpty() &&
  2097                         findDiamonds) {
  2098                     findDiamond(localEnv, tree, clazztype);
  2102             if (cdef != null) {
  2103                 // We are seeing an anonymous class instance creation.
  2104                 // In this case, the class instance creation
  2105                 // expression
  2106                 //
  2107                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2108                 //
  2109                 // is represented internally as
  2110                 //
  2111                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2112                 //
  2113                 // This expression is then *transformed* as follows:
  2114                 //
  2115                 // (1) add a STATIC flag to the class definition
  2116                 //     if the current environment is static
  2117                 // (2) add an extends or implements clause
  2118                 // (3) add a constructor.
  2119                 //
  2120                 // For instance, if C is a class, and ET is the type of E,
  2121                 // the expression
  2122                 //
  2123                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2124                 //
  2125                 // is translated to (where X is a fresh name and typarams is the
  2126                 // parameter list of the super constructor):
  2127                 //
  2128                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2129                 //     X extends C<typargs2> {
  2130                 //       <typarams> X(ET e, args) {
  2131                 //         e.<typeargs1>super(args)
  2132                 //       }
  2133                 //       ...
  2134                 //     }
  2135                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2137                 if (clazztype.tsym.isInterface()) {
  2138                     cdef.implementing = List.of(clazz);
  2139                 } else {
  2140                     cdef.extending = clazz;
  2143                 attribStat(cdef, localEnv);
  2145                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2147                 // If an outer instance is given,
  2148                 // prefix it to the constructor arguments
  2149                 // and delete it from the new expression
  2150                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2151                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2152                     argtypes = argtypes.prepend(tree.encl.type);
  2153                     tree.encl = null;
  2156                 // Reassign clazztype and recompute constructor.
  2157                 clazztype = cdef.sym.type;
  2158                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2159                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2160                 Assert.check(sym.kind < AMBIGUOUS);
  2161                 tree.constructor = sym;
  2162                 tree.constructorType = checkId(tree,
  2163                     clazztype,
  2164                     tree.constructor,
  2165                     localEnv,
  2166                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2167             } else {
  2168                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  2169                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  2170                             tree.clazz.type.tsym);
  2174             if (tree.constructor != null && tree.constructor.kind == MTH)
  2175                 owntype = clazztype;
  2177         result = check(tree, owntype, VAL, resultInfo);
  2178         chk.validate(tree.typeargs, localEnv);
  2180     //where
  2181         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2182             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2183             List<JCExpression> prevTypeargs = ta.arguments;
  2184             try {
  2185                 //create a 'fake' diamond AST node by removing type-argument trees
  2186                 ta.arguments = List.nil();
  2187                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2188                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2189                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2190                 Type polyPt = allowPoly ?
  2191                         syms.objectType :
  2192                         clazztype;
  2193                 if (!inferred.isErroneous() &&
  2194                     (allowPoly && pt() == Infer.anyPoly ?
  2195                         types.isSameType(inferred, clazztype) :
  2196                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2197                     String key = types.isSameType(clazztype, inferred) ?
  2198                         "diamond.redundant.args" :
  2199                         "diamond.redundant.args.1";
  2200                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2202             } finally {
  2203                 ta.arguments = prevTypeargs;
  2207             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2208                 if (allowLambda &&
  2209                         identifyLambdaCandidate &&
  2210                         clazztype.hasTag(CLASS) &&
  2211                         !pt().hasTag(NONE) &&
  2212                         types.isFunctionalInterface(clazztype.tsym)) {
  2213                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2214                     int count = 0;
  2215                     boolean found = false;
  2216                     for (Symbol sym : csym.members().getElements()) {
  2217                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2218                                 sym.isConstructor()) continue;
  2219                         count++;
  2220                         if (sym.kind != MTH ||
  2221                                 !sym.name.equals(descriptor.name)) continue;
  2222                         Type mtype = types.memberType(clazztype, sym);
  2223                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2224                             found = true;
  2227                     if (found && count == 1) {
  2228                         log.note(tree.def, "potential.lambda.found");
  2233     private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  2234             Symbol sym) {
  2235         // Ensure that no declaration annotations are present.
  2236         // Note that a tree type might be an AnnotatedType with
  2237         // empty annotations, if only declaration annotations were given.
  2238         // This method will raise an error for such a type.
  2239         for (JCAnnotation ai : annotations) {
  2240             if (typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  2241                 log.error(ai.pos(), "annotation.type.not.applicable");
  2247     /** Make an attributed null check tree.
  2248      */
  2249     public JCExpression makeNullCheck(JCExpression arg) {
  2250         // optimization: X.this is never null; skip null check
  2251         Name name = TreeInfo.name(arg);
  2252         if (name == names._this || name == names._super) return arg;
  2254         JCTree.Tag optag = NULLCHK;
  2255         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2256         tree.operator = syms.nullcheck;
  2257         tree.type = arg.type;
  2258         return tree;
  2261     public void visitNewArray(JCNewArray tree) {
  2262         Type owntype = types.createErrorType(tree.type);
  2263         Env<AttrContext> localEnv = env.dup(tree);
  2264         Type elemtype;
  2265         if (tree.elemtype != null) {
  2266             elemtype = attribType(tree.elemtype, localEnv);
  2267             chk.validate(tree.elemtype, localEnv);
  2268             owntype = elemtype;
  2269             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2270                 attribExpr(l.head, localEnv, syms.intType);
  2271                 owntype = new ArrayType(owntype, syms.arrayClass);
  2273             if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  2274                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  2275                         tree.elemtype.type.tsym);
  2277         } else {
  2278             // we are seeing an untyped aggregate { ... }
  2279             // this is allowed only if the prototype is an array
  2280             if (pt().hasTag(ARRAY)) {
  2281                 elemtype = types.elemtype(pt());
  2282             } else {
  2283                 if (!pt().hasTag(ERROR)) {
  2284                     log.error(tree.pos(), "illegal.initializer.for.type",
  2285                               pt());
  2287                 elemtype = types.createErrorType(pt());
  2290         if (tree.elems != null) {
  2291             attribExprs(tree.elems, localEnv, elemtype);
  2292             owntype = new ArrayType(elemtype, syms.arrayClass);
  2294         if (!types.isReifiable(elemtype))
  2295             log.error(tree.pos(), "generic.array.creation");
  2296         result = check(tree, owntype, VAL, resultInfo);
  2299     /*
  2300      * A lambda expression can only be attributed when a target-type is available.
  2301      * In addition, if the target-type is that of a functional interface whose
  2302      * descriptor contains inference variables in argument position the lambda expression
  2303      * is 'stuck' (see DeferredAttr).
  2304      */
  2305     @Override
  2306     public void visitLambda(final JCLambda that) {
  2307         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2308             if (pt().hasTag(NONE)) {
  2309                 //lambda only allowed in assignment or method invocation/cast context
  2310                 log.error(that.pos(), "unexpected.lambda");
  2312             result = that.type = types.createErrorType(pt());
  2313             return;
  2315         //create an environment for attribution of the lambda expression
  2316         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2317         boolean needsRecovery =
  2318                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2319         try {
  2320             Type currentTarget = pt();
  2321             List<Type> explicitParamTypes = null;
  2322             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2323                 //attribute lambda parameters
  2324                 attribStats(that.params, localEnv);
  2325                 explicitParamTypes = TreeInfo.types(that.params);
  2328             Type lambdaType;
  2329             if (pt() != Type.recoveryType) {
  2330                 /* We need to adjust the target. If the target is an
  2331                  * intersection type, for example: SAM & I1 & I2 ...
  2332                  * the target will be updated to SAM
  2333                  */
  2334                 currentTarget = targetChecker.visit(currentTarget, that);
  2335                 if (explicitParamTypes != null) {
  2336                     currentTarget = infer.instantiateFunctionalInterface(that,
  2337                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2339                 lambdaType = types.findDescriptorType(currentTarget);
  2340             } else {
  2341                 currentTarget = Type.recoveryType;
  2342                 lambdaType = fallbackDescriptorType(that);
  2345             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2347             if (lambdaType.hasTag(FORALL)) {
  2348                 //lambda expression target desc cannot be a generic method
  2349                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2350                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2351                 result = that.type = types.createErrorType(pt());
  2352                 return;
  2355             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2356                 //add param type info in the AST
  2357                 List<Type> actuals = lambdaType.getParameterTypes();
  2358                 List<JCVariableDecl> params = that.params;
  2360                 boolean arityMismatch = false;
  2362                 while (params.nonEmpty()) {
  2363                     if (actuals.isEmpty()) {
  2364                         //not enough actuals to perform lambda parameter inference
  2365                         arityMismatch = true;
  2367                     //reset previously set info
  2368                     Type argType = arityMismatch ?
  2369                             syms.errType :
  2370                             actuals.head;
  2371                     params.head.vartype = make.at(params.head).Type(argType);
  2372                     params.head.sym = null;
  2373                     actuals = actuals.isEmpty() ?
  2374                             actuals :
  2375                             actuals.tail;
  2376                     params = params.tail;
  2379                 //attribute lambda parameters
  2380                 attribStats(that.params, localEnv);
  2382                 if (arityMismatch) {
  2383                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2384                         result = that.type = types.createErrorType(currentTarget);
  2385                         return;
  2389             //from this point on, no recovery is needed; if we are in assignment context
  2390             //we will be able to attribute the whole lambda body, regardless of errors;
  2391             //if we are in a 'check' method context, and the lambda is not compatible
  2392             //with the target-type, it will be recovered anyway in Attr.checkId
  2393             needsRecovery = false;
  2395             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2396                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2397                     new FunctionalReturnContext(resultInfo.checkContext);
  2399             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2400                 recoveryInfo :
  2401                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2402             localEnv.info.returnResult = bodyResultInfo;
  2404             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2405                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2406             } else {
  2407                 JCBlock body = (JCBlock)that.body;
  2408                 attribStats(body.stats, localEnv);
  2411             result = check(that, currentTarget, VAL, resultInfo);
  2413             boolean isSpeculativeRound =
  2414                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2416             preFlow(that);
  2417             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2419             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2421             if (!isSpeculativeRound) {
  2422                 //add thrown types as bounds to the thrown types free variables if needed:
  2423                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2424                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2425                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asFree(lambdaType.getThrownTypes());
  2427                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2430                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2432             result = check(that, currentTarget, VAL, resultInfo);
  2433         } catch (Types.FunctionDescriptorLookupError ex) {
  2434             JCDiagnostic cause = ex.getDiagnostic();
  2435             resultInfo.checkContext.report(that, cause);
  2436             result = that.type = types.createErrorType(pt());
  2437             return;
  2438         } finally {
  2439             localEnv.info.scope.leave();
  2440             if (needsRecovery) {
  2441                 attribTree(that, env, recoveryInfo);
  2445     //where
  2446         void preFlow(JCLambda tree) {
  2447             new PostAttrAnalyzer() {
  2448                 @Override
  2449                 public void scan(JCTree tree) {
  2450                     if (tree == null ||
  2451                             (tree.type != null &&
  2452                             tree.type == Type.stuckType)) {
  2453                         //don't touch stuck expressions!
  2454                         return;
  2456                     super.scan(tree);
  2458             }.scan(tree);
  2461         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2463             @Override
  2464             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2465                 return t.isCompound() ?
  2466                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2469             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2470                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2471                 Type target = null;
  2472                 for (Type bound : ict.getExplicitComponents()) {
  2473                     TypeSymbol boundSym = bound.tsym;
  2474                     if (types.isFunctionalInterface(boundSym) &&
  2475                             types.findDescriptorSymbol(boundSym) == desc) {
  2476                         target = bound;
  2477                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2478                         //bound must be an interface
  2479                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2482                 return target != null ?
  2483                         target :
  2484                         ict.getExplicitComponents().head; //error recovery
  2487             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2488                 ListBuffer<Type> targs = new ListBuffer<>();
  2489                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2490                 for (Type i : ict.interfaces_field) {
  2491                     if (i.isParameterized()) {
  2492                         targs.appendList(i.tsym.type.allparams());
  2494                     supertypes.append(i.tsym.type);
  2496                 IntersectionClassType notionalIntf =
  2497                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2498                 notionalIntf.allparams_field = targs.toList();
  2499                 notionalIntf.tsym.flags_field |= INTERFACE;
  2500                 return notionalIntf.tsym;
  2503             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2504                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2505                         diags.fragment(key, args)));
  2507         };
  2509         private Type fallbackDescriptorType(JCExpression tree) {
  2510             switch (tree.getTag()) {
  2511                 case LAMBDA:
  2512                     JCLambda lambda = (JCLambda)tree;
  2513                     List<Type> argtypes = List.nil();
  2514                     for (JCVariableDecl param : lambda.params) {
  2515                         argtypes = param.vartype != null ?
  2516                                 argtypes.append(param.vartype.type) :
  2517                                 argtypes.append(syms.errType);
  2519                     return new MethodType(argtypes, Type.recoveryType,
  2520                             List.of(syms.throwableType), syms.methodClass);
  2521                 case REFERENCE:
  2522                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2523                             List.of(syms.throwableType), syms.methodClass);
  2524                 default:
  2525                     Assert.error("Cannot get here!");
  2527             return null;
  2530         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2531                 final InferenceContext inferenceContext, final Type... ts) {
  2532             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2535         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2536                 final InferenceContext inferenceContext, final List<Type> ts) {
  2537             if (inferenceContext.free(ts)) {
  2538                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2539                     @Override
  2540                     public void typesInferred(InferenceContext inferenceContext) {
  2541                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2543                 });
  2544             } else {
  2545                 for (Type t : ts) {
  2546                     rs.checkAccessibleType(env, t);
  2551         /**
  2552          * Lambda/method reference have a special check context that ensures
  2553          * that i.e. a lambda return type is compatible with the expected
  2554          * type according to both the inherited context and the assignment
  2555          * context.
  2556          */
  2557         class FunctionalReturnContext extends Check.NestedCheckContext {
  2559             FunctionalReturnContext(CheckContext enclosingContext) {
  2560                 super(enclosingContext);
  2563             @Override
  2564             public boolean compatible(Type found, Type req, Warner warn) {
  2565                 //return type must be compatible in both current context and assignment context
  2566                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
  2569             @Override
  2570             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2571                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2575         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2577             JCExpression expr;
  2579             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2580                 super(enclosingContext);
  2581                 this.expr = expr;
  2584             @Override
  2585             public boolean compatible(Type found, Type req, Warner warn) {
  2586                 //a void return is compatible with an expression statement lambda
  2587                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2588                         super.compatible(found, req, warn);
  2592         /**
  2593         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2594         * are compatible with the expected functional interface descriptor. This means that:
  2595         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2596         * types must be compatible with the return type of the expected descriptor.
  2597         */
  2598         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2599             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2601             //return values have already been checked - but if lambda has no return
  2602             //values, we must ensure that void/value compatibility is correct;
  2603             //this amounts at checking that, if a lambda body can complete normally,
  2604             //the descriptor's return type must be void
  2605             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2606                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2607                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2608                         diags.fragment("missing.ret.val", returnType)));
  2611             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
  2612             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2613                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2617         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2618             Env<AttrContext> lambdaEnv;
  2619             Symbol owner = env.info.scope.owner;
  2620             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2621                 //field initializer
  2622                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2623                 lambdaEnv.info.scope.owner =
  2624                     new MethodSymbol((owner.flags() & STATIC) | BLOCK, names.empty, null,
  2625                                      env.info.scope.owner);
  2626             } else {
  2627                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2629             return lambdaEnv;
  2632     @Override
  2633     public void visitReference(final JCMemberReference that) {
  2634         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2635             if (pt().hasTag(NONE)) {
  2636                 //method reference only allowed in assignment or method invocation/cast context
  2637                 log.error(that.pos(), "unexpected.mref");
  2639             result = that.type = types.createErrorType(pt());
  2640             return;
  2642         final Env<AttrContext> localEnv = env.dup(that);
  2643         try {
  2644             //attribute member reference qualifier - if this is a constructor
  2645             //reference, the expected kind must be a type
  2646             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2648             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2649                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2650                 if (!exprType.isErroneous() &&
  2651                     exprType.isRaw() &&
  2652                     that.typeargs != null) {
  2653                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2654                         diags.fragment("mref.infer.and.explicit.params"));
  2655                     exprType = types.createErrorType(exprType);
  2659             if (exprType.isErroneous()) {
  2660                 //if the qualifier expression contains problems,
  2661                 //give up attribution of method reference
  2662                 result = that.type = exprType;
  2663                 return;
  2666             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2667                 //if the qualifier is a type, validate it; raw warning check is
  2668                 //omitted as we don't know at this stage as to whether this is a
  2669                 //raw selector (because of inference)
  2670                 chk.validate(that.expr, env, false);
  2673             //attrib type-arguments
  2674             List<Type> typeargtypes = List.nil();
  2675             if (that.typeargs != null) {
  2676                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2679             Type target;
  2680             Type desc;
  2681             if (pt() != Type.recoveryType) {
  2682                 target = targetChecker.visit(pt(), that);
  2683                 desc = types.findDescriptorType(target);
  2684             } else {
  2685                 target = Type.recoveryType;
  2686                 desc = fallbackDescriptorType(that);
  2689             setFunctionalInfo(localEnv, that, pt(), desc, target, resultInfo.checkContext);
  2690             List<Type> argtypes = desc.getParameterTypes();
  2691             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2693             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2694                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2697             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2698             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2699             try {
  2700                 refResult = rs.resolveMemberReference(that.pos(), localEnv, that, that.expr.type,
  2701                         that.name, argtypes, typeargtypes, true, referenceCheck,
  2702                         resultInfo.checkContext.inferenceContext());
  2703             } finally {
  2704                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2707             Symbol refSym = refResult.fst;
  2708             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2710             if (refSym.kind != MTH) {
  2711                 boolean targetError;
  2712                 switch (refSym.kind) {
  2713                     case ABSENT_MTH:
  2714                         targetError = false;
  2715                         break;
  2716                     case WRONG_MTH:
  2717                     case WRONG_MTHS:
  2718                     case AMBIGUOUS:
  2719                     case HIDDEN:
  2720                     case STATICERR:
  2721                     case MISSING_ENCL:
  2722                         targetError = true;
  2723                         break;
  2724                     default:
  2725                         Assert.error("unexpected result kind " + refSym.kind);
  2726                         targetError = false;
  2729                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2730                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2732                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2733                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2735                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2736                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2738                 if (targetError && target == Type.recoveryType) {
  2739                     //a target error doesn't make sense during recovery stage
  2740                     //as we don't know what actual parameter types are
  2741                     result = that.type = target;
  2742                     return;
  2743                 } else {
  2744                     if (targetError) {
  2745                         resultInfo.checkContext.report(that, diag);
  2746                     } else {
  2747                         log.report(diag);
  2749                     result = that.type = types.createErrorType(target);
  2750                     return;
  2754             that.sym = refSym.baseSymbol();
  2755             that.kind = lookupHelper.referenceKind(that.sym);
  2756             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2758             if (desc.getReturnType() == Type.recoveryType) {
  2759                 // stop here
  2760                 result = that.type = target;
  2761                 return;
  2764             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2766                 if (that.getMode() == ReferenceMode.INVOKE &&
  2767                         TreeInfo.isStaticSelector(that.expr, names) &&
  2768                         that.kind.isUnbound() &&
  2769                         !desc.getParameterTypes().head.isParameterized()) {
  2770                     chk.checkRaw(that.expr, localEnv);
  2773                 if (!that.kind.isUnbound() &&
  2774                         that.getMode() == ReferenceMode.INVOKE &&
  2775                         TreeInfo.isStaticSelector(that.expr, names) &&
  2776                         !that.sym.isStatic()) {
  2777                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2778                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
  2779                     result = that.type = types.createErrorType(target);
  2780                     return;
  2783                 if (that.kind.isUnbound() &&
  2784                         that.getMode() == ReferenceMode.INVOKE &&
  2785                         TreeInfo.isStaticSelector(that.expr, names) &&
  2786                         that.sym.isStatic()) {
  2787                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2788                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
  2789                     result = that.type = types.createErrorType(target);
  2790                     return;
  2793                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2794                         exprType.getTypeArguments().nonEmpty()) {
  2795                     //static ref with class type-args
  2796                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2797                             diags.fragment("static.mref.with.targs"));
  2798                     result = that.type = types.createErrorType(target);
  2799                     return;
  2802                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2803                         !that.kind.isUnbound()) {
  2804                     //no static bound mrefs
  2805                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2806                             diags.fragment("static.bound.mref"));
  2807                     result = that.type = types.createErrorType(target);
  2808                     return;
  2811                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2812                     // Check that super-qualified symbols are not abstract (JLS)
  2813                     rs.checkNonAbstract(that.pos(), that.sym);
  2817             ResultInfo checkInfo =
  2818                     resultInfo.dup(newMethodTemplate(
  2819                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2820                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes));
  2822             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2824             if (that.kind.isUnbound() &&
  2825                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2826                 //re-generate inference constraints for unbound receiver
  2827                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asFree(argtypes.head), exprType)) {
  2828                     //cannot happen as this has already been checked - we just need
  2829                     //to regenerate the inference constraints, as that has been lost
  2830                     //as a result of the call to inferenceContext.save()
  2831                     Assert.error("Can't get here");
  2835             if (!refType.isErroneous()) {
  2836                 refType = types.createMethodTypeWithReturn(refType,
  2837                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2840             //go ahead with standard method reference compatibility check - note that param check
  2841             //is a no-op (as this has been taken care during method applicability)
  2842             boolean isSpeculativeRound =
  2843                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2844             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2845             if (!isSpeculativeRound) {
  2846                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2848             result = check(that, target, VAL, resultInfo);
  2849         } catch (Types.FunctionDescriptorLookupError ex) {
  2850             JCDiagnostic cause = ex.getDiagnostic();
  2851             resultInfo.checkContext.report(that, cause);
  2852             result = that.type = types.createErrorType(pt());
  2853             return;
  2856     //where
  2857         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2858             //if this is a constructor reference, the expected kind must be a type
  2859             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2863     @SuppressWarnings("fallthrough")
  2864     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2865         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2867         Type resType;
  2868         switch (tree.getMode()) {
  2869             case NEW:
  2870                 if (!tree.expr.type.isRaw()) {
  2871                     resType = tree.expr.type;
  2872                     break;
  2874             default:
  2875                 resType = refType.getReturnType();
  2878         Type incompatibleReturnType = resType;
  2880         if (returnType.hasTag(VOID)) {
  2881             incompatibleReturnType = null;
  2884         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2885             if (resType.isErroneous() ||
  2886                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2887                 incompatibleReturnType = null;
  2891         if (incompatibleReturnType != null) {
  2892             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2893                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2896         if (!speculativeAttr) {
  2897             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2898             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2899                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2904     /**
  2905      * Set functional type info on the underlying AST. Note: as the target descriptor
  2906      * might contain inference variables, we might need to register an hook in the
  2907      * current inference context.
  2908      */
  2909     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2910             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2911         if (checkContext.inferenceContext().free(descriptorType)) {
  2912             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2913                 public void typesInferred(InferenceContext inferenceContext) {
  2914                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2915                             inferenceContext.asInstType(primaryTarget), checkContext);
  2917             });
  2918         } else {
  2919             ListBuffer<Type> targets = new ListBuffer<>();
  2920             if (pt.hasTag(CLASS)) {
  2921                 if (pt.isCompound()) {
  2922                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2923                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2924                         if (t != primaryTarget) {
  2925                             targets.append(types.removeWildcards(t));
  2928                 } else {
  2929                     targets.append(types.removeWildcards(primaryTarget));
  2932             fExpr.targets = targets.toList();
  2933             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2934                     pt != Type.recoveryType) {
  2935                 //check that functional interface class is well-formed
  2936                 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2937                         names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2938                 if (csym != null) {
  2939                     chk.checkImplementations(env.tree, csym, csym);
  2945     public void visitParens(JCParens tree) {
  2946         Type owntype = attribTree(tree.expr, env, resultInfo);
  2947         result = check(tree, owntype, pkind(), resultInfo);
  2948         Symbol sym = TreeInfo.symbol(tree);
  2949         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2950             log.error(tree.pos(), "illegal.start.of.type");
  2953     public void visitAssign(JCAssign tree) {
  2954         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2955         Type capturedType = capture(owntype);
  2956         attribExpr(tree.rhs, env, owntype);
  2957         result = check(tree, capturedType, VAL, resultInfo);
  2960     public void visitAssignop(JCAssignOp tree) {
  2961         // Attribute arguments.
  2962         Type owntype = attribTree(tree.lhs, env, varInfo);
  2963         Type operand = attribExpr(tree.rhs, env);
  2964         // Find operator.
  2965         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2966             tree.pos(), tree.getTag().noAssignOp(), env,
  2967             owntype, operand);
  2969         if (operator.kind == MTH &&
  2970                 !owntype.isErroneous() &&
  2971                 !operand.isErroneous()) {
  2972             chk.checkOperator(tree.pos(),
  2973                               (OperatorSymbol)operator,
  2974                               tree.getTag().noAssignOp(),
  2975                               owntype,
  2976                               operand);
  2977             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2978             chk.checkCastable(tree.rhs.pos(),
  2979                               operator.type.getReturnType(),
  2980                               owntype);
  2982         result = check(tree, owntype, VAL, resultInfo);
  2985     public void visitUnary(JCUnary tree) {
  2986         // Attribute arguments.
  2987         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2988             ? attribTree(tree.arg, env, varInfo)
  2989             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2991         // Find operator.
  2992         Symbol operator = tree.operator =
  2993             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2995         Type owntype = types.createErrorType(tree.type);
  2996         if (operator.kind == MTH &&
  2997                 !argtype.isErroneous()) {
  2998             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2999                 ? tree.arg.type
  3000                 : operator.type.getReturnType();
  3001             int opc = ((OperatorSymbol)operator).opcode;
  3003             // If the argument is constant, fold it.
  3004             if (argtype.constValue() != null) {
  3005                 Type ctype = cfolder.fold1(opc, argtype);
  3006                 if (ctype != null) {
  3007                     owntype = cfolder.coerce(ctype, owntype);
  3009                     // Remove constant types from arguments to
  3010                     // conserve space. The parser will fold concatenations
  3011                     // of string literals; the code here also
  3012                     // gets rid of intermediate results when some of the
  3013                     // operands are constant identifiers.
  3014                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  3015                         tree.arg.type = syms.stringType;
  3020         result = check(tree, owntype, VAL, resultInfo);
  3023     public void visitBinary(JCBinary tree) {
  3024         // Attribute arguments.
  3025         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3026         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3028         // Find operator.
  3029         Symbol operator = tree.operator =
  3030             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3032         Type owntype = types.createErrorType(tree.type);
  3033         if (operator.kind == MTH &&
  3034                 !left.isErroneous() &&
  3035                 !right.isErroneous()) {
  3036             owntype = operator.type.getReturnType();
  3037             // This will figure out when unboxing can happen and
  3038             // choose the right comparison operator.
  3039             int opc = chk.checkOperator(tree.lhs.pos(),
  3040                                         (OperatorSymbol)operator,
  3041                                         tree.getTag(),
  3042                                         left,
  3043                                         right);
  3045             // If both arguments are constants, fold them.
  3046             if (left.constValue() != null && right.constValue() != null) {
  3047                 Type ctype = cfolder.fold2(opc, left, right);
  3048                 if (ctype != null) {
  3049                     owntype = cfolder.coerce(ctype, owntype);
  3051                     // Remove constant types from arguments to
  3052                     // conserve space. The parser will fold concatenations
  3053                     // of string literals; the code here also
  3054                     // gets rid of intermediate results when some of the
  3055                     // operands are constant identifiers.
  3056                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  3057                         tree.lhs.type = syms.stringType;
  3059                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  3060                         tree.rhs.type = syms.stringType;
  3065             // Check that argument types of a reference ==, != are
  3066             // castable to each other, (JLS 15.21).  Note: unboxing
  3067             // comparisons will not have an acmp* opc at this point.
  3068             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3069                 if (!types.isEqualityComparable(left, right,
  3070                                                 new Warner(tree.pos()))) {
  3071                     log.error(tree.pos(), "incomparable.types", left, right);
  3075             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3077         result = check(tree, owntype, VAL, resultInfo);
  3080     public void visitTypeCast(final JCTypeCast tree) {
  3081         Type clazztype = attribType(tree.clazz, env);
  3082         chk.validate(tree.clazz, env, false);
  3083         //a fresh environment is required for 292 inference to work properly ---
  3084         //see Infer.instantiatePolymorphicSignatureInstance()
  3085         Env<AttrContext> localEnv = env.dup(tree);
  3086         //should we propagate the target type?
  3087         final ResultInfo castInfo;
  3088         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3089         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3090         if (isPoly) {
  3091             //expression is a poly - we need to propagate target type info
  3092             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3093                 @Override
  3094                 public boolean compatible(Type found, Type req, Warner warn) {
  3095                     return types.isCastable(found, req, warn);
  3097             });
  3098         } else {
  3099             //standalone cast - target-type info is not propagated
  3100             castInfo = unknownExprInfo;
  3102         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3103         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3104         if (exprtype.constValue() != null)
  3105             owntype = cfolder.coerce(exprtype, owntype);
  3106         result = check(tree, capture(owntype), VAL, resultInfo);
  3107         if (!isPoly)
  3108             chk.checkRedundantCast(localEnv, tree);
  3111     public void visitTypeTest(JCInstanceOf tree) {
  3112         Type exprtype = chk.checkNullOrRefType(
  3113             tree.expr.pos(), attribExpr(tree.expr, env));
  3114         Type clazztype = attribType(tree.clazz, env);
  3115         if (!clazztype.hasTag(TYPEVAR)) {
  3116             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3118         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3119             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3120             clazztype = types.createErrorType(clazztype);
  3122         chk.validate(tree.clazz, env, false);
  3123         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3124         result = check(tree, syms.booleanType, VAL, resultInfo);
  3127     public void visitIndexed(JCArrayAccess tree) {
  3128         Type owntype = types.createErrorType(tree.type);
  3129         Type atype = attribExpr(tree.indexed, env);
  3130         attribExpr(tree.index, env, syms.intType);
  3131         if (types.isArray(atype))
  3132             owntype = types.elemtype(atype);
  3133         else if (!atype.hasTag(ERROR))
  3134             log.error(tree.pos(), "array.req.but.found", atype);
  3135         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3136         result = check(tree, owntype, VAR, resultInfo);
  3139     public void visitIdent(JCIdent tree) {
  3140         Symbol sym;
  3142         // Find symbol
  3143         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3144             // If we are looking for a method, the prototype `pt' will be a
  3145             // method type with the type of the call's arguments as parameters.
  3146             env.info.pendingResolutionPhase = null;
  3147             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3148         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3149             sym = tree.sym;
  3150         } else {
  3151             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3153         tree.sym = sym;
  3155         // (1) Also find the environment current for the class where
  3156         //     sym is defined (`symEnv').
  3157         // Only for pre-tiger versions (1.4 and earlier):
  3158         // (2) Also determine whether we access symbol out of an anonymous
  3159         //     class in a this or super call.  This is illegal for instance
  3160         //     members since such classes don't carry a this$n link.
  3161         //     (`noOuterThisPath').
  3162         Env<AttrContext> symEnv = env;
  3163         boolean noOuterThisPath = false;
  3164         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3165             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3166             sym.owner.kind == TYP &&
  3167             tree.name != names._this && tree.name != names._super) {
  3169             // Find environment in which identifier is defined.
  3170             while (symEnv.outer != null &&
  3171                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3172                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3173                     noOuterThisPath = !allowAnonOuterThis;
  3174                 symEnv = symEnv.outer;
  3178         // If symbol is a variable, ...
  3179         if (sym.kind == VAR) {
  3180             VarSymbol v = (VarSymbol)sym;
  3182             // ..., evaluate its initializer, if it has one, and check for
  3183             // illegal forward reference.
  3184             checkInit(tree, env, v, false);
  3186             // If we are expecting a variable (as opposed to a value), check
  3187             // that the variable is assignable in the current environment.
  3188             if (pkind() == VAR)
  3189                 checkAssignable(tree.pos(), v, null, env);
  3192         // In a constructor body,
  3193         // if symbol is a field or instance method, check that it is
  3194         // not accessed before the supertype constructor is called.
  3195         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3196             (sym.kind & (VAR | MTH)) != 0 &&
  3197             sym.owner.kind == TYP &&
  3198             (sym.flags() & STATIC) == 0) {
  3199             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3201         Env<AttrContext> env1 = env;
  3202         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3203             // If the found symbol is inaccessible, then it is
  3204             // accessed through an enclosing instance.  Locate this
  3205             // enclosing instance:
  3206             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3207                 env1 = env1.outer;
  3209         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3212     public void visitSelect(JCFieldAccess tree) {
  3213         // Determine the expected kind of the qualifier expression.
  3214         int skind = 0;
  3215         if (tree.name == names._this || tree.name == names._super ||
  3216             tree.name == names._class)
  3218             skind = TYP;
  3219         } else {
  3220             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3221             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3222             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3225         // Attribute the qualifier expression, and determine its symbol (if any).
  3226         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3227         if ((pkind() & (PCK | TYP)) == 0)
  3228             site = capture(site); // Capture field access
  3230         // don't allow T.class T[].class, etc
  3231         if (skind == TYP) {
  3232             Type elt = site;
  3233             while (elt.hasTag(ARRAY))
  3234                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3235             if (elt.hasTag(TYPEVAR)) {
  3236                 log.error(tree.pos(), "type.var.cant.be.deref");
  3237                 result = types.createErrorType(tree.type);
  3238                 return;
  3242         // If qualifier symbol is a type or `super', assert `selectSuper'
  3243         // for the selection. This is relevant for determining whether
  3244         // protected symbols are accessible.
  3245         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3246         boolean selectSuperPrev = env.info.selectSuper;
  3247         env.info.selectSuper =
  3248             sitesym != null &&
  3249             sitesym.name == names._super;
  3251         // Determine the symbol represented by the selection.
  3252         env.info.pendingResolutionPhase = null;
  3253         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3254         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3255             site = capture(site);
  3256             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3258         boolean varArgs = env.info.lastResolveVarargs();
  3259         tree.sym = sym;
  3261         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3262             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3263             site = capture(site);
  3266         // If that symbol is a variable, ...
  3267         if (sym.kind == VAR) {
  3268             VarSymbol v = (VarSymbol)sym;
  3270             // ..., evaluate its initializer, if it has one, and check for
  3271             // illegal forward reference.
  3272             checkInit(tree, env, v, true);
  3274             // If we are expecting a variable (as opposed to a value), check
  3275             // that the variable is assignable in the current environment.
  3276             if (pkind() == VAR)
  3277                 checkAssignable(tree.pos(), v, tree.selected, env);
  3280         if (sitesym != null &&
  3281                 sitesym.kind == VAR &&
  3282                 ((VarSymbol)sitesym).isResourceVariable() &&
  3283                 sym.kind == MTH &&
  3284                 sym.name.equals(names.close) &&
  3285                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3286                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3287             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3290         // Disallow selecting a type from an expression
  3291         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3292             tree.type = check(tree.selected, pt(),
  3293                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3296         if (isType(sitesym)) {
  3297             if (sym.name == names._this) {
  3298                 // If `C' is the currently compiled class, check that
  3299                 // C.this' does not appear in a call to a super(...)
  3300                 if (env.info.isSelfCall &&
  3301                     site.tsym == env.enclClass.sym) {
  3302                     chk.earlyRefError(tree.pos(), sym);
  3304             } else {
  3305                 // Check if type-qualified fields or methods are static (JLS)
  3306                 if ((sym.flags() & STATIC) == 0 &&
  3307                     !env.next.tree.hasTag(REFERENCE) &&
  3308                     sym.name != names._super &&
  3309                     (sym.kind == VAR || sym.kind == MTH)) {
  3310                     rs.accessBase(rs.new StaticError(sym),
  3311                               tree.pos(), site, sym.name, true);
  3314         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3315             // If the qualified item is not a type and the selected item is static, report
  3316             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3317             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3320         // If we are selecting an instance member via a `super', ...
  3321         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3323             // Check that super-qualified symbols are not abstract (JLS)
  3324             rs.checkNonAbstract(tree.pos(), sym);
  3326             if (site.isRaw()) {
  3327                 // Determine argument types for site.
  3328                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3329                 if (site1 != null) site = site1;
  3333         env.info.selectSuper = selectSuperPrev;
  3334         result = checkId(tree, site, sym, env, resultInfo);
  3336     //where
  3337         /** Determine symbol referenced by a Select expression,
  3339          *  @param tree   The select tree.
  3340          *  @param site   The type of the selected expression,
  3341          *  @param env    The current environment.
  3342          *  @param resultInfo The current result.
  3343          */
  3344         private Symbol selectSym(JCFieldAccess tree,
  3345                                  Symbol location,
  3346                                  Type site,
  3347                                  Env<AttrContext> env,
  3348                                  ResultInfo resultInfo) {
  3349             DiagnosticPosition pos = tree.pos();
  3350             Name name = tree.name;
  3351             switch (site.getTag()) {
  3352             case PACKAGE:
  3353                 return rs.accessBase(
  3354                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3355                     pos, location, site, name, true);
  3356             case ARRAY:
  3357             case CLASS:
  3358                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3359                     return rs.resolveQualifiedMethod(
  3360                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3361                 } else if (name == names._this || name == names._super) {
  3362                     return rs.resolveSelf(pos, env, site.tsym, name);
  3363                 } else if (name == names._class) {
  3364                     // In this case, we have already made sure in
  3365                     // visitSelect that qualifier expression is a type.
  3366                     Type t = syms.classType;
  3367                     List<Type> typeargs = allowGenerics
  3368                         ? List.of(types.erasure(site))
  3369                         : List.<Type>nil();
  3370                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3371                     return new VarSymbol(
  3372                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3373                 } else {
  3374                     // We are seeing a plain identifier as selector.
  3375                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3376                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3377                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3378                     return sym;
  3380             case WILDCARD:
  3381                 throw new AssertionError(tree);
  3382             case TYPEVAR:
  3383                 // Normally, site.getUpperBound() shouldn't be null.
  3384                 // It should only happen during memberEnter/attribBase
  3385                 // when determining the super type which *must* beac
  3386                 // done before attributing the type variables.  In
  3387                 // other words, we are seeing this illegal program:
  3388                 // class B<T> extends A<T.foo> {}
  3389                 Symbol sym = (site.getUpperBound() != null)
  3390                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3391                     : null;
  3392                 if (sym == null) {
  3393                     log.error(pos, "type.var.cant.be.deref");
  3394                     return syms.errSymbol;
  3395                 } else {
  3396                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3397                         rs.new AccessError(env, site, sym) :
  3398                                 sym;
  3399                     rs.accessBase(sym2, pos, location, site, name, true);
  3400                     return sym;
  3402             case ERROR:
  3403                 // preserve identifier names through errors
  3404                 return types.createErrorType(name, site.tsym, site).tsym;
  3405             default:
  3406                 // The qualifier expression is of a primitive type -- only
  3407                 // .class is allowed for these.
  3408                 if (name == names._class) {
  3409                     // In this case, we have already made sure in Select that
  3410                     // qualifier expression is a type.
  3411                     Type t = syms.classType;
  3412                     Type arg = types.boxedClass(site).type;
  3413                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3414                     return new VarSymbol(
  3415                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3416                 } else {
  3417                     log.error(pos, "cant.deref", site);
  3418                     return syms.errSymbol;
  3423         /** Determine type of identifier or select expression and check that
  3424          *  (1) the referenced symbol is not deprecated
  3425          *  (2) the symbol's type is safe (@see checkSafe)
  3426          *  (3) if symbol is a variable, check that its type and kind are
  3427          *      compatible with the prototype and protokind.
  3428          *  (4) if symbol is an instance field of a raw type,
  3429          *      which is being assigned to, issue an unchecked warning if its
  3430          *      type changes under erasure.
  3431          *  (5) if symbol is an instance method of a raw type, issue an
  3432          *      unchecked warning if its argument types change under erasure.
  3433          *  If checks succeed:
  3434          *    If symbol is a constant, return its constant type
  3435          *    else if symbol is a method, return its result type
  3436          *    otherwise return its type.
  3437          *  Otherwise return errType.
  3439          *  @param tree       The syntax tree representing the identifier
  3440          *  @param site       If this is a select, the type of the selected
  3441          *                    expression, otherwise the type of the current class.
  3442          *  @param sym        The symbol representing the identifier.
  3443          *  @param env        The current environment.
  3444          *  @param resultInfo    The expected result
  3445          */
  3446         Type checkId(JCTree tree,
  3447                      Type site,
  3448                      Symbol sym,
  3449                      Env<AttrContext> env,
  3450                      ResultInfo resultInfo) {
  3451             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3452                     checkMethodId(tree, site, sym, env, resultInfo) :
  3453                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3456         Type checkMethodId(JCTree tree,
  3457                      Type site,
  3458                      Symbol sym,
  3459                      Env<AttrContext> env,
  3460                      ResultInfo resultInfo) {
  3461             boolean isPolymorhicSignature =
  3462                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3463             return isPolymorhicSignature ?
  3464                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3465                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3468         Type checkSigPolyMethodId(JCTree tree,
  3469                      Type site,
  3470                      Symbol sym,
  3471                      Env<AttrContext> env,
  3472                      ResultInfo resultInfo) {
  3473             //recover original symbol for signature polymorphic methods
  3474             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3475             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3476             return sym.type;
  3479         Type checkMethodIdInternal(JCTree tree,
  3480                      Type site,
  3481                      Symbol sym,
  3482                      Env<AttrContext> env,
  3483                      ResultInfo resultInfo) {
  3484             if ((resultInfo.pkind & POLY) != 0) {
  3485                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3486                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3487                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3488                 return owntype;
  3489             } else {
  3490                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3494         Type checkIdInternal(JCTree tree,
  3495                      Type site,
  3496                      Symbol sym,
  3497                      Type pt,
  3498                      Env<AttrContext> env,
  3499                      ResultInfo resultInfo) {
  3500             if (pt.isErroneous()) {
  3501                 return types.createErrorType(site);
  3503             Type owntype; // The computed type of this identifier occurrence.
  3504             switch (sym.kind) {
  3505             case TYP:
  3506                 // For types, the computed type equals the symbol's type,
  3507                 // except for two situations:
  3508                 owntype = sym.type;
  3509                 if (owntype.hasTag(CLASS)) {
  3510                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3511                     Type ownOuter = owntype.getEnclosingType();
  3513                     // (a) If the symbol's type is parameterized, erase it
  3514                     // because no type parameters were given.
  3515                     // We recover generic outer type later in visitTypeApply.
  3516                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3517                         owntype = types.erasure(owntype);
  3520                     // (b) If the symbol's type is an inner class, then
  3521                     // we have to interpret its outer type as a superclass
  3522                     // of the site type. Example:
  3523                     //
  3524                     // class Tree<A> { class Visitor { ... } }
  3525                     // class PointTree extends Tree<Point> { ... }
  3526                     // ...PointTree.Visitor...
  3527                     //
  3528                     // Then the type of the last expression above is
  3529                     // Tree<Point>.Visitor.
  3530                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3531                         Type normOuter = site;
  3532                         if (normOuter.hasTag(CLASS)) {
  3533                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3535                         if (normOuter == null) // perhaps from an import
  3536                             normOuter = types.erasure(ownOuter);
  3537                         if (normOuter != ownOuter)
  3538                             owntype = new ClassType(
  3539                                 normOuter, List.<Type>nil(), owntype.tsym);
  3542                 break;
  3543             case VAR:
  3544                 VarSymbol v = (VarSymbol)sym;
  3545                 // Test (4): if symbol is an instance field of a raw type,
  3546                 // which is being assigned to, issue an unchecked warning if
  3547                 // its type changes under erasure.
  3548                 if (allowGenerics &&
  3549                     resultInfo.pkind == VAR &&
  3550                     v.owner.kind == TYP &&
  3551                     (v.flags() & STATIC) == 0 &&
  3552                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3553                     Type s = types.asOuterSuper(site, v.owner);
  3554                     if (s != null &&
  3555                         s.isRaw() &&
  3556                         !types.isSameType(v.type, v.erasure(types))) {
  3557                         chk.warnUnchecked(tree.pos(),
  3558                                           "unchecked.assign.to.var",
  3559                                           v, s);
  3562                 // The computed type of a variable is the type of the
  3563                 // variable symbol, taken as a member of the site type.
  3564                 owntype = (sym.owner.kind == TYP &&
  3565                            sym.name != names._this && sym.name != names._super)
  3566                     ? types.memberType(site, sym)
  3567                     : sym.type;
  3569                 // If the variable is a constant, record constant value in
  3570                 // computed type.
  3571                 if (v.getConstValue() != null && isStaticReference(tree))
  3572                     owntype = owntype.constType(v.getConstValue());
  3574                 if (resultInfo.pkind == VAL) {
  3575                     owntype = capture(owntype); // capture "names as expressions"
  3577                 break;
  3578             case MTH: {
  3579                 owntype = checkMethod(site, sym,
  3580                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3581                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3582                         resultInfo.pt.getTypeArguments());
  3583                 break;
  3585             case PCK: case ERR:
  3586                 owntype = sym.type;
  3587                 break;
  3588             default:
  3589                 throw new AssertionError("unexpected kind: " + sym.kind +
  3590                                          " in tree " + tree);
  3593             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3594             // (for constructors, the error was given when the constructor was
  3595             // resolved)
  3597             if (sym.name != names.init) {
  3598                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3599                 chk.checkSunAPI(tree.pos(), sym);
  3600                 chk.checkProfile(tree.pos(), sym);
  3603             // Test (3): if symbol is a variable, check that its type and
  3604             // kind are compatible with the prototype and protokind.
  3605             return check(tree, owntype, sym.kind, resultInfo);
  3608         /** Check that variable is initialized and evaluate the variable's
  3609          *  initializer, if not yet done. Also check that variable is not
  3610          *  referenced before it is defined.
  3611          *  @param tree    The tree making up the variable reference.
  3612          *  @param env     The current environment.
  3613          *  @param v       The variable's symbol.
  3614          */
  3615         private void checkInit(JCTree tree,
  3616                                Env<AttrContext> env,
  3617                                VarSymbol v,
  3618                                boolean onlyWarning) {
  3619 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3620 //                             tree.pos + " " + v.pos + " " +
  3621 //                             Resolve.isStatic(env));//DEBUG
  3623             // A forward reference is diagnosed if the declaration position
  3624             // of the variable is greater than the current tree position
  3625             // and the tree and variable definition occur in the same class
  3626             // definition.  Note that writes don't count as references.
  3627             // This check applies only to class and instance
  3628             // variables.  Local variables follow different scope rules,
  3629             // and are subject to definite assignment checking.
  3630             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3631                 v.owner.kind == TYP &&
  3632                 canOwnInitializer(owner(env)) &&
  3633                 v.owner == env.info.scope.owner.enclClass() &&
  3634                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3635                 (!env.tree.hasTag(ASSIGN) ||
  3636                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3637                 String suffix = (env.info.enclVar == v) ?
  3638                                 "self.ref" : "forward.ref";
  3639                 if (!onlyWarning || isStaticEnumField(v)) {
  3640                     log.error(tree.pos(), "illegal." + suffix);
  3641                 } else if (useBeforeDeclarationWarning) {
  3642                     log.warning(tree.pos(), suffix, v);
  3646             v.getConstValue(); // ensure initializer is evaluated
  3648             checkEnumInitializer(tree, env, v);
  3651         /**
  3652          * Check for illegal references to static members of enum.  In
  3653          * an enum type, constructors and initializers may not
  3654          * reference its static members unless they are constant.
  3656          * @param tree    The tree making up the variable reference.
  3657          * @param env     The current environment.
  3658          * @param v       The variable's symbol.
  3659          * @jls  section 8.9 Enums
  3660          */
  3661         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3662             // JLS:
  3663             //
  3664             // "It is a compile-time error to reference a static field
  3665             // of an enum type that is not a compile-time constant
  3666             // (15.28) from constructors, instance initializer blocks,
  3667             // or instance variable initializer expressions of that
  3668             // type. It is a compile-time error for the constructors,
  3669             // instance initializer blocks, or instance variable
  3670             // initializer expressions of an enum constant e to refer
  3671             // to itself or to an enum constant of the same type that
  3672             // is declared to the right of e."
  3673             if (isStaticEnumField(v)) {
  3674                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3676                 if (enclClass == null || enclClass.owner == null)
  3677                     return;
  3679                 // See if the enclosing class is the enum (or a
  3680                 // subclass thereof) declaring v.  If not, this
  3681                 // reference is OK.
  3682                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3683                     return;
  3685                 // If the reference isn't from an initializer, then
  3686                 // the reference is OK.
  3687                 if (!Resolve.isInitializer(env))
  3688                     return;
  3690                 log.error(tree.pos(), "illegal.enum.static.ref");
  3694         /** Is the given symbol a static, non-constant field of an Enum?
  3695          *  Note: enum literals should not be regarded as such
  3696          */
  3697         private boolean isStaticEnumField(VarSymbol v) {
  3698             return Flags.isEnum(v.owner) &&
  3699                    Flags.isStatic(v) &&
  3700                    !Flags.isConstant(v) &&
  3701                    v.name != names._class;
  3704         /** Can the given symbol be the owner of code which forms part
  3705          *  if class initialization? This is the case if the symbol is
  3706          *  a type or field, or if the symbol is the synthetic method.
  3707          *  owning a block.
  3708          */
  3709         private boolean canOwnInitializer(Symbol sym) {
  3710             return
  3711                 (sym.kind & (VAR | TYP)) != 0 ||
  3712                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3715     Warner noteWarner = new Warner();
  3717     /**
  3718      * Check that method arguments conform to its instantiation.
  3719      **/
  3720     public Type checkMethod(Type site,
  3721                             final Symbol sym,
  3722                             ResultInfo resultInfo,
  3723                             Env<AttrContext> env,
  3724                             final List<JCExpression> argtrees,
  3725                             List<Type> argtypes,
  3726                             List<Type> typeargtypes) {
  3727         // Test (5): if symbol is an instance method of a raw type, issue
  3728         // an unchecked warning if its argument types change under erasure.
  3729         if (allowGenerics &&
  3730             (sym.flags() & STATIC) == 0 &&
  3731             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3732             Type s = types.asOuterSuper(site, sym.owner);
  3733             if (s != null && s.isRaw() &&
  3734                 !types.isSameTypes(sym.type.getParameterTypes(),
  3735                                    sym.erasure(types).getParameterTypes())) {
  3736                 chk.warnUnchecked(env.tree.pos(),
  3737                                   "unchecked.call.mbr.of.raw.type",
  3738                                   sym, s);
  3742         if (env.info.defaultSuperCallSite != null) {
  3743             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3744                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3745                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3746                 List<MethodSymbol> icand_sup =
  3747                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3748                 if (icand_sup.nonEmpty() &&
  3749                         icand_sup.head != sym &&
  3750                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3751                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3752                         diags.fragment("overridden.default", sym, sup));
  3753                     break;
  3756             env.info.defaultSuperCallSite = null;
  3759         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3760             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3761             if (app.meth.hasTag(SELECT) &&
  3762                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3763                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3767         // Compute the identifier's instantiated type.
  3768         // For methods, we need to compute the instance type by
  3769         // Resolve.instantiate from the symbol's type as well as
  3770         // any type arguments and value arguments.
  3771         noteWarner.clear();
  3772         try {
  3773             Type owntype = rs.checkMethod(
  3774                     env,
  3775                     site,
  3776                     sym,
  3777                     resultInfo,
  3778                     argtypes,
  3779                     typeargtypes,
  3780                     noteWarner);
  3782             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3783                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3785             argtypes = Type.map(argtypes, checkDeferredMap);
  3787             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3788                 chk.warnUnchecked(env.tree.pos(),
  3789                         "unchecked.meth.invocation.applied",
  3790                         kindName(sym),
  3791                         sym.name,
  3792                         rs.methodArguments(sym.type.getParameterTypes()),
  3793                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3794                         kindName(sym.location()),
  3795                         sym.location());
  3796                owntype = new MethodType(owntype.getParameterTypes(),
  3797                        types.erasure(owntype.getReturnType()),
  3798                        types.erasure(owntype.getThrownTypes()),
  3799                        syms.methodClass);
  3802             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3803                     resultInfo.checkContext.inferenceContext());
  3804         } catch (Infer.InferenceException ex) {
  3805             //invalid target type - propagate exception outwards or report error
  3806             //depending on the current check context
  3807             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3808             return types.createErrorType(site);
  3809         } catch (Resolve.InapplicableMethodException ex) {
  3810             final JCDiagnostic diag = ex.getDiagnostic();
  3811             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3812                 @Override
  3813                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3814                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3816             };
  3817             List<Type> argtypes2 = Type.map(argtypes,
  3818                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3819             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3820                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3821             log.report(errDiag);
  3822             return types.createErrorType(site);
  3826     public void visitLiteral(JCLiteral tree) {
  3827         result = check(
  3828             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3830     //where
  3831     /** Return the type of a literal with given type tag.
  3832      */
  3833     Type litType(TypeTag tag) {
  3834         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3837     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3838         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3841     public void visitTypeArray(JCArrayTypeTree tree) {
  3842         Type etype = attribType(tree.elemtype, env);
  3843         Type type = new ArrayType(etype, syms.arrayClass);
  3844         result = check(tree, type, TYP, resultInfo);
  3847     /** Visitor method for parameterized types.
  3848      *  Bound checking is left until later, since types are attributed
  3849      *  before supertype structure is completely known
  3850      */
  3851     public void visitTypeApply(JCTypeApply tree) {
  3852         Type owntype = types.createErrorType(tree.type);
  3854         // Attribute functor part of application and make sure it's a class.
  3855         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3857         // Attribute type parameters
  3858         List<Type> actuals = attribTypes(tree.arguments, env);
  3860         if (clazztype.hasTag(CLASS)) {
  3861             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3862             if (actuals.isEmpty()) //diamond
  3863                 actuals = formals;
  3865             if (actuals.length() == formals.length()) {
  3866                 List<Type> a = actuals;
  3867                 List<Type> f = formals;
  3868                 while (a.nonEmpty()) {
  3869                     a.head = a.head.withTypeVar(f.head);
  3870                     a = a.tail;
  3871                     f = f.tail;
  3873                 // Compute the proper generic outer
  3874                 Type clazzOuter = clazztype.getEnclosingType();
  3875                 if (clazzOuter.hasTag(CLASS)) {
  3876                     Type site;
  3877                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3878                     if (clazz.hasTag(IDENT)) {
  3879                         site = env.enclClass.sym.type;
  3880                     } else if (clazz.hasTag(SELECT)) {
  3881                         site = ((JCFieldAccess) clazz).selected.type;
  3882                     } else throw new AssertionError(""+tree);
  3883                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3884                         if (site.hasTag(CLASS))
  3885                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3886                         if (site == null)
  3887                             site = types.erasure(clazzOuter);
  3888                         clazzOuter = site;
  3891                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3892             } else {
  3893                 if (formals.length() != 0) {
  3894                     log.error(tree.pos(), "wrong.number.type.args",
  3895                               Integer.toString(formals.length()));
  3896                 } else {
  3897                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3899                 owntype = types.createErrorType(tree.type);
  3902         result = check(tree, owntype, TYP, resultInfo);
  3905     public void visitTypeUnion(JCTypeUnion tree) {
  3906         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3907         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3908         for (JCExpression typeTree : tree.alternatives) {
  3909             Type ctype = attribType(typeTree, env);
  3910             ctype = chk.checkType(typeTree.pos(),
  3911                           chk.checkClassType(typeTree.pos(), ctype),
  3912                           syms.throwableType);
  3913             if (!ctype.isErroneous()) {
  3914                 //check that alternatives of a union type are pairwise
  3915                 //unrelated w.r.t. subtyping
  3916                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3917                     for (Type t : multicatchTypes) {
  3918                         boolean sub = types.isSubtype(ctype, t);
  3919                         boolean sup = types.isSubtype(t, ctype);
  3920                         if (sub || sup) {
  3921                             //assume 'a' <: 'b'
  3922                             Type a = sub ? ctype : t;
  3923                             Type b = sub ? t : ctype;
  3924                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3928                 multicatchTypes.append(ctype);
  3929                 if (all_multicatchTypes != null)
  3930                     all_multicatchTypes.append(ctype);
  3931             } else {
  3932                 if (all_multicatchTypes == null) {
  3933                     all_multicatchTypes = new ListBuffer<>();
  3934                     all_multicatchTypes.appendList(multicatchTypes);
  3936                 all_multicatchTypes.append(ctype);
  3939         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3940         if (t.hasTag(CLASS)) {
  3941             List<Type> alternatives =
  3942                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3943             t = new UnionClassType((ClassType) t, alternatives);
  3945         tree.type = result = t;
  3948     public void visitTypeIntersection(JCTypeIntersection tree) {
  3949         attribTypes(tree.bounds, env);
  3950         tree.type = result = checkIntersection(tree, tree.bounds);
  3953     public void visitTypeParameter(JCTypeParameter tree) {
  3954         TypeVar typeVar = (TypeVar) tree.type;
  3956         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3957             annotateType(tree, tree.annotations);
  3960         if (!typeVar.bound.isErroneous()) {
  3961             //fixup type-parameter bound computed in 'attribTypeVariables'
  3962             typeVar.bound = checkIntersection(tree, tree.bounds);
  3966     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3967         Set<Type> boundSet = new HashSet<Type>();
  3968         if (bounds.nonEmpty()) {
  3969             // accept class or interface or typevar as first bound.
  3970             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false, false);
  3971             boundSet.add(types.erasure(bounds.head.type));
  3972             if (bounds.head.type.isErroneous()) {
  3973                 return bounds.head.type;
  3975             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3976                 // if first bound was a typevar, do not accept further bounds.
  3977                 if (bounds.tail.nonEmpty()) {
  3978                     log.error(bounds.tail.head.pos(),
  3979                               "type.var.may.not.be.followed.by.other.bounds");
  3980                     return bounds.head.type;
  3982             } else {
  3983                 // if first bound was a class or interface, accept only interfaces
  3984                 // as further bounds.
  3985                 for (JCExpression bound : bounds.tail) {
  3986                     bound.type = checkBase(bound.type, bound, env, false, false, true, false);
  3987                     if (bound.type.isErroneous()) {
  3988                         bounds = List.of(bound);
  3990                     else if (bound.type.hasTag(CLASS)) {
  3991                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  3997         if (bounds.length() == 0) {
  3998             return syms.objectType;
  3999         } else if (bounds.length() == 1) {
  4000             return bounds.head.type;
  4001         } else {
  4002             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  4003             if (tree.hasTag(TYPEINTERSECTION)) {
  4004                 ((IntersectionClassType)owntype).intersectionKind =
  4005                         IntersectionClassType.IntersectionKind.EXPLICIT;
  4007             // ... the variable's bound is a class type flagged COMPOUND
  4008             // (see comment for TypeVar.bound).
  4009             // In this case, generate a class tree that represents the
  4010             // bound class, ...
  4011             JCExpression extending;
  4012             List<JCExpression> implementing;
  4013             if (!bounds.head.type.isInterface()) {
  4014                 extending = bounds.head;
  4015                 implementing = bounds.tail;
  4016             } else {
  4017                 extending = null;
  4018                 implementing = bounds;
  4020             JCClassDecl cd = make.at(tree).ClassDef(
  4021                 make.Modifiers(PUBLIC | ABSTRACT),
  4022                 names.empty, List.<JCTypeParameter>nil(),
  4023                 extending, implementing, List.<JCTree>nil());
  4025             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4026             Assert.check((c.flags() & COMPOUND) != 0);
  4027             cd.sym = c;
  4028             c.sourcefile = env.toplevel.sourcefile;
  4030             // ... and attribute the bound class
  4031             c.flags_field |= UNATTRIBUTED;
  4032             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4033             enter.typeEnvs.put(c, cenv);
  4034             attribClass(c);
  4035             return owntype;
  4039     public void visitWildcard(JCWildcard tree) {
  4040         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4041         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4042             ? syms.objectType
  4043             : attribType(tree.inner, env);
  4044         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4045                                               tree.kind.kind,
  4046                                               syms.boundClass),
  4047                        TYP, resultInfo);
  4050     public void visitAnnotation(JCAnnotation tree) {
  4051         Assert.error("should be handled in Annotate");
  4054     public void visitAnnotatedType(JCAnnotatedType tree) {
  4055         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4056         this.attribAnnotationTypes(tree.annotations, env);
  4057         annotateType(tree, tree.annotations);
  4058         result = tree.type = underlyingType;
  4061     /**
  4062      * Apply the annotations to the particular type.
  4063      */
  4064     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
  4065         annotate.typeAnnotation(new Annotate.Worker() {
  4066             @Override
  4067             public String toString() {
  4068                 return "annotate " + annotations + " onto " + tree;
  4070             @Override
  4071             public void run() {
  4072                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4073                 if (annotations.size() == compounds.size()) {
  4074                     // All annotations were successfully converted into compounds
  4075                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
  4078         });
  4081     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4082         if (annotations.isEmpty())
  4083             return List.nil();
  4085         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4086         for (JCAnnotation anno : annotations) {
  4087             if (anno.attribute != null) {
  4088                 // TODO: this null-check is only needed for an obscure
  4089                 // ordering issue, where annotate.flush is called when
  4090                 // the attribute is not set yet. For an example failure
  4091                 // try the referenceinfos/NestedTypes.java test.
  4092                 // Any better solutions?
  4093                 buf.append((Attribute.TypeCompound) anno.attribute);
  4096         return buf.toList();
  4099     public void visitErroneous(JCErroneous tree) {
  4100         if (tree.errs != null)
  4101             for (JCTree err : tree.errs)
  4102                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4103         result = tree.type = syms.errType;
  4106     /** Default visitor method for all other trees.
  4107      */
  4108     public void visitTree(JCTree tree) {
  4109         throw new AssertionError();
  4112     /**
  4113      * Attribute an env for either a top level tree or class declaration.
  4114      */
  4115     public void attrib(Env<AttrContext> env) {
  4116         if (env.tree.hasTag(TOPLEVEL))
  4117             attribTopLevel(env);
  4118         else
  4119             attribClass(env.tree.pos(), env.enclClass.sym);
  4122     /**
  4123      * Attribute a top level tree. These trees are encountered when the
  4124      * package declaration has annotations.
  4125      */
  4126     public void attribTopLevel(Env<AttrContext> env) {
  4127         JCCompilationUnit toplevel = env.toplevel;
  4128         try {
  4129             annotate.flush();
  4130         } catch (CompletionFailure ex) {
  4131             chk.completionError(toplevel.pos(), ex);
  4135     /** Main method: attribute class definition associated with given class symbol.
  4136      *  reporting completion failures at the given position.
  4137      *  @param pos The source position at which completion errors are to be
  4138      *             reported.
  4139      *  @param c   The class symbol whose definition will be attributed.
  4140      */
  4141     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4142         try {
  4143             annotate.flush();
  4144             attribClass(c);
  4145         } catch (CompletionFailure ex) {
  4146             chk.completionError(pos, ex);
  4150     /** Attribute class definition associated with given class symbol.
  4151      *  @param c   The class symbol whose definition will be attributed.
  4152      */
  4153     void attribClass(ClassSymbol c) throws CompletionFailure {
  4154         if (c.type.hasTag(ERROR)) return;
  4156         // Check for cycles in the inheritance graph, which can arise from
  4157         // ill-formed class files.
  4158         chk.checkNonCyclic(null, c.type);
  4160         Type st = types.supertype(c.type);
  4161         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4162             // First, attribute superclass.
  4163             if (st.hasTag(CLASS))
  4164                 attribClass((ClassSymbol)st.tsym);
  4166             // Next attribute owner, if it is a class.
  4167             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4168                 attribClass((ClassSymbol)c.owner);
  4171         // The previous operations might have attributed the current class
  4172         // if there was a cycle. So we test first whether the class is still
  4173         // UNATTRIBUTED.
  4174         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4175             c.flags_field &= ~UNATTRIBUTED;
  4177             // Get environment current at the point of class definition.
  4178             Env<AttrContext> env = enter.typeEnvs.get(c);
  4180             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  4181             // because the annotations were not available at the time the env was created. Therefore,
  4182             // we look up the environment chain for the first enclosing environment for which the
  4183             // lint value is set. Typically, this is the parent env, but might be further if there
  4184             // are any envs created as a result of TypeParameter nodes.
  4185             Env<AttrContext> lintEnv = env;
  4186             while (lintEnv.info.lint == null)
  4187                 lintEnv = lintEnv.next;
  4189             // Having found the enclosing lint value, we can initialize the lint value for this class
  4190             env.info.lint = lintEnv.info.lint.augment(c);
  4192             Lint prevLint = chk.setLint(env.info.lint);
  4193             JavaFileObject prev = log.useSource(c.sourcefile);
  4194             ResultInfo prevReturnRes = env.info.returnResult;
  4196             try {
  4197                 deferredLintHandler.flush(env.tree);
  4198                 env.info.returnResult = null;
  4199                 // java.lang.Enum may not be subclassed by a non-enum
  4200                 if (st.tsym == syms.enumSym &&
  4201                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4202                     log.error(env.tree.pos(), "enum.no.subclassing");
  4204                 // Enums may not be extended by source-level classes
  4205                 if (st.tsym != null &&
  4206                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4207                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4208                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4210                 attribClassBody(env, c);
  4212                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4213                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4214                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
  4215             } finally {
  4216                 env.info.returnResult = prevReturnRes;
  4217                 log.useSource(prev);
  4218                 chk.setLint(prevLint);
  4224     public void visitImport(JCImport tree) {
  4225         // nothing to do
  4228     /** Finish the attribution of a class. */
  4229     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4230         JCClassDecl tree = (JCClassDecl)env.tree;
  4231         Assert.check(c == tree.sym);
  4233         // Validate type parameters, supertype and interfaces.
  4234         attribStats(tree.typarams, env);
  4235         if (!c.isAnonymous()) {
  4236             //already checked if anonymous
  4237             chk.validate(tree.typarams, env);
  4238             chk.validate(tree.extending, env);
  4239             chk.validate(tree.implementing, env);
  4242         // If this is a non-abstract class, check that it has no abstract
  4243         // methods or unimplemented methods of an implemented interface.
  4244         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4245             if (!relax)
  4246                 chk.checkAllDefined(tree.pos(), c);
  4249         if ((c.flags() & ANNOTATION) != 0) {
  4250             if (tree.implementing.nonEmpty())
  4251                 log.error(tree.implementing.head.pos(),
  4252                           "cant.extend.intf.annotation");
  4253             if (tree.typarams.nonEmpty())
  4254                 log.error(tree.typarams.head.pos(),
  4255                           "intf.annotation.cant.have.type.params");
  4257             // If this annotation has a @Repeatable, validate
  4258             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4259             if (repeatable != null) {
  4260                 // get diagnostic position for error reporting
  4261                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4262                 Assert.checkNonNull(cbPos);
  4264                 chk.validateRepeatable(c, repeatable, cbPos);
  4266         } else {
  4267             // Check that all extended classes and interfaces
  4268             // are compatible (i.e. no two define methods with same arguments
  4269             // yet different return types).  (JLS 8.4.6.3)
  4270             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4271             if (allowDefaultMethods) {
  4272                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4276         // Check that class does not import the same parameterized interface
  4277         // with two different argument lists.
  4278         chk.checkClassBounds(tree.pos(), c.type);
  4280         tree.type = c.type;
  4282         for (List<JCTypeParameter> l = tree.typarams;
  4283              l.nonEmpty(); l = l.tail) {
  4284              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4287         // Check that a generic class doesn't extend Throwable
  4288         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4289             log.error(tree.extending.pos(), "generic.throwable");
  4291         // Check that all methods which implement some
  4292         // method conform to the method they implement.
  4293         chk.checkImplementations(tree);
  4295         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4296         checkAutoCloseable(tree.pos(), env, c.type);
  4298         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4299             // Attribute declaration
  4300             attribStat(l.head, env);
  4301             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4302             // Make an exception for static constants.
  4303             if (c.owner.kind != PCK &&
  4304                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4305                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4306                 Symbol sym = null;
  4307                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4308                 if (sym == null ||
  4309                     sym.kind != VAR ||
  4310                     ((VarSymbol) sym).getConstValue() == null)
  4311                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4315         // Check for cycles among non-initial constructors.
  4316         chk.checkCyclicConstructors(tree);
  4318         // Check for cycles among annotation elements.
  4319         chk.checkNonCyclicElements(tree);
  4321         // Check for proper use of serialVersionUID
  4322         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4323             isSerializable(c) &&
  4324             (c.flags() & Flags.ENUM) == 0 &&
  4325             checkForSerial(c)) {
  4326             checkSerialVersionUID(tree, c);
  4328         if (allowTypeAnnos) {
  4329             // Correctly organize the postions of the type annotations
  4330             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4332             // Check type annotations applicability rules
  4333             validateTypeAnnotations(tree, false);
  4336         // where
  4337         boolean checkForSerial(ClassSymbol c) {
  4338             if ((c.flags() & ABSTRACT) == 0) {
  4339                 return true;
  4340             } else {
  4341                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4345         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4346             @Override
  4347             public boolean accepts(Symbol s) {
  4348                 return s.kind == Kinds.MTH &&
  4349                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4351         };
  4353         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4354         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4355             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4356                 if (types.isSameType(al.head.annotationType.type, t))
  4357                     return al.head.pos();
  4360             return null;
  4363         /** check if a class is a subtype of Serializable, if that is available. */
  4364         private boolean isSerializable(ClassSymbol c) {
  4365             try {
  4366                 syms.serializableType.complete();
  4368             catch (CompletionFailure e) {
  4369                 return false;
  4371             return types.isSubtype(c.type, syms.serializableType);
  4374         /** Check that an appropriate serialVersionUID member is defined. */
  4375         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4377             // check for presence of serialVersionUID
  4378             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4379             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4380             if (e.scope == null) {
  4381                 log.warning(LintCategory.SERIAL,
  4382                         tree.pos(), "missing.SVUID", c);
  4383                 return;
  4386             // check that it is static final
  4387             VarSymbol svuid = (VarSymbol)e.sym;
  4388             if ((svuid.flags() & (STATIC | FINAL)) !=
  4389                 (STATIC | FINAL))
  4390                 log.warning(LintCategory.SERIAL,
  4391                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4393             // check that it is long
  4394             else if (!svuid.type.hasTag(LONG))
  4395                 log.warning(LintCategory.SERIAL,
  4396                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4398             // check constant
  4399             else if (svuid.getConstValue() == null)
  4400                 log.warning(LintCategory.SERIAL,
  4401                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4404     private Type capture(Type type) {
  4405         return types.capture(type);
  4408     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
  4409         tree.accept(new TypeAnnotationsValidator(sigOnly));
  4411     //where
  4412     private final class TypeAnnotationsValidator extends TreeScanner {
  4414         private final boolean sigOnly;
  4415         public TypeAnnotationsValidator(boolean sigOnly) {
  4416             this.sigOnly = sigOnly;
  4419         public void visitAnnotation(JCAnnotation tree) {
  4420             chk.validateTypeAnnotation(tree, false);
  4421             super.visitAnnotation(tree);
  4423         public void visitAnnotatedType(JCAnnotatedType tree) {
  4424             if (!tree.underlyingType.type.isErroneous()) {
  4425                 super.visitAnnotatedType(tree);
  4428         public void visitTypeParameter(JCTypeParameter tree) {
  4429             chk.validateTypeAnnotations(tree.annotations, true);
  4430             scan(tree.bounds);
  4431             // Don't call super.
  4432             // This is needed because above we call validateTypeAnnotation with
  4433             // false, which would forbid annotations on type parameters.
  4434             // super.visitTypeParameter(tree);
  4436         public void visitMethodDef(JCMethodDecl tree) {
  4437             if (tree.recvparam != null &&
  4438                     tree.recvparam.vartype.type.getKind() != TypeKind.ERROR) {
  4439                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4440                         tree.recvparam.vartype.type.tsym);
  4442             if (tree.restype != null && tree.restype.type != null) {
  4443                 validateAnnotatedType(tree.restype, tree.restype.type);
  4445             if (sigOnly) {
  4446                 scan(tree.mods);
  4447                 scan(tree.restype);
  4448                 scan(tree.typarams);
  4449                 scan(tree.recvparam);
  4450                 scan(tree.params);
  4451                 scan(tree.thrown);
  4452             } else {
  4453                 scan(tree.defaultValue);
  4454                 scan(tree.body);
  4457         public void visitVarDef(final JCVariableDecl tree) {
  4458             if (tree.sym != null && tree.sym.type != null)
  4459                 validateAnnotatedType(tree.vartype, tree.sym.type);
  4460             scan(tree.mods);
  4461             scan(tree.vartype);
  4462             if (!sigOnly) {
  4463                 scan(tree.init);
  4466         public void visitTypeCast(JCTypeCast tree) {
  4467             if (tree.clazz != null && tree.clazz.type != null)
  4468                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4469             super.visitTypeCast(tree);
  4471         public void visitTypeTest(JCInstanceOf tree) {
  4472             if (tree.clazz != null && tree.clazz.type != null)
  4473                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4474             super.visitTypeTest(tree);
  4476         public void visitNewClass(JCNewClass tree) {
  4477             if (tree.clazz.type != null)
  4478                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4479             super.visitNewClass(tree);
  4481         public void visitNewArray(JCNewArray tree) {
  4482             if (tree.elemtype != null && tree.elemtype.type != null)
  4483                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
  4484             super.visitNewArray(tree);
  4487         @Override
  4488         public void visitClassDef(JCClassDecl tree) {
  4489             if (sigOnly) {
  4490                 scan(tree.mods);
  4491                 scan(tree.typarams);
  4492                 scan(tree.extending);
  4493                 scan(tree.implementing);
  4495             for (JCTree member : tree.defs) {
  4496                 if (member.hasTag(Tag.CLASSDEF)) {
  4497                     continue;
  4499                 scan(member);
  4503         @Override
  4504         public void visitBlock(JCBlock tree) {
  4505             if (!sigOnly) {
  4506                 scan(tree.stats);
  4510         /* I would want to model this after
  4511          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4512          * and override visitSelect and visitTypeApply.
  4513          * However, we only set the annotated type in the top-level type
  4514          * of the symbol.
  4515          * Therefore, we need to override each individual location where a type
  4516          * can occur.
  4517          */
  4518         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4519             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
  4521             if (type.isPrimitiveOrVoid()) {
  4522                 return;
  4525             JCTree enclTr = errtree;
  4526             Type enclTy = type;
  4528             boolean repeat = true;
  4529             while (repeat) {
  4530                 if (enclTr.hasTag(TYPEAPPLY)) {
  4531                     List<Type> tyargs = enclTy.getTypeArguments();
  4532                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
  4533                     if (trargs.length() > 0) {
  4534                         // Nothing to do for diamonds
  4535                         if (tyargs.length() == trargs.length()) {
  4536                             for (int i = 0; i < tyargs.length(); ++i) {
  4537                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
  4540                         // If the lengths don't match, it's either a diamond
  4541                         // or some nested type that redundantly provides
  4542                         // type arguments in the tree.
  4545                     // Look at the clazz part of a generic type
  4546                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
  4549                 if (enclTr.hasTag(SELECT)) {
  4550                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
  4551                     if (enclTy != null &&
  4552                             !enclTy.hasTag(NONE)) {
  4553                         enclTy = enclTy.getEnclosingType();
  4555                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
  4556                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
  4557                     if (enclTy == null ||
  4558                             enclTy.hasTag(NONE)) {
  4559                         if (at.getAnnotations().size() == 1) {
  4560                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
  4561                         } else {
  4562                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
  4563                             for (JCAnnotation an : at.getAnnotations()) {
  4564                                 comps.add(an.attribute);
  4566                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
  4568                         repeat = false;
  4570                     enclTr = at.underlyingType;
  4571                     // enclTy doesn't need to be changed
  4572                 } else if (enclTr.hasTag(IDENT)) {
  4573                     repeat = false;
  4574                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
  4575                     JCWildcard wc = (JCWildcard) enclTr;
  4576                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
  4577                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
  4578                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
  4579                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
  4580                     } else {
  4581                         // Nothing to do for UNBOUND
  4583                     repeat = false;
  4584                 } else if (enclTr.hasTag(TYPEARRAY)) {
  4585                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
  4586                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
  4587                     repeat = false;
  4588                 } else if (enclTr.hasTag(TYPEUNION)) {
  4589                     JCTypeUnion ut = (JCTypeUnion) enclTr;
  4590                     for (JCTree t : ut.getTypeAlternatives()) {
  4591                         validateAnnotatedType(t, t.type);
  4593                     repeat = false;
  4594                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
  4595                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
  4596                     for (JCTree t : it.getBounds()) {
  4597                         validateAnnotatedType(t, t.type);
  4599                     repeat = false;
  4600                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE) {
  4601                     // This happens in test TargetTypeTest52.java
  4602                     // Is there anything to do?
  4603                     repeat = false;
  4604                 } else {
  4605                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
  4606                             " within: "+ errtree + " with kind: " + errtree.getKind());
  4610     };
  4612     // <editor-fold desc="post-attribution visitor">
  4614     /**
  4615      * Handle missing types/symbols in an AST. This routine is useful when
  4616      * the compiler has encountered some errors (which might have ended up
  4617      * terminating attribution abruptly); if the compiler is used in fail-over
  4618      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4619      * prevents NPE to be progagated during subsequent compilation steps.
  4620      */
  4621     public void postAttr(JCTree tree) {
  4622         new PostAttrAnalyzer().scan(tree);
  4625     class PostAttrAnalyzer extends TreeScanner {
  4627         private void initTypeIfNeeded(JCTree that) {
  4628             if (that.type == null) {
  4629                 that.type = syms.unknownType;
  4633         @Override
  4634         public void scan(JCTree tree) {
  4635             if (tree == null) return;
  4636             if (tree instanceof JCExpression) {
  4637                 initTypeIfNeeded(tree);
  4639             super.scan(tree);
  4642         @Override
  4643         public void visitIdent(JCIdent that) {
  4644             if (that.sym == null) {
  4645                 that.sym = syms.unknownSymbol;
  4649         @Override
  4650         public void visitSelect(JCFieldAccess that) {
  4651             if (that.sym == null) {
  4652                 that.sym = syms.unknownSymbol;
  4654             super.visitSelect(that);
  4657         @Override
  4658         public void visitClassDef(JCClassDecl that) {
  4659             initTypeIfNeeded(that);
  4660             if (that.sym == null) {
  4661                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4663             super.visitClassDef(that);
  4666         @Override
  4667         public void visitMethodDef(JCMethodDecl that) {
  4668             initTypeIfNeeded(that);
  4669             if (that.sym == null) {
  4670                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4672             super.visitMethodDef(that);
  4675         @Override
  4676         public void visitVarDef(JCVariableDecl that) {
  4677             initTypeIfNeeded(that);
  4678             if (that.sym == null) {
  4679                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4680                 that.sym.adr = 0;
  4682             super.visitVarDef(that);
  4685         @Override
  4686         public void visitNewClass(JCNewClass that) {
  4687             if (that.constructor == null) {
  4688                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4690             if (that.constructorType == null) {
  4691                 that.constructorType = syms.unknownType;
  4693             super.visitNewClass(that);
  4696         @Override
  4697         public void visitAssignop(JCAssignOp that) {
  4698             if (that.operator == null)
  4699                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4700             super.visitAssignop(that);
  4703         @Override
  4704         public void visitBinary(JCBinary that) {
  4705             if (that.operator == null)
  4706                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4707             super.visitBinary(that);
  4710         @Override
  4711         public void visitUnary(JCUnary that) {
  4712             if (that.operator == null)
  4713                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4714             super.visitUnary(that);
  4717         @Override
  4718         public void visitLambda(JCLambda that) {
  4719             super.visitLambda(that);
  4720             if (that.targets == null) {
  4721                 that.targets = List.nil();
  4725         @Override
  4726         public void visitReference(JCMemberReference that) {
  4727             super.visitReference(that);
  4728             if (that.sym == null) {
  4729                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4731             if (that.targets == null) {
  4732                 that.targets = List.nil();
  4736     // </editor-fold>

mercurial