src/share/classes/com/sun/tools/javac/code/Types.java

Sat, 15 Dec 2012 13:54:51 +0000

author
vromero
date
Sat, 15 Dec 2012 13:54:51 +0000
changeset 1452
de1ec6fc93fe
parent 1442
fcf89720ae71
child 1497
7aa2025bbb7b
permissions
-rw-r--r--

8000518: Javac generates duplicate name_and_type constant pool entry for class BinaryOpValueExp.java
Reviewed-by: jjg, mcimadamore

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.Comparator;
    30 import java.util.HashSet;
    31 import java.util.HashMap;
    32 import java.util.Locale;
    33 import java.util.Map;
    34 import java.util.Set;
    35 import java.util.WeakHashMap;
    37 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    38 import com.sun.tools.javac.code.Lint.LintCategory;
    39 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    40 import com.sun.tools.javac.comp.Check;
    41 import com.sun.tools.javac.jvm.ClassReader;
    42 import com.sun.tools.javac.util.*;
    43 import com.sun.tools.javac.util.List;
    44 import static com.sun.tools.javac.code.BoundKind.*;
    45 import static com.sun.tools.javac.code.Flags.*;
    46 import static com.sun.tools.javac.code.Scope.*;
    47 import static com.sun.tools.javac.code.Symbol.*;
    48 import static com.sun.tools.javac.code.Type.*;
    49 import static com.sun.tools.javac.code.TypeTag.*;
    50 import static com.sun.tools.javac.util.ListBuffer.lb;
    52 /**
    53  * Utility class containing various operations on types.
    54  *
    55  * <p>Unless other names are more illustrative, the following naming
    56  * conventions should be observed in this file:
    57  *
    58  * <dl>
    59  * <dt>t</dt>
    60  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    61  * <dt>s</dt>
    62  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    63  * <dt>ts</dt>
    64  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    65  * <dt>ss</dt>
    66  * <dd>A second list of types should be named ss.</dd>
    67  * </dl>
    68  *
    69  * <p><b>This is NOT part of any supported API.
    70  * If you write code that depends on this, you do so at your own risk.
    71  * This code and its internal interfaces are subject to change or
    72  * deletion without notice.</b>
    73  */
    74 public class Types {
    75     protected static final Context.Key<Types> typesKey =
    76         new Context.Key<Types>();
    78     final Symtab syms;
    79     final JavacMessages messages;
    80     final Names names;
    81     final boolean allowBoxing;
    82     final boolean allowCovariantReturns;
    83     final boolean allowObjectToPrimitiveCast;
    84     final boolean allowDefaultMethods;
    85     final ClassReader reader;
    86     final Check chk;
    87     JCDiagnostic.Factory diags;
    88     List<Warner> warnStack = List.nil();
    89     final Name capturedName;
    90     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    92     public final Warner noWarnings;
    94     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    95     public static Types instance(Context context) {
    96         Types instance = context.get(typesKey);
    97         if (instance == null)
    98             instance = new Types(context);
    99         return instance;
   100     }
   102     protected Types(Context context) {
   103         context.put(typesKey, this);
   104         syms = Symtab.instance(context);
   105         names = Names.instance(context);
   106         Source source = Source.instance(context);
   107         allowBoxing = source.allowBoxing();
   108         allowCovariantReturns = source.allowCovariantReturns();
   109         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   110         allowDefaultMethods = source.allowDefaultMethods();
   111         reader = ClassReader.instance(context);
   112         chk = Check.instance(context);
   113         capturedName = names.fromString("<captured wildcard>");
   114         messages = JavacMessages.instance(context);
   115         diags = JCDiagnostic.Factory.instance(context);
   116         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   117         noWarnings = new Warner(null);
   118     }
   119     // </editor-fold>
   121     // <editor-fold defaultstate="collapsed" desc="upperBound">
   122     /**
   123      * The "rvalue conversion".<br>
   124      * The upper bound of most types is the type
   125      * itself.  Wildcards, on the other hand have upper
   126      * and lower bounds.
   127      * @param t a type
   128      * @return the upper bound of the given type
   129      */
   130     public Type upperBound(Type t) {
   131         return upperBound.visit(t);
   132     }
   133     // where
   134         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   136             @Override
   137             public Type visitWildcardType(WildcardType t, Void ignored) {
   138                 if (t.isSuperBound())
   139                     return t.bound == null ? syms.objectType : t.bound.bound;
   140                 else
   141                     return visit(t.type);
   142             }
   144             @Override
   145             public Type visitCapturedType(CapturedType t, Void ignored) {
   146                 return visit(t.bound);
   147             }
   148         };
   149     // </editor-fold>
   151     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   152     /**
   153      * The "lvalue conversion".<br>
   154      * The lower bound of most types is the type
   155      * itself.  Wildcards, on the other hand have upper
   156      * and lower bounds.
   157      * @param t a type
   158      * @return the lower bound of the given type
   159      */
   160     public Type lowerBound(Type t) {
   161         return lowerBound.visit(t);
   162     }
   163     // where
   164         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   166             @Override
   167             public Type visitWildcardType(WildcardType t, Void ignored) {
   168                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   169             }
   171             @Override
   172             public Type visitCapturedType(CapturedType t, Void ignored) {
   173                 return visit(t.getLowerBound());
   174             }
   175         };
   176     // </editor-fold>
   178     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   179     /**
   180      * Checks that all the arguments to a class are unbounded
   181      * wildcards or something else that doesn't make any restrictions
   182      * on the arguments. If a class isUnbounded, a raw super- or
   183      * subclass can be cast to it without a warning.
   184      * @param t a type
   185      * @return true iff the given type is unbounded or raw
   186      */
   187     public boolean isUnbounded(Type t) {
   188         return isUnbounded.visit(t);
   189     }
   190     // where
   191         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   193             public Boolean visitType(Type t, Void ignored) {
   194                 return true;
   195             }
   197             @Override
   198             public Boolean visitClassType(ClassType t, Void ignored) {
   199                 List<Type> parms = t.tsym.type.allparams();
   200                 List<Type> args = t.allparams();
   201                 while (parms.nonEmpty()) {
   202                     WildcardType unb = new WildcardType(syms.objectType,
   203                                                         BoundKind.UNBOUND,
   204                                                         syms.boundClass,
   205                                                         (TypeVar)parms.head);
   206                     if (!containsType(args.head, unb))
   207                         return false;
   208                     parms = parms.tail;
   209                     args = args.tail;
   210                 }
   211                 return true;
   212             }
   213         };
   214     // </editor-fold>
   216     // <editor-fold defaultstate="collapsed" desc="asSub">
   217     /**
   218      * Return the least specific subtype of t that starts with symbol
   219      * sym.  If none exists, return null.  The least specific subtype
   220      * is determined as follows:
   221      *
   222      * <p>If there is exactly one parameterized instance of sym that is a
   223      * subtype of t, that parameterized instance is returned.<br>
   224      * Otherwise, if the plain type or raw type `sym' is a subtype of
   225      * type t, the type `sym' itself is returned.  Otherwise, null is
   226      * returned.
   227      */
   228     public Type asSub(Type t, Symbol sym) {
   229         return asSub.visit(t, sym);
   230     }
   231     // where
   232         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   234             public Type visitType(Type t, Symbol sym) {
   235                 return null;
   236             }
   238             @Override
   239             public Type visitClassType(ClassType t, Symbol sym) {
   240                 if (t.tsym == sym)
   241                     return t;
   242                 Type base = asSuper(sym.type, t.tsym);
   243                 if (base == null)
   244                     return null;
   245                 ListBuffer<Type> from = new ListBuffer<Type>();
   246                 ListBuffer<Type> to = new ListBuffer<Type>();
   247                 try {
   248                     adapt(base, t, from, to);
   249                 } catch (AdaptFailure ex) {
   250                     return null;
   251                 }
   252                 Type res = subst(sym.type, from.toList(), to.toList());
   253                 if (!isSubtype(res, t))
   254                     return null;
   255                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   256                 for (List<Type> l = sym.type.allparams();
   257                      l.nonEmpty(); l = l.tail)
   258                     if (res.contains(l.head) && !t.contains(l.head))
   259                         openVars.append(l.head);
   260                 if (openVars.nonEmpty()) {
   261                     if (t.isRaw()) {
   262                         // The subtype of a raw type is raw
   263                         res = erasure(res);
   264                     } else {
   265                         // Unbound type arguments default to ?
   266                         List<Type> opens = openVars.toList();
   267                         ListBuffer<Type> qs = new ListBuffer<Type>();
   268                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   269                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head));
   270                         }
   271                         res = subst(res, opens, qs.toList());
   272                     }
   273                 }
   274                 return res;
   275             }
   277             @Override
   278             public Type visitErrorType(ErrorType t, Symbol sym) {
   279                 return t;
   280             }
   281         };
   282     // </editor-fold>
   284     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   285     /**
   286      * Is t a subtype of or convertible via boxing/unboxing
   287      * conversion to s?
   288      */
   289     public boolean isConvertible(Type t, Type s, Warner warn) {
   290         if (t.tag == ERROR)
   291             return true;
   292         boolean tPrimitive = t.isPrimitive();
   293         boolean sPrimitive = s.isPrimitive();
   294         if (tPrimitive == sPrimitive) {
   295             return isSubtypeUnchecked(t, s, warn);
   296         }
   297         if (!allowBoxing) return false;
   298         return tPrimitive
   299             ? isSubtype(boxedClass(t).type, s)
   300             : isSubtype(unboxedType(t), s);
   301     }
   303     /**
   304      * Is t a subtype of or convertiable via boxing/unboxing
   305      * convertions to s?
   306      */
   307     public boolean isConvertible(Type t, Type s) {
   308         return isConvertible(t, s, noWarnings);
   309     }
   310     // </editor-fold>
   312     // <editor-fold defaultstate="collapsed" desc="findSam">
   314     /**
   315      * Exception used to report a function descriptor lookup failure. The exception
   316      * wraps a diagnostic that can be used to generate more details error
   317      * messages.
   318      */
   319     public static class FunctionDescriptorLookupError extends RuntimeException {
   320         private static final long serialVersionUID = 0;
   322         JCDiagnostic diagnostic;
   324         FunctionDescriptorLookupError() {
   325             this.diagnostic = null;
   326         }
   328         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   329             this.diagnostic = diag;
   330             return this;
   331         }
   333         public JCDiagnostic getDiagnostic() {
   334             return diagnostic;
   335         }
   336     }
   338     /**
   339      * A cache that keeps track of function descriptors associated with given
   340      * functional interfaces.
   341      */
   342     class DescriptorCache {
   344         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   346         class FunctionDescriptor {
   347             Symbol descSym;
   349             FunctionDescriptor(Symbol descSym) {
   350                 this.descSym = descSym;
   351             }
   353             public Symbol getSymbol() {
   354                 return descSym;
   355             }
   357             public Type getType(Type origin) {
   358                 return memberType(origin, descSym);
   359             }
   360         }
   362         class Entry {
   363             final FunctionDescriptor cachedDescRes;
   364             final int prevMark;
   366             public Entry(FunctionDescriptor cachedDescRes,
   367                     int prevMark) {
   368                 this.cachedDescRes = cachedDescRes;
   369                 this.prevMark = prevMark;
   370             }
   372             boolean matches(int mark) {
   373                 return  this.prevMark == mark;
   374             }
   375         }
   377         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   378             Entry e = _map.get(origin);
   379             CompoundScope members = membersClosure(origin.type, false);
   380             if (e == null ||
   381                     !e.matches(members.getMark())) {
   382                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   383                 _map.put(origin, new Entry(descRes, members.getMark()));
   384                 return descRes;
   385             }
   386             else {
   387                 return e.cachedDescRes;
   388             }
   389         }
   391         /**
   392          * Compute the function descriptor associated with a given functional interface
   393          */
   394         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   395             if (!origin.isInterface()) {
   396                 //t must be an interface
   397                 throw failure("not.a.functional.intf");
   398             }
   400             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   401             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   402                 Type mtype = memberType(origin.type, sym);
   403                 if (abstracts.isEmpty() ||
   404                         (sym.name == abstracts.first().name &&
   405                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   406                     abstracts.append(sym);
   407                 } else {
   408                     //the target method(s) should be the only abstract members of t
   409                     throw failure("not.a.functional.intf.1",
   410                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   411                 }
   412             }
   413             if (abstracts.isEmpty()) {
   414                 //t must define a suitable non-generic method
   415                 throw failure("not.a.functional.intf.1",
   416                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   417             } else if (abstracts.size() == 1) {
   418                 return new FunctionDescriptor(abstracts.first());
   419             } else { // size > 1
   420                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   421                 if (descRes == null) {
   422                     //we can get here if the functional interface is ill-formed
   423                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   424                     for (Symbol desc : abstracts) {
   425                         String key = desc.type.getThrownTypes().nonEmpty() ?
   426                                 "descriptor.throws" : "descriptor";
   427                         descriptors.append(diags.fragment(key, desc.name,
   428                                 desc.type.getParameterTypes(),
   429                                 desc.type.getReturnType(),
   430                                 desc.type.getThrownTypes()));
   431                     }
   432                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   433                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   434                             Kinds.kindName(origin), origin), descriptors.toList());
   435                     throw failure(incompatibleDescriptors);
   436                 }
   437                 return descRes;
   438             }
   439         }
   441         /**
   442          * Compute a synthetic type for the target descriptor given a list
   443          * of override-equivalent methods in the functional interface type.
   444          * The resulting method type is a method type that is override-equivalent
   445          * and return-type substitutable with each method in the original list.
   446          */
   447         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   448             //pick argument types - simply take the signature that is a
   449             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   450             List<Symbol> mostSpecific = List.nil();
   451             outer: for (Symbol msym1 : methodSyms) {
   452                 Type mt1 = memberType(origin.type, msym1);
   453                 for (Symbol msym2 : methodSyms) {
   454                     Type mt2 = memberType(origin.type, msym2);
   455                     if (!isSubSignature(mt1, mt2)) {
   456                         continue outer;
   457                     }
   458                 }
   459                 mostSpecific = mostSpecific.prepend(msym1);
   460             }
   461             if (mostSpecific.isEmpty()) {
   462                 return null;
   463             }
   466             //pick return types - this is done in two phases: (i) first, the most
   467             //specific return type is chosen using strict subtyping; if this fails,
   468             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   469             boolean phase2 = false;
   470             Symbol bestSoFar = null;
   471             while (bestSoFar == null) {
   472                 outer: for (Symbol msym1 : mostSpecific) {
   473                     Type mt1 = memberType(origin.type, msym1);
   474                     for (Symbol msym2 : methodSyms) {
   475                         Type mt2 = memberType(origin.type, msym2);
   476                         if (phase2 ?
   477                                 !returnTypeSubstitutable(mt1, mt2) :
   478                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   479                             continue outer;
   480                         }
   481                     }
   482                     bestSoFar = msym1;
   483                 }
   484                 if (phase2) {
   485                     break;
   486                 } else {
   487                     phase2 = true;
   488                 }
   489             }
   490             if (bestSoFar == null) return null;
   492             //merge thrown types - form the intersection of all the thrown types in
   493             //all the signatures in the list
   494             List<Type> thrown = null;
   495             for (Symbol msym1 : methodSyms) {
   496                 Type mt1 = memberType(origin.type, msym1);
   497                 thrown = (thrown == null) ?
   498                     mt1.getThrownTypes() :
   499                     chk.intersect(mt1.getThrownTypes(), thrown);
   500             }
   502             final List<Type> thrown1 = thrown;
   503             return new FunctionDescriptor(bestSoFar) {
   504                 @Override
   505                 public Type getType(Type origin) {
   506                     Type mt = memberType(origin, getSymbol());
   507                     return new MethodType(mt.getParameterTypes(), mt.getReturnType(), thrown1, syms.methodClass);
   508                 }
   509             };
   510         }
   512         boolean isSubtypeInternal(Type s, Type t) {
   513             return (s.isPrimitive() && t.isPrimitive()) ?
   514                     isSameType(t, s) :
   515                     isSubtype(s, t);
   516         }
   518         FunctionDescriptorLookupError failure(String msg, Object... args) {
   519             return failure(diags.fragment(msg, args));
   520         }
   522         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   523             return functionDescriptorLookupError.setMessage(diag);
   524         }
   525     }
   527     private DescriptorCache descCache = new DescriptorCache();
   529     /**
   530      * Find the method descriptor associated to this class symbol - if the
   531      * symbol 'origin' is not a functional interface, an exception is thrown.
   532      */
   533     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   534         return descCache.get(origin).getSymbol();
   535     }
   537     /**
   538      * Find the type of the method descriptor associated to this class symbol -
   539      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   540      */
   541     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   542         return descCache.get(origin.tsym).getType(origin);
   543     }
   545     /**
   546      * Is given type a functional interface?
   547      */
   548     public boolean isFunctionalInterface(TypeSymbol tsym) {
   549         try {
   550             findDescriptorSymbol(tsym);
   551             return true;
   552         } catch (FunctionDescriptorLookupError ex) {
   553             return false;
   554         }
   555     }
   556     // </editor-fold>
   558    /**
   559     * Scope filter used to skip methods that should be ignored (such as methods
   560     * overridden by j.l.Object) during function interface conversion/marker interface checks
   561     */
   562     class DescriptorFilter implements Filter<Symbol> {
   564        TypeSymbol origin;
   566        DescriptorFilter(TypeSymbol origin) {
   567            this.origin = origin;
   568        }
   570        @Override
   571        public boolean accepts(Symbol sym) {
   572            return sym.kind == Kinds.MTH &&
   573                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   574                    !overridesObjectMethod(origin, sym) &&
   575                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   576        }
   577     };
   579     // <editor-fold defaultstate="collapsed" desc="isMarker">
   581     /**
   582      * A cache that keeps track of marker interfaces
   583      */
   584     class MarkerCache {
   586         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   588         class Entry {
   589             final boolean isMarkerIntf;
   590             final int prevMark;
   592             public Entry(boolean isMarkerIntf,
   593                     int prevMark) {
   594                 this.isMarkerIntf = isMarkerIntf;
   595                 this.prevMark = prevMark;
   596             }
   598             boolean matches(int mark) {
   599                 return  this.prevMark == mark;
   600             }
   601         }
   603         boolean get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   604             Entry e = _map.get(origin);
   605             CompoundScope members = membersClosure(origin.type, false);
   606             if (e == null ||
   607                     !e.matches(members.getMark())) {
   608                 boolean isMarkerIntf = isMarkerInterfaceInternal(origin, members);
   609                 _map.put(origin, new Entry(isMarkerIntf, members.getMark()));
   610                 return isMarkerIntf;
   611             }
   612             else {
   613                 return e.isMarkerIntf;
   614             }
   615         }
   617         /**
   618          * Is given symbol a marker interface
   619          */
   620         public boolean isMarkerInterfaceInternal(TypeSymbol origin, CompoundScope membersCache) throws FunctionDescriptorLookupError {
   621             return !origin.isInterface() ?
   622                     false :
   623                     !membersCache.getElements(new DescriptorFilter(origin)).iterator().hasNext();
   624         }
   625     }
   627     private MarkerCache markerCache = new MarkerCache();
   629     /**
   630      * Is given type a marker interface?
   631      */
   632     public boolean isMarkerInterface(Type site) {
   633         return markerCache.get(site.tsym);
   634     }
   635     // </editor-fold>
   637     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   638     /**
   639      * Is t an unchecked subtype of s?
   640      */
   641     public boolean isSubtypeUnchecked(Type t, Type s) {
   642         return isSubtypeUnchecked(t, s, noWarnings);
   643     }
   644     /**
   645      * Is t an unchecked subtype of s?
   646      */
   647     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   648         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   649         if (result) {
   650             checkUnsafeVarargsConversion(t, s, warn);
   651         }
   652         return result;
   653     }
   654     //where
   655         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   656             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   657                 if (((ArrayType)t).elemtype.isPrimitive()) {
   658                     return isSameType(elemtype(t), elemtype(s));
   659                 } else {
   660                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   661                 }
   662             } else if (isSubtype(t, s)) {
   663                 return true;
   664             }
   665             else if (t.tag == TYPEVAR) {
   666                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   667             }
   668             else if (!s.isRaw()) {
   669                 Type t2 = asSuper(t, s.tsym);
   670                 if (t2 != null && t2.isRaw()) {
   671                     if (isReifiable(s))
   672                         warn.silentWarn(LintCategory.UNCHECKED);
   673                     else
   674                         warn.warn(LintCategory.UNCHECKED);
   675                     return true;
   676                 }
   677             }
   678             return false;
   679         }
   681         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   682             if (t.tag != ARRAY || isReifiable(t)) return;
   683             ArrayType from = (ArrayType)t;
   684             boolean shouldWarn = false;
   685             switch (s.tag) {
   686                 case ARRAY:
   687                     ArrayType to = (ArrayType)s;
   688                     shouldWarn = from.isVarargs() &&
   689                             !to.isVarargs() &&
   690                             !isReifiable(from);
   691                     break;
   692                 case CLASS:
   693                     shouldWarn = from.isVarargs();
   694                     break;
   695             }
   696             if (shouldWarn) {
   697                 warn.warn(LintCategory.VARARGS);
   698             }
   699         }
   701     /**
   702      * Is t a subtype of s?<br>
   703      * (not defined for Method and ForAll types)
   704      */
   705     final public boolean isSubtype(Type t, Type s) {
   706         return isSubtype(t, s, true);
   707     }
   708     final public boolean isSubtypeNoCapture(Type t, Type s) {
   709         return isSubtype(t, s, false);
   710     }
   711     public boolean isSubtype(Type t, Type s, boolean capture) {
   712         if (t == s)
   713             return true;
   715         if (s.isPartial())
   716             return isSuperType(s, t);
   718         if (s.isCompound()) {
   719             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   720                 if (!isSubtype(t, s2, capture))
   721                     return false;
   722             }
   723             return true;
   724         }
   726         Type lower = lowerBound(s);
   727         if (s != lower)
   728             return isSubtype(capture ? capture(t) : t, lower, false);
   730         return isSubtype.visit(capture ? capture(t) : t, s);
   731     }
   732     // where
   733         private TypeRelation isSubtype = new TypeRelation()
   734         {
   735             public Boolean visitType(Type t, Type s) {
   736                 switch (t.tag) {
   737                  case BYTE:
   738                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   739                  case CHAR:
   740                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   741                  case SHORT: case INT: case LONG:
   742                  case FLOAT: case DOUBLE:
   743                      return t.getTag().isSubRangeOf(s.getTag());
   744                  case BOOLEAN: case VOID:
   745                      return t.hasTag(s.getTag());
   746                  case TYPEVAR:
   747                      return isSubtypeNoCapture(t.getUpperBound(), s);
   748                  case BOT:
   749                      return
   750                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   751                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   752                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   753                  case NONE:
   754                      return false;
   755                  default:
   756                      throw new AssertionError("isSubtype " + t.tag);
   757                  }
   758             }
   760             private Set<TypePair> cache = new HashSet<TypePair>();
   762             private boolean containsTypeRecursive(Type t, Type s) {
   763                 TypePair pair = new TypePair(t, s);
   764                 if (cache.add(pair)) {
   765                     try {
   766                         return containsType(t.getTypeArguments(),
   767                                             s.getTypeArguments());
   768                     } finally {
   769                         cache.remove(pair);
   770                     }
   771                 } else {
   772                     return containsType(t.getTypeArguments(),
   773                                         rewriteSupers(s).getTypeArguments());
   774                 }
   775             }
   777             private Type rewriteSupers(Type t) {
   778                 if (!t.isParameterized())
   779                     return t;
   780                 ListBuffer<Type> from = lb();
   781                 ListBuffer<Type> to = lb();
   782                 adaptSelf(t, from, to);
   783                 if (from.isEmpty())
   784                     return t;
   785                 ListBuffer<Type> rewrite = lb();
   786                 boolean changed = false;
   787                 for (Type orig : to.toList()) {
   788                     Type s = rewriteSupers(orig);
   789                     if (s.isSuperBound() && !s.isExtendsBound()) {
   790                         s = new WildcardType(syms.objectType,
   791                                              BoundKind.UNBOUND,
   792                                              syms.boundClass);
   793                         changed = true;
   794                     } else if (s != orig) {
   795                         s = new WildcardType(upperBound(s),
   796                                              BoundKind.EXTENDS,
   797                                              syms.boundClass);
   798                         changed = true;
   799                     }
   800                     rewrite.append(s);
   801                 }
   802                 if (changed)
   803                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   804                 else
   805                     return t;
   806             }
   808             @Override
   809             public Boolean visitClassType(ClassType t, Type s) {
   810                 Type sup = asSuper(t, s.tsym);
   811                 return sup != null
   812                     && sup.tsym == s.tsym
   813                     // You're not allowed to write
   814                     //     Vector<Object> vec = new Vector<String>();
   815                     // But with wildcards you can write
   816                     //     Vector<? extends Object> vec = new Vector<String>();
   817                     // which means that subtype checking must be done
   818                     // here instead of same-type checking (via containsType).
   819                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   820                     && isSubtypeNoCapture(sup.getEnclosingType(),
   821                                           s.getEnclosingType());
   822             }
   824             @Override
   825             public Boolean visitArrayType(ArrayType t, Type s) {
   826                 if (s.tag == ARRAY) {
   827                     if (t.elemtype.isPrimitive())
   828                         return isSameType(t.elemtype, elemtype(s));
   829                     else
   830                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   831                 }
   833                 if (s.tag == CLASS) {
   834                     Name sname = s.tsym.getQualifiedName();
   835                     return sname == names.java_lang_Object
   836                         || sname == names.java_lang_Cloneable
   837                         || sname == names.java_io_Serializable;
   838                 }
   840                 return false;
   841             }
   843             @Override
   844             public Boolean visitUndetVar(UndetVar t, Type s) {
   845                 //todo: test against origin needed? or replace with substitution?
   846                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN) {
   847                     return true;
   848                 } else if (s.tag == BOT) {
   849                     //if 's' is 'null' there's no instantiated type U for which
   850                     //U <: s (but 'null' itself, which is not a valid type)
   851                     return false;
   852                 }
   854                 t.addBound(InferenceBound.UPPER, s, Types.this);
   855                 return true;
   856             }
   858             @Override
   859             public Boolean visitErrorType(ErrorType t, Type s) {
   860                 return true;
   861             }
   862         };
   864     /**
   865      * Is t a subtype of every type in given list `ts'?<br>
   866      * (not defined for Method and ForAll types)<br>
   867      * Allows unchecked conversions.
   868      */
   869     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   870         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   871             if (!isSubtypeUnchecked(t, l.head, warn))
   872                 return false;
   873         return true;
   874     }
   876     /**
   877      * Are corresponding elements of ts subtypes of ss?  If lists are
   878      * of different length, return false.
   879      */
   880     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   881         while (ts.tail != null && ss.tail != null
   882                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   883                isSubtype(ts.head, ss.head)) {
   884             ts = ts.tail;
   885             ss = ss.tail;
   886         }
   887         return ts.tail == null && ss.tail == null;
   888         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   889     }
   891     /**
   892      * Are corresponding elements of ts subtypes of ss, allowing
   893      * unchecked conversions?  If lists are of different length,
   894      * return false.
   895      **/
   896     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   897         while (ts.tail != null && ss.tail != null
   898                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   899                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   900             ts = ts.tail;
   901             ss = ss.tail;
   902         }
   903         return ts.tail == null && ss.tail == null;
   904         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   905     }
   906     // </editor-fold>
   908     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   909     /**
   910      * Is t a supertype of s?
   911      */
   912     public boolean isSuperType(Type t, Type s) {
   913         switch (t.tag) {
   914         case ERROR:
   915             return true;
   916         case UNDETVAR: {
   917             UndetVar undet = (UndetVar)t;
   918             if (t == s ||
   919                 undet.qtype == s ||
   920                 s.tag == ERROR ||
   921                 s.tag == BOT) return true;
   922             undet.addBound(InferenceBound.LOWER, s, this);
   923             return true;
   924         }
   925         default:
   926             return isSubtype(s, t);
   927         }
   928     }
   929     // </editor-fold>
   931     // <editor-fold defaultstate="collapsed" desc="isSameType">
   932     /**
   933      * Are corresponding elements of the lists the same type?  If
   934      * lists are of different length, return false.
   935      */
   936     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   937         while (ts.tail != null && ss.tail != null
   938                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   939                isSameType(ts.head, ss.head)) {
   940             ts = ts.tail;
   941             ss = ss.tail;
   942         }
   943         return ts.tail == null && ss.tail == null;
   944         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   945     }
   947     /**
   948      * Is t the same type as s?
   949      */
   950     public boolean isSameType(Type t, Type s) {
   951         return isSameType.visit(t, s);
   952     }
   953     // where
   954         private TypeRelation isSameType = new TypeRelation() {
   956             public Boolean visitType(Type t, Type s) {
   957                 if (t == s)
   958                     return true;
   960                 if (s.isPartial())
   961                     return visit(s, t);
   963                 switch (t.tag) {
   964                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
   965                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
   966                     return t.tag == s.tag;
   967                 case TYPEVAR: {
   968                     if (s.tag == TYPEVAR) {
   969                         //type-substitution does not preserve type-var types
   970                         //check that type var symbols and bounds are indeed the same
   971                         return t.tsym == s.tsym &&
   972                                 visit(t.getUpperBound(), s.getUpperBound());
   973                     }
   974                     else {
   975                         //special case for s == ? super X, where upper(s) = u
   976                         //check that u == t, where u has been set by Type.withTypeVar
   977                         return s.isSuperBound() &&
   978                                 !s.isExtendsBound() &&
   979                                 visit(t, upperBound(s));
   980                     }
   981                 }
   982                 default:
   983                     throw new AssertionError("isSameType " + t.tag);
   984                 }
   985             }
   987             @Override
   988             public Boolean visitWildcardType(WildcardType t, Type s) {
   989                 if (s.isPartial())
   990                     return visit(s, t);
   991                 else
   992                     return false;
   993             }
   995             @Override
   996             public Boolean visitClassType(ClassType t, Type s) {
   997                 if (t == s)
   998                     return true;
  1000                 if (s.isPartial())
  1001                     return visit(s, t);
  1003                 if (s.isSuperBound() && !s.isExtendsBound())
  1004                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1006                 if (t.isCompound() && s.isCompound()) {
  1007                     if (!visit(supertype(t), supertype(s)))
  1008                         return false;
  1010                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1011                     for (Type x : interfaces(t))
  1012                         set.add(new UniqueType(x, Types.this));
  1013                     for (Type x : interfaces(s)) {
  1014                         if (!set.remove(new UniqueType(x, Types.this)))
  1015                             return false;
  1017                     return (set.isEmpty());
  1019                 return t.tsym == s.tsym
  1020                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1021                     && containsTypeEquivalent(t.getTypeArguments(), s.getTypeArguments());
  1024             @Override
  1025             public Boolean visitArrayType(ArrayType t, Type s) {
  1026                 if (t == s)
  1027                     return true;
  1029                 if (s.isPartial())
  1030                     return visit(s, t);
  1032                 return s.hasTag(ARRAY)
  1033                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1036             @Override
  1037             public Boolean visitMethodType(MethodType t, Type s) {
  1038                 // isSameType for methods does not take thrown
  1039                 // exceptions into account!
  1040                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1043             @Override
  1044             public Boolean visitPackageType(PackageType t, Type s) {
  1045                 return t == s;
  1048             @Override
  1049             public Boolean visitForAll(ForAll t, Type s) {
  1050                 if (s.tag != FORALL)
  1051                     return false;
  1053                 ForAll forAll = (ForAll)s;
  1054                 return hasSameBounds(t, forAll)
  1055                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1058             @Override
  1059             public Boolean visitUndetVar(UndetVar t, Type s) {
  1060                 if (s.tag == WILDCARD)
  1061                     // FIXME, this might be leftovers from before capture conversion
  1062                     return false;
  1064                 if (t == s || t.qtype == s || s.tag == ERROR || s.tag == UNKNOWN)
  1065                     return true;
  1067                 t.addBound(InferenceBound.EQ, s, Types.this);
  1069                 return true;
  1072             @Override
  1073             public Boolean visitErrorType(ErrorType t, Type s) {
  1074                 return true;
  1076         };
  1077     // </editor-fold>
  1079     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1080     public boolean containedBy(Type t, Type s) {
  1081         switch (t.tag) {
  1082         case UNDETVAR:
  1083             if (s.tag == WILDCARD) {
  1084                 UndetVar undetvar = (UndetVar)t;
  1085                 WildcardType wt = (WildcardType)s;
  1086                 switch(wt.kind) {
  1087                     case UNBOUND: //similar to ? extends Object
  1088                     case EXTENDS: {
  1089                         Type bound = upperBound(s);
  1090                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1091                         break;
  1093                     case SUPER: {
  1094                         Type bound = lowerBound(s);
  1095                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1096                         break;
  1099                 return true;
  1100             } else {
  1101                 return isSameType(t, s);
  1103         case ERROR:
  1104             return true;
  1105         default:
  1106             return containsType(s, t);
  1110     boolean containsType(List<Type> ts, List<Type> ss) {
  1111         while (ts.nonEmpty() && ss.nonEmpty()
  1112                && containsType(ts.head, ss.head)) {
  1113             ts = ts.tail;
  1114             ss = ss.tail;
  1116         return ts.isEmpty() && ss.isEmpty();
  1119     /**
  1120      * Check if t contains s.
  1122      * <p>T contains S if:
  1124      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1126      * <p>This relation is only used by ClassType.isSubtype(), that
  1127      * is,
  1129      * <p>{@code C<S> <: C<T> if T contains S.}
  1131      * <p>Because of F-bounds, this relation can lead to infinite
  1132      * recursion.  Thus we must somehow break that recursion.  Notice
  1133      * that containsType() is only called from ClassType.isSubtype().
  1134      * Since the arguments have already been checked against their
  1135      * bounds, we know:
  1137      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1139      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1141      * @param t a type
  1142      * @param s a type
  1143      */
  1144     public boolean containsType(Type t, Type s) {
  1145         return containsType.visit(t, s);
  1147     // where
  1148         private TypeRelation containsType = new TypeRelation() {
  1150             private Type U(Type t) {
  1151                 while (t.tag == WILDCARD) {
  1152                     WildcardType w = (WildcardType)t;
  1153                     if (w.isSuperBound())
  1154                         return w.bound == null ? syms.objectType : w.bound.bound;
  1155                     else
  1156                         t = w.type;
  1158                 return t;
  1161             private Type L(Type t) {
  1162                 while (t.tag == WILDCARD) {
  1163                     WildcardType w = (WildcardType)t;
  1164                     if (w.isExtendsBound())
  1165                         return syms.botType;
  1166                     else
  1167                         t = w.type;
  1169                 return t;
  1172             public Boolean visitType(Type t, Type s) {
  1173                 if (s.isPartial())
  1174                     return containedBy(s, t);
  1175                 else
  1176                     return isSameType(t, s);
  1179 //            void debugContainsType(WildcardType t, Type s) {
  1180 //                System.err.println();
  1181 //                System.err.format(" does %s contain %s?%n", t, s);
  1182 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1183 //                                  upperBound(s), s, t, U(t),
  1184 //                                  t.isSuperBound()
  1185 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1186 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1187 //                                  L(t), t, s, lowerBound(s),
  1188 //                                  t.isExtendsBound()
  1189 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1190 //                System.err.println();
  1191 //            }
  1193             @Override
  1194             public Boolean visitWildcardType(WildcardType t, Type s) {
  1195                 if (s.isPartial())
  1196                     return containedBy(s, t);
  1197                 else {
  1198 //                    debugContainsType(t, s);
  1199                     return isSameWildcard(t, s)
  1200                         || isCaptureOf(s, t)
  1201                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1202                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1206             @Override
  1207             public Boolean visitUndetVar(UndetVar t, Type s) {
  1208                 if (s.tag != WILDCARD)
  1209                     return isSameType(t, s);
  1210                 else
  1211                     return false;
  1214             @Override
  1215             public Boolean visitErrorType(ErrorType t, Type s) {
  1216                 return true;
  1218         };
  1220     public boolean isCaptureOf(Type s, WildcardType t) {
  1221         if (s.tag != TYPEVAR || !((TypeVar)s).isCaptured())
  1222             return false;
  1223         return isSameWildcard(t, ((CapturedType)s).wildcard);
  1226     public boolean isSameWildcard(WildcardType t, Type s) {
  1227         if (s.tag != WILDCARD)
  1228             return false;
  1229         WildcardType w = (WildcardType)s;
  1230         return w.kind == t.kind && w.type == t.type;
  1233     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1234         while (ts.nonEmpty() && ss.nonEmpty()
  1235                && containsTypeEquivalent(ts.head, ss.head)) {
  1236             ts = ts.tail;
  1237             ss = ss.tail;
  1239         return ts.isEmpty() && ss.isEmpty();
  1241     // </editor-fold>
  1243     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1244     public boolean isCastable(Type t, Type s) {
  1245         return isCastable(t, s, noWarnings);
  1248     /**
  1249      * Is t is castable to s?<br>
  1250      * s is assumed to be an erased type.<br>
  1251      * (not defined for Method and ForAll types).
  1252      */
  1253     public boolean isCastable(Type t, Type s, Warner warn) {
  1254         if (t == s)
  1255             return true;
  1257         if (t.isPrimitive() != s.isPrimitive())
  1258             return allowBoxing && (
  1259                     isConvertible(t, s, warn)
  1260                     || (allowObjectToPrimitiveCast &&
  1261                         s.isPrimitive() &&
  1262                         isSubtype(boxedClass(s).type, t)));
  1263         if (warn != warnStack.head) {
  1264             try {
  1265                 warnStack = warnStack.prepend(warn);
  1266                 checkUnsafeVarargsConversion(t, s, warn);
  1267                 return isCastable.visit(t,s);
  1268             } finally {
  1269                 warnStack = warnStack.tail;
  1271         } else {
  1272             return isCastable.visit(t,s);
  1275     // where
  1276         private TypeRelation isCastable = new TypeRelation() {
  1278             public Boolean visitType(Type t, Type s) {
  1279                 if (s.tag == ERROR)
  1280                     return true;
  1282                 switch (t.tag) {
  1283                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1284                 case DOUBLE:
  1285                     return s.isNumeric();
  1286                 case BOOLEAN:
  1287                     return s.tag == BOOLEAN;
  1288                 case VOID:
  1289                     return false;
  1290                 case BOT:
  1291                     return isSubtype(t, s);
  1292                 default:
  1293                     throw new AssertionError();
  1297             @Override
  1298             public Boolean visitWildcardType(WildcardType t, Type s) {
  1299                 return isCastable(upperBound(t), s, warnStack.head);
  1302             @Override
  1303             public Boolean visitClassType(ClassType t, Type s) {
  1304                 if (s.tag == ERROR || s.tag == BOT)
  1305                     return true;
  1307                 if (s.tag == TYPEVAR) {
  1308                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1309                         warnStack.head.warn(LintCategory.UNCHECKED);
  1310                         return true;
  1311                     } else {
  1312                         return false;
  1316                 if (t.isCompound()) {
  1317                     Warner oldWarner = warnStack.head;
  1318                     warnStack.head = noWarnings;
  1319                     if (!visit(supertype(t), s))
  1320                         return false;
  1321                     for (Type intf : interfaces(t)) {
  1322                         if (!visit(intf, s))
  1323                             return false;
  1325                     if (warnStack.head.hasLint(LintCategory.UNCHECKED))
  1326                         oldWarner.warn(LintCategory.UNCHECKED);
  1327                     return true;
  1330                 if (s.isCompound()) {
  1331                     // call recursively to reuse the above code
  1332                     return visitClassType((ClassType)s, t);
  1335                 if (s.tag == CLASS || s.tag == ARRAY) {
  1336                     boolean upcast;
  1337                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1338                         || isSubtype(erasure(s), erasure(t))) {
  1339                         if (!upcast && s.tag == ARRAY) {
  1340                             if (!isReifiable(s))
  1341                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1342                             return true;
  1343                         } else if (s.isRaw()) {
  1344                             return true;
  1345                         } else if (t.isRaw()) {
  1346                             if (!isUnbounded(s))
  1347                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1348                             return true;
  1350                         // Assume |a| <: |b|
  1351                         final Type a = upcast ? t : s;
  1352                         final Type b = upcast ? s : t;
  1353                         final boolean HIGH = true;
  1354                         final boolean LOW = false;
  1355                         final boolean DONT_REWRITE_TYPEVARS = false;
  1356                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1357                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1358                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1359                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1360                         Type lowSub = asSub(bLow, aLow.tsym);
  1361                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1362                         if (highSub == null) {
  1363                             final boolean REWRITE_TYPEVARS = true;
  1364                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1365                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1366                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1367                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1368                             lowSub = asSub(bLow, aLow.tsym);
  1369                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1371                         if (highSub != null) {
  1372                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1373                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1375                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1376                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1377                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1378                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1379                                 if (upcast ? giveWarning(a, b) :
  1380                                     giveWarning(b, a))
  1381                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1382                                 return true;
  1385                         if (isReifiable(s))
  1386                             return isSubtypeUnchecked(a, b);
  1387                         else
  1388                             return isSubtypeUnchecked(a, b, warnStack.head);
  1391                     // Sidecast
  1392                     if (s.tag == CLASS) {
  1393                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1394                             return ((t.tsym.flags() & FINAL) == 0)
  1395                                 ? sideCast(t, s, warnStack.head)
  1396                                 : sideCastFinal(t, s, warnStack.head);
  1397                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1398                             return ((s.tsym.flags() & FINAL) == 0)
  1399                                 ? sideCast(t, s, warnStack.head)
  1400                                 : sideCastFinal(t, s, warnStack.head);
  1401                         } else {
  1402                             // unrelated class types
  1403                             return false;
  1407                 return false;
  1410             @Override
  1411             public Boolean visitArrayType(ArrayType t, Type s) {
  1412                 switch (s.tag) {
  1413                 case ERROR:
  1414                 case BOT:
  1415                     return true;
  1416                 case TYPEVAR:
  1417                     if (isCastable(s, t, noWarnings)) {
  1418                         warnStack.head.warn(LintCategory.UNCHECKED);
  1419                         return true;
  1420                     } else {
  1421                         return false;
  1423                 case CLASS:
  1424                     return isSubtype(t, s);
  1425                 case ARRAY:
  1426                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1427                         return elemtype(t).tag == elemtype(s).tag;
  1428                     } else {
  1429                         return visit(elemtype(t), elemtype(s));
  1431                 default:
  1432                     return false;
  1436             @Override
  1437             public Boolean visitTypeVar(TypeVar t, Type s) {
  1438                 switch (s.tag) {
  1439                 case ERROR:
  1440                 case BOT:
  1441                     return true;
  1442                 case TYPEVAR:
  1443                     if (isSubtype(t, s)) {
  1444                         return true;
  1445                     } else if (isCastable(t.bound, s, noWarnings)) {
  1446                         warnStack.head.warn(LintCategory.UNCHECKED);
  1447                         return true;
  1448                     } else {
  1449                         return false;
  1451                 default:
  1452                     return isCastable(t.bound, s, warnStack.head);
  1456             @Override
  1457             public Boolean visitErrorType(ErrorType t, Type s) {
  1458                 return true;
  1460         };
  1461     // </editor-fold>
  1463     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1464     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1465         while (ts.tail != null && ss.tail != null) {
  1466             if (disjointType(ts.head, ss.head)) return true;
  1467             ts = ts.tail;
  1468             ss = ss.tail;
  1470         return false;
  1473     /**
  1474      * Two types or wildcards are considered disjoint if it can be
  1475      * proven that no type can be contained in both. It is
  1476      * conservative in that it is allowed to say that two types are
  1477      * not disjoint, even though they actually are.
  1479      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1480      * {@code X} and {@code Y} are not disjoint.
  1481      */
  1482     public boolean disjointType(Type t, Type s) {
  1483         return disjointType.visit(t, s);
  1485     // where
  1486         private TypeRelation disjointType = new TypeRelation() {
  1488             private Set<TypePair> cache = new HashSet<TypePair>();
  1490             public Boolean visitType(Type t, Type s) {
  1491                 if (s.tag == WILDCARD)
  1492                     return visit(s, t);
  1493                 else
  1494                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1497             private boolean isCastableRecursive(Type t, Type s) {
  1498                 TypePair pair = new TypePair(t, s);
  1499                 if (cache.add(pair)) {
  1500                     try {
  1501                         return Types.this.isCastable(t, s);
  1502                     } finally {
  1503                         cache.remove(pair);
  1505                 } else {
  1506                     return true;
  1510             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1511                 TypePair pair = new TypePair(t, s);
  1512                 if (cache.add(pair)) {
  1513                     try {
  1514                         return Types.this.notSoftSubtype(t, s);
  1515                     } finally {
  1516                         cache.remove(pair);
  1518                 } else {
  1519                     return false;
  1523             @Override
  1524             public Boolean visitWildcardType(WildcardType t, Type s) {
  1525                 if (t.isUnbound())
  1526                     return false;
  1528                 if (s.tag != WILDCARD) {
  1529                     if (t.isExtendsBound())
  1530                         return notSoftSubtypeRecursive(s, t.type);
  1531                     else // isSuperBound()
  1532                         return notSoftSubtypeRecursive(t.type, s);
  1535                 if (s.isUnbound())
  1536                     return false;
  1538                 if (t.isExtendsBound()) {
  1539                     if (s.isExtendsBound())
  1540                         return !isCastableRecursive(t.type, upperBound(s));
  1541                     else if (s.isSuperBound())
  1542                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1543                 } else if (t.isSuperBound()) {
  1544                     if (s.isExtendsBound())
  1545                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1547                 return false;
  1549         };
  1550     // </editor-fold>
  1552     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1553     /**
  1554      * Returns the lower bounds of the formals of a method.
  1555      */
  1556     public List<Type> lowerBoundArgtypes(Type t) {
  1557         return lowerBounds(t.getParameterTypes());
  1559     public List<Type> lowerBounds(List<Type> ts) {
  1560         return map(ts, lowerBoundMapping);
  1562     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1563             public Type apply(Type t) {
  1564                 return lowerBound(t);
  1566         };
  1567     // </editor-fold>
  1569     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1570     /**
  1571      * This relation answers the question: is impossible that
  1572      * something of type `t' can be a subtype of `s'? This is
  1573      * different from the question "is `t' not a subtype of `s'?"
  1574      * when type variables are involved: Integer is not a subtype of T
  1575      * where {@code <T extends Number>} but it is not true that Integer cannot
  1576      * possibly be a subtype of T.
  1577      */
  1578     public boolean notSoftSubtype(Type t, Type s) {
  1579         if (t == s) return false;
  1580         if (t.tag == TYPEVAR) {
  1581             TypeVar tv = (TypeVar) t;
  1582             return !isCastable(tv.bound,
  1583                                relaxBound(s),
  1584                                noWarnings);
  1586         if (s.tag != WILDCARD)
  1587             s = upperBound(s);
  1589         return !isSubtype(t, relaxBound(s));
  1592     private Type relaxBound(Type t) {
  1593         if (t.tag == TYPEVAR) {
  1594             while (t.tag == TYPEVAR)
  1595                 t = t.getUpperBound();
  1596             t = rewriteQuantifiers(t, true, true);
  1598         return t;
  1600     // </editor-fold>
  1602     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1603     public boolean isReifiable(Type t) {
  1604         return isReifiable.visit(t);
  1606     // where
  1607         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1609             public Boolean visitType(Type t, Void ignored) {
  1610                 return true;
  1613             @Override
  1614             public Boolean visitClassType(ClassType t, Void ignored) {
  1615                 if (t.isCompound())
  1616                     return false;
  1617                 else {
  1618                     if (!t.isParameterized())
  1619                         return true;
  1621                     for (Type param : t.allparams()) {
  1622                         if (!param.isUnbound())
  1623                             return false;
  1625                     return true;
  1629             @Override
  1630             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1631                 return visit(t.elemtype);
  1634             @Override
  1635             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1636                 return false;
  1638         };
  1639     // </editor-fold>
  1641     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1642     public boolean isArray(Type t) {
  1643         while (t.tag == WILDCARD)
  1644             t = upperBound(t);
  1645         return t.tag == ARRAY;
  1648     /**
  1649      * The element type of an array.
  1650      */
  1651     public Type elemtype(Type t) {
  1652         switch (t.tag) {
  1653         case WILDCARD:
  1654             return elemtype(upperBound(t));
  1655         case ARRAY:
  1656             return ((ArrayType)t).elemtype;
  1657         case FORALL:
  1658             return elemtype(((ForAll)t).qtype);
  1659         case ERROR:
  1660             return t;
  1661         default:
  1662             return null;
  1666     public Type elemtypeOrType(Type t) {
  1667         Type elemtype = elemtype(t);
  1668         return elemtype != null ?
  1669             elemtype :
  1670             t;
  1673     /**
  1674      * Mapping to take element type of an arraytype
  1675      */
  1676     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1677         public Type apply(Type t) { return elemtype(t); }
  1678     };
  1680     /**
  1681      * The number of dimensions of an array type.
  1682      */
  1683     public int dimensions(Type t) {
  1684         int result = 0;
  1685         while (t.tag == ARRAY) {
  1686             result++;
  1687             t = elemtype(t);
  1689         return result;
  1692     /**
  1693      * Returns an ArrayType with the component type t
  1695      * @param t The component type of the ArrayType
  1696      * @return the ArrayType for the given component
  1697      */
  1698     public ArrayType makeArrayType(Type t) {
  1699         if (t.tag == VOID ||
  1700             t.tag == PACKAGE) {
  1701             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1703         return new ArrayType(t, syms.arrayClass);
  1705     // </editor-fold>
  1707     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1708     /**
  1709      * Return the (most specific) base type of t that starts with the
  1710      * given symbol.  If none exists, return null.
  1712      * @param t a type
  1713      * @param sym a symbol
  1714      */
  1715     public Type asSuper(Type t, Symbol sym) {
  1716         return asSuper.visit(t, sym);
  1718     // where
  1719         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1721             public Type visitType(Type t, Symbol sym) {
  1722                 return null;
  1725             @Override
  1726             public Type visitClassType(ClassType t, Symbol sym) {
  1727                 if (t.tsym == sym)
  1728                     return t;
  1730                 Type st = supertype(t);
  1731                 if (st.tag == CLASS || st.tag == TYPEVAR || st.tag == ERROR) {
  1732                     Type x = asSuper(st, sym);
  1733                     if (x != null)
  1734                         return x;
  1736                 if ((sym.flags() & INTERFACE) != 0) {
  1737                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1738                         Type x = asSuper(l.head, sym);
  1739                         if (x != null)
  1740                             return x;
  1743                 return null;
  1746             @Override
  1747             public Type visitArrayType(ArrayType t, Symbol sym) {
  1748                 return isSubtype(t, sym.type) ? sym.type : null;
  1751             @Override
  1752             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1753                 if (t.tsym == sym)
  1754                     return t;
  1755                 else
  1756                     return asSuper(t.bound, sym);
  1759             @Override
  1760             public Type visitErrorType(ErrorType t, Symbol sym) {
  1761                 return t;
  1763         };
  1765     /**
  1766      * Return the base type of t or any of its outer types that starts
  1767      * with the given symbol.  If none exists, return null.
  1769      * @param t a type
  1770      * @param sym a symbol
  1771      */
  1772     public Type asOuterSuper(Type t, Symbol sym) {
  1773         switch (t.tag) {
  1774         case CLASS:
  1775             do {
  1776                 Type s = asSuper(t, sym);
  1777                 if (s != null) return s;
  1778                 t = t.getEnclosingType();
  1779             } while (t.tag == CLASS);
  1780             return null;
  1781         case ARRAY:
  1782             return isSubtype(t, sym.type) ? sym.type : null;
  1783         case TYPEVAR:
  1784             return asSuper(t, sym);
  1785         case ERROR:
  1786             return t;
  1787         default:
  1788             return null;
  1792     /**
  1793      * Return the base type of t or any of its enclosing types that
  1794      * starts with the given symbol.  If none exists, return null.
  1796      * @param t a type
  1797      * @param sym a symbol
  1798      */
  1799     public Type asEnclosingSuper(Type t, Symbol sym) {
  1800         switch (t.tag) {
  1801         case CLASS:
  1802             do {
  1803                 Type s = asSuper(t, sym);
  1804                 if (s != null) return s;
  1805                 Type outer = t.getEnclosingType();
  1806                 t = (outer.tag == CLASS) ? outer :
  1807                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1808                     Type.noType;
  1809             } while (t.tag == CLASS);
  1810             return null;
  1811         case ARRAY:
  1812             return isSubtype(t, sym.type) ? sym.type : null;
  1813         case TYPEVAR:
  1814             return asSuper(t, sym);
  1815         case ERROR:
  1816             return t;
  1817         default:
  1818             return null;
  1821     // </editor-fold>
  1823     // <editor-fold defaultstate="collapsed" desc="memberType">
  1824     /**
  1825      * The type of given symbol, seen as a member of t.
  1827      * @param t a type
  1828      * @param sym a symbol
  1829      */
  1830     public Type memberType(Type t, Symbol sym) {
  1831         return (sym.flags() & STATIC) != 0
  1832             ? sym.type
  1833             : memberType.visit(t, sym);
  1835     // where
  1836         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1838             public Type visitType(Type t, Symbol sym) {
  1839                 return sym.type;
  1842             @Override
  1843             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1844                 return memberType(upperBound(t), sym);
  1847             @Override
  1848             public Type visitClassType(ClassType t, Symbol sym) {
  1849                 Symbol owner = sym.owner;
  1850                 long flags = sym.flags();
  1851                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1852                     Type base = asOuterSuper(t, owner);
  1853                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1854                     //its supertypes CT, I1, ... In might contain wildcards
  1855                     //so we need to go through capture conversion
  1856                     base = t.isCompound() ? capture(base) : base;
  1857                     if (base != null) {
  1858                         List<Type> ownerParams = owner.type.allparams();
  1859                         List<Type> baseParams = base.allparams();
  1860                         if (ownerParams.nonEmpty()) {
  1861                             if (baseParams.isEmpty()) {
  1862                                 // then base is a raw type
  1863                                 return erasure(sym.type);
  1864                             } else {
  1865                                 return subst(sym.type, ownerParams, baseParams);
  1870                 return sym.type;
  1873             @Override
  1874             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1875                 return memberType(t.bound, sym);
  1878             @Override
  1879             public Type visitErrorType(ErrorType t, Symbol sym) {
  1880                 return t;
  1882         };
  1883     // </editor-fold>
  1885     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  1886     public boolean isAssignable(Type t, Type s) {
  1887         return isAssignable(t, s, noWarnings);
  1890     /**
  1891      * Is t assignable to s?<br>
  1892      * Equivalent to subtype except for constant values and raw
  1893      * types.<br>
  1894      * (not defined for Method and ForAll types)
  1895      */
  1896     public boolean isAssignable(Type t, Type s, Warner warn) {
  1897         if (t.tag == ERROR)
  1898             return true;
  1899         if (t.tag.isSubRangeOf(INT) && t.constValue() != null) {
  1900             int value = ((Number)t.constValue()).intValue();
  1901             switch (s.tag) {
  1902             case BYTE:
  1903                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  1904                     return true;
  1905                 break;
  1906             case CHAR:
  1907                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  1908                     return true;
  1909                 break;
  1910             case SHORT:
  1911                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  1912                     return true;
  1913                 break;
  1914             case INT:
  1915                 return true;
  1916             case CLASS:
  1917                 switch (unboxedType(s).tag) {
  1918                 case BYTE:
  1919                 case CHAR:
  1920                 case SHORT:
  1921                     return isAssignable(t, unboxedType(s), warn);
  1923                 break;
  1926         return isConvertible(t, s, warn);
  1928     // </editor-fold>
  1930     // <editor-fold defaultstate="collapsed" desc="erasure">
  1931     /**
  1932      * The erasure of t {@code |t|} -- the type that results when all
  1933      * type parameters in t are deleted.
  1934      */
  1935     public Type erasure(Type t) {
  1936         return eraseNotNeeded(t)? t : erasure(t, false);
  1938     //where
  1939     private boolean eraseNotNeeded(Type t) {
  1940         // We don't want to erase primitive types and String type as that
  1941         // operation is idempotent. Also, erasing these could result in loss
  1942         // of information such as constant values attached to such types.
  1943         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  1946     private Type erasure(Type t, boolean recurse) {
  1947         if (t.isPrimitive())
  1948             return t; /* fast special case */
  1949         else
  1950             return erasure.visit(t, recurse);
  1952     // where
  1953         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  1954             public Type visitType(Type t, Boolean recurse) {
  1955                 if (t.isPrimitive())
  1956                     return t; /*fast special case*/
  1957                 else
  1958                     return t.map(recurse ? erasureRecFun : erasureFun);
  1961             @Override
  1962             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  1963                 return erasure(upperBound(t), recurse);
  1966             @Override
  1967             public Type visitClassType(ClassType t, Boolean recurse) {
  1968                 Type erased = t.tsym.erasure(Types.this);
  1969                 if (recurse) {
  1970                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  1972                 return erased;
  1975             @Override
  1976             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  1977                 return erasure(t.bound, recurse);
  1980             @Override
  1981             public Type visitErrorType(ErrorType t, Boolean recurse) {
  1982                 return t;
  1984         };
  1986     private Mapping erasureFun = new Mapping ("erasure") {
  1987             public Type apply(Type t) { return erasure(t); }
  1988         };
  1990     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  1991         public Type apply(Type t) { return erasureRecursive(t); }
  1992     };
  1994     public List<Type> erasure(List<Type> ts) {
  1995         return Type.map(ts, erasureFun);
  1998     public Type erasureRecursive(Type t) {
  1999         return erasure(t, true);
  2002     public List<Type> erasureRecursive(List<Type> ts) {
  2003         return Type.map(ts, erasureRecFun);
  2005     // </editor-fold>
  2007     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2008     /**
  2009      * Make a compound type from non-empty list of types
  2011      * @param bounds            the types from which the compound type is formed
  2012      * @param supertype         is objectType if all bounds are interfaces,
  2013      *                          null otherwise.
  2014      */
  2015     public Type makeCompoundType(List<Type> bounds) {
  2016         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2018     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2019         Assert.check(bounds.nonEmpty());
  2020         Type firstExplicitBound = bounds.head;
  2021         if (allInterfaces) {
  2022             bounds = bounds.prepend(syms.objectType);
  2024         ClassSymbol bc =
  2025             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2026                             Type.moreInfo
  2027                                 ? names.fromString(bounds.toString())
  2028                                 : names.empty,
  2029                             null,
  2030                             syms.noSymbol);
  2031         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2032         bc.erasure_field = (bounds.head.tag == TYPEVAR) ?
  2033                 syms.objectType : // error condition, recover
  2034                 erasure(firstExplicitBound);
  2035         bc.members_field = new Scope(bc);
  2036         return bc.type;
  2039     /**
  2040      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2041      * arguments are converted to a list and passed to the other
  2042      * method.  Note that this might cause a symbol completion.
  2043      * Hence, this version of makeCompoundType may not be called
  2044      * during a classfile read.
  2045      */
  2046     public Type makeCompoundType(Type bound1, Type bound2) {
  2047         return makeCompoundType(List.of(bound1, bound2));
  2049     // </editor-fold>
  2051     // <editor-fold defaultstate="collapsed" desc="supertype">
  2052     public Type supertype(Type t) {
  2053         return supertype.visit(t);
  2055     // where
  2056         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2058             public Type visitType(Type t, Void ignored) {
  2059                 // A note on wildcards: there is no good way to
  2060                 // determine a supertype for a super bounded wildcard.
  2061                 return null;
  2064             @Override
  2065             public Type visitClassType(ClassType t, Void ignored) {
  2066                 if (t.supertype_field == null) {
  2067                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2068                     // An interface has no superclass; its supertype is Object.
  2069                     if (t.isInterface())
  2070                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2071                     if (t.supertype_field == null) {
  2072                         List<Type> actuals = classBound(t).allparams();
  2073                         List<Type> formals = t.tsym.type.allparams();
  2074                         if (t.hasErasedSupertypes()) {
  2075                             t.supertype_field = erasureRecursive(supertype);
  2076                         } else if (formals.nonEmpty()) {
  2077                             t.supertype_field = subst(supertype, formals, actuals);
  2079                         else {
  2080                             t.supertype_field = supertype;
  2084                 return t.supertype_field;
  2087             /**
  2088              * The supertype is always a class type. If the type
  2089              * variable's bounds start with a class type, this is also
  2090              * the supertype.  Otherwise, the supertype is
  2091              * java.lang.Object.
  2092              */
  2093             @Override
  2094             public Type visitTypeVar(TypeVar t, Void ignored) {
  2095                 if (t.bound.tag == TYPEVAR ||
  2096                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2097                     return t.bound;
  2098                 } else {
  2099                     return supertype(t.bound);
  2103             @Override
  2104             public Type visitArrayType(ArrayType t, Void ignored) {
  2105                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2106                     return arraySuperType();
  2107                 else
  2108                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2111             @Override
  2112             public Type visitErrorType(ErrorType t, Void ignored) {
  2113                 return t;
  2115         };
  2116     // </editor-fold>
  2118     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2119     /**
  2120      * Return the interfaces implemented by this class.
  2121      */
  2122     public List<Type> interfaces(Type t) {
  2123         return interfaces.visit(t);
  2125     // where
  2126         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2128             public List<Type> visitType(Type t, Void ignored) {
  2129                 return List.nil();
  2132             @Override
  2133             public List<Type> visitClassType(ClassType t, Void ignored) {
  2134                 if (t.interfaces_field == null) {
  2135                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2136                     if (t.interfaces_field == null) {
  2137                         // If t.interfaces_field is null, then t must
  2138                         // be a parameterized type (not to be confused
  2139                         // with a generic type declaration).
  2140                         // Terminology:
  2141                         //    Parameterized type: List<String>
  2142                         //    Generic type declaration: class List<E> { ... }
  2143                         // So t corresponds to List<String> and
  2144                         // t.tsym.type corresponds to List<E>.
  2145                         // The reason t must be parameterized type is
  2146                         // that completion will happen as a side
  2147                         // effect of calling
  2148                         // ClassSymbol.getInterfaces.  Since
  2149                         // t.interfaces_field is null after
  2150                         // completion, we can assume that t is not the
  2151                         // type of a class/interface declaration.
  2152                         Assert.check(t != t.tsym.type, t);
  2153                         List<Type> actuals = t.allparams();
  2154                         List<Type> formals = t.tsym.type.allparams();
  2155                         if (t.hasErasedSupertypes()) {
  2156                             t.interfaces_field = erasureRecursive(interfaces);
  2157                         } else if (formals.nonEmpty()) {
  2158                             t.interfaces_field =
  2159                                 upperBounds(subst(interfaces, formals, actuals));
  2161                         else {
  2162                             t.interfaces_field = interfaces;
  2166                 return t.interfaces_field;
  2169             @Override
  2170             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2171                 if (t.bound.isCompound())
  2172                     return interfaces(t.bound);
  2174                 if (t.bound.isInterface())
  2175                     return List.of(t.bound);
  2177                 return List.nil();
  2179         };
  2181     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2182         for (Type i2 : interfaces(origin.type)) {
  2183             if (isym == i2.tsym) return true;
  2185         return false;
  2187     // </editor-fold>
  2189     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2190     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2192     public boolean isDerivedRaw(Type t) {
  2193         Boolean result = isDerivedRawCache.get(t);
  2194         if (result == null) {
  2195             result = isDerivedRawInternal(t);
  2196             isDerivedRawCache.put(t, result);
  2198         return result;
  2201     public boolean isDerivedRawInternal(Type t) {
  2202         if (t.isErroneous())
  2203             return false;
  2204         return
  2205             t.isRaw() ||
  2206             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2207             isDerivedRaw(interfaces(t));
  2210     public boolean isDerivedRaw(List<Type> ts) {
  2211         List<Type> l = ts;
  2212         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2213         return l.nonEmpty();
  2215     // </editor-fold>
  2217     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2218     /**
  2219      * Set the bounds field of the given type variable to reflect a
  2220      * (possibly multiple) list of bounds.
  2221      * @param t                 a type variable
  2222      * @param bounds            the bounds, must be nonempty
  2223      * @param supertype         is objectType if all bounds are interfaces,
  2224      *                          null otherwise.
  2225      */
  2226     public void setBounds(TypeVar t, List<Type> bounds) {
  2227         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2230     /**
  2231      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2232      * third parameter is computed directly, as follows: if all
  2233      * all bounds are interface types, the computed supertype is Object,
  2234      * otherwise the supertype is simply left null (in this case, the supertype
  2235      * is assumed to be the head of the bound list passed as second argument).
  2236      * Note that this check might cause a symbol completion. Hence, this version of
  2237      * setBounds may not be called during a classfile read.
  2238      */
  2239     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2240         t.bound = bounds.tail.isEmpty() ?
  2241                 bounds.head :
  2242                 makeCompoundType(bounds, allInterfaces);
  2243         t.rank_field = -1;
  2245     // </editor-fold>
  2247     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2248     /**
  2249      * Return list of bounds of the given type variable.
  2250      */
  2251     public List<Type> getBounds(TypeVar t) {
  2252         if (t.bound.hasTag(NONE))
  2253             return List.nil();
  2254         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2255             return List.of(t.bound);
  2256         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2257             return interfaces(t).prepend(supertype(t));
  2258         else
  2259             // No superclass was given in bounds.
  2260             // In this case, supertype is Object, erasure is first interface.
  2261             return interfaces(t);
  2263     // </editor-fold>
  2265     // <editor-fold defaultstate="collapsed" desc="classBound">
  2266     /**
  2267      * If the given type is a (possibly selected) type variable,
  2268      * return the bounding class of this type, otherwise return the
  2269      * type itself.
  2270      */
  2271     public Type classBound(Type t) {
  2272         return classBound.visit(t);
  2274     // where
  2275         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2277             public Type visitType(Type t, Void ignored) {
  2278                 return t;
  2281             @Override
  2282             public Type visitClassType(ClassType t, Void ignored) {
  2283                 Type outer1 = classBound(t.getEnclosingType());
  2284                 if (outer1 != t.getEnclosingType())
  2285                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2286                 else
  2287                     return t;
  2290             @Override
  2291             public Type visitTypeVar(TypeVar t, Void ignored) {
  2292                 return classBound(supertype(t));
  2295             @Override
  2296             public Type visitErrorType(ErrorType t, Void ignored) {
  2297                 return t;
  2299         };
  2300     // </editor-fold>
  2302     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2303     /**
  2304      * Returns true iff the first signature is a <em>sub
  2305      * signature</em> of the other.  This is <b>not</b> an equivalence
  2306      * relation.
  2308      * @jls section 8.4.2.
  2309      * @see #overrideEquivalent(Type t, Type s)
  2310      * @param t first signature (possibly raw).
  2311      * @param s second signature (could be subjected to erasure).
  2312      * @return true if t is a sub signature of s.
  2313      */
  2314     public boolean isSubSignature(Type t, Type s) {
  2315         return isSubSignature(t, s, true);
  2318     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2319         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2322     /**
  2323      * Returns true iff these signatures are related by <em>override
  2324      * equivalence</em>.  This is the natural extension of
  2325      * isSubSignature to an equivalence relation.
  2327      * @jls section 8.4.2.
  2328      * @see #isSubSignature(Type t, Type s)
  2329      * @param t a signature (possible raw, could be subjected to
  2330      * erasure).
  2331      * @param s a signature (possible raw, could be subjected to
  2332      * erasure).
  2333      * @return true if either argument is a sub signature of the other.
  2334      */
  2335     public boolean overrideEquivalent(Type t, Type s) {
  2336         return hasSameArgs(t, s) ||
  2337             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2340     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2341         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2342             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2343                 return true;
  2346         return false;
  2349     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2350     class ImplementationCache {
  2352         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2353                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2355         class Entry {
  2356             final MethodSymbol cachedImpl;
  2357             final Filter<Symbol> implFilter;
  2358             final boolean checkResult;
  2359             final int prevMark;
  2361             public Entry(MethodSymbol cachedImpl,
  2362                     Filter<Symbol> scopeFilter,
  2363                     boolean checkResult,
  2364                     int prevMark) {
  2365                 this.cachedImpl = cachedImpl;
  2366                 this.implFilter = scopeFilter;
  2367                 this.checkResult = checkResult;
  2368                 this.prevMark = prevMark;
  2371             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2372                 return this.implFilter == scopeFilter &&
  2373                         this.checkResult == checkResult &&
  2374                         this.prevMark == mark;
  2378         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2379             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2380             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2381             if (cache == null) {
  2382                 cache = new HashMap<TypeSymbol, Entry>();
  2383                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2385             Entry e = cache.get(origin);
  2386             CompoundScope members = membersClosure(origin.type, true);
  2387             if (e == null ||
  2388                     !e.matches(implFilter, checkResult, members.getMark())) {
  2389                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2390                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2391                 return impl;
  2393             else {
  2394                 return e.cachedImpl;
  2398         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2399             for (Type t = origin.type; t.tag == CLASS || t.tag == TYPEVAR; t = supertype(t)) {
  2400                 while (t.tag == TYPEVAR)
  2401                     t = t.getUpperBound();
  2402                 TypeSymbol c = t.tsym;
  2403                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2404                      e.scope != null;
  2405                      e = e.next(implFilter)) {
  2406                     if (e.sym != null &&
  2407                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2408                         return (MethodSymbol)e.sym;
  2411             return null;
  2415     private ImplementationCache implCache = new ImplementationCache();
  2417     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2418         return implCache.get(ms, origin, checkResult, implFilter);
  2420     // </editor-fold>
  2422     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2423     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2425         private WeakHashMap<TypeSymbol, Entry> _map =
  2426                 new WeakHashMap<TypeSymbol, Entry>();
  2428         class Entry {
  2429             final boolean skipInterfaces;
  2430             final CompoundScope compoundScope;
  2432             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2433                 this.skipInterfaces = skipInterfaces;
  2434                 this.compoundScope = compoundScope;
  2437             boolean matches(boolean skipInterfaces) {
  2438                 return this.skipInterfaces == skipInterfaces;
  2442         List<TypeSymbol> seenTypes = List.nil();
  2444         /** members closure visitor methods **/
  2446         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2447             return null;
  2450         @Override
  2451         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2452             if (seenTypes.contains(t.tsym)) {
  2453                 //this is possible when an interface is implemented in multiple
  2454                 //superclasses, or when a classs hierarchy is circular - in such
  2455                 //cases we don't need to recurse (empty scope is returned)
  2456                 return new CompoundScope(t.tsym);
  2458             try {
  2459                 seenTypes = seenTypes.prepend(t.tsym);
  2460                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2461                 Entry e = _map.get(csym);
  2462                 if (e == null || !e.matches(skipInterface)) {
  2463                     CompoundScope membersClosure = new CompoundScope(csym);
  2464                     if (!skipInterface) {
  2465                         for (Type i : interfaces(t)) {
  2466                             membersClosure.addSubScope(visit(i, skipInterface));
  2469                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2470                     membersClosure.addSubScope(csym.members());
  2471                     e = new Entry(skipInterface, membersClosure);
  2472                     _map.put(csym, e);
  2474                 return e.compoundScope;
  2476             finally {
  2477                 seenTypes = seenTypes.tail;
  2481         @Override
  2482         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2483             return visit(t.getUpperBound(), skipInterface);
  2487     private MembersClosureCache membersCache = new MembersClosureCache();
  2489     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2490         return membersCache.visit(site, skipInterface);
  2492     // </editor-fold>
  2495     //where
  2496     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2497         Filter<Symbol> filter = new MethodFilter(ms, site);
  2498         List<MethodSymbol> candidates = List.nil();
  2499         for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2500             if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2501                 return List.of((MethodSymbol)s);
  2502             } else if (!candidates.contains(s)) {
  2503                 candidates = candidates.prepend((MethodSymbol)s);
  2506         return prune(candidates, ownerComparator);
  2509     public List<MethodSymbol> prune(List<MethodSymbol> methods, Comparator<MethodSymbol> cmp) {
  2510         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2511         for (MethodSymbol m1 : methods) {
  2512             boolean isMin_m1 = true;
  2513             for (MethodSymbol m2 : methods) {
  2514                 if (m1 == m2) continue;
  2515                 if (cmp.compare(m2, m1) < 0) {
  2516                     isMin_m1 = false;
  2517                     break;
  2520             if (isMin_m1)
  2521                 methodsMin.append(m1);
  2523         return methodsMin.toList();
  2526     Comparator<MethodSymbol> ownerComparator = new Comparator<MethodSymbol>() {
  2527         public int compare(MethodSymbol s1, MethodSymbol s2) {
  2528             return s1.owner.isSubClass(s2.owner, Types.this) ? -1 : 1;
  2530     };
  2531     // where
  2532             private class MethodFilter implements Filter<Symbol> {
  2534                 Symbol msym;
  2535                 Type site;
  2537                 MethodFilter(Symbol msym, Type site) {
  2538                     this.msym = msym;
  2539                     this.site = site;
  2542                 public boolean accepts(Symbol s) {
  2543                     return s.kind == Kinds.MTH &&
  2544                             s.name == msym.name &&
  2545                             s.isInheritedIn(site.tsym, Types.this) &&
  2546                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2548             };
  2549     // </editor-fold>
  2551     /**
  2552      * Does t have the same arguments as s?  It is assumed that both
  2553      * types are (possibly polymorphic) method types.  Monomorphic
  2554      * method types "have the same arguments", if their argument lists
  2555      * are equal.  Polymorphic method types "have the same arguments",
  2556      * if they have the same arguments after renaming all type
  2557      * variables of one to corresponding type variables in the other,
  2558      * where correspondence is by position in the type parameter list.
  2559      */
  2560     public boolean hasSameArgs(Type t, Type s) {
  2561         return hasSameArgs(t, s, true);
  2564     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2565         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2568     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2569         return hasSameArgs.visit(t, s);
  2571     // where
  2572         private class HasSameArgs extends TypeRelation {
  2574             boolean strict;
  2576             public HasSameArgs(boolean strict) {
  2577                 this.strict = strict;
  2580             public Boolean visitType(Type t, Type s) {
  2581                 throw new AssertionError();
  2584             @Override
  2585             public Boolean visitMethodType(MethodType t, Type s) {
  2586                 return s.tag == METHOD
  2587                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2590             @Override
  2591             public Boolean visitForAll(ForAll t, Type s) {
  2592                 if (s.tag != FORALL)
  2593                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2595                 ForAll forAll = (ForAll)s;
  2596                 return hasSameBounds(t, forAll)
  2597                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2600             @Override
  2601             public Boolean visitErrorType(ErrorType t, Type s) {
  2602                 return false;
  2604         };
  2606         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2607         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2609     // </editor-fold>
  2611     // <editor-fold defaultstate="collapsed" desc="subst">
  2612     public List<Type> subst(List<Type> ts,
  2613                             List<Type> from,
  2614                             List<Type> to) {
  2615         return new Subst(from, to).subst(ts);
  2618     /**
  2619      * Substitute all occurrences of a type in `from' with the
  2620      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2621      * from the right: If lists have different length, discard leading
  2622      * elements of the longer list.
  2623      */
  2624     public Type subst(Type t, List<Type> from, List<Type> to) {
  2625         return new Subst(from, to).subst(t);
  2628     private class Subst extends UnaryVisitor<Type> {
  2629         List<Type> from;
  2630         List<Type> to;
  2632         public Subst(List<Type> from, List<Type> to) {
  2633             int fromLength = from.length();
  2634             int toLength = to.length();
  2635             while (fromLength > toLength) {
  2636                 fromLength--;
  2637                 from = from.tail;
  2639             while (fromLength < toLength) {
  2640                 toLength--;
  2641                 to = to.tail;
  2643             this.from = from;
  2644             this.to = to;
  2647         Type subst(Type t) {
  2648             if (from.tail == null)
  2649                 return t;
  2650             else
  2651                 return visit(t);
  2654         List<Type> subst(List<Type> ts) {
  2655             if (from.tail == null)
  2656                 return ts;
  2657             boolean wild = false;
  2658             if (ts.nonEmpty() && from.nonEmpty()) {
  2659                 Type head1 = subst(ts.head);
  2660                 List<Type> tail1 = subst(ts.tail);
  2661                 if (head1 != ts.head || tail1 != ts.tail)
  2662                     return tail1.prepend(head1);
  2664             return ts;
  2667         public Type visitType(Type t, Void ignored) {
  2668             return t;
  2671         @Override
  2672         public Type visitMethodType(MethodType t, Void ignored) {
  2673             List<Type> argtypes = subst(t.argtypes);
  2674             Type restype = subst(t.restype);
  2675             List<Type> thrown = subst(t.thrown);
  2676             if (argtypes == t.argtypes &&
  2677                 restype == t.restype &&
  2678                 thrown == t.thrown)
  2679                 return t;
  2680             else
  2681                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2684         @Override
  2685         public Type visitTypeVar(TypeVar t, Void ignored) {
  2686             for (List<Type> from = this.from, to = this.to;
  2687                  from.nonEmpty();
  2688                  from = from.tail, to = to.tail) {
  2689                 if (t == from.head) {
  2690                     return to.head.withTypeVar(t);
  2693             return t;
  2696         @Override
  2697         public Type visitClassType(ClassType t, Void ignored) {
  2698             if (!t.isCompound()) {
  2699                 List<Type> typarams = t.getTypeArguments();
  2700                 List<Type> typarams1 = subst(typarams);
  2701                 Type outer = t.getEnclosingType();
  2702                 Type outer1 = subst(outer);
  2703                 if (typarams1 == typarams && outer1 == outer)
  2704                     return t;
  2705                 else
  2706                     return new ClassType(outer1, typarams1, t.tsym);
  2707             } else {
  2708                 Type st = subst(supertype(t));
  2709                 List<Type> is = upperBounds(subst(interfaces(t)));
  2710                 if (st == supertype(t) && is == interfaces(t))
  2711                     return t;
  2712                 else
  2713                     return makeCompoundType(is.prepend(st));
  2717         @Override
  2718         public Type visitWildcardType(WildcardType t, Void ignored) {
  2719             Type bound = t.type;
  2720             if (t.kind != BoundKind.UNBOUND)
  2721                 bound = subst(bound);
  2722             if (bound == t.type) {
  2723                 return t;
  2724             } else {
  2725                 if (t.isExtendsBound() && bound.isExtendsBound())
  2726                     bound = upperBound(bound);
  2727                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2731         @Override
  2732         public Type visitArrayType(ArrayType t, Void ignored) {
  2733             Type elemtype = subst(t.elemtype);
  2734             if (elemtype == t.elemtype)
  2735                 return t;
  2736             else
  2737                 return new ArrayType(upperBound(elemtype), t.tsym);
  2740         @Override
  2741         public Type visitForAll(ForAll t, Void ignored) {
  2742             if (Type.containsAny(to, t.tvars)) {
  2743                 //perform alpha-renaming of free-variables in 't'
  2744                 //if 'to' types contain variables that are free in 't'
  2745                 List<Type> freevars = newInstances(t.tvars);
  2746                 t = new ForAll(freevars,
  2747                         Types.this.subst(t.qtype, t.tvars, freevars));
  2749             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2750             Type qtype1 = subst(t.qtype);
  2751             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2752                 return t;
  2753             } else if (tvars1 == t.tvars) {
  2754                 return new ForAll(tvars1, qtype1);
  2755             } else {
  2756                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2760         @Override
  2761         public Type visitErrorType(ErrorType t, Void ignored) {
  2762             return t;
  2766     public List<Type> substBounds(List<Type> tvars,
  2767                                   List<Type> from,
  2768                                   List<Type> to) {
  2769         if (tvars.isEmpty())
  2770             return tvars;
  2771         ListBuffer<Type> newBoundsBuf = lb();
  2772         boolean changed = false;
  2773         // calculate new bounds
  2774         for (Type t : tvars) {
  2775             TypeVar tv = (TypeVar) t;
  2776             Type bound = subst(tv.bound, from, to);
  2777             if (bound != tv.bound)
  2778                 changed = true;
  2779             newBoundsBuf.append(bound);
  2781         if (!changed)
  2782             return tvars;
  2783         ListBuffer<Type> newTvars = lb();
  2784         // create new type variables without bounds
  2785         for (Type t : tvars) {
  2786             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2788         // the new bounds should use the new type variables in place
  2789         // of the old
  2790         List<Type> newBounds = newBoundsBuf.toList();
  2791         from = tvars;
  2792         to = newTvars.toList();
  2793         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2794             newBounds.head = subst(newBounds.head, from, to);
  2796         newBounds = newBoundsBuf.toList();
  2797         // set the bounds of new type variables to the new bounds
  2798         for (Type t : newTvars.toList()) {
  2799             TypeVar tv = (TypeVar) t;
  2800             tv.bound = newBounds.head;
  2801             newBounds = newBounds.tail;
  2803         return newTvars.toList();
  2806     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2807         Type bound1 = subst(t.bound, from, to);
  2808         if (bound1 == t.bound)
  2809             return t;
  2810         else {
  2811             // create new type variable without bounds
  2812             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2813             // the new bound should use the new type variable in place
  2814             // of the old
  2815             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2816             return tv;
  2819     // </editor-fold>
  2821     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2822     /**
  2823      * Does t have the same bounds for quantified variables as s?
  2824      */
  2825     boolean hasSameBounds(ForAll t, ForAll s) {
  2826         List<Type> l1 = t.tvars;
  2827         List<Type> l2 = s.tvars;
  2828         while (l1.nonEmpty() && l2.nonEmpty() &&
  2829                isSameType(l1.head.getUpperBound(),
  2830                           subst(l2.head.getUpperBound(),
  2831                                 s.tvars,
  2832                                 t.tvars))) {
  2833             l1 = l1.tail;
  2834             l2 = l2.tail;
  2836         return l1.isEmpty() && l2.isEmpty();
  2838     // </editor-fold>
  2840     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2841     /** Create new vector of type variables from list of variables
  2842      *  changing all recursive bounds from old to new list.
  2843      */
  2844     public List<Type> newInstances(List<Type> tvars) {
  2845         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2846         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2847             TypeVar tv = (TypeVar) l.head;
  2848             tv.bound = subst(tv.bound, tvars, tvars1);
  2850         return tvars1;
  2852     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2853             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2854         };
  2855     // </editor-fold>
  2857     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2858         return original.accept(methodWithParameters, newParams);
  2860     // where
  2861         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2862             public Type visitType(Type t, List<Type> newParams) {
  2863                 throw new IllegalArgumentException("Not a method type: " + t);
  2865             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2866                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2868             public Type visitForAll(ForAll t, List<Type> newParams) {
  2869                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  2871         };
  2873     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  2874         return original.accept(methodWithThrown, newThrown);
  2876     // where
  2877         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  2878             public Type visitType(Type t, List<Type> newThrown) {
  2879                 throw new IllegalArgumentException("Not a method type: " + t);
  2881             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  2882                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  2884             public Type visitForAll(ForAll t, List<Type> newThrown) {
  2885                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  2887         };
  2889     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  2890         return original.accept(methodWithReturn, newReturn);
  2892     // where
  2893         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  2894             public Type visitType(Type t, Type newReturn) {
  2895                 throw new IllegalArgumentException("Not a method type: " + t);
  2897             public Type visitMethodType(MethodType t, Type newReturn) {
  2898                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  2900             public Type visitForAll(ForAll t, Type newReturn) {
  2901                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  2903         };
  2905     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  2906     public Type createErrorType(Type originalType) {
  2907         return new ErrorType(originalType, syms.errSymbol);
  2910     public Type createErrorType(ClassSymbol c, Type originalType) {
  2911         return new ErrorType(c, originalType);
  2914     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  2915         return new ErrorType(name, container, originalType);
  2917     // </editor-fold>
  2919     // <editor-fold defaultstate="collapsed" desc="rank">
  2920     /**
  2921      * The rank of a class is the length of the longest path between
  2922      * the class and java.lang.Object in the class inheritance
  2923      * graph. Undefined for all but reference types.
  2924      */
  2925     public int rank(Type t) {
  2926         switch(t.tag) {
  2927         case CLASS: {
  2928             ClassType cls = (ClassType)t;
  2929             if (cls.rank_field < 0) {
  2930                 Name fullname = cls.tsym.getQualifiedName();
  2931                 if (fullname == names.java_lang_Object)
  2932                     cls.rank_field = 0;
  2933                 else {
  2934                     int r = rank(supertype(cls));
  2935                     for (List<Type> l = interfaces(cls);
  2936                          l.nonEmpty();
  2937                          l = l.tail) {
  2938                         if (rank(l.head) > r)
  2939                             r = rank(l.head);
  2941                     cls.rank_field = r + 1;
  2944             return cls.rank_field;
  2946         case TYPEVAR: {
  2947             TypeVar tvar = (TypeVar)t;
  2948             if (tvar.rank_field < 0) {
  2949                 int r = rank(supertype(tvar));
  2950                 for (List<Type> l = interfaces(tvar);
  2951                      l.nonEmpty();
  2952                      l = l.tail) {
  2953                     if (rank(l.head) > r) r = rank(l.head);
  2955                 tvar.rank_field = r + 1;
  2957             return tvar.rank_field;
  2959         case ERROR:
  2960             return 0;
  2961         default:
  2962             throw new AssertionError();
  2965     // </editor-fold>
  2967     /**
  2968      * Helper method for generating a string representation of a given type
  2969      * accordingly to a given locale
  2970      */
  2971     public String toString(Type t, Locale locale) {
  2972         return Printer.createStandardPrinter(messages).visit(t, locale);
  2975     /**
  2976      * Helper method for generating a string representation of a given type
  2977      * accordingly to a given locale
  2978      */
  2979     public String toString(Symbol t, Locale locale) {
  2980         return Printer.createStandardPrinter(messages).visit(t, locale);
  2983     // <editor-fold defaultstate="collapsed" desc="toString">
  2984     /**
  2985      * This toString is slightly more descriptive than the one on Type.
  2987      * @deprecated Types.toString(Type t, Locale l) provides better support
  2988      * for localization
  2989      */
  2990     @Deprecated
  2991     public String toString(Type t) {
  2992         if (t.tag == FORALL) {
  2993             ForAll forAll = (ForAll)t;
  2994             return typaramsString(forAll.tvars) + forAll.qtype;
  2996         return "" + t;
  2998     // where
  2999         private String typaramsString(List<Type> tvars) {
  3000             StringBuilder s = new StringBuilder();
  3001             s.append('<');
  3002             boolean first = true;
  3003             for (Type t : tvars) {
  3004                 if (!first) s.append(", ");
  3005                 first = false;
  3006                 appendTyparamString(((TypeVar)t), s);
  3008             s.append('>');
  3009             return s.toString();
  3011         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3012             buf.append(t);
  3013             if (t.bound == null ||
  3014                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3015                 return;
  3016             buf.append(" extends "); // Java syntax; no need for i18n
  3017             Type bound = t.bound;
  3018             if (!bound.isCompound()) {
  3019                 buf.append(bound);
  3020             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3021                 buf.append(supertype(t));
  3022                 for (Type intf : interfaces(t)) {
  3023                     buf.append('&');
  3024                     buf.append(intf);
  3026             } else {
  3027                 // No superclass was given in bounds.
  3028                 // In this case, supertype is Object, erasure is first interface.
  3029                 boolean first = true;
  3030                 for (Type intf : interfaces(t)) {
  3031                     if (!first) buf.append('&');
  3032                     first = false;
  3033                     buf.append(intf);
  3037     // </editor-fold>
  3039     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3040     /**
  3041      * A cache for closures.
  3043      * <p>A closure is a list of all the supertypes and interfaces of
  3044      * a class or interface type, ordered by ClassSymbol.precedes
  3045      * (that is, subclasses come first, arbitrary but fixed
  3046      * otherwise).
  3047      */
  3048     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3050     /**
  3051      * Returns the closure of a class or interface type.
  3052      */
  3053     public List<Type> closure(Type t) {
  3054         List<Type> cl = closureCache.get(t);
  3055         if (cl == null) {
  3056             Type st = supertype(t);
  3057             if (!t.isCompound()) {
  3058                 if (st.tag == CLASS) {
  3059                     cl = insert(closure(st), t);
  3060                 } else if (st.tag == TYPEVAR) {
  3061                     cl = closure(st).prepend(t);
  3062                 } else {
  3063                     cl = List.of(t);
  3065             } else {
  3066                 cl = closure(supertype(t));
  3068             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3069                 cl = union(cl, closure(l.head));
  3070             closureCache.put(t, cl);
  3072         return cl;
  3075     /**
  3076      * Insert a type in a closure
  3077      */
  3078     public List<Type> insert(List<Type> cl, Type t) {
  3079         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3080             return cl.prepend(t);
  3081         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3082             return insert(cl.tail, t).prepend(cl.head);
  3083         } else {
  3084             return cl;
  3088     /**
  3089      * Form the union of two closures
  3090      */
  3091     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3092         if (cl1.isEmpty()) {
  3093             return cl2;
  3094         } else if (cl2.isEmpty()) {
  3095             return cl1;
  3096         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3097             return union(cl1.tail, cl2).prepend(cl1.head);
  3098         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3099             return union(cl1, cl2.tail).prepend(cl2.head);
  3100         } else {
  3101             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3105     /**
  3106      * Intersect two closures
  3107      */
  3108     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3109         if (cl1 == cl2)
  3110             return cl1;
  3111         if (cl1.isEmpty() || cl2.isEmpty())
  3112             return List.nil();
  3113         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3114             return intersect(cl1.tail, cl2);
  3115         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3116             return intersect(cl1, cl2.tail);
  3117         if (isSameType(cl1.head, cl2.head))
  3118             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3119         if (cl1.head.tsym == cl2.head.tsym &&
  3120             cl1.head.tag == CLASS && cl2.head.tag == CLASS) {
  3121             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3122                 Type merge = merge(cl1.head,cl2.head);
  3123                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3125             if (cl1.head.isRaw() || cl2.head.isRaw())
  3126                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3128         return intersect(cl1.tail, cl2.tail);
  3130     // where
  3131         class TypePair {
  3132             final Type t1;
  3133             final Type t2;
  3134             TypePair(Type t1, Type t2) {
  3135                 this.t1 = t1;
  3136                 this.t2 = t2;
  3138             @Override
  3139             public int hashCode() {
  3140                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3142             @Override
  3143             public boolean equals(Object obj) {
  3144                 if (!(obj instanceof TypePair))
  3145                     return false;
  3146                 TypePair typePair = (TypePair)obj;
  3147                 return isSameType(t1, typePair.t1)
  3148                     && isSameType(t2, typePair.t2);
  3151         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3152         private Type merge(Type c1, Type c2) {
  3153             ClassType class1 = (ClassType) c1;
  3154             List<Type> act1 = class1.getTypeArguments();
  3155             ClassType class2 = (ClassType) c2;
  3156             List<Type> act2 = class2.getTypeArguments();
  3157             ListBuffer<Type> merged = new ListBuffer<Type>();
  3158             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3160             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3161                 if (containsType(act1.head, act2.head)) {
  3162                     merged.append(act1.head);
  3163                 } else if (containsType(act2.head, act1.head)) {
  3164                     merged.append(act2.head);
  3165                 } else {
  3166                     TypePair pair = new TypePair(c1, c2);
  3167                     Type m;
  3168                     if (mergeCache.add(pair)) {
  3169                         m = new WildcardType(lub(upperBound(act1.head),
  3170                                                  upperBound(act2.head)),
  3171                                              BoundKind.EXTENDS,
  3172                                              syms.boundClass);
  3173                         mergeCache.remove(pair);
  3174                     } else {
  3175                         m = new WildcardType(syms.objectType,
  3176                                              BoundKind.UNBOUND,
  3177                                              syms.boundClass);
  3179                     merged.append(m.withTypeVar(typarams.head));
  3181                 act1 = act1.tail;
  3182                 act2 = act2.tail;
  3183                 typarams = typarams.tail;
  3185             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3186             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3189     /**
  3190      * Return the minimum type of a closure, a compound type if no
  3191      * unique minimum exists.
  3192      */
  3193     private Type compoundMin(List<Type> cl) {
  3194         if (cl.isEmpty()) return syms.objectType;
  3195         List<Type> compound = closureMin(cl);
  3196         if (compound.isEmpty())
  3197             return null;
  3198         else if (compound.tail.isEmpty())
  3199             return compound.head;
  3200         else
  3201             return makeCompoundType(compound);
  3204     /**
  3205      * Return the minimum types of a closure, suitable for computing
  3206      * compoundMin or glb.
  3207      */
  3208     private List<Type> closureMin(List<Type> cl) {
  3209         ListBuffer<Type> classes = lb();
  3210         ListBuffer<Type> interfaces = lb();
  3211         while (!cl.isEmpty()) {
  3212             Type current = cl.head;
  3213             if (current.isInterface())
  3214                 interfaces.append(current);
  3215             else
  3216                 classes.append(current);
  3217             ListBuffer<Type> candidates = lb();
  3218             for (Type t : cl.tail) {
  3219                 if (!isSubtypeNoCapture(current, t))
  3220                     candidates.append(t);
  3222             cl = candidates.toList();
  3224         return classes.appendList(interfaces).toList();
  3227     /**
  3228      * Return the least upper bound of pair of types.  if the lub does
  3229      * not exist return null.
  3230      */
  3231     public Type lub(Type t1, Type t2) {
  3232         return lub(List.of(t1, t2));
  3235     /**
  3236      * Return the least upper bound (lub) of set of types.  If the lub
  3237      * does not exist return the type of null (bottom).
  3238      */
  3239     public Type lub(List<Type> ts) {
  3240         final int ARRAY_BOUND = 1;
  3241         final int CLASS_BOUND = 2;
  3242         int boundkind = 0;
  3243         for (Type t : ts) {
  3244             switch (t.tag) {
  3245             case CLASS:
  3246                 boundkind |= CLASS_BOUND;
  3247                 break;
  3248             case ARRAY:
  3249                 boundkind |= ARRAY_BOUND;
  3250                 break;
  3251             case  TYPEVAR:
  3252                 do {
  3253                     t = t.getUpperBound();
  3254                 } while (t.tag == TYPEVAR);
  3255                 if (t.tag == ARRAY) {
  3256                     boundkind |= ARRAY_BOUND;
  3257                 } else {
  3258                     boundkind |= CLASS_BOUND;
  3260                 break;
  3261             default:
  3262                 if (t.isPrimitive())
  3263                     return syms.errType;
  3266         switch (boundkind) {
  3267         case 0:
  3268             return syms.botType;
  3270         case ARRAY_BOUND:
  3271             // calculate lub(A[], B[])
  3272             List<Type> elements = Type.map(ts, elemTypeFun);
  3273             for (Type t : elements) {
  3274                 if (t.isPrimitive()) {
  3275                     // if a primitive type is found, then return
  3276                     // arraySuperType unless all the types are the
  3277                     // same
  3278                     Type first = ts.head;
  3279                     for (Type s : ts.tail) {
  3280                         if (!isSameType(first, s)) {
  3281                              // lub(int[], B[]) is Cloneable & Serializable
  3282                             return arraySuperType();
  3285                     // all the array types are the same, return one
  3286                     // lub(int[], int[]) is int[]
  3287                     return first;
  3290             // lub(A[], B[]) is lub(A, B)[]
  3291             return new ArrayType(lub(elements), syms.arrayClass);
  3293         case CLASS_BOUND:
  3294             // calculate lub(A, B)
  3295             while (ts.head.tag != CLASS && ts.head.tag != TYPEVAR)
  3296                 ts = ts.tail;
  3297             Assert.check(!ts.isEmpty());
  3298             //step 1 - compute erased candidate set (EC)
  3299             List<Type> cl = erasedSupertypes(ts.head);
  3300             for (Type t : ts.tail) {
  3301                 if (t.tag == CLASS || t.tag == TYPEVAR)
  3302                     cl = intersect(cl, erasedSupertypes(t));
  3304             //step 2 - compute minimal erased candidate set (MEC)
  3305             List<Type> mec = closureMin(cl);
  3306             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3307             List<Type> candidates = List.nil();
  3308             for (Type erasedSupertype : mec) {
  3309                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3310                 for (Type t : ts) {
  3311                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3313                 candidates = candidates.appendList(lci);
  3315             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3316             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3317             return compoundMin(candidates);
  3319         default:
  3320             // calculate lub(A, B[])
  3321             List<Type> classes = List.of(arraySuperType());
  3322             for (Type t : ts) {
  3323                 if (t.tag != ARRAY) // Filter out any arrays
  3324                     classes = classes.prepend(t);
  3326             // lub(A, B[]) is lub(A, arraySuperType)
  3327             return lub(classes);
  3330     // where
  3331         List<Type> erasedSupertypes(Type t) {
  3332             ListBuffer<Type> buf = lb();
  3333             for (Type sup : closure(t)) {
  3334                 if (sup.tag == TYPEVAR) {
  3335                     buf.append(sup);
  3336                 } else {
  3337                     buf.append(erasure(sup));
  3340             return buf.toList();
  3343         private Type arraySuperType = null;
  3344         private Type arraySuperType() {
  3345             // initialized lazily to avoid problems during compiler startup
  3346             if (arraySuperType == null) {
  3347                 synchronized (this) {
  3348                     if (arraySuperType == null) {
  3349                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3350                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3351                                                                   syms.cloneableType), true);
  3355             return arraySuperType;
  3357     // </editor-fold>
  3359     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3360     public Type glb(List<Type> ts) {
  3361         Type t1 = ts.head;
  3362         for (Type t2 : ts.tail) {
  3363             if (t1.isErroneous())
  3364                 return t1;
  3365             t1 = glb(t1, t2);
  3367         return t1;
  3369     //where
  3370     public Type glb(Type t, Type s) {
  3371         if (s == null)
  3372             return t;
  3373         else if (t.isPrimitive() || s.isPrimitive())
  3374             return syms.errType;
  3375         else if (isSubtypeNoCapture(t, s))
  3376             return t;
  3377         else if (isSubtypeNoCapture(s, t))
  3378             return s;
  3380         List<Type> closure = union(closure(t), closure(s));
  3381         List<Type> bounds = closureMin(closure);
  3383         if (bounds.isEmpty()) {             // length == 0
  3384             return syms.objectType;
  3385         } else if (bounds.tail.isEmpty()) { // length == 1
  3386             return bounds.head;
  3387         } else {                            // length > 1
  3388             int classCount = 0;
  3389             for (Type bound : bounds)
  3390                 if (!bound.isInterface())
  3391                     classCount++;
  3392             if (classCount > 1)
  3393                 return createErrorType(t);
  3395         return makeCompoundType(bounds);
  3397     // </editor-fold>
  3399     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3400     /**
  3401      * Compute a hash code on a type.
  3402      */
  3403     public int hashCode(Type t) {
  3404         return hashCode.visit(t);
  3406     // where
  3407         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3409             public Integer visitType(Type t, Void ignored) {
  3410                 return t.tag.ordinal();
  3413             @Override
  3414             public Integer visitClassType(ClassType t, Void ignored) {
  3415                 int result = visit(t.getEnclosingType());
  3416                 result *= 127;
  3417                 result += t.tsym.flatName().hashCode();
  3418                 for (Type s : t.getTypeArguments()) {
  3419                     result *= 127;
  3420                     result += visit(s);
  3422                 return result;
  3425             @Override
  3426             public Integer visitMethodType(MethodType t, Void ignored) {
  3427                 int h = METHOD.ordinal();
  3428                 for (List<Type> thisargs = t.argtypes;
  3429                      thisargs.tail != null;
  3430                      thisargs = thisargs.tail)
  3431                     h = (h << 5) + visit(thisargs.head);
  3432                 return (h << 5) + visit(t.restype);
  3435             @Override
  3436             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3437                 int result = t.kind.hashCode();
  3438                 if (t.type != null) {
  3439                     result *= 127;
  3440                     result += visit(t.type);
  3442                 return result;
  3445             @Override
  3446             public Integer visitArrayType(ArrayType t, Void ignored) {
  3447                 return visit(t.elemtype) + 12;
  3450             @Override
  3451             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3452                 return System.identityHashCode(t.tsym);
  3455             @Override
  3456             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3457                 return System.identityHashCode(t);
  3460             @Override
  3461             public Integer visitErrorType(ErrorType t, Void ignored) {
  3462                 return 0;
  3464         };
  3465     // </editor-fold>
  3467     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3468     /**
  3469      * Does t have a result that is a subtype of the result type of s,
  3470      * suitable for covariant returns?  It is assumed that both types
  3471      * are (possibly polymorphic) method types.  Monomorphic method
  3472      * types are handled in the obvious way.  Polymorphic method types
  3473      * require renaming all type variables of one to corresponding
  3474      * type variables in the other, where correspondence is by
  3475      * position in the type parameter list. */
  3476     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3477         List<Type> tvars = t.getTypeArguments();
  3478         List<Type> svars = s.getTypeArguments();
  3479         Type tres = t.getReturnType();
  3480         Type sres = subst(s.getReturnType(), svars, tvars);
  3481         return covariantReturnType(tres, sres, warner);
  3484     /**
  3485      * Return-Type-Substitutable.
  3486      * @jls section 8.4.5
  3487      */
  3488     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3489         if (hasSameArgs(r1, r2))
  3490             return resultSubtype(r1, r2, noWarnings);
  3491         else
  3492             return covariantReturnType(r1.getReturnType(),
  3493                                        erasure(r2.getReturnType()),
  3494                                        noWarnings);
  3497     public boolean returnTypeSubstitutable(Type r1,
  3498                                            Type r2, Type r2res,
  3499                                            Warner warner) {
  3500         if (isSameType(r1.getReturnType(), r2res))
  3501             return true;
  3502         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3503             return false;
  3505         if (hasSameArgs(r1, r2))
  3506             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3507         if (!allowCovariantReturns)
  3508             return false;
  3509         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3510             return true;
  3511         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3512             return false;
  3513         warner.warn(LintCategory.UNCHECKED);
  3514         return true;
  3517     /**
  3518      * Is t an appropriate return type in an overrider for a
  3519      * method that returns s?
  3520      */
  3521     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3522         return
  3523             isSameType(t, s) ||
  3524             allowCovariantReturns &&
  3525             !t.isPrimitive() &&
  3526             !s.isPrimitive() &&
  3527             isAssignable(t, s, warner);
  3529     // </editor-fold>
  3531     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3532     /**
  3533      * Return the class that boxes the given primitive.
  3534      */
  3535     public ClassSymbol boxedClass(Type t) {
  3536         return reader.enterClass(syms.boxedName[t.tag.ordinal()]);
  3539     /**
  3540      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3541      */
  3542     public Type boxedTypeOrType(Type t) {
  3543         return t.isPrimitive() ?
  3544             boxedClass(t).type :
  3545             t;
  3548     /**
  3549      * Return the primitive type corresponding to a boxed type.
  3550      */
  3551     public Type unboxedType(Type t) {
  3552         if (allowBoxing) {
  3553             for (int i=0; i<syms.boxedName.length; i++) {
  3554                 Name box = syms.boxedName[i];
  3555                 if (box != null &&
  3556                     asSuper(t, reader.enterClass(box)) != null)
  3557                     return syms.typeOfTag[i];
  3560         return Type.noType;
  3563     /**
  3564      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3565      */
  3566     public Type unboxedTypeOrType(Type t) {
  3567         Type unboxedType = unboxedType(t);
  3568         return unboxedType.tag == NONE ? t : unboxedType;
  3570     // </editor-fold>
  3572     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3573     /*
  3574      * JLS 5.1.10 Capture Conversion:
  3576      * Let G name a generic type declaration with n formal type
  3577      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3578      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3579      * where, for 1 <= i <= n:
  3581      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3582      *   Si is a fresh type variable whose upper bound is
  3583      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3584      *   type.
  3586      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3587      *   then Si is a fresh type variable whose upper bound is
  3588      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3589      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3590      *   a compile-time error if for any two classes (not interfaces)
  3591      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3593      * + If Ti is a wildcard type argument of the form ? super Bi,
  3594      *   then Si is a fresh type variable whose upper bound is
  3595      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3597      * + Otherwise, Si = Ti.
  3599      * Capture conversion on any type other than a parameterized type
  3600      * (4.5) acts as an identity conversion (5.1.1). Capture
  3601      * conversions never require a special action at run time and
  3602      * therefore never throw an exception at run time.
  3604      * Capture conversion is not applied recursively.
  3605      */
  3606     /**
  3607      * Capture conversion as specified by the JLS.
  3608      */
  3610     public List<Type> capture(List<Type> ts) {
  3611         List<Type> buf = List.nil();
  3612         for (Type t : ts) {
  3613             buf = buf.prepend(capture(t));
  3615         return buf.reverse();
  3617     public Type capture(Type t) {
  3618         if (t.tag != CLASS)
  3619             return t;
  3620         if (t.getEnclosingType() != Type.noType) {
  3621             Type capturedEncl = capture(t.getEnclosingType());
  3622             if (capturedEncl != t.getEnclosingType()) {
  3623                 Type type1 = memberType(capturedEncl, t.tsym);
  3624                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3627         ClassType cls = (ClassType)t;
  3628         if (cls.isRaw() || !cls.isParameterized())
  3629             return cls;
  3631         ClassType G = (ClassType)cls.asElement().asType();
  3632         List<Type> A = G.getTypeArguments();
  3633         List<Type> T = cls.getTypeArguments();
  3634         List<Type> S = freshTypeVariables(T);
  3636         List<Type> currentA = A;
  3637         List<Type> currentT = T;
  3638         List<Type> currentS = S;
  3639         boolean captured = false;
  3640         while (!currentA.isEmpty() &&
  3641                !currentT.isEmpty() &&
  3642                !currentS.isEmpty()) {
  3643             if (currentS.head != currentT.head) {
  3644                 captured = true;
  3645                 WildcardType Ti = (WildcardType)currentT.head;
  3646                 Type Ui = currentA.head.getUpperBound();
  3647                 CapturedType Si = (CapturedType)currentS.head;
  3648                 if (Ui == null)
  3649                     Ui = syms.objectType;
  3650                 switch (Ti.kind) {
  3651                 case UNBOUND:
  3652                     Si.bound = subst(Ui, A, S);
  3653                     Si.lower = syms.botType;
  3654                     break;
  3655                 case EXTENDS:
  3656                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3657                     Si.lower = syms.botType;
  3658                     break;
  3659                 case SUPER:
  3660                     Si.bound = subst(Ui, A, S);
  3661                     Si.lower = Ti.getSuperBound();
  3662                     break;
  3664                 if (Si.bound == Si.lower)
  3665                     currentS.head = Si.bound;
  3667             currentA = currentA.tail;
  3668             currentT = currentT.tail;
  3669             currentS = currentS.tail;
  3671         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3672             return erasure(t); // some "rare" type involved
  3674         if (captured)
  3675             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3676         else
  3677             return t;
  3679     // where
  3680         public List<Type> freshTypeVariables(List<Type> types) {
  3681             ListBuffer<Type> result = lb();
  3682             for (Type t : types) {
  3683                 if (t.tag == WILDCARD) {
  3684                     Type bound = ((WildcardType)t).getExtendsBound();
  3685                     if (bound == null)
  3686                         bound = syms.objectType;
  3687                     result.append(new CapturedType(capturedName,
  3688                                                    syms.noSymbol,
  3689                                                    bound,
  3690                                                    syms.botType,
  3691                                                    (WildcardType)t));
  3692                 } else {
  3693                     result.append(t);
  3696             return result.toList();
  3698     // </editor-fold>
  3700     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3701     private List<Type> upperBounds(List<Type> ss) {
  3702         if (ss.isEmpty()) return ss;
  3703         Type head = upperBound(ss.head);
  3704         List<Type> tail = upperBounds(ss.tail);
  3705         if (head != ss.head || tail != ss.tail)
  3706             return tail.prepend(head);
  3707         else
  3708             return ss;
  3711     private boolean sideCast(Type from, Type to, Warner warn) {
  3712         // We are casting from type $from$ to type $to$, which are
  3713         // non-final unrelated types.  This method
  3714         // tries to reject a cast by transferring type parameters
  3715         // from $to$ to $from$ by common superinterfaces.
  3716         boolean reverse = false;
  3717         Type target = to;
  3718         if ((to.tsym.flags() & INTERFACE) == 0) {
  3719             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3720             reverse = true;
  3721             to = from;
  3722             from = target;
  3724         List<Type> commonSupers = superClosure(to, erasure(from));
  3725         boolean giveWarning = commonSupers.isEmpty();
  3726         // The arguments to the supers could be unified here to
  3727         // get a more accurate analysis
  3728         while (commonSupers.nonEmpty()) {
  3729             Type t1 = asSuper(from, commonSupers.head.tsym);
  3730             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3731             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3732                 return false;
  3733             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3734             commonSupers = commonSupers.tail;
  3736         if (giveWarning && !isReifiable(reverse ? from : to))
  3737             warn.warn(LintCategory.UNCHECKED);
  3738         if (!allowCovariantReturns)
  3739             // reject if there is a common method signature with
  3740             // incompatible return types.
  3741             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3742         return true;
  3745     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3746         // We are casting from type $from$ to type $to$, which are
  3747         // unrelated types one of which is final and the other of
  3748         // which is an interface.  This method
  3749         // tries to reject a cast by transferring type parameters
  3750         // from the final class to the interface.
  3751         boolean reverse = false;
  3752         Type target = to;
  3753         if ((to.tsym.flags() & INTERFACE) == 0) {
  3754             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3755             reverse = true;
  3756             to = from;
  3757             from = target;
  3759         Assert.check((from.tsym.flags() & FINAL) != 0);
  3760         Type t1 = asSuper(from, to.tsym);
  3761         if (t1 == null) return false;
  3762         Type t2 = to;
  3763         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3764             return false;
  3765         if (!allowCovariantReturns)
  3766             // reject if there is a common method signature with
  3767             // incompatible return types.
  3768             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3769         if (!isReifiable(target) &&
  3770             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3771             warn.warn(LintCategory.UNCHECKED);
  3772         return true;
  3775     private boolean giveWarning(Type from, Type to) {
  3776         Type subFrom = asSub(from, to.tsym);
  3777         return to.isParameterized() &&
  3778                 (!(isUnbounded(to) ||
  3779                 isSubtype(from, to) ||
  3780                 ((subFrom != null) && containsType(to.allparams(), subFrom.allparams()))));
  3783     private List<Type> superClosure(Type t, Type s) {
  3784         List<Type> cl = List.nil();
  3785         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3786             if (isSubtype(s, erasure(l.head))) {
  3787                 cl = insert(cl, l.head);
  3788             } else {
  3789                 cl = union(cl, superClosure(l.head, s));
  3792         return cl;
  3795     private boolean containsTypeEquivalent(Type t, Type s) {
  3796         return
  3797             isSameType(t, s) || // shortcut
  3798             containsType(t, s) && containsType(s, t);
  3801     // <editor-fold defaultstate="collapsed" desc="adapt">
  3802     /**
  3803      * Adapt a type by computing a substitution which maps a source
  3804      * type to a target type.
  3806      * @param source    the source type
  3807      * @param target    the target type
  3808      * @param from      the type variables of the computed substitution
  3809      * @param to        the types of the computed substitution.
  3810      */
  3811     public void adapt(Type source,
  3812                        Type target,
  3813                        ListBuffer<Type> from,
  3814                        ListBuffer<Type> to) throws AdaptFailure {
  3815         new Adapter(from, to).adapt(source, target);
  3818     class Adapter extends SimpleVisitor<Void, Type> {
  3820         ListBuffer<Type> from;
  3821         ListBuffer<Type> to;
  3822         Map<Symbol,Type> mapping;
  3824         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3825             this.from = from;
  3826             this.to = to;
  3827             mapping = new HashMap<Symbol,Type>();
  3830         public void adapt(Type source, Type target) throws AdaptFailure {
  3831             visit(source, target);
  3832             List<Type> fromList = from.toList();
  3833             List<Type> toList = to.toList();
  3834             while (!fromList.isEmpty()) {
  3835                 Type val = mapping.get(fromList.head.tsym);
  3836                 if (toList.head != val)
  3837                     toList.head = val;
  3838                 fromList = fromList.tail;
  3839                 toList = toList.tail;
  3843         @Override
  3844         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3845             if (target.tag == CLASS)
  3846                 adaptRecursive(source.allparams(), target.allparams());
  3847             return null;
  3850         @Override
  3851         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3852             if (target.tag == ARRAY)
  3853                 adaptRecursive(elemtype(source), elemtype(target));
  3854             return null;
  3857         @Override
  3858         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  3859             if (source.isExtendsBound())
  3860                 adaptRecursive(upperBound(source), upperBound(target));
  3861             else if (source.isSuperBound())
  3862                 adaptRecursive(lowerBound(source), lowerBound(target));
  3863             return null;
  3866         @Override
  3867         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  3868             // Check to see if there is
  3869             // already a mapping for $source$, in which case
  3870             // the old mapping will be merged with the new
  3871             Type val = mapping.get(source.tsym);
  3872             if (val != null) {
  3873                 if (val.isSuperBound() && target.isSuperBound()) {
  3874                     val = isSubtype(lowerBound(val), lowerBound(target))
  3875                         ? target : val;
  3876                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  3877                     val = isSubtype(upperBound(val), upperBound(target))
  3878                         ? val : target;
  3879                 } else if (!isSameType(val, target)) {
  3880                     throw new AdaptFailure();
  3882             } else {
  3883                 val = target;
  3884                 from.append(source);
  3885                 to.append(target);
  3887             mapping.put(source.tsym, val);
  3888             return null;
  3891         @Override
  3892         public Void visitType(Type source, Type target) {
  3893             return null;
  3896         private Set<TypePair> cache = new HashSet<TypePair>();
  3898         private void adaptRecursive(Type source, Type target) {
  3899             TypePair pair = new TypePair(source, target);
  3900             if (cache.add(pair)) {
  3901                 try {
  3902                     visit(source, target);
  3903                 } finally {
  3904                     cache.remove(pair);
  3909         private void adaptRecursive(List<Type> source, List<Type> target) {
  3910             if (source.length() == target.length()) {
  3911                 while (source.nonEmpty()) {
  3912                     adaptRecursive(source.head, target.head);
  3913                     source = source.tail;
  3914                     target = target.tail;
  3920     public static class AdaptFailure extends RuntimeException {
  3921         static final long serialVersionUID = -7490231548272701566L;
  3924     private void adaptSelf(Type t,
  3925                            ListBuffer<Type> from,
  3926                            ListBuffer<Type> to) {
  3927         try {
  3928             //if (t.tsym.type != t)
  3929                 adapt(t.tsym.type, t, from, to);
  3930         } catch (AdaptFailure ex) {
  3931             // Adapt should never fail calculating a mapping from
  3932             // t.tsym.type to t as there can be no merge problem.
  3933             throw new AssertionError(ex);
  3936     // </editor-fold>
  3938     /**
  3939      * Rewrite all type variables (universal quantifiers) in the given
  3940      * type to wildcards (existential quantifiers).  This is used to
  3941      * determine if a cast is allowed.  For example, if high is true
  3942      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  3943      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  3944      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  3945      * List<Integer>} with a warning.
  3946      * @param t a type
  3947      * @param high if true return an upper bound; otherwise a lower
  3948      * bound
  3949      * @param rewriteTypeVars only rewrite captured wildcards if false;
  3950      * otherwise rewrite all type variables
  3951      * @return the type rewritten with wildcards (existential
  3952      * quantifiers) only
  3953      */
  3954     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  3955         return new Rewriter(high, rewriteTypeVars).visit(t);
  3958     class Rewriter extends UnaryVisitor<Type> {
  3960         boolean high;
  3961         boolean rewriteTypeVars;
  3963         Rewriter(boolean high, boolean rewriteTypeVars) {
  3964             this.high = high;
  3965             this.rewriteTypeVars = rewriteTypeVars;
  3968         @Override
  3969         public Type visitClassType(ClassType t, Void s) {
  3970             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  3971             boolean changed = false;
  3972             for (Type arg : t.allparams()) {
  3973                 Type bound = visit(arg);
  3974                 if (arg != bound) {
  3975                     changed = true;
  3977                 rewritten.append(bound);
  3979             if (changed)
  3980                 return subst(t.tsym.type,
  3981                         t.tsym.type.allparams(),
  3982                         rewritten.toList());
  3983             else
  3984                 return t;
  3987         public Type visitType(Type t, Void s) {
  3988             return high ? upperBound(t) : lowerBound(t);
  3991         @Override
  3992         public Type visitCapturedType(CapturedType t, Void s) {
  3993             Type w_bound = t.wildcard.type;
  3994             Type bound = w_bound.contains(t) ?
  3995                         erasure(w_bound) :
  3996                         visit(w_bound);
  3997             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4000         @Override
  4001         public Type visitTypeVar(TypeVar t, Void s) {
  4002             if (rewriteTypeVars) {
  4003                 Type bound = t.bound.contains(t) ?
  4004                         erasure(t.bound) :
  4005                         visit(t.bound);
  4006                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4007             } else {
  4008                 return t;
  4012         @Override
  4013         public Type visitWildcardType(WildcardType t, Void s) {
  4014             Type bound2 = visit(t.type);
  4015             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4018         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4019             switch (bk) {
  4020                case EXTENDS: return high ?
  4021                        makeExtendsWildcard(B(bound), formal) :
  4022                        makeExtendsWildcard(syms.objectType, formal);
  4023                case SUPER: return high ?
  4024                        makeSuperWildcard(syms.botType, formal) :
  4025                        makeSuperWildcard(B(bound), formal);
  4026                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4027                default:
  4028                    Assert.error("Invalid bound kind " + bk);
  4029                    return null;
  4033         Type B(Type t) {
  4034             while (t.tag == WILDCARD) {
  4035                 WildcardType w = (WildcardType)t;
  4036                 t = high ?
  4037                     w.getExtendsBound() :
  4038                     w.getSuperBound();
  4039                 if (t == null) {
  4040                     t = high ? syms.objectType : syms.botType;
  4043             return t;
  4048     /**
  4049      * Create a wildcard with the given upper (extends) bound; create
  4050      * an unbounded wildcard if bound is Object.
  4052      * @param bound the upper bound
  4053      * @param formal the formal type parameter that will be
  4054      * substituted by the wildcard
  4055      */
  4056     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4057         if (bound == syms.objectType) {
  4058             return new WildcardType(syms.objectType,
  4059                                     BoundKind.UNBOUND,
  4060                                     syms.boundClass,
  4061                                     formal);
  4062         } else {
  4063             return new WildcardType(bound,
  4064                                     BoundKind.EXTENDS,
  4065                                     syms.boundClass,
  4066                                     formal);
  4070     /**
  4071      * Create a wildcard with the given lower (super) bound; create an
  4072      * unbounded wildcard if bound is bottom (type of {@code null}).
  4074      * @param bound the lower bound
  4075      * @param formal the formal type parameter that will be
  4076      * substituted by the wildcard
  4077      */
  4078     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4079         if (bound.tag == BOT) {
  4080             return new WildcardType(syms.objectType,
  4081                                     BoundKind.UNBOUND,
  4082                                     syms.boundClass,
  4083                                     formal);
  4084         } else {
  4085             return new WildcardType(bound,
  4086                                     BoundKind.SUPER,
  4087                                     syms.boundClass,
  4088                                     formal);
  4092     /**
  4093      * A wrapper for a type that allows use in sets.
  4094      */
  4095     public static class UniqueType {
  4096         public final Type type;
  4097         final Types types;
  4099         public UniqueType(Type type, Types types) {
  4100             this.type = type;
  4101             this.types = types;
  4104         public int hashCode() {
  4105             return types.hashCode(type);
  4108         public boolean equals(Object obj) {
  4109             return (obj instanceof UniqueType) &&
  4110                 types.isSameType(type, ((UniqueType)obj).type);
  4113         public String toString() {
  4114             return type.toString();
  4118     // </editor-fold>
  4120     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4121     /**
  4122      * A default visitor for types.  All visitor methods except
  4123      * visitType are implemented by delegating to visitType.  Concrete
  4124      * subclasses must provide an implementation of visitType and can
  4125      * override other methods as needed.
  4127      * @param <R> the return type of the operation implemented by this
  4128      * visitor; use Void if no return type is needed.
  4129      * @param <S> the type of the second argument (the first being the
  4130      * type itself) of the operation implemented by this visitor; use
  4131      * Void if a second argument is not needed.
  4132      */
  4133     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4134         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4135         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4136         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4137         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4138         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4139         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4140         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4141         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4142         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4143         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4144         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4147     /**
  4148      * A default visitor for symbols.  All visitor methods except
  4149      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4150      * subclasses must provide an implementation of visitSymbol and can
  4151      * override other methods as needed.
  4153      * @param <R> the return type of the operation implemented by this
  4154      * visitor; use Void if no return type is needed.
  4155      * @param <S> the type of the second argument (the first being the
  4156      * symbol itself) of the operation implemented by this visitor; use
  4157      * Void if a second argument is not needed.
  4158      */
  4159     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4160         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4161         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4162         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4163         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4164         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4165         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4166         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4169     /**
  4170      * A <em>simple</em> visitor for types.  This visitor is simple as
  4171      * captured wildcards, for-all types (generic methods), and
  4172      * undetermined type variables (part of inference) are hidden.
  4173      * Captured wildcards are hidden by treating them as type
  4174      * variables and the rest are hidden by visiting their qtypes.
  4176      * @param <R> the return type of the operation implemented by this
  4177      * visitor; use Void if no return type is needed.
  4178      * @param <S> the type of the second argument (the first being the
  4179      * type itself) of the operation implemented by this visitor; use
  4180      * Void if a second argument is not needed.
  4181      */
  4182     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4183         @Override
  4184         public R visitCapturedType(CapturedType t, S s) {
  4185             return visitTypeVar(t, s);
  4187         @Override
  4188         public R visitForAll(ForAll t, S s) {
  4189             return visit(t.qtype, s);
  4191         @Override
  4192         public R visitUndetVar(UndetVar t, S s) {
  4193             return visit(t.qtype, s);
  4197     /**
  4198      * A plain relation on types.  That is a 2-ary function on the
  4199      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4200      * <!-- In plain text: Type x Type -> Boolean -->
  4201      */
  4202     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4204     /**
  4205      * A convenience visitor for implementing operations that only
  4206      * require one argument (the type itself), that is, unary
  4207      * operations.
  4209      * @param <R> the return type of the operation implemented by this
  4210      * visitor; use Void if no return type is needed.
  4211      */
  4212     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4213         final public R visit(Type t) { return t.accept(this, null); }
  4216     /**
  4217      * A visitor for implementing a mapping from types to types.  The
  4218      * default behavior of this class is to implement the identity
  4219      * mapping (mapping a type to itself).  This can be overridden in
  4220      * subclasses.
  4222      * @param <S> the type of the second argument (the first being the
  4223      * type itself) of this mapping; use Void if a second argument is
  4224      * not needed.
  4225      */
  4226     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4227         final public Type visit(Type t) { return t.accept(this, null); }
  4228         public Type visitType(Type t, S s) { return t; }
  4230     // </editor-fold>
  4233     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4235     public RetentionPolicy getRetention(Attribute.Compound a) {
  4236         return getRetention(a.type.tsym);
  4239     public RetentionPolicy getRetention(Symbol sym) {
  4240         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4241         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4242         if (c != null) {
  4243             Attribute value = c.member(names.value);
  4244             if (value != null && value instanceof Attribute.Enum) {
  4245                 Name levelName = ((Attribute.Enum)value).value.name;
  4246                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4247                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4248                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4249                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4252         return vis;
  4254     // </editor-fold>

mercurial