src/share/classes/com/sun/tools/javac/code/Types.java

Wed, 17 Jul 2013 14:14:49 +0100

author
mcimadamore
date
Wed, 17 Jul 2013 14:14:49 +0100
changeset 1901
db2c539819dd
parent 1869
5c548a8542b8
child 1902
fae8f309ff80
permissions
-rw-r--r--

7041019: Bogus type-variable substitution with array types with dependencies on accessibility check
Summary: call to upperBound() when performing type-variable substitution on element type leads to unsoundness
Reviewed-by: jjg

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.HashSet;
    30 import java.util.HashMap;
    31 import java.util.Locale;
    32 import java.util.Map;
    33 import java.util.Set;
    34 import java.util.WeakHashMap;
    36 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    37 import com.sun.tools.javac.code.Lint.LintCategory;
    38 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    39 import com.sun.tools.javac.comp.Check;
    40 import com.sun.tools.javac.jvm.ClassReader;
    41 import com.sun.tools.javac.util.*;
    42 import static com.sun.tools.javac.code.BoundKind.*;
    43 import static com.sun.tools.javac.code.Flags.*;
    44 import static com.sun.tools.javac.code.Scope.*;
    45 import static com.sun.tools.javac.code.Symbol.*;
    46 import static com.sun.tools.javac.code.Type.*;
    47 import static com.sun.tools.javac.code.TypeTag.*;
    48 import static com.sun.tools.javac.jvm.ClassFile.externalize;
    49 import static com.sun.tools.javac.util.ListBuffer.lb;
    51 /**
    52  * Utility class containing various operations on types.
    53  *
    54  * <p>Unless other names are more illustrative, the following naming
    55  * conventions should be observed in this file:
    56  *
    57  * <dl>
    58  * <dt>t</dt>
    59  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    60  * <dt>s</dt>
    61  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    62  * <dt>ts</dt>
    63  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    64  * <dt>ss</dt>
    65  * <dd>A second list of types should be named ss.</dd>
    66  * </dl>
    67  *
    68  * <p><b>This is NOT part of any supported API.
    69  * If you write code that depends on this, you do so at your own risk.
    70  * This code and its internal interfaces are subject to change or
    71  * deletion without notice.</b>
    72  */
    73 public class Types {
    74     protected static final Context.Key<Types> typesKey =
    75         new Context.Key<Types>();
    77     final Symtab syms;
    78     final JavacMessages messages;
    79     final Names names;
    80     final boolean allowBoxing;
    81     final boolean allowCovariantReturns;
    82     final boolean allowObjectToPrimitiveCast;
    83     final boolean allowDefaultMethods;
    84     final ClassReader reader;
    85     final Check chk;
    86     JCDiagnostic.Factory diags;
    87     List<Warner> warnStack = List.nil();
    88     final Name capturedName;
    89     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    91     public final Warner noWarnings;
    93     // <editor-fold defaultstate="collapsed" desc="Instantiating">
    94     public static Types instance(Context context) {
    95         Types instance = context.get(typesKey);
    96         if (instance == null)
    97             instance = new Types(context);
    98         return instance;
    99     }
   101     protected Types(Context context) {
   102         context.put(typesKey, this);
   103         syms = Symtab.instance(context);
   104         names = Names.instance(context);
   105         Source source = Source.instance(context);
   106         allowBoxing = source.allowBoxing();
   107         allowCovariantReturns = source.allowCovariantReturns();
   108         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   109         allowDefaultMethods = source.allowDefaultMethods();
   110         reader = ClassReader.instance(context);
   111         chk = Check.instance(context);
   112         capturedName = names.fromString("<captured wildcard>");
   113         messages = JavacMessages.instance(context);
   114         diags = JCDiagnostic.Factory.instance(context);
   115         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   116         noWarnings = new Warner(null);
   117     }
   118     // </editor-fold>
   120     // <editor-fold defaultstate="collapsed" desc="upperBound">
   121     /**
   122      * The "rvalue conversion".<br>
   123      * The upper bound of most types is the type
   124      * itself.  Wildcards, on the other hand have upper
   125      * and lower bounds.
   126      * @param t a type
   127      * @return the upper bound of the given type
   128      */
   129     public Type upperBound(Type t) {
   130         return upperBound.visit(t);
   131     }
   132     // where
   133         private final MapVisitor<Void> upperBound = new MapVisitor<Void>() {
   135             @Override
   136             public Type visitWildcardType(WildcardType t, Void ignored) {
   137                 if (t.isSuperBound())
   138                     return t.bound == null ? syms.objectType : t.bound.bound;
   139                 else
   140                     return visit(t.type);
   141             }
   143             @Override
   144             public Type visitCapturedType(CapturedType t, Void ignored) {
   145                 return visit(t.bound);
   146             }
   147         };
   148     // </editor-fold>
   150     // <editor-fold defaultstate="collapsed" desc="lowerBound">
   151     /**
   152      * The "lvalue conversion".<br>
   153      * The lower bound of most types is the type
   154      * itself.  Wildcards, on the other hand have upper
   155      * and lower bounds.
   156      * @param t a type
   157      * @return the lower bound of the given type
   158      */
   159     public Type lowerBound(Type t) {
   160         return lowerBound.visit(t);
   161     }
   162     // where
   163         private final MapVisitor<Void> lowerBound = new MapVisitor<Void>() {
   165             @Override
   166             public Type visitWildcardType(WildcardType t, Void ignored) {
   167                 return t.isExtendsBound() ? syms.botType : visit(t.type);
   168             }
   170             @Override
   171             public Type visitCapturedType(CapturedType t, Void ignored) {
   172                 return visit(t.getLowerBound());
   173             }
   174         };
   175     // </editor-fold>
   177     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   178     /**
   179      * Checks that all the arguments to a class are unbounded
   180      * wildcards or something else that doesn't make any restrictions
   181      * on the arguments. If a class isUnbounded, a raw super- or
   182      * subclass can be cast to it without a warning.
   183      * @param t a type
   184      * @return true iff the given type is unbounded or raw
   185      */
   186     public boolean isUnbounded(Type t) {
   187         return isUnbounded.visit(t);
   188     }
   189     // where
   190         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   192             public Boolean visitType(Type t, Void ignored) {
   193                 return true;
   194             }
   196             @Override
   197             public Boolean visitClassType(ClassType t, Void ignored) {
   198                 List<Type> parms = t.tsym.type.allparams();
   199                 List<Type> args = t.allparams();
   200                 while (parms.nonEmpty()) {
   201                     WildcardType unb = new WildcardType(syms.objectType,
   202                                                         BoundKind.UNBOUND,
   203                                                         syms.boundClass,
   204                                                         (TypeVar)parms.head.unannotatedType());
   205                     if (!containsType(args.head, unb))
   206                         return false;
   207                     parms = parms.tail;
   208                     args = args.tail;
   209                 }
   210                 return true;
   211             }
   212         };
   213     // </editor-fold>
   215     // <editor-fold defaultstate="collapsed" desc="asSub">
   216     /**
   217      * Return the least specific subtype of t that starts with symbol
   218      * sym.  If none exists, return null.  The least specific subtype
   219      * is determined as follows:
   220      *
   221      * <p>If there is exactly one parameterized instance of sym that is a
   222      * subtype of t, that parameterized instance is returned.<br>
   223      * Otherwise, if the plain type or raw type `sym' is a subtype of
   224      * type t, the type `sym' itself is returned.  Otherwise, null is
   225      * returned.
   226      */
   227     public Type asSub(Type t, Symbol sym) {
   228         return asSub.visit(t, sym);
   229     }
   230     // where
   231         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   233             public Type visitType(Type t, Symbol sym) {
   234                 return null;
   235             }
   237             @Override
   238             public Type visitClassType(ClassType t, Symbol sym) {
   239                 if (t.tsym == sym)
   240                     return t;
   241                 Type base = asSuper(sym.type, t.tsym);
   242                 if (base == null)
   243                     return null;
   244                 ListBuffer<Type> from = new ListBuffer<Type>();
   245                 ListBuffer<Type> to = new ListBuffer<Type>();
   246                 try {
   247                     adapt(base, t, from, to);
   248                 } catch (AdaptFailure ex) {
   249                     return null;
   250                 }
   251                 Type res = subst(sym.type, from.toList(), to.toList());
   252                 if (!isSubtype(res, t))
   253                     return null;
   254                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   255                 for (List<Type> l = sym.type.allparams();
   256                      l.nonEmpty(); l = l.tail)
   257                     if (res.contains(l.head) && !t.contains(l.head))
   258                         openVars.append(l.head);
   259                 if (openVars.nonEmpty()) {
   260                     if (t.isRaw()) {
   261                         // The subtype of a raw type is raw
   262                         res = erasure(res);
   263                     } else {
   264                         // Unbound type arguments default to ?
   265                         List<Type> opens = openVars.toList();
   266                         ListBuffer<Type> qs = new ListBuffer<Type>();
   267                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   268                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
   269                         }
   270                         res = subst(res, opens, qs.toList());
   271                     }
   272                 }
   273                 return res;
   274             }
   276             @Override
   277             public Type visitErrorType(ErrorType t, Symbol sym) {
   278                 return t;
   279             }
   280         };
   281     // </editor-fold>
   283     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   284     /**
   285      * Is t a subtype of or convertible via boxing/unboxing
   286      * conversion to s?
   287      */
   288     public boolean isConvertible(Type t, Type s, Warner warn) {
   289         if (t.hasTag(ERROR)) {
   290             return true;
   291         }
   292         boolean tPrimitive = t.isPrimitive();
   293         boolean sPrimitive = s.isPrimitive();
   294         if (tPrimitive == sPrimitive) {
   295             return isSubtypeUnchecked(t, s, warn);
   296         }
   297         if (!allowBoxing) return false;
   298         return tPrimitive
   299             ? isSubtype(boxedClass(t).type, s)
   300             : isSubtype(unboxedType(t), s);
   301     }
   303     /**
   304      * Is t a subtype of or convertiable via boxing/unboxing
   305      * convertions to s?
   306      */
   307     public boolean isConvertible(Type t, Type s) {
   308         return isConvertible(t, s, noWarnings);
   309     }
   310     // </editor-fold>
   312     // <editor-fold defaultstate="collapsed" desc="findSam">
   314     /**
   315      * Exception used to report a function descriptor lookup failure. The exception
   316      * wraps a diagnostic that can be used to generate more details error
   317      * messages.
   318      */
   319     public static class FunctionDescriptorLookupError extends RuntimeException {
   320         private static final long serialVersionUID = 0;
   322         JCDiagnostic diagnostic;
   324         FunctionDescriptorLookupError() {
   325             this.diagnostic = null;
   326         }
   328         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   329             this.diagnostic = diag;
   330             return this;
   331         }
   333         public JCDiagnostic getDiagnostic() {
   334             return diagnostic;
   335         }
   336     }
   338     /**
   339      * A cache that keeps track of function descriptors associated with given
   340      * functional interfaces.
   341      */
   342     class DescriptorCache {
   344         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   346         class FunctionDescriptor {
   347             Symbol descSym;
   349             FunctionDescriptor(Symbol descSym) {
   350                 this.descSym = descSym;
   351             }
   353             public Symbol getSymbol() {
   354                 return descSym;
   355             }
   357             public Type getType(Type site) {
   358                 site = removeWildcards(site);
   359                 if (!chk.checkValidGenericType(site)) {
   360                     //if the inferred functional interface type is not well-formed,
   361                     //or if it's not a subtype of the original target, issue an error
   362                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   363                 }
   364                 return memberType(site, descSym);
   365             }
   366         }
   368         class Entry {
   369             final FunctionDescriptor cachedDescRes;
   370             final int prevMark;
   372             public Entry(FunctionDescriptor cachedDescRes,
   373                     int prevMark) {
   374                 this.cachedDescRes = cachedDescRes;
   375                 this.prevMark = prevMark;
   376             }
   378             boolean matches(int mark) {
   379                 return  this.prevMark == mark;
   380             }
   381         }
   383         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   384             Entry e = _map.get(origin);
   385             CompoundScope members = membersClosure(origin.type, false);
   386             if (e == null ||
   387                     !e.matches(members.getMark())) {
   388                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   389                 _map.put(origin, new Entry(descRes, members.getMark()));
   390                 return descRes;
   391             }
   392             else {
   393                 return e.cachedDescRes;
   394             }
   395         }
   397         /**
   398          * Compute the function descriptor associated with a given functional interface
   399          */
   400         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
   401                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
   402             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   403                 //t must be an interface
   404                 throw failure("not.a.functional.intf", origin);
   405             }
   407             final ListBuffer<Symbol> abstracts = ListBuffer.lb();
   408             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   409                 Type mtype = memberType(origin.type, sym);
   410                 if (abstracts.isEmpty() ||
   411                         (sym.name == abstracts.first().name &&
   412                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   413                     abstracts.append(sym);
   414                 } else {
   415                     //the target method(s) should be the only abstract members of t
   416                     throw failure("not.a.functional.intf.1",  origin,
   417                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   418                 }
   419             }
   420             if (abstracts.isEmpty()) {
   421                 //t must define a suitable non-generic method
   422                 throw failure("not.a.functional.intf.1", origin,
   423                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   424             } else if (abstracts.size() == 1) {
   425                 return new FunctionDescriptor(abstracts.first());
   426             } else { // size > 1
   427                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   428                 if (descRes == null) {
   429                     //we can get here if the functional interface is ill-formed
   430                     ListBuffer<JCDiagnostic> descriptors = ListBuffer.lb();
   431                     for (Symbol desc : abstracts) {
   432                         String key = desc.type.getThrownTypes().nonEmpty() ?
   433                                 "descriptor.throws" : "descriptor";
   434                         descriptors.append(diags.fragment(key, desc.name,
   435                                 desc.type.getParameterTypes(),
   436                                 desc.type.getReturnType(),
   437                                 desc.type.getThrownTypes()));
   438                     }
   439                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   440                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   441                             Kinds.kindName(origin), origin), descriptors.toList());
   442                     throw failure(incompatibleDescriptors);
   443                 }
   444                 return descRes;
   445             }
   446         }
   448         /**
   449          * Compute a synthetic type for the target descriptor given a list
   450          * of override-equivalent methods in the functional interface type.
   451          * The resulting method type is a method type that is override-equivalent
   452          * and return-type substitutable with each method in the original list.
   453          */
   454         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   455             //pick argument types - simply take the signature that is a
   456             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   457             List<Symbol> mostSpecific = List.nil();
   458             outer: for (Symbol msym1 : methodSyms) {
   459                 Type mt1 = memberType(origin.type, msym1);
   460                 for (Symbol msym2 : methodSyms) {
   461                     Type mt2 = memberType(origin.type, msym2);
   462                     if (!isSubSignature(mt1, mt2)) {
   463                         continue outer;
   464                     }
   465                 }
   466                 mostSpecific = mostSpecific.prepend(msym1);
   467             }
   468             if (mostSpecific.isEmpty()) {
   469                 return null;
   470             }
   473             //pick return types - this is done in two phases: (i) first, the most
   474             //specific return type is chosen using strict subtyping; if this fails,
   475             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   476             boolean phase2 = false;
   477             Symbol bestSoFar = null;
   478             while (bestSoFar == null) {
   479                 outer: for (Symbol msym1 : mostSpecific) {
   480                     Type mt1 = memberType(origin.type, msym1);
   481                     for (Symbol msym2 : methodSyms) {
   482                         Type mt2 = memberType(origin.type, msym2);
   483                         if (phase2 ?
   484                                 !returnTypeSubstitutable(mt1, mt2) :
   485                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   486                             continue outer;
   487                         }
   488                     }
   489                     bestSoFar = msym1;
   490                 }
   491                 if (phase2) {
   492                     break;
   493                 } else {
   494                     phase2 = true;
   495                 }
   496             }
   497             if (bestSoFar == null) return null;
   499             //merge thrown types - form the intersection of all the thrown types in
   500             //all the signatures in the list
   501             List<Type> thrown = null;
   502             for (Symbol msym1 : methodSyms) {
   503                 Type mt1 = memberType(origin.type, msym1);
   504                 thrown = (thrown == null) ?
   505                     mt1.getThrownTypes() :
   506                     chk.intersect(mt1.getThrownTypes(), thrown);
   507             }
   509             final List<Type> thrown1 = thrown;
   510             return new FunctionDescriptor(bestSoFar) {
   511                 @Override
   512                 public Type getType(Type origin) {
   513                     Type mt = memberType(origin, getSymbol());
   514                     return createMethodTypeWithThrown(mt, thrown1);
   515                 }
   516             };
   517         }
   519         boolean isSubtypeInternal(Type s, Type t) {
   520             return (s.isPrimitive() && t.isPrimitive()) ?
   521                     isSameType(t, s) :
   522                     isSubtype(s, t);
   523         }
   525         FunctionDescriptorLookupError failure(String msg, Object... args) {
   526             return failure(diags.fragment(msg, args));
   527         }
   529         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   530             return functionDescriptorLookupError.setMessage(diag);
   531         }
   532     }
   534     private DescriptorCache descCache = new DescriptorCache();
   536     /**
   537      * Find the method descriptor associated to this class symbol - if the
   538      * symbol 'origin' is not a functional interface, an exception is thrown.
   539      */
   540     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   541         return descCache.get(origin).getSymbol();
   542     }
   544     /**
   545      * Find the type of the method descriptor associated to this class symbol -
   546      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   547      */
   548     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   549         return descCache.get(origin.tsym).getType(origin);
   550     }
   552     /**
   553      * Is given type a functional interface?
   554      */
   555     public boolean isFunctionalInterface(TypeSymbol tsym) {
   556         try {
   557             findDescriptorSymbol(tsym);
   558             return true;
   559         } catch (FunctionDescriptorLookupError ex) {
   560             return false;
   561         }
   562     }
   564     public boolean isFunctionalInterface(Type site) {
   565         try {
   566             findDescriptorType(site);
   567             return true;
   568         } catch (FunctionDescriptorLookupError ex) {
   569             return false;
   570         }
   571     }
   573     public Type removeWildcards(Type site) {
   574         Type capturedSite = capture(site);
   575         if (capturedSite != site) {
   576             Type formalInterface = site.tsym.type;
   577             ListBuffer<Type> typeargs = ListBuffer.lb();
   578             List<Type> actualTypeargs = site.getTypeArguments();
   579             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
   580             //simply replace the wildcards with its bound
   581             for (Type t : formalInterface.getTypeArguments()) {
   582                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   583                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
   584                     Type bound;
   585                     switch (wt.kind) {
   586                         case EXTENDS:
   587                         case UNBOUND:
   588                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
   589                             //use declared bound if it doesn't depend on formal type-args
   590                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
   591                                     wt.type : capVar.bound;
   592                             break;
   593                         default:
   594                             bound = wt.type;
   595                     }
   596                     typeargs.append(bound);
   597                 } else {
   598                     typeargs.append(actualTypeargs.head);
   599                 }
   600                 actualTypeargs = actualTypeargs.tail;
   601                 capturedTypeargs = capturedTypeargs.tail;
   602             }
   603             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   604         } else {
   605             return site;
   606         }
   607     }
   608     // </editor-fold>
   610    /**
   611     * Scope filter used to skip methods that should be ignored (such as methods
   612     * overridden by j.l.Object) during function interface conversion interface check
   613     */
   614     class DescriptorFilter implements Filter<Symbol> {
   616        TypeSymbol origin;
   618        DescriptorFilter(TypeSymbol origin) {
   619            this.origin = origin;
   620        }
   622        @Override
   623        public boolean accepts(Symbol sym) {
   624            return sym.kind == Kinds.MTH &&
   625                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   626                    !overridesObjectMethod(origin, sym) &&
   627                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   628        }
   629     };
   631     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   632     /**
   633      * Is t an unchecked subtype of s?
   634      */
   635     public boolean isSubtypeUnchecked(Type t, Type s) {
   636         return isSubtypeUnchecked(t, s, noWarnings);
   637     }
   638     /**
   639      * Is t an unchecked subtype of s?
   640      */
   641     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   642         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   643         if (result) {
   644             checkUnsafeVarargsConversion(t, s, warn);
   645         }
   646         return result;
   647     }
   648     //where
   649         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   650             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   651                 t = t.unannotatedType();
   652                 s = s.unannotatedType();
   653                 if (((ArrayType)t).elemtype.isPrimitive()) {
   654                     return isSameType(elemtype(t), elemtype(s));
   655                 } else {
   656                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   657                 }
   658             } else if (isSubtype(t, s)) {
   659                 return true;
   660             } else if (t.hasTag(TYPEVAR)) {
   661                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   662             } else if (!s.isRaw()) {
   663                 Type t2 = asSuper(t, s.tsym);
   664                 if (t2 != null && t2.isRaw()) {
   665                     if (isReifiable(s)) {
   666                         warn.silentWarn(LintCategory.UNCHECKED);
   667                     } else {
   668                         warn.warn(LintCategory.UNCHECKED);
   669                     }
   670                     return true;
   671                 }
   672             }
   673             return false;
   674         }
   676         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   677             if (!t.hasTag(ARRAY) || isReifiable(t)) {
   678                 return;
   679             }
   680             t = t.unannotatedType();
   681             s = s.unannotatedType();
   682             ArrayType from = (ArrayType)t;
   683             boolean shouldWarn = false;
   684             switch (s.getTag()) {
   685                 case ARRAY:
   686                     ArrayType to = (ArrayType)s;
   687                     shouldWarn = from.isVarargs() &&
   688                             !to.isVarargs() &&
   689                             !isReifiable(from);
   690                     break;
   691                 case CLASS:
   692                     shouldWarn = from.isVarargs();
   693                     break;
   694             }
   695             if (shouldWarn) {
   696                 warn.warn(LintCategory.VARARGS);
   697             }
   698         }
   700     /**
   701      * Is t a subtype of s?<br>
   702      * (not defined for Method and ForAll types)
   703      */
   704     final public boolean isSubtype(Type t, Type s) {
   705         return isSubtype(t, s, true);
   706     }
   707     final public boolean isSubtypeNoCapture(Type t, Type s) {
   708         return isSubtype(t, s, false);
   709     }
   710     public boolean isSubtype(Type t, Type s, boolean capture) {
   711         if (t == s)
   712             return true;
   714         t = t.unannotatedType();
   715         s = s.unannotatedType();
   717         if (t == s)
   718             return true;
   720         if (s.isPartial())
   721             return isSuperType(s, t);
   723         if (s.isCompound()) {
   724             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   725                 if (!isSubtype(t, s2, capture))
   726                     return false;
   727             }
   728             return true;
   729         }
   731         Type lower = lowerBound(s);
   732         if (s != lower)
   733             return isSubtype(capture ? capture(t) : t, lower, false);
   735         return isSubtype.visit(capture ? capture(t) : t, s);
   736     }
   737     // where
   738         private TypeRelation isSubtype = new TypeRelation()
   739         {
   740             @Override
   741             public Boolean visitType(Type t, Type s) {
   742                 switch (t.getTag()) {
   743                  case BYTE:
   744                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   745                  case CHAR:
   746                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   747                  case SHORT: case INT: case LONG:
   748                  case FLOAT: case DOUBLE:
   749                      return t.getTag().isSubRangeOf(s.getTag());
   750                  case BOOLEAN: case VOID:
   751                      return t.hasTag(s.getTag());
   752                  case TYPEVAR:
   753                      return isSubtypeNoCapture(t.getUpperBound(), s);
   754                  case BOT:
   755                      return
   756                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   757                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   758                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   759                  case NONE:
   760                      return false;
   761                  default:
   762                      throw new AssertionError("isSubtype " + t.getTag());
   763                  }
   764             }
   766             private Set<TypePair> cache = new HashSet<TypePair>();
   768             private boolean containsTypeRecursive(Type t, Type s) {
   769                 TypePair pair = new TypePair(t, s);
   770                 if (cache.add(pair)) {
   771                     try {
   772                         return containsType(t.getTypeArguments(),
   773                                             s.getTypeArguments());
   774                     } finally {
   775                         cache.remove(pair);
   776                     }
   777                 } else {
   778                     return containsType(t.getTypeArguments(),
   779                                         rewriteSupers(s).getTypeArguments());
   780                 }
   781             }
   783             private Type rewriteSupers(Type t) {
   784                 if (!t.isParameterized())
   785                     return t;
   786                 ListBuffer<Type> from = lb();
   787                 ListBuffer<Type> to = lb();
   788                 adaptSelf(t, from, to);
   789                 if (from.isEmpty())
   790                     return t;
   791                 ListBuffer<Type> rewrite = lb();
   792                 boolean changed = false;
   793                 for (Type orig : to.toList()) {
   794                     Type s = rewriteSupers(orig);
   795                     if (s.isSuperBound() && !s.isExtendsBound()) {
   796                         s = new WildcardType(syms.objectType,
   797                                              BoundKind.UNBOUND,
   798                                              syms.boundClass);
   799                         changed = true;
   800                     } else if (s != orig) {
   801                         s = new WildcardType(upperBound(s),
   802                                              BoundKind.EXTENDS,
   803                                              syms.boundClass);
   804                         changed = true;
   805                     }
   806                     rewrite.append(s);
   807                 }
   808                 if (changed)
   809                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   810                 else
   811                     return t;
   812             }
   814             @Override
   815             public Boolean visitClassType(ClassType t, Type s) {
   816                 Type sup = asSuper(t, s.tsym);
   817                 return sup != null
   818                     && sup.tsym == s.tsym
   819                     // You're not allowed to write
   820                     //     Vector<Object> vec = new Vector<String>();
   821                     // But with wildcards you can write
   822                     //     Vector<? extends Object> vec = new Vector<String>();
   823                     // which means that subtype checking must be done
   824                     // here instead of same-type checking (via containsType).
   825                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   826                     && isSubtypeNoCapture(sup.getEnclosingType(),
   827                                           s.getEnclosingType());
   828             }
   830             @Override
   831             public Boolean visitArrayType(ArrayType t, Type s) {
   832                 if (s.hasTag(ARRAY)) {
   833                     if (t.elemtype.isPrimitive())
   834                         return isSameType(t.elemtype, elemtype(s));
   835                     else
   836                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   837                 }
   839                 if (s.hasTag(CLASS)) {
   840                     Name sname = s.tsym.getQualifiedName();
   841                     return sname == names.java_lang_Object
   842                         || sname == names.java_lang_Cloneable
   843                         || sname == names.java_io_Serializable;
   844                 }
   846                 return false;
   847             }
   849             @Override
   850             public Boolean visitUndetVar(UndetVar t, Type s) {
   851                 //todo: test against origin needed? or replace with substitution?
   852                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
   853                     return true;
   854                 } else if (s.hasTag(BOT)) {
   855                     //if 's' is 'null' there's no instantiated type U for which
   856                     //U <: s (but 'null' itself, which is not a valid type)
   857                     return false;
   858                 }
   860                 t.addBound(InferenceBound.UPPER, s, Types.this);
   861                 return true;
   862             }
   864             @Override
   865             public Boolean visitErrorType(ErrorType t, Type s) {
   866                 return true;
   867             }
   868         };
   870     /**
   871      * Is t a subtype of every type in given list `ts'?<br>
   872      * (not defined for Method and ForAll types)<br>
   873      * Allows unchecked conversions.
   874      */
   875     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   876         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   877             if (!isSubtypeUnchecked(t, l.head, warn))
   878                 return false;
   879         return true;
   880     }
   882     /**
   883      * Are corresponding elements of ts subtypes of ss?  If lists are
   884      * of different length, return false.
   885      */
   886     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   887         while (ts.tail != null && ss.tail != null
   888                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   889                isSubtype(ts.head, ss.head)) {
   890             ts = ts.tail;
   891             ss = ss.tail;
   892         }
   893         return ts.tail == null && ss.tail == null;
   894         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   895     }
   897     /**
   898      * Are corresponding elements of ts subtypes of ss, allowing
   899      * unchecked conversions?  If lists are of different length,
   900      * return false.
   901      **/
   902     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
   903         while (ts.tail != null && ss.tail != null
   904                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   905                isSubtypeUnchecked(ts.head, ss.head, warn)) {
   906             ts = ts.tail;
   907             ss = ss.tail;
   908         }
   909         return ts.tail == null && ss.tail == null;
   910         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   911     }
   912     // </editor-fold>
   914     // <editor-fold defaultstate="collapsed" desc="isSuperType">
   915     /**
   916      * Is t a supertype of s?
   917      */
   918     public boolean isSuperType(Type t, Type s) {
   919         switch (t.getTag()) {
   920         case ERROR:
   921             return true;
   922         case UNDETVAR: {
   923             UndetVar undet = (UndetVar)t;
   924             if (t == s ||
   925                 undet.qtype == s ||
   926                 s.hasTag(ERROR) ||
   927                 s.hasTag(BOT)) {
   928                 return true;
   929             }
   930             undet.addBound(InferenceBound.LOWER, s, this);
   931             return true;
   932         }
   933         default:
   934             return isSubtype(s, t);
   935         }
   936     }
   937     // </editor-fold>
   939     // <editor-fold defaultstate="collapsed" desc="isSameType">
   940     /**
   941      * Are corresponding elements of the lists the same type?  If
   942      * lists are of different length, return false.
   943      */
   944     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
   945         return isSameTypes(ts, ss, false);
   946     }
   947     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
   948         while (ts.tail != null && ss.tail != null
   949                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   950                isSameType(ts.head, ss.head, strict)) {
   951             ts = ts.tail;
   952             ss = ss.tail;
   953         }
   954         return ts.tail == null && ss.tail == null;
   955         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   956     }
   958     /**
   959     * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
   960     * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
   961     * a single variable arity parameter (iii) whose declared type is Object[],
   962     * (iv) has a return type of Object and (v) is native.
   963     */
   964    public boolean isSignaturePolymorphic(MethodSymbol msym) {
   965        List<Type> argtypes = msym.type.getParameterTypes();
   966        return (msym.flags_field & NATIVE) != 0 &&
   967                msym.owner == syms.methodHandleType.tsym &&
   968                argtypes.tail.tail == null &&
   969                argtypes.head.hasTag(TypeTag.ARRAY) &&
   970                msym.type.getReturnType().tsym == syms.objectType.tsym &&
   971                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
   972    }
   974     /**
   975      * Is t the same type as s?
   976      */
   977     public boolean isSameType(Type t, Type s) {
   978         return isSameType(t, s, false);
   979     }
   980     public boolean isSameType(Type t, Type s, boolean strict) {
   981         return strict ?
   982                 isSameTypeStrict.visit(t, s) :
   983                 isSameTypeLoose.visit(t, s);
   984     }
   985     public boolean isSameAnnotatedType(Type t, Type s) {
   986         return isSameAnnotatedType.visit(t, s);
   987     }
   988     // where
   989         abstract class SameTypeVisitor extends TypeRelation {
   991             public Boolean visitType(Type t, Type s) {
   992                 if (t == s)
   993                     return true;
   995                 if (s.isPartial())
   996                     return visit(s, t);
   998                 switch (t.getTag()) {
   999                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1000                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
  1001                     return t.hasTag(s.getTag());
  1002                 case TYPEVAR: {
  1003                     if (s.hasTag(TYPEVAR)) {
  1004                         //type-substitution does not preserve type-var types
  1005                         //check that type var symbols and bounds are indeed the same
  1006                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
  1008                     else {
  1009                         //special case for s == ? super X, where upper(s) = u
  1010                         //check that u == t, where u has been set by Type.withTypeVar
  1011                         return s.isSuperBound() &&
  1012                                 !s.isExtendsBound() &&
  1013                                 visit(t, upperBound(s));
  1016                 default:
  1017                     throw new AssertionError("isSameType " + t.getTag());
  1021             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1023             @Override
  1024             public Boolean visitWildcardType(WildcardType t, Type s) {
  1025                 if (s.isPartial())
  1026                     return visit(s, t);
  1027                 else
  1028                     return false;
  1031             @Override
  1032             public Boolean visitClassType(ClassType t, Type s) {
  1033                 if (t == s)
  1034                     return true;
  1036                 if (s.isPartial())
  1037                     return visit(s, t);
  1039                 if (s.isSuperBound() && !s.isExtendsBound())
  1040                     return visit(t, upperBound(s)) && visit(t, lowerBound(s));
  1042                 if (t.isCompound() && s.isCompound()) {
  1043                     if (!visit(supertype(t), supertype(s)))
  1044                         return false;
  1046                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1047                     for (Type x : interfaces(t))
  1048                         set.add(new UniqueType(x, Types.this));
  1049                     for (Type x : interfaces(s)) {
  1050                         if (!set.remove(new UniqueType(x, Types.this)))
  1051                             return false;
  1053                     return (set.isEmpty());
  1055                 return t.tsym == s.tsym
  1056                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1057                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1060             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1062             @Override
  1063             public Boolean visitArrayType(ArrayType t, Type s) {
  1064                 if (t == s)
  1065                     return true;
  1067                 if (s.isPartial())
  1068                     return visit(s, t);
  1070                 return s.hasTag(ARRAY)
  1071                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1074             @Override
  1075             public Boolean visitMethodType(MethodType t, Type s) {
  1076                 // isSameType for methods does not take thrown
  1077                 // exceptions into account!
  1078                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1081             @Override
  1082             public Boolean visitPackageType(PackageType t, Type s) {
  1083                 return t == s;
  1086             @Override
  1087             public Boolean visitForAll(ForAll t, Type s) {
  1088                 if (!s.hasTag(FORALL)) {
  1089                     return false;
  1092                 ForAll forAll = (ForAll)s;
  1093                 return hasSameBounds(t, forAll)
  1094                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1097             @Override
  1098             public Boolean visitUndetVar(UndetVar t, Type s) {
  1099                 if (s.hasTag(WILDCARD)) {
  1100                     // FIXME, this might be leftovers from before capture conversion
  1101                     return false;
  1104                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
  1105                     return true;
  1108                 t.addBound(InferenceBound.EQ, s, Types.this);
  1110                 return true;
  1113             @Override
  1114             public Boolean visitErrorType(ErrorType t, Type s) {
  1115                 return true;
  1119         /**
  1120          * Standard type-equality relation - type variables are considered
  1121          * equals if they share the same type symbol.
  1122          */
  1123         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
  1125         private class LooseSameTypeVisitor extends SameTypeVisitor {
  1126             @Override
  1127             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1128                 return tv1.tsym == tv2.tsym && visit(tv1.getUpperBound(), tv2.getUpperBound());
  1130             @Override
  1131             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1132                 return containsTypeEquivalent(ts1, ts2);
  1134         };
  1136         /**
  1137          * Strict type-equality relation - type variables are considered
  1138          * equals if they share the same object identity.
  1139          */
  1140         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1141             @Override
  1142             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1143                 return tv1 == tv2;
  1145             @Override
  1146             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1147                 return isSameTypes(ts1, ts2, true);
  1150             @Override
  1151             public Boolean visitWildcardType(WildcardType t, Type s) {
  1152                 if (!s.hasTag(WILDCARD)) {
  1153                     return false;
  1154                 } else {
  1155                     WildcardType t2 = (WildcardType)s.unannotatedType();
  1156                     return t.kind == t2.kind &&
  1157                             isSameType(t.type, t2.type, true);
  1160         };
  1162         /**
  1163          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
  1164          * into account.
  1165          */
  1166         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
  1167             @Override
  1168             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
  1169                 if (!s.isAnnotated())
  1170                     return false;
  1171                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
  1172                     return false;
  1173                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
  1174                     return false;
  1175                 return visit(t.underlyingType, s);
  1177         };
  1178     // </editor-fold>
  1180     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1181     public boolean containedBy(Type t, Type s) {
  1182         switch (t.getTag()) {
  1183         case UNDETVAR:
  1184             if (s.hasTag(WILDCARD)) {
  1185                 UndetVar undetvar = (UndetVar)t;
  1186                 WildcardType wt = (WildcardType)s.unannotatedType();
  1187                 switch(wt.kind) {
  1188                     case UNBOUND: //similar to ? extends Object
  1189                     case EXTENDS: {
  1190                         Type bound = upperBound(s);
  1191                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1192                         break;
  1194                     case SUPER: {
  1195                         Type bound = lowerBound(s);
  1196                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1197                         break;
  1200                 return true;
  1201             } else {
  1202                 return isSameType(t, s);
  1204         case ERROR:
  1205             return true;
  1206         default:
  1207             return containsType(s, t);
  1211     boolean containsType(List<Type> ts, List<Type> ss) {
  1212         while (ts.nonEmpty() && ss.nonEmpty()
  1213                && containsType(ts.head, ss.head)) {
  1214             ts = ts.tail;
  1215             ss = ss.tail;
  1217         return ts.isEmpty() && ss.isEmpty();
  1220     /**
  1221      * Check if t contains s.
  1223      * <p>T contains S if:
  1225      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1227      * <p>This relation is only used by ClassType.isSubtype(), that
  1228      * is,
  1230      * <p>{@code C<S> <: C<T> if T contains S.}
  1232      * <p>Because of F-bounds, this relation can lead to infinite
  1233      * recursion.  Thus we must somehow break that recursion.  Notice
  1234      * that containsType() is only called from ClassType.isSubtype().
  1235      * Since the arguments have already been checked against their
  1236      * bounds, we know:
  1238      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1240      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1242      * @param t a type
  1243      * @param s a type
  1244      */
  1245     public boolean containsType(Type t, Type s) {
  1246         return containsType.visit(t, s);
  1248     // where
  1249         private TypeRelation containsType = new TypeRelation() {
  1251             private Type U(Type t) {
  1252                 while (t.hasTag(WILDCARD)) {
  1253                     WildcardType w = (WildcardType)t.unannotatedType();
  1254                     if (w.isSuperBound())
  1255                         return w.bound == null ? syms.objectType : w.bound.bound;
  1256                     else
  1257                         t = w.type;
  1259                 return t;
  1262             private Type L(Type t) {
  1263                 while (t.hasTag(WILDCARD)) {
  1264                     WildcardType w = (WildcardType)t.unannotatedType();
  1265                     if (w.isExtendsBound())
  1266                         return syms.botType;
  1267                     else
  1268                         t = w.type;
  1270                 return t;
  1273             public Boolean visitType(Type t, Type s) {
  1274                 if (s.isPartial())
  1275                     return containedBy(s, t);
  1276                 else
  1277                     return isSameType(t, s);
  1280 //            void debugContainsType(WildcardType t, Type s) {
  1281 //                System.err.println();
  1282 //                System.err.format(" does %s contain %s?%n", t, s);
  1283 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1284 //                                  upperBound(s), s, t, U(t),
  1285 //                                  t.isSuperBound()
  1286 //                                  || isSubtypeNoCapture(upperBound(s), U(t)));
  1287 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1288 //                                  L(t), t, s, lowerBound(s),
  1289 //                                  t.isExtendsBound()
  1290 //                                  || isSubtypeNoCapture(L(t), lowerBound(s)));
  1291 //                System.err.println();
  1292 //            }
  1294             @Override
  1295             public Boolean visitWildcardType(WildcardType t, Type s) {
  1296                 if (s.isPartial())
  1297                     return containedBy(s, t);
  1298                 else {
  1299 //                    debugContainsType(t, s);
  1300                     return isSameWildcard(t, s)
  1301                         || isCaptureOf(s, t)
  1302                         || ((t.isExtendsBound() || isSubtypeNoCapture(L(t), lowerBound(s))) &&
  1303                             (t.isSuperBound() || isSubtypeNoCapture(upperBound(s), U(t))));
  1307             @Override
  1308             public Boolean visitUndetVar(UndetVar t, Type s) {
  1309                 if (!s.hasTag(WILDCARD)) {
  1310                     return isSameType(t, s);
  1311                 } else {
  1312                     return false;
  1316             @Override
  1317             public Boolean visitErrorType(ErrorType t, Type s) {
  1318                 return true;
  1320         };
  1322     public boolean isCaptureOf(Type s, WildcardType t) {
  1323         if (!s.hasTag(TYPEVAR) || !((TypeVar)s.unannotatedType()).isCaptured())
  1324             return false;
  1325         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
  1328     public boolean isSameWildcard(WildcardType t, Type s) {
  1329         if (!s.hasTag(WILDCARD))
  1330             return false;
  1331         WildcardType w = (WildcardType)s.unannotatedType();
  1332         return w.kind == t.kind && w.type == t.type;
  1335     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1336         while (ts.nonEmpty() && ss.nonEmpty()
  1337                && containsTypeEquivalent(ts.head, ss.head)) {
  1338             ts = ts.tail;
  1339             ss = ss.tail;
  1341         return ts.isEmpty() && ss.isEmpty();
  1343     // </editor-fold>
  1345     /**
  1346      * Can t and s be compared for equality?  Any primitive ==
  1347      * primitive or primitive == object comparisons here are an error.
  1348      * Unboxing and correct primitive == primitive comparisons are
  1349      * already dealt with in Attr.visitBinary.
  1351      */
  1352     public boolean isEqualityComparable(Type s, Type t, Warner warn) {
  1353         if (t.isNumeric() && s.isNumeric())
  1354             return true;
  1356         boolean tPrimitive = t.isPrimitive();
  1357         boolean sPrimitive = s.isPrimitive();
  1358         if (!tPrimitive && !sPrimitive) {
  1359             return isCastable(s, t, warn) || isCastable(t, s, warn);
  1360         } else {
  1361             return false;
  1365     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1366     public boolean isCastable(Type t, Type s) {
  1367         return isCastable(t, s, noWarnings);
  1370     /**
  1371      * Is t is castable to s?<br>
  1372      * s is assumed to be an erased type.<br>
  1373      * (not defined for Method and ForAll types).
  1374      */
  1375     public boolean isCastable(Type t, Type s, Warner warn) {
  1376         if (t == s)
  1377             return true;
  1379         if (t.isPrimitive() != s.isPrimitive())
  1380             return allowBoxing && (
  1381                     isConvertible(t, s, warn)
  1382                     || (allowObjectToPrimitiveCast &&
  1383                         s.isPrimitive() &&
  1384                         isSubtype(boxedClass(s).type, t)));
  1385         if (warn != warnStack.head) {
  1386             try {
  1387                 warnStack = warnStack.prepend(warn);
  1388                 checkUnsafeVarargsConversion(t, s, warn);
  1389                 return isCastable.visit(t,s);
  1390             } finally {
  1391                 warnStack = warnStack.tail;
  1393         } else {
  1394             return isCastable.visit(t,s);
  1397     // where
  1398         private TypeRelation isCastable = new TypeRelation() {
  1400             public Boolean visitType(Type t, Type s) {
  1401                 if (s.hasTag(ERROR))
  1402                     return true;
  1404                 switch (t.getTag()) {
  1405                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1406                 case DOUBLE:
  1407                     return s.isNumeric();
  1408                 case BOOLEAN:
  1409                     return s.hasTag(BOOLEAN);
  1410                 case VOID:
  1411                     return false;
  1412                 case BOT:
  1413                     return isSubtype(t, s);
  1414                 default:
  1415                     throw new AssertionError();
  1419             @Override
  1420             public Boolean visitWildcardType(WildcardType t, Type s) {
  1421                 return isCastable(upperBound(t), s, warnStack.head);
  1424             @Override
  1425             public Boolean visitClassType(ClassType t, Type s) {
  1426                 if (s.hasTag(ERROR) || s.hasTag(BOT))
  1427                     return true;
  1429                 if (s.hasTag(TYPEVAR)) {
  1430                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1431                         warnStack.head.warn(LintCategory.UNCHECKED);
  1432                         return true;
  1433                     } else {
  1434                         return false;
  1438                 if (t.isCompound() || s.isCompound()) {
  1439                     return !t.isCompound() ?
  1440                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
  1441                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
  1444                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
  1445                     boolean upcast;
  1446                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1447                         || isSubtype(erasure(s), erasure(t))) {
  1448                         if (!upcast && s.hasTag(ARRAY)) {
  1449                             if (!isReifiable(s))
  1450                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1451                             return true;
  1452                         } else if (s.isRaw()) {
  1453                             return true;
  1454                         } else if (t.isRaw()) {
  1455                             if (!isUnbounded(s))
  1456                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1457                             return true;
  1459                         // Assume |a| <: |b|
  1460                         final Type a = upcast ? t : s;
  1461                         final Type b = upcast ? s : t;
  1462                         final boolean HIGH = true;
  1463                         final boolean LOW = false;
  1464                         final boolean DONT_REWRITE_TYPEVARS = false;
  1465                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1466                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1467                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1468                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1469                         Type lowSub = asSub(bLow, aLow.tsym);
  1470                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1471                         if (highSub == null) {
  1472                             final boolean REWRITE_TYPEVARS = true;
  1473                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1474                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1475                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1476                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1477                             lowSub = asSub(bLow, aLow.tsym);
  1478                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1480                         if (highSub != null) {
  1481                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1482                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1484                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1485                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1486                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1487                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1488                                 if (upcast ? giveWarning(a, b) :
  1489                                     giveWarning(b, a))
  1490                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1491                                 return true;
  1494                         if (isReifiable(s))
  1495                             return isSubtypeUnchecked(a, b);
  1496                         else
  1497                             return isSubtypeUnchecked(a, b, warnStack.head);
  1500                     // Sidecast
  1501                     if (s.hasTag(CLASS)) {
  1502                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1503                             return ((t.tsym.flags() & FINAL) == 0)
  1504                                 ? sideCast(t, s, warnStack.head)
  1505                                 : sideCastFinal(t, s, warnStack.head);
  1506                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1507                             return ((s.tsym.flags() & FINAL) == 0)
  1508                                 ? sideCast(t, s, warnStack.head)
  1509                                 : sideCastFinal(t, s, warnStack.head);
  1510                         } else {
  1511                             // unrelated class types
  1512                             return false;
  1516                 return false;
  1519             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
  1520                 Warner warn = noWarnings;
  1521                 for (Type c : ict.getComponents()) {
  1522                     warn.clear();
  1523                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
  1524                         return false;
  1526                 if (warn.hasLint(LintCategory.UNCHECKED))
  1527                     warnStack.head.warn(LintCategory.UNCHECKED);
  1528                 return true;
  1531             @Override
  1532             public Boolean visitArrayType(ArrayType t, Type s) {
  1533                 switch (s.getTag()) {
  1534                 case ERROR:
  1535                 case BOT:
  1536                     return true;
  1537                 case TYPEVAR:
  1538                     if (isCastable(s, t, noWarnings)) {
  1539                         warnStack.head.warn(LintCategory.UNCHECKED);
  1540                         return true;
  1541                     } else {
  1542                         return false;
  1544                 case CLASS:
  1545                     return isSubtype(t, s);
  1546                 case ARRAY:
  1547                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1548                         return elemtype(t).hasTag(elemtype(s).getTag());
  1549                     } else {
  1550                         return visit(elemtype(t), elemtype(s));
  1552                 default:
  1553                     return false;
  1557             @Override
  1558             public Boolean visitTypeVar(TypeVar t, Type s) {
  1559                 switch (s.getTag()) {
  1560                 case ERROR:
  1561                 case BOT:
  1562                     return true;
  1563                 case TYPEVAR:
  1564                     if (isSubtype(t, s)) {
  1565                         return true;
  1566                     } else if (isCastable(t.bound, s, noWarnings)) {
  1567                         warnStack.head.warn(LintCategory.UNCHECKED);
  1568                         return true;
  1569                     } else {
  1570                         return false;
  1572                 default:
  1573                     return isCastable(t.bound, s, warnStack.head);
  1577             @Override
  1578             public Boolean visitErrorType(ErrorType t, Type s) {
  1579                 return true;
  1581         };
  1582     // </editor-fold>
  1584     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1585     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1586         while (ts.tail != null && ss.tail != null) {
  1587             if (disjointType(ts.head, ss.head)) return true;
  1588             ts = ts.tail;
  1589             ss = ss.tail;
  1591         return false;
  1594     /**
  1595      * Two types or wildcards are considered disjoint if it can be
  1596      * proven that no type can be contained in both. It is
  1597      * conservative in that it is allowed to say that two types are
  1598      * not disjoint, even though they actually are.
  1600      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1601      * {@code X} and {@code Y} are not disjoint.
  1602      */
  1603     public boolean disjointType(Type t, Type s) {
  1604         return disjointType.visit(t, s);
  1606     // where
  1607         private TypeRelation disjointType = new TypeRelation() {
  1609             private Set<TypePair> cache = new HashSet<TypePair>();
  1611             @Override
  1612             public Boolean visitType(Type t, Type s) {
  1613                 if (s.hasTag(WILDCARD))
  1614                     return visit(s, t);
  1615                 else
  1616                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1619             private boolean isCastableRecursive(Type t, Type s) {
  1620                 TypePair pair = new TypePair(t, s);
  1621                 if (cache.add(pair)) {
  1622                     try {
  1623                         return Types.this.isCastable(t, s);
  1624                     } finally {
  1625                         cache.remove(pair);
  1627                 } else {
  1628                     return true;
  1632             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1633                 TypePair pair = new TypePair(t, s);
  1634                 if (cache.add(pair)) {
  1635                     try {
  1636                         return Types.this.notSoftSubtype(t, s);
  1637                     } finally {
  1638                         cache.remove(pair);
  1640                 } else {
  1641                     return false;
  1645             @Override
  1646             public Boolean visitWildcardType(WildcardType t, Type s) {
  1647                 if (t.isUnbound())
  1648                     return false;
  1650                 if (!s.hasTag(WILDCARD)) {
  1651                     if (t.isExtendsBound())
  1652                         return notSoftSubtypeRecursive(s, t.type);
  1653                     else
  1654                         return notSoftSubtypeRecursive(t.type, s);
  1657                 if (s.isUnbound())
  1658                     return false;
  1660                 if (t.isExtendsBound()) {
  1661                     if (s.isExtendsBound())
  1662                         return !isCastableRecursive(t.type, upperBound(s));
  1663                     else if (s.isSuperBound())
  1664                         return notSoftSubtypeRecursive(lowerBound(s), t.type);
  1665                 } else if (t.isSuperBound()) {
  1666                     if (s.isExtendsBound())
  1667                         return notSoftSubtypeRecursive(t.type, upperBound(s));
  1669                 return false;
  1671         };
  1672     // </editor-fold>
  1674     // <editor-fold defaultstate="collapsed" desc="lowerBoundArgtypes">
  1675     /**
  1676      * Returns the lower bounds of the formals of a method.
  1677      */
  1678     public List<Type> lowerBoundArgtypes(Type t) {
  1679         return lowerBounds(t.getParameterTypes());
  1681     public List<Type> lowerBounds(List<Type> ts) {
  1682         return map(ts, lowerBoundMapping);
  1684     private final Mapping lowerBoundMapping = new Mapping("lowerBound") {
  1685             public Type apply(Type t) {
  1686                 return lowerBound(t);
  1688         };
  1689     // </editor-fold>
  1691     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1692     /**
  1693      * This relation answers the question: is impossible that
  1694      * something of type `t' can be a subtype of `s'? This is
  1695      * different from the question "is `t' not a subtype of `s'?"
  1696      * when type variables are involved: Integer is not a subtype of T
  1697      * where {@code <T extends Number>} but it is not true that Integer cannot
  1698      * possibly be a subtype of T.
  1699      */
  1700     public boolean notSoftSubtype(Type t, Type s) {
  1701         if (t == s) return false;
  1702         if (t.hasTag(TYPEVAR)) {
  1703             TypeVar tv = (TypeVar) t;
  1704             return !isCastable(tv.bound,
  1705                                relaxBound(s),
  1706                                noWarnings);
  1708         if (!s.hasTag(WILDCARD))
  1709             s = upperBound(s);
  1711         return !isSubtype(t, relaxBound(s));
  1714     private Type relaxBound(Type t) {
  1715         if (t.hasTag(TYPEVAR)) {
  1716             while (t.hasTag(TYPEVAR))
  1717                 t = t.getUpperBound();
  1718             t = rewriteQuantifiers(t, true, true);
  1720         return t;
  1722     // </editor-fold>
  1724     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1725     public boolean isReifiable(Type t) {
  1726         return isReifiable.visit(t);
  1728     // where
  1729         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1731             public Boolean visitType(Type t, Void ignored) {
  1732                 return true;
  1735             @Override
  1736             public Boolean visitClassType(ClassType t, Void ignored) {
  1737                 if (t.isCompound())
  1738                     return false;
  1739                 else {
  1740                     if (!t.isParameterized())
  1741                         return true;
  1743                     for (Type param : t.allparams()) {
  1744                         if (!param.isUnbound())
  1745                             return false;
  1747                     return true;
  1751             @Override
  1752             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1753                 return visit(t.elemtype);
  1756             @Override
  1757             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1758                 return false;
  1760         };
  1761     // </editor-fold>
  1763     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1764     public boolean isArray(Type t) {
  1765         while (t.hasTag(WILDCARD))
  1766             t = upperBound(t);
  1767         return t.hasTag(ARRAY);
  1770     /**
  1771      * The element type of an array.
  1772      */
  1773     public Type elemtype(Type t) {
  1774         switch (t.getTag()) {
  1775         case WILDCARD:
  1776             return elemtype(upperBound(t));
  1777         case ARRAY:
  1778             t = t.unannotatedType();
  1779             return ((ArrayType)t).elemtype;
  1780         case FORALL:
  1781             return elemtype(((ForAll)t).qtype);
  1782         case ERROR:
  1783             return t;
  1784         default:
  1785             return null;
  1789     public Type elemtypeOrType(Type t) {
  1790         Type elemtype = elemtype(t);
  1791         return elemtype != null ?
  1792             elemtype :
  1793             t;
  1796     /**
  1797      * Mapping to take element type of an arraytype
  1798      */
  1799     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1800         public Type apply(Type t) { return elemtype(t); }
  1801     };
  1803     /**
  1804      * The number of dimensions of an array type.
  1805      */
  1806     public int dimensions(Type t) {
  1807         int result = 0;
  1808         while (t.hasTag(ARRAY)) {
  1809             result++;
  1810             t = elemtype(t);
  1812         return result;
  1815     /**
  1816      * Returns an ArrayType with the component type t
  1818      * @param t The component type of the ArrayType
  1819      * @return the ArrayType for the given component
  1820      */
  1821     public ArrayType makeArrayType(Type t) {
  1822         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
  1823             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1825         return new ArrayType(t, syms.arrayClass);
  1827     // </editor-fold>
  1829     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1830     /**
  1831      * Return the (most specific) base type of t that starts with the
  1832      * given symbol.  If none exists, return null.
  1834      * @param t a type
  1835      * @param sym a symbol
  1836      */
  1837     public Type asSuper(Type t, Symbol sym) {
  1838         return asSuper.visit(t, sym);
  1840     // where
  1841         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1843             public Type visitType(Type t, Symbol sym) {
  1844                 return null;
  1847             @Override
  1848             public Type visitClassType(ClassType t, Symbol sym) {
  1849                 if (t.tsym == sym)
  1850                     return t;
  1852                 Type st = supertype(t);
  1853                 if (st.hasTag(CLASS) || st.hasTag(TYPEVAR) || st.hasTag(ERROR)) {
  1854                     Type x = asSuper(st, sym);
  1855                     if (x != null)
  1856                         return x;
  1858                 if ((sym.flags() & INTERFACE) != 0) {
  1859                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1860                         Type x = asSuper(l.head, sym);
  1861                         if (x != null)
  1862                             return x;
  1865                 return null;
  1868             @Override
  1869             public Type visitArrayType(ArrayType t, Symbol sym) {
  1870                 return isSubtype(t, sym.type) ? sym.type : null;
  1873             @Override
  1874             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1875                 if (t.tsym == sym)
  1876                     return t;
  1877                 else
  1878                     return asSuper(t.bound, sym);
  1881             @Override
  1882             public Type visitErrorType(ErrorType t, Symbol sym) {
  1883                 return t;
  1885         };
  1887     /**
  1888      * Return the base type of t or any of its outer types that starts
  1889      * with the given symbol.  If none exists, return null.
  1891      * @param t a type
  1892      * @param sym a symbol
  1893      */
  1894     public Type asOuterSuper(Type t, Symbol sym) {
  1895         switch (t.getTag()) {
  1896         case CLASS:
  1897             do {
  1898                 Type s = asSuper(t, sym);
  1899                 if (s != null) return s;
  1900                 t = t.getEnclosingType();
  1901             } while (t.hasTag(CLASS));
  1902             return null;
  1903         case ARRAY:
  1904             return isSubtype(t, sym.type) ? sym.type : null;
  1905         case TYPEVAR:
  1906             return asSuper(t, sym);
  1907         case ERROR:
  1908             return t;
  1909         default:
  1910             return null;
  1914     /**
  1915      * Return the base type of t or any of its enclosing types that
  1916      * starts with the given symbol.  If none exists, return null.
  1918      * @param t a type
  1919      * @param sym a symbol
  1920      */
  1921     public Type asEnclosingSuper(Type t, Symbol sym) {
  1922         switch (t.getTag()) {
  1923         case CLASS:
  1924             do {
  1925                 Type s = asSuper(t, sym);
  1926                 if (s != null) return s;
  1927                 Type outer = t.getEnclosingType();
  1928                 t = (outer.hasTag(CLASS)) ? outer :
  1929                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  1930                     Type.noType;
  1931             } while (t.hasTag(CLASS));
  1932             return null;
  1933         case ARRAY:
  1934             return isSubtype(t, sym.type) ? sym.type : null;
  1935         case TYPEVAR:
  1936             return asSuper(t, sym);
  1937         case ERROR:
  1938             return t;
  1939         default:
  1940             return null;
  1943     // </editor-fold>
  1945     // <editor-fold defaultstate="collapsed" desc="memberType">
  1946     /**
  1947      * The type of given symbol, seen as a member of t.
  1949      * @param t a type
  1950      * @param sym a symbol
  1951      */
  1952     public Type memberType(Type t, Symbol sym) {
  1953         return (sym.flags() & STATIC) != 0
  1954             ? sym.type
  1955             : memberType.visit(t, sym);
  1957     // where
  1958         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  1960             public Type visitType(Type t, Symbol sym) {
  1961                 return sym.type;
  1964             @Override
  1965             public Type visitWildcardType(WildcardType t, Symbol sym) {
  1966                 return memberType(upperBound(t), sym);
  1969             @Override
  1970             public Type visitClassType(ClassType t, Symbol sym) {
  1971                 Symbol owner = sym.owner;
  1972                 long flags = sym.flags();
  1973                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  1974                     Type base = asOuterSuper(t, owner);
  1975                     //if t is an intersection type T = CT & I1 & I2 ... & In
  1976                     //its supertypes CT, I1, ... In might contain wildcards
  1977                     //so we need to go through capture conversion
  1978                     base = t.isCompound() ? capture(base) : base;
  1979                     if (base != null) {
  1980                         List<Type> ownerParams = owner.type.allparams();
  1981                         List<Type> baseParams = base.allparams();
  1982                         if (ownerParams.nonEmpty()) {
  1983                             if (baseParams.isEmpty()) {
  1984                                 // then base is a raw type
  1985                                 return erasure(sym.type);
  1986                             } else {
  1987                                 return subst(sym.type, ownerParams, baseParams);
  1992                 return sym.type;
  1995             @Override
  1996             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1997                 return memberType(t.bound, sym);
  2000             @Override
  2001             public Type visitErrorType(ErrorType t, Symbol sym) {
  2002                 return t;
  2004         };
  2005     // </editor-fold>
  2007     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  2008     public boolean isAssignable(Type t, Type s) {
  2009         return isAssignable(t, s, noWarnings);
  2012     /**
  2013      * Is t assignable to s?<br>
  2014      * Equivalent to subtype except for constant values and raw
  2015      * types.<br>
  2016      * (not defined for Method and ForAll types)
  2017      */
  2018     public boolean isAssignable(Type t, Type s, Warner warn) {
  2019         if (t.hasTag(ERROR))
  2020             return true;
  2021         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
  2022             int value = ((Number)t.constValue()).intValue();
  2023             switch (s.getTag()) {
  2024             case BYTE:
  2025                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  2026                     return true;
  2027                 break;
  2028             case CHAR:
  2029                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  2030                     return true;
  2031                 break;
  2032             case SHORT:
  2033                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2034                     return true;
  2035                 break;
  2036             case INT:
  2037                 return true;
  2038             case CLASS:
  2039                 switch (unboxedType(s).getTag()) {
  2040                 case BYTE:
  2041                 case CHAR:
  2042                 case SHORT:
  2043                     return isAssignable(t, unboxedType(s), warn);
  2045                 break;
  2048         return isConvertible(t, s, warn);
  2050     // </editor-fold>
  2052     // <editor-fold defaultstate="collapsed" desc="erasure">
  2053     /**
  2054      * The erasure of t {@code |t|} -- the type that results when all
  2055      * type parameters in t are deleted.
  2056      */
  2057     public Type erasure(Type t) {
  2058         return eraseNotNeeded(t)? t : erasure(t, false);
  2060     //where
  2061     private boolean eraseNotNeeded(Type t) {
  2062         // We don't want to erase primitive types and String type as that
  2063         // operation is idempotent. Also, erasing these could result in loss
  2064         // of information such as constant values attached to such types.
  2065         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2068     private Type erasure(Type t, boolean recurse) {
  2069         if (t.isPrimitive())
  2070             return t; /* fast special case */
  2071         else
  2072             return erasure.visit(t, recurse);
  2074     // where
  2075         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2076             public Type visitType(Type t, Boolean recurse) {
  2077                 if (t.isPrimitive())
  2078                     return t; /*fast special case*/
  2079                 else
  2080                     return t.map(recurse ? erasureRecFun : erasureFun);
  2083             @Override
  2084             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2085                 return erasure(upperBound(t), recurse);
  2088             @Override
  2089             public Type visitClassType(ClassType t, Boolean recurse) {
  2090                 Type erased = t.tsym.erasure(Types.this);
  2091                 if (recurse) {
  2092                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2094                 return erased;
  2097             @Override
  2098             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2099                 return erasure(t.bound, recurse);
  2102             @Override
  2103             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2104                 return t;
  2107             @Override
  2108             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2109                 Type erased = erasure(t.underlyingType, recurse);
  2110                 if (erased.isAnnotated()) {
  2111                     // This can only happen when the underlying type is a
  2112                     // type variable and the upper bound of it is annotated.
  2113                     // The annotation on the type variable overrides the one
  2114                     // on the bound.
  2115                     erased = ((AnnotatedType)erased).underlyingType;
  2117                 return new AnnotatedType(t.typeAnnotations, erased);
  2119         };
  2121     private Mapping erasureFun = new Mapping ("erasure") {
  2122             public Type apply(Type t) { return erasure(t); }
  2123         };
  2125     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2126         public Type apply(Type t) { return erasureRecursive(t); }
  2127     };
  2129     public List<Type> erasure(List<Type> ts) {
  2130         return Type.map(ts, erasureFun);
  2133     public Type erasureRecursive(Type t) {
  2134         return erasure(t, true);
  2137     public List<Type> erasureRecursive(List<Type> ts) {
  2138         return Type.map(ts, erasureRecFun);
  2140     // </editor-fold>
  2142     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2143     /**
  2144      * Make a compound type from non-empty list of types
  2146      * @param bounds            the types from which the compound type is formed
  2147      * @param supertype         is objectType if all bounds are interfaces,
  2148      *                          null otherwise.
  2149      */
  2150     public Type makeCompoundType(List<Type> bounds) {
  2151         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2153     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2154         Assert.check(bounds.nonEmpty());
  2155         Type firstExplicitBound = bounds.head;
  2156         if (allInterfaces) {
  2157             bounds = bounds.prepend(syms.objectType);
  2159         ClassSymbol bc =
  2160             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2161                             Type.moreInfo
  2162                                 ? names.fromString(bounds.toString())
  2163                                 : names.empty,
  2164                             null,
  2165                             syms.noSymbol);
  2166         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2167         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
  2168                 syms.objectType : // error condition, recover
  2169                 erasure(firstExplicitBound);
  2170         bc.members_field = new Scope(bc);
  2171         return bc.type;
  2174     /**
  2175      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2176      * arguments are converted to a list and passed to the other
  2177      * method.  Note that this might cause a symbol completion.
  2178      * Hence, this version of makeCompoundType may not be called
  2179      * during a classfile read.
  2180      */
  2181     public Type makeCompoundType(Type bound1, Type bound2) {
  2182         return makeCompoundType(List.of(bound1, bound2));
  2184     // </editor-fold>
  2186     // <editor-fold defaultstate="collapsed" desc="supertype">
  2187     public Type supertype(Type t) {
  2188         return supertype.visit(t);
  2190     // where
  2191         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2193             public Type visitType(Type t, Void ignored) {
  2194                 // A note on wildcards: there is no good way to
  2195                 // determine a supertype for a super bounded wildcard.
  2196                 return null;
  2199             @Override
  2200             public Type visitClassType(ClassType t, Void ignored) {
  2201                 if (t.supertype_field == null) {
  2202                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2203                     // An interface has no superclass; its supertype is Object.
  2204                     if (t.isInterface())
  2205                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2206                     if (t.supertype_field == null) {
  2207                         List<Type> actuals = classBound(t).allparams();
  2208                         List<Type> formals = t.tsym.type.allparams();
  2209                         if (t.hasErasedSupertypes()) {
  2210                             t.supertype_field = erasureRecursive(supertype);
  2211                         } else if (formals.nonEmpty()) {
  2212                             t.supertype_field = subst(supertype, formals, actuals);
  2214                         else {
  2215                             t.supertype_field = supertype;
  2219                 return t.supertype_field;
  2222             /**
  2223              * The supertype is always a class type. If the type
  2224              * variable's bounds start with a class type, this is also
  2225              * the supertype.  Otherwise, the supertype is
  2226              * java.lang.Object.
  2227              */
  2228             @Override
  2229             public Type visitTypeVar(TypeVar t, Void ignored) {
  2230                 if (t.bound.hasTag(TYPEVAR) ||
  2231                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2232                     return t.bound;
  2233                 } else {
  2234                     return supertype(t.bound);
  2238             @Override
  2239             public Type visitArrayType(ArrayType t, Void ignored) {
  2240                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2241                     return arraySuperType();
  2242                 else
  2243                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2246             @Override
  2247             public Type visitErrorType(ErrorType t, Void ignored) {
  2248                 return t;
  2250         };
  2251     // </editor-fold>
  2253     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2254     /**
  2255      * Return the interfaces implemented by this class.
  2256      */
  2257     public List<Type> interfaces(Type t) {
  2258         return interfaces.visit(t);
  2260     // where
  2261         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2263             public List<Type> visitType(Type t, Void ignored) {
  2264                 return List.nil();
  2267             @Override
  2268             public List<Type> visitClassType(ClassType t, Void ignored) {
  2269                 if (t.interfaces_field == null) {
  2270                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2271                     if (t.interfaces_field == null) {
  2272                         // If t.interfaces_field is null, then t must
  2273                         // be a parameterized type (not to be confused
  2274                         // with a generic type declaration).
  2275                         // Terminology:
  2276                         //    Parameterized type: List<String>
  2277                         //    Generic type declaration: class List<E> { ... }
  2278                         // So t corresponds to List<String> and
  2279                         // t.tsym.type corresponds to List<E>.
  2280                         // The reason t must be parameterized type is
  2281                         // that completion will happen as a side
  2282                         // effect of calling
  2283                         // ClassSymbol.getInterfaces.  Since
  2284                         // t.interfaces_field is null after
  2285                         // completion, we can assume that t is not the
  2286                         // type of a class/interface declaration.
  2287                         Assert.check(t != t.tsym.type, t);
  2288                         List<Type> actuals = t.allparams();
  2289                         List<Type> formals = t.tsym.type.allparams();
  2290                         if (t.hasErasedSupertypes()) {
  2291                             t.interfaces_field = erasureRecursive(interfaces);
  2292                         } else if (formals.nonEmpty()) {
  2293                             t.interfaces_field =
  2294                                 upperBounds(subst(interfaces, formals, actuals));
  2296                         else {
  2297                             t.interfaces_field = interfaces;
  2301                 return t.interfaces_field;
  2304             @Override
  2305             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2306                 if (t.bound.isCompound())
  2307                     return interfaces(t.bound);
  2309                 if (t.bound.isInterface())
  2310                     return List.of(t.bound);
  2312                 return List.nil();
  2314         };
  2316     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2317         for (Type i2 : interfaces(origin.type)) {
  2318             if (isym == i2.tsym) return true;
  2320         return false;
  2322     // </editor-fold>
  2324     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2325     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2327     public boolean isDerivedRaw(Type t) {
  2328         Boolean result = isDerivedRawCache.get(t);
  2329         if (result == null) {
  2330             result = isDerivedRawInternal(t);
  2331             isDerivedRawCache.put(t, result);
  2333         return result;
  2336     public boolean isDerivedRawInternal(Type t) {
  2337         if (t.isErroneous())
  2338             return false;
  2339         return
  2340             t.isRaw() ||
  2341             supertype(t) != null && isDerivedRaw(supertype(t)) ||
  2342             isDerivedRaw(interfaces(t));
  2345     public boolean isDerivedRaw(List<Type> ts) {
  2346         List<Type> l = ts;
  2347         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2348         return l.nonEmpty();
  2350     // </editor-fold>
  2352     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2353     /**
  2354      * Set the bounds field of the given type variable to reflect a
  2355      * (possibly multiple) list of bounds.
  2356      * @param t                 a type variable
  2357      * @param bounds            the bounds, must be nonempty
  2358      * @param supertype         is objectType if all bounds are interfaces,
  2359      *                          null otherwise.
  2360      */
  2361     public void setBounds(TypeVar t, List<Type> bounds) {
  2362         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2365     /**
  2366      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2367      * third parameter is computed directly, as follows: if all
  2368      * all bounds are interface types, the computed supertype is Object,
  2369      * otherwise the supertype is simply left null (in this case, the supertype
  2370      * is assumed to be the head of the bound list passed as second argument).
  2371      * Note that this check might cause a symbol completion. Hence, this version of
  2372      * setBounds may not be called during a classfile read.
  2373      */
  2374     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2375         t.bound = bounds.tail.isEmpty() ?
  2376                 bounds.head :
  2377                 makeCompoundType(bounds, allInterfaces);
  2378         t.rank_field = -1;
  2380     // </editor-fold>
  2382     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2383     /**
  2384      * Return list of bounds of the given type variable.
  2385      */
  2386     public List<Type> getBounds(TypeVar t) {
  2387         if (t.bound.hasTag(NONE))
  2388             return List.nil();
  2389         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2390             return List.of(t.bound);
  2391         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2392             return interfaces(t).prepend(supertype(t));
  2393         else
  2394             // No superclass was given in bounds.
  2395             // In this case, supertype is Object, erasure is first interface.
  2396             return interfaces(t);
  2398     // </editor-fold>
  2400     // <editor-fold defaultstate="collapsed" desc="classBound">
  2401     /**
  2402      * If the given type is a (possibly selected) type variable,
  2403      * return the bounding class of this type, otherwise return the
  2404      * type itself.
  2405      */
  2406     public Type classBound(Type t) {
  2407         return classBound.visit(t);
  2409     // where
  2410         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2412             public Type visitType(Type t, Void ignored) {
  2413                 return t;
  2416             @Override
  2417             public Type visitClassType(ClassType t, Void ignored) {
  2418                 Type outer1 = classBound(t.getEnclosingType());
  2419                 if (outer1 != t.getEnclosingType())
  2420                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2421                 else
  2422                     return t;
  2425             @Override
  2426             public Type visitTypeVar(TypeVar t, Void ignored) {
  2427                 return classBound(supertype(t));
  2430             @Override
  2431             public Type visitErrorType(ErrorType t, Void ignored) {
  2432                 return t;
  2434         };
  2435     // </editor-fold>
  2437     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2438     /**
  2439      * Returns true iff the first signature is a <em>sub
  2440      * signature</em> of the other.  This is <b>not</b> an equivalence
  2441      * relation.
  2443      * @jls section 8.4.2.
  2444      * @see #overrideEquivalent(Type t, Type s)
  2445      * @param t first signature (possibly raw).
  2446      * @param s second signature (could be subjected to erasure).
  2447      * @return true if t is a sub signature of s.
  2448      */
  2449     public boolean isSubSignature(Type t, Type s) {
  2450         return isSubSignature(t, s, true);
  2453     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2454         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2457     /**
  2458      * Returns true iff these signatures are related by <em>override
  2459      * equivalence</em>.  This is the natural extension of
  2460      * isSubSignature to an equivalence relation.
  2462      * @jls section 8.4.2.
  2463      * @see #isSubSignature(Type t, Type s)
  2464      * @param t a signature (possible raw, could be subjected to
  2465      * erasure).
  2466      * @param s a signature (possible raw, could be subjected to
  2467      * erasure).
  2468      * @return true if either argument is a sub signature of the other.
  2469      */
  2470     public boolean overrideEquivalent(Type t, Type s) {
  2471         return hasSameArgs(t, s) ||
  2472             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2475     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2476         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2477             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2478                 return true;
  2481         return false;
  2484     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2485     class ImplementationCache {
  2487         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2488                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2490         class Entry {
  2491             final MethodSymbol cachedImpl;
  2492             final Filter<Symbol> implFilter;
  2493             final boolean checkResult;
  2494             final int prevMark;
  2496             public Entry(MethodSymbol cachedImpl,
  2497                     Filter<Symbol> scopeFilter,
  2498                     boolean checkResult,
  2499                     int prevMark) {
  2500                 this.cachedImpl = cachedImpl;
  2501                 this.implFilter = scopeFilter;
  2502                 this.checkResult = checkResult;
  2503                 this.prevMark = prevMark;
  2506             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2507                 return this.implFilter == scopeFilter &&
  2508                         this.checkResult == checkResult &&
  2509                         this.prevMark == mark;
  2513         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2514             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2515             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2516             if (cache == null) {
  2517                 cache = new HashMap<TypeSymbol, Entry>();
  2518                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2520             Entry e = cache.get(origin);
  2521             CompoundScope members = membersClosure(origin.type, true);
  2522             if (e == null ||
  2523                     !e.matches(implFilter, checkResult, members.getMark())) {
  2524                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2525                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2526                 return impl;
  2528             else {
  2529                 return e.cachedImpl;
  2533         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2534             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
  2535                 while (t.hasTag(TYPEVAR))
  2536                     t = t.getUpperBound();
  2537                 TypeSymbol c = t.tsym;
  2538                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2539                      e.scope != null;
  2540                      e = e.next(implFilter)) {
  2541                     if (e.sym != null &&
  2542                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2543                         return (MethodSymbol)e.sym;
  2546             return null;
  2550     private ImplementationCache implCache = new ImplementationCache();
  2552     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2553         return implCache.get(ms, origin, checkResult, implFilter);
  2555     // </editor-fold>
  2557     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2558     class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
  2560         private WeakHashMap<TypeSymbol, Entry> _map =
  2561                 new WeakHashMap<TypeSymbol, Entry>();
  2563         class Entry {
  2564             final boolean skipInterfaces;
  2565             final CompoundScope compoundScope;
  2567             public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
  2568                 this.skipInterfaces = skipInterfaces;
  2569                 this.compoundScope = compoundScope;
  2572             boolean matches(boolean skipInterfaces) {
  2573                 return this.skipInterfaces == skipInterfaces;
  2577         List<TypeSymbol> seenTypes = List.nil();
  2579         /** members closure visitor methods **/
  2581         public CompoundScope visitType(Type t, Boolean skipInterface) {
  2582             return null;
  2585         @Override
  2586         public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
  2587             if (seenTypes.contains(t.tsym)) {
  2588                 //this is possible when an interface is implemented in multiple
  2589                 //superclasses, or when a classs hierarchy is circular - in such
  2590                 //cases we don't need to recurse (empty scope is returned)
  2591                 return new CompoundScope(t.tsym);
  2593             try {
  2594                 seenTypes = seenTypes.prepend(t.tsym);
  2595                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2596                 Entry e = _map.get(csym);
  2597                 if (e == null || !e.matches(skipInterface)) {
  2598                     CompoundScope membersClosure = new CompoundScope(csym);
  2599                     if (!skipInterface) {
  2600                         for (Type i : interfaces(t)) {
  2601                             membersClosure.addSubScope(visit(i, skipInterface));
  2604                     membersClosure.addSubScope(visit(supertype(t), skipInterface));
  2605                     membersClosure.addSubScope(csym.members());
  2606                     e = new Entry(skipInterface, membersClosure);
  2607                     _map.put(csym, e);
  2609                 return e.compoundScope;
  2611             finally {
  2612                 seenTypes = seenTypes.tail;
  2616         @Override
  2617         public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
  2618             return visit(t.getUpperBound(), skipInterface);
  2622     private MembersClosureCache membersCache = new MembersClosureCache();
  2624     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2625         return membersCache.visit(site, skipInterface);
  2627     // </editor-fold>
  2630     //where
  2631     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2632         Filter<Symbol> filter = new MethodFilter(ms, site);
  2633         List<MethodSymbol> candidates = List.nil();
  2634             for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2635                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2636                     return List.of((MethodSymbol)s);
  2637                 } else if (!candidates.contains(s)) {
  2638                     candidates = candidates.prepend((MethodSymbol)s);
  2641             return prune(candidates);
  2644     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2645         ListBuffer<MethodSymbol> methodsMin = ListBuffer.lb();
  2646         for (MethodSymbol m1 : methods) {
  2647             boolean isMin_m1 = true;
  2648             for (MethodSymbol m2 : methods) {
  2649                 if (m1 == m2) continue;
  2650                 if (m2.owner != m1.owner &&
  2651                         asSuper(m2.owner.type, m1.owner) != null) {
  2652                     isMin_m1 = false;
  2653                     break;
  2656             if (isMin_m1)
  2657                 methodsMin.append(m1);
  2659         return methodsMin.toList();
  2661     // where
  2662             private class MethodFilter implements Filter<Symbol> {
  2664                 Symbol msym;
  2665                 Type site;
  2667                 MethodFilter(Symbol msym, Type site) {
  2668                     this.msym = msym;
  2669                     this.site = site;
  2672                 public boolean accepts(Symbol s) {
  2673                     return s.kind == Kinds.MTH &&
  2674                             s.name == msym.name &&
  2675                             s.isInheritedIn(site.tsym, Types.this) &&
  2676                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2678             };
  2679     // </editor-fold>
  2681     /**
  2682      * Does t have the same arguments as s?  It is assumed that both
  2683      * types are (possibly polymorphic) method types.  Monomorphic
  2684      * method types "have the same arguments", if their argument lists
  2685      * are equal.  Polymorphic method types "have the same arguments",
  2686      * if they have the same arguments after renaming all type
  2687      * variables of one to corresponding type variables in the other,
  2688      * where correspondence is by position in the type parameter list.
  2689      */
  2690     public boolean hasSameArgs(Type t, Type s) {
  2691         return hasSameArgs(t, s, true);
  2694     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2695         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2698     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2699         return hasSameArgs.visit(t, s);
  2701     // where
  2702         private class HasSameArgs extends TypeRelation {
  2704             boolean strict;
  2706             public HasSameArgs(boolean strict) {
  2707                 this.strict = strict;
  2710             public Boolean visitType(Type t, Type s) {
  2711                 throw new AssertionError();
  2714             @Override
  2715             public Boolean visitMethodType(MethodType t, Type s) {
  2716                 return s.hasTag(METHOD)
  2717                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2720             @Override
  2721             public Boolean visitForAll(ForAll t, Type s) {
  2722                 if (!s.hasTag(FORALL))
  2723                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2725                 ForAll forAll = (ForAll)s;
  2726                 return hasSameBounds(t, forAll)
  2727                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2730             @Override
  2731             public Boolean visitErrorType(ErrorType t, Type s) {
  2732                 return false;
  2734         };
  2736         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2737         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2739     // </editor-fold>
  2741     // <editor-fold defaultstate="collapsed" desc="subst">
  2742     public List<Type> subst(List<Type> ts,
  2743                             List<Type> from,
  2744                             List<Type> to) {
  2745         return new Subst(from, to).subst(ts);
  2748     /**
  2749      * Substitute all occurrences of a type in `from' with the
  2750      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2751      * from the right: If lists have different length, discard leading
  2752      * elements of the longer list.
  2753      */
  2754     public Type subst(Type t, List<Type> from, List<Type> to) {
  2755         return new Subst(from, to).subst(t);
  2758     private class Subst extends UnaryVisitor<Type> {
  2759         List<Type> from;
  2760         List<Type> to;
  2762         public Subst(List<Type> from, List<Type> to) {
  2763             int fromLength = from.length();
  2764             int toLength = to.length();
  2765             while (fromLength > toLength) {
  2766                 fromLength--;
  2767                 from = from.tail;
  2769             while (fromLength < toLength) {
  2770                 toLength--;
  2771                 to = to.tail;
  2773             this.from = from;
  2774             this.to = to;
  2777         Type subst(Type t) {
  2778             if (from.tail == null)
  2779                 return t;
  2780             else
  2781                 return visit(t);
  2784         List<Type> subst(List<Type> ts) {
  2785             if (from.tail == null)
  2786                 return ts;
  2787             boolean wild = false;
  2788             if (ts.nonEmpty() && from.nonEmpty()) {
  2789                 Type head1 = subst(ts.head);
  2790                 List<Type> tail1 = subst(ts.tail);
  2791                 if (head1 != ts.head || tail1 != ts.tail)
  2792                     return tail1.prepend(head1);
  2794             return ts;
  2797         public Type visitType(Type t, Void ignored) {
  2798             return t;
  2801         @Override
  2802         public Type visitMethodType(MethodType t, Void ignored) {
  2803             List<Type> argtypes = subst(t.argtypes);
  2804             Type restype = subst(t.restype);
  2805             List<Type> thrown = subst(t.thrown);
  2806             if (argtypes == t.argtypes &&
  2807                 restype == t.restype &&
  2808                 thrown == t.thrown)
  2809                 return t;
  2810             else
  2811                 return new MethodType(argtypes, restype, thrown, t.tsym);
  2814         @Override
  2815         public Type visitTypeVar(TypeVar t, Void ignored) {
  2816             for (List<Type> from = this.from, to = this.to;
  2817                  from.nonEmpty();
  2818                  from = from.tail, to = to.tail) {
  2819                 if (t == from.head) {
  2820                     return to.head.withTypeVar(t);
  2823             return t;
  2826         @Override
  2827         public Type visitClassType(ClassType t, Void ignored) {
  2828             if (!t.isCompound()) {
  2829                 List<Type> typarams = t.getTypeArguments();
  2830                 List<Type> typarams1 = subst(typarams);
  2831                 Type outer = t.getEnclosingType();
  2832                 Type outer1 = subst(outer);
  2833                 if (typarams1 == typarams && outer1 == outer)
  2834                     return t;
  2835                 else
  2836                     return new ClassType(outer1, typarams1, t.tsym);
  2837             } else {
  2838                 Type st = subst(supertype(t));
  2839                 List<Type> is = upperBounds(subst(interfaces(t)));
  2840                 if (st == supertype(t) && is == interfaces(t))
  2841                     return t;
  2842                 else
  2843                     return makeCompoundType(is.prepend(st));
  2847         @Override
  2848         public Type visitWildcardType(WildcardType t, Void ignored) {
  2849             Type bound = t.type;
  2850             if (t.kind != BoundKind.UNBOUND)
  2851                 bound = subst(bound);
  2852             if (bound == t.type) {
  2853                 return t;
  2854             } else {
  2855                 if (t.isExtendsBound() && bound.isExtendsBound())
  2856                     bound = upperBound(bound);
  2857                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  2861         @Override
  2862         public Type visitArrayType(ArrayType t, Void ignored) {
  2863             Type elemtype = subst(t.elemtype);
  2864             if (elemtype == t.elemtype)
  2865                 return t;
  2866             else
  2867                 return new ArrayType(elemtype, t.tsym);
  2870         @Override
  2871         public Type visitForAll(ForAll t, Void ignored) {
  2872             if (Type.containsAny(to, t.tvars)) {
  2873                 //perform alpha-renaming of free-variables in 't'
  2874                 //if 'to' types contain variables that are free in 't'
  2875                 List<Type> freevars = newInstances(t.tvars);
  2876                 t = new ForAll(freevars,
  2877                         Types.this.subst(t.qtype, t.tvars, freevars));
  2879             List<Type> tvars1 = substBounds(t.tvars, from, to);
  2880             Type qtype1 = subst(t.qtype);
  2881             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  2882                 return t;
  2883             } else if (tvars1 == t.tvars) {
  2884                 return new ForAll(tvars1, qtype1);
  2885             } else {
  2886                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  2890         @Override
  2891         public Type visitErrorType(ErrorType t, Void ignored) {
  2892             return t;
  2896     public List<Type> substBounds(List<Type> tvars,
  2897                                   List<Type> from,
  2898                                   List<Type> to) {
  2899         if (tvars.isEmpty())
  2900             return tvars;
  2901         ListBuffer<Type> newBoundsBuf = lb();
  2902         boolean changed = false;
  2903         // calculate new bounds
  2904         for (Type t : tvars) {
  2905             TypeVar tv = (TypeVar) t;
  2906             Type bound = subst(tv.bound, from, to);
  2907             if (bound != tv.bound)
  2908                 changed = true;
  2909             newBoundsBuf.append(bound);
  2911         if (!changed)
  2912             return tvars;
  2913         ListBuffer<Type> newTvars = lb();
  2914         // create new type variables without bounds
  2915         for (Type t : tvars) {
  2916             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  2918         // the new bounds should use the new type variables in place
  2919         // of the old
  2920         List<Type> newBounds = newBoundsBuf.toList();
  2921         from = tvars;
  2922         to = newTvars.toList();
  2923         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  2924             newBounds.head = subst(newBounds.head, from, to);
  2926         newBounds = newBoundsBuf.toList();
  2927         // set the bounds of new type variables to the new bounds
  2928         for (Type t : newTvars.toList()) {
  2929             TypeVar tv = (TypeVar) t;
  2930             tv.bound = newBounds.head;
  2931             newBounds = newBounds.tail;
  2933         return newTvars.toList();
  2936     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  2937         Type bound1 = subst(t.bound, from, to);
  2938         if (bound1 == t.bound)
  2939             return t;
  2940         else {
  2941             // create new type variable without bounds
  2942             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  2943             // the new bound should use the new type variable in place
  2944             // of the old
  2945             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  2946             return tv;
  2949     // </editor-fold>
  2951     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  2952     /**
  2953      * Does t have the same bounds for quantified variables as s?
  2954      */
  2955     boolean hasSameBounds(ForAll t, ForAll s) {
  2956         List<Type> l1 = t.tvars;
  2957         List<Type> l2 = s.tvars;
  2958         while (l1.nonEmpty() && l2.nonEmpty() &&
  2959                isSameType(l1.head.getUpperBound(),
  2960                           subst(l2.head.getUpperBound(),
  2961                                 s.tvars,
  2962                                 t.tvars))) {
  2963             l1 = l1.tail;
  2964             l2 = l2.tail;
  2966         return l1.isEmpty() && l2.isEmpty();
  2968     // </editor-fold>
  2970     // <editor-fold defaultstate="collapsed" desc="newInstances">
  2971     /** Create new vector of type variables from list of variables
  2972      *  changing all recursive bounds from old to new list.
  2973      */
  2974     public List<Type> newInstances(List<Type> tvars) {
  2975         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  2976         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  2977             TypeVar tv = (TypeVar) l.head;
  2978             tv.bound = subst(tv.bound, tvars, tvars1);
  2980         return tvars1;
  2982     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  2983             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  2984         };
  2985     // </editor-fold>
  2987     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  2988         return original.accept(methodWithParameters, newParams);
  2990     // where
  2991         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  2992             public Type visitType(Type t, List<Type> newParams) {
  2993                 throw new IllegalArgumentException("Not a method type: " + t);
  2995             public Type visitMethodType(MethodType t, List<Type> newParams) {
  2996                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  2998             public Type visitForAll(ForAll t, List<Type> newParams) {
  2999                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  3001         };
  3003     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  3004         return original.accept(methodWithThrown, newThrown);
  3006     // where
  3007         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  3008             public Type visitType(Type t, List<Type> newThrown) {
  3009                 throw new IllegalArgumentException("Not a method type: " + t);
  3011             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  3012                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  3014             public Type visitForAll(ForAll t, List<Type> newThrown) {
  3015                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  3017         };
  3019     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  3020         return original.accept(methodWithReturn, newReturn);
  3022     // where
  3023         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  3024             public Type visitType(Type t, Type newReturn) {
  3025                 throw new IllegalArgumentException("Not a method type: " + t);
  3027             public Type visitMethodType(MethodType t, Type newReturn) {
  3028                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  3030             public Type visitForAll(ForAll t, Type newReturn) {
  3031                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3033         };
  3035     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3036     public Type createErrorType(Type originalType) {
  3037         return new ErrorType(originalType, syms.errSymbol);
  3040     public Type createErrorType(ClassSymbol c, Type originalType) {
  3041         return new ErrorType(c, originalType);
  3044     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3045         return new ErrorType(name, container, originalType);
  3047     // </editor-fold>
  3049     // <editor-fold defaultstate="collapsed" desc="rank">
  3050     /**
  3051      * The rank of a class is the length of the longest path between
  3052      * the class and java.lang.Object in the class inheritance
  3053      * graph. Undefined for all but reference types.
  3054      */
  3055     public int rank(Type t) {
  3056         t = t.unannotatedType();
  3057         switch(t.getTag()) {
  3058         case CLASS: {
  3059             ClassType cls = (ClassType)t;
  3060             if (cls.rank_field < 0) {
  3061                 Name fullname = cls.tsym.getQualifiedName();
  3062                 if (fullname == names.java_lang_Object)
  3063                     cls.rank_field = 0;
  3064                 else {
  3065                     int r = rank(supertype(cls));
  3066                     for (List<Type> l = interfaces(cls);
  3067                          l.nonEmpty();
  3068                          l = l.tail) {
  3069                         if (rank(l.head) > r)
  3070                             r = rank(l.head);
  3072                     cls.rank_field = r + 1;
  3075             return cls.rank_field;
  3077         case TYPEVAR: {
  3078             TypeVar tvar = (TypeVar)t;
  3079             if (tvar.rank_field < 0) {
  3080                 int r = rank(supertype(tvar));
  3081                 for (List<Type> l = interfaces(tvar);
  3082                      l.nonEmpty();
  3083                      l = l.tail) {
  3084                     if (rank(l.head) > r) r = rank(l.head);
  3086                 tvar.rank_field = r + 1;
  3088             return tvar.rank_field;
  3090         case ERROR:
  3091             return 0;
  3092         default:
  3093             throw new AssertionError();
  3096     // </editor-fold>
  3098     /**
  3099      * Helper method for generating a string representation of a given type
  3100      * accordingly to a given locale
  3101      */
  3102     public String toString(Type t, Locale locale) {
  3103         return Printer.createStandardPrinter(messages).visit(t, locale);
  3106     /**
  3107      * Helper method for generating a string representation of a given type
  3108      * accordingly to a given locale
  3109      */
  3110     public String toString(Symbol t, Locale locale) {
  3111         return Printer.createStandardPrinter(messages).visit(t, locale);
  3114     // <editor-fold defaultstate="collapsed" desc="toString">
  3115     /**
  3116      * This toString is slightly more descriptive than the one on Type.
  3118      * @deprecated Types.toString(Type t, Locale l) provides better support
  3119      * for localization
  3120      */
  3121     @Deprecated
  3122     public String toString(Type t) {
  3123         if (t.hasTag(FORALL)) {
  3124             ForAll forAll = (ForAll)t;
  3125             return typaramsString(forAll.tvars) + forAll.qtype;
  3127         return "" + t;
  3129     // where
  3130         private String typaramsString(List<Type> tvars) {
  3131             StringBuilder s = new StringBuilder();
  3132             s.append('<');
  3133             boolean first = true;
  3134             for (Type t : tvars) {
  3135                 if (!first) s.append(", ");
  3136                 first = false;
  3137                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
  3139             s.append('>');
  3140             return s.toString();
  3142         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3143             buf.append(t);
  3144             if (t.bound == null ||
  3145                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3146                 return;
  3147             buf.append(" extends "); // Java syntax; no need for i18n
  3148             Type bound = t.bound;
  3149             if (!bound.isCompound()) {
  3150                 buf.append(bound);
  3151             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3152                 buf.append(supertype(t));
  3153                 for (Type intf : interfaces(t)) {
  3154                     buf.append('&');
  3155                     buf.append(intf);
  3157             } else {
  3158                 // No superclass was given in bounds.
  3159                 // In this case, supertype is Object, erasure is first interface.
  3160                 boolean first = true;
  3161                 for (Type intf : interfaces(t)) {
  3162                     if (!first) buf.append('&');
  3163                     first = false;
  3164                     buf.append(intf);
  3168     // </editor-fold>
  3170     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3171     /**
  3172      * A cache for closures.
  3174      * <p>A closure is a list of all the supertypes and interfaces of
  3175      * a class or interface type, ordered by ClassSymbol.precedes
  3176      * (that is, subclasses come first, arbitrary but fixed
  3177      * otherwise).
  3178      */
  3179     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3181     /**
  3182      * Returns the closure of a class or interface type.
  3183      */
  3184     public List<Type> closure(Type t) {
  3185         List<Type> cl = closureCache.get(t);
  3186         if (cl == null) {
  3187             Type st = supertype(t);
  3188             if (!t.isCompound()) {
  3189                 if (st.hasTag(CLASS)) {
  3190                     cl = insert(closure(st), t);
  3191                 } else if (st.hasTag(TYPEVAR)) {
  3192                     cl = closure(st).prepend(t);
  3193                 } else {
  3194                     cl = List.of(t);
  3196             } else {
  3197                 cl = closure(supertype(t));
  3199             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3200                 cl = union(cl, closure(l.head));
  3201             closureCache.put(t, cl);
  3203         return cl;
  3206     /**
  3207      * Insert a type in a closure
  3208      */
  3209     public List<Type> insert(List<Type> cl, Type t) {
  3210         if (cl.isEmpty() || t.tsym.precedes(cl.head.tsym, this)) {
  3211             return cl.prepend(t);
  3212         } else if (cl.head.tsym.precedes(t.tsym, this)) {
  3213             return insert(cl.tail, t).prepend(cl.head);
  3214         } else {
  3215             return cl;
  3219     /**
  3220      * Form the union of two closures
  3221      */
  3222     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3223         if (cl1.isEmpty()) {
  3224             return cl2;
  3225         } else if (cl2.isEmpty()) {
  3226             return cl1;
  3227         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3228             return union(cl1.tail, cl2).prepend(cl1.head);
  3229         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3230             return union(cl1, cl2.tail).prepend(cl2.head);
  3231         } else {
  3232             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3236     /**
  3237      * Intersect two closures
  3238      */
  3239     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3240         if (cl1 == cl2)
  3241             return cl1;
  3242         if (cl1.isEmpty() || cl2.isEmpty())
  3243             return List.nil();
  3244         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3245             return intersect(cl1.tail, cl2);
  3246         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3247             return intersect(cl1, cl2.tail);
  3248         if (isSameType(cl1.head, cl2.head))
  3249             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3250         if (cl1.head.tsym == cl2.head.tsym &&
  3251             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
  3252             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3253                 Type merge = merge(cl1.head,cl2.head);
  3254                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3256             if (cl1.head.isRaw() || cl2.head.isRaw())
  3257                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3259         return intersect(cl1.tail, cl2.tail);
  3261     // where
  3262         class TypePair {
  3263             final Type t1;
  3264             final Type t2;
  3265             TypePair(Type t1, Type t2) {
  3266                 this.t1 = t1;
  3267                 this.t2 = t2;
  3269             @Override
  3270             public int hashCode() {
  3271                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3273             @Override
  3274             public boolean equals(Object obj) {
  3275                 if (!(obj instanceof TypePair))
  3276                     return false;
  3277                 TypePair typePair = (TypePair)obj;
  3278                 return isSameType(t1, typePair.t1)
  3279                     && isSameType(t2, typePair.t2);
  3282         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3283         private Type merge(Type c1, Type c2) {
  3284             ClassType class1 = (ClassType) c1;
  3285             List<Type> act1 = class1.getTypeArguments();
  3286             ClassType class2 = (ClassType) c2;
  3287             List<Type> act2 = class2.getTypeArguments();
  3288             ListBuffer<Type> merged = new ListBuffer<Type>();
  3289             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3291             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3292                 if (containsType(act1.head, act2.head)) {
  3293                     merged.append(act1.head);
  3294                 } else if (containsType(act2.head, act1.head)) {
  3295                     merged.append(act2.head);
  3296                 } else {
  3297                     TypePair pair = new TypePair(c1, c2);
  3298                     Type m;
  3299                     if (mergeCache.add(pair)) {
  3300                         m = new WildcardType(lub(upperBound(act1.head),
  3301                                                  upperBound(act2.head)),
  3302                                              BoundKind.EXTENDS,
  3303                                              syms.boundClass);
  3304                         mergeCache.remove(pair);
  3305                     } else {
  3306                         m = new WildcardType(syms.objectType,
  3307                                              BoundKind.UNBOUND,
  3308                                              syms.boundClass);
  3310                     merged.append(m.withTypeVar(typarams.head));
  3312                 act1 = act1.tail;
  3313                 act2 = act2.tail;
  3314                 typarams = typarams.tail;
  3316             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3317             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3320     /**
  3321      * Return the minimum type of a closure, a compound type if no
  3322      * unique minimum exists.
  3323      */
  3324     private Type compoundMin(List<Type> cl) {
  3325         if (cl.isEmpty()) return syms.objectType;
  3326         List<Type> compound = closureMin(cl);
  3327         if (compound.isEmpty())
  3328             return null;
  3329         else if (compound.tail.isEmpty())
  3330             return compound.head;
  3331         else
  3332             return makeCompoundType(compound);
  3335     /**
  3336      * Return the minimum types of a closure, suitable for computing
  3337      * compoundMin or glb.
  3338      */
  3339     private List<Type> closureMin(List<Type> cl) {
  3340         ListBuffer<Type> classes = lb();
  3341         ListBuffer<Type> interfaces = lb();
  3342         while (!cl.isEmpty()) {
  3343             Type current = cl.head;
  3344             if (current.isInterface())
  3345                 interfaces.append(current);
  3346             else
  3347                 classes.append(current);
  3348             ListBuffer<Type> candidates = lb();
  3349             for (Type t : cl.tail) {
  3350                 if (!isSubtypeNoCapture(current, t))
  3351                     candidates.append(t);
  3353             cl = candidates.toList();
  3355         return classes.appendList(interfaces).toList();
  3358     /**
  3359      * Return the least upper bound of pair of types.  if the lub does
  3360      * not exist return null.
  3361      */
  3362     public Type lub(Type t1, Type t2) {
  3363         return lub(List.of(t1, t2));
  3366     /**
  3367      * Return the least upper bound (lub) of set of types.  If the lub
  3368      * does not exist return the type of null (bottom).
  3369      */
  3370     public Type lub(List<Type> ts) {
  3371         final int ARRAY_BOUND = 1;
  3372         final int CLASS_BOUND = 2;
  3373         int boundkind = 0;
  3374         for (Type t : ts) {
  3375             switch (t.getTag()) {
  3376             case CLASS:
  3377                 boundkind |= CLASS_BOUND;
  3378                 break;
  3379             case ARRAY:
  3380                 boundkind |= ARRAY_BOUND;
  3381                 break;
  3382             case  TYPEVAR:
  3383                 do {
  3384                     t = t.getUpperBound();
  3385                 } while (t.hasTag(TYPEVAR));
  3386                 if (t.hasTag(ARRAY)) {
  3387                     boundkind |= ARRAY_BOUND;
  3388                 } else {
  3389                     boundkind |= CLASS_BOUND;
  3391                 break;
  3392             default:
  3393                 if (t.isPrimitive())
  3394                     return syms.errType;
  3397         switch (boundkind) {
  3398         case 0:
  3399             return syms.botType;
  3401         case ARRAY_BOUND:
  3402             // calculate lub(A[], B[])
  3403             List<Type> elements = Type.map(ts, elemTypeFun);
  3404             for (Type t : elements) {
  3405                 if (t.isPrimitive()) {
  3406                     // if a primitive type is found, then return
  3407                     // arraySuperType unless all the types are the
  3408                     // same
  3409                     Type first = ts.head;
  3410                     for (Type s : ts.tail) {
  3411                         if (!isSameType(first, s)) {
  3412                              // lub(int[], B[]) is Cloneable & Serializable
  3413                             return arraySuperType();
  3416                     // all the array types are the same, return one
  3417                     // lub(int[], int[]) is int[]
  3418                     return first;
  3421             // lub(A[], B[]) is lub(A, B)[]
  3422             return new ArrayType(lub(elements), syms.arrayClass);
  3424         case CLASS_BOUND:
  3425             // calculate lub(A, B)
  3426             while (!ts.head.hasTag(CLASS) && !ts.head.hasTag(TYPEVAR)) {
  3427                 ts = ts.tail;
  3429             Assert.check(!ts.isEmpty());
  3430             //step 1 - compute erased candidate set (EC)
  3431             List<Type> cl = erasedSupertypes(ts.head);
  3432             for (Type t : ts.tail) {
  3433                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
  3434                     cl = intersect(cl, erasedSupertypes(t));
  3436             //step 2 - compute minimal erased candidate set (MEC)
  3437             List<Type> mec = closureMin(cl);
  3438             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3439             List<Type> candidates = List.nil();
  3440             for (Type erasedSupertype : mec) {
  3441                 List<Type> lci = List.of(asSuper(ts.head, erasedSupertype.tsym));
  3442                 for (Type t : ts) {
  3443                     lci = intersect(lci, List.of(asSuper(t, erasedSupertype.tsym)));
  3445                 candidates = candidates.appendList(lci);
  3447             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3448             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3449             return compoundMin(candidates);
  3451         default:
  3452             // calculate lub(A, B[])
  3453             List<Type> classes = List.of(arraySuperType());
  3454             for (Type t : ts) {
  3455                 if (!t.hasTag(ARRAY)) // Filter out any arrays
  3456                     classes = classes.prepend(t);
  3458             // lub(A, B[]) is lub(A, arraySuperType)
  3459             return lub(classes);
  3462     // where
  3463         List<Type> erasedSupertypes(Type t) {
  3464             ListBuffer<Type> buf = lb();
  3465             for (Type sup : closure(t)) {
  3466                 if (sup.hasTag(TYPEVAR)) {
  3467                     buf.append(sup);
  3468                 } else {
  3469                     buf.append(erasure(sup));
  3472             return buf.toList();
  3475         private Type arraySuperType = null;
  3476         private Type arraySuperType() {
  3477             // initialized lazily to avoid problems during compiler startup
  3478             if (arraySuperType == null) {
  3479                 synchronized (this) {
  3480                     if (arraySuperType == null) {
  3481                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3482                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3483                                                                   syms.cloneableType), true);
  3487             return arraySuperType;
  3489     // </editor-fold>
  3491     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3492     public Type glb(List<Type> ts) {
  3493         Type t1 = ts.head;
  3494         for (Type t2 : ts.tail) {
  3495             if (t1.isErroneous())
  3496                 return t1;
  3497             t1 = glb(t1, t2);
  3499         return t1;
  3501     //where
  3502     public Type glb(Type t, Type s) {
  3503         if (s == null)
  3504             return t;
  3505         else if (t.isPrimitive() || s.isPrimitive())
  3506             return syms.errType;
  3507         else if (isSubtypeNoCapture(t, s))
  3508             return t;
  3509         else if (isSubtypeNoCapture(s, t))
  3510             return s;
  3512         List<Type> closure = union(closure(t), closure(s));
  3513         List<Type> bounds = closureMin(closure);
  3515         if (bounds.isEmpty()) {             // length == 0
  3516             return syms.objectType;
  3517         } else if (bounds.tail.isEmpty()) { // length == 1
  3518             return bounds.head;
  3519         } else {                            // length > 1
  3520             int classCount = 0;
  3521             for (Type bound : bounds)
  3522                 if (!bound.isInterface())
  3523                     classCount++;
  3524             if (classCount > 1)
  3525                 return createErrorType(t);
  3527         return makeCompoundType(bounds);
  3529     // </editor-fold>
  3531     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3532     /**
  3533      * Compute a hash code on a type.
  3534      */
  3535     public int hashCode(Type t) {
  3536         return hashCode.visit(t);
  3538     // where
  3539         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3541             public Integer visitType(Type t, Void ignored) {
  3542                 return t.getTag().ordinal();
  3545             @Override
  3546             public Integer visitClassType(ClassType t, Void ignored) {
  3547                 int result = visit(t.getEnclosingType());
  3548                 result *= 127;
  3549                 result += t.tsym.flatName().hashCode();
  3550                 for (Type s : t.getTypeArguments()) {
  3551                     result *= 127;
  3552                     result += visit(s);
  3554                 return result;
  3557             @Override
  3558             public Integer visitMethodType(MethodType t, Void ignored) {
  3559                 int h = METHOD.ordinal();
  3560                 for (List<Type> thisargs = t.argtypes;
  3561                      thisargs.tail != null;
  3562                      thisargs = thisargs.tail)
  3563                     h = (h << 5) + visit(thisargs.head);
  3564                 return (h << 5) + visit(t.restype);
  3567             @Override
  3568             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3569                 int result = t.kind.hashCode();
  3570                 if (t.type != null) {
  3571                     result *= 127;
  3572                     result += visit(t.type);
  3574                 return result;
  3577             @Override
  3578             public Integer visitArrayType(ArrayType t, Void ignored) {
  3579                 return visit(t.elemtype) + 12;
  3582             @Override
  3583             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3584                 return System.identityHashCode(t.tsym);
  3587             @Override
  3588             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3589                 return System.identityHashCode(t);
  3592             @Override
  3593             public Integer visitErrorType(ErrorType t, Void ignored) {
  3594                 return 0;
  3596         };
  3597     // </editor-fold>
  3599     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3600     /**
  3601      * Does t have a result that is a subtype of the result type of s,
  3602      * suitable for covariant returns?  It is assumed that both types
  3603      * are (possibly polymorphic) method types.  Monomorphic method
  3604      * types are handled in the obvious way.  Polymorphic method types
  3605      * require renaming all type variables of one to corresponding
  3606      * type variables in the other, where correspondence is by
  3607      * position in the type parameter list. */
  3608     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3609         List<Type> tvars = t.getTypeArguments();
  3610         List<Type> svars = s.getTypeArguments();
  3611         Type tres = t.getReturnType();
  3612         Type sres = subst(s.getReturnType(), svars, tvars);
  3613         return covariantReturnType(tres, sres, warner);
  3616     /**
  3617      * Return-Type-Substitutable.
  3618      * @jls section 8.4.5
  3619      */
  3620     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3621         if (hasSameArgs(r1, r2))
  3622             return resultSubtype(r1, r2, noWarnings);
  3623         else
  3624             return covariantReturnType(r1.getReturnType(),
  3625                                        erasure(r2.getReturnType()),
  3626                                        noWarnings);
  3629     public boolean returnTypeSubstitutable(Type r1,
  3630                                            Type r2, Type r2res,
  3631                                            Warner warner) {
  3632         if (isSameType(r1.getReturnType(), r2res))
  3633             return true;
  3634         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3635             return false;
  3637         if (hasSameArgs(r1, r2))
  3638             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3639         if (!allowCovariantReturns)
  3640             return false;
  3641         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3642             return true;
  3643         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3644             return false;
  3645         warner.warn(LintCategory.UNCHECKED);
  3646         return true;
  3649     /**
  3650      * Is t an appropriate return type in an overrider for a
  3651      * method that returns s?
  3652      */
  3653     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3654         return
  3655             isSameType(t, s) ||
  3656             allowCovariantReturns &&
  3657             !t.isPrimitive() &&
  3658             !s.isPrimitive() &&
  3659             isAssignable(t, s, warner);
  3661     // </editor-fold>
  3663     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3664     /**
  3665      * Return the class that boxes the given primitive.
  3666      */
  3667     public ClassSymbol boxedClass(Type t) {
  3668         return reader.enterClass(syms.boxedName[t.getTag().ordinal()]);
  3671     /**
  3672      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3673      */
  3674     public Type boxedTypeOrType(Type t) {
  3675         return t.isPrimitive() ?
  3676             boxedClass(t).type :
  3677             t;
  3680     /**
  3681      * Return the primitive type corresponding to a boxed type.
  3682      */
  3683     public Type unboxedType(Type t) {
  3684         if (allowBoxing) {
  3685             for (int i=0; i<syms.boxedName.length; i++) {
  3686                 Name box = syms.boxedName[i];
  3687                 if (box != null &&
  3688                     asSuper(t, reader.enterClass(box)) != null)
  3689                     return syms.typeOfTag[i];
  3692         return Type.noType;
  3695     /**
  3696      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3697      */
  3698     public Type unboxedTypeOrType(Type t) {
  3699         Type unboxedType = unboxedType(t);
  3700         return unboxedType.hasTag(NONE) ? t : unboxedType;
  3702     // </editor-fold>
  3704     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3705     /*
  3706      * JLS 5.1.10 Capture Conversion:
  3708      * Let G name a generic type declaration with n formal type
  3709      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3710      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3711      * where, for 1 <= i <= n:
  3713      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  3714      *   Si is a fresh type variable whose upper bound is
  3715      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  3716      *   type.
  3718      * + If Ti is a wildcard type argument of the form ? extends Bi,
  3719      *   then Si is a fresh type variable whose upper bound is
  3720      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  3721      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  3722      *   a compile-time error if for any two classes (not interfaces)
  3723      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  3725      * + If Ti is a wildcard type argument of the form ? super Bi,
  3726      *   then Si is a fresh type variable whose upper bound is
  3727      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  3729      * + Otherwise, Si = Ti.
  3731      * Capture conversion on any type other than a parameterized type
  3732      * (4.5) acts as an identity conversion (5.1.1). Capture
  3733      * conversions never require a special action at run time and
  3734      * therefore never throw an exception at run time.
  3736      * Capture conversion is not applied recursively.
  3737      */
  3738     /**
  3739      * Capture conversion as specified by the JLS.
  3740      */
  3742     public List<Type> capture(List<Type> ts) {
  3743         List<Type> buf = List.nil();
  3744         for (Type t : ts) {
  3745             buf = buf.prepend(capture(t));
  3747         return buf.reverse();
  3749     public Type capture(Type t) {
  3750         if (!t.hasTag(CLASS))
  3751             return t;
  3752         if (t.getEnclosingType() != Type.noType) {
  3753             Type capturedEncl = capture(t.getEnclosingType());
  3754             if (capturedEncl != t.getEnclosingType()) {
  3755                 Type type1 = memberType(capturedEncl, t.tsym);
  3756                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  3759         t = t.unannotatedType();
  3760         ClassType cls = (ClassType)t;
  3761         if (cls.isRaw() || !cls.isParameterized())
  3762             return cls;
  3764         ClassType G = (ClassType)cls.asElement().asType();
  3765         List<Type> A = G.getTypeArguments();
  3766         List<Type> T = cls.getTypeArguments();
  3767         List<Type> S = freshTypeVariables(T);
  3769         List<Type> currentA = A;
  3770         List<Type> currentT = T;
  3771         List<Type> currentS = S;
  3772         boolean captured = false;
  3773         while (!currentA.isEmpty() &&
  3774                !currentT.isEmpty() &&
  3775                !currentS.isEmpty()) {
  3776             if (currentS.head != currentT.head) {
  3777                 captured = true;
  3778                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
  3779                 Type Ui = currentA.head.getUpperBound();
  3780                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
  3781                 if (Ui == null)
  3782                     Ui = syms.objectType;
  3783                 switch (Ti.kind) {
  3784                 case UNBOUND:
  3785                     Si.bound = subst(Ui, A, S);
  3786                     Si.lower = syms.botType;
  3787                     break;
  3788                 case EXTENDS:
  3789                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  3790                     Si.lower = syms.botType;
  3791                     break;
  3792                 case SUPER:
  3793                     Si.bound = subst(Ui, A, S);
  3794                     Si.lower = Ti.getSuperBound();
  3795                     break;
  3797                 if (Si.bound == Si.lower)
  3798                     currentS.head = Si.bound;
  3800             currentA = currentA.tail;
  3801             currentT = currentT.tail;
  3802             currentS = currentS.tail;
  3804         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  3805             return erasure(t); // some "rare" type involved
  3807         if (captured)
  3808             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  3809         else
  3810             return t;
  3812     // where
  3813         public List<Type> freshTypeVariables(List<Type> types) {
  3814             ListBuffer<Type> result = lb();
  3815             for (Type t : types) {
  3816                 if (t.hasTag(WILDCARD)) {
  3817                     t = t.unannotatedType();
  3818                     Type bound = ((WildcardType)t).getExtendsBound();
  3819                     if (bound == null)
  3820                         bound = syms.objectType;
  3821                     result.append(new CapturedType(capturedName,
  3822                                                    syms.noSymbol,
  3823                                                    bound,
  3824                                                    syms.botType,
  3825                                                    (WildcardType)t));
  3826                 } else {
  3827                     result.append(t);
  3830             return result.toList();
  3832     // </editor-fold>
  3834     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  3835     private List<Type> upperBounds(List<Type> ss) {
  3836         if (ss.isEmpty()) return ss;
  3837         Type head = upperBound(ss.head);
  3838         List<Type> tail = upperBounds(ss.tail);
  3839         if (head != ss.head || tail != ss.tail)
  3840             return tail.prepend(head);
  3841         else
  3842             return ss;
  3845     private boolean sideCast(Type from, Type to, Warner warn) {
  3846         // We are casting from type $from$ to type $to$, which are
  3847         // non-final unrelated types.  This method
  3848         // tries to reject a cast by transferring type parameters
  3849         // from $to$ to $from$ by common superinterfaces.
  3850         boolean reverse = false;
  3851         Type target = to;
  3852         if ((to.tsym.flags() & INTERFACE) == 0) {
  3853             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3854             reverse = true;
  3855             to = from;
  3856             from = target;
  3858         List<Type> commonSupers = superClosure(to, erasure(from));
  3859         boolean giveWarning = commonSupers.isEmpty();
  3860         // The arguments to the supers could be unified here to
  3861         // get a more accurate analysis
  3862         while (commonSupers.nonEmpty()) {
  3863             Type t1 = asSuper(from, commonSupers.head.tsym);
  3864             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  3865             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3866                 return false;
  3867             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  3868             commonSupers = commonSupers.tail;
  3870         if (giveWarning && !isReifiable(reverse ? from : to))
  3871             warn.warn(LintCategory.UNCHECKED);
  3872         if (!allowCovariantReturns)
  3873             // reject if there is a common method signature with
  3874             // incompatible return types.
  3875             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3876         return true;
  3879     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  3880         // We are casting from type $from$ to type $to$, which are
  3881         // unrelated types one of which is final and the other of
  3882         // which is an interface.  This method
  3883         // tries to reject a cast by transferring type parameters
  3884         // from the final class to the interface.
  3885         boolean reverse = false;
  3886         Type target = to;
  3887         if ((to.tsym.flags() & INTERFACE) == 0) {
  3888             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  3889             reverse = true;
  3890             to = from;
  3891             from = target;
  3893         Assert.check((from.tsym.flags() & FINAL) != 0);
  3894         Type t1 = asSuper(from, to.tsym);
  3895         if (t1 == null) return false;
  3896         Type t2 = to;
  3897         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  3898             return false;
  3899         if (!allowCovariantReturns)
  3900             // reject if there is a common method signature with
  3901             // incompatible return types.
  3902             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  3903         if (!isReifiable(target) &&
  3904             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  3905             warn.warn(LintCategory.UNCHECKED);
  3906         return true;
  3909     private boolean giveWarning(Type from, Type to) {
  3910         List<Type> bounds = to.isCompound() ?
  3911                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
  3912         for (Type b : bounds) {
  3913             Type subFrom = asSub(from, b.tsym);
  3914             if (b.isParameterized() &&
  3915                     (!(isUnbounded(b) ||
  3916                     isSubtype(from, b) ||
  3917                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
  3918                 return true;
  3921         return false;
  3924     private List<Type> superClosure(Type t, Type s) {
  3925         List<Type> cl = List.nil();
  3926         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  3927             if (isSubtype(s, erasure(l.head))) {
  3928                 cl = insert(cl, l.head);
  3929             } else {
  3930                 cl = union(cl, superClosure(l.head, s));
  3933         return cl;
  3936     private boolean containsTypeEquivalent(Type t, Type s) {
  3937         return
  3938             isSameType(t, s) || // shortcut
  3939             containsType(t, s) && containsType(s, t);
  3942     // <editor-fold defaultstate="collapsed" desc="adapt">
  3943     /**
  3944      * Adapt a type by computing a substitution which maps a source
  3945      * type to a target type.
  3947      * @param source    the source type
  3948      * @param target    the target type
  3949      * @param from      the type variables of the computed substitution
  3950      * @param to        the types of the computed substitution.
  3951      */
  3952     public void adapt(Type source,
  3953                        Type target,
  3954                        ListBuffer<Type> from,
  3955                        ListBuffer<Type> to) throws AdaptFailure {
  3956         new Adapter(from, to).adapt(source, target);
  3959     class Adapter extends SimpleVisitor<Void, Type> {
  3961         ListBuffer<Type> from;
  3962         ListBuffer<Type> to;
  3963         Map<Symbol,Type> mapping;
  3965         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  3966             this.from = from;
  3967             this.to = to;
  3968             mapping = new HashMap<Symbol,Type>();
  3971         public void adapt(Type source, Type target) throws AdaptFailure {
  3972             visit(source, target);
  3973             List<Type> fromList = from.toList();
  3974             List<Type> toList = to.toList();
  3975             while (!fromList.isEmpty()) {
  3976                 Type val = mapping.get(fromList.head.tsym);
  3977                 if (toList.head != val)
  3978                     toList.head = val;
  3979                 fromList = fromList.tail;
  3980                 toList = toList.tail;
  3984         @Override
  3985         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  3986             if (target.hasTag(CLASS))
  3987                 adaptRecursive(source.allparams(), target.allparams());
  3988             return null;
  3991         @Override
  3992         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  3993             if (target.hasTag(ARRAY))
  3994                 adaptRecursive(elemtype(source), elemtype(target));
  3995             return null;
  3998         @Override
  3999         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  4000             if (source.isExtendsBound())
  4001                 adaptRecursive(upperBound(source), upperBound(target));
  4002             else if (source.isSuperBound())
  4003                 adaptRecursive(lowerBound(source), lowerBound(target));
  4004             return null;
  4007         @Override
  4008         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  4009             // Check to see if there is
  4010             // already a mapping for $source$, in which case
  4011             // the old mapping will be merged with the new
  4012             Type val = mapping.get(source.tsym);
  4013             if (val != null) {
  4014                 if (val.isSuperBound() && target.isSuperBound()) {
  4015                     val = isSubtype(lowerBound(val), lowerBound(target))
  4016                         ? target : val;
  4017                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  4018                     val = isSubtype(upperBound(val), upperBound(target))
  4019                         ? val : target;
  4020                 } else if (!isSameType(val, target)) {
  4021                     throw new AdaptFailure();
  4023             } else {
  4024                 val = target;
  4025                 from.append(source);
  4026                 to.append(target);
  4028             mapping.put(source.tsym, val);
  4029             return null;
  4032         @Override
  4033         public Void visitType(Type source, Type target) {
  4034             return null;
  4037         private Set<TypePair> cache = new HashSet<TypePair>();
  4039         private void adaptRecursive(Type source, Type target) {
  4040             TypePair pair = new TypePair(source, target);
  4041             if (cache.add(pair)) {
  4042                 try {
  4043                     visit(source, target);
  4044                 } finally {
  4045                     cache.remove(pair);
  4050         private void adaptRecursive(List<Type> source, List<Type> target) {
  4051             if (source.length() == target.length()) {
  4052                 while (source.nonEmpty()) {
  4053                     adaptRecursive(source.head, target.head);
  4054                     source = source.tail;
  4055                     target = target.tail;
  4061     public static class AdaptFailure extends RuntimeException {
  4062         static final long serialVersionUID = -7490231548272701566L;
  4065     private void adaptSelf(Type t,
  4066                            ListBuffer<Type> from,
  4067                            ListBuffer<Type> to) {
  4068         try {
  4069             //if (t.tsym.type != t)
  4070                 adapt(t.tsym.type, t, from, to);
  4071         } catch (AdaptFailure ex) {
  4072             // Adapt should never fail calculating a mapping from
  4073             // t.tsym.type to t as there can be no merge problem.
  4074             throw new AssertionError(ex);
  4077     // </editor-fold>
  4079     /**
  4080      * Rewrite all type variables (universal quantifiers) in the given
  4081      * type to wildcards (existential quantifiers).  This is used to
  4082      * determine if a cast is allowed.  For example, if high is true
  4083      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4084      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4085      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4086      * List<Integer>} with a warning.
  4087      * @param t a type
  4088      * @param high if true return an upper bound; otherwise a lower
  4089      * bound
  4090      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4091      * otherwise rewrite all type variables
  4092      * @return the type rewritten with wildcards (existential
  4093      * quantifiers) only
  4094      */
  4095     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4096         return new Rewriter(high, rewriteTypeVars).visit(t);
  4099     class Rewriter extends UnaryVisitor<Type> {
  4101         boolean high;
  4102         boolean rewriteTypeVars;
  4104         Rewriter(boolean high, boolean rewriteTypeVars) {
  4105             this.high = high;
  4106             this.rewriteTypeVars = rewriteTypeVars;
  4109         @Override
  4110         public Type visitClassType(ClassType t, Void s) {
  4111             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4112             boolean changed = false;
  4113             for (Type arg : t.allparams()) {
  4114                 Type bound = visit(arg);
  4115                 if (arg != bound) {
  4116                     changed = true;
  4118                 rewritten.append(bound);
  4120             if (changed)
  4121                 return subst(t.tsym.type,
  4122                         t.tsym.type.allparams(),
  4123                         rewritten.toList());
  4124             else
  4125                 return t;
  4128         public Type visitType(Type t, Void s) {
  4129             return high ? upperBound(t) : lowerBound(t);
  4132         @Override
  4133         public Type visitCapturedType(CapturedType t, Void s) {
  4134             Type w_bound = t.wildcard.type;
  4135             Type bound = w_bound.contains(t) ?
  4136                         erasure(w_bound) :
  4137                         visit(w_bound);
  4138             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4141         @Override
  4142         public Type visitTypeVar(TypeVar t, Void s) {
  4143             if (rewriteTypeVars) {
  4144                 Type bound = t.bound.contains(t) ?
  4145                         erasure(t.bound) :
  4146                         visit(t.bound);
  4147                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4148             } else {
  4149                 return t;
  4153         @Override
  4154         public Type visitWildcardType(WildcardType t, Void s) {
  4155             Type bound2 = visit(t.type);
  4156             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4159         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4160             switch (bk) {
  4161                case EXTENDS: return high ?
  4162                        makeExtendsWildcard(B(bound), formal) :
  4163                        makeExtendsWildcard(syms.objectType, formal);
  4164                case SUPER: return high ?
  4165                        makeSuperWildcard(syms.botType, formal) :
  4166                        makeSuperWildcard(B(bound), formal);
  4167                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4168                default:
  4169                    Assert.error("Invalid bound kind " + bk);
  4170                    return null;
  4174         Type B(Type t) {
  4175             while (t.hasTag(WILDCARD)) {
  4176                 WildcardType w = (WildcardType)t.unannotatedType();
  4177                 t = high ?
  4178                     w.getExtendsBound() :
  4179                     w.getSuperBound();
  4180                 if (t == null) {
  4181                     t = high ? syms.objectType : syms.botType;
  4184             return t;
  4189     /**
  4190      * Create a wildcard with the given upper (extends) bound; create
  4191      * an unbounded wildcard if bound is Object.
  4193      * @param bound the upper bound
  4194      * @param formal the formal type parameter that will be
  4195      * substituted by the wildcard
  4196      */
  4197     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4198         if (bound == syms.objectType) {
  4199             return new WildcardType(syms.objectType,
  4200                                     BoundKind.UNBOUND,
  4201                                     syms.boundClass,
  4202                                     formal);
  4203         } else {
  4204             return new WildcardType(bound,
  4205                                     BoundKind.EXTENDS,
  4206                                     syms.boundClass,
  4207                                     formal);
  4211     /**
  4212      * Create a wildcard with the given lower (super) bound; create an
  4213      * unbounded wildcard if bound is bottom (type of {@code null}).
  4215      * @param bound the lower bound
  4216      * @param formal the formal type parameter that will be
  4217      * substituted by the wildcard
  4218      */
  4219     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4220         if (bound.hasTag(BOT)) {
  4221             return new WildcardType(syms.objectType,
  4222                                     BoundKind.UNBOUND,
  4223                                     syms.boundClass,
  4224                                     formal);
  4225         } else {
  4226             return new WildcardType(bound,
  4227                                     BoundKind.SUPER,
  4228                                     syms.boundClass,
  4229                                     formal);
  4233     /**
  4234      * A wrapper for a type that allows use in sets.
  4235      */
  4236     public static class UniqueType {
  4237         public final Type type;
  4238         final Types types;
  4240         public UniqueType(Type type, Types types) {
  4241             this.type = type;
  4242             this.types = types;
  4245         public int hashCode() {
  4246             return types.hashCode(type);
  4249         public boolean equals(Object obj) {
  4250             return (obj instanceof UniqueType) &&
  4251                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
  4254         public String toString() {
  4255             return type.toString();
  4259     // </editor-fold>
  4261     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4262     /**
  4263      * A default visitor for types.  All visitor methods except
  4264      * visitType are implemented by delegating to visitType.  Concrete
  4265      * subclasses must provide an implementation of visitType and can
  4266      * override other methods as needed.
  4268      * @param <R> the return type of the operation implemented by this
  4269      * visitor; use Void if no return type is needed.
  4270      * @param <S> the type of the second argument (the first being the
  4271      * type itself) of the operation implemented by this visitor; use
  4272      * Void if a second argument is not needed.
  4273      */
  4274     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4275         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4276         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4277         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4278         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4279         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4280         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4281         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4282         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4283         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4284         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4285         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4286         // Pretend annotations don't exist
  4287         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.underlyingType, s); }
  4290     /**
  4291      * A default visitor for symbols.  All visitor methods except
  4292      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4293      * subclasses must provide an implementation of visitSymbol and can
  4294      * override other methods as needed.
  4296      * @param <R> the return type of the operation implemented by this
  4297      * visitor; use Void if no return type is needed.
  4298      * @param <S> the type of the second argument (the first being the
  4299      * symbol itself) of the operation implemented by this visitor; use
  4300      * Void if a second argument is not needed.
  4301      */
  4302     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4303         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4304         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4305         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4306         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4307         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4308         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4309         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4312     /**
  4313      * A <em>simple</em> visitor for types.  This visitor is simple as
  4314      * captured wildcards, for-all types (generic methods), and
  4315      * undetermined type variables (part of inference) are hidden.
  4316      * Captured wildcards are hidden by treating them as type
  4317      * variables and the rest are hidden by visiting their qtypes.
  4319      * @param <R> the return type of the operation implemented by this
  4320      * visitor; use Void if no return type is needed.
  4321      * @param <S> the type of the second argument (the first being the
  4322      * type itself) of the operation implemented by this visitor; use
  4323      * Void if a second argument is not needed.
  4324      */
  4325     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4326         @Override
  4327         public R visitCapturedType(CapturedType t, S s) {
  4328             return visitTypeVar(t, s);
  4330         @Override
  4331         public R visitForAll(ForAll t, S s) {
  4332             return visit(t.qtype, s);
  4334         @Override
  4335         public R visitUndetVar(UndetVar t, S s) {
  4336             return visit(t.qtype, s);
  4340     /**
  4341      * A plain relation on types.  That is a 2-ary function on the
  4342      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4343      * <!-- In plain text: Type x Type -> Boolean -->
  4344      */
  4345     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4347     /**
  4348      * A convenience visitor for implementing operations that only
  4349      * require one argument (the type itself), that is, unary
  4350      * operations.
  4352      * @param <R> the return type of the operation implemented by this
  4353      * visitor; use Void if no return type is needed.
  4354      */
  4355     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4356         final public R visit(Type t) { return t.accept(this, null); }
  4359     /**
  4360      * A visitor for implementing a mapping from types to types.  The
  4361      * default behavior of this class is to implement the identity
  4362      * mapping (mapping a type to itself).  This can be overridden in
  4363      * subclasses.
  4365      * @param <S> the type of the second argument (the first being the
  4366      * type itself) of this mapping; use Void if a second argument is
  4367      * not needed.
  4368      */
  4369     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4370         final public Type visit(Type t) { return t.accept(this, null); }
  4371         public Type visitType(Type t, S s) { return t; }
  4373     // </editor-fold>
  4376     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4378     public RetentionPolicy getRetention(Attribute.Compound a) {
  4379         return getRetention(a.type.tsym);
  4382     public RetentionPolicy getRetention(Symbol sym) {
  4383         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4384         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4385         if (c != null) {
  4386             Attribute value = c.member(names.value);
  4387             if (value != null && value instanceof Attribute.Enum) {
  4388                 Name levelName = ((Attribute.Enum)value).value.name;
  4389                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4390                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4391                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4392                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4395         return vis;
  4397     // </editor-fold>
  4399     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
  4401     public static abstract class SignatureGenerator {
  4403         private final Types types;
  4405         protected abstract void append(char ch);
  4406         protected abstract void append(byte[] ba);
  4407         protected abstract void append(Name name);
  4408         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
  4410         protected SignatureGenerator(Types types) {
  4411             this.types = types;
  4414         /**
  4415          * Assemble signature of given type in string buffer.
  4416          */
  4417         public void assembleSig(Type type) {
  4418             type = type.unannotatedType();
  4419             switch (type.getTag()) {
  4420                 case BYTE:
  4421                     append('B');
  4422                     break;
  4423                 case SHORT:
  4424                     append('S');
  4425                     break;
  4426                 case CHAR:
  4427                     append('C');
  4428                     break;
  4429                 case INT:
  4430                     append('I');
  4431                     break;
  4432                 case LONG:
  4433                     append('J');
  4434                     break;
  4435                 case FLOAT:
  4436                     append('F');
  4437                     break;
  4438                 case DOUBLE:
  4439                     append('D');
  4440                     break;
  4441                 case BOOLEAN:
  4442                     append('Z');
  4443                     break;
  4444                 case VOID:
  4445                     append('V');
  4446                     break;
  4447                 case CLASS:
  4448                     append('L');
  4449                     assembleClassSig(type);
  4450                     append(';');
  4451                     break;
  4452                 case ARRAY:
  4453                     ArrayType at = (ArrayType) type;
  4454                     append('[');
  4455                     assembleSig(at.elemtype);
  4456                     break;
  4457                 case METHOD:
  4458                     MethodType mt = (MethodType) type;
  4459                     append('(');
  4460                     assembleSig(mt.argtypes);
  4461                     append(')');
  4462                     assembleSig(mt.restype);
  4463                     if (hasTypeVar(mt.thrown)) {
  4464                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
  4465                             append('^');
  4466                             assembleSig(l.head);
  4469                     break;
  4470                 case WILDCARD: {
  4471                     Type.WildcardType ta = (Type.WildcardType) type;
  4472                     switch (ta.kind) {
  4473                         case SUPER:
  4474                             append('-');
  4475                             assembleSig(ta.type);
  4476                             break;
  4477                         case EXTENDS:
  4478                             append('+');
  4479                             assembleSig(ta.type);
  4480                             break;
  4481                         case UNBOUND:
  4482                             append('*');
  4483                             break;
  4484                         default:
  4485                             throw new AssertionError(ta.kind);
  4487                     break;
  4489                 case TYPEVAR:
  4490                     append('T');
  4491                     append(type.tsym.name);
  4492                     append(';');
  4493                     break;
  4494                 case FORALL:
  4495                     Type.ForAll ft = (Type.ForAll) type;
  4496                     assembleParamsSig(ft.tvars);
  4497                     assembleSig(ft.qtype);
  4498                     break;
  4499                 default:
  4500                     throw new AssertionError("typeSig " + type.getTag());
  4504         public boolean hasTypeVar(List<Type> l) {
  4505             while (l.nonEmpty()) {
  4506                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
  4507                     return true;
  4509                 l = l.tail;
  4511             return false;
  4514         public void assembleClassSig(Type type) {
  4515             type = type.unannotatedType();
  4516             ClassType ct = (ClassType) type;
  4517             ClassSymbol c = (ClassSymbol) ct.tsym;
  4518             classReference(c);
  4519             Type outer = ct.getEnclosingType();
  4520             if (outer.allparams().nonEmpty()) {
  4521                 boolean rawOuter =
  4522                         c.owner.kind == Kinds.MTH || // either a local class
  4523                         c.name == types.names.empty; // or anonymous
  4524                 assembleClassSig(rawOuter
  4525                         ? types.erasure(outer)
  4526                         : outer);
  4527                 append('.');
  4528                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
  4529                 append(rawOuter
  4530                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
  4531                         : c.name);
  4532             } else {
  4533                 append(externalize(c.flatname));
  4535             if (ct.getTypeArguments().nonEmpty()) {
  4536                 append('<');
  4537                 assembleSig(ct.getTypeArguments());
  4538                 append('>');
  4542         public void assembleParamsSig(List<Type> typarams) {
  4543             append('<');
  4544             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
  4545                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
  4546                 append(tvar.tsym.name);
  4547                 List<Type> bounds = types.getBounds(tvar);
  4548                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
  4549                     append(':');
  4551                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
  4552                     append(':');
  4553                     assembleSig(l.head);
  4556             append('>');
  4559         private void assembleSig(List<Type> types) {
  4560             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
  4561                 assembleSig(ts.head);
  4565     // </editor-fold>

mercurial