src/share/classes/com/sun/tools/javac/comp/Resolve.java

Sun, 04 Nov 2012 10:59:42 +0000

author
mcimadamore
date
Sun, 04 Nov 2012 10:59:42 +0000
changeset 1393
d7d932236fee
parent 1374
c002fdee76fd
child 1394
dbc94b8363dd
permissions
-rw-r--r--

7192246: Add type-checking support for default methods
Summary: Add type-checking support for default methods as per Featherweight-Defender document
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.jvm.*;
    41 import com.sun.tools.javac.tree.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    44 import com.sun.tools.javac.util.*;
    45 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    46 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    47 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    49 import java.util.Arrays;
    50 import java.util.Collection;
    51 import java.util.EnumMap;
    52 import java.util.EnumSet;
    53 import java.util.Iterator;
    54 import java.util.Map;
    55 import java.util.Set;
    57 import javax.lang.model.element.ElementVisitor;
    59 import static com.sun.tools.javac.code.Flags.*;
    60 import static com.sun.tools.javac.code.Flags.BLOCK;
    61 import static com.sun.tools.javac.code.Kinds.*;
    62 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    63 import static com.sun.tools.javac.code.TypeTag.*;
    64 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    65 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    67 /** Helper class for name resolution, used mostly by the attribution phase.
    68  *
    69  *  <p><b>This is NOT part of any supported API.
    70  *  If you write code that depends on this, you do so at your own risk.
    71  *  This code and its internal interfaces are subject to change or
    72  *  deletion without notice.</b>
    73  */
    74 public class Resolve {
    75     protected static final Context.Key<Resolve> resolveKey =
    76         new Context.Key<Resolve>();
    78     Names names;
    79     Log log;
    80     Symtab syms;
    81     Attr attr;
    82     DeferredAttr deferredAttr;
    83     Check chk;
    84     Infer infer;
    85     ClassReader reader;
    86     TreeInfo treeinfo;
    87     Types types;
    88     JCDiagnostic.Factory diags;
    89     public final boolean boxingEnabled; // = source.allowBoxing();
    90     public final boolean varargsEnabled; // = source.allowVarargs();
    91     public final boolean allowMethodHandles;
    92     public final boolean allowDefaultMethods;
    93     private final boolean debugResolve;
    94     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    96     Scope polymorphicSignatureScope;
    98     protected Resolve(Context context) {
    99         context.put(resolveKey, this);
   100         syms = Symtab.instance(context);
   102         varNotFound = new
   103             SymbolNotFoundError(ABSENT_VAR);
   104         methodNotFound = new
   105             SymbolNotFoundError(ABSENT_MTH);
   106         typeNotFound = new
   107             SymbolNotFoundError(ABSENT_TYP);
   109         names = Names.instance(context);
   110         log = Log.instance(context);
   111         attr = Attr.instance(context);
   112         deferredAttr = DeferredAttr.instance(context);
   113         chk = Check.instance(context);
   114         infer = Infer.instance(context);
   115         reader = ClassReader.instance(context);
   116         treeinfo = TreeInfo.instance(context);
   117         types = Types.instance(context);
   118         diags = JCDiagnostic.Factory.instance(context);
   119         Source source = Source.instance(context);
   120         boxingEnabled = source.allowBoxing();
   121         varargsEnabled = source.allowVarargs();
   122         Options options = Options.instance(context);
   123         debugResolve = options.isSet("debugresolve");
   124         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   125         Target target = Target.instance(context);
   126         allowMethodHandles = target.hasMethodHandles();
   127         allowDefaultMethods = source.allowDefaultMethods();
   128         polymorphicSignatureScope = new Scope(syms.noSymbol);
   130         inapplicableMethodException = new InapplicableMethodException(diags);
   131     }
   133     /** error symbols, which are returned when resolution fails
   134      */
   135     private final SymbolNotFoundError varNotFound;
   136     private final SymbolNotFoundError methodNotFound;
   137     private final SymbolNotFoundError typeNotFound;
   139     public static Resolve instance(Context context) {
   140         Resolve instance = context.get(resolveKey);
   141         if (instance == null)
   142             instance = new Resolve(context);
   143         return instance;
   144     }
   146     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   147     enum VerboseResolutionMode {
   148         SUCCESS("success"),
   149         FAILURE("failure"),
   150         APPLICABLE("applicable"),
   151         INAPPLICABLE("inapplicable"),
   152         DEFERRED_INST("deferred-inference"),
   153         PREDEF("predef"),
   154         OBJECT_INIT("object-init"),
   155         INTERNAL("internal");
   157         String opt;
   159         private VerboseResolutionMode(String opt) {
   160             this.opt = opt;
   161         }
   163         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   164             String s = opts.get("verboseResolution");
   165             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   166             if (s == null) return res;
   167             if (s.contains("all")) {
   168                 res = EnumSet.allOf(VerboseResolutionMode.class);
   169             }
   170             Collection<String> args = Arrays.asList(s.split(","));
   171             for (VerboseResolutionMode mode : values()) {
   172                 if (args.contains(mode.opt)) {
   173                     res.add(mode);
   174                 } else if (args.contains("-" + mode.opt)) {
   175                     res.remove(mode);
   176                 }
   177             }
   178             return res;
   179         }
   180     }
   182     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   183             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   184         boolean success = bestSoFar.kind < ERRONEOUS;
   186         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   187             return;
   188         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   189             return;
   190         }
   192         if (bestSoFar.name == names.init &&
   193                 bestSoFar.owner == syms.objectType.tsym &&
   194                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   195             return; //skip diags for Object constructor resolution
   196         } else if (site == syms.predefClass.type &&
   197                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   198             return; //skip spurious diags for predef symbols (i.e. operators)
   199         } else if (currentResolutionContext.internalResolution &&
   200                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   201             return;
   202         }
   204         int pos = 0;
   205         int mostSpecificPos = -1;
   206         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   207         for (Candidate c : currentResolutionContext.candidates) {
   208             if (currentResolutionContext.step != c.step ||
   209                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   210                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   211                 continue;
   212             } else {
   213                 subDiags.append(c.isApplicable() ?
   214                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   215                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   216                 if (c.sym == bestSoFar)
   217                     mostSpecificPos = pos;
   218                 pos++;
   219             }
   220         }
   221         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   222         List<Type> argtypes2 = Type.map(argtypes,
   223                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   224         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   225                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   226                 methodArguments(argtypes2),
   227                 methodArguments(typeargtypes));
   228         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   229         log.report(d);
   230     }
   232     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   233         JCDiagnostic subDiag = null;
   234         if (sym.type.hasTag(FORALL)) {
   235             subDiag = diags.fragment("partial.inst.sig", inst);
   236         }
   238         String key = subDiag == null ?
   239                 "applicable.method.found" :
   240                 "applicable.method.found.1";
   242         return diags.fragment(key, pos, sym, subDiag);
   243     }
   245     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   246         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   247     }
   248     // </editor-fold>
   250 /* ************************************************************************
   251  * Identifier resolution
   252  *************************************************************************/
   254     /** An environment is "static" if its static level is greater than
   255      *  the one of its outer environment
   256      */
   257     protected static boolean isStatic(Env<AttrContext> env) {
   258         return env.info.staticLevel > env.outer.info.staticLevel;
   259     }
   261     /** An environment is an "initializer" if it is a constructor or
   262      *  an instance initializer.
   263      */
   264     static boolean isInitializer(Env<AttrContext> env) {
   265         Symbol owner = env.info.scope.owner;
   266         return owner.isConstructor() ||
   267             owner.owner.kind == TYP &&
   268             (owner.kind == VAR ||
   269              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   270             (owner.flags() & STATIC) == 0;
   271     }
   273     /** Is class accessible in given evironment?
   274      *  @param env    The current environment.
   275      *  @param c      The class whose accessibility is checked.
   276      */
   277     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   278         return isAccessible(env, c, false);
   279     }
   281     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   282         boolean isAccessible = false;
   283         switch ((short)(c.flags() & AccessFlags)) {
   284             case PRIVATE:
   285                 isAccessible =
   286                     env.enclClass.sym.outermostClass() ==
   287                     c.owner.outermostClass();
   288                 break;
   289             case 0:
   290                 isAccessible =
   291                     env.toplevel.packge == c.owner // fast special case
   292                     ||
   293                     env.toplevel.packge == c.packge()
   294                     ||
   295                     // Hack: this case is added since synthesized default constructors
   296                     // of anonymous classes should be allowed to access
   297                     // classes which would be inaccessible otherwise.
   298                     env.enclMethod != null &&
   299                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   300                 break;
   301             default: // error recovery
   302             case PUBLIC:
   303                 isAccessible = true;
   304                 break;
   305             case PROTECTED:
   306                 isAccessible =
   307                     env.toplevel.packge == c.owner // fast special case
   308                     ||
   309                     env.toplevel.packge == c.packge()
   310                     ||
   311                     isInnerSubClass(env.enclClass.sym, c.owner);
   312                 break;
   313         }
   314         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   315             isAccessible :
   316             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   317     }
   318     //where
   319         /** Is given class a subclass of given base class, or an inner class
   320          *  of a subclass?
   321          *  Return null if no such class exists.
   322          *  @param c     The class which is the subclass or is contained in it.
   323          *  @param base  The base class
   324          */
   325         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   326             while (c != null && !c.isSubClass(base, types)) {
   327                 c = c.owner.enclClass();
   328             }
   329             return c != null;
   330         }
   332     boolean isAccessible(Env<AttrContext> env, Type t) {
   333         return isAccessible(env, t, false);
   334     }
   336     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   337         return (t.hasTag(ARRAY))
   338             ? isAccessible(env, types.elemtype(t))
   339             : isAccessible(env, t.tsym, checkInner);
   340     }
   342     /** Is symbol accessible as a member of given type in given evironment?
   343      *  @param env    The current environment.
   344      *  @param site   The type of which the tested symbol is regarded
   345      *                as a member.
   346      *  @param sym    The symbol.
   347      */
   348     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   349         return isAccessible(env, site, sym, false);
   350     }
   351     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   352         if (sym.name == names.init && sym.owner != site.tsym) return false;
   353         switch ((short)(sym.flags() & AccessFlags)) {
   354         case PRIVATE:
   355             return
   356                 (env.enclClass.sym == sym.owner // fast special case
   357                  ||
   358                  env.enclClass.sym.outermostClass() ==
   359                  sym.owner.outermostClass())
   360                 &&
   361                 sym.isInheritedIn(site.tsym, types);
   362         case 0:
   363             return
   364                 (env.toplevel.packge == sym.owner.owner // fast special case
   365                  ||
   366                  env.toplevel.packge == sym.packge())
   367                 &&
   368                 isAccessible(env, site, checkInner)
   369                 &&
   370                 sym.isInheritedIn(site.tsym, types)
   371                 &&
   372                 notOverriddenIn(site, sym);
   373         case PROTECTED:
   374             return
   375                 (env.toplevel.packge == sym.owner.owner // fast special case
   376                  ||
   377                  env.toplevel.packge == sym.packge()
   378                  ||
   379                  isProtectedAccessible(sym, env.enclClass.sym, site)
   380                  ||
   381                  // OK to select instance method or field from 'super' or type name
   382                  // (but type names should be disallowed elsewhere!)
   383                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   384                 &&
   385                 isAccessible(env, site, checkInner)
   386                 &&
   387                 notOverriddenIn(site, sym);
   388         default: // this case includes erroneous combinations as well
   389             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   390         }
   391     }
   392     //where
   393     /* `sym' is accessible only if not overridden by
   394      * another symbol which is a member of `site'
   395      * (because, if it is overridden, `sym' is not strictly
   396      * speaking a member of `site'). A polymorphic signature method
   397      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   398      */
   399     private boolean notOverriddenIn(Type site, Symbol sym) {
   400         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   401             return true;
   402         else {
   403             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   404             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   405                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   406         }
   407     }
   408     //where
   409         /** Is given protected symbol accessible if it is selected from given site
   410          *  and the selection takes place in given class?
   411          *  @param sym     The symbol with protected access
   412          *  @param c       The class where the access takes place
   413          *  @site          The type of the qualifier
   414          */
   415         private
   416         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   417             while (c != null &&
   418                    !(c.isSubClass(sym.owner, types) &&
   419                      (c.flags() & INTERFACE) == 0 &&
   420                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   421                      // only to instance fields and methods -- types are excluded
   422                      // regardless of whether they are declared 'static' or not.
   423                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   424                 c = c.owner.enclClass();
   425             return c != null;
   426         }
   428     /** Try to instantiate the type of a method so that it fits
   429      *  given type arguments and argument types. If succesful, return
   430      *  the method's instantiated type, else return null.
   431      *  The instantiation will take into account an additional leading
   432      *  formal parameter if the method is an instance method seen as a member
   433      *  of un underdetermined site In this case, we treat site as an additional
   434      *  parameter and the parameters of the class containing the method as
   435      *  additional type variables that get instantiated.
   436      *
   437      *  @param env         The current environment
   438      *  @param site        The type of which the method is a member.
   439      *  @param m           The method symbol.
   440      *  @param argtypes    The invocation's given value arguments.
   441      *  @param typeargtypes    The invocation's given type arguments.
   442      *  @param allowBoxing Allow boxing conversions of arguments.
   443      *  @param useVarargs Box trailing arguments into an array for varargs.
   444      */
   445     Type rawInstantiate(Env<AttrContext> env,
   446                         Type site,
   447                         Symbol m,
   448                         ResultInfo resultInfo,
   449                         List<Type> argtypes,
   450                         List<Type> typeargtypes,
   451                         boolean allowBoxing,
   452                         boolean useVarargs,
   453                         Warner warn)
   454         throws Infer.InferenceException {
   455         if (useVarargs && (m.flags() & VARARGS) == 0) {
   456             //better error recovery - if we stumbled upon a non-varargs method
   457             //during varargs applicability phase, the method should be treated as
   458             //not applicable; the reason for inapplicability can be found in the
   459             //candidate for 'm' that was created during the BOX phase.
   460             Candidate prevCandidate = currentResolutionContext.getCandidate(m, BOX);
   461             JCDiagnostic details = null;
   462             if (prevCandidate != null && !prevCandidate.isApplicable()) {
   463                 details = prevCandidate.details;
   464             }
   465             throw inapplicableMethodException.setMessage(details);
   466         }
   467         Type mt = types.memberType(site, m);
   469         // tvars is the list of formal type variables for which type arguments
   470         // need to inferred.
   471         List<Type> tvars = List.nil();
   472         if (typeargtypes == null) typeargtypes = List.nil();
   473         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   474             // This is not a polymorphic method, but typeargs are supplied
   475             // which is fine, see JLS 15.12.2.1
   476         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
   477             ForAll pmt = (ForAll) mt;
   478             if (typeargtypes.length() != pmt.tvars.length())
   479                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   480             // Check type arguments are within bounds
   481             List<Type> formals = pmt.tvars;
   482             List<Type> actuals = typeargtypes;
   483             while (formals.nonEmpty() && actuals.nonEmpty()) {
   484                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   485                                                 pmt.tvars, typeargtypes);
   486                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   487                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   488                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   489                 formals = formals.tail;
   490                 actuals = actuals.tail;
   491             }
   492             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   493         } else if (mt.hasTag(FORALL)) {
   494             ForAll pmt = (ForAll) mt;
   495             List<Type> tvars1 = types.newInstances(pmt.tvars);
   496             tvars = tvars.appendList(tvars1);
   497             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   498         }
   500         // find out whether we need to go the slow route via infer
   501         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   502         for (List<Type> l = argtypes;
   503              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   504              l = l.tail) {
   505             if (l.head.hasTag(FORALL)) instNeeded = true;
   506         }
   508         if (instNeeded)
   509             return infer.instantiateMethod(env,
   510                                     tvars,
   511                                     (MethodType)mt,
   512                                     resultInfo,
   513                                     m,
   514                                     argtypes,
   515                                     allowBoxing,
   516                                     useVarargs,
   517                                     currentResolutionContext,
   518                                     warn);
   520         checkRawArgumentsAcceptable(env, m, argtypes, mt.getParameterTypes(),
   521                                 allowBoxing, useVarargs, warn);
   522         return mt;
   523     }
   525     Type checkMethod(Env<AttrContext> env,
   526                      Type site,
   527                      Symbol m,
   528                      ResultInfo resultInfo,
   529                      List<Type> argtypes,
   530                      List<Type> typeargtypes,
   531                      Warner warn) {
   532         MethodResolutionContext prevContext = currentResolutionContext;
   533         try {
   534             currentResolutionContext = new MethodResolutionContext();
   535             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   536             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   537             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   538                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   539         }
   540         finally {
   541             currentResolutionContext = prevContext;
   542         }
   543     }
   545     /** Same but returns null instead throwing a NoInstanceException
   546      */
   547     Type instantiate(Env<AttrContext> env,
   548                      Type site,
   549                      Symbol m,
   550                      ResultInfo resultInfo,
   551                      List<Type> argtypes,
   552                      List<Type> typeargtypes,
   553                      boolean allowBoxing,
   554                      boolean useVarargs,
   555                      Warner warn) {
   556         try {
   557             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   558                                   allowBoxing, useVarargs, warn);
   559         } catch (InapplicableMethodException ex) {
   560             return null;
   561         }
   562     }
   564     /** Check if a parameter list accepts a list of args.
   565      */
   566     boolean argumentsAcceptable(Env<AttrContext> env,
   567                                 Symbol msym,
   568                                 List<Type> argtypes,
   569                                 List<Type> formals,
   570                                 boolean allowBoxing,
   571                                 boolean useVarargs,
   572                                 Warner warn) {
   573         try {
   574             checkRawArgumentsAcceptable(env, msym, argtypes, formals, allowBoxing, useVarargs, warn);
   575             return true;
   576         } catch (InapplicableMethodException ex) {
   577             return false;
   578         }
   579     }
   580     /**
   581      * A check handler is used by the main method applicability routine in order
   582      * to handle specific method applicability failures. It is assumed that a class
   583      * implementing this interface should throw exceptions that are a subtype of
   584      * InapplicableMethodException (see below). Such exception will terminate the
   585      * method applicability check and propagate important info outwards (for the
   586      * purpose of generating better diagnostics).
   587      */
   588     interface MethodCheckHandler {
   589         /* The number of actuals and formals differ */
   590         InapplicableMethodException arityMismatch();
   591         /* An actual argument type does not conform to the corresponding formal type */
   592         InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details);
   593         /* The element type of a varargs is not accessible in the current context */
   594         InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected);
   595     }
   597     /**
   598      * Basic method check handler used within Resolve - all methods end up
   599      * throwing InapplicableMethodException; a diagnostic fragment that describes
   600      * the cause as to why the method is not applicable is set on the exception
   601      * before it is thrown.
   602      */
   603     MethodCheckHandler resolveHandler = new MethodCheckHandler() {
   604             public InapplicableMethodException arityMismatch() {
   605                 return inapplicableMethodException.setMessage("arg.length.mismatch");
   606             }
   607             public InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details) {
   608                 String key = varargs ?
   609                         "varargs.argument.mismatch" :
   610                         "no.conforming.assignment.exists";
   611                 return inapplicableMethodException.setMessage(key,
   612                         details);
   613             }
   614             public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
   615                 return inapplicableMethodException.setMessage("inaccessible.varargs.type",
   616                         expected, Kinds.kindName(location), location);
   617             }
   618     };
   620     void checkRawArgumentsAcceptable(Env<AttrContext> env,
   621                                 Symbol msym,
   622                                 List<Type> argtypes,
   623                                 List<Type> formals,
   624                                 boolean allowBoxing,
   625                                 boolean useVarargs,
   626                                 Warner warn) {
   627         checkRawArgumentsAcceptable(env, msym, currentResolutionContext.attrMode(), infer.emptyContext, argtypes, formals,
   628                 allowBoxing, useVarargs, warn, resolveHandler);
   629     }
   631     /**
   632      * Main method applicability routine. Given a list of actual types A,
   633      * a list of formal types F, determines whether the types in A are
   634      * compatible (by method invocation conversion) with the types in F.
   635      *
   636      * Since this routine is shared between overload resolution and method
   637      * type-inference, a (possibly empty) inference context is used to convert
   638      * formal types to the corresponding 'undet' form ahead of a compatibility
   639      * check so that constraints can be propagated and collected.
   640      *
   641      * Moreover, if one or more types in A is a deferred type, this routine uses
   642      * DeferredAttr in order to perform deferred attribution. If one or more actual
   643      * deferred types are stuck, they are placed in a queue and revisited later
   644      * after the remainder of the arguments have been seen. If this is not sufficient
   645      * to 'unstuck' the argument, a cyclic inference error is called out.
   646      *
   647      * A method check handler (see above) is used in order to report errors.
   648      */
   649     void checkRawArgumentsAcceptable(final Env<AttrContext> env,
   650                                 Symbol msym,
   651                                 DeferredAttr.AttrMode mode,
   652                                 final Infer.InferenceContext inferenceContext,
   653                                 List<Type> argtypes,
   654                                 List<Type> formals,
   655                                 boolean allowBoxing,
   656                                 boolean useVarargs,
   657                                 Warner warn,
   658                                 final MethodCheckHandler handler) {
   659         Type varargsFormal = useVarargs ? formals.last() : null;
   661         if (varargsFormal == null &&
   662                 argtypes.size() != formals.size()) {
   663             throw handler.arityMismatch(); // not enough args
   664         }
   666         DeferredAttr.DeferredAttrContext deferredAttrContext =
   667                 deferredAttr.new DeferredAttrContext(mode, msym, currentResolutionContext.step, inferenceContext);
   669         while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   670             ResultInfo mresult = methodCheckResult(formals.head, allowBoxing, false, inferenceContext, deferredAttrContext, handler, warn);
   671             mresult.check(null, argtypes.head);
   672             argtypes = argtypes.tail;
   673             formals = formals.tail;
   674         }
   676         if (formals.head != varargsFormal) {
   677             throw handler.arityMismatch(); // not enough args
   678         }
   680         if (useVarargs) {
   681             //note: if applicability check is triggered by most specific test,
   682             //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   683             final Type elt = types.elemtype(varargsFormal);
   684             ResultInfo mresult = methodCheckResult(elt, allowBoxing, true, inferenceContext, deferredAttrContext, handler, warn);
   685             while (argtypes.nonEmpty()) {
   686                 mresult.check(null, argtypes.head);
   687                 argtypes = argtypes.tail;
   688             }
   689             //check varargs element type accessibility
   690             varargsAccessible(env, elt, handler, inferenceContext);
   691         }
   693         deferredAttrContext.complete();
   694     }
   696     void varargsAccessible(final Env<AttrContext> env, final Type t, final Resolve.MethodCheckHandler handler, final InferenceContext inferenceContext) {
   697         if (inferenceContext.free(t)) {
   698             inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   699                 @Override
   700                 public void typesInferred(InferenceContext inferenceContext) {
   701                     varargsAccessible(env, inferenceContext.asInstType(t, types), handler, inferenceContext);
   702                 }
   703             });
   704         } else {
   705             if (!isAccessible(env, t)) {
   706                 Symbol location = env.enclClass.sym;
   707                 throw handler.inaccessibleVarargs(location, t);
   708             }
   709         }
   710     }
   712     /**
   713      * Check context to be used during method applicability checks. A method check
   714      * context might contain inference variables.
   715      */
   716     abstract class MethodCheckContext implements CheckContext {
   718         MethodCheckHandler handler;
   719         boolean useVarargs;
   720         Infer.InferenceContext inferenceContext;
   721         DeferredAttrContext deferredAttrContext;
   722         Warner rsWarner;
   724         public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs,
   725                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   726             this.handler = handler;
   727             this.useVarargs = useVarargs;
   728             this.inferenceContext = inferenceContext;
   729             this.deferredAttrContext = deferredAttrContext;
   730             this.rsWarner = rsWarner;
   731         }
   733         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   734             throw handler.argumentMismatch(useVarargs, details);
   735         }
   737         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   738             return rsWarner;
   739         }
   741         public InferenceContext inferenceContext() {
   742             return inferenceContext;
   743         }
   745         public DeferredAttrContext deferredAttrContext() {
   746             return deferredAttrContext;
   747         }
   748     }
   750     /**
   751      * Subclass of method check context class that implements strict method conversion.
   752      * Strict method conversion checks compatibility between types using subtyping tests.
   753      */
   754     class StrictMethodContext extends MethodCheckContext {
   756         public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs,
   757                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   758             super(handler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   759         }
   761         public boolean compatible(Type found, Type req, Warner warn) {
   762             return types.isSubtypeUnchecked(found, inferenceContext.asFree(req, types), warn);
   763         }
   765         public boolean allowBoxing() {
   766             return false;
   767         }
   768     }
   770     /**
   771      * Subclass of method check context class that implements loose method conversion.
   772      * Loose method conversion checks compatibility between types using method conversion tests.
   773      */
   774     class LooseMethodContext extends MethodCheckContext {
   776         public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs,
   777                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   778             super(handler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   779         }
   781         public boolean compatible(Type found, Type req, Warner warn) {
   782             return types.isConvertible(found, inferenceContext.asFree(req, types), warn);
   783         }
   785         public boolean allowBoxing() {
   786             return true;
   787         }
   788     }
   790     /**
   791      * Create a method check context to be used during method applicability check
   792      */
   793     ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
   794             Infer.InferenceContext inferenceContext, DeferredAttr.DeferredAttrContext deferredAttrContext,
   795             MethodCheckHandler methodHandler, Warner rsWarner) {
   796         MethodCheckContext checkContext = allowBoxing ?
   797                 new LooseMethodContext(methodHandler, useVarargs, inferenceContext, deferredAttrContext, rsWarner) :
   798                 new StrictMethodContext(methodHandler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   799         return new MethodResultInfo(to, checkContext, deferredAttrContext);
   800     }
   802     class MethodResultInfo extends ResultInfo {
   804         DeferredAttr.DeferredAttrContext deferredAttrContext;
   806         public MethodResultInfo(Type pt, MethodCheckContext checkContext, DeferredAttr.DeferredAttrContext deferredAttrContext) {
   807             attr.super(VAL, pt, checkContext);
   808             this.deferredAttrContext = deferredAttrContext;
   809         }
   811         @Override
   812         protected Type check(DiagnosticPosition pos, Type found) {
   813             if (found.hasTag(DEFERRED)) {
   814                 DeferredType dt = (DeferredType)found;
   815                 return dt.check(this);
   816             } else {
   817                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   818             }
   819         }
   821         @Override
   822         protected MethodResultInfo dup(Type newPt) {
   823             return new MethodResultInfo(newPt, (MethodCheckContext)checkContext, deferredAttrContext);
   824         }
   825     }
   827     public static class InapplicableMethodException extends RuntimeException {
   828         private static final long serialVersionUID = 0;
   830         JCDiagnostic diagnostic;
   831         JCDiagnostic.Factory diags;
   833         InapplicableMethodException(JCDiagnostic.Factory diags) {
   834             this.diagnostic = null;
   835             this.diags = diags;
   836         }
   837         InapplicableMethodException setMessage() {
   838             return setMessage((JCDiagnostic)null);
   839         }
   840         InapplicableMethodException setMessage(String key) {
   841             return setMessage(key != null ? diags.fragment(key) : null);
   842         }
   843         InapplicableMethodException setMessage(String key, Object... args) {
   844             return setMessage(key != null ? diags.fragment(key, args) : null);
   845         }
   846         InapplicableMethodException setMessage(JCDiagnostic diag) {
   847             this.diagnostic = diag;
   848             return this;
   849         }
   851         public JCDiagnostic getDiagnostic() {
   852             return diagnostic;
   853         }
   854     }
   855     private final InapplicableMethodException inapplicableMethodException;
   857 /* ***************************************************************************
   858  *  Symbol lookup
   859  *  the following naming conventions for arguments are used
   860  *
   861  *       env      is the environment where the symbol was mentioned
   862  *       site     is the type of which the symbol is a member
   863  *       name     is the symbol's name
   864  *                if no arguments are given
   865  *       argtypes are the value arguments, if we search for a method
   866  *
   867  *  If no symbol was found, a ResolveError detailing the problem is returned.
   868  ****************************************************************************/
   870     /** Find field. Synthetic fields are always skipped.
   871      *  @param env     The current environment.
   872      *  @param site    The original type from where the selection takes place.
   873      *  @param name    The name of the field.
   874      *  @param c       The class to search for the field. This is always
   875      *                 a superclass or implemented interface of site's class.
   876      */
   877     Symbol findField(Env<AttrContext> env,
   878                      Type site,
   879                      Name name,
   880                      TypeSymbol c) {
   881         while (c.type.hasTag(TYPEVAR))
   882             c = c.type.getUpperBound().tsym;
   883         Symbol bestSoFar = varNotFound;
   884         Symbol sym;
   885         Scope.Entry e = c.members().lookup(name);
   886         while (e.scope != null) {
   887             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   888                 return isAccessible(env, site, e.sym)
   889                     ? e.sym : new AccessError(env, site, e.sym);
   890             }
   891             e = e.next();
   892         }
   893         Type st = types.supertype(c.type);
   894         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
   895             sym = findField(env, site, name, st.tsym);
   896             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   897         }
   898         for (List<Type> l = types.interfaces(c.type);
   899              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   900              l = l.tail) {
   901             sym = findField(env, site, name, l.head.tsym);
   902             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   903                 sym.owner != bestSoFar.owner)
   904                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   905             else if (sym.kind < bestSoFar.kind)
   906                 bestSoFar = sym;
   907         }
   908         return bestSoFar;
   909     }
   911     /** Resolve a field identifier, throw a fatal error if not found.
   912      *  @param pos       The position to use for error reporting.
   913      *  @param env       The environment current at the method invocation.
   914      *  @param site      The type of the qualifying expression, in which
   915      *                   identifier is searched.
   916      *  @param name      The identifier's name.
   917      */
   918     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   919                                           Type site, Name name) {
   920         Symbol sym = findField(env, site, name, site.tsym);
   921         if (sym.kind == VAR) return (VarSymbol)sym;
   922         else throw new FatalError(
   923                  diags.fragment("fatal.err.cant.locate.field",
   924                                 name));
   925     }
   927     /** Find unqualified variable or field with given name.
   928      *  Synthetic fields always skipped.
   929      *  @param env     The current environment.
   930      *  @param name    The name of the variable or field.
   931      */
   932     Symbol findVar(Env<AttrContext> env, Name name) {
   933         Symbol bestSoFar = varNotFound;
   934         Symbol sym;
   935         Env<AttrContext> env1 = env;
   936         boolean staticOnly = false;
   937         while (env1.outer != null) {
   938             if (isStatic(env1)) staticOnly = true;
   939             Scope.Entry e = env1.info.scope.lookup(name);
   940             while (e.scope != null &&
   941                    (e.sym.kind != VAR ||
   942                     (e.sym.flags_field & SYNTHETIC) != 0))
   943                 e = e.next();
   944             sym = (e.scope != null)
   945                 ? e.sym
   946                 : findField(
   947                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   948             if (sym.exists()) {
   949                 if (staticOnly &&
   950                     sym.kind == VAR &&
   951                     sym.owner.kind == TYP &&
   952                     (sym.flags() & STATIC) == 0)
   953                     return new StaticError(sym);
   954                 else
   955                     return sym;
   956             } else if (sym.kind < bestSoFar.kind) {
   957                 bestSoFar = sym;
   958             }
   960             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   961             env1 = env1.outer;
   962         }
   964         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   965         if (sym.exists())
   966             return sym;
   967         if (bestSoFar.exists())
   968             return bestSoFar;
   970         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   971         for (; e.scope != null; e = e.next()) {
   972             sym = e.sym;
   973             Type origin = e.getOrigin().owner.type;
   974             if (sym.kind == VAR) {
   975                 if (e.sym.owner.type != origin)
   976                     sym = sym.clone(e.getOrigin().owner);
   977                 return isAccessible(env, origin, sym)
   978                     ? sym : new AccessError(env, origin, sym);
   979             }
   980         }
   982         Symbol origin = null;
   983         e = env.toplevel.starImportScope.lookup(name);
   984         for (; e.scope != null; e = e.next()) {
   985             sym = e.sym;
   986             if (sym.kind != VAR)
   987                 continue;
   988             // invariant: sym.kind == VAR
   989             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
   990                 return new AmbiguityError(bestSoFar, sym);
   991             else if (bestSoFar.kind >= VAR) {
   992                 origin = e.getOrigin().owner;
   993                 bestSoFar = isAccessible(env, origin.type, sym)
   994                     ? sym : new AccessError(env, origin.type, sym);
   995             }
   996         }
   997         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
   998             return bestSoFar.clone(origin);
   999         else
  1000             return bestSoFar;
  1003     Warner noteWarner = new Warner();
  1005     /** Select the best method for a call site among two choices.
  1006      *  @param env              The current environment.
  1007      *  @param site             The original type from where the
  1008      *                          selection takes place.
  1009      *  @param argtypes         The invocation's value arguments,
  1010      *  @param typeargtypes     The invocation's type arguments,
  1011      *  @param sym              Proposed new best match.
  1012      *  @param bestSoFar        Previously found best match.
  1013      *  @param allowBoxing Allow boxing conversions of arguments.
  1014      *  @param useVarargs Box trailing arguments into an array for varargs.
  1015      */
  1016     @SuppressWarnings("fallthrough")
  1017     Symbol selectBest(Env<AttrContext> env,
  1018                       Type site,
  1019                       List<Type> argtypes,
  1020                       List<Type> typeargtypes,
  1021                       Symbol sym,
  1022                       Symbol bestSoFar,
  1023                       boolean allowBoxing,
  1024                       boolean useVarargs,
  1025                       boolean operator) {
  1026         if (sym.kind == ERR) return bestSoFar;
  1027         if (!sym.isInheritedIn(site.tsym, types)) return bestSoFar;
  1028         Assert.check(sym.kind < AMBIGUOUS);
  1029         try {
  1030             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1031                                allowBoxing, useVarargs, Warner.noWarnings);
  1032             if (!operator)
  1033                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1034         } catch (InapplicableMethodException ex) {
  1035             if (!operator)
  1036                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1037             switch (bestSoFar.kind) {
  1038             case ABSENT_MTH:
  1039                 return new InapplicableSymbolError(currentResolutionContext);
  1040             case WRONG_MTH:
  1041                 if (operator) return bestSoFar;
  1042                 bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1043             default:
  1044                 return bestSoFar;
  1047         if (!isAccessible(env, site, sym)) {
  1048             return (bestSoFar.kind == ABSENT_MTH)
  1049                 ? new AccessError(env, site, sym)
  1050                 : bestSoFar;
  1052         return (bestSoFar.kind > AMBIGUOUS)
  1053             ? sym
  1054             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1055                            allowBoxing && operator, useVarargs);
  1058     /* Return the most specific of the two methods for a call,
  1059      *  given that both are accessible and applicable.
  1060      *  @param m1               A new candidate for most specific.
  1061      *  @param m2               The previous most specific candidate.
  1062      *  @param env              The current environment.
  1063      *  @param site             The original type from where the selection
  1064      *                          takes place.
  1065      *  @param allowBoxing Allow boxing conversions of arguments.
  1066      *  @param useVarargs Box trailing arguments into an array for varargs.
  1067      */
  1068     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1069                         Symbol m2,
  1070                         Env<AttrContext> env,
  1071                         final Type site,
  1072                         boolean allowBoxing,
  1073                         boolean useVarargs) {
  1074         switch (m2.kind) {
  1075         case MTH:
  1076             if (m1 == m2) return m1;
  1077             boolean m1SignatureMoreSpecific =
  1078                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1079             boolean m2SignatureMoreSpecific =
  1080                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1081             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1082                 Type mt1 = types.memberType(site, m1);
  1083                 Type mt2 = types.memberType(site, m2);
  1084                 if (!types.overrideEquivalent(mt1, mt2))
  1085                     return ambiguityError(m1, m2);
  1087                 // same signature; select (a) the non-bridge method, or
  1088                 // (b) the one that overrides the other, or (c) the concrete
  1089                 // one, or (d) merge both abstract signatures
  1090                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1091                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1093                 // if one overrides or hides the other, use it
  1094                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1095                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1096                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1097                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1098                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1099                     m1.overrides(m2, m1Owner, types, false))
  1100                     return m1;
  1101                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1102                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1103                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1104                     m2.overrides(m1, m2Owner, types, false))
  1105                     return m2;
  1106                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1107                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1108                 if (m1Abstract && !m2Abstract) return m2;
  1109                 if (m2Abstract && !m1Abstract) return m1;
  1110                 // both abstract or both concrete
  1111                 if (!m1Abstract && !m2Abstract)
  1112                     return ambiguityError(m1, m2);
  1113                 // check that both signatures have the same erasure
  1114                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1115                                        m2.erasure(types).getParameterTypes()))
  1116                     return ambiguityError(m1, m2);
  1117                 // both abstract, neither overridden; merge throws clause and result type
  1118                 Type mst = mostSpecificReturnType(mt1, mt2);
  1119                 if (mst == null) {
  1120                     // Theoretically, this can't happen, but it is possible
  1121                     // due to error recovery or mixing incompatible class files
  1122                     return ambiguityError(m1, m2);
  1124                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1125                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1126                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1127                 MethodSymbol result = new MethodSymbol(
  1128                         mostSpecific.flags(),
  1129                         mostSpecific.name,
  1130                         newSig,
  1131                         mostSpecific.owner) {
  1132                     @Override
  1133                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1134                         if (origin == site.tsym)
  1135                             return this;
  1136                         else
  1137                             return super.implementation(origin, types, checkResult);
  1139                     };
  1140                 return result;
  1142             if (m1SignatureMoreSpecific) return m1;
  1143             if (m2SignatureMoreSpecific) return m2;
  1144             return ambiguityError(m1, m2);
  1145         case AMBIGUOUS:
  1146             AmbiguityError e = (AmbiguityError)m2;
  1147             Symbol err1 = mostSpecific(argtypes, m1, e.sym, env, site, allowBoxing, useVarargs);
  1148             Symbol err2 = mostSpecific(argtypes, m1, e.sym2, env, site, allowBoxing, useVarargs);
  1149             if (err1 == err2) return err1;
  1150             if (err1 == e.sym && err2 == e.sym2) return m2;
  1151             if (err1 instanceof AmbiguityError &&
  1152                 err2 instanceof AmbiguityError &&
  1153                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1154                 return ambiguityError(m1, m2);
  1155             else
  1156                 return ambiguityError(err1, err2);
  1157         default:
  1158             throw new AssertionError();
  1161     //where
  1162     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1163         Symbol m12 = adjustVarargs(m1, m2, useVarargs);
  1164         Symbol m22 = adjustVarargs(m2, m1, useVarargs);
  1165         Type mtype1 = types.memberType(site, m12);
  1166         Type mtype2 = types.memberType(site, m22);
  1168         //check if invocation is more specific
  1169         if (invocationMoreSpecific(env, site, m22, mtype1.getParameterTypes(), allowBoxing, useVarargs)) {
  1170             return true;
  1173         //perform structural check
  1175         List<Type> formals1 = mtype1.getParameterTypes();
  1176         Type lastFormal1 = formals1.last();
  1177         List<Type> formals2 = mtype2.getParameterTypes();
  1178         Type lastFormal2 = formals2.last();
  1179         ListBuffer<Type> newFormals = ListBuffer.lb();
  1181         boolean hasStructuralPoly = false;
  1182         for (Type actual : actuals) {
  1183             //perform formal argument adaptation in case actuals > formals (varargs)
  1184             Type f1 = formals1.isEmpty() ?
  1185                     lastFormal1 : formals1.head;
  1186             Type f2 = formals2.isEmpty() ?
  1187                     lastFormal2 : formals2.head;
  1189             //is this a structural actual argument?
  1190             boolean isStructuralPoly = actual.hasTag(DEFERRED) &&
  1191                     (((DeferredType)actual).tree.hasTag(LAMBDA) ||
  1192                     ((DeferredType)actual).tree.hasTag(REFERENCE));
  1194             Type newFormal = f1;
  1196             if (isStructuralPoly) {
  1197                 //for structural arguments only - check that corresponding formals
  1198                 //are related - if so replace formal with <null>
  1199                 hasStructuralPoly = true;
  1200                 DeferredType dt = (DeferredType)actual;
  1201                 Type t1 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m1, currentResolutionContext.step).apply(dt);
  1202                 Type t2 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m2, currentResolutionContext.step).apply(dt);
  1203                 if (t1.isErroneous() || t2.isErroneous() || !isStructuralSubtype(t1, t2)) {
  1204                     //not structural subtypes - simply fail
  1205                     return false;
  1206                 } else {
  1207                     newFormal = syms.botType;
  1211             newFormals.append(newFormal);
  1212             if (newFormals.length() > mtype2.getParameterTypes().length()) {
  1213                 //expand m2's type so as to fit the new formal arity (varargs)
  1214                 m22.type = types.createMethodTypeWithParameters(m22.type, m22.type.getParameterTypes().append(f2));
  1217             formals1 = formals1.isEmpty() ? formals1 : formals1.tail;
  1218             formals2 = formals2.isEmpty() ? formals2 : formals2.tail;
  1221         if (!hasStructuralPoly) {
  1222             //if no structural actual was found, we're done
  1223             return false;
  1225         //perform additional adaptation if actuals < formals (varargs)
  1226         for (Type t : formals1) {
  1227             newFormals.append(t);
  1229         //check if invocation (with tweaked args) is more specific
  1230         return invocationMoreSpecific(env, site, m22, newFormals.toList(), allowBoxing, useVarargs);
  1232     //where
  1233     private boolean invocationMoreSpecific(Env<AttrContext> env, Type site, Symbol m2, List<Type> argtypes1, boolean allowBoxing, boolean useVarargs) {
  1234         noteWarner.clear();
  1235         Type mst = instantiate(env, site, m2, null,
  1236                 types.lowerBounds(argtypes1), null,
  1237                 allowBoxing, false, noteWarner);
  1238         return mst != null &&
  1239                 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1241     //where
  1242     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1243         List<Type> fromArgs = from.type.getParameterTypes();
  1244         List<Type> toArgs = to.type.getParameterTypes();
  1245         if (useVarargs &&
  1246                 (from.flags() & VARARGS) != 0 &&
  1247                 (to.flags() & VARARGS) != 0) {
  1248             Type varargsTypeFrom = fromArgs.last();
  1249             Type varargsTypeTo = toArgs.last();
  1250             ListBuffer<Type> args = ListBuffer.lb();
  1251             if (toArgs.length() < fromArgs.length()) {
  1252                 //if we are checking a varargs method 'from' against another varargs
  1253                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1254                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1255                 //until 'to' signature has the same arity as 'from')
  1256                 while (fromArgs.head != varargsTypeFrom) {
  1257                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1258                     fromArgs = fromArgs.tail;
  1259                     toArgs = toArgs.head == varargsTypeTo ?
  1260                         toArgs :
  1261                         toArgs.tail;
  1263             } else {
  1264                 //formal argument list is same as original list where last
  1265                 //argument (array type) is removed
  1266                 args.appendList(toArgs.reverse().tail.reverse());
  1268             //append varargs element type as last synthetic formal
  1269             args.append(types.elemtype(varargsTypeTo));
  1270             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1271             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1272         } else {
  1273             return to;
  1276     //where
  1277     boolean isStructuralSubtype(Type s, Type t) {
  1279         Type ret_s = types.findDescriptorType(s).getReturnType();
  1280         Type ret_t = types.findDescriptorType(t).getReturnType();
  1282         //covariant most specific check for function descriptor return type
  1283         if (!types.isSubtype(ret_s, ret_t)) {
  1284             return false;
  1287         List<Type> args_s = types.findDescriptorType(s).getParameterTypes();
  1288         List<Type> args_t = types.findDescriptorType(t).getParameterTypes();
  1290         //arity must be identical
  1291         if (args_s.length() != args_t.length()) {
  1292             return false;
  1295         //invariant most specific check for function descriptor parameter types
  1296         if (!types.isSameTypes(args_t, args_s)) {
  1297             return false;
  1300         return true;
  1302     //where
  1303     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1304         Type rt1 = mt1.getReturnType();
  1305         Type rt2 = mt2.getReturnType();
  1307         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
  1308             //if both are generic methods, adjust return type ahead of subtyping check
  1309             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1311         //first use subtyping, then return type substitutability
  1312         if (types.isSubtype(rt1, rt2)) {
  1313             return mt1;
  1314         } else if (types.isSubtype(rt2, rt1)) {
  1315             return mt2;
  1316         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1317             return mt1;
  1318         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1319             return mt2;
  1320         } else {
  1321             return null;
  1324     //where
  1325     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1326         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1327             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1328         } else {
  1329             return new AmbiguityError(m1, m2);
  1333     Symbol lookupMethod(Env<AttrContext> env,
  1334             Type site,
  1335             Name name,
  1336             List<Type> argtypes,
  1337             List<Type> typeargtypes,
  1338             Scope sc,
  1339             Symbol bestSoFar,
  1340             boolean allowBoxing,
  1341             boolean useVarargs,
  1342             boolean operator,
  1343             boolean abstractok) {
  1344         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
  1345             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1346                     bestSoFar, allowBoxing, useVarargs, operator);
  1348         return bestSoFar;
  1350     //where
  1351         class LookupFilter implements Filter<Symbol> {
  1353             boolean abstractOk;
  1355             LookupFilter(boolean abstractOk) {
  1356                 this.abstractOk = abstractOk;
  1359             public boolean accepts(Symbol s) {
  1360                 long flags = s.flags();
  1361                 return s.kind == MTH &&
  1362                         (flags & SYNTHETIC) == 0 &&
  1363                         (abstractOk ||
  1364                         (flags & DEFAULT) != 0 ||
  1365                         (flags & ABSTRACT) == 0);
  1367         };
  1369     /** Find best qualified method matching given name, type and value
  1370      *  arguments.
  1371      *  @param env       The current environment.
  1372      *  @param site      The original type from where the selection
  1373      *                   takes place.
  1374      *  @param name      The method's name.
  1375      *  @param argtypes  The method's value arguments.
  1376      *  @param typeargtypes The method's type arguments
  1377      *  @param allowBoxing Allow boxing conversions of arguments.
  1378      *  @param useVarargs Box trailing arguments into an array for varargs.
  1379      */
  1380     Symbol findMethod(Env<AttrContext> env,
  1381                       Type site,
  1382                       Name name,
  1383                       List<Type> argtypes,
  1384                       List<Type> typeargtypes,
  1385                       boolean allowBoxing,
  1386                       boolean useVarargs,
  1387                       boolean operator) {
  1388         Symbol bestSoFar = methodNotFound;
  1389         bestSoFar = findMethod(env,
  1390                           site,
  1391                           name,
  1392                           argtypes,
  1393                           typeargtypes,
  1394                           site.tsym.type,
  1395                           bestSoFar,
  1396                           allowBoxing,
  1397                           useVarargs,
  1398                           operator);
  1399         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1400         return bestSoFar;
  1402     // where
  1403     private Symbol findMethod(Env<AttrContext> env,
  1404                               Type site,
  1405                               Name name,
  1406                               List<Type> argtypes,
  1407                               List<Type> typeargtypes,
  1408                               Type intype,
  1409                               Symbol bestSoFar,
  1410                               boolean allowBoxing,
  1411                               boolean useVarargs,
  1412                               boolean operator) {
  1413         @SuppressWarnings({"unchecked","rawtypes"})
  1414         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
  1415         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
  1416         for (TypeSymbol s : superclasses(intype)) {
  1417             bestSoFar = lookupMethod(env, site, name, argtypes, typeargtypes,
  1418                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1419             if (name == names.init) return bestSoFar;
  1420             iphase = (iphase == null) ? null : iphase.update(s, this);
  1421             if (iphase != null) {
  1422                 for (Type itype : types.interfaces(s.type)) {
  1423                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
  1428         Symbol concrete = bestSoFar.kind < ERR &&
  1429                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1430                 bestSoFar : methodNotFound;
  1432         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
  1433             if (iphase2 == InterfaceLookupPhase.DEFAULT_OK && !allowDefaultMethods) break;
  1434             //keep searching for abstract methods
  1435             for (Type itype : itypes[iphase2.ordinal()]) {
  1436                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1437                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
  1438                         (itype.tsym.flags() & DEFAULT) == 0) continue;
  1439                 bestSoFar = lookupMethod(env, site, name, argtypes, typeargtypes,
  1440                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1441                 if (concrete != bestSoFar &&
  1442                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1443                         types.isSubSignature(concrete.type, bestSoFar.type)) {
  1444                     //this is an hack - as javac does not do full membership checks
  1445                     //most specific ends up comparing abstract methods that might have
  1446                     //been implemented by some concrete method in a subclass and,
  1447                     //because of raw override, it is possible for an abstract method
  1448                     //to be more specific than the concrete method - so we need
  1449                     //to explicitly call that out (see CR 6178365)
  1450                     bestSoFar = concrete;
  1454         return bestSoFar;
  1457     enum InterfaceLookupPhase {
  1458         ABSTRACT_OK() {
  1459             @Override
  1460             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1461                 //We should not look for abstract methods if receiver is a concrete class
  1462                 //(as concrete classes are expected to implement all abstracts coming
  1463                 //from superinterfaces)
  1464                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
  1465                     return this;
  1466                 } else if (rs.allowDefaultMethods) {
  1467                     return DEFAULT_OK;
  1468                 } else {
  1469                     return null;
  1472         },
  1473         DEFAULT_OK() {
  1474             @Override
  1475             InterfaceLookupPhase update(Symbol s, Resolve rs) {
  1476                 return this;
  1478         };
  1480         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
  1483     /**
  1484      * Return an Iterable object to scan the superclasses of a given type.
  1485      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1486      * access more supertypes than strictly needed (as this could trigger completion
  1487      * errors if some of the not-needed supertypes are missing/ill-formed).
  1488      */
  1489     Iterable<TypeSymbol> superclasses(final Type intype) {
  1490         return new Iterable<TypeSymbol>() {
  1491             public Iterator<TypeSymbol> iterator() {
  1492                 return new Iterator<TypeSymbol>() {
  1494                     List<TypeSymbol> seen = List.nil();
  1495                     TypeSymbol currentSym = symbolFor(intype);
  1496                     TypeSymbol prevSym = null;
  1498                     public boolean hasNext() {
  1499                         if (currentSym == syms.noSymbol) {
  1500                             currentSym = symbolFor(types.supertype(prevSym.type));
  1502                         return currentSym != null;
  1505                     public TypeSymbol next() {
  1506                         prevSym = currentSym;
  1507                         currentSym = syms.noSymbol;
  1508                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1509                         return prevSym;
  1512                     public void remove() {
  1513                         throw new UnsupportedOperationException();
  1516                     TypeSymbol symbolFor(Type t) {
  1517                         if (!t.hasTag(CLASS) &&
  1518                                 !t.hasTag(TYPEVAR)) {
  1519                             return null;
  1521                         while (t.hasTag(TYPEVAR))
  1522                             t = t.getUpperBound();
  1523                         if (seen.contains(t.tsym)) {
  1524                             //degenerate case in which we have a circular
  1525                             //class hierarchy - because of ill-formed classfiles
  1526                             return null;
  1528                         seen = seen.prepend(t.tsym);
  1529                         return t.tsym;
  1531                 };
  1533         };
  1536     /** Find unqualified method matching given name, type and value arguments.
  1537      *  @param env       The current environment.
  1538      *  @param name      The method's name.
  1539      *  @param argtypes  The method's value arguments.
  1540      *  @param typeargtypes  The method's type arguments.
  1541      *  @param allowBoxing Allow boxing conversions of arguments.
  1542      *  @param useVarargs Box trailing arguments into an array for varargs.
  1543      */
  1544     Symbol findFun(Env<AttrContext> env, Name name,
  1545                    List<Type> argtypes, List<Type> typeargtypes,
  1546                    boolean allowBoxing, boolean useVarargs) {
  1547         Symbol bestSoFar = methodNotFound;
  1548         Symbol sym;
  1549         Env<AttrContext> env1 = env;
  1550         boolean staticOnly = false;
  1551         while (env1.outer != null) {
  1552             if (isStatic(env1)) staticOnly = true;
  1553             sym = findMethod(
  1554                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1555                 allowBoxing, useVarargs, false);
  1556             if (sym.exists()) {
  1557                 if (staticOnly &&
  1558                     sym.kind == MTH &&
  1559                     sym.owner.kind == TYP &&
  1560                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1561                 else return sym;
  1562             } else if (sym.kind < bestSoFar.kind) {
  1563                 bestSoFar = sym;
  1565             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1566             env1 = env1.outer;
  1569         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1570                          typeargtypes, allowBoxing, useVarargs, false);
  1571         if (sym.exists())
  1572             return sym;
  1574         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1575         for (; e.scope != null; e = e.next()) {
  1576             sym = e.sym;
  1577             Type origin = e.getOrigin().owner.type;
  1578             if (sym.kind == MTH) {
  1579                 if (e.sym.owner.type != origin)
  1580                     sym = sym.clone(e.getOrigin().owner);
  1581                 if (!isAccessible(env, origin, sym))
  1582                     sym = new AccessError(env, origin, sym);
  1583                 bestSoFar = selectBest(env, origin,
  1584                                        argtypes, typeargtypes,
  1585                                        sym, bestSoFar,
  1586                                        allowBoxing, useVarargs, false);
  1589         if (bestSoFar.exists())
  1590             return bestSoFar;
  1592         e = env.toplevel.starImportScope.lookup(name);
  1593         for (; e.scope != null; e = e.next()) {
  1594             sym = e.sym;
  1595             Type origin = e.getOrigin().owner.type;
  1596             if (sym.kind == MTH) {
  1597                 if (e.sym.owner.type != origin)
  1598                     sym = sym.clone(e.getOrigin().owner);
  1599                 if (!isAccessible(env, origin, sym))
  1600                     sym = new AccessError(env, origin, sym);
  1601                 bestSoFar = selectBest(env, origin,
  1602                                        argtypes, typeargtypes,
  1603                                        sym, bestSoFar,
  1604                                        allowBoxing, useVarargs, false);
  1607         return bestSoFar;
  1610     /** Load toplevel or member class with given fully qualified name and
  1611      *  verify that it is accessible.
  1612      *  @param env       The current environment.
  1613      *  @param name      The fully qualified name of the class to be loaded.
  1614      */
  1615     Symbol loadClass(Env<AttrContext> env, Name name) {
  1616         try {
  1617             ClassSymbol c = reader.loadClass(name);
  1618             return isAccessible(env, c) ? c : new AccessError(c);
  1619         } catch (ClassReader.BadClassFile err) {
  1620             throw err;
  1621         } catch (CompletionFailure ex) {
  1622             return typeNotFound;
  1626     /** Find qualified member type.
  1627      *  @param env       The current environment.
  1628      *  @param site      The original type from where the selection takes
  1629      *                   place.
  1630      *  @param name      The type's name.
  1631      *  @param c         The class to search for the member type. This is
  1632      *                   always a superclass or implemented interface of
  1633      *                   site's class.
  1634      */
  1635     Symbol findMemberType(Env<AttrContext> env,
  1636                           Type site,
  1637                           Name name,
  1638                           TypeSymbol c) {
  1639         Symbol bestSoFar = typeNotFound;
  1640         Symbol sym;
  1641         Scope.Entry e = c.members().lookup(name);
  1642         while (e.scope != null) {
  1643             if (e.sym.kind == TYP) {
  1644                 return isAccessible(env, site, e.sym)
  1645                     ? e.sym
  1646                     : new AccessError(env, site, e.sym);
  1648             e = e.next();
  1650         Type st = types.supertype(c.type);
  1651         if (st != null && st.hasTag(CLASS)) {
  1652             sym = findMemberType(env, site, name, st.tsym);
  1653             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1655         for (List<Type> l = types.interfaces(c.type);
  1656              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1657              l = l.tail) {
  1658             sym = findMemberType(env, site, name, l.head.tsym);
  1659             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1660                 sym.owner != bestSoFar.owner)
  1661                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1662             else if (sym.kind < bestSoFar.kind)
  1663                 bestSoFar = sym;
  1665         return bestSoFar;
  1668     /** Find a global type in given scope and load corresponding class.
  1669      *  @param env       The current environment.
  1670      *  @param scope     The scope in which to look for the type.
  1671      *  @param name      The type's name.
  1672      */
  1673     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1674         Symbol bestSoFar = typeNotFound;
  1675         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1676             Symbol sym = loadClass(env, e.sym.flatName());
  1677             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1678                 bestSoFar != sym)
  1679                 return new AmbiguityError(bestSoFar, sym);
  1680             else if (sym.kind < bestSoFar.kind)
  1681                 bestSoFar = sym;
  1683         return bestSoFar;
  1686     /** Find an unqualified type symbol.
  1687      *  @param env       The current environment.
  1688      *  @param name      The type's name.
  1689      */
  1690     Symbol findType(Env<AttrContext> env, Name name) {
  1691         Symbol bestSoFar = typeNotFound;
  1692         Symbol sym;
  1693         boolean staticOnly = false;
  1694         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1695             if (isStatic(env1)) staticOnly = true;
  1696             for (Scope.Entry e = env1.info.scope.lookup(name);
  1697                  e.scope != null;
  1698                  e = e.next()) {
  1699                 if (e.sym.kind == TYP) {
  1700                     if (staticOnly &&
  1701                         e.sym.type.hasTag(TYPEVAR) &&
  1702                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1703                     return e.sym;
  1707             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1708                                  env1.enclClass.sym);
  1709             if (staticOnly && sym.kind == TYP &&
  1710                 sym.type.hasTag(CLASS) &&
  1711                 sym.type.getEnclosingType().hasTag(CLASS) &&
  1712                 env1.enclClass.sym.type.isParameterized() &&
  1713                 sym.type.getEnclosingType().isParameterized())
  1714                 return new StaticError(sym);
  1715             else if (sym.exists()) return sym;
  1716             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1718             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1719             if ((encl.sym.flags() & STATIC) != 0)
  1720                 staticOnly = true;
  1723         if (!env.tree.hasTag(IMPORT)) {
  1724             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1725             if (sym.exists()) return sym;
  1726             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1728             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1729             if (sym.exists()) return sym;
  1730             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1732             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1733             if (sym.exists()) return sym;
  1734             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1737         return bestSoFar;
  1740     /** Find an unqualified identifier which matches a specified kind set.
  1741      *  @param env       The current environment.
  1742      *  @param name      The indentifier's name.
  1743      *  @param kind      Indicates the possible symbol kinds
  1744      *                   (a subset of VAL, TYP, PCK).
  1745      */
  1746     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1747         Symbol bestSoFar = typeNotFound;
  1748         Symbol sym;
  1750         if ((kind & VAR) != 0) {
  1751             sym = findVar(env, name);
  1752             if (sym.exists()) return sym;
  1753             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1756         if ((kind & TYP) != 0) {
  1757             sym = findType(env, name);
  1758             if (sym.exists()) return sym;
  1759             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1762         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1763         else return bestSoFar;
  1766     /** Find an identifier in a package which matches a specified kind set.
  1767      *  @param env       The current environment.
  1768      *  @param name      The identifier's name.
  1769      *  @param kind      Indicates the possible symbol kinds
  1770      *                   (a nonempty subset of TYP, PCK).
  1771      */
  1772     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1773                               Name name, int kind) {
  1774         Name fullname = TypeSymbol.formFullName(name, pck);
  1775         Symbol bestSoFar = typeNotFound;
  1776         PackageSymbol pack = null;
  1777         if ((kind & PCK) != 0) {
  1778             pack = reader.enterPackage(fullname);
  1779             if (pack.exists()) return pack;
  1781         if ((kind & TYP) != 0) {
  1782             Symbol sym = loadClass(env, fullname);
  1783             if (sym.exists()) {
  1784                 // don't allow programs to use flatnames
  1785                 if (name == sym.name) return sym;
  1787             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1789         return (pack != null) ? pack : bestSoFar;
  1792     /** Find an identifier among the members of a given type `site'.
  1793      *  @param env       The current environment.
  1794      *  @param site      The type containing the symbol to be found.
  1795      *  @param name      The identifier's name.
  1796      *  @param kind      Indicates the possible symbol kinds
  1797      *                   (a subset of VAL, TYP).
  1798      */
  1799     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1800                            Name name, int kind) {
  1801         Symbol bestSoFar = typeNotFound;
  1802         Symbol sym;
  1803         if ((kind & VAR) != 0) {
  1804             sym = findField(env, site, name, site.tsym);
  1805             if (sym.exists()) return sym;
  1806             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1809         if ((kind & TYP) != 0) {
  1810             sym = findMemberType(env, site, name, site.tsym);
  1811             if (sym.exists()) return sym;
  1812             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1814         return bestSoFar;
  1817 /* ***************************************************************************
  1818  *  Access checking
  1819  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1820  *  an error message in the process
  1821  ****************************************************************************/
  1823     /** If `sym' is a bad symbol: report error and return errSymbol
  1824      *  else pass through unchanged,
  1825      *  additional arguments duplicate what has been used in trying to find the
  1826      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  1827      *  expect misses to happen frequently.
  1829      *  @param sym       The symbol that was found, or a ResolveError.
  1830      *  @param pos       The position to use for error reporting.
  1831      *  @param location  The symbol the served as a context for this lookup
  1832      *  @param site      The original type from where the selection took place.
  1833      *  @param name      The symbol's name.
  1834      *  @param qualified Did we get here through a qualified expression resolution?
  1835      *  @param argtypes  The invocation's value arguments,
  1836      *                   if we looked for a method.
  1837      *  @param typeargtypes  The invocation's type arguments,
  1838      *                   if we looked for a method.
  1839      *  @param logResolveHelper helper class used to log resolve errors
  1840      */
  1841     Symbol accessInternal(Symbol sym,
  1842                   DiagnosticPosition pos,
  1843                   Symbol location,
  1844                   Type site,
  1845                   Name name,
  1846                   boolean qualified,
  1847                   List<Type> argtypes,
  1848                   List<Type> typeargtypes,
  1849                   LogResolveHelper logResolveHelper) {
  1850         if (sym.kind >= AMBIGUOUS) {
  1851             ResolveError errSym = (ResolveError)sym;
  1852             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1853             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  1854             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  1855                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1858         return sym;
  1861     /**
  1862      * Variant of the generalized access routine, to be used for generating method
  1863      * resolution diagnostics
  1864      */
  1865     Symbol accessMethod(Symbol sym,
  1866                   DiagnosticPosition pos,
  1867                   Symbol location,
  1868                   Type site,
  1869                   Name name,
  1870                   boolean qualified,
  1871                   List<Type> argtypes,
  1872                   List<Type> typeargtypes) {
  1873         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  1876     /** Same as original accessMethod(), but without location.
  1877      */
  1878     Symbol accessMethod(Symbol sym,
  1879                   DiagnosticPosition pos,
  1880                   Type site,
  1881                   Name name,
  1882                   boolean qualified,
  1883                   List<Type> argtypes,
  1884                   List<Type> typeargtypes) {
  1885         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1888     /**
  1889      * Variant of the generalized access routine, to be used for generating variable,
  1890      * type resolution diagnostics
  1891      */
  1892     Symbol accessBase(Symbol sym,
  1893                   DiagnosticPosition pos,
  1894                   Symbol location,
  1895                   Type site,
  1896                   Name name,
  1897                   boolean qualified) {
  1898         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  1901     /** Same as original accessBase(), but without location.
  1902      */
  1903     Symbol accessBase(Symbol sym,
  1904                   DiagnosticPosition pos,
  1905                   Type site,
  1906                   Name name,
  1907                   boolean qualified) {
  1908         return accessBase(sym, pos, site.tsym, site, name, qualified);
  1911     interface LogResolveHelper {
  1912         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  1913         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  1916     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  1917         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1918             return !site.isErroneous();
  1920         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1921             return argtypes;
  1923     };
  1925     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  1926         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1927             return !site.isErroneous() &&
  1928                         !Type.isErroneous(argtypes) &&
  1929                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  1931         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1932             if (syms.operatorNames.contains(name)) {
  1933                 return argtypes;
  1934             } else {
  1935                 Symbol msym = errSym.kind == WRONG_MTH ?
  1936                         ((InapplicableSymbolError)errSym).errCandidate().sym : accessedSym;
  1938                 List<Type> argtypes2 = Type.map(argtypes,
  1939                         deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, msym, currentResolutionContext.firstErroneousResolutionPhase()));
  1941                 if (msym != accessedSym) {
  1942                     //fixup deferred type caches - this 'hack' is required because the symbol
  1943                     //returned by InapplicableSymbolError.access() will hide the candidate
  1944                     //method symbol that can be used for lookups in the speculative cache,
  1945                     //causing problems in Attr.checkId()
  1946                     for (Type t : argtypes) {
  1947                         if (t.hasTag(DEFERRED)) {
  1948                             DeferredType dt = (DeferredType)t;
  1949                             dt.speculativeCache.dupAllTo(msym, accessedSym);
  1953                 return argtypes2;
  1956     };
  1958     /** Check that sym is not an abstract method.
  1959      */
  1960     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1961         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
  1962             log.error(pos, "abstract.cant.be.accessed.directly",
  1963                       kindName(sym), sym, sym.location());
  1966 /* ***************************************************************************
  1967  *  Debugging
  1968  ****************************************************************************/
  1970     /** print all scopes starting with scope s and proceeding outwards.
  1971      *  used for debugging.
  1972      */
  1973     public void printscopes(Scope s) {
  1974         while (s != null) {
  1975             if (s.owner != null)
  1976                 System.err.print(s.owner + ": ");
  1977             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1978                 if ((e.sym.flags() & ABSTRACT) != 0)
  1979                     System.err.print("abstract ");
  1980                 System.err.print(e.sym + " ");
  1982             System.err.println();
  1983             s = s.next;
  1987     void printscopes(Env<AttrContext> env) {
  1988         while (env.outer != null) {
  1989             System.err.println("------------------------------");
  1990             printscopes(env.info.scope);
  1991             env = env.outer;
  1995     public void printscopes(Type t) {
  1996         while (t.hasTag(CLASS)) {
  1997             printscopes(t.tsym.members());
  1998             t = types.supertype(t);
  2002 /* ***************************************************************************
  2003  *  Name resolution
  2004  *  Naming conventions are as for symbol lookup
  2005  *  Unlike the find... methods these methods will report access errors
  2006  ****************************************************************************/
  2008     /** Resolve an unqualified (non-method) identifier.
  2009      *  @param pos       The position to use for error reporting.
  2010      *  @param env       The environment current at the identifier use.
  2011      *  @param name      The identifier's name.
  2012      *  @param kind      The set of admissible symbol kinds for the identifier.
  2013      */
  2014     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  2015                         Name name, int kind) {
  2016         return accessBase(
  2017             findIdent(env, name, kind),
  2018             pos, env.enclClass.sym.type, name, false);
  2021     /** Resolve an unqualified method identifier.
  2022      *  @param pos       The position to use for error reporting.
  2023      *  @param env       The environment current at the method invocation.
  2024      *  @param name      The identifier's name.
  2025      *  @param argtypes  The types of the invocation's value arguments.
  2026      *  @param typeargtypes  The types of the invocation's type arguments.
  2027      */
  2028     Symbol resolveMethod(DiagnosticPosition pos,
  2029                          Env<AttrContext> env,
  2030                          Name name,
  2031                          List<Type> argtypes,
  2032                          List<Type> typeargtypes) {
  2033         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2034         try {
  2035             currentResolutionContext = new MethodResolutionContext();
  2036             Symbol sym = methodNotFound;
  2037             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2038             while (steps.nonEmpty() &&
  2039                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2040                    sym.kind >= ERRONEOUS) {
  2041                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2042                 sym = findFun(env, name, argtypes, typeargtypes,
  2043                         steps.head.isBoxingRequired,
  2044                         steps.head.isVarargsRequired);
  2045                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2046                 steps = steps.tail;
  2048             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  2049                 MethodResolutionPhase errPhase =
  2050                         currentResolutionContext.firstErroneousResolutionPhase();
  2051                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2052                         pos, env.enclClass.sym.type, name, false, argtypes, typeargtypes);
  2053                 env.info.pendingResolutionPhase = errPhase;
  2055             return sym;
  2057         finally {
  2058             currentResolutionContext = prevResolutionContext;
  2062     /** Resolve a qualified method identifier
  2063      *  @param pos       The position to use for error reporting.
  2064      *  @param env       The environment current at the method invocation.
  2065      *  @param site      The type of the qualifying expression, in which
  2066      *                   identifier is searched.
  2067      *  @param name      The identifier's name.
  2068      *  @param argtypes  The types of the invocation's value arguments.
  2069      *  @param typeargtypes  The types of the invocation's type arguments.
  2070      */
  2071     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2072                                   Type site, Name name, List<Type> argtypes,
  2073                                   List<Type> typeargtypes) {
  2074         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2076     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2077                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2078                                   List<Type> typeargtypes) {
  2079         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2081     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2082                                   DiagnosticPosition pos, Env<AttrContext> env,
  2083                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2084                                   List<Type> typeargtypes) {
  2085         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2086         try {
  2087             currentResolutionContext = resolveContext;
  2088             Symbol sym = methodNotFound;
  2089             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2090             while (steps.nonEmpty() &&
  2091                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2092                    sym.kind >= ERRONEOUS) {
  2093                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2094                 sym = findMethod(env, site, name, argtypes, typeargtypes,
  2095                         steps.head.isBoxingRequired(),
  2096                         steps.head.isVarargsRequired(), false);
  2097                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2098                 steps = steps.tail;
  2100             if (sym.kind >= AMBIGUOUS) {
  2101                 //if nothing is found return the 'first' error
  2102                 MethodResolutionPhase errPhase =
  2103                         currentResolutionContext.firstErroneousResolutionPhase();
  2104                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2105                         pos, location, site, name, true, argtypes, typeargtypes);
  2106                 env.info.pendingResolutionPhase = errPhase;
  2107             } else if (allowMethodHandles) {
  2108                 MethodSymbol msym = (MethodSymbol)sym;
  2109                 if (msym.isSignaturePolymorphic(types)) {
  2110                     env.info.pendingResolutionPhase = BASIC;
  2111                     return findPolymorphicSignatureInstance(env, sym, argtypes);
  2114             return sym;
  2116         finally {
  2117             currentResolutionContext = prevResolutionContext;
  2121     /** Find or create an implicit method of exactly the given type (after erasure).
  2122      *  Searches in a side table, not the main scope of the site.
  2123      *  This emulates the lookup process required by JSR 292 in JVM.
  2124      *  @param env       Attribution environment
  2125      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2126      *  @param argtypes  The required argument types
  2127      */
  2128     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2129                                             Symbol spMethod,
  2130                                             List<Type> argtypes) {
  2131         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2132                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2133         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2134             if (types.isSameType(mtype, sym.type)) {
  2135                return sym;
  2139         // create the desired method
  2140         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2141         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner);
  2142         polymorphicSignatureScope.enter(msym);
  2143         return msym;
  2146     /** Resolve a qualified method identifier, throw a fatal error if not
  2147      *  found.
  2148      *  @param pos       The position to use for error reporting.
  2149      *  @param env       The environment current at the method invocation.
  2150      *  @param site      The type of the qualifying expression, in which
  2151      *                   identifier is searched.
  2152      *  @param name      The identifier's name.
  2153      *  @param argtypes  The types of the invocation's value arguments.
  2154      *  @param typeargtypes  The types of the invocation's type arguments.
  2155      */
  2156     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2157                                         Type site, Name name,
  2158                                         List<Type> argtypes,
  2159                                         List<Type> typeargtypes) {
  2160         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2161         resolveContext.internalResolution = true;
  2162         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2163                 site, name, argtypes, typeargtypes);
  2164         if (sym.kind == MTH) return (MethodSymbol)sym;
  2165         else throw new FatalError(
  2166                  diags.fragment("fatal.err.cant.locate.meth",
  2167                                 name));
  2170     /** Resolve constructor.
  2171      *  @param pos       The position to use for error reporting.
  2172      *  @param env       The environment current at the constructor invocation.
  2173      *  @param site      The type of class for which a constructor is searched.
  2174      *  @param argtypes  The types of the constructor invocation's value
  2175      *                   arguments.
  2176      *  @param typeargtypes  The types of the constructor invocation's type
  2177      *                   arguments.
  2178      */
  2179     Symbol resolveConstructor(DiagnosticPosition pos,
  2180                               Env<AttrContext> env,
  2181                               Type site,
  2182                               List<Type> argtypes,
  2183                               List<Type> typeargtypes) {
  2184         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2186     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2187                               DiagnosticPosition pos,
  2188                               Env<AttrContext> env,
  2189                               Type site,
  2190                               List<Type> argtypes,
  2191                               List<Type> typeargtypes) {
  2192         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2193         try {
  2194             currentResolutionContext = resolveContext;
  2195             Symbol sym = methodNotFound;
  2196             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2197             while (steps.nonEmpty() &&
  2198                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2199                    sym.kind >= ERRONEOUS) {
  2200                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2201                 sym = findConstructor(pos, env, site, argtypes, typeargtypes,
  2202                         steps.head.isBoxingRequired(),
  2203                         steps.head.isVarargsRequired());
  2204                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2205                 steps = steps.tail;
  2207             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  2208                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2209                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2210                         pos, site, names.init, true, argtypes, typeargtypes);
  2211                 env.info.pendingResolutionPhase = errPhase;
  2213             return sym;
  2215         finally {
  2216             currentResolutionContext = prevResolutionContext;
  2220     /** Resolve constructor using diamond inference.
  2221      *  @param pos       The position to use for error reporting.
  2222      *  @param env       The environment current at the constructor invocation.
  2223      *  @param site      The type of class for which a constructor is searched.
  2224      *                   The scope of this class has been touched in attribution.
  2225      *  @param argtypes  The types of the constructor invocation's value
  2226      *                   arguments.
  2227      *  @param typeargtypes  The types of the constructor invocation's type
  2228      *                   arguments.
  2229      */
  2230     Symbol resolveDiamond(DiagnosticPosition pos,
  2231                               Env<AttrContext> env,
  2232                               Type site,
  2233                               List<Type> argtypes,
  2234                               List<Type> typeargtypes) {
  2235         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2236         try {
  2237             currentResolutionContext = new MethodResolutionContext();
  2238             Symbol sym = methodNotFound;
  2239             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2240             while (steps.nonEmpty() &&
  2241                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2242                    sym.kind >= ERRONEOUS) {
  2243                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2244                 sym = findDiamond(env, site, argtypes, typeargtypes,
  2245                         steps.head.isBoxingRequired(),
  2246                         steps.head.isVarargsRequired());
  2247                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2248                 steps = steps.tail;
  2250             if (sym.kind >= AMBIGUOUS) {
  2251                 Symbol errSym =
  2252                         currentResolutionContext.resolutionCache.get(currentResolutionContext.firstErroneousResolutionPhase());
  2253                 final JCDiagnostic details = errSym.kind == WRONG_MTH ?
  2254                                 ((InapplicableSymbolError)errSym).errCandidate().details :
  2255                                 null;
  2256                 errSym = new InapplicableSymbolError(errSym.kind, "diamondError", currentResolutionContext) {
  2257                     @Override
  2258                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2259                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2260                         String key = details == null ?
  2261                             "cant.apply.diamond" :
  2262                             "cant.apply.diamond.1";
  2263                         return diags.create(dkind, log.currentSource(), pos, key,
  2264                                 diags.fragment("diamond", site.tsym), details);
  2266                 };
  2267                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2268                 sym = accessMethod(errSym, pos, site, names.init, true, argtypes, typeargtypes);
  2269                 env.info.pendingResolutionPhase = errPhase;
  2271             return sym;
  2273         finally {
  2274             currentResolutionContext = prevResolutionContext;
  2278     /** This method scans all the constructor symbol in a given class scope -
  2279      *  assuming that the original scope contains a constructor of the kind:
  2280      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2281      *  a method check is executed against the modified constructor type:
  2282      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2283      *  inference. The inferred return type of the synthetic constructor IS
  2284      *  the inferred type for the diamond operator.
  2285      */
  2286     private Symbol findDiamond(Env<AttrContext> env,
  2287                               Type site,
  2288                               List<Type> argtypes,
  2289                               List<Type> typeargtypes,
  2290                               boolean allowBoxing,
  2291                               boolean useVarargs) {
  2292         Symbol bestSoFar = methodNotFound;
  2293         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2294              e.scope != null;
  2295              e = e.next()) {
  2296             final Symbol sym = e.sym;
  2297             //- System.out.println(" e " + e.sym);
  2298             if (sym.kind == MTH &&
  2299                 (sym.flags_field & SYNTHETIC) == 0) {
  2300                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
  2301                             ((ForAll)sym.type).tvars :
  2302                             List.<Type>nil();
  2303                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2304                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2305                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2306                         @Override
  2307                         public Symbol baseSymbol() {
  2308                             return sym;
  2310                     };
  2311                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2312                             newConstr,
  2313                             bestSoFar,
  2314                             allowBoxing,
  2315                             useVarargs,
  2316                             false);
  2319         return bestSoFar;
  2322     /**
  2323      * Resolution of member references is typically done as a single
  2324      * overload resolution step, where the argument types A are inferred from
  2325      * the target functional descriptor.
  2327      * If the member reference is a method reference with a type qualifier,
  2328      * a two-step lookup process is performed. The first step uses the
  2329      * expected argument list A, while the second step discards the first
  2330      * type from A (which is treated as a receiver type).
  2332      * There are two cases in which inference is performed: (i) if the member
  2333      * reference is a constructor reference and the qualifier type is raw - in
  2334      * which case diamond inference is used to infer a parameterization for the
  2335      * type qualifier; (ii) if the member reference is an unbound reference
  2336      * where the type qualifier is raw - in that case, during the unbound lookup
  2337      * the receiver argument type is used to infer an instantiation for the raw
  2338      * qualifier type.
  2340      * When a multi-step resolution process is exploited, it is an error
  2341      * if two candidates are found (ambiguity).
  2343      * This routine returns a pair (T,S), where S is the member reference symbol,
  2344      * and T is the type of the class in which S is defined. This is necessary as
  2345      * the type T might be dynamically inferred (i.e. if constructor reference
  2346      * has a raw qualifier).
  2347      */
  2348     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(DiagnosticPosition pos,
  2349                                   Env<AttrContext> env,
  2350                                   JCMemberReference referenceTree,
  2351                                   Type site,
  2352                                   Name name, List<Type> argtypes,
  2353                                   List<Type> typeargtypes,
  2354                                   boolean boxingAllowed) {
  2355         //step 1 - bound lookup
  2356         ReferenceLookupHelper boundLookupHelper = name.equals(names.init) ?
  2357                 new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, boxingAllowed) :
  2358                 new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, boxingAllowed);
  2359         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2360         Symbol boundSym = findMemberReference(boundEnv, boundLookupHelper);
  2362         //step 2 - unbound lookup
  2363         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup();
  2364         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2365         Symbol unboundSym = findMemberReference(unboundEnv, unboundLookupHelper);
  2367         //merge results
  2368         Pair<Symbol, ReferenceLookupHelper> res;
  2369         if (unboundSym.kind != MTH) {
  2370             res = new Pair<Symbol, ReferenceLookupHelper>(boundSym, boundLookupHelper);
  2371             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2372         } else if (boundSym.kind == MTH) {
  2373             res = new Pair<Symbol, ReferenceLookupHelper>(ambiguityError(boundSym, unboundSym), boundLookupHelper);
  2374             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2375         } else {
  2376             res = new Pair<Symbol, ReferenceLookupHelper>(unboundSym, unboundLookupHelper);
  2377             env.info.pendingResolutionPhase = unboundEnv.info.pendingResolutionPhase;
  2380         return res;
  2383     /**
  2384      * Helper for defining custom method-like lookup logic; a lookup helper
  2385      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2386      * lookup result (this step might result in compiler diagnostics to be generated)
  2387      */
  2388     abstract class LookupHelper {
  2390         /** name of the symbol to lookup */
  2391         Name name;
  2393         /** location in which the lookup takes place */
  2394         Type site;
  2396         /** actual types used during the lookup */
  2397         List<Type> argtypes;
  2399         /** type arguments used during the lookup */
  2400         List<Type> typeargtypes;
  2402         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2403             this.name = name;
  2404             this.site = site;
  2405             this.argtypes = argtypes;
  2406             this.typeargtypes = typeargtypes;
  2409         /**
  2410          * Search for a symbol under a given overload resolution phase - this method
  2411          * is usually called several times, once per each overload resolution phase
  2412          */
  2413         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2415         /**
  2416          * Validate the result of the lookup
  2417          */
  2418         abstract Symbol access(Env<AttrContext> env, Symbol symbol);
  2421     /**
  2422      * Helper class for member reference lookup. A reference lookup helper
  2423      * defines the basic logic for member reference lookup; a method gives
  2424      * access to an 'unbound' helper used to perform an unbound member
  2425      * reference lookup.
  2426      */
  2427     abstract class ReferenceLookupHelper extends LookupHelper {
  2429         /** The member reference tree */
  2430         JCMemberReference referenceTree;
  2432         /** Max overload resolution phase handled by this helper */
  2433         MethodResolutionPhase maxPhase;
  2435         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2436                 List<Type> argtypes, List<Type> typeargtypes, boolean boxingAllowed) {
  2437             super(name, site, argtypes, typeargtypes);
  2438             this.referenceTree = referenceTree;
  2439             this.maxPhase = boxingAllowed ? VARARITY : BASIC;
  2442         /**
  2443          * Returns an unbound version of this lookup helper. By default, this
  2444          * method returns an dummy lookup helper.
  2445          */
  2446         ReferenceLookupHelper unboundLookup() {
  2447             //dummy loopkup helper that always return 'methodNotFound'
  2448             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase.isBoxingRequired()) {
  2449                 @Override
  2450                 ReferenceLookupHelper unboundLookup() {
  2451                     return this;
  2453                 @Override
  2454                 Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase) {
  2455                     return methodNotFound;
  2457                 @Override
  2458                 ReferenceKind referenceKind(Symbol sym) {
  2459                     Assert.error();
  2460                     return null;
  2462             };
  2465         /**
  2466          * Get the kind of the member reference
  2467          */
  2468         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  2470         @Override
  2471         Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2472             return (env.info.pendingResolutionPhase.ordinal() > maxPhase.ordinal()) ?
  2473                     methodNotFound : lookupReference(env, phase);
  2476         abstract Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase);
  2478         Symbol access(Env<AttrContext> env, Symbol sym) {
  2479             if (sym.kind >= AMBIGUOUS) {
  2480                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2481                 if (errPhase.ordinal() > maxPhase.ordinal()) {
  2482                     errPhase = maxPhase;
  2484                 env.info.pendingResolutionPhase = errPhase;
  2485                 sym = currentResolutionContext.resolutionCache.get(errPhase);
  2487             return sym;
  2491     /**
  2492      * Helper class for method reference lookup. The lookup logic is based
  2493      * upon Resolve.findMethod; in certain cases, this helper class has a
  2494      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  2495      * In such cases, non-static lookup results are thrown away.
  2496      */
  2497     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  2499         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2500                 List<Type> argtypes, List<Type> typeargtypes, boolean boxingAllowed) {
  2501             super(referenceTree, name, site, argtypes, typeargtypes, boxingAllowed);
  2504         protected Symbol lookupReferenceInternal(Env<AttrContext> env, MethodResolutionPhase phase) {
  2505             return findMethod(env, site, name, argtypes, typeargtypes,
  2506                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2509         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2510             return !TreeInfo.isStaticSelector(referenceTree.expr, names) ||
  2511                         sym.kind != MTH ||
  2512                         sym.isStatic() ? sym : new StaticError(sym);
  2515         @Override
  2516         final Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase) {
  2517             return adjustLookupResult(env, lookupReferenceInternal(env, phase));
  2520         @Override
  2521         ReferenceLookupHelper unboundLookup() {
  2522             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  2523                     argtypes.nonEmpty() &&
  2524                     types.isSubtypeUnchecked(argtypes.head, site)) {
  2525                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  2526                         site, argtypes, typeargtypes, maxPhase.isBoxingRequired());
  2527             } else {
  2528                 return super.unboundLookup();
  2532         @Override
  2533         ReferenceKind referenceKind(Symbol sym) {
  2534             if (sym.isStatic()) {
  2535                 return TreeInfo.isStaticSelector(referenceTree.expr, names) ?
  2536                         ReferenceKind.STATIC : ReferenceKind.STATIC_EVAL;
  2537             } else {
  2538                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  2539                 return selName != null && selName == names._super ?
  2540                         ReferenceKind.SUPER :
  2541                         ReferenceKind.BOUND;
  2546     /**
  2547      * Helper class for unbound method reference lookup. Essentially the same
  2548      * as the basic method reference lookup helper; main difference is that static
  2549      * lookup results are thrown away. If qualifier type is raw, an attempt to
  2550      * infer a parameterized type is made using the first actual argument (that
  2551      * would otherwise be ignored during the lookup).
  2552      */
  2553     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  2555         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2556                 List<Type> argtypes, List<Type> typeargtypes, boolean boxingAllowed) {
  2557             super(referenceTree, name,
  2558                     site.isRaw() ? types.asSuper(argtypes.head, site.tsym) : site,
  2559                     argtypes.tail, typeargtypes, boxingAllowed);
  2562         @Override
  2563         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2564             return sym.kind != MTH || !sym.isStatic() ? sym : new StaticError(sym);
  2567         @Override
  2568         ReferenceLookupHelper unboundLookup() {
  2569             return this;
  2572         @Override
  2573         ReferenceKind referenceKind(Symbol sym) {
  2574             return ReferenceKind.UNBOUND;
  2578     /**
  2579      * Helper class for constructor reference lookup. The lookup logic is based
  2580      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  2581      * whether the constructor reference needs diamond inference (this is the case
  2582      * if the qualifier type is raw). A special erroneous symbol is returned
  2583      * if the lookup returns the constructor of an inner class and there's no
  2584      * enclosing instance in scope.
  2585      */
  2586     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2588         boolean needsInference;
  2590         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2591                 List<Type> typeargtypes, boolean boxingAllowed) {
  2592             super(referenceTree, names.init, site, argtypes, typeargtypes, boxingAllowed);
  2593             if (site.isRaw()) {
  2594                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  2595                 needsInference = true;
  2599         @Override
  2600         protected Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase) {
  2601             Symbol sym = needsInference ?
  2602                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  2603                 findMethod(env, site, name, argtypes, typeargtypes,
  2604                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2605             return sym.kind != MTH ||
  2606                           site.getEnclosingType().hasTag(NONE) ||
  2607                           hasEnclosingInstance(env, site) ?
  2608                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  2609                     @Override
  2610                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2611                        return diags.create(dkind, log.currentSource(), pos,
  2612                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  2614                 };
  2617         @Override
  2618         ReferenceKind referenceKind(Symbol sym) {
  2619             return site.getEnclosingType().hasTag(NONE) ?
  2620                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  2624     /**
  2625      * Resolution step for member reference. This generalizes a standard
  2626      * method/constructor lookup - on each overload resolution step, a
  2627      * lookup helper class is used to perform the reference lookup; at the end
  2628      * of the lookup, the helper is used to validate the results.
  2629      */
  2630     Symbol findMemberReference(Env<AttrContext> env, LookupHelper lookupHelper) {
  2631         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2632         try {
  2633             currentResolutionContext = new MethodResolutionContext();
  2634             Symbol sym = methodNotFound;
  2635             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2636             while (steps.nonEmpty() &&
  2637                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2638                    sym.kind >= ERRONEOUS) {
  2639                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2640                 sym = lookupHelper.lookup(env, steps.head);
  2641                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2642                 steps = steps.tail;
  2644             return lookupHelper.access(env, sym);
  2646         finally {
  2647             currentResolutionContext = prevResolutionContext;
  2651     /** Resolve constructor.
  2652      *  @param pos       The position to use for error reporting.
  2653      *  @param env       The environment current at the constructor invocation.
  2654      *  @param site      The type of class for which a constructor is searched.
  2655      *  @param argtypes  The types of the constructor invocation's value
  2656      *                   arguments.
  2657      *  @param typeargtypes  The types of the constructor invocation's type
  2658      *                   arguments.
  2659      *  @param allowBoxing Allow boxing and varargs conversions.
  2660      *  @param useVarargs Box trailing arguments into an array for varargs.
  2661      */
  2662     Symbol resolveConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2663                               Type site, List<Type> argtypes,
  2664                               List<Type> typeargtypes,
  2665                               boolean allowBoxing,
  2666                               boolean useVarargs) {
  2667         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2668         try {
  2669             currentResolutionContext = new MethodResolutionContext();
  2670             return findConstructor(pos, env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
  2672         finally {
  2673             currentResolutionContext = prevResolutionContext;
  2677     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2678                               Type site, List<Type> argtypes,
  2679                               List<Type> typeargtypes,
  2680                               boolean allowBoxing,
  2681                               boolean useVarargs) {
  2682         Symbol sym = findMethod(env, site,
  2683                                     names.init, argtypes,
  2684                                     typeargtypes, allowBoxing,
  2685                                     useVarargs, false);
  2686         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2687         return sym;
  2690     /** Resolve a constructor, throw a fatal error if not found.
  2691      *  @param pos       The position to use for error reporting.
  2692      *  @param env       The environment current at the method invocation.
  2693      *  @param site      The type to be constructed.
  2694      *  @param argtypes  The types of the invocation's value arguments.
  2695      *  @param typeargtypes  The types of the invocation's type arguments.
  2696      */
  2697     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2698                                         Type site,
  2699                                         List<Type> argtypes,
  2700                                         List<Type> typeargtypes) {
  2701         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2702         resolveContext.internalResolution = true;
  2703         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2704         if (sym.kind == MTH) return (MethodSymbol)sym;
  2705         else throw new FatalError(
  2706                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2709     /** Resolve operator.
  2710      *  @param pos       The position to use for error reporting.
  2711      *  @param optag     The tag of the operation tree.
  2712      *  @param env       The environment current at the operation.
  2713      *  @param argtypes  The types of the operands.
  2714      */
  2715     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2716                            Env<AttrContext> env, List<Type> argtypes) {
  2717         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2718         try {
  2719             currentResolutionContext = new MethodResolutionContext();
  2720             Name name = treeinfo.operatorName(optag);
  2721             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2722                                     null, false, false, true);
  2723             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2724                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2725                                  null, true, false, true);
  2726             return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2727                           false, argtypes, null);
  2729         finally {
  2730             currentResolutionContext = prevResolutionContext;
  2734     /** Resolve operator.
  2735      *  @param pos       The position to use for error reporting.
  2736      *  @param optag     The tag of the operation tree.
  2737      *  @param env       The environment current at the operation.
  2738      *  @param arg       The type of the operand.
  2739      */
  2740     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2741         return resolveOperator(pos, optag, env, List.of(arg));
  2744     /** Resolve binary operator.
  2745      *  @param pos       The position to use for error reporting.
  2746      *  @param optag     The tag of the operation tree.
  2747      *  @param env       The environment current at the operation.
  2748      *  @param left      The types of the left operand.
  2749      *  @param right     The types of the right operand.
  2750      */
  2751     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2752                                  JCTree.Tag optag,
  2753                                  Env<AttrContext> env,
  2754                                  Type left,
  2755                                  Type right) {
  2756         return resolveOperator(pos, optag, env, List.of(left, right));
  2759     /**
  2760      * Resolve `c.name' where name == this or name == super.
  2761      * @param pos           The position to use for error reporting.
  2762      * @param env           The environment current at the expression.
  2763      * @param c             The qualifier.
  2764      * @param name          The identifier's name.
  2765      */
  2766     Symbol resolveSelf(DiagnosticPosition pos,
  2767                        Env<AttrContext> env,
  2768                        TypeSymbol c,
  2769                        Name name) {
  2770         Env<AttrContext> env1 = env;
  2771         boolean staticOnly = false;
  2772         while (env1.outer != null) {
  2773             if (isStatic(env1)) staticOnly = true;
  2774             if (env1.enclClass.sym == c) {
  2775                 Symbol sym = env1.info.scope.lookup(name).sym;
  2776                 if (sym != null) {
  2777                     if (staticOnly) sym = new StaticError(sym);
  2778                     return accessBase(sym, pos, env.enclClass.sym.type,
  2779                                   name, true);
  2782             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2783             env1 = env1.outer;
  2785         if (allowDefaultMethods && c.isInterface() &&
  2786                 name == names._super && !isStatic(env) &&
  2787                 types.isDirectSuperInterface(c.type, env.enclClass.sym)) {
  2788             //this might be a default super call if one of the superinterfaces is 'c'
  2789             for (Type t : pruneInterfaces(env.enclClass.type)) {
  2790                 if (t.tsym == c) {
  2791                     env.info.defaultSuperCallSite = t;
  2792                     return new VarSymbol(0, names._super,
  2793                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
  2796             //find a direct superinterface that is a subtype of 'c'
  2797             for (Type i : types.interfaces(env.enclClass.type)) {
  2798                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
  2799                     log.error(pos, "illegal.default.super.call", c,
  2800                             diags.fragment("redundant.supertype", c, i));
  2801                     return syms.errSymbol;
  2804             Assert.error();
  2806         log.error(pos, "not.encl.class", c);
  2807         return syms.errSymbol;
  2809     //where
  2810     private List<Type> pruneInterfaces(Type t) {
  2811         ListBuffer<Type> result = ListBuffer.lb();
  2812         for (Type t1 : types.interfaces(t)) {
  2813             boolean shouldAdd = true;
  2814             for (Type t2 : types.interfaces(t)) {
  2815                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
  2816                     shouldAdd = false;
  2819             if (shouldAdd) {
  2820                 result.append(t1);
  2823         return result.toList();
  2827     /**
  2828      * Resolve `c.this' for an enclosing class c that contains the
  2829      * named member.
  2830      * @param pos           The position to use for error reporting.
  2831      * @param env           The environment current at the expression.
  2832      * @param member        The member that must be contained in the result.
  2833      */
  2834     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2835                                  Env<AttrContext> env,
  2836                                  Symbol member,
  2837                                  boolean isSuperCall) {
  2838         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  2839         if (sym == null) {
  2840             log.error(pos, "encl.class.required", member);
  2841             return syms.errSymbol;
  2842         } else {
  2843             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  2847     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  2848         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  2849         return encl != null && encl.kind < ERRONEOUS;
  2852     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  2853                                  Symbol member,
  2854                                  boolean isSuperCall) {
  2855         Name name = names._this;
  2856         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2857         boolean staticOnly = false;
  2858         if (env1 != null) {
  2859             while (env1 != null && env1.outer != null) {
  2860                 if (isStatic(env1)) staticOnly = true;
  2861                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2862                     Symbol sym = env1.info.scope.lookup(name).sym;
  2863                     if (sym != null) {
  2864                         if (staticOnly) sym = new StaticError(sym);
  2865                         return sym;
  2868                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2869                     staticOnly = true;
  2870                 env1 = env1.outer;
  2873         return null;
  2876     /**
  2877      * Resolve an appropriate implicit this instance for t's container.
  2878      * JLS 8.8.5.1 and 15.9.2
  2879      */
  2880     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2881         return resolveImplicitThis(pos, env, t, false);
  2884     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2885         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2886                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2887                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2888         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2889             log.error(pos, "cant.ref.before.ctor.called", "this");
  2890         return thisType;
  2893 /* ***************************************************************************
  2894  *  ResolveError classes, indicating error situations when accessing symbols
  2895  ****************************************************************************/
  2897     //used by TransTypes when checking target type of synthetic cast
  2898     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2899         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2900         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2902     //where
  2903     private void logResolveError(ResolveError error,
  2904             DiagnosticPosition pos,
  2905             Symbol location,
  2906             Type site,
  2907             Name name,
  2908             List<Type> argtypes,
  2909             List<Type> typeargtypes) {
  2910         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2911                 pos, location, site, name, argtypes, typeargtypes);
  2912         if (d != null) {
  2913             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2914             log.report(d);
  2918     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2920     public Object methodArguments(List<Type> argtypes) {
  2921         if (argtypes == null || argtypes.isEmpty()) {
  2922             return noArgs;
  2923         } else {
  2924             ListBuffer<Object> diagArgs = ListBuffer.lb();
  2925             for (Type t : argtypes) {
  2926                 if (t.hasTag(DEFERRED)) {
  2927                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  2928                 } else {
  2929                     diagArgs.append(t);
  2932             return diagArgs;
  2936     /**
  2937      * Root class for resolution errors. Subclass of ResolveError
  2938      * represent a different kinds of resolution error - as such they must
  2939      * specify how they map into concrete compiler diagnostics.
  2940      */
  2941     abstract class ResolveError extends Symbol {
  2943         /** The name of the kind of error, for debugging only. */
  2944         final String debugName;
  2946         ResolveError(int kind, String debugName) {
  2947             super(kind, 0, null, null, null);
  2948             this.debugName = debugName;
  2951         @Override
  2952         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2953             throw new AssertionError();
  2956         @Override
  2957         public String toString() {
  2958             return debugName;
  2961         @Override
  2962         public boolean exists() {
  2963             return false;
  2966         /**
  2967          * Create an external representation for this erroneous symbol to be
  2968          * used during attribution - by default this returns the symbol of a
  2969          * brand new error type which stores the original type found
  2970          * during resolution.
  2972          * @param name     the name used during resolution
  2973          * @param location the location from which the symbol is accessed
  2974          */
  2975         protected Symbol access(Name name, TypeSymbol location) {
  2976             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2979         /**
  2980          * Create a diagnostic representing this resolution error.
  2982          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2983          * @param pos       The position to be used for error reporting.
  2984          * @param site      The original type from where the selection took place.
  2985          * @param name      The name of the symbol to be resolved.
  2986          * @param argtypes  The invocation's value arguments,
  2987          *                  if we looked for a method.
  2988          * @param typeargtypes  The invocation's type arguments,
  2989          *                      if we looked for a method.
  2990          */
  2991         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2992                 DiagnosticPosition pos,
  2993                 Symbol location,
  2994                 Type site,
  2995                 Name name,
  2996                 List<Type> argtypes,
  2997                 List<Type> typeargtypes);
  3000     /**
  3001      * This class is the root class of all resolution errors caused by
  3002      * an invalid symbol being found during resolution.
  3003      */
  3004     abstract class InvalidSymbolError extends ResolveError {
  3006         /** The invalid symbol found during resolution */
  3007         Symbol sym;
  3009         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  3010             super(kind, debugName);
  3011             this.sym = sym;
  3014         @Override
  3015         public boolean exists() {
  3016             return true;
  3019         @Override
  3020         public String toString() {
  3021              return super.toString() + " wrongSym=" + sym;
  3024         @Override
  3025         public Symbol access(Name name, TypeSymbol location) {
  3026             if (sym.kind >= AMBIGUOUS)
  3027                 return ((ResolveError)sym).access(name, location);
  3028             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  3029                 return types.createErrorType(name, location, sym.type).tsym;
  3030             else
  3031                 return sym;
  3035     /**
  3036      * InvalidSymbolError error class indicating that a symbol matching a
  3037      * given name does not exists in a given site.
  3038      */
  3039     class SymbolNotFoundError extends ResolveError {
  3041         SymbolNotFoundError(int kind) {
  3042             super(kind, "symbol not found error");
  3045         @Override
  3046         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3047                 DiagnosticPosition pos,
  3048                 Symbol location,
  3049                 Type site,
  3050                 Name name,
  3051                 List<Type> argtypes,
  3052                 List<Type> typeargtypes) {
  3053             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  3054             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  3055             if (name == names.error)
  3056                 return null;
  3058             if (syms.operatorNames.contains(name)) {
  3059                 boolean isUnaryOp = argtypes.size() == 1;
  3060                 String key = argtypes.size() == 1 ?
  3061                     "operator.cant.be.applied" :
  3062                     "operator.cant.be.applied.1";
  3063                 Type first = argtypes.head;
  3064                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3065                 return diags.create(dkind, log.currentSource(), pos,
  3066                         key, name, first, second);
  3068             boolean hasLocation = false;
  3069             if (location == null) {
  3070                 location = site.tsym;
  3072             if (!location.name.isEmpty()) {
  3073                 if (location.kind == PCK && !site.tsym.exists()) {
  3074                     return diags.create(dkind, log.currentSource(), pos,
  3075                         "doesnt.exist", location);
  3077                 hasLocation = !location.name.equals(names._this) &&
  3078                         !location.name.equals(names._super);
  3080             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  3081             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3082             Name idname = isConstructor ? site.tsym.name : name;
  3083             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3084             if (hasLocation) {
  3085                 return diags.create(dkind, log.currentSource(), pos,
  3086                         errKey, kindname, idname, //symbol kindname, name
  3087                         typeargtypes, argtypes, //type parameters and arguments (if any)
  3088                         getLocationDiag(location, site)); //location kindname, type
  3090             else {
  3091                 return diags.create(dkind, log.currentSource(), pos,
  3092                         errKey, kindname, idname, //symbol kindname, name
  3093                         typeargtypes, argtypes); //type parameters and arguments (if any)
  3096         //where
  3097         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3098             String key = "cant.resolve";
  3099             String suffix = hasLocation ? ".location" : "";
  3100             switch (kindname) {
  3101                 case METHOD:
  3102                 case CONSTRUCTOR: {
  3103                     suffix += ".args";
  3104                     suffix += hasTypeArgs ? ".params" : "";
  3107             return key + suffix;
  3109         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3110             if (location.kind == VAR) {
  3111                 return diags.fragment("location.1",
  3112                     kindName(location),
  3113                     location,
  3114                     location.type);
  3115             } else {
  3116                 return diags.fragment("location",
  3117                     typeKindName(site),
  3118                     site,
  3119                     null);
  3124     /**
  3125      * InvalidSymbolError error class indicating that a given symbol
  3126      * (either a method, a constructor or an operand) is not applicable
  3127      * given an actual arguments/type argument list.
  3128      */
  3129     class InapplicableSymbolError extends ResolveError {
  3131         protected MethodResolutionContext resolveContext;
  3133         InapplicableSymbolError(MethodResolutionContext context) {
  3134             this(WRONG_MTH, "inapplicable symbol error", context);
  3137         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3138             super(kind, debugName);
  3139             this.resolveContext = context;
  3142         @Override
  3143         public String toString() {
  3144             return super.toString();
  3147         @Override
  3148         public boolean exists() {
  3149             return true;
  3152         @Override
  3153         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3154                 DiagnosticPosition pos,
  3155                 Symbol location,
  3156                 Type site,
  3157                 Name name,
  3158                 List<Type> argtypes,
  3159                 List<Type> typeargtypes) {
  3160             if (name == names.error)
  3161                 return null;
  3163             if (syms.operatorNames.contains(name)) {
  3164                 boolean isUnaryOp = argtypes.size() == 1;
  3165                 String key = argtypes.size() == 1 ?
  3166                     "operator.cant.be.applied" :
  3167                     "operator.cant.be.applied.1";
  3168                 Type first = argtypes.head;
  3169                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3170                 return diags.create(dkind, log.currentSource(), pos,
  3171                         key, name, first, second);
  3173             else {
  3174                 Candidate c = errCandidate();
  3175                 Symbol ws = c.sym.asMemberOf(site, types);
  3176                 return diags.create(dkind, log.currentSource(), pos,
  3177                           "cant.apply.symbol",
  3178                           kindName(ws),
  3179                           ws.name == names.init ? ws.owner.name : ws.name,
  3180                           methodArguments(ws.type.getParameterTypes()),
  3181                           methodArguments(argtypes),
  3182                           kindName(ws.owner),
  3183                           ws.owner.type,
  3184                           c.details);
  3188         @Override
  3189         public Symbol access(Name name, TypeSymbol location) {
  3190             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3193         protected boolean shouldReport(Candidate c) {
  3194             MethodResolutionPhase errPhase = resolveContext.firstErroneousResolutionPhase();
  3195             return !c.isApplicable() &&
  3196                     c.step == errPhase;
  3199         private Candidate errCandidate() {
  3200             for (Candidate c : resolveContext.candidates) {
  3201                 if (shouldReport(c)) {
  3202                     return c;
  3205             Assert.error();
  3206             return null;
  3210     /**
  3211      * ResolveError error class indicating that a set of symbols
  3212      * (either methods, constructors or operands) is not applicable
  3213      * given an actual arguments/type argument list.
  3214      */
  3215     class InapplicableSymbolsError extends InapplicableSymbolError {
  3217         InapplicableSymbolsError(MethodResolutionContext context) {
  3218             super(WRONG_MTHS, "inapplicable symbols", context);
  3221         @Override
  3222         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3223                 DiagnosticPosition pos,
  3224                 Symbol location,
  3225                 Type site,
  3226                 Name name,
  3227                 List<Type> argtypes,
  3228                 List<Type> typeargtypes) {
  3229             if (!resolveContext.candidates.isEmpty()) {
  3230                 JCDiagnostic err = diags.create(dkind,
  3231                         log.currentSource(),
  3232                         pos,
  3233                         "cant.apply.symbols",
  3234                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3235                         getName(),
  3236                         argtypes);
  3237                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  3238             } else {
  3239                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3240                     location, site, name, argtypes, typeargtypes);
  3244         //where
  3245         List<JCDiagnostic> candidateDetails(Type site) {
  3246             List<JCDiagnostic> details = List.nil();
  3247             for (Candidate c : resolveContext.candidates) {
  3248                 if (!shouldReport(c)) continue;
  3249                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3250                         Kinds.kindName(c.sym),
  3251                         c.sym.location(site, types),
  3252                         c.sym.asMemberOf(site, types),
  3253                         c.details);
  3254                 details = details.prepend(detailDiag);
  3256             return details.reverse();
  3259         private Name getName() {
  3260             Symbol sym = resolveContext.candidates.head.sym;
  3261             return sym.name == names.init ?
  3262                 sym.owner.name :
  3263                 sym.name;
  3267     /**
  3268      * An InvalidSymbolError error class indicating that a symbol is not
  3269      * accessible from a given site
  3270      */
  3271     class AccessError extends InvalidSymbolError {
  3273         private Env<AttrContext> env;
  3274         private Type site;
  3276         AccessError(Symbol sym) {
  3277             this(null, null, sym);
  3280         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3281             super(HIDDEN, sym, "access error");
  3282             this.env = env;
  3283             this.site = site;
  3284             if (debugResolve)
  3285                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3288         @Override
  3289         public boolean exists() {
  3290             return false;
  3293         @Override
  3294         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3295                 DiagnosticPosition pos,
  3296                 Symbol location,
  3297                 Type site,
  3298                 Name name,
  3299                 List<Type> argtypes,
  3300                 List<Type> typeargtypes) {
  3301             if (sym.owner.type.hasTag(ERROR))
  3302                 return null;
  3304             if (sym.name == names.init && sym.owner != site.tsym) {
  3305                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3306                         pos, location, site, name, argtypes, typeargtypes);
  3308             else if ((sym.flags() & PUBLIC) != 0
  3309                 || (env != null && this.site != null
  3310                     && !isAccessible(env, this.site))) {
  3311                 return diags.create(dkind, log.currentSource(),
  3312                         pos, "not.def.access.class.intf.cant.access",
  3313                     sym, sym.location());
  3315             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3316                 return diags.create(dkind, log.currentSource(),
  3317                         pos, "report.access", sym,
  3318                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3319                         sym.location());
  3321             else {
  3322                 return diags.create(dkind, log.currentSource(),
  3323                         pos, "not.def.public.cant.access", sym, sym.location());
  3328     /**
  3329      * InvalidSymbolError error class indicating that an instance member
  3330      * has erroneously been accessed from a static context.
  3331      */
  3332     class StaticError extends InvalidSymbolError {
  3334         StaticError(Symbol sym) {
  3335             super(STATICERR, sym, "static error");
  3338         @Override
  3339         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3340                 DiagnosticPosition pos,
  3341                 Symbol location,
  3342                 Type site,
  3343                 Name name,
  3344                 List<Type> argtypes,
  3345                 List<Type> typeargtypes) {
  3346             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
  3347                 ? types.erasure(sym.type).tsym
  3348                 : sym);
  3349             return diags.create(dkind, log.currentSource(), pos,
  3350                     "non-static.cant.be.ref", kindName(sym), errSym);
  3354     /**
  3355      * InvalidSymbolError error class indicating that a pair of symbols
  3356      * (either methods, constructors or operands) are ambiguous
  3357      * given an actual arguments/type argument list.
  3358      */
  3359     class AmbiguityError extends InvalidSymbolError {
  3361         /** The other maximally specific symbol */
  3362         Symbol sym2;
  3364         AmbiguityError(Symbol sym1, Symbol sym2) {
  3365             super(AMBIGUOUS, sym1, "ambiguity error");
  3366             this.sym2 = sym2;
  3369         @Override
  3370         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3371                 DiagnosticPosition pos,
  3372                 Symbol location,
  3373                 Type site,
  3374                 Name name,
  3375                 List<Type> argtypes,
  3376                 List<Type> typeargtypes) {
  3377             AmbiguityError pair = this;
  3378             while (true) {
  3379                 if (pair.sym.kind == AMBIGUOUS)
  3380                     pair = (AmbiguityError)pair.sym;
  3381                 else if (pair.sym2.kind == AMBIGUOUS)
  3382                     pair = (AmbiguityError)pair.sym2;
  3383                 else break;
  3385             Name sname = pair.sym.name;
  3386             if (sname == names.init) sname = pair.sym.owner.name;
  3387             return diags.create(dkind, log.currentSource(),
  3388                       pos, "ref.ambiguous", sname,
  3389                       kindName(pair.sym),
  3390                       pair.sym,
  3391                       pair.sym.location(site, types),
  3392                       kindName(pair.sym2),
  3393                       pair.sym2,
  3394                       pair.sym2.location(site, types));
  3398     enum MethodResolutionPhase {
  3399         BASIC(false, false),
  3400         BOX(true, false),
  3401         VARARITY(true, true);
  3403         boolean isBoxingRequired;
  3404         boolean isVarargsRequired;
  3406         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  3407            this.isBoxingRequired = isBoxingRequired;
  3408            this.isVarargsRequired = isVarargsRequired;
  3411         public boolean isBoxingRequired() {
  3412             return isBoxingRequired;
  3415         public boolean isVarargsRequired() {
  3416             return isVarargsRequired;
  3419         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  3420             return (varargsEnabled || !isVarargsRequired) &&
  3421                    (boxingEnabled || !isBoxingRequired);
  3425     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  3427     /**
  3428      * A resolution context is used to keep track of intermediate results of
  3429      * overload resolution, such as list of method that are not applicable
  3430      * (used to generate more precise diagnostics) and so on. Resolution contexts
  3431      * can be nested - this means that when each overload resolution routine should
  3432      * work within the resolution context it created.
  3433      */
  3434     class MethodResolutionContext {
  3436         private List<Candidate> candidates = List.nil();
  3438         private Map<MethodResolutionPhase, Symbol> resolutionCache =
  3439             new EnumMap<MethodResolutionPhase, Symbol>(MethodResolutionPhase.class);
  3441         MethodResolutionPhase step = null;
  3443         private boolean internalResolution = false;
  3444         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  3446         private MethodResolutionPhase firstErroneousResolutionPhase() {
  3447             MethodResolutionPhase bestSoFar = BASIC;
  3448             Symbol sym = methodNotFound;
  3449             List<MethodResolutionPhase> steps = methodResolutionSteps;
  3450             while (steps.nonEmpty() &&
  3451                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  3452                    sym.kind >= WRONG_MTHS) {
  3453                 sym = resolutionCache.get(steps.head);
  3454                 if (sym.kind == ABSENT_MTH) break; //ignore spurious empty entries
  3455                 bestSoFar = steps.head;
  3456                 steps = steps.tail;
  3458             return bestSoFar;
  3461         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  3462             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  3463             candidates = candidates.append(c);
  3466         void addApplicableCandidate(Symbol sym, Type mtype) {
  3467             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  3468             candidates = candidates.append(c);
  3471         Candidate getCandidate(Symbol sym, MethodResolutionPhase phase) {
  3472             for (Candidate c : currentResolutionContext.candidates) {
  3473                 if (c.step == phase &&
  3474                         c.sym.baseSymbol() == sym.baseSymbol()) {
  3475                     return c;
  3478             return null;
  3481         /**
  3482          * This class represents an overload resolution candidate. There are two
  3483          * kinds of candidates: applicable methods and inapplicable methods;
  3484          * applicable methods have a pointer to the instantiated method type,
  3485          * while inapplicable candidates contain further details about the
  3486          * reason why the method has been considered inapplicable.
  3487          */
  3488         class Candidate {
  3490             final MethodResolutionPhase step;
  3491             final Symbol sym;
  3492             final JCDiagnostic details;
  3493             final Type mtype;
  3495             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  3496                 this.step = step;
  3497                 this.sym = sym;
  3498                 this.details = details;
  3499                 this.mtype = mtype;
  3502             @Override
  3503             public boolean equals(Object o) {
  3504                 if (o instanceof Candidate) {
  3505                     Symbol s1 = this.sym;
  3506                     Symbol s2 = ((Candidate)o).sym;
  3507                     if  ((s1 != s2 &&
  3508                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  3509                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  3510                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  3511                         return true;
  3513                 return false;
  3516             boolean isApplicable() {
  3517                 return mtype != null;
  3521         DeferredAttr.AttrMode attrMode() {
  3522             return attrMode;
  3525         boolean internal() {
  3526             return internalResolution;
  3530     MethodResolutionContext currentResolutionContext = null;

mercurial