src/share/classes/com/sun/tools/javac/comp/Resolve.java

Sat, 06 Oct 2012 10:35:38 +0100

author
mcimadamore
date
Sat, 06 Oct 2012 10:35:38 +0100
changeset 1352
d4b3cb1ece84
parent 1348
573ceb23beeb
child 1374
c002fdee76fd
permissions
-rw-r--r--

7177386: Add attribution support for method references
Summary: Add type-checking/lookup routines for method references
Reviewed-by: jjg, dlsmith

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import com.sun.tools.javac.api.Formattable.LocalizedString;
    29 import com.sun.tools.javac.code.*;
    30 import com.sun.tools.javac.code.Symbol.*;
    31 import com.sun.tools.javac.code.Type.*;
    32 import com.sun.tools.javac.comp.Attr.ResultInfo;
    33 import com.sun.tools.javac.comp.Check.CheckContext;
    34 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    35 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    36 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
    37 import com.sun.tools.javac.comp.Infer.InferenceContext;
    38 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    39 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
    40 import com.sun.tools.javac.jvm.*;
    41 import com.sun.tools.javac.tree.*;
    42 import com.sun.tools.javac.tree.JCTree.*;
    43 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
    44 import com.sun.tools.javac.util.*;
    45 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
    46 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    47 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
    49 import java.util.Arrays;
    50 import java.util.Collection;
    51 import java.util.EnumMap;
    52 import java.util.EnumSet;
    53 import java.util.Iterator;
    54 import java.util.Map;
    56 import javax.lang.model.element.ElementVisitor;
    58 import static com.sun.tools.javac.code.Flags.*;
    59 import static com.sun.tools.javac.code.Flags.BLOCK;
    60 import static com.sun.tools.javac.code.Kinds.*;
    61 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    62 import static com.sun.tools.javac.code.TypeTags.*;
    63 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
    64 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    66 /** Helper class for name resolution, used mostly by the attribution phase.
    67  *
    68  *  <p><b>This is NOT part of any supported API.
    69  *  If you write code that depends on this, you do so at your own risk.
    70  *  This code and its internal interfaces are subject to change or
    71  *  deletion without notice.</b>
    72  */
    73 public class Resolve {
    74     protected static final Context.Key<Resolve> resolveKey =
    75         new Context.Key<Resolve>();
    77     Names names;
    78     Log log;
    79     Symtab syms;
    80     Attr attr;
    81     DeferredAttr deferredAttr;
    82     Check chk;
    83     Infer infer;
    84     ClassReader reader;
    85     TreeInfo treeinfo;
    86     Types types;
    87     JCDiagnostic.Factory diags;
    88     public final boolean boxingEnabled; // = source.allowBoxing();
    89     public final boolean varargsEnabled; // = source.allowVarargs();
    90     public final boolean allowMethodHandles;
    91     private final boolean debugResolve;
    92     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
    94     Scope polymorphicSignatureScope;
    96     protected Resolve(Context context) {
    97         context.put(resolveKey, this);
    98         syms = Symtab.instance(context);
   100         varNotFound = new
   101             SymbolNotFoundError(ABSENT_VAR);
   102         methodNotFound = new
   103             SymbolNotFoundError(ABSENT_MTH);
   104         typeNotFound = new
   105             SymbolNotFoundError(ABSENT_TYP);
   107         names = Names.instance(context);
   108         log = Log.instance(context);
   109         attr = Attr.instance(context);
   110         deferredAttr = DeferredAttr.instance(context);
   111         chk = Check.instance(context);
   112         infer = Infer.instance(context);
   113         reader = ClassReader.instance(context);
   114         treeinfo = TreeInfo.instance(context);
   115         types = Types.instance(context);
   116         diags = JCDiagnostic.Factory.instance(context);
   117         Source source = Source.instance(context);
   118         boxingEnabled = source.allowBoxing();
   119         varargsEnabled = source.allowVarargs();
   120         Options options = Options.instance(context);
   121         debugResolve = options.isSet("debugresolve");
   122         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
   123         Target target = Target.instance(context);
   124         allowMethodHandles = target.hasMethodHandles();
   125         polymorphicSignatureScope = new Scope(syms.noSymbol);
   127         inapplicableMethodException = new InapplicableMethodException(diags);
   128     }
   130     /** error symbols, which are returned when resolution fails
   131      */
   132     private final SymbolNotFoundError varNotFound;
   133     private final SymbolNotFoundError methodNotFound;
   134     private final SymbolNotFoundError typeNotFound;
   136     public static Resolve instance(Context context) {
   137         Resolve instance = context.get(resolveKey);
   138         if (instance == null)
   139             instance = new Resolve(context);
   140         return instance;
   141     }
   143     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
   144     enum VerboseResolutionMode {
   145         SUCCESS("success"),
   146         FAILURE("failure"),
   147         APPLICABLE("applicable"),
   148         INAPPLICABLE("inapplicable"),
   149         DEFERRED_INST("deferred-inference"),
   150         PREDEF("predef"),
   151         OBJECT_INIT("object-init"),
   152         INTERNAL("internal");
   154         String opt;
   156         private VerboseResolutionMode(String opt) {
   157             this.opt = opt;
   158         }
   160         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
   161             String s = opts.get("verboseResolution");
   162             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
   163             if (s == null) return res;
   164             if (s.contains("all")) {
   165                 res = EnumSet.allOf(VerboseResolutionMode.class);
   166             }
   167             Collection<String> args = Arrays.asList(s.split(","));
   168             for (VerboseResolutionMode mode : values()) {
   169                 if (args.contains(mode.opt)) {
   170                     res.add(mode);
   171                 } else if (args.contains("-" + mode.opt)) {
   172                     res.remove(mode);
   173                 }
   174             }
   175             return res;
   176         }
   177     }
   179     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
   180             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
   181         boolean success = bestSoFar.kind < ERRONEOUS;
   183         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
   184             return;
   185         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
   186             return;
   187         }
   189         if (bestSoFar.name == names.init &&
   190                 bestSoFar.owner == syms.objectType.tsym &&
   191                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
   192             return; //skip diags for Object constructor resolution
   193         } else if (site == syms.predefClass.type &&
   194                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
   195             return; //skip spurious diags for predef symbols (i.e. operators)
   196         } else if (currentResolutionContext.internalResolution &&
   197                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
   198             return;
   199         }
   201         int pos = 0;
   202         int mostSpecificPos = -1;
   203         ListBuffer<JCDiagnostic> subDiags = ListBuffer.lb();
   204         for (Candidate c : currentResolutionContext.candidates) {
   205             if (currentResolutionContext.step != c.step ||
   206                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
   207                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
   208                 continue;
   209             } else {
   210                 subDiags.append(c.isApplicable() ?
   211                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
   212                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
   213                 if (c.sym == bestSoFar)
   214                     mostSpecificPos = pos;
   215                 pos++;
   216             }
   217         }
   218         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
   219         List<Type> argtypes2 = Type.map(argtypes,
   220                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
   221         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
   222                 site.tsym, mostSpecificPos, currentResolutionContext.step,
   223                 methodArguments(argtypes2),
   224                 methodArguments(typeargtypes));
   225         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
   226         log.report(d);
   227     }
   229     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
   230         JCDiagnostic subDiag = null;
   231         if (sym.type.tag == FORALL) {
   232             subDiag = diags.fragment("partial.inst.sig", inst);
   233         }
   235         String key = subDiag == null ?
   236                 "applicable.method.found" :
   237                 "applicable.method.found.1";
   239         return diags.fragment(key, pos, sym, subDiag);
   240     }
   242     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
   243         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
   244     }
   245     // </editor-fold>
   247 /* ************************************************************************
   248  * Identifier resolution
   249  *************************************************************************/
   251     /** An environment is "static" if its static level is greater than
   252      *  the one of its outer environment
   253      */
   254     protected static boolean isStatic(Env<AttrContext> env) {
   255         return env.info.staticLevel > env.outer.info.staticLevel;
   256     }
   258     /** An environment is an "initializer" if it is a constructor or
   259      *  an instance initializer.
   260      */
   261     static boolean isInitializer(Env<AttrContext> env) {
   262         Symbol owner = env.info.scope.owner;
   263         return owner.isConstructor() ||
   264             owner.owner.kind == TYP &&
   265             (owner.kind == VAR ||
   266              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
   267             (owner.flags() & STATIC) == 0;
   268     }
   270     /** Is class accessible in given evironment?
   271      *  @param env    The current environment.
   272      *  @param c      The class whose accessibility is checked.
   273      */
   274     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
   275         return isAccessible(env, c, false);
   276     }
   278     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
   279         boolean isAccessible = false;
   280         switch ((short)(c.flags() & AccessFlags)) {
   281             case PRIVATE:
   282                 isAccessible =
   283                     env.enclClass.sym.outermostClass() ==
   284                     c.owner.outermostClass();
   285                 break;
   286             case 0:
   287                 isAccessible =
   288                     env.toplevel.packge == c.owner // fast special case
   289                     ||
   290                     env.toplevel.packge == c.packge()
   291                     ||
   292                     // Hack: this case is added since synthesized default constructors
   293                     // of anonymous classes should be allowed to access
   294                     // classes which would be inaccessible otherwise.
   295                     env.enclMethod != null &&
   296                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
   297                 break;
   298             default: // error recovery
   299             case PUBLIC:
   300                 isAccessible = true;
   301                 break;
   302             case PROTECTED:
   303                 isAccessible =
   304                     env.toplevel.packge == c.owner // fast special case
   305                     ||
   306                     env.toplevel.packge == c.packge()
   307                     ||
   308                     isInnerSubClass(env.enclClass.sym, c.owner);
   309                 break;
   310         }
   311         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
   312             isAccessible :
   313             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
   314     }
   315     //where
   316         /** Is given class a subclass of given base class, or an inner class
   317          *  of a subclass?
   318          *  Return null if no such class exists.
   319          *  @param c     The class which is the subclass or is contained in it.
   320          *  @param base  The base class
   321          */
   322         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
   323             while (c != null && !c.isSubClass(base, types)) {
   324                 c = c.owner.enclClass();
   325             }
   326             return c != null;
   327         }
   329     boolean isAccessible(Env<AttrContext> env, Type t) {
   330         return isAccessible(env, t, false);
   331     }
   333     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
   334         return (t.tag == ARRAY)
   335             ? isAccessible(env, types.elemtype(t))
   336             : isAccessible(env, t.tsym, checkInner);
   337     }
   339     /** Is symbol accessible as a member of given type in given evironment?
   340      *  @param env    The current environment.
   341      *  @param site   The type of which the tested symbol is regarded
   342      *                as a member.
   343      *  @param sym    The symbol.
   344      */
   345     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
   346         return isAccessible(env, site, sym, false);
   347     }
   348     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
   349         if (sym.name == names.init && sym.owner != site.tsym) return false;
   350         switch ((short)(sym.flags() & AccessFlags)) {
   351         case PRIVATE:
   352             return
   353                 (env.enclClass.sym == sym.owner // fast special case
   354                  ||
   355                  env.enclClass.sym.outermostClass() ==
   356                  sym.owner.outermostClass())
   357                 &&
   358                 sym.isInheritedIn(site.tsym, types);
   359         case 0:
   360             return
   361                 (env.toplevel.packge == sym.owner.owner // fast special case
   362                  ||
   363                  env.toplevel.packge == sym.packge())
   364                 &&
   365                 isAccessible(env, site, checkInner)
   366                 &&
   367                 sym.isInheritedIn(site.tsym, types)
   368                 &&
   369                 notOverriddenIn(site, sym);
   370         case PROTECTED:
   371             return
   372                 (env.toplevel.packge == sym.owner.owner // fast special case
   373                  ||
   374                  env.toplevel.packge == sym.packge()
   375                  ||
   376                  isProtectedAccessible(sym, env.enclClass.sym, site)
   377                  ||
   378                  // OK to select instance method or field from 'super' or type name
   379                  // (but type names should be disallowed elsewhere!)
   380                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
   381                 &&
   382                 isAccessible(env, site, checkInner)
   383                 &&
   384                 notOverriddenIn(site, sym);
   385         default: // this case includes erroneous combinations as well
   386             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
   387         }
   388     }
   389     //where
   390     /* `sym' is accessible only if not overridden by
   391      * another symbol which is a member of `site'
   392      * (because, if it is overridden, `sym' is not strictly
   393      * speaking a member of `site'). A polymorphic signature method
   394      * cannot be overridden (e.g. MH.invokeExact(Object[])).
   395      */
   396     private boolean notOverriddenIn(Type site, Symbol sym) {
   397         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
   398             return true;
   399         else {
   400             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
   401             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
   402                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
   403         }
   404     }
   405     //where
   406         /** Is given protected symbol accessible if it is selected from given site
   407          *  and the selection takes place in given class?
   408          *  @param sym     The symbol with protected access
   409          *  @param c       The class where the access takes place
   410          *  @site          The type of the qualifier
   411          */
   412         private
   413         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
   414             while (c != null &&
   415                    !(c.isSubClass(sym.owner, types) &&
   416                      (c.flags() & INTERFACE) == 0 &&
   417                      // In JLS 2e 6.6.2.1, the subclass restriction applies
   418                      // only to instance fields and methods -- types are excluded
   419                      // regardless of whether they are declared 'static' or not.
   420                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || site.tsym.isSubClass(c, types))))
   421                 c = c.owner.enclClass();
   422             return c != null;
   423         }
   425     /** Try to instantiate the type of a method so that it fits
   426      *  given type arguments and argument types. If succesful, return
   427      *  the method's instantiated type, else return null.
   428      *  The instantiation will take into account an additional leading
   429      *  formal parameter if the method is an instance method seen as a member
   430      *  of un underdetermined site In this case, we treat site as an additional
   431      *  parameter and the parameters of the class containing the method as
   432      *  additional type variables that get instantiated.
   433      *
   434      *  @param env         The current environment
   435      *  @param site        The type of which the method is a member.
   436      *  @param m           The method symbol.
   437      *  @param argtypes    The invocation's given value arguments.
   438      *  @param typeargtypes    The invocation's given type arguments.
   439      *  @param allowBoxing Allow boxing conversions of arguments.
   440      *  @param useVarargs Box trailing arguments into an array for varargs.
   441      */
   442     Type rawInstantiate(Env<AttrContext> env,
   443                         Type site,
   444                         Symbol m,
   445                         ResultInfo resultInfo,
   446                         List<Type> argtypes,
   447                         List<Type> typeargtypes,
   448                         boolean allowBoxing,
   449                         boolean useVarargs,
   450                         Warner warn)
   451         throws Infer.InferenceException {
   452         if (useVarargs && (m.flags() & VARARGS) == 0) {
   453             //better error recovery - if we stumbled upon a non-varargs method
   454             //during varargs applicability phase, the method should be treated as
   455             //not applicable; the reason for inapplicability can be found in the
   456             //candidate for 'm' that was created during the BOX phase.
   457             Candidate prevCandidate = currentResolutionContext.getCandidate(m, BOX);
   458             JCDiagnostic details = null;
   459             if (prevCandidate != null && !prevCandidate.isApplicable()) {
   460                 details = prevCandidate.details;
   461             }
   462             throw inapplicableMethodException.setMessage(details);
   463         }
   464         Type mt = types.memberType(site, m);
   466         // tvars is the list of formal type variables for which type arguments
   467         // need to inferred.
   468         List<Type> tvars = List.nil();
   469         if (typeargtypes == null) typeargtypes = List.nil();
   470         if (mt.tag != FORALL && typeargtypes.nonEmpty()) {
   471             // This is not a polymorphic method, but typeargs are supplied
   472             // which is fine, see JLS 15.12.2.1
   473         } else if (mt.tag == FORALL && typeargtypes.nonEmpty()) {
   474             ForAll pmt = (ForAll) mt;
   475             if (typeargtypes.length() != pmt.tvars.length())
   476                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
   477             // Check type arguments are within bounds
   478             List<Type> formals = pmt.tvars;
   479             List<Type> actuals = typeargtypes;
   480             while (formals.nonEmpty() && actuals.nonEmpty()) {
   481                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
   482                                                 pmt.tvars, typeargtypes);
   483                 for (; bounds.nonEmpty(); bounds = bounds.tail)
   484                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
   485                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
   486                 formals = formals.tail;
   487                 actuals = actuals.tail;
   488             }
   489             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
   490         } else if (mt.tag == FORALL) {
   491             ForAll pmt = (ForAll) mt;
   492             List<Type> tvars1 = types.newInstances(pmt.tvars);
   493             tvars = tvars.appendList(tvars1);
   494             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
   495         }
   497         // find out whether we need to go the slow route via infer
   498         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
   499         for (List<Type> l = argtypes;
   500              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
   501              l = l.tail) {
   502             if (l.head.tag == FORALL) instNeeded = true;
   503         }
   505         if (instNeeded)
   506             return infer.instantiateMethod(env,
   507                                     tvars,
   508                                     (MethodType)mt,
   509                                     resultInfo,
   510                                     m,
   511                                     argtypes,
   512                                     allowBoxing,
   513                                     useVarargs,
   514                                     currentResolutionContext,
   515                                     warn);
   517         checkRawArgumentsAcceptable(env, m, argtypes, mt.getParameterTypes(),
   518                                 allowBoxing, useVarargs, warn);
   519         return mt;
   520     }
   522     Type checkMethod(Env<AttrContext> env,
   523                      Type site,
   524                      Symbol m,
   525                      ResultInfo resultInfo,
   526                      List<Type> argtypes,
   527                      List<Type> typeargtypes,
   528                      Warner warn) {
   529         MethodResolutionContext prevContext = currentResolutionContext;
   530         try {
   531             currentResolutionContext = new MethodResolutionContext();
   532             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
   533             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
   534             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   535                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
   536         }
   537         finally {
   538             currentResolutionContext = prevContext;
   539         }
   540     }
   542     /** Same but returns null instead throwing a NoInstanceException
   543      */
   544     Type instantiate(Env<AttrContext> env,
   545                      Type site,
   546                      Symbol m,
   547                      ResultInfo resultInfo,
   548                      List<Type> argtypes,
   549                      List<Type> typeargtypes,
   550                      boolean allowBoxing,
   551                      boolean useVarargs,
   552                      Warner warn) {
   553         try {
   554             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
   555                                   allowBoxing, useVarargs, warn);
   556         } catch (InapplicableMethodException ex) {
   557             return null;
   558         }
   559     }
   561     /** Check if a parameter list accepts a list of args.
   562      */
   563     boolean argumentsAcceptable(Env<AttrContext> env,
   564                                 Symbol msym,
   565                                 List<Type> argtypes,
   566                                 List<Type> formals,
   567                                 boolean allowBoxing,
   568                                 boolean useVarargs,
   569                                 Warner warn) {
   570         try {
   571             checkRawArgumentsAcceptable(env, msym, argtypes, formals, allowBoxing, useVarargs, warn);
   572             return true;
   573         } catch (InapplicableMethodException ex) {
   574             return false;
   575         }
   576     }
   577     /**
   578      * A check handler is used by the main method applicability routine in order
   579      * to handle specific method applicability failures. It is assumed that a class
   580      * implementing this interface should throw exceptions that are a subtype of
   581      * InapplicableMethodException (see below). Such exception will terminate the
   582      * method applicability check and propagate important info outwards (for the
   583      * purpose of generating better diagnostics).
   584      */
   585     interface MethodCheckHandler {
   586         /* The number of actuals and formals differ */
   587         InapplicableMethodException arityMismatch();
   588         /* An actual argument type does not conform to the corresponding formal type */
   589         InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details);
   590         /* The element type of a varargs is not accessible in the current context */
   591         InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected);
   592     }
   594     /**
   595      * Basic method check handler used within Resolve - all methods end up
   596      * throwing InapplicableMethodException; a diagnostic fragment that describes
   597      * the cause as to why the method is not applicable is set on the exception
   598      * before it is thrown.
   599      */
   600     MethodCheckHandler resolveHandler = new MethodCheckHandler() {
   601             public InapplicableMethodException arityMismatch() {
   602                 return inapplicableMethodException.setMessage("arg.length.mismatch");
   603             }
   604             public InapplicableMethodException argumentMismatch(boolean varargs, JCDiagnostic details) {
   605                 String key = varargs ?
   606                         "varargs.argument.mismatch" :
   607                         "no.conforming.assignment.exists";
   608                 return inapplicableMethodException.setMessage(key,
   609                         details);
   610             }
   611             public InapplicableMethodException inaccessibleVarargs(Symbol location, Type expected) {
   612                 return inapplicableMethodException.setMessage("inaccessible.varargs.type",
   613                         expected, Kinds.kindName(location), location);
   614             }
   615     };
   617     void checkRawArgumentsAcceptable(Env<AttrContext> env,
   618                                 Symbol msym,
   619                                 List<Type> argtypes,
   620                                 List<Type> formals,
   621                                 boolean allowBoxing,
   622                                 boolean useVarargs,
   623                                 Warner warn) {
   624         checkRawArgumentsAcceptable(env, msym, currentResolutionContext.attrMode(), infer.emptyContext, argtypes, formals,
   625                 allowBoxing, useVarargs, warn, resolveHandler);
   626     }
   628     /**
   629      * Main method applicability routine. Given a list of actual types A,
   630      * a list of formal types F, determines whether the types in A are
   631      * compatible (by method invocation conversion) with the types in F.
   632      *
   633      * Since this routine is shared between overload resolution and method
   634      * type-inference, a (possibly empty) inference context is used to convert
   635      * formal types to the corresponding 'undet' form ahead of a compatibility
   636      * check so that constraints can be propagated and collected.
   637      *
   638      * Moreover, if one or more types in A is a deferred type, this routine uses
   639      * DeferredAttr in order to perform deferred attribution. If one or more actual
   640      * deferred types are stuck, they are placed in a queue and revisited later
   641      * after the remainder of the arguments have been seen. If this is not sufficient
   642      * to 'unstuck' the argument, a cyclic inference error is called out.
   643      *
   644      * A method check handler (see above) is used in order to report errors.
   645      */
   646     void checkRawArgumentsAcceptable(final Env<AttrContext> env,
   647                                 Symbol msym,
   648                                 DeferredAttr.AttrMode mode,
   649                                 final Infer.InferenceContext inferenceContext,
   650                                 List<Type> argtypes,
   651                                 List<Type> formals,
   652                                 boolean allowBoxing,
   653                                 boolean useVarargs,
   654                                 Warner warn,
   655                                 final MethodCheckHandler handler) {
   656         Type varargsFormal = useVarargs ? formals.last() : null;
   658         if (varargsFormal == null &&
   659                 argtypes.size() != formals.size()) {
   660             throw handler.arityMismatch(); // not enough args
   661         }
   663         DeferredAttr.DeferredAttrContext deferredAttrContext =
   664                 deferredAttr.new DeferredAttrContext(mode, msym, currentResolutionContext.step, inferenceContext);
   666         while (argtypes.nonEmpty() && formals.head != varargsFormal) {
   667             ResultInfo mresult = methodCheckResult(formals.head, allowBoxing, false, inferenceContext, deferredAttrContext, handler, warn);
   668             mresult.check(null, argtypes.head);
   669             argtypes = argtypes.tail;
   670             formals = formals.tail;
   671         }
   673         if (formals.head != varargsFormal) {
   674             throw handler.arityMismatch(); // not enough args
   675         }
   677         if (useVarargs) {
   678             //note: if applicability check is triggered by most specific test,
   679             //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
   680             final Type elt = types.elemtype(varargsFormal);
   681             ResultInfo mresult = methodCheckResult(elt, allowBoxing, true, inferenceContext, deferredAttrContext, handler, warn);
   682             while (argtypes.nonEmpty()) {
   683                 mresult.check(null, argtypes.head);
   684                 argtypes = argtypes.tail;
   685             }
   686             //check varargs element type accessibility
   687             varargsAccessible(env, elt, handler, inferenceContext);
   688         }
   690         deferredAttrContext.complete();
   691     }
   693     void varargsAccessible(final Env<AttrContext> env, final Type t, final Resolve.MethodCheckHandler handler, final InferenceContext inferenceContext) {
   694         if (inferenceContext.free(t)) {
   695             inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
   696                 @Override
   697                 public void typesInferred(InferenceContext inferenceContext) {
   698                     varargsAccessible(env, inferenceContext.asInstType(t, types), handler, inferenceContext);
   699                 }
   700             });
   701         } else {
   702             if (!isAccessible(env, t)) {
   703                 Symbol location = env.enclClass.sym;
   704                 throw handler.inaccessibleVarargs(location, t);
   705             }
   706         }
   707     }
   709     /**
   710      * Check context to be used during method applicability checks. A method check
   711      * context might contain inference variables.
   712      */
   713     abstract class MethodCheckContext implements CheckContext {
   715         MethodCheckHandler handler;
   716         boolean useVarargs;
   717         Infer.InferenceContext inferenceContext;
   718         DeferredAttrContext deferredAttrContext;
   719         Warner rsWarner;
   721         public MethodCheckContext(MethodCheckHandler handler, boolean useVarargs,
   722                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   723             this.handler = handler;
   724             this.useVarargs = useVarargs;
   725             this.inferenceContext = inferenceContext;
   726             this.deferredAttrContext = deferredAttrContext;
   727             this.rsWarner = rsWarner;
   728         }
   730         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   731             throw handler.argumentMismatch(useVarargs, details);
   732         }
   734         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   735             return rsWarner;
   736         }
   738         public InferenceContext inferenceContext() {
   739             return inferenceContext;
   740         }
   742         public DeferredAttrContext deferredAttrContext() {
   743             return deferredAttrContext;
   744         }
   745     }
   747     /**
   748      * Subclass of method check context class that implements strict method conversion.
   749      * Strict method conversion checks compatibility between types using subtyping tests.
   750      */
   751     class StrictMethodContext extends MethodCheckContext {
   753         public StrictMethodContext(MethodCheckHandler handler, boolean useVarargs,
   754                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   755             super(handler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   756         }
   758         public boolean compatible(Type found, Type req, Warner warn) {
   759             return types.isSubtypeUnchecked(found, inferenceContext.asFree(req, types), warn);
   760         }
   762         public boolean allowBoxing() {
   763             return false;
   764         }
   765     }
   767     /**
   768      * Subclass of method check context class that implements loose method conversion.
   769      * Loose method conversion checks compatibility between types using method conversion tests.
   770      */
   771     class LooseMethodContext extends MethodCheckContext {
   773         public LooseMethodContext(MethodCheckHandler handler, boolean useVarargs,
   774                 Infer.InferenceContext inferenceContext, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
   775             super(handler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   776         }
   778         public boolean compatible(Type found, Type req, Warner warn) {
   779             return types.isConvertible(found, inferenceContext.asFree(req, types), warn);
   780         }
   782         public boolean allowBoxing() {
   783             return true;
   784         }
   785     }
   787     /**
   788      * Create a method check context to be used during method applicability check
   789      */
   790     ResultInfo methodCheckResult(Type to, boolean allowBoxing, boolean useVarargs,
   791             Infer.InferenceContext inferenceContext, DeferredAttr.DeferredAttrContext deferredAttrContext,
   792             MethodCheckHandler methodHandler, Warner rsWarner) {
   793         MethodCheckContext checkContext = allowBoxing ?
   794                 new LooseMethodContext(methodHandler, useVarargs, inferenceContext, deferredAttrContext, rsWarner) :
   795                 new StrictMethodContext(methodHandler, useVarargs, inferenceContext, deferredAttrContext, rsWarner);
   796         return new MethodResultInfo(to, checkContext, deferredAttrContext);
   797     }
   799     class MethodResultInfo extends ResultInfo {
   801         DeferredAttr.DeferredAttrContext deferredAttrContext;
   803         public MethodResultInfo(Type pt, MethodCheckContext checkContext, DeferredAttr.DeferredAttrContext deferredAttrContext) {
   804             attr.super(VAL, pt, checkContext);
   805             this.deferredAttrContext = deferredAttrContext;
   806         }
   808         @Override
   809         protected Type check(DiagnosticPosition pos, Type found) {
   810             if (found.tag == DEFERRED) {
   811                 DeferredType dt = (DeferredType)found;
   812                 return dt.check(this);
   813             } else {
   814                 return super.check(pos, chk.checkNonVoid(pos, types.capture(types.upperBound(found.baseType()))));
   815             }
   816         }
   818         @Override
   819         protected MethodResultInfo dup(Type newPt) {
   820             return new MethodResultInfo(newPt, (MethodCheckContext)checkContext, deferredAttrContext);
   821         }
   822     }
   824     public static class InapplicableMethodException extends RuntimeException {
   825         private static final long serialVersionUID = 0;
   827         JCDiagnostic diagnostic;
   828         JCDiagnostic.Factory diags;
   830         InapplicableMethodException(JCDiagnostic.Factory diags) {
   831             this.diagnostic = null;
   832             this.diags = diags;
   833         }
   834         InapplicableMethodException setMessage() {
   835             return setMessage((JCDiagnostic)null);
   836         }
   837         InapplicableMethodException setMessage(String key) {
   838             return setMessage(key != null ? diags.fragment(key) : null);
   839         }
   840         InapplicableMethodException setMessage(String key, Object... args) {
   841             return setMessage(key != null ? diags.fragment(key, args) : null);
   842         }
   843         InapplicableMethodException setMessage(JCDiagnostic diag) {
   844             this.diagnostic = diag;
   845             return this;
   846         }
   848         public JCDiagnostic getDiagnostic() {
   849             return diagnostic;
   850         }
   851     }
   852     private final InapplicableMethodException inapplicableMethodException;
   854 /* ***************************************************************************
   855  *  Symbol lookup
   856  *  the following naming conventions for arguments are used
   857  *
   858  *       env      is the environment where the symbol was mentioned
   859  *       site     is the type of which the symbol is a member
   860  *       name     is the symbol's name
   861  *                if no arguments are given
   862  *       argtypes are the value arguments, if we search for a method
   863  *
   864  *  If no symbol was found, a ResolveError detailing the problem is returned.
   865  ****************************************************************************/
   867     /** Find field. Synthetic fields are always skipped.
   868      *  @param env     The current environment.
   869      *  @param site    The original type from where the selection takes place.
   870      *  @param name    The name of the field.
   871      *  @param c       The class to search for the field. This is always
   872      *                 a superclass or implemented interface of site's class.
   873      */
   874     Symbol findField(Env<AttrContext> env,
   875                      Type site,
   876                      Name name,
   877                      TypeSymbol c) {
   878         while (c.type.tag == TYPEVAR)
   879             c = c.type.getUpperBound().tsym;
   880         Symbol bestSoFar = varNotFound;
   881         Symbol sym;
   882         Scope.Entry e = c.members().lookup(name);
   883         while (e.scope != null) {
   884             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
   885                 return isAccessible(env, site, e.sym)
   886                     ? e.sym : new AccessError(env, site, e.sym);
   887             }
   888             e = e.next();
   889         }
   890         Type st = types.supertype(c.type);
   891         if (st != null && (st.tag == CLASS || st.tag == TYPEVAR)) {
   892             sym = findField(env, site, name, st.tsym);
   893             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
   894         }
   895         for (List<Type> l = types.interfaces(c.type);
   896              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
   897              l = l.tail) {
   898             sym = findField(env, site, name, l.head.tsym);
   899             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
   900                 sym.owner != bestSoFar.owner)
   901                 bestSoFar = new AmbiguityError(bestSoFar, sym);
   902             else if (sym.kind < bestSoFar.kind)
   903                 bestSoFar = sym;
   904         }
   905         return bestSoFar;
   906     }
   908     /** Resolve a field identifier, throw a fatal error if not found.
   909      *  @param pos       The position to use for error reporting.
   910      *  @param env       The environment current at the method invocation.
   911      *  @param site      The type of the qualifying expression, in which
   912      *                   identifier is searched.
   913      *  @param name      The identifier's name.
   914      */
   915     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
   916                                           Type site, Name name) {
   917         Symbol sym = findField(env, site, name, site.tsym);
   918         if (sym.kind == VAR) return (VarSymbol)sym;
   919         else throw new FatalError(
   920                  diags.fragment("fatal.err.cant.locate.field",
   921                                 name));
   922     }
   924     /** Find unqualified variable or field with given name.
   925      *  Synthetic fields always skipped.
   926      *  @param env     The current environment.
   927      *  @param name    The name of the variable or field.
   928      */
   929     Symbol findVar(Env<AttrContext> env, Name name) {
   930         Symbol bestSoFar = varNotFound;
   931         Symbol sym;
   932         Env<AttrContext> env1 = env;
   933         boolean staticOnly = false;
   934         while (env1.outer != null) {
   935             if (isStatic(env1)) staticOnly = true;
   936             Scope.Entry e = env1.info.scope.lookup(name);
   937             while (e.scope != null &&
   938                    (e.sym.kind != VAR ||
   939                     (e.sym.flags_field & SYNTHETIC) != 0))
   940                 e = e.next();
   941             sym = (e.scope != null)
   942                 ? e.sym
   943                 : findField(
   944                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
   945             if (sym.exists()) {
   946                 if (staticOnly &&
   947                     sym.kind == VAR &&
   948                     sym.owner.kind == TYP &&
   949                     (sym.flags() & STATIC) == 0)
   950                     return new StaticError(sym);
   951                 else
   952                     return sym;
   953             } else if (sym.kind < bestSoFar.kind) {
   954                 bestSoFar = sym;
   955             }
   957             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
   958             env1 = env1.outer;
   959         }
   961         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
   962         if (sym.exists())
   963             return sym;
   964         if (bestSoFar.exists())
   965             return bestSoFar;
   967         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
   968         for (; e.scope != null; e = e.next()) {
   969             sym = e.sym;
   970             Type origin = e.getOrigin().owner.type;
   971             if (sym.kind == VAR) {
   972                 if (e.sym.owner.type != origin)
   973                     sym = sym.clone(e.getOrigin().owner);
   974                 return isAccessible(env, origin, sym)
   975                     ? sym : new AccessError(env, origin, sym);
   976             }
   977         }
   979         Symbol origin = null;
   980         e = env.toplevel.starImportScope.lookup(name);
   981         for (; e.scope != null; e = e.next()) {
   982             sym = e.sym;
   983             if (sym.kind != VAR)
   984                 continue;
   985             // invariant: sym.kind == VAR
   986             if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
   987                 return new AmbiguityError(bestSoFar, sym);
   988             else if (bestSoFar.kind >= VAR) {
   989                 origin = e.getOrigin().owner;
   990                 bestSoFar = isAccessible(env, origin.type, sym)
   991                     ? sym : new AccessError(env, origin.type, sym);
   992             }
   993         }
   994         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
   995             return bestSoFar.clone(origin);
   996         else
   997             return bestSoFar;
   998     }
  1000     Warner noteWarner = new Warner();
  1002     /** Select the best method for a call site among two choices.
  1003      *  @param env              The current environment.
  1004      *  @param site             The original type from where the
  1005      *                          selection takes place.
  1006      *  @param argtypes         The invocation's value arguments,
  1007      *  @param typeargtypes     The invocation's type arguments,
  1008      *  @param sym              Proposed new best match.
  1009      *  @param bestSoFar        Previously found best match.
  1010      *  @param allowBoxing Allow boxing conversions of arguments.
  1011      *  @param useVarargs Box trailing arguments into an array for varargs.
  1012      */
  1013     @SuppressWarnings("fallthrough")
  1014     Symbol selectBest(Env<AttrContext> env,
  1015                       Type site,
  1016                       List<Type> argtypes,
  1017                       List<Type> typeargtypes,
  1018                       Symbol sym,
  1019                       Symbol bestSoFar,
  1020                       boolean allowBoxing,
  1021                       boolean useVarargs,
  1022                       boolean operator) {
  1023         if (sym.kind == ERR) return bestSoFar;
  1024         if (!sym.isInheritedIn(site.tsym, types)) return bestSoFar;
  1025         Assert.check(sym.kind < AMBIGUOUS);
  1026         try {
  1027             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
  1028                                allowBoxing, useVarargs, Warner.noWarnings);
  1029             if (!operator)
  1030                 currentResolutionContext.addApplicableCandidate(sym, mt);
  1031         } catch (InapplicableMethodException ex) {
  1032             if (!operator)
  1033                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
  1034             switch (bestSoFar.kind) {
  1035             case ABSENT_MTH:
  1036                 return new InapplicableSymbolError(currentResolutionContext);
  1037             case WRONG_MTH:
  1038                 if (operator) return bestSoFar;
  1039                 bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
  1040             default:
  1041                 return bestSoFar;
  1044         if (!isAccessible(env, site, sym)) {
  1045             return (bestSoFar.kind == ABSENT_MTH)
  1046                 ? new AccessError(env, site, sym)
  1047                 : bestSoFar;
  1049         return (bestSoFar.kind > AMBIGUOUS)
  1050             ? sym
  1051             : mostSpecific(argtypes, sym, bestSoFar, env, site,
  1052                            allowBoxing && operator, useVarargs);
  1055     /* Return the most specific of the two methods for a call,
  1056      *  given that both are accessible and applicable.
  1057      *  @param m1               A new candidate for most specific.
  1058      *  @param m2               The previous most specific candidate.
  1059      *  @param env              The current environment.
  1060      *  @param site             The original type from where the selection
  1061      *                          takes place.
  1062      *  @param allowBoxing Allow boxing conversions of arguments.
  1063      *  @param useVarargs Box trailing arguments into an array for varargs.
  1064      */
  1065     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
  1066                         Symbol m2,
  1067                         Env<AttrContext> env,
  1068                         final Type site,
  1069                         boolean allowBoxing,
  1070                         boolean useVarargs) {
  1071         switch (m2.kind) {
  1072         case MTH:
  1073             if (m1 == m2) return m1;
  1074             boolean m1SignatureMoreSpecific =
  1075                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
  1076             boolean m2SignatureMoreSpecific =
  1077                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
  1078             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
  1079                 Type mt1 = types.memberType(site, m1);
  1080                 Type mt2 = types.memberType(site, m2);
  1081                 if (!types.overrideEquivalent(mt1, mt2))
  1082                     return ambiguityError(m1, m2);
  1084                 // same signature; select (a) the non-bridge method, or
  1085                 // (b) the one that overrides the other, or (c) the concrete
  1086                 // one, or (d) merge both abstract signatures
  1087                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
  1088                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
  1090                 // if one overrides or hides the other, use it
  1091                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
  1092                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
  1093                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
  1094                     ((m1.owner.flags_field & INTERFACE) == 0 ||
  1095                      (m2.owner.flags_field & INTERFACE) != 0) &&
  1096                     m1.overrides(m2, m1Owner, types, false))
  1097                     return m1;
  1098                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
  1099                     ((m2.owner.flags_field & INTERFACE) == 0 ||
  1100                      (m1.owner.flags_field & INTERFACE) != 0) &&
  1101                     m2.overrides(m1, m2Owner, types, false))
  1102                     return m2;
  1103                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
  1104                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
  1105                 if (m1Abstract && !m2Abstract) return m2;
  1106                 if (m2Abstract && !m1Abstract) return m1;
  1107                 // both abstract or both concrete
  1108                 if (!m1Abstract && !m2Abstract)
  1109                     return ambiguityError(m1, m2);
  1110                 // check that both signatures have the same erasure
  1111                 if (!types.isSameTypes(m1.erasure(types).getParameterTypes(),
  1112                                        m2.erasure(types).getParameterTypes()))
  1113                     return ambiguityError(m1, m2);
  1114                 // both abstract, neither overridden; merge throws clause and result type
  1115                 Type mst = mostSpecificReturnType(mt1, mt2);
  1116                 if (mst == null) {
  1117                     // Theoretically, this can't happen, but it is possible
  1118                     // due to error recovery or mixing incompatible class files
  1119                     return ambiguityError(m1, m2);
  1121                 Symbol mostSpecific = mst == mt1 ? m1 : m2;
  1122                 List<Type> allThrown = chk.intersect(mt1.getThrownTypes(), mt2.getThrownTypes());
  1123                 Type newSig = types.createMethodTypeWithThrown(mostSpecific.type, allThrown);
  1124                 MethodSymbol result = new MethodSymbol(
  1125                         mostSpecific.flags(),
  1126                         mostSpecific.name,
  1127                         newSig,
  1128                         mostSpecific.owner) {
  1129                     @Override
  1130                     public MethodSymbol implementation(TypeSymbol origin, Types types, boolean checkResult) {
  1131                         if (origin == site.tsym)
  1132                             return this;
  1133                         else
  1134                             return super.implementation(origin, types, checkResult);
  1136                     };
  1137                 return result;
  1139             if (m1SignatureMoreSpecific) return m1;
  1140             if (m2SignatureMoreSpecific) return m2;
  1141             return ambiguityError(m1, m2);
  1142         case AMBIGUOUS:
  1143             AmbiguityError e = (AmbiguityError)m2;
  1144             Symbol err1 = mostSpecific(argtypes, m1, e.sym, env, site, allowBoxing, useVarargs);
  1145             Symbol err2 = mostSpecific(argtypes, m1, e.sym2, env, site, allowBoxing, useVarargs);
  1146             if (err1 == err2) return err1;
  1147             if (err1 == e.sym && err2 == e.sym2) return m2;
  1148             if (err1 instanceof AmbiguityError &&
  1149                 err2 instanceof AmbiguityError &&
  1150                 ((AmbiguityError)err1).sym == ((AmbiguityError)err2).sym)
  1151                 return ambiguityError(m1, m2);
  1152             else
  1153                 return ambiguityError(err1, err2);
  1154         default:
  1155             throw new AssertionError();
  1158     //where
  1159     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
  1160         Symbol m12 = adjustVarargs(m1, m2, useVarargs);
  1161         Symbol m22 = adjustVarargs(m2, m1, useVarargs);
  1162         Type mtype1 = types.memberType(site, m12);
  1163         Type mtype2 = types.memberType(site, m22);
  1165         //check if invocation is more specific
  1166         if (invocationMoreSpecific(env, site, m22, mtype1.getParameterTypes(), allowBoxing, useVarargs)) {
  1167             return true;
  1170         //perform structural check
  1172         List<Type> formals1 = mtype1.getParameterTypes();
  1173         Type lastFormal1 = formals1.last();
  1174         List<Type> formals2 = mtype2.getParameterTypes();
  1175         Type lastFormal2 = formals2.last();
  1176         ListBuffer<Type> newFormals = ListBuffer.lb();
  1178         boolean hasStructuralPoly = false;
  1179         for (Type actual : actuals) {
  1180             //perform formal argument adaptation in case actuals > formals (varargs)
  1181             Type f1 = formals1.isEmpty() ?
  1182                     lastFormal1 : formals1.head;
  1183             Type f2 = formals2.isEmpty() ?
  1184                     lastFormal2 : formals2.head;
  1186             //is this a structural actual argument?
  1187             boolean isStructuralPoly = actual.tag == DEFERRED &&
  1188                     (((DeferredType)actual).tree.hasTag(LAMBDA) ||
  1189                     ((DeferredType)actual).tree.hasTag(REFERENCE));
  1191             Type newFormal = f1;
  1193             if (isStructuralPoly) {
  1194                 //for structural arguments only - check that corresponding formals
  1195                 //are related - if so replace formal with <null>
  1196                 hasStructuralPoly = true;
  1197                 DeferredType dt = (DeferredType)actual;
  1198                 Type t1 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m1, currentResolutionContext.step).apply(dt);
  1199                 Type t2 = deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, m2, currentResolutionContext.step).apply(dt);
  1200                 if (t1.isErroneous() || t2.isErroneous() || !isStructuralSubtype(t1, t2)) {
  1201                     //not structural subtypes - simply fail
  1202                     return false;
  1203                 } else {
  1204                     newFormal = syms.botType;
  1208             newFormals.append(newFormal);
  1209             if (newFormals.length() > mtype2.getParameterTypes().length()) {
  1210                 //expand m2's type so as to fit the new formal arity (varargs)
  1211                 m22.type = types.createMethodTypeWithParameters(m22.type, m22.type.getParameterTypes().append(f2));
  1214             formals1 = formals1.isEmpty() ? formals1 : formals1.tail;
  1215             formals2 = formals2.isEmpty() ? formals2 : formals2.tail;
  1218         if (!hasStructuralPoly) {
  1219             //if no structural actual was found, we're done
  1220             return false;
  1222         //perform additional adaptation if actuals < formals (varargs)
  1223         for (Type t : formals1) {
  1224             newFormals.append(t);
  1226         //check if invocation (with tweaked args) is more specific
  1227         return invocationMoreSpecific(env, site, m22, newFormals.toList(), allowBoxing, useVarargs);
  1229     //where
  1230     private boolean invocationMoreSpecific(Env<AttrContext> env, Type site, Symbol m2, List<Type> argtypes1, boolean allowBoxing, boolean useVarargs) {
  1231         noteWarner.clear();
  1232         Type mst = instantiate(env, site, m2, null,
  1233                 types.lowerBounds(argtypes1), null,
  1234                 allowBoxing, false, noteWarner);
  1235         return mst != null &&
  1236                 !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
  1238     //where
  1239     private Symbol adjustVarargs(Symbol to, Symbol from, boolean useVarargs) {
  1240         List<Type> fromArgs = from.type.getParameterTypes();
  1241         List<Type> toArgs = to.type.getParameterTypes();
  1242         if (useVarargs &&
  1243                 (from.flags() & VARARGS) != 0 &&
  1244                 (to.flags() & VARARGS) != 0) {
  1245             Type varargsTypeFrom = fromArgs.last();
  1246             Type varargsTypeTo = toArgs.last();
  1247             ListBuffer<Type> args = ListBuffer.lb();
  1248             if (toArgs.length() < fromArgs.length()) {
  1249                 //if we are checking a varargs method 'from' against another varargs
  1250                 //method 'to' (where arity of 'to' < arity of 'from') then expand signature
  1251                 //of 'to' to 'fit' arity of 'from' (this means adding fake formals to 'to'
  1252                 //until 'to' signature has the same arity as 'from')
  1253                 while (fromArgs.head != varargsTypeFrom) {
  1254                     args.append(toArgs.head == varargsTypeTo ? types.elemtype(varargsTypeTo) : toArgs.head);
  1255                     fromArgs = fromArgs.tail;
  1256                     toArgs = toArgs.head == varargsTypeTo ?
  1257                         toArgs :
  1258                         toArgs.tail;
  1260             } else {
  1261                 //formal argument list is same as original list where last
  1262                 //argument (array type) is removed
  1263                 args.appendList(toArgs.reverse().tail.reverse());
  1265             //append varargs element type as last synthetic formal
  1266             args.append(types.elemtype(varargsTypeTo));
  1267             Type mtype = types.createMethodTypeWithParameters(to.type, args.toList());
  1268             return new MethodSymbol(to.flags_field & ~VARARGS, to.name, mtype, to.owner);
  1269         } else {
  1270             return to;
  1273     //where
  1274     boolean isStructuralSubtype(Type s, Type t) {
  1276         Type ret_s = types.findDescriptorType(s).getReturnType();
  1277         Type ret_t = types.findDescriptorType(t).getReturnType();
  1279         //covariant most specific check for function descriptor return type
  1280         if (!types.isSubtype(ret_s, ret_t)) {
  1281             return false;
  1284         List<Type> args_s = types.findDescriptorType(s).getParameterTypes();
  1285         List<Type> args_t = types.findDescriptorType(t).getParameterTypes();
  1287         //arity must be identical
  1288         if (args_s.length() != args_t.length()) {
  1289             return false;
  1292         //invariant most specific check for function descriptor parameter types
  1293         if (!types.isSameTypes(args_t, args_s)) {
  1294             return false;
  1297         return true;
  1299     //where
  1300     Type mostSpecificReturnType(Type mt1, Type mt2) {
  1301         Type rt1 = mt1.getReturnType();
  1302         Type rt2 = mt2.getReturnType();
  1304         if (mt1.tag == FORALL && mt2.tag == FORALL) {
  1305             //if both are generic methods, adjust return type ahead of subtyping check
  1306             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
  1308         //first use subtyping, then return type substitutability
  1309         if (types.isSubtype(rt1, rt2)) {
  1310             return mt1;
  1311         } else if (types.isSubtype(rt2, rt1)) {
  1312             return mt2;
  1313         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
  1314             return mt1;
  1315         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
  1316             return mt2;
  1317         } else {
  1318             return null;
  1321     //where
  1322     Symbol ambiguityError(Symbol m1, Symbol m2) {
  1323         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
  1324             return (m1.flags() & CLASH) == 0 ? m1 : m2;
  1325         } else {
  1326             return new AmbiguityError(m1, m2);
  1330     /** Find best qualified method matching given name, type and value
  1331      *  arguments.
  1332      *  @param env       The current environment.
  1333      *  @param site      The original type from where the selection
  1334      *                   takes place.
  1335      *  @param name      The method's name.
  1336      *  @param argtypes  The method's value arguments.
  1337      *  @param typeargtypes The method's type arguments
  1338      *  @param allowBoxing Allow boxing conversions of arguments.
  1339      *  @param useVarargs Box trailing arguments into an array for varargs.
  1340      */
  1341     Symbol findMethod(Env<AttrContext> env,
  1342                       Type site,
  1343                       Name name,
  1344                       List<Type> argtypes,
  1345                       List<Type> typeargtypes,
  1346                       boolean allowBoxing,
  1347                       boolean useVarargs,
  1348                       boolean operator) {
  1349         Symbol bestSoFar = methodNotFound;
  1350         bestSoFar = findMethod(env,
  1351                           site,
  1352                           name,
  1353                           argtypes,
  1354                           typeargtypes,
  1355                           site.tsym.type,
  1356                           bestSoFar,
  1357                           allowBoxing,
  1358                           useVarargs,
  1359                           operator);
  1360         reportVerboseResolutionDiagnostic(env.tree.pos(), name, site, argtypes, typeargtypes, bestSoFar);
  1361         return bestSoFar;
  1363     // where
  1364     private Symbol findMethod(Env<AttrContext> env,
  1365                               Type site,
  1366                               Name name,
  1367                               List<Type> argtypes,
  1368                               List<Type> typeargtypes,
  1369                               Type intype,
  1370                               Symbol bestSoFar,
  1371                               boolean allowBoxing,
  1372                               boolean useVarargs,
  1373                               boolean operator) {
  1374         boolean abstractOk = true;
  1375         List<Type> itypes = List.nil();
  1376         for (TypeSymbol s : superclasses(intype)) {
  1377             bestSoFar = lookupMethod(env, site, name, argtypes, typeargtypes,
  1378                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1379             //We should not look for abstract methods if receiver is a concrete class
  1380             //(as concrete classes are expected to implement all abstracts coming
  1381             //from superinterfaces)
  1382             abstractOk &= (s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0;
  1383             if (abstractOk) {
  1384                 for (Type itype : types.interfaces(s.type)) {
  1385                     itypes = types.union(types.closure(itype), itypes);
  1388             if (name == names.init) break;
  1391         Symbol concrete = bestSoFar.kind < ERR &&
  1392                 (bestSoFar.flags() & ABSTRACT) == 0 ?
  1393                 bestSoFar : methodNotFound;
  1395         if (name != names.init) {
  1396             //keep searching for abstract methods
  1397             for (Type itype : itypes) {
  1398                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
  1399                 bestSoFar = lookupMethod(env, site, name, argtypes, typeargtypes,
  1400                     itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
  1401                     if (concrete != bestSoFar &&
  1402                             concrete.kind < ERR  && bestSoFar.kind < ERR &&
  1403                             types.isSubSignature(concrete.type, bestSoFar.type)) {
  1404                         //this is an hack - as javac does not do full membership checks
  1405                         //most specific ends up comparing abstract methods that might have
  1406                         //been implemented by some concrete method in a subclass and,
  1407                         //because of raw override, it is possible for an abstract method
  1408                         //to be more specific than the concrete method - so we need
  1409                         //to explicitly call that out (see CR 6178365)
  1410                         bestSoFar = concrete;
  1414         return bestSoFar;
  1417     /**
  1418      * Return an Iterable object to scan the superclasses of a given type.
  1419      * It's crucial that the scan is done lazily, as we don't want to accidentally
  1420      * access more supertypes than strictly needed (as this could trigger completion
  1421      * errors if some of the not-needed supertypes are missing/ill-formed).
  1422      */
  1423     Iterable<TypeSymbol> superclasses(final Type intype) {
  1424         return new Iterable<TypeSymbol>() {
  1425             public Iterator<TypeSymbol> iterator() {
  1426                 return new Iterator<TypeSymbol>() {
  1428                     List<TypeSymbol> seen = List.nil();
  1429                     TypeSymbol currentSym = symbolFor(intype);
  1430                     TypeSymbol prevSym = null;
  1432                     public boolean hasNext() {
  1433                         if (currentSym == syms.noSymbol) {
  1434                             currentSym = symbolFor(types.supertype(prevSym.type));
  1436                         return currentSym != null;
  1439                     public TypeSymbol next() {
  1440                         prevSym = currentSym;
  1441                         currentSym = syms.noSymbol;
  1442                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
  1443                         return prevSym;
  1446                     public void remove() {
  1447                         throw new UnsupportedOperationException();
  1450                     TypeSymbol symbolFor(Type t) {
  1451                         if (t.tag != CLASS &&
  1452                                 t.tag != TYPEVAR) {
  1453                             return null;
  1455                         while (t.tag == TYPEVAR)
  1456                             t = t.getUpperBound();
  1457                         if (seen.contains(t.tsym)) {
  1458                             //degenerate case in which we have a circular
  1459                             //class hierarchy - because of ill-formed classfiles
  1460                             return null;
  1462                         seen = seen.prepend(t.tsym);
  1463                         return t.tsym;
  1465                 };
  1467         };
  1470     /**
  1471      * Lookup a method with given name and argument types in a given scope
  1472      */
  1473     Symbol lookupMethod(Env<AttrContext> env,
  1474             Type site,
  1475             Name name,
  1476             List<Type> argtypes,
  1477             List<Type> typeargtypes,
  1478             Scope sc,
  1479             Symbol bestSoFar,
  1480             boolean allowBoxing,
  1481             boolean useVarargs,
  1482             boolean operator,
  1483             boolean abstractok) {
  1484         for (Symbol s : sc.getElementsByName(name, lookupFilter)) {
  1485             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
  1486                     bestSoFar, allowBoxing, useVarargs, operator);
  1488         return bestSoFar;
  1490     //where
  1491         Filter<Symbol> lookupFilter = new Filter<Symbol>() {
  1492             public boolean accepts(Symbol s) {
  1493                 return s.kind == MTH &&
  1494                         (s.flags() & SYNTHETIC) == 0;
  1496         };
  1498     /** Find unqualified method matching given name, type and value arguments.
  1499      *  @param env       The current environment.
  1500      *  @param name      The method's name.
  1501      *  @param argtypes  The method's value arguments.
  1502      *  @param typeargtypes  The method's type arguments.
  1503      *  @param allowBoxing Allow boxing conversions of arguments.
  1504      *  @param useVarargs Box trailing arguments into an array for varargs.
  1505      */
  1506     Symbol findFun(Env<AttrContext> env, Name name,
  1507                    List<Type> argtypes, List<Type> typeargtypes,
  1508                    boolean allowBoxing, boolean useVarargs) {
  1509         Symbol bestSoFar = methodNotFound;
  1510         Symbol sym;
  1511         Env<AttrContext> env1 = env;
  1512         boolean staticOnly = false;
  1513         while (env1.outer != null) {
  1514             if (isStatic(env1)) staticOnly = true;
  1515             sym = findMethod(
  1516                 env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
  1517                 allowBoxing, useVarargs, false);
  1518             if (sym.exists()) {
  1519                 if (staticOnly &&
  1520                     sym.kind == MTH &&
  1521                     sym.owner.kind == TYP &&
  1522                     (sym.flags() & STATIC) == 0) return new StaticError(sym);
  1523                 else return sym;
  1524             } else if (sym.kind < bestSoFar.kind) {
  1525                 bestSoFar = sym;
  1527             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  1528             env1 = env1.outer;
  1531         sym = findMethod(env, syms.predefClass.type, name, argtypes,
  1532                          typeargtypes, allowBoxing, useVarargs, false);
  1533         if (sym.exists())
  1534             return sym;
  1536         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
  1537         for (; e.scope != null; e = e.next()) {
  1538             sym = e.sym;
  1539             Type origin = e.getOrigin().owner.type;
  1540             if (sym.kind == MTH) {
  1541                 if (e.sym.owner.type != origin)
  1542                     sym = sym.clone(e.getOrigin().owner);
  1543                 if (!isAccessible(env, origin, sym))
  1544                     sym = new AccessError(env, origin, sym);
  1545                 bestSoFar = selectBest(env, origin,
  1546                                        argtypes, typeargtypes,
  1547                                        sym, bestSoFar,
  1548                                        allowBoxing, useVarargs, false);
  1551         if (bestSoFar.exists())
  1552             return bestSoFar;
  1554         e = env.toplevel.starImportScope.lookup(name);
  1555         for (; e.scope != null; e = e.next()) {
  1556             sym = e.sym;
  1557             Type origin = e.getOrigin().owner.type;
  1558             if (sym.kind == MTH) {
  1559                 if (e.sym.owner.type != origin)
  1560                     sym = sym.clone(e.getOrigin().owner);
  1561                 if (!isAccessible(env, origin, sym))
  1562                     sym = new AccessError(env, origin, sym);
  1563                 bestSoFar = selectBest(env, origin,
  1564                                        argtypes, typeargtypes,
  1565                                        sym, bestSoFar,
  1566                                        allowBoxing, useVarargs, false);
  1569         return bestSoFar;
  1572     /** Load toplevel or member class with given fully qualified name and
  1573      *  verify that it is accessible.
  1574      *  @param env       The current environment.
  1575      *  @param name      The fully qualified name of the class to be loaded.
  1576      */
  1577     Symbol loadClass(Env<AttrContext> env, Name name) {
  1578         try {
  1579             ClassSymbol c = reader.loadClass(name);
  1580             return isAccessible(env, c) ? c : new AccessError(c);
  1581         } catch (ClassReader.BadClassFile err) {
  1582             throw err;
  1583         } catch (CompletionFailure ex) {
  1584             return typeNotFound;
  1588     /** Find qualified member type.
  1589      *  @param env       The current environment.
  1590      *  @param site      The original type from where the selection takes
  1591      *                   place.
  1592      *  @param name      The type's name.
  1593      *  @param c         The class to search for the member type. This is
  1594      *                   always a superclass or implemented interface of
  1595      *                   site's class.
  1596      */
  1597     Symbol findMemberType(Env<AttrContext> env,
  1598                           Type site,
  1599                           Name name,
  1600                           TypeSymbol c) {
  1601         Symbol bestSoFar = typeNotFound;
  1602         Symbol sym;
  1603         Scope.Entry e = c.members().lookup(name);
  1604         while (e.scope != null) {
  1605             if (e.sym.kind == TYP) {
  1606                 return isAccessible(env, site, e.sym)
  1607                     ? e.sym
  1608                     : new AccessError(env, site, e.sym);
  1610             e = e.next();
  1612         Type st = types.supertype(c.type);
  1613         if (st != null && st.tag == CLASS) {
  1614             sym = findMemberType(env, site, name, st.tsym);
  1615             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1617         for (List<Type> l = types.interfaces(c.type);
  1618              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
  1619              l = l.tail) {
  1620             sym = findMemberType(env, site, name, l.head.tsym);
  1621             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
  1622                 sym.owner != bestSoFar.owner)
  1623                 bestSoFar = new AmbiguityError(bestSoFar, sym);
  1624             else if (sym.kind < bestSoFar.kind)
  1625                 bestSoFar = sym;
  1627         return bestSoFar;
  1630     /** Find a global type in given scope and load corresponding class.
  1631      *  @param env       The current environment.
  1632      *  @param scope     The scope in which to look for the type.
  1633      *  @param name      The type's name.
  1634      */
  1635     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
  1636         Symbol bestSoFar = typeNotFound;
  1637         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
  1638             Symbol sym = loadClass(env, e.sym.flatName());
  1639             if (bestSoFar.kind == TYP && sym.kind == TYP &&
  1640                 bestSoFar != sym)
  1641                 return new AmbiguityError(bestSoFar, sym);
  1642             else if (sym.kind < bestSoFar.kind)
  1643                 bestSoFar = sym;
  1645         return bestSoFar;
  1648     /** Find an unqualified type symbol.
  1649      *  @param env       The current environment.
  1650      *  @param name      The type's name.
  1651      */
  1652     Symbol findType(Env<AttrContext> env, Name name) {
  1653         Symbol bestSoFar = typeNotFound;
  1654         Symbol sym;
  1655         boolean staticOnly = false;
  1656         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
  1657             if (isStatic(env1)) staticOnly = true;
  1658             for (Scope.Entry e = env1.info.scope.lookup(name);
  1659                  e.scope != null;
  1660                  e = e.next()) {
  1661                 if (e.sym.kind == TYP) {
  1662                     if (staticOnly &&
  1663                         e.sym.type.tag == TYPEVAR &&
  1664                         e.sym.owner.kind == TYP) return new StaticError(e.sym);
  1665                     return e.sym;
  1669             sym = findMemberType(env1, env1.enclClass.sym.type, name,
  1670                                  env1.enclClass.sym);
  1671             if (staticOnly && sym.kind == TYP &&
  1672                 sym.type.tag == CLASS &&
  1673                 sym.type.getEnclosingType().tag == CLASS &&
  1674                 env1.enclClass.sym.type.isParameterized() &&
  1675                 sym.type.getEnclosingType().isParameterized())
  1676                 return new StaticError(sym);
  1677             else if (sym.exists()) return sym;
  1678             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1680             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
  1681             if ((encl.sym.flags() & STATIC) != 0)
  1682                 staticOnly = true;
  1685         if (!env.tree.hasTag(IMPORT)) {
  1686             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
  1687             if (sym.exists()) return sym;
  1688             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1690             sym = findGlobalType(env, env.toplevel.packge.members(), name);
  1691             if (sym.exists()) return sym;
  1692             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1694             sym = findGlobalType(env, env.toplevel.starImportScope, name);
  1695             if (sym.exists()) return sym;
  1696             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1699         return bestSoFar;
  1702     /** Find an unqualified identifier which matches a specified kind set.
  1703      *  @param env       The current environment.
  1704      *  @param name      The indentifier's name.
  1705      *  @param kind      Indicates the possible symbol kinds
  1706      *                   (a subset of VAL, TYP, PCK).
  1707      */
  1708     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
  1709         Symbol bestSoFar = typeNotFound;
  1710         Symbol sym;
  1712         if ((kind & VAR) != 0) {
  1713             sym = findVar(env, name);
  1714             if (sym.exists()) return sym;
  1715             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1718         if ((kind & TYP) != 0) {
  1719             sym = findType(env, name);
  1720             if (sym.exists()) return sym;
  1721             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1724         if ((kind & PCK) != 0) return reader.enterPackage(name);
  1725         else return bestSoFar;
  1728     /** Find an identifier in a package which matches a specified kind set.
  1729      *  @param env       The current environment.
  1730      *  @param name      The identifier's name.
  1731      *  @param kind      Indicates the possible symbol kinds
  1732      *                   (a nonempty subset of TYP, PCK).
  1733      */
  1734     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
  1735                               Name name, int kind) {
  1736         Name fullname = TypeSymbol.formFullName(name, pck);
  1737         Symbol bestSoFar = typeNotFound;
  1738         PackageSymbol pack = null;
  1739         if ((kind & PCK) != 0) {
  1740             pack = reader.enterPackage(fullname);
  1741             if (pack.exists()) return pack;
  1743         if ((kind & TYP) != 0) {
  1744             Symbol sym = loadClass(env, fullname);
  1745             if (sym.exists()) {
  1746                 // don't allow programs to use flatnames
  1747                 if (name == sym.name) return sym;
  1749             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1751         return (pack != null) ? pack : bestSoFar;
  1754     /** Find an identifier among the members of a given type `site'.
  1755      *  @param env       The current environment.
  1756      *  @param site      The type containing the symbol to be found.
  1757      *  @param name      The identifier's name.
  1758      *  @param kind      Indicates the possible symbol kinds
  1759      *                   (a subset of VAL, TYP).
  1760      */
  1761     Symbol findIdentInType(Env<AttrContext> env, Type site,
  1762                            Name name, int kind) {
  1763         Symbol bestSoFar = typeNotFound;
  1764         Symbol sym;
  1765         if ((kind & VAR) != 0) {
  1766             sym = findField(env, site, name, site.tsym);
  1767             if (sym.exists()) return sym;
  1768             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1771         if ((kind & TYP) != 0) {
  1772             sym = findMemberType(env, site, name, site.tsym);
  1773             if (sym.exists()) return sym;
  1774             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
  1776         return bestSoFar;
  1779 /* ***************************************************************************
  1780  *  Access checking
  1781  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
  1782  *  an error message in the process
  1783  ****************************************************************************/
  1785     /** If `sym' is a bad symbol: report error and return errSymbol
  1786      *  else pass through unchanged,
  1787      *  additional arguments duplicate what has been used in trying to find the
  1788      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
  1789      *  expect misses to happen frequently.
  1791      *  @param sym       The symbol that was found, or a ResolveError.
  1792      *  @param pos       The position to use for error reporting.
  1793      *  @param location  The symbol the served as a context for this lookup
  1794      *  @param site      The original type from where the selection took place.
  1795      *  @param name      The symbol's name.
  1796      *  @param qualified Did we get here through a qualified expression resolution?
  1797      *  @param argtypes  The invocation's value arguments,
  1798      *                   if we looked for a method.
  1799      *  @param typeargtypes  The invocation's type arguments,
  1800      *                   if we looked for a method.
  1801      *  @param logResolveHelper helper class used to log resolve errors
  1802      */
  1803     Symbol accessInternal(Symbol sym,
  1804                   DiagnosticPosition pos,
  1805                   Symbol location,
  1806                   Type site,
  1807                   Name name,
  1808                   boolean qualified,
  1809                   List<Type> argtypes,
  1810                   List<Type> typeargtypes,
  1811                   LogResolveHelper logResolveHelper) {
  1812         if (sym.kind >= AMBIGUOUS) {
  1813             ResolveError errSym = (ResolveError)sym;
  1814             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
  1815             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
  1816             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
  1817                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
  1820         return sym;
  1823     /**
  1824      * Variant of the generalized access routine, to be used for generating method
  1825      * resolution diagnostics
  1826      */
  1827     Symbol accessMethod(Symbol sym,
  1828                   DiagnosticPosition pos,
  1829                   Symbol location,
  1830                   Type site,
  1831                   Name name,
  1832                   boolean qualified,
  1833                   List<Type> argtypes,
  1834                   List<Type> typeargtypes) {
  1835         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
  1838     /** Same as original accessMethod(), but without location.
  1839      */
  1840     Symbol accessMethod(Symbol sym,
  1841                   DiagnosticPosition pos,
  1842                   Type site,
  1843                   Name name,
  1844                   boolean qualified,
  1845                   List<Type> argtypes,
  1846                   List<Type> typeargtypes) {
  1847         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
  1850     /**
  1851      * Variant of the generalized access routine, to be used for generating variable,
  1852      * type resolution diagnostics
  1853      */
  1854     Symbol accessBase(Symbol sym,
  1855                   DiagnosticPosition pos,
  1856                   Symbol location,
  1857                   Type site,
  1858                   Name name,
  1859                   boolean qualified) {
  1860         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
  1863     /** Same as original accessBase(), but without location.
  1864      */
  1865     Symbol accessBase(Symbol sym,
  1866                   DiagnosticPosition pos,
  1867                   Type site,
  1868                   Name name,
  1869                   boolean qualified) {
  1870         return accessBase(sym, pos, site.tsym, site, name, qualified);
  1873     interface LogResolveHelper {
  1874         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
  1875         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
  1878     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
  1879         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1880             return !site.isErroneous();
  1882         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1883             return argtypes;
  1885     };
  1887     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
  1888         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
  1889             return !site.isErroneous() &&
  1890                         !Type.isErroneous(argtypes) &&
  1891                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
  1893         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
  1894             if (syms.operatorNames.contains(name)) {
  1895                 return argtypes;
  1896             } else {
  1897                 Symbol msym = errSym.kind == WRONG_MTH ?
  1898                         ((InapplicableSymbolError)errSym).errCandidate().sym : accessedSym;
  1900                 List<Type> argtypes2 = Type.map(argtypes,
  1901                         deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, msym, currentResolutionContext.firstErroneousResolutionPhase()));
  1903                 if (msym != accessedSym) {
  1904                     //fixup deferred type caches - this 'hack' is required because the symbol
  1905                     //returned by InapplicableSymbolError.access() will hide the candidate
  1906                     //method symbol that can be used for lookups in the speculative cache,
  1907                     //causing problems in Attr.checkId()
  1908                     for (Type t : argtypes) {
  1909                         if (t.tag == DEFERRED) {
  1910                             DeferredType dt = (DeferredType)t;
  1911                             dt.speculativeCache.dupAllTo(msym, accessedSym);
  1915                 return argtypes2;
  1918     };
  1920     /** Check that sym is not an abstract method.
  1921      */
  1922     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
  1923         if ((sym.flags() & ABSTRACT) != 0)
  1924             log.error(pos, "abstract.cant.be.accessed.directly",
  1925                       kindName(sym), sym, sym.location());
  1928 /* ***************************************************************************
  1929  *  Debugging
  1930  ****************************************************************************/
  1932     /** print all scopes starting with scope s and proceeding outwards.
  1933      *  used for debugging.
  1934      */
  1935     public void printscopes(Scope s) {
  1936         while (s != null) {
  1937             if (s.owner != null)
  1938                 System.err.print(s.owner + ": ");
  1939             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
  1940                 if ((e.sym.flags() & ABSTRACT) != 0)
  1941                     System.err.print("abstract ");
  1942                 System.err.print(e.sym + " ");
  1944             System.err.println();
  1945             s = s.next;
  1949     void printscopes(Env<AttrContext> env) {
  1950         while (env.outer != null) {
  1951             System.err.println("------------------------------");
  1952             printscopes(env.info.scope);
  1953             env = env.outer;
  1957     public void printscopes(Type t) {
  1958         while (t.tag == CLASS) {
  1959             printscopes(t.tsym.members());
  1960             t = types.supertype(t);
  1964 /* ***************************************************************************
  1965  *  Name resolution
  1966  *  Naming conventions are as for symbol lookup
  1967  *  Unlike the find... methods these methods will report access errors
  1968  ****************************************************************************/
  1970     /** Resolve an unqualified (non-method) identifier.
  1971      *  @param pos       The position to use for error reporting.
  1972      *  @param env       The environment current at the identifier use.
  1973      *  @param name      The identifier's name.
  1974      *  @param kind      The set of admissible symbol kinds for the identifier.
  1975      */
  1976     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
  1977                         Name name, int kind) {
  1978         return accessBase(
  1979             findIdent(env, name, kind),
  1980             pos, env.enclClass.sym.type, name, false);
  1983     /** Resolve an unqualified method identifier.
  1984      *  @param pos       The position to use for error reporting.
  1985      *  @param env       The environment current at the method invocation.
  1986      *  @param name      The identifier's name.
  1987      *  @param argtypes  The types of the invocation's value arguments.
  1988      *  @param typeargtypes  The types of the invocation's type arguments.
  1989      */
  1990     Symbol resolveMethod(DiagnosticPosition pos,
  1991                          Env<AttrContext> env,
  1992                          Name name,
  1993                          List<Type> argtypes,
  1994                          List<Type> typeargtypes) {
  1995         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  1996         try {
  1997             currentResolutionContext = new MethodResolutionContext();
  1998             Symbol sym = methodNotFound;
  1999             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2000             while (steps.nonEmpty() &&
  2001                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2002                    sym.kind >= ERRONEOUS) {
  2003                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2004                 sym = findFun(env, name, argtypes, typeargtypes,
  2005                         steps.head.isBoxingRequired,
  2006                         steps.head.isVarargsRequired);
  2007                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2008                 steps = steps.tail;
  2010             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  2011                 MethodResolutionPhase errPhase =
  2012                         currentResolutionContext.firstErroneousResolutionPhase();
  2013                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2014                         pos, env.enclClass.sym.type, name, false, argtypes, typeargtypes);
  2015                 env.info.pendingResolutionPhase = errPhase;
  2017             return sym;
  2019         finally {
  2020             currentResolutionContext = prevResolutionContext;
  2024     /** Resolve a qualified method identifier
  2025      *  @param pos       The position to use for error reporting.
  2026      *  @param env       The environment current at the method invocation.
  2027      *  @param site      The type of the qualifying expression, in which
  2028      *                   identifier is searched.
  2029      *  @param name      The identifier's name.
  2030      *  @param argtypes  The types of the invocation's value arguments.
  2031      *  @param typeargtypes  The types of the invocation's type arguments.
  2032      */
  2033     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2034                                   Type site, Name name, List<Type> argtypes,
  2035                                   List<Type> typeargtypes) {
  2036         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
  2038     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2039                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2040                                   List<Type> typeargtypes) {
  2041         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
  2043     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
  2044                                   DiagnosticPosition pos, Env<AttrContext> env,
  2045                                   Symbol location, Type site, Name name, List<Type> argtypes,
  2046                                   List<Type> typeargtypes) {
  2047         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2048         try {
  2049             currentResolutionContext = resolveContext;
  2050             Symbol sym = methodNotFound;
  2051             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2052             while (steps.nonEmpty() &&
  2053                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2054                    sym.kind >= ERRONEOUS) {
  2055                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2056                 sym = findMethod(env, site, name, argtypes, typeargtypes,
  2057                         steps.head.isBoxingRequired(),
  2058                         steps.head.isVarargsRequired(), false);
  2059                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2060                 steps = steps.tail;
  2062             if (sym.kind >= AMBIGUOUS) {
  2063                 //if nothing is found return the 'first' error
  2064                 MethodResolutionPhase errPhase =
  2065                         currentResolutionContext.firstErroneousResolutionPhase();
  2066                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2067                         pos, location, site, name, true, argtypes, typeargtypes);
  2068                 env.info.pendingResolutionPhase = errPhase;
  2069             } else if (allowMethodHandles) {
  2070                 MethodSymbol msym = (MethodSymbol)sym;
  2071                 if (msym.isSignaturePolymorphic(types)) {
  2072                     env.info.pendingResolutionPhase = BASIC;
  2073                     return findPolymorphicSignatureInstance(env, sym, argtypes);
  2076             return sym;
  2078         finally {
  2079             currentResolutionContext = prevResolutionContext;
  2083     /** Find or create an implicit method of exactly the given type (after erasure).
  2084      *  Searches in a side table, not the main scope of the site.
  2085      *  This emulates the lookup process required by JSR 292 in JVM.
  2086      *  @param env       Attribution environment
  2087      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
  2088      *  @param argtypes  The required argument types
  2089      */
  2090     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
  2091                                             Symbol spMethod,
  2092                                             List<Type> argtypes) {
  2093         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
  2094                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
  2095         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
  2096             if (types.isSameType(mtype, sym.type)) {
  2097                return sym;
  2101         // create the desired method
  2102         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
  2103         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner);
  2104         polymorphicSignatureScope.enter(msym);
  2105         return msym;
  2108     /** Resolve a qualified method identifier, throw a fatal error if not
  2109      *  found.
  2110      *  @param pos       The position to use for error reporting.
  2111      *  @param env       The environment current at the method invocation.
  2112      *  @param site      The type of the qualifying expression, in which
  2113      *                   identifier is searched.
  2114      *  @param name      The identifier's name.
  2115      *  @param argtypes  The types of the invocation's value arguments.
  2116      *  @param typeargtypes  The types of the invocation's type arguments.
  2117      */
  2118     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
  2119                                         Type site, Name name,
  2120                                         List<Type> argtypes,
  2121                                         List<Type> typeargtypes) {
  2122         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2123         resolveContext.internalResolution = true;
  2124         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
  2125                 site, name, argtypes, typeargtypes);
  2126         if (sym.kind == MTH) return (MethodSymbol)sym;
  2127         else throw new FatalError(
  2128                  diags.fragment("fatal.err.cant.locate.meth",
  2129                                 name));
  2132     /** Resolve constructor.
  2133      *  @param pos       The position to use for error reporting.
  2134      *  @param env       The environment current at the constructor invocation.
  2135      *  @param site      The type of class for which a constructor is searched.
  2136      *  @param argtypes  The types of the constructor invocation's value
  2137      *                   arguments.
  2138      *  @param typeargtypes  The types of the constructor invocation's type
  2139      *                   arguments.
  2140      */
  2141     Symbol resolveConstructor(DiagnosticPosition pos,
  2142                               Env<AttrContext> env,
  2143                               Type site,
  2144                               List<Type> argtypes,
  2145                               List<Type> typeargtypes) {
  2146         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
  2148     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
  2149                               DiagnosticPosition pos,
  2150                               Env<AttrContext> env,
  2151                               Type site,
  2152                               List<Type> argtypes,
  2153                               List<Type> typeargtypes) {
  2154         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2155         try {
  2156             currentResolutionContext = resolveContext;
  2157             Symbol sym = methodNotFound;
  2158             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2159             while (steps.nonEmpty() &&
  2160                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2161                    sym.kind >= ERRONEOUS) {
  2162                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2163                 sym = findConstructor(pos, env, site, argtypes, typeargtypes,
  2164                         steps.head.isBoxingRequired(),
  2165                         steps.head.isVarargsRequired());
  2166                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2167                 steps = steps.tail;
  2169             if (sym.kind >= AMBIGUOUS) {//if nothing is found return the 'first' error
  2170                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2171                 sym = accessMethod(currentResolutionContext.resolutionCache.get(errPhase),
  2172                         pos, site, names.init, true, argtypes, typeargtypes);
  2173                 env.info.pendingResolutionPhase = errPhase;
  2175             return sym;
  2177         finally {
  2178             currentResolutionContext = prevResolutionContext;
  2182     /** Resolve constructor using diamond inference.
  2183      *  @param pos       The position to use for error reporting.
  2184      *  @param env       The environment current at the constructor invocation.
  2185      *  @param site      The type of class for which a constructor is searched.
  2186      *                   The scope of this class has been touched in attribution.
  2187      *  @param argtypes  The types of the constructor invocation's value
  2188      *                   arguments.
  2189      *  @param typeargtypes  The types of the constructor invocation's type
  2190      *                   arguments.
  2191      */
  2192     Symbol resolveDiamond(DiagnosticPosition pos,
  2193                               Env<AttrContext> env,
  2194                               Type site,
  2195                               List<Type> argtypes,
  2196                               List<Type> typeargtypes) {
  2197         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2198         try {
  2199             currentResolutionContext = new MethodResolutionContext();
  2200             Symbol sym = methodNotFound;
  2201             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2202             while (steps.nonEmpty() &&
  2203                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2204                    sym.kind >= ERRONEOUS) {
  2205                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2206                 sym = findDiamond(env, site, argtypes, typeargtypes,
  2207                         steps.head.isBoxingRequired(),
  2208                         steps.head.isVarargsRequired());
  2209                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2210                 steps = steps.tail;
  2212             if (sym.kind >= AMBIGUOUS) {
  2213                 Symbol errSym =
  2214                         currentResolutionContext.resolutionCache.get(currentResolutionContext.firstErroneousResolutionPhase());
  2215                 final JCDiagnostic details = errSym.kind == WRONG_MTH ?
  2216                                 ((InapplicableSymbolError)errSym).errCandidate().details :
  2217                                 null;
  2218                 errSym = new InapplicableSymbolError(errSym.kind, "diamondError", currentResolutionContext) {
  2219                     @Override
  2220                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
  2221                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2222                         String key = details == null ?
  2223                             "cant.apply.diamond" :
  2224                             "cant.apply.diamond.1";
  2225                         return diags.create(dkind, log.currentSource(), pos, key,
  2226                                 diags.fragment("diamond", site.tsym), details);
  2228                 };
  2229                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2230                 sym = accessMethod(errSym, pos, site, names.init, true, argtypes, typeargtypes);
  2231                 env.info.pendingResolutionPhase = errPhase;
  2233             return sym;
  2235         finally {
  2236             currentResolutionContext = prevResolutionContext;
  2240     /** This method scans all the constructor symbol in a given class scope -
  2241      *  assuming that the original scope contains a constructor of the kind:
  2242      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
  2243      *  a method check is executed against the modified constructor type:
  2244      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
  2245      *  inference. The inferred return type of the synthetic constructor IS
  2246      *  the inferred type for the diamond operator.
  2247      */
  2248     private Symbol findDiamond(Env<AttrContext> env,
  2249                               Type site,
  2250                               List<Type> argtypes,
  2251                               List<Type> typeargtypes,
  2252                               boolean allowBoxing,
  2253                               boolean useVarargs) {
  2254         Symbol bestSoFar = methodNotFound;
  2255         for (Scope.Entry e = site.tsym.members().lookup(names.init);
  2256              e.scope != null;
  2257              e = e.next()) {
  2258             final Symbol sym = e.sym;
  2259             //- System.out.println(" e " + e.sym);
  2260             if (sym.kind == MTH &&
  2261                 (sym.flags_field & SYNTHETIC) == 0) {
  2262                     List<Type> oldParams = e.sym.type.tag == FORALL ?
  2263                             ((ForAll)sym.type).tvars :
  2264                             List.<Type>nil();
  2265                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
  2266                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
  2267                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
  2268                         @Override
  2269                         public Symbol baseSymbol() {
  2270                             return sym;
  2272                     };
  2273                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
  2274                             newConstr,
  2275                             bestSoFar,
  2276                             allowBoxing,
  2277                             useVarargs,
  2278                             false);
  2281         return bestSoFar;
  2284     /**
  2285      * Resolution of member references is typically done as a single
  2286      * overload resolution step, where the argument types A are inferred from
  2287      * the target functional descriptor.
  2289      * If the member reference is a method reference with a type qualifier,
  2290      * a two-step lookup process is performed. The first step uses the
  2291      * expected argument list A, while the second step discards the first
  2292      * type from A (which is treated as a receiver type).
  2294      * There are two cases in which inference is performed: (i) if the member
  2295      * reference is a constructor reference and the qualifier type is raw - in
  2296      * which case diamond inference is used to infer a parameterization for the
  2297      * type qualifier; (ii) if the member reference is an unbound reference
  2298      * where the type qualifier is raw - in that case, during the unbound lookup
  2299      * the receiver argument type is used to infer an instantiation for the raw
  2300      * qualifier type.
  2302      * When a multi-step resolution process is exploited, it is an error
  2303      * if two candidates are found (ambiguity).
  2305      * This routine returns a pair (T,S), where S is the member reference symbol,
  2306      * and T is the type of the class in which S is defined. This is necessary as
  2307      * the type T might be dynamically inferred (i.e. if constructor reference
  2308      * has a raw qualifier).
  2309      */
  2310     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(DiagnosticPosition pos,
  2311                                   Env<AttrContext> env,
  2312                                   JCMemberReference referenceTree,
  2313                                   Type site,
  2314                                   Name name, List<Type> argtypes,
  2315                                   List<Type> typeargtypes,
  2316                                   boolean boxingAllowed) {
  2317         //step 1 - bound lookup
  2318         ReferenceLookupHelper boundLookupHelper = name.equals(names.init) ?
  2319                 new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, boxingAllowed) :
  2320                 new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, boxingAllowed);
  2321         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
  2322         Symbol boundSym = findMemberReference(boundEnv, boundLookupHelper);
  2324         //step 2 - unbound lookup
  2325         ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup();
  2326         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
  2327         Symbol unboundSym = findMemberReference(unboundEnv, unboundLookupHelper);
  2329         //merge results
  2330         Pair<Symbol, ReferenceLookupHelper> res;
  2331         if (unboundSym.kind != MTH) {
  2332             res = new Pair<Symbol, ReferenceLookupHelper>(boundSym, boundLookupHelper);
  2333             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2334         } else if (boundSym.kind == MTH) {
  2335             res = new Pair<Symbol, ReferenceLookupHelper>(ambiguityError(boundSym, unboundSym), boundLookupHelper);
  2336             env.info.pendingResolutionPhase = boundEnv.info.pendingResolutionPhase;
  2337         } else {
  2338             res = new Pair<Symbol, ReferenceLookupHelper>(unboundSym, unboundLookupHelper);
  2339             env.info.pendingResolutionPhase = unboundEnv.info.pendingResolutionPhase;
  2342         return res;
  2345     /**
  2346      * Helper for defining custom method-like lookup logic; a lookup helper
  2347      * provides hooks for (i) the actual lookup logic and (ii) accessing the
  2348      * lookup result (this step might result in compiler diagnostics to be generated)
  2349      */
  2350     abstract class LookupHelper {
  2352         /** name of the symbol to lookup */
  2353         Name name;
  2355         /** location in which the lookup takes place */
  2356         Type site;
  2358         /** actual types used during the lookup */
  2359         List<Type> argtypes;
  2361         /** type arguments used during the lookup */
  2362         List<Type> typeargtypes;
  2364         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
  2365             this.name = name;
  2366             this.site = site;
  2367             this.argtypes = argtypes;
  2368             this.typeargtypes = typeargtypes;
  2371         /**
  2372          * Search for a symbol under a given overload resolution phase - this method
  2373          * is usually called several times, once per each overload resolution phase
  2374          */
  2375         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
  2377         /**
  2378          * Validate the result of the lookup
  2379          */
  2380         abstract Symbol access(Env<AttrContext> env, Symbol symbol);
  2383     /**
  2384      * Helper class for member reference lookup. A reference lookup helper
  2385      * defines the basic logic for member reference lookup; a method gives
  2386      * access to an 'unbound' helper used to perform an unbound member
  2387      * reference lookup.
  2388      */
  2389     abstract class ReferenceLookupHelper extends LookupHelper {
  2391         /** The member reference tree */
  2392         JCMemberReference referenceTree;
  2394         /** Max overload resolution phase handled by this helper */
  2395         MethodResolutionPhase maxPhase;
  2397         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2398                 List<Type> argtypes, List<Type> typeargtypes, boolean boxingAllowed) {
  2399             super(name, site, argtypes, typeargtypes);
  2400             this.referenceTree = referenceTree;
  2401             this.maxPhase = boxingAllowed ? VARARITY : BASIC;
  2404         /**
  2405          * Returns an unbound version of this lookup helper. By default, this
  2406          * method returns an dummy lookup helper.
  2407          */
  2408         ReferenceLookupHelper unboundLookup() {
  2409             //dummy loopkup helper that always return 'methodNotFound'
  2410             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase.isBoxingRequired()) {
  2411                 @Override
  2412                 ReferenceLookupHelper unboundLookup() {
  2413                     return this;
  2415                 @Override
  2416                 Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase) {
  2417                     return methodNotFound;
  2419                 @Override
  2420                 ReferenceKind referenceKind(Symbol sym) {
  2421                     Assert.error();
  2422                     return null;
  2424             };
  2427         /**
  2428          * Get the kind of the member reference
  2429          */
  2430         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
  2432         @Override
  2433         Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
  2434             return (env.info.pendingResolutionPhase.ordinal() > maxPhase.ordinal()) ?
  2435                     methodNotFound : lookupReference(env, phase);
  2438         abstract Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase);
  2440         Symbol access(Env<AttrContext> env, Symbol sym) {
  2441             if (sym.kind >= AMBIGUOUS) {
  2442                 MethodResolutionPhase errPhase = currentResolutionContext.firstErroneousResolutionPhase();
  2443                 if (errPhase.ordinal() > maxPhase.ordinal()) {
  2444                     errPhase = maxPhase;
  2446                 env.info.pendingResolutionPhase = errPhase;
  2447                 sym = currentResolutionContext.resolutionCache.get(errPhase);
  2449             return sym;
  2453     /**
  2454      * Helper class for method reference lookup. The lookup logic is based
  2455      * upon Resolve.findMethod; in certain cases, this helper class has a
  2456      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
  2457      * In such cases, non-static lookup results are thrown away.
  2458      */
  2459     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
  2461         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2462                 List<Type> argtypes, List<Type> typeargtypes, boolean boxingAllowed) {
  2463             super(referenceTree, name, site, argtypes, typeargtypes, boxingAllowed);
  2466         protected Symbol lookupReferenceInternal(Env<AttrContext> env, MethodResolutionPhase phase) {
  2467             return findMethod(env, site, name, argtypes, typeargtypes,
  2468                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2471         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2472             return !TreeInfo.isStaticSelector(referenceTree.expr, names) ||
  2473                         sym.kind != MTH ||
  2474                         sym.isStatic() ? sym : new StaticError(sym);
  2477         @Override
  2478         final Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase) {
  2479             return adjustLookupResult(env, lookupReferenceInternal(env, phase));
  2482         @Override
  2483         ReferenceLookupHelper unboundLookup() {
  2484             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
  2485                     argtypes.nonEmpty() &&
  2486                     types.isSubtypeUnchecked(argtypes.head, site)) {
  2487                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
  2488                         site, argtypes, typeargtypes, maxPhase.isBoxingRequired());
  2489             } else {
  2490                 return super.unboundLookup();
  2494         @Override
  2495         ReferenceKind referenceKind(Symbol sym) {
  2496             if (sym.isStatic()) {
  2497                 return TreeInfo.isStaticSelector(referenceTree.expr, names) ?
  2498                         ReferenceKind.STATIC : ReferenceKind.STATIC_EVAL;
  2499             } else {
  2500                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
  2501                 return selName != null && selName == names._super ?
  2502                         ReferenceKind.SUPER :
  2503                         ReferenceKind.BOUND;
  2508     /**
  2509      * Helper class for unbound method reference lookup. Essentially the same
  2510      * as the basic method reference lookup helper; main difference is that static
  2511      * lookup results are thrown away. If qualifier type is raw, an attempt to
  2512      * infer a parameterized type is made using the first actual argument (that
  2513      * would otherwise be ignored during the lookup).
  2514      */
  2515     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
  2517         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
  2518                 List<Type> argtypes, List<Type> typeargtypes, boolean boxingAllowed) {
  2519             super(referenceTree, name,
  2520                     site.isRaw() ? types.asSuper(argtypes.head, site.tsym) : site,
  2521                     argtypes.tail, typeargtypes, boxingAllowed);
  2524         @Override
  2525         protected Symbol adjustLookupResult(Env<AttrContext> env, Symbol sym) {
  2526             return sym.kind != MTH || !sym.isStatic() ? sym : new StaticError(sym);
  2529         @Override
  2530         ReferenceLookupHelper unboundLookup() {
  2531             return this;
  2534         @Override
  2535         ReferenceKind referenceKind(Symbol sym) {
  2536             return ReferenceKind.UNBOUND;
  2540     /**
  2541      * Helper class for constructor reference lookup. The lookup logic is based
  2542      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
  2543      * whether the constructor reference needs diamond inference (this is the case
  2544      * if the qualifier type is raw). A special erroneous symbol is returned
  2545      * if the lookup returns the constructor of an inner class and there's no
  2546      * enclosing instance in scope.
  2547      */
  2548     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
  2550         boolean needsInference;
  2552         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
  2553                 List<Type> typeargtypes, boolean boxingAllowed) {
  2554             super(referenceTree, names.init, site, argtypes, typeargtypes, boxingAllowed);
  2555             if (site.isRaw()) {
  2556                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
  2557                 needsInference = true;
  2561         @Override
  2562         protected Symbol lookupReference(Env<AttrContext> env, MethodResolutionPhase phase) {
  2563             Symbol sym = needsInference ?
  2564                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
  2565                 findMethod(env, site, name, argtypes, typeargtypes,
  2566                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
  2567             return sym.kind != MTH ||
  2568                           site.getEnclosingType().tag == NONE ||
  2569                           hasEnclosingInstance(env, site) ?
  2570                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
  2571                     @Override
  2572                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
  2573                        return diags.create(dkind, log.currentSource(), pos,
  2574                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
  2576                 };
  2579         @Override
  2580         ReferenceKind referenceKind(Symbol sym) {
  2581             return site.getEnclosingType().tag == NONE ?
  2582                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
  2586     /**
  2587      * Resolution step for member reference. This generalizes a standard
  2588      * method/constructor lookup - on each overload resolution step, a
  2589      * lookup helper class is used to perform the reference lookup; at the end
  2590      * of the lookup, the helper is used to validate the results.
  2591      */
  2592     Symbol findMemberReference(Env<AttrContext> env, LookupHelper lookupHelper) {
  2593         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2594         try {
  2595             currentResolutionContext = new MethodResolutionContext();
  2596             Symbol sym = methodNotFound;
  2597             List<MethodResolutionPhase> steps = methodResolutionSteps;
  2598             while (steps.nonEmpty() &&
  2599                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  2600                    sym.kind >= ERRONEOUS) {
  2601                 currentResolutionContext.step = env.info.pendingResolutionPhase = steps.head;
  2602                 sym = lookupHelper.lookup(env, steps.head);
  2603                 currentResolutionContext.resolutionCache.put(steps.head, sym);
  2604                 steps = steps.tail;
  2606             return lookupHelper.access(env, sym);
  2608         finally {
  2609             currentResolutionContext = prevResolutionContext;
  2613     /** Resolve constructor.
  2614      *  @param pos       The position to use for error reporting.
  2615      *  @param env       The environment current at the constructor invocation.
  2616      *  @param site      The type of class for which a constructor is searched.
  2617      *  @param argtypes  The types of the constructor invocation's value
  2618      *                   arguments.
  2619      *  @param typeargtypes  The types of the constructor invocation's type
  2620      *                   arguments.
  2621      *  @param allowBoxing Allow boxing and varargs conversions.
  2622      *  @param useVarargs Box trailing arguments into an array for varargs.
  2623      */
  2624     Symbol resolveConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2625                               Type site, List<Type> argtypes,
  2626                               List<Type> typeargtypes,
  2627                               boolean allowBoxing,
  2628                               boolean useVarargs) {
  2629         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2630         try {
  2631             currentResolutionContext = new MethodResolutionContext();
  2632             return findConstructor(pos, env, site, argtypes, typeargtypes, allowBoxing, useVarargs);
  2634         finally {
  2635             currentResolutionContext = prevResolutionContext;
  2639     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2640                               Type site, List<Type> argtypes,
  2641                               List<Type> typeargtypes,
  2642                               boolean allowBoxing,
  2643                               boolean useVarargs) {
  2644         Symbol sym = findMethod(env, site,
  2645                                     names.init, argtypes,
  2646                                     typeargtypes, allowBoxing,
  2647                                     useVarargs, false);
  2648         chk.checkDeprecated(pos, env.info.scope.owner, sym);
  2649         return sym;
  2652     /** Resolve a constructor, throw a fatal error if not found.
  2653      *  @param pos       The position to use for error reporting.
  2654      *  @param env       The environment current at the method invocation.
  2655      *  @param site      The type to be constructed.
  2656      *  @param argtypes  The types of the invocation's value arguments.
  2657      *  @param typeargtypes  The types of the invocation's type arguments.
  2658      */
  2659     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
  2660                                         Type site,
  2661                                         List<Type> argtypes,
  2662                                         List<Type> typeargtypes) {
  2663         MethodResolutionContext resolveContext = new MethodResolutionContext();
  2664         resolveContext.internalResolution = true;
  2665         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
  2666         if (sym.kind == MTH) return (MethodSymbol)sym;
  2667         else throw new FatalError(
  2668                  diags.fragment("fatal.err.cant.locate.ctor", site));
  2671     /** Resolve operator.
  2672      *  @param pos       The position to use for error reporting.
  2673      *  @param optag     The tag of the operation tree.
  2674      *  @param env       The environment current at the operation.
  2675      *  @param argtypes  The types of the operands.
  2676      */
  2677     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
  2678                            Env<AttrContext> env, List<Type> argtypes) {
  2679         MethodResolutionContext prevResolutionContext = currentResolutionContext;
  2680         try {
  2681             currentResolutionContext = new MethodResolutionContext();
  2682             Name name = treeinfo.operatorName(optag);
  2683             Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2684                                     null, false, false, true);
  2685             if (boxingEnabled && sym.kind >= WRONG_MTHS)
  2686                 sym = findMethod(env, syms.predefClass.type, name, argtypes,
  2687                                  null, true, false, true);
  2688             return accessMethod(sym, pos, env.enclClass.sym.type, name,
  2689                           false, argtypes, null);
  2691         finally {
  2692             currentResolutionContext = prevResolutionContext;
  2696     /** Resolve operator.
  2697      *  @param pos       The position to use for error reporting.
  2698      *  @param optag     The tag of the operation tree.
  2699      *  @param env       The environment current at the operation.
  2700      *  @param arg       The type of the operand.
  2701      */
  2702     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
  2703         return resolveOperator(pos, optag, env, List.of(arg));
  2706     /** Resolve binary operator.
  2707      *  @param pos       The position to use for error reporting.
  2708      *  @param optag     The tag of the operation tree.
  2709      *  @param env       The environment current at the operation.
  2710      *  @param left      The types of the left operand.
  2711      *  @param right     The types of the right operand.
  2712      */
  2713     Symbol resolveBinaryOperator(DiagnosticPosition pos,
  2714                                  JCTree.Tag optag,
  2715                                  Env<AttrContext> env,
  2716                                  Type left,
  2717                                  Type right) {
  2718         return resolveOperator(pos, optag, env, List.of(left, right));
  2721     /**
  2722      * Resolve `c.name' where name == this or name == super.
  2723      * @param pos           The position to use for error reporting.
  2724      * @param env           The environment current at the expression.
  2725      * @param c             The qualifier.
  2726      * @param name          The identifier's name.
  2727      */
  2728     Symbol resolveSelf(DiagnosticPosition pos,
  2729                        Env<AttrContext> env,
  2730                        TypeSymbol c,
  2731                        Name name) {
  2732         Env<AttrContext> env1 = env;
  2733         boolean staticOnly = false;
  2734         while (env1.outer != null) {
  2735             if (isStatic(env1)) staticOnly = true;
  2736             if (env1.enclClass.sym == c) {
  2737                 Symbol sym = env1.info.scope.lookup(name).sym;
  2738                 if (sym != null) {
  2739                     if (staticOnly) sym = new StaticError(sym);
  2740                     return accessBase(sym, pos, env.enclClass.sym.type,
  2741                                   name, true);
  2744             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
  2745             env1 = env1.outer;
  2747         log.error(pos, "not.encl.class", c);
  2748         return syms.errSymbol;
  2751     /**
  2752      * Resolve `c.this' for an enclosing class c that contains the
  2753      * named member.
  2754      * @param pos           The position to use for error reporting.
  2755      * @param env           The environment current at the expression.
  2756      * @param member        The member that must be contained in the result.
  2757      */
  2758     Symbol resolveSelfContaining(DiagnosticPosition pos,
  2759                                  Env<AttrContext> env,
  2760                                  Symbol member,
  2761                                  boolean isSuperCall) {
  2762         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
  2763         if (sym == null) {
  2764             log.error(pos, "encl.class.required", member);
  2765             return syms.errSymbol;
  2766         } else {
  2767             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
  2771     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
  2772         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
  2773         return encl != null && encl.kind < ERRONEOUS;
  2776     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
  2777                                  Symbol member,
  2778                                  boolean isSuperCall) {
  2779         Name name = names._this;
  2780         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
  2781         boolean staticOnly = false;
  2782         if (env1 != null) {
  2783             while (env1 != null && env1.outer != null) {
  2784                 if (isStatic(env1)) staticOnly = true;
  2785                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
  2786                     Symbol sym = env1.info.scope.lookup(name).sym;
  2787                     if (sym != null) {
  2788                         if (staticOnly) sym = new StaticError(sym);
  2789                         return sym;
  2792                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
  2793                     staticOnly = true;
  2794                 env1 = env1.outer;
  2797         return null;
  2800     /**
  2801      * Resolve an appropriate implicit this instance for t's container.
  2802      * JLS 8.8.5.1 and 15.9.2
  2803      */
  2804     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
  2805         return resolveImplicitThis(pos, env, t, false);
  2808     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
  2809         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
  2810                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
  2811                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
  2812         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
  2813             log.error(pos, "cant.ref.before.ctor.called", "this");
  2814         return thisType;
  2817 /* ***************************************************************************
  2818  *  ResolveError classes, indicating error situations when accessing symbols
  2819  ****************************************************************************/
  2821     //used by TransTypes when checking target type of synthetic cast
  2822     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
  2823         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
  2824         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
  2826     //where
  2827     private void logResolveError(ResolveError error,
  2828             DiagnosticPosition pos,
  2829             Symbol location,
  2830             Type site,
  2831             Name name,
  2832             List<Type> argtypes,
  2833             List<Type> typeargtypes) {
  2834         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  2835                 pos, location, site, name, argtypes, typeargtypes);
  2836         if (d != null) {
  2837             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
  2838             log.report(d);
  2842     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
  2844     public Object methodArguments(List<Type> argtypes) {
  2845         if (argtypes == null || argtypes.isEmpty()) {
  2846             return noArgs;
  2847         } else {
  2848             ListBuffer<Object> diagArgs = ListBuffer.lb();
  2849             for (Type t : argtypes) {
  2850                 if (t.tag == DEFERRED) {
  2851                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
  2852                 } else {
  2853                     diagArgs.append(t);
  2856             return diagArgs;
  2860     /**
  2861      * Root class for resolution errors. Subclass of ResolveError
  2862      * represent a different kinds of resolution error - as such they must
  2863      * specify how they map into concrete compiler diagnostics.
  2864      */
  2865     abstract class ResolveError extends Symbol {
  2867         /** The name of the kind of error, for debugging only. */
  2868         final String debugName;
  2870         ResolveError(int kind, String debugName) {
  2871             super(kind, 0, null, null, null);
  2872             this.debugName = debugName;
  2875         @Override
  2876         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
  2877             throw new AssertionError();
  2880         @Override
  2881         public String toString() {
  2882             return debugName;
  2885         @Override
  2886         public boolean exists() {
  2887             return false;
  2890         /**
  2891          * Create an external representation for this erroneous symbol to be
  2892          * used during attribution - by default this returns the symbol of a
  2893          * brand new error type which stores the original type found
  2894          * during resolution.
  2896          * @param name     the name used during resolution
  2897          * @param location the location from which the symbol is accessed
  2898          */
  2899         protected Symbol access(Name name, TypeSymbol location) {
  2900             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  2903         /**
  2904          * Create a diagnostic representing this resolution error.
  2906          * @param dkind     The kind of the diagnostic to be created (e.g error).
  2907          * @param pos       The position to be used for error reporting.
  2908          * @param site      The original type from where the selection took place.
  2909          * @param name      The name of the symbol to be resolved.
  2910          * @param argtypes  The invocation's value arguments,
  2911          *                  if we looked for a method.
  2912          * @param typeargtypes  The invocation's type arguments,
  2913          *                      if we looked for a method.
  2914          */
  2915         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2916                 DiagnosticPosition pos,
  2917                 Symbol location,
  2918                 Type site,
  2919                 Name name,
  2920                 List<Type> argtypes,
  2921                 List<Type> typeargtypes);
  2924     /**
  2925      * This class is the root class of all resolution errors caused by
  2926      * an invalid symbol being found during resolution.
  2927      */
  2928     abstract class InvalidSymbolError extends ResolveError {
  2930         /** The invalid symbol found during resolution */
  2931         Symbol sym;
  2933         InvalidSymbolError(int kind, Symbol sym, String debugName) {
  2934             super(kind, debugName);
  2935             this.sym = sym;
  2938         @Override
  2939         public boolean exists() {
  2940             return true;
  2943         @Override
  2944         public String toString() {
  2945              return super.toString() + " wrongSym=" + sym;
  2948         @Override
  2949         public Symbol access(Name name, TypeSymbol location) {
  2950             if (sym.kind >= AMBIGUOUS)
  2951                 return ((ResolveError)sym).access(name, location);
  2952             else if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
  2953                 return types.createErrorType(name, location, sym.type).tsym;
  2954             else
  2955                 return sym;
  2959     /**
  2960      * InvalidSymbolError error class indicating that a symbol matching a
  2961      * given name does not exists in a given site.
  2962      */
  2963     class SymbolNotFoundError extends ResolveError {
  2965         SymbolNotFoundError(int kind) {
  2966             super(kind, "symbol not found error");
  2969         @Override
  2970         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  2971                 DiagnosticPosition pos,
  2972                 Symbol location,
  2973                 Type site,
  2974                 Name name,
  2975                 List<Type> argtypes,
  2976                 List<Type> typeargtypes) {
  2977             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
  2978             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
  2979             if (name == names.error)
  2980                 return null;
  2982             if (syms.operatorNames.contains(name)) {
  2983                 boolean isUnaryOp = argtypes.size() == 1;
  2984                 String key = argtypes.size() == 1 ?
  2985                     "operator.cant.be.applied" :
  2986                     "operator.cant.be.applied.1";
  2987                 Type first = argtypes.head;
  2988                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  2989                 return diags.create(dkind, log.currentSource(), pos,
  2990                         key, name, first, second);
  2992             boolean hasLocation = false;
  2993             if (location == null) {
  2994                 location = site.tsym;
  2996             if (!location.name.isEmpty()) {
  2997                 if (location.kind == PCK && !site.tsym.exists()) {
  2998                     return diags.create(dkind, log.currentSource(), pos,
  2999                         "doesnt.exist", location);
  3001                 hasLocation = !location.name.equals(names._this) &&
  3002                         !location.name.equals(names._super);
  3004             boolean isConstructor = kind == ABSENT_MTH && name == names.init;
  3005             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
  3006             Name idname = isConstructor ? site.tsym.name : name;
  3007             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
  3008             if (hasLocation) {
  3009                 return diags.create(dkind, log.currentSource(), pos,
  3010                         errKey, kindname, idname, //symbol kindname, name
  3011                         typeargtypes, argtypes, //type parameters and arguments (if any)
  3012                         getLocationDiag(location, site)); //location kindname, type
  3014             else {
  3015                 return diags.create(dkind, log.currentSource(), pos,
  3016                         errKey, kindname, idname, //symbol kindname, name
  3017                         typeargtypes, argtypes); //type parameters and arguments (if any)
  3020         //where
  3021         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
  3022             String key = "cant.resolve";
  3023             String suffix = hasLocation ? ".location" : "";
  3024             switch (kindname) {
  3025                 case METHOD:
  3026                 case CONSTRUCTOR: {
  3027                     suffix += ".args";
  3028                     suffix += hasTypeArgs ? ".params" : "";
  3031             return key + suffix;
  3033         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
  3034             if (location.kind == VAR) {
  3035                 return diags.fragment("location.1",
  3036                     kindName(location),
  3037                     location,
  3038                     location.type);
  3039             } else {
  3040                 return diags.fragment("location",
  3041                     typeKindName(site),
  3042                     site,
  3043                     null);
  3048     /**
  3049      * InvalidSymbolError error class indicating that a given symbol
  3050      * (either a method, a constructor or an operand) is not applicable
  3051      * given an actual arguments/type argument list.
  3052      */
  3053     class InapplicableSymbolError extends ResolveError {
  3055         protected MethodResolutionContext resolveContext;
  3057         InapplicableSymbolError(MethodResolutionContext context) {
  3058             this(WRONG_MTH, "inapplicable symbol error", context);
  3061         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
  3062             super(kind, debugName);
  3063             this.resolveContext = context;
  3066         @Override
  3067         public String toString() {
  3068             return super.toString();
  3071         @Override
  3072         public boolean exists() {
  3073             return true;
  3076         @Override
  3077         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3078                 DiagnosticPosition pos,
  3079                 Symbol location,
  3080                 Type site,
  3081                 Name name,
  3082                 List<Type> argtypes,
  3083                 List<Type> typeargtypes) {
  3084             if (name == names.error)
  3085                 return null;
  3087             if (syms.operatorNames.contains(name)) {
  3088                 boolean isUnaryOp = argtypes.size() == 1;
  3089                 String key = argtypes.size() == 1 ?
  3090                     "operator.cant.be.applied" :
  3091                     "operator.cant.be.applied.1";
  3092                 Type first = argtypes.head;
  3093                 Type second = !isUnaryOp ? argtypes.tail.head : null;
  3094                 return diags.create(dkind, log.currentSource(), pos,
  3095                         key, name, first, second);
  3097             else {
  3098                 Candidate c = errCandidate();
  3099                 Symbol ws = c.sym.asMemberOf(site, types);
  3100                 return diags.create(dkind, log.currentSource(), pos,
  3101                           "cant.apply.symbol",
  3102                           kindName(ws),
  3103                           ws.name == names.init ? ws.owner.name : ws.name,
  3104                           methodArguments(ws.type.getParameterTypes()),
  3105                           methodArguments(argtypes),
  3106                           kindName(ws.owner),
  3107                           ws.owner.type,
  3108                           c.details);
  3112         @Override
  3113         public Symbol access(Name name, TypeSymbol location) {
  3114             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
  3117         protected boolean shouldReport(Candidate c) {
  3118             MethodResolutionPhase errPhase = resolveContext.firstErroneousResolutionPhase();
  3119             return !c.isApplicable() &&
  3120                     c.step == errPhase;
  3123         private Candidate errCandidate() {
  3124             for (Candidate c : resolveContext.candidates) {
  3125                 if (shouldReport(c)) {
  3126                     return c;
  3129             Assert.error();
  3130             return null;
  3134     /**
  3135      * ResolveError error class indicating that a set of symbols
  3136      * (either methods, constructors or operands) is not applicable
  3137      * given an actual arguments/type argument list.
  3138      */
  3139     class InapplicableSymbolsError extends InapplicableSymbolError {
  3141         InapplicableSymbolsError(MethodResolutionContext context) {
  3142             super(WRONG_MTHS, "inapplicable symbols", context);
  3145         @Override
  3146         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3147                 DiagnosticPosition pos,
  3148                 Symbol location,
  3149                 Type site,
  3150                 Name name,
  3151                 List<Type> argtypes,
  3152                 List<Type> typeargtypes) {
  3153             if (!resolveContext.candidates.isEmpty()) {
  3154                 JCDiagnostic err = diags.create(dkind,
  3155                         log.currentSource(),
  3156                         pos,
  3157                         "cant.apply.symbols",
  3158                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
  3159                         getName(),
  3160                         argtypes);
  3161                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(site));
  3162             } else {
  3163                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
  3164                     location, site, name, argtypes, typeargtypes);
  3168         //where
  3169         List<JCDiagnostic> candidateDetails(Type site) {
  3170             List<JCDiagnostic> details = List.nil();
  3171             for (Candidate c : resolveContext.candidates) {
  3172                 if (!shouldReport(c)) continue;
  3173                 JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
  3174                         Kinds.kindName(c.sym),
  3175                         c.sym.location(site, types),
  3176                         c.sym.asMemberOf(site, types),
  3177                         c.details);
  3178                 details = details.prepend(detailDiag);
  3180             return details.reverse();
  3183         private Name getName() {
  3184             Symbol sym = resolveContext.candidates.head.sym;
  3185             return sym.name == names.init ?
  3186                 sym.owner.name :
  3187                 sym.name;
  3191     /**
  3192      * An InvalidSymbolError error class indicating that a symbol is not
  3193      * accessible from a given site
  3194      */
  3195     class AccessError extends InvalidSymbolError {
  3197         private Env<AttrContext> env;
  3198         private Type site;
  3200         AccessError(Symbol sym) {
  3201             this(null, null, sym);
  3204         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
  3205             super(HIDDEN, sym, "access error");
  3206             this.env = env;
  3207             this.site = site;
  3208             if (debugResolve)
  3209                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
  3212         @Override
  3213         public boolean exists() {
  3214             return false;
  3217         @Override
  3218         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3219                 DiagnosticPosition pos,
  3220                 Symbol location,
  3221                 Type site,
  3222                 Name name,
  3223                 List<Type> argtypes,
  3224                 List<Type> typeargtypes) {
  3225             if (sym.owner.type.tag == ERROR)
  3226                 return null;
  3228             if (sym.name == names.init && sym.owner != site.tsym) {
  3229                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
  3230                         pos, location, site, name, argtypes, typeargtypes);
  3232             else if ((sym.flags() & PUBLIC) != 0
  3233                 || (env != null && this.site != null
  3234                     && !isAccessible(env, this.site))) {
  3235                 return diags.create(dkind, log.currentSource(),
  3236                         pos, "not.def.access.class.intf.cant.access",
  3237                     sym, sym.location());
  3239             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
  3240                 return diags.create(dkind, log.currentSource(),
  3241                         pos, "report.access", sym,
  3242                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
  3243                         sym.location());
  3245             else {
  3246                 return diags.create(dkind, log.currentSource(),
  3247                         pos, "not.def.public.cant.access", sym, sym.location());
  3252     /**
  3253      * InvalidSymbolError error class indicating that an instance member
  3254      * has erroneously been accessed from a static context.
  3255      */
  3256     class StaticError extends InvalidSymbolError {
  3258         StaticError(Symbol sym) {
  3259             super(STATICERR, sym, "static error");
  3262         @Override
  3263         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3264                 DiagnosticPosition pos,
  3265                 Symbol location,
  3266                 Type site,
  3267                 Name name,
  3268                 List<Type> argtypes,
  3269                 List<Type> typeargtypes) {
  3270             Symbol errSym = ((sym.kind == TYP && sym.type.tag == CLASS)
  3271                 ? types.erasure(sym.type).tsym
  3272                 : sym);
  3273             return diags.create(dkind, log.currentSource(), pos,
  3274                     "non-static.cant.be.ref", kindName(sym), errSym);
  3278     /**
  3279      * InvalidSymbolError error class indicating that a pair of symbols
  3280      * (either methods, constructors or operands) are ambiguous
  3281      * given an actual arguments/type argument list.
  3282      */
  3283     class AmbiguityError extends InvalidSymbolError {
  3285         /** The other maximally specific symbol */
  3286         Symbol sym2;
  3288         AmbiguityError(Symbol sym1, Symbol sym2) {
  3289             super(AMBIGUOUS, sym1, "ambiguity error");
  3290             this.sym2 = sym2;
  3293         @Override
  3294         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
  3295                 DiagnosticPosition pos,
  3296                 Symbol location,
  3297                 Type site,
  3298                 Name name,
  3299                 List<Type> argtypes,
  3300                 List<Type> typeargtypes) {
  3301             AmbiguityError pair = this;
  3302             while (true) {
  3303                 if (pair.sym.kind == AMBIGUOUS)
  3304                     pair = (AmbiguityError)pair.sym;
  3305                 else if (pair.sym2.kind == AMBIGUOUS)
  3306                     pair = (AmbiguityError)pair.sym2;
  3307                 else break;
  3309             Name sname = pair.sym.name;
  3310             if (sname == names.init) sname = pair.sym.owner.name;
  3311             return diags.create(dkind, log.currentSource(),
  3312                       pos, "ref.ambiguous", sname,
  3313                       kindName(pair.sym),
  3314                       pair.sym,
  3315                       pair.sym.location(site, types),
  3316                       kindName(pair.sym2),
  3317                       pair.sym2,
  3318                       pair.sym2.location(site, types));
  3322     enum MethodResolutionPhase {
  3323         BASIC(false, false),
  3324         BOX(true, false),
  3325         VARARITY(true, true);
  3327         boolean isBoxingRequired;
  3328         boolean isVarargsRequired;
  3330         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
  3331            this.isBoxingRequired = isBoxingRequired;
  3332            this.isVarargsRequired = isVarargsRequired;
  3335         public boolean isBoxingRequired() {
  3336             return isBoxingRequired;
  3339         public boolean isVarargsRequired() {
  3340             return isVarargsRequired;
  3343         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
  3344             return (varargsEnabled || !isVarargsRequired) &&
  3345                    (boxingEnabled || !isBoxingRequired);
  3349     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
  3351     /**
  3352      * A resolution context is used to keep track of intermediate results of
  3353      * overload resolution, such as list of method that are not applicable
  3354      * (used to generate more precise diagnostics) and so on. Resolution contexts
  3355      * can be nested - this means that when each overload resolution routine should
  3356      * work within the resolution context it created.
  3357      */
  3358     class MethodResolutionContext {
  3360         private List<Candidate> candidates = List.nil();
  3362         private Map<MethodResolutionPhase, Symbol> resolutionCache =
  3363             new EnumMap<MethodResolutionPhase, Symbol>(MethodResolutionPhase.class);
  3365         MethodResolutionPhase step = null;
  3367         private boolean internalResolution = false;
  3368         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
  3370         private MethodResolutionPhase firstErroneousResolutionPhase() {
  3371             MethodResolutionPhase bestSoFar = BASIC;
  3372             Symbol sym = methodNotFound;
  3373             List<MethodResolutionPhase> steps = methodResolutionSteps;
  3374             while (steps.nonEmpty() &&
  3375                    steps.head.isApplicable(boxingEnabled, varargsEnabled) &&
  3376                    sym.kind >= WRONG_MTHS) {
  3377                 sym = resolutionCache.get(steps.head);
  3378                 if (sym.kind == ABSENT_MTH) break; //ignore spurious empty entries
  3379                 bestSoFar = steps.head;
  3380                 steps = steps.tail;
  3382             return bestSoFar;
  3385         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
  3386             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
  3387             candidates = candidates.append(c);
  3390         void addApplicableCandidate(Symbol sym, Type mtype) {
  3391             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
  3392             candidates = candidates.append(c);
  3395         Candidate getCandidate(Symbol sym, MethodResolutionPhase phase) {
  3396             for (Candidate c : currentResolutionContext.candidates) {
  3397                 if (c.step == phase &&
  3398                         c.sym.baseSymbol() == sym.baseSymbol()) {
  3399                     return c;
  3402             return null;
  3405         /**
  3406          * This class represents an overload resolution candidate. There are two
  3407          * kinds of candidates: applicable methods and inapplicable methods;
  3408          * applicable methods have a pointer to the instantiated method type,
  3409          * while inapplicable candidates contain further details about the
  3410          * reason why the method has been considered inapplicable.
  3411          */
  3412         class Candidate {
  3414             final MethodResolutionPhase step;
  3415             final Symbol sym;
  3416             final JCDiagnostic details;
  3417             final Type mtype;
  3419             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
  3420                 this.step = step;
  3421                 this.sym = sym;
  3422                 this.details = details;
  3423                 this.mtype = mtype;
  3426             @Override
  3427             public boolean equals(Object o) {
  3428                 if (o instanceof Candidate) {
  3429                     Symbol s1 = this.sym;
  3430                     Symbol s2 = ((Candidate)o).sym;
  3431                     if  ((s1 != s2 &&
  3432                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
  3433                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
  3434                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
  3435                         return true;
  3437                 return false;
  3440             boolean isApplicable() {
  3441                 return mtype != null;
  3445         DeferredAttr.AttrMode attrMode() {
  3446             return attrMode;
  3449         boolean internal() {
  3450             return internalResolution;
  3454     MethodResolutionContext currentResolutionContext = null;

mercurial