src/share/classes/com/sun/tools/javac/comp/Attr.java

Wed, 23 Oct 2013 23:20:32 -0400

author
emc
date
Wed, 23 Oct 2013 23:20:32 -0400
changeset 2167
d2fa3f7e964e
parent 2157
963c57175e40
child 2179
8b4e1421a9b7
permissions
-rw-r--r--

8006732: support correct bytecode storage of type annotations in multicatch
Summary: Fix issue with annotations being added before attribution, which causes multicatch not to work right and several tests to fail.
Reviewed-by: jfranck, jjg

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.lang.model.element.ElementKind;
    31 import javax.lang.model.type.TypeKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.tree.*;
    49 import com.sun.tools.javac.tree.JCTree.*;
    50 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTag.*;
    60 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    61 import static com.sun.tools.javac.code.TypeTag.ARRAY;
    62 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    64 /** This is the main context-dependent analysis phase in GJC. It
    65  *  encompasses name resolution, type checking and constant folding as
    66  *  subtasks. Some subtasks involve auxiliary classes.
    67  *  @see Check
    68  *  @see Resolve
    69  *  @see ConstFold
    70  *  @see Infer
    71  *
    72  *  <p><b>This is NOT part of any supported API.
    73  *  If you write code that depends on this, you do so at your own risk.
    74  *  This code and its internal interfaces are subject to change or
    75  *  deletion without notice.</b>
    76  */
    77 public class Attr extends JCTree.Visitor {
    78     protected static final Context.Key<Attr> attrKey =
    79         new Context.Key<Attr>();
    81     final Names names;
    82     final Log log;
    83     final Symtab syms;
    84     final Resolve rs;
    85     final Infer infer;
    86     final DeferredAttr deferredAttr;
    87     final Check chk;
    88     final Flow flow;
    89     final MemberEnter memberEnter;
    90     final TreeMaker make;
    91     final ConstFold cfolder;
    92     final Enter enter;
    93     final Target target;
    94     final Types types;
    95     final JCDiagnostic.Factory diags;
    96     final Annotate annotate;
    97     final TypeAnnotations typeAnnotations;
    98     final DeferredLintHandler deferredLintHandler;
   100     public static Attr instance(Context context) {
   101         Attr instance = context.get(attrKey);
   102         if (instance == null)
   103             instance = new Attr(context);
   104         return instance;
   105     }
   107     protected Attr(Context context) {
   108         context.put(attrKey, this);
   110         names = Names.instance(context);
   111         log = Log.instance(context);
   112         syms = Symtab.instance(context);
   113         rs = Resolve.instance(context);
   114         chk = Check.instance(context);
   115         flow = Flow.instance(context);
   116         memberEnter = MemberEnter.instance(context);
   117         make = TreeMaker.instance(context);
   118         enter = Enter.instance(context);
   119         infer = Infer.instance(context);
   120         deferredAttr = DeferredAttr.instance(context);
   121         cfolder = ConstFold.instance(context);
   122         target = Target.instance(context);
   123         types = Types.instance(context);
   124         diags = JCDiagnostic.Factory.instance(context);
   125         annotate = Annotate.instance(context);
   126         typeAnnotations = TypeAnnotations.instance(context);
   127         deferredLintHandler = DeferredLintHandler.instance(context);
   129         Options options = Options.instance(context);
   131         Source source = Source.instance(context);
   132         allowGenerics = source.allowGenerics();
   133         allowVarargs = source.allowVarargs();
   134         allowEnums = source.allowEnums();
   135         allowBoxing = source.allowBoxing();
   136         allowCovariantReturns = source.allowCovariantReturns();
   137         allowAnonOuterThis = source.allowAnonOuterThis();
   138         allowStringsInSwitch = source.allowStringsInSwitch();
   139         allowPoly = source.allowPoly();
   140         allowTypeAnnos = source.allowTypeAnnotations();
   141         allowLambda = source.allowLambda();
   142         allowDefaultMethods = source.allowDefaultMethods();
   143         sourceName = source.name;
   144         relax = (options.isSet("-retrofit") ||
   145                  options.isSet("-relax"));
   146         findDiamonds = options.get("findDiamond") != null &&
   147                  source.allowDiamond();
   148         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   149         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   151         statInfo = new ResultInfo(NIL, Type.noType);
   152         varInfo = new ResultInfo(VAR, Type.noType);
   153         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   154         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
   155         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   156         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
   157         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   158     }
   160     /** Switch: relax some constraints for retrofit mode.
   161      */
   162     boolean relax;
   164     /** Switch: support target-typing inference
   165      */
   166     boolean allowPoly;
   168     /** Switch: support type annotations.
   169      */
   170     boolean allowTypeAnnos;
   172     /** Switch: support generics?
   173      */
   174     boolean allowGenerics;
   176     /** Switch: allow variable-arity methods.
   177      */
   178     boolean allowVarargs;
   180     /** Switch: support enums?
   181      */
   182     boolean allowEnums;
   184     /** Switch: support boxing and unboxing?
   185      */
   186     boolean allowBoxing;
   188     /** Switch: support covariant result types?
   189      */
   190     boolean allowCovariantReturns;
   192     /** Switch: support lambda expressions ?
   193      */
   194     boolean allowLambda;
   196     /** Switch: support default methods ?
   197      */
   198     boolean allowDefaultMethods;
   200     /** Switch: allow references to surrounding object from anonymous
   201      * objects during constructor call?
   202      */
   203     boolean allowAnonOuterThis;
   205     /** Switch: generates a warning if diamond can be safely applied
   206      *  to a given new expression
   207      */
   208     boolean findDiamonds;
   210     /**
   211      * Internally enables/disables diamond finder feature
   212      */
   213     static final boolean allowDiamondFinder = true;
   215     /**
   216      * Switch: warn about use of variable before declaration?
   217      * RFE: 6425594
   218      */
   219     boolean useBeforeDeclarationWarning;
   221     /**
   222      * Switch: generate warnings whenever an anonymous inner class that is convertible
   223      * to a lambda expression is found
   224      */
   225     boolean identifyLambdaCandidate;
   227     /**
   228      * Switch: allow strings in switch?
   229      */
   230     boolean allowStringsInSwitch;
   232     /**
   233      * Switch: name of source level; used for error reporting.
   234      */
   235     String sourceName;
   237     /** Check kind and type of given tree against protokind and prototype.
   238      *  If check succeeds, store type in tree and return it.
   239      *  If check fails, store errType in tree and return it.
   240      *  No checks are performed if the prototype is a method type.
   241      *  It is not necessary in this case since we know that kind and type
   242      *  are correct.
   243      *
   244      *  @param tree     The tree whose kind and type is checked
   245      *  @param ownkind  The computed kind of the tree
   246      *  @param resultInfo  The expected result of the tree
   247      */
   248     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   249         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   250         Type owntype = found;
   251         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
   252             if (allowPoly && inferenceContext.free(found)) {
   253                 if ((ownkind & ~resultInfo.pkind) == 0) {
   254                     owntype = resultInfo.check(tree, inferenceContext.asFree(owntype));
   255                 } else {
   256                     log.error(tree.pos(), "unexpected.type",
   257                             kindNames(resultInfo.pkind),
   258                             kindName(ownkind));
   259                     owntype = types.createErrorType(owntype);
   260                 }
   261                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   262                     @Override
   263                     public void typesInferred(InferenceContext inferenceContext) {
   264                         ResultInfo pendingResult =
   265                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
   266                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
   267                     }
   268                 });
   269                 return tree.type = resultInfo.pt;
   270             } else {
   271                 if ((ownkind & ~resultInfo.pkind) == 0) {
   272                     owntype = resultInfo.check(tree, owntype);
   273                 } else {
   274                     log.error(tree.pos(), "unexpected.type",
   275                             kindNames(resultInfo.pkind),
   276                             kindName(ownkind));
   277                     owntype = types.createErrorType(owntype);
   278                 }
   279             }
   280         }
   281         tree.type = owntype;
   282         return owntype;
   283     }
   285     /** Is given blank final variable assignable, i.e. in a scope where it
   286      *  may be assigned to even though it is final?
   287      *  @param v      The blank final variable.
   288      *  @param env    The current environment.
   289      */
   290     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   291         Symbol owner = owner(env);
   292            // owner refers to the innermost variable, method or
   293            // initializer block declaration at this point.
   294         return
   295             v.owner == owner
   296             ||
   297             ((owner.name == names.init ||    // i.e. we are in a constructor
   298               owner.kind == VAR ||           // i.e. we are in a variable initializer
   299               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   300              &&
   301              v.owner == owner.owner
   302              &&
   303              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   304     }
   306     /**
   307      * Return the innermost enclosing owner symbol in a given attribution context
   308      */
   309     Symbol owner(Env<AttrContext> env) {
   310         while (true) {
   311             switch (env.tree.getTag()) {
   312                 case VARDEF:
   313                     //a field can be owner
   314                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   315                     if (vsym.owner.kind == TYP) {
   316                         return vsym;
   317                     }
   318                     break;
   319                 case METHODDEF:
   320                     //method def is always an owner
   321                     return ((JCMethodDecl)env.tree).sym;
   322                 case CLASSDEF:
   323                     //class def is always an owner
   324                     return ((JCClassDecl)env.tree).sym;
   325                 case BLOCK:
   326                     //static/instance init blocks are owner
   327                     Symbol blockSym = env.info.scope.owner;
   328                     if ((blockSym.flags() & BLOCK) != 0) {
   329                         return blockSym;
   330                     }
   331                     break;
   332                 case TOPLEVEL:
   333                     //toplevel is always an owner (for pkge decls)
   334                     return env.info.scope.owner;
   335             }
   336             Assert.checkNonNull(env.next);
   337             env = env.next;
   338         }
   339     }
   341     /** Check that variable can be assigned to.
   342      *  @param pos    The current source code position.
   343      *  @param v      The assigned varaible
   344      *  @param base   If the variable is referred to in a Select, the part
   345      *                to the left of the `.', null otherwise.
   346      *  @param env    The current environment.
   347      */
   348     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   349         if ((v.flags() & FINAL) != 0 &&
   350             ((v.flags() & HASINIT) != 0
   351              ||
   352              !((base == null ||
   353                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   354                isAssignableAsBlankFinal(v, env)))) {
   355             if (v.isResourceVariable()) { //TWR resource
   356                 log.error(pos, "try.resource.may.not.be.assigned", v);
   357             } else {
   358                 log.error(pos, "cant.assign.val.to.final.var", v);
   359             }
   360         }
   361     }
   363     /** Does tree represent a static reference to an identifier?
   364      *  It is assumed that tree is either a SELECT or an IDENT.
   365      *  We have to weed out selects from non-type names here.
   366      *  @param tree    The candidate tree.
   367      */
   368     boolean isStaticReference(JCTree tree) {
   369         if (tree.hasTag(SELECT)) {
   370             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   371             if (lsym == null || lsym.kind != TYP) {
   372                 return false;
   373             }
   374         }
   375         return true;
   376     }
   378     /** Is this symbol a type?
   379      */
   380     static boolean isType(Symbol sym) {
   381         return sym != null && sym.kind == TYP;
   382     }
   384     /** The current `this' symbol.
   385      *  @param env    The current environment.
   386      */
   387     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   388         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   389     }
   391     /** Attribute a parsed identifier.
   392      * @param tree Parsed identifier name
   393      * @param topLevel The toplevel to use
   394      */
   395     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   396         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   397         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   398                                            syms.errSymbol.name,
   399                                            null, null, null, null);
   400         localEnv.enclClass.sym = syms.errSymbol;
   401         return tree.accept(identAttributer, localEnv);
   402     }
   403     // where
   404         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   405         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   406             @Override
   407             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   408                 Symbol site = visit(node.getExpression(), env);
   409                 if (site.kind == ERR || site.kind == ABSENT_TYP)
   410                     return site;
   411                 Name name = (Name)node.getIdentifier();
   412                 if (site.kind == PCK) {
   413                     env.toplevel.packge = (PackageSymbol)site;
   414                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   415                 } else {
   416                     env.enclClass.sym = (ClassSymbol)site;
   417                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   418                 }
   419             }
   421             @Override
   422             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   423                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   424             }
   425         }
   427     public Type coerce(Type etype, Type ttype) {
   428         return cfolder.coerce(etype, ttype);
   429     }
   431     public Type attribType(JCTree node, TypeSymbol sym) {
   432         Env<AttrContext> env = enter.typeEnvs.get(sym);
   433         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   434         return attribTree(node, localEnv, unknownTypeInfo);
   435     }
   437     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   438         // Attribute qualifying package or class.
   439         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   440         return attribTree(s.selected,
   441                        env,
   442                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   443                        Type.noType));
   444     }
   446     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   447         breakTree = tree;
   448         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   449         try {
   450             attribExpr(expr, env);
   451         } catch (BreakAttr b) {
   452             return b.env;
   453         } catch (AssertionError ae) {
   454             if (ae.getCause() instanceof BreakAttr) {
   455                 return ((BreakAttr)(ae.getCause())).env;
   456             } else {
   457                 throw ae;
   458             }
   459         } finally {
   460             breakTree = null;
   461             log.useSource(prev);
   462         }
   463         return env;
   464     }
   466     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   467         breakTree = tree;
   468         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   469         try {
   470             attribStat(stmt, env);
   471         } catch (BreakAttr b) {
   472             return b.env;
   473         } catch (AssertionError ae) {
   474             if (ae.getCause() instanceof BreakAttr) {
   475                 return ((BreakAttr)(ae.getCause())).env;
   476             } else {
   477                 throw ae;
   478             }
   479         } finally {
   480             breakTree = null;
   481             log.useSource(prev);
   482         }
   483         return env;
   484     }
   486     private JCTree breakTree = null;
   488     private static class BreakAttr extends RuntimeException {
   489         static final long serialVersionUID = -6924771130405446405L;
   490         private Env<AttrContext> env;
   491         private BreakAttr(Env<AttrContext> env) {
   492             this.env = env;
   493         }
   494     }
   496     class ResultInfo {
   497         final int pkind;
   498         final Type pt;
   499         final CheckContext checkContext;
   501         ResultInfo(int pkind, Type pt) {
   502             this(pkind, pt, chk.basicHandler);
   503         }
   505         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   506             this.pkind = pkind;
   507             this.pt = pt;
   508             this.checkContext = checkContext;
   509         }
   511         protected Type check(final DiagnosticPosition pos, final Type found) {
   512             return chk.checkType(pos, found, pt, checkContext);
   513         }
   515         protected ResultInfo dup(Type newPt) {
   516             return new ResultInfo(pkind, newPt, checkContext);
   517         }
   519         protected ResultInfo dup(CheckContext newContext) {
   520             return new ResultInfo(pkind, pt, newContext);
   521         }
   523         @Override
   524         public String toString() {
   525             if (pt != null) {
   526                 return pt.toString();
   527             } else {
   528                 return "";
   529             }
   530         }
   531     }
   533     class RecoveryInfo extends ResultInfo {
   535         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   536             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   537                 @Override
   538                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   539                     return deferredAttrContext;
   540                 }
   541                 @Override
   542                 public boolean compatible(Type found, Type req, Warner warn) {
   543                     return true;
   544                 }
   545                 @Override
   546                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   547                     chk.basicHandler.report(pos, details);
   548                 }
   549             });
   550         }
   551     }
   553     final ResultInfo statInfo;
   554     final ResultInfo varInfo;
   555     final ResultInfo unknownAnyPolyInfo;
   556     final ResultInfo unknownExprInfo;
   557     final ResultInfo unknownTypeInfo;
   558     final ResultInfo unknownTypeExprInfo;
   559     final ResultInfo recoveryInfo;
   561     Type pt() {
   562         return resultInfo.pt;
   563     }
   565     int pkind() {
   566         return resultInfo.pkind;
   567     }
   569 /* ************************************************************************
   570  * Visitor methods
   571  *************************************************************************/
   573     /** Visitor argument: the current environment.
   574      */
   575     Env<AttrContext> env;
   577     /** Visitor argument: the currently expected attribution result.
   578      */
   579     ResultInfo resultInfo;
   581     /** Visitor result: the computed type.
   582      */
   583     Type result;
   585     /** Visitor method: attribute a tree, catching any completion failure
   586      *  exceptions. Return the tree's type.
   587      *
   588      *  @param tree    The tree to be visited.
   589      *  @param env     The environment visitor argument.
   590      *  @param resultInfo   The result info visitor argument.
   591      */
   592     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   593         Env<AttrContext> prevEnv = this.env;
   594         ResultInfo prevResult = this.resultInfo;
   595         try {
   596             this.env = env;
   597             this.resultInfo = resultInfo;
   598             tree.accept(this);
   599             if (tree == breakTree &&
   600                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
   601                 throw new BreakAttr(copyEnv(env));
   602             }
   603             return result;
   604         } catch (CompletionFailure ex) {
   605             tree.type = syms.errType;
   606             return chk.completionError(tree.pos(), ex);
   607         } finally {
   608             this.env = prevEnv;
   609             this.resultInfo = prevResult;
   610         }
   611     }
   613     Env<AttrContext> copyEnv(Env<AttrContext> env) {
   614         Env<AttrContext> newEnv =
   615                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   616         if (newEnv.outer != null) {
   617             newEnv.outer = copyEnv(newEnv.outer);
   618         }
   619         return newEnv;
   620     }
   622     Scope copyScope(Scope sc) {
   623         Scope newScope = new Scope(sc.owner);
   624         List<Symbol> elemsList = List.nil();
   625         while (sc != null) {
   626             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   627                 elemsList = elemsList.prepend(e.sym);
   628             }
   629             sc = sc.next;
   630         }
   631         for (Symbol s : elemsList) {
   632             newScope.enter(s);
   633         }
   634         return newScope;
   635     }
   637     /** Derived visitor method: attribute an expression tree.
   638      */
   639     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   640         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
   641     }
   643     /** Derived visitor method: attribute an expression tree with
   644      *  no constraints on the computed type.
   645      */
   646     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
   647         return attribTree(tree, env, unknownExprInfo);
   648     }
   650     /** Derived visitor method: attribute a type tree.
   651      */
   652     public Type attribType(JCTree tree, Env<AttrContext> env) {
   653         Type result = attribType(tree, env, Type.noType);
   654         return result;
   655     }
   657     /** Derived visitor method: attribute a type tree.
   658      */
   659     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   660         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   661         return result;
   662     }
   664     /** Derived visitor method: attribute a statement or definition tree.
   665      */
   666     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   667         return attribTree(tree, env, statInfo);
   668     }
   670     /** Attribute a list of expressions, returning a list of types.
   671      */
   672     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   673         ListBuffer<Type> ts = new ListBuffer<Type>();
   674         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   675             ts.append(attribExpr(l.head, env, pt));
   676         return ts.toList();
   677     }
   679     /** Attribute a list of statements, returning nothing.
   680      */
   681     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   682         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   683             attribStat(l.head, env);
   684     }
   686     /** Attribute the arguments in a method call, returning the method kind.
   687      */
   688     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
   689         int kind = VAL;
   690         for (JCExpression arg : trees) {
   691             Type argtype;
   692             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
   693                 argtype = deferredAttr.new DeferredType(arg, env);
   694                 kind |= POLY;
   695             } else {
   696                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
   697             }
   698             argtypes.append(argtype);
   699         }
   700         return kind;
   701     }
   703     /** Attribute a type argument list, returning a list of types.
   704      *  Caller is responsible for calling checkRefTypes.
   705      */
   706     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   707         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   708         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   709             argtypes.append(attribType(l.head, env));
   710         return argtypes.toList();
   711     }
   713     /** Attribute a type argument list, returning a list of types.
   714      *  Check that all the types are references.
   715      */
   716     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   717         List<Type> types = attribAnyTypes(trees, env);
   718         return chk.checkRefTypes(trees, types);
   719     }
   721     /**
   722      * Attribute type variables (of generic classes or methods).
   723      * Compound types are attributed later in attribBounds.
   724      * @param typarams the type variables to enter
   725      * @param env      the current environment
   726      */
   727     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   728         for (JCTypeParameter tvar : typarams) {
   729             TypeVar a = (TypeVar)tvar.type;
   730             a.tsym.flags_field |= UNATTRIBUTED;
   731             a.bound = Type.noType;
   732             if (!tvar.bounds.isEmpty()) {
   733                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   734                 for (JCExpression bound : tvar.bounds.tail)
   735                     bounds = bounds.prepend(attribType(bound, env));
   736                 types.setBounds(a, bounds.reverse());
   737             } else {
   738                 // if no bounds are given, assume a single bound of
   739                 // java.lang.Object.
   740                 types.setBounds(a, List.of(syms.objectType));
   741             }
   742             a.tsym.flags_field &= ~UNATTRIBUTED;
   743         }
   744         for (JCTypeParameter tvar : typarams) {
   745             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   746         }
   747     }
   749     /**
   750      * Attribute the type references in a list of annotations.
   751      */
   752     void attribAnnotationTypes(List<JCAnnotation> annotations,
   753                                Env<AttrContext> env) {
   754         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   755             JCAnnotation a = al.head;
   756             attribType(a.annotationType, env);
   757         }
   758     }
   760     /**
   761      * Attribute a "lazy constant value".
   762      *  @param env         The env for the const value
   763      *  @param initializer The initializer for the const value
   764      *  @param type        The expected type, or null
   765      *  @see VarSymbol#setLazyConstValue
   766      */
   767     public Object attribLazyConstantValue(Env<AttrContext> env,
   768                                       JCVariableDecl variable,
   769                                       Type type) {
   771         DiagnosticPosition prevLintPos
   772                 = deferredLintHandler.setPos(variable.pos());
   774         try {
   775             // Use null as symbol to not attach the type annotation to any symbol.
   776             // The initializer will later also be visited and then we'll attach
   777             // to the symbol.
   778             // This prevents having multiple type annotations, just because of
   779             // lazy constant value evaluation.
   780             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
   781             annotate.flush();
   782             Type itype = attribExpr(variable.init, env, type);
   783             if (itype.constValue() != null) {
   784                 return coerce(itype, type).constValue();
   785             } else {
   786                 return null;
   787             }
   788         } finally {
   789             deferredLintHandler.setPos(prevLintPos);
   790         }
   791     }
   793     /** Attribute type reference in an `extends' or `implements' clause.
   794      *  Supertypes of anonymous inner classes are usually already attributed.
   795      *
   796      *  @param tree              The tree making up the type reference.
   797      *  @param env               The environment current at the reference.
   798      *  @param classExpected     true if only a class is expected here.
   799      *  @param interfaceExpected true if only an interface is expected here.
   800      */
   801     Type attribBase(JCTree tree,
   802                     Env<AttrContext> env,
   803                     boolean classExpected,
   804                     boolean interfaceExpected,
   805                     boolean checkExtensible) {
   806         Type t = tree.type != null ?
   807             tree.type :
   808             attribType(tree, env);
   809         return checkBase(t, tree, env, classExpected, interfaceExpected, false, checkExtensible);
   810     }
   811     Type checkBase(Type t,
   812                    JCTree tree,
   813                    Env<AttrContext> env,
   814                    boolean classExpected,
   815                    boolean interfacesOnlyExpected,
   816                    boolean interfacesOrArraysExpected,
   817                    boolean checkExtensible) {
   818         if (t.isErroneous())
   819             return t;
   820         if (t.hasTag(TYPEVAR) && !classExpected &&
   821             !interfacesOrArraysExpected && !interfacesOnlyExpected) {
   822             // check that type variable is already visible
   823             if (t.getUpperBound() == null) {
   824                 log.error(tree.pos(), "illegal.forward.ref");
   825                 return types.createErrorType(t);
   826             }
   827         } else if (classExpected) {
   828             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   829         } else {
   830             t = chk.checkClassOrArrayType(tree.pos(), t,
   831                                           checkExtensible|!allowGenerics);
   832         }
   833         if (interfacesOnlyExpected && !t.tsym.isInterface()) {
   834             log.error(tree.pos(), "intf.expected.here");
   835             // return errType is necessary since otherwise there might
   836             // be undetected cycles which cause attribution to loop
   837             return types.createErrorType(t);
   838         } else if (interfacesOrArraysExpected &&
   839             !(t.tsym.isInterface() || t.getTag() == ARRAY)) {
   840             log.error(tree.pos(), "intf.or.array.expected.here");
   841             // return errType is necessary since otherwise there might
   842             // be undetected cycles which cause attribution to loop
   843             return types.createErrorType(t);
   844         } else if (checkExtensible &&
   845                    classExpected &&
   846                    t.tsym.isInterface()) {
   847             log.error(tree.pos(), "no.intf.expected.here");
   848             return types.createErrorType(t);
   849         }
   850         if (checkExtensible &&
   851             ((t.tsym.flags() & FINAL) != 0)) {
   852             log.error(tree.pos(),
   853                       "cant.inherit.from.final", t.tsym);
   854         }
   855         chk.checkNonCyclic(tree.pos(), t);
   856         return t;
   857     }
   858     //where
   859         private Object asTypeParam(Type t) {
   860             return (t.hasTag(TYPEVAR))
   861                                     ? diags.fragment("type.parameter", t)
   862                                     : t;
   863         }
   865     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   866         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   867         id.type = env.info.scope.owner.type;
   868         id.sym = env.info.scope.owner;
   869         return id.type;
   870     }
   872     public void visitClassDef(JCClassDecl tree) {
   873         // Local classes have not been entered yet, so we need to do it now:
   874         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   875             enter.classEnter(tree, env);
   877         ClassSymbol c = tree.sym;
   878         if (c == null) {
   879             // exit in case something drastic went wrong during enter.
   880             result = null;
   881         } else {
   882             // make sure class has been completed:
   883             c.complete();
   885             // If this class appears as an anonymous class
   886             // in a superclass constructor call where
   887             // no explicit outer instance is given,
   888             // disable implicit outer instance from being passed.
   889             // (This would be an illegal access to "this before super").
   890             if (env.info.isSelfCall &&
   891                 env.tree.hasTag(NEWCLASS) &&
   892                 ((JCNewClass) env.tree).encl == null)
   893             {
   894                 c.flags_field |= NOOUTERTHIS;
   895             }
   896             attribClass(tree.pos(), c);
   897             result = tree.type = c.type;
   898         }
   899     }
   901     public void visitMethodDef(JCMethodDecl tree) {
   902         MethodSymbol m = tree.sym;
   903         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
   905         Lint lint = env.info.lint.augment(m);
   906         Lint prevLint = chk.setLint(lint);
   907         MethodSymbol prevMethod = chk.setMethod(m);
   908         try {
   909             deferredLintHandler.flush(tree.pos());
   910             chk.checkDeprecatedAnnotation(tree.pos(), m);
   913             // Create a new environment with local scope
   914             // for attributing the method.
   915             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   916             localEnv.info.lint = lint;
   918             attribStats(tree.typarams, localEnv);
   920             // If we override any other methods, check that we do so properly.
   921             // JLS ???
   922             if (m.isStatic()) {
   923                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   924             } else {
   925                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   926             }
   927             chk.checkOverride(tree, m);
   929             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
   930                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
   931             }
   933             // Enter all type parameters into the local method scope.
   934             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   935                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   937             ClassSymbol owner = env.enclClass.sym;
   938             if ((owner.flags() & ANNOTATION) != 0 &&
   939                 tree.params.nonEmpty())
   940                 log.error(tree.params.head.pos(),
   941                           "intf.annotation.members.cant.have.params");
   943             // Attribute all value parameters.
   944             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   945                 attribStat(l.head, localEnv);
   946             }
   948             chk.checkVarargsMethodDecl(localEnv, tree);
   950             // Check that type parameters are well-formed.
   951             chk.validate(tree.typarams, localEnv);
   953             // Check that result type is well-formed.
   954             chk.validate(tree.restype, localEnv);
   956             // Check that receiver type is well-formed.
   957             if (tree.recvparam != null) {
   958                 // Use a new environment to check the receiver parameter.
   959                 // Otherwise I get "might not have been initialized" errors.
   960                 // Is there a better way?
   961                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
   962                 attribType(tree.recvparam, newEnv);
   963                 chk.validate(tree.recvparam, newEnv);
   964             }
   966             // annotation method checks
   967             if ((owner.flags() & ANNOTATION) != 0) {
   968                 // annotation method cannot have throws clause
   969                 if (tree.thrown.nonEmpty()) {
   970                     log.error(tree.thrown.head.pos(),
   971                             "throws.not.allowed.in.intf.annotation");
   972                 }
   973                 // annotation method cannot declare type-parameters
   974                 if (tree.typarams.nonEmpty()) {
   975                     log.error(tree.typarams.head.pos(),
   976                             "intf.annotation.members.cant.have.type.params");
   977                 }
   978                 // validate annotation method's return type (could be an annotation type)
   979                 chk.validateAnnotationType(tree.restype);
   980                 // ensure that annotation method does not clash with members of Object/Annotation
   981                 chk.validateAnnotationMethod(tree.pos(), m);
   982             }
   984             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   985                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   987             if (tree.body == null) {
   988                 // Empty bodies are only allowed for
   989                 // abstract, native, or interface methods, or for methods
   990                 // in a retrofit signature class.
   991                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
   992                     !relax)
   993                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   994                 if (tree.defaultValue != null) {
   995                     if ((owner.flags() & ANNOTATION) == 0)
   996                         log.error(tree.pos(),
   997                                   "default.allowed.in.intf.annotation.member");
   998                 }
   999             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
  1000                 if ((owner.flags() & INTERFACE) != 0) {
  1001                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
  1002                 } else {
  1003                     log.error(tree.pos(), "abstract.meth.cant.have.body");
  1005             } else if ((tree.mods.flags & NATIVE) != 0) {
  1006                 log.error(tree.pos(), "native.meth.cant.have.body");
  1007             } else {
  1008                 // Add an implicit super() call unless an explicit call to
  1009                 // super(...) or this(...) is given
  1010                 // or we are compiling class java.lang.Object.
  1011                 if (tree.name == names.init && owner.type != syms.objectType) {
  1012                     JCBlock body = tree.body;
  1013                     if (body.stats.isEmpty() ||
  1014                         !TreeInfo.isSelfCall(body.stats.head)) {
  1015                         body.stats = body.stats.
  1016                             prepend(memberEnter.SuperCall(make.at(body.pos),
  1017                                                           List.<Type>nil(),
  1018                                                           List.<JCVariableDecl>nil(),
  1019                                                           false));
  1020                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
  1021                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
  1022                                TreeInfo.isSuperCall(body.stats.head)) {
  1023                         // enum constructors are not allowed to call super
  1024                         // directly, so make sure there aren't any super calls
  1025                         // in enum constructors, except in the compiler
  1026                         // generated one.
  1027                         log.error(tree.body.stats.head.pos(),
  1028                                   "call.to.super.not.allowed.in.enum.ctor",
  1029                                   env.enclClass.sym);
  1033                 // Attribute all type annotations in the body
  1034                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
  1035                 annotate.flush();
  1037                 // Attribute method body.
  1038                 attribStat(tree.body, localEnv);
  1041             localEnv.info.scope.leave();
  1042             result = tree.type = m.type;
  1044         finally {
  1045             chk.setLint(prevLint);
  1046             chk.setMethod(prevMethod);
  1050     public void visitVarDef(JCVariableDecl tree) {
  1051         // Local variables have not been entered yet, so we need to do it now:
  1052         if (env.info.scope.owner.kind == MTH) {
  1053             if (tree.sym != null) {
  1054                 // parameters have already been entered
  1055                 env.info.scope.enter(tree.sym);
  1056             } else {
  1057                 memberEnter.memberEnter(tree, env);
  1058                 annotate.flush();
  1060         } else {
  1061             if (tree.init != null) {
  1062                 // Field initializer expression need to be entered.
  1063                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
  1064                 annotate.flush();
  1068         VarSymbol v = tree.sym;
  1069         Lint lint = env.info.lint.augment(v);
  1070         Lint prevLint = chk.setLint(lint);
  1072         // Check that the variable's declared type is well-formed.
  1073         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
  1074                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
  1075                 (tree.sym.flags() & PARAMETER) != 0;
  1076         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
  1078         try {
  1079             v.getConstValue(); // ensure compile-time constant initializer is evaluated
  1080             deferredLintHandler.flush(tree.pos());
  1081             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1083             if (tree.init != null) {
  1084                 if ((v.flags_field & FINAL) == 0 ||
  1085                     !memberEnter.needsLazyConstValue(tree.init)) {
  1086                     // Not a compile-time constant
  1087                     // Attribute initializer in a new environment
  1088                     // with the declared variable as owner.
  1089                     // Check that initializer conforms to variable's declared type.
  1090                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1091                     initEnv.info.lint = lint;
  1092                     // In order to catch self-references, we set the variable's
  1093                     // declaration position to maximal possible value, effectively
  1094                     // marking the variable as undefined.
  1095                     initEnv.info.enclVar = v;
  1096                     attribExpr(tree.init, initEnv, v.type);
  1099             result = tree.type = v.type;
  1101         finally {
  1102             chk.setLint(prevLint);
  1106     public void visitSkip(JCSkip tree) {
  1107         result = null;
  1110     public void visitBlock(JCBlock tree) {
  1111         if (env.info.scope.owner.kind == TYP) {
  1112             // Block is a static or instance initializer;
  1113             // let the owner of the environment be a freshly
  1114             // created BLOCK-method.
  1115             Env<AttrContext> localEnv =
  1116                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1117             localEnv.info.scope.owner =
  1118                 new MethodSymbol(tree.flags | BLOCK |
  1119                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
  1120                     env.info.scope.owner);
  1121             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1123             // Attribute all type annotations in the block
  1124             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
  1125             annotate.flush();
  1128                 // Store init and clinit type annotations with the ClassSymbol
  1129                 // to allow output in Gen.normalizeDefs.
  1130                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
  1131                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
  1132                 if ((tree.flags & STATIC) != 0) {
  1133                     cs.appendClassInitTypeAttributes(tas);
  1134                 } else {
  1135                     cs.appendInitTypeAttributes(tas);
  1139             attribStats(tree.stats, localEnv);
  1140         } else {
  1141             // Create a new local environment with a local scope.
  1142             Env<AttrContext> localEnv =
  1143                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1144             try {
  1145                 attribStats(tree.stats, localEnv);
  1146             } finally {
  1147                 localEnv.info.scope.leave();
  1150         result = null;
  1153     public void visitDoLoop(JCDoWhileLoop tree) {
  1154         attribStat(tree.body, env.dup(tree));
  1155         attribExpr(tree.cond, env, syms.booleanType);
  1156         result = null;
  1159     public void visitWhileLoop(JCWhileLoop tree) {
  1160         attribExpr(tree.cond, env, syms.booleanType);
  1161         attribStat(tree.body, env.dup(tree));
  1162         result = null;
  1165     public void visitForLoop(JCForLoop tree) {
  1166         Env<AttrContext> loopEnv =
  1167             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1168         try {
  1169             attribStats(tree.init, loopEnv);
  1170             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1171             loopEnv.tree = tree; // before, we were not in loop!
  1172             attribStats(tree.step, loopEnv);
  1173             attribStat(tree.body, loopEnv);
  1174             result = null;
  1176         finally {
  1177             loopEnv.info.scope.leave();
  1181     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1182         Env<AttrContext> loopEnv =
  1183             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1184         try {
  1185             //the Formal Parameter of a for-each loop is not in the scope when
  1186             //attributing the for-each expression; we mimick this by attributing
  1187             //the for-each expression first (against original scope).
  1188             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1189             attribStat(tree.var, loopEnv);
  1190             chk.checkNonVoid(tree.pos(), exprType);
  1191             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1192             if (elemtype == null) {
  1193                 // or perhaps expr implements Iterable<T>?
  1194                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1195                 if (base == null) {
  1196                     log.error(tree.expr.pos(),
  1197                             "foreach.not.applicable.to.type",
  1198                             exprType,
  1199                             diags.fragment("type.req.array.or.iterable"));
  1200                     elemtype = types.createErrorType(exprType);
  1201                 } else {
  1202                     List<Type> iterableParams = base.allparams();
  1203                     elemtype = iterableParams.isEmpty()
  1204                         ? syms.objectType
  1205                         : types.upperBound(iterableParams.head);
  1208             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1209             loopEnv.tree = tree; // before, we were not in loop!
  1210             attribStat(tree.body, loopEnv);
  1211             result = null;
  1213         finally {
  1214             loopEnv.info.scope.leave();
  1218     public void visitLabelled(JCLabeledStatement tree) {
  1219         // Check that label is not used in an enclosing statement
  1220         Env<AttrContext> env1 = env;
  1221         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1222             if (env1.tree.hasTag(LABELLED) &&
  1223                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1224                 log.error(tree.pos(), "label.already.in.use",
  1225                           tree.label);
  1226                 break;
  1228             env1 = env1.next;
  1231         attribStat(tree.body, env.dup(tree));
  1232         result = null;
  1235     public void visitSwitch(JCSwitch tree) {
  1236         Type seltype = attribExpr(tree.selector, env);
  1238         Env<AttrContext> switchEnv =
  1239             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1241         try {
  1243             boolean enumSwitch =
  1244                 allowEnums &&
  1245                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1246             boolean stringSwitch = false;
  1247             if (types.isSameType(seltype, syms.stringType)) {
  1248                 if (allowStringsInSwitch) {
  1249                     stringSwitch = true;
  1250                 } else {
  1251                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1254             if (!enumSwitch && !stringSwitch)
  1255                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1257             // Attribute all cases and
  1258             // check that there are no duplicate case labels or default clauses.
  1259             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1260             boolean hasDefault = false;      // Is there a default label?
  1261             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1262                 JCCase c = l.head;
  1263                 Env<AttrContext> caseEnv =
  1264                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1265                 try {
  1266                     if (c.pat != null) {
  1267                         if (enumSwitch) {
  1268                             Symbol sym = enumConstant(c.pat, seltype);
  1269                             if (sym == null) {
  1270                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1271                             } else if (!labels.add(sym)) {
  1272                                 log.error(c.pos(), "duplicate.case.label");
  1274                         } else {
  1275                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1276                             if (!pattype.hasTag(ERROR)) {
  1277                                 if (pattype.constValue() == null) {
  1278                                     log.error(c.pat.pos(),
  1279                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1280                                 } else if (labels.contains(pattype.constValue())) {
  1281                                     log.error(c.pos(), "duplicate.case.label");
  1282                                 } else {
  1283                                     labels.add(pattype.constValue());
  1287                     } else if (hasDefault) {
  1288                         log.error(c.pos(), "duplicate.default.label");
  1289                     } else {
  1290                         hasDefault = true;
  1292                     attribStats(c.stats, caseEnv);
  1293                 } finally {
  1294                     caseEnv.info.scope.leave();
  1295                     addVars(c.stats, switchEnv.info.scope);
  1299             result = null;
  1301         finally {
  1302             switchEnv.info.scope.leave();
  1305     // where
  1306         /** Add any variables defined in stats to the switch scope. */
  1307         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1308             for (;stats.nonEmpty(); stats = stats.tail) {
  1309                 JCTree stat = stats.head;
  1310                 if (stat.hasTag(VARDEF))
  1311                     switchScope.enter(((JCVariableDecl) stat).sym);
  1314     // where
  1315     /** Return the selected enumeration constant symbol, or null. */
  1316     private Symbol enumConstant(JCTree tree, Type enumType) {
  1317         if (!tree.hasTag(IDENT)) {
  1318             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1319             return syms.errSymbol;
  1321         JCIdent ident = (JCIdent)tree;
  1322         Name name = ident.name;
  1323         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1324              e.scope != null; e = e.next()) {
  1325             if (e.sym.kind == VAR) {
  1326                 Symbol s = ident.sym = e.sym;
  1327                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1328                 ident.type = s.type;
  1329                 return ((s.flags_field & Flags.ENUM) == 0)
  1330                     ? null : s;
  1333         return null;
  1336     public void visitSynchronized(JCSynchronized tree) {
  1337         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1338         attribStat(tree.body, env);
  1339         result = null;
  1342     public void visitTry(JCTry tree) {
  1343         // Create a new local environment with a local
  1344         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1345         try {
  1346             boolean isTryWithResource = tree.resources.nonEmpty();
  1347             // Create a nested environment for attributing the try block if needed
  1348             Env<AttrContext> tryEnv = isTryWithResource ?
  1349                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1350                 localEnv;
  1351             try {
  1352                 // Attribute resource declarations
  1353                 for (JCTree resource : tree.resources) {
  1354                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1355                         @Override
  1356                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1357                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1359                     };
  1360                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1361                     if (resource.hasTag(VARDEF)) {
  1362                         attribStat(resource, tryEnv);
  1363                         twrResult.check(resource, resource.type);
  1365                         //check that resource type cannot throw InterruptedException
  1366                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1368                         VarSymbol var = ((JCVariableDecl) resource).sym;
  1369                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1370                     } else {
  1371                         attribTree(resource, tryEnv, twrResult);
  1374                 // Attribute body
  1375                 attribStat(tree.body, tryEnv);
  1376             } finally {
  1377                 if (isTryWithResource)
  1378                     tryEnv.info.scope.leave();
  1381             // Attribute catch clauses
  1382             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1383                 JCCatch c = l.head;
  1384                 Env<AttrContext> catchEnv =
  1385                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1386                 try {
  1387                     Type ctype = attribStat(c.param, catchEnv);
  1388                     if (TreeInfo.isMultiCatch(c)) {
  1389                         //multi-catch parameter is implicitly marked as final
  1390                         c.param.sym.flags_field |= FINAL | UNION;
  1392                     if (c.param.sym.kind == Kinds.VAR) {
  1393                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1395                     chk.checkType(c.param.vartype.pos(),
  1396                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1397                                   syms.throwableType);
  1398                     attribStat(c.body, catchEnv);
  1399                 } finally {
  1400                     catchEnv.info.scope.leave();
  1404             // Attribute finalizer
  1405             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1406             result = null;
  1408         finally {
  1409             localEnv.info.scope.leave();
  1413     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1414         if (!resource.isErroneous() &&
  1415             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1416             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1417             Symbol close = syms.noSymbol;
  1418             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
  1419             try {
  1420                 close = rs.resolveQualifiedMethod(pos,
  1421                         env,
  1422                         resource,
  1423                         names.close,
  1424                         List.<Type>nil(),
  1425                         List.<Type>nil());
  1427             finally {
  1428                 log.popDiagnosticHandler(discardHandler);
  1430             if (close.kind == MTH &&
  1431                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1432                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1433                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1434                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1439     public void visitConditional(JCConditional tree) {
  1440         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1442         tree.polyKind = (!allowPoly ||
  1443                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
  1444                 isBooleanOrNumeric(env, tree)) ?
  1445                 PolyKind.STANDALONE : PolyKind.POLY;
  1447         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
  1448             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1449             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
  1450             result = tree.type = types.createErrorType(resultInfo.pt);
  1451             return;
  1454         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
  1455                 unknownExprInfo :
  1456                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
  1457                     //this will use enclosing check context to check compatibility of
  1458                     //subexpression against target type; if we are in a method check context,
  1459                     //depending on whether boxing is allowed, we could have incompatibilities
  1460                     @Override
  1461                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1462                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1464                 });
  1466         Type truetype = attribTree(tree.truepart, env, condInfo);
  1467         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1469         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
  1470         if (condtype.constValue() != null &&
  1471                 truetype.constValue() != null &&
  1472                 falsetype.constValue() != null &&
  1473                 !owntype.hasTag(NONE)) {
  1474             //constant folding
  1475             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1477         result = check(tree, owntype, VAL, resultInfo);
  1479     //where
  1480         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1481             switch (tree.getTag()) {
  1482                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
  1483                               ((JCLiteral)tree).typetag == BOOLEAN ||
  1484                               ((JCLiteral)tree).typetag == BOT;
  1485                 case LAMBDA: case REFERENCE: return false;
  1486                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1487                 case CONDEXPR:
  1488                     JCConditional condTree = (JCConditional)tree;
  1489                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1490                             isBooleanOrNumeric(env, condTree.falsepart);
  1491                 case APPLY:
  1492                     JCMethodInvocation speculativeMethodTree =
  1493                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
  1494                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
  1495                     return types.unboxedTypeOrType(owntype).isPrimitive();
  1496                 case NEWCLASS:
  1497                     JCExpression className =
  1498                             removeClassParams.translate(((JCNewClass)tree).clazz);
  1499                     JCExpression speculativeNewClassTree =
  1500                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
  1501                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
  1502                 default:
  1503                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1504                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1505                     return speculativeType.isPrimitive();
  1508         //where
  1509             TreeTranslator removeClassParams = new TreeTranslator() {
  1510                 @Override
  1511                 public void visitTypeApply(JCTypeApply tree) {
  1512                     result = translate(tree.clazz);
  1514             };
  1516         /** Compute the type of a conditional expression, after
  1517          *  checking that it exists.  See JLS 15.25. Does not take into
  1518          *  account the special case where condition and both arms
  1519          *  are constants.
  1521          *  @param pos      The source position to be used for error
  1522          *                  diagnostics.
  1523          *  @param thentype The type of the expression's then-part.
  1524          *  @param elsetype The type of the expression's else-part.
  1525          */
  1526         private Type condType(DiagnosticPosition pos,
  1527                                Type thentype, Type elsetype) {
  1528             // If same type, that is the result
  1529             if (types.isSameType(thentype, elsetype))
  1530                 return thentype.baseType();
  1532             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1533                 ? thentype : types.unboxedType(thentype);
  1534             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1535                 ? elsetype : types.unboxedType(elsetype);
  1537             // Otherwise, if both arms can be converted to a numeric
  1538             // type, return the least numeric type that fits both arms
  1539             // (i.e. return larger of the two, or return int if one
  1540             // arm is short, the other is char).
  1541             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1542                 // If one arm has an integer subrange type (i.e., byte,
  1543                 // short, or char), and the other is an integer constant
  1544                 // that fits into the subrange, return the subrange type.
  1545                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1546                     elseUnboxed.hasTag(INT) &&
  1547                     types.isAssignable(elseUnboxed, thenUnboxed)) {
  1548                     return thenUnboxed.baseType();
  1550                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
  1551                     thenUnboxed.hasTag(INT) &&
  1552                     types.isAssignable(thenUnboxed, elseUnboxed)) {
  1553                     return elseUnboxed.baseType();
  1556                 for (TypeTag tag : primitiveTags) {
  1557                     Type candidate = syms.typeOfTag[tag.ordinal()];
  1558                     if (types.isSubtype(thenUnboxed, candidate) &&
  1559                         types.isSubtype(elseUnboxed, candidate)) {
  1560                         return candidate;
  1565             // Those were all the cases that could result in a primitive
  1566             if (allowBoxing) {
  1567                 if (thentype.isPrimitive())
  1568                     thentype = types.boxedClass(thentype).type;
  1569                 if (elsetype.isPrimitive())
  1570                     elsetype = types.boxedClass(elsetype).type;
  1573             if (types.isSubtype(thentype, elsetype))
  1574                 return elsetype.baseType();
  1575             if (types.isSubtype(elsetype, thentype))
  1576                 return thentype.baseType();
  1578             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
  1579                 log.error(pos, "neither.conditional.subtype",
  1580                           thentype, elsetype);
  1581                 return thentype.baseType();
  1584             // both are known to be reference types.  The result is
  1585             // lub(thentype,elsetype). This cannot fail, as it will
  1586             // always be possible to infer "Object" if nothing better.
  1587             return types.lub(thentype.baseType(), elsetype.baseType());
  1590     final static TypeTag[] primitiveTags = new TypeTag[]{
  1591         BYTE,
  1592         CHAR,
  1593         SHORT,
  1594         INT,
  1595         LONG,
  1596         FLOAT,
  1597         DOUBLE,
  1598         BOOLEAN,
  1599     };
  1601     public void visitIf(JCIf tree) {
  1602         attribExpr(tree.cond, env, syms.booleanType);
  1603         attribStat(tree.thenpart, env);
  1604         if (tree.elsepart != null)
  1605             attribStat(tree.elsepart, env);
  1606         chk.checkEmptyIf(tree);
  1607         result = null;
  1610     public void visitExec(JCExpressionStatement tree) {
  1611         //a fresh environment is required for 292 inference to work properly ---
  1612         //see Infer.instantiatePolymorphicSignatureInstance()
  1613         Env<AttrContext> localEnv = env.dup(tree);
  1614         attribExpr(tree.expr, localEnv);
  1615         result = null;
  1618     public void visitBreak(JCBreak tree) {
  1619         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1620         result = null;
  1623     public void visitContinue(JCContinue tree) {
  1624         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1625         result = null;
  1627     //where
  1628         /** Return the target of a break or continue statement, if it exists,
  1629          *  report an error if not.
  1630          *  Note: The target of a labelled break or continue is the
  1631          *  (non-labelled) statement tree referred to by the label,
  1632          *  not the tree representing the labelled statement itself.
  1634          *  @param pos     The position to be used for error diagnostics
  1635          *  @param tag     The tag of the jump statement. This is either
  1636          *                 Tree.BREAK or Tree.CONTINUE.
  1637          *  @param label   The label of the jump statement, or null if no
  1638          *                 label is given.
  1639          *  @param env     The environment current at the jump statement.
  1640          */
  1641         private JCTree findJumpTarget(DiagnosticPosition pos,
  1642                                     JCTree.Tag tag,
  1643                                     Name label,
  1644                                     Env<AttrContext> env) {
  1645             // Search environments outwards from the point of jump.
  1646             Env<AttrContext> env1 = env;
  1647             LOOP:
  1648             while (env1 != null) {
  1649                 switch (env1.tree.getTag()) {
  1650                     case LABELLED:
  1651                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1652                         if (label == labelled.label) {
  1653                             // If jump is a continue, check that target is a loop.
  1654                             if (tag == CONTINUE) {
  1655                                 if (!labelled.body.hasTag(DOLOOP) &&
  1656                                         !labelled.body.hasTag(WHILELOOP) &&
  1657                                         !labelled.body.hasTag(FORLOOP) &&
  1658                                         !labelled.body.hasTag(FOREACHLOOP))
  1659                                     log.error(pos, "not.loop.label", label);
  1660                                 // Found labelled statement target, now go inwards
  1661                                 // to next non-labelled tree.
  1662                                 return TreeInfo.referencedStatement(labelled);
  1663                             } else {
  1664                                 return labelled;
  1667                         break;
  1668                     case DOLOOP:
  1669                     case WHILELOOP:
  1670                     case FORLOOP:
  1671                     case FOREACHLOOP:
  1672                         if (label == null) return env1.tree;
  1673                         break;
  1674                     case SWITCH:
  1675                         if (label == null && tag == BREAK) return env1.tree;
  1676                         break;
  1677                     case LAMBDA:
  1678                     case METHODDEF:
  1679                     case CLASSDEF:
  1680                         break LOOP;
  1681                     default:
  1683                 env1 = env1.next;
  1685             if (label != null)
  1686                 log.error(pos, "undef.label", label);
  1687             else if (tag == CONTINUE)
  1688                 log.error(pos, "cont.outside.loop");
  1689             else
  1690                 log.error(pos, "break.outside.switch.loop");
  1691             return null;
  1694     public void visitReturn(JCReturn tree) {
  1695         // Check that there is an enclosing method which is
  1696         // nested within than the enclosing class.
  1697         if (env.info.returnResult == null) {
  1698             log.error(tree.pos(), "ret.outside.meth");
  1699         } else {
  1700             // Attribute return expression, if it exists, and check that
  1701             // it conforms to result type of enclosing method.
  1702             if (tree.expr != null) {
  1703                 if (env.info.returnResult.pt.hasTag(VOID)) {
  1704                     env.info.returnResult.checkContext.report(tree.expr.pos(),
  1705                               diags.fragment("unexpected.ret.val"));
  1707                 attribTree(tree.expr, env, env.info.returnResult);
  1708             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
  1709                     !env.info.returnResult.pt.hasTag(NONE)) {
  1710                 env.info.returnResult.checkContext.report(tree.pos(),
  1711                               diags.fragment("missing.ret.val"));
  1714         result = null;
  1717     public void visitThrow(JCThrow tree) {
  1718         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
  1719         if (allowPoly) {
  1720             chk.checkType(tree, owntype, syms.throwableType);
  1722         result = null;
  1725     public void visitAssert(JCAssert tree) {
  1726         attribExpr(tree.cond, env, syms.booleanType);
  1727         if (tree.detail != null) {
  1728             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1730         result = null;
  1733      /** Visitor method for method invocations.
  1734      *  NOTE: The method part of an application will have in its type field
  1735      *        the return type of the method, not the method's type itself!
  1736      */
  1737     public void visitApply(JCMethodInvocation tree) {
  1738         // The local environment of a method application is
  1739         // a new environment nested in the current one.
  1740         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1742         // The types of the actual method arguments.
  1743         List<Type> argtypes;
  1745         // The types of the actual method type arguments.
  1746         List<Type> typeargtypes = null;
  1748         Name methName = TreeInfo.name(tree.meth);
  1750         boolean isConstructorCall =
  1751             methName == names._this || methName == names._super;
  1753         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  1754         if (isConstructorCall) {
  1755             // We are seeing a ...this(...) or ...super(...) call.
  1756             // Check that this is the first statement in a constructor.
  1757             if (checkFirstConstructorStat(tree, env)) {
  1759                 // Record the fact
  1760                 // that this is a constructor call (using isSelfCall).
  1761                 localEnv.info.isSelfCall = true;
  1763                 // Attribute arguments, yielding list of argument types.
  1764                 attribArgs(tree.args, localEnv, argtypesBuf);
  1765                 argtypes = argtypesBuf.toList();
  1766                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1768                 // Variable `site' points to the class in which the called
  1769                 // constructor is defined.
  1770                 Type site = env.enclClass.sym.type;
  1771                 if (methName == names._super) {
  1772                     if (site == syms.objectType) {
  1773                         log.error(tree.meth.pos(), "no.superclass", site);
  1774                         site = types.createErrorType(syms.objectType);
  1775                     } else {
  1776                         site = types.supertype(site);
  1780                 if (site.hasTag(CLASS)) {
  1781                     Type encl = site.getEnclosingType();
  1782                     while (encl != null && encl.hasTag(TYPEVAR))
  1783                         encl = encl.getUpperBound();
  1784                     if (encl.hasTag(CLASS)) {
  1785                         // we are calling a nested class
  1787                         if (tree.meth.hasTag(SELECT)) {
  1788                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1790                             // We are seeing a prefixed call, of the form
  1791                             //     <expr>.super(...).
  1792                             // Check that the prefix expression conforms
  1793                             // to the outer instance type of the class.
  1794                             chk.checkRefType(qualifier.pos(),
  1795                                              attribExpr(qualifier, localEnv,
  1796                                                         encl));
  1797                         } else if (methName == names._super) {
  1798                             // qualifier omitted; check for existence
  1799                             // of an appropriate implicit qualifier.
  1800                             rs.resolveImplicitThis(tree.meth.pos(),
  1801                                                    localEnv, site, true);
  1803                     } else if (tree.meth.hasTag(SELECT)) {
  1804                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1805                                   site.tsym);
  1808                     // if we're calling a java.lang.Enum constructor,
  1809                     // prefix the implicit String and int parameters
  1810                     if (site.tsym == syms.enumSym && allowEnums)
  1811                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1813                     // Resolve the called constructor under the assumption
  1814                     // that we are referring to a superclass instance of the
  1815                     // current instance (JLS ???).
  1816                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1817                     localEnv.info.selectSuper = true;
  1818                     localEnv.info.pendingResolutionPhase = null;
  1819                     Symbol sym = rs.resolveConstructor(
  1820                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1821                     localEnv.info.selectSuper = selectSuperPrev;
  1823                     // Set method symbol to resolved constructor...
  1824                     TreeInfo.setSymbol(tree.meth, sym);
  1826                     // ...and check that it is legal in the current context.
  1827                     // (this will also set the tree's type)
  1828                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1829                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1831                 // Otherwise, `site' is an error type and we do nothing
  1833             result = tree.type = syms.voidType;
  1834         } else {
  1835             // Otherwise, we are seeing a regular method call.
  1836             // Attribute the arguments, yielding list of argument types, ...
  1837             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
  1838             argtypes = argtypesBuf.toList();
  1839             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1841             // ... and attribute the method using as a prototype a methodtype
  1842             // whose formal argument types is exactly the list of actual
  1843             // arguments (this will also set the method symbol).
  1844             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1845             localEnv.info.pendingResolutionPhase = null;
  1846             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
  1848             // Compute the result type.
  1849             Type restype = mtype.getReturnType();
  1850             if (restype.hasTag(WILDCARD))
  1851                 throw new AssertionError(mtype);
  1853             Type qualifier = (tree.meth.hasTag(SELECT))
  1854                     ? ((JCFieldAccess) tree.meth).selected.type
  1855                     : env.enclClass.sym.type;
  1856             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1858             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1860             // Check that value of resulting type is admissible in the
  1861             // current context.  Also, capture the return type
  1862             result = check(tree, capture(restype), VAL, resultInfo);
  1864         chk.validate(tree.typeargs, localEnv);
  1866     //where
  1867         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1868             if (allowCovariantReturns &&
  1869                     methodName == names.clone &&
  1870                 types.isArray(qualifierType)) {
  1871                 // as a special case, array.clone() has a result that is
  1872                 // the same as static type of the array being cloned
  1873                 return qualifierType;
  1874             } else if (allowGenerics &&
  1875                     methodName == names.getClass &&
  1876                     argtypes.isEmpty()) {
  1877                 // as a special case, x.getClass() has type Class<? extends |X|>
  1878                 return new ClassType(restype.getEnclosingType(),
  1879                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1880                                                                BoundKind.EXTENDS,
  1881                                                                syms.boundClass)),
  1882                               restype.tsym);
  1883             } else {
  1884                 return restype;
  1888         /** Check that given application node appears as first statement
  1889          *  in a constructor call.
  1890          *  @param tree   The application node
  1891          *  @param env    The environment current at the application.
  1892          */
  1893         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1894             JCMethodDecl enclMethod = env.enclMethod;
  1895             if (enclMethod != null && enclMethod.name == names.init) {
  1896                 JCBlock body = enclMethod.body;
  1897                 if (body.stats.head.hasTag(EXEC) &&
  1898                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1899                     return true;
  1901             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1902                       TreeInfo.name(tree.meth));
  1903             return false;
  1906         /** Obtain a method type with given argument types.
  1907          */
  1908         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1909             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1910             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1913     public void visitNewClass(final JCNewClass tree) {
  1914         Type owntype = types.createErrorType(tree.type);
  1916         // The local environment of a class creation is
  1917         // a new environment nested in the current one.
  1918         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1920         // The anonymous inner class definition of the new expression,
  1921         // if one is defined by it.
  1922         JCClassDecl cdef = tree.def;
  1924         // If enclosing class is given, attribute it, and
  1925         // complete class name to be fully qualified
  1926         JCExpression clazz = tree.clazz; // Class field following new
  1927         JCExpression clazzid;            // Identifier in class field
  1928         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
  1929         annoclazzid = null;
  1931         if (clazz.hasTag(TYPEAPPLY)) {
  1932             clazzid = ((JCTypeApply) clazz).clazz;
  1933             if (clazzid.hasTag(ANNOTATED_TYPE)) {
  1934                 annoclazzid = (JCAnnotatedType) clazzid;
  1935                 clazzid = annoclazzid.underlyingType;
  1937         } else {
  1938             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1939                 annoclazzid = (JCAnnotatedType) clazz;
  1940                 clazzid = annoclazzid.underlyingType;
  1941             } else {
  1942                 clazzid = clazz;
  1946         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1948         if (tree.encl != null) {
  1949             // We are seeing a qualified new, of the form
  1950             //    <expr>.new C <...> (...) ...
  1951             // In this case, we let clazz stand for the name of the
  1952             // allocated class C prefixed with the type of the qualifier
  1953             // expression, so that we can
  1954             // resolve it with standard techniques later. I.e., if
  1955             // <expr> has type T, then <expr>.new C <...> (...)
  1956             // yields a clazz T.C.
  1957             Type encltype = chk.checkRefType(tree.encl.pos(),
  1958                                              attribExpr(tree.encl, env));
  1959             // TODO 308: in <expr>.new C, do we also want to add the type annotations
  1960             // from expr to the combined type, or not? Yes, do this.
  1961             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1962                                                  ((JCIdent) clazzid).name);
  1964             EndPosTable endPosTable = this.env.toplevel.endPositions;
  1965             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
  1966             if (clazz.hasTag(ANNOTATED_TYPE)) {
  1967                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
  1968                 List<JCAnnotation> annos = annoType.annotations;
  1970                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
  1971                     clazzid1 = make.at(tree.pos).
  1972                         TypeApply(clazzid1,
  1973                                   ((JCTypeApply) clazz).arguments);
  1976                 clazzid1 = make.at(tree.pos).
  1977                     AnnotatedType(annos, clazzid1);
  1978             } else if (clazz.hasTag(TYPEAPPLY)) {
  1979                 clazzid1 = make.at(tree.pos).
  1980                     TypeApply(clazzid1,
  1981                               ((JCTypeApply) clazz).arguments);
  1984             clazz = clazzid1;
  1987         // Attribute clazz expression and store
  1988         // symbol + type back into the attributed tree.
  1989         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1990             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1991             attribType(clazz, env);
  1993         clazztype = chk.checkDiamond(tree, clazztype);
  1994         chk.validate(clazz, localEnv);
  1995         if (tree.encl != null) {
  1996             // We have to work in this case to store
  1997             // symbol + type back into the attributed tree.
  1998             tree.clazz.type = clazztype;
  1999             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  2000             clazzid.type = ((JCIdent) clazzid).sym.type;
  2001             if (annoclazzid != null) {
  2002                 annoclazzid.type = clazzid.type;
  2004             if (!clazztype.isErroneous()) {
  2005                 if (cdef != null && clazztype.tsym.isInterface()) {
  2006                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  2007                 } else if (clazztype.tsym.isStatic()) {
  2008                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  2011         } else if (!clazztype.tsym.isInterface() &&
  2012                    clazztype.getEnclosingType().hasTag(CLASS)) {
  2013             // Check for the existence of an apropos outer instance
  2014             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  2017         // Attribute constructor arguments.
  2018         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
  2019         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
  2020         List<Type> argtypes = argtypesBuf.toList();
  2021         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  2023         // If we have made no mistakes in the class type...
  2024         if (clazztype.hasTag(CLASS)) {
  2025             // Enums may not be instantiated except implicitly
  2026             if (allowEnums &&
  2027                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  2028                 (!env.tree.hasTag(VARDEF) ||
  2029                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  2030                  ((JCVariableDecl) env.tree).init != tree))
  2031                 log.error(tree.pos(), "enum.cant.be.instantiated");
  2032             // Check that class is not abstract
  2033             if (cdef == null &&
  2034                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2035                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  2036                           clazztype.tsym);
  2037             } else if (cdef != null && clazztype.tsym.isInterface()) {
  2038                 // Check that no constructor arguments are given to
  2039                 // anonymous classes implementing an interface
  2040                 if (!argtypes.isEmpty())
  2041                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  2043                 if (!typeargtypes.isEmpty())
  2044                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  2046                 // Error recovery: pretend no arguments were supplied.
  2047                 argtypes = List.nil();
  2048                 typeargtypes = List.nil();
  2049             } else if (TreeInfo.isDiamond(tree)) {
  2050                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  2051                             clazztype.tsym.type.getTypeArguments(),
  2052                             clazztype.tsym);
  2054                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  2055                 diamondEnv.info.selectSuper = cdef != null;
  2056                 diamondEnv.info.pendingResolutionPhase = null;
  2058                 //if the type of the instance creation expression is a class type
  2059                 //apply method resolution inference (JLS 15.12.2.7). The return type
  2060                 //of the resolved constructor will be a partially instantiated type
  2061                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  2062                             diamondEnv,
  2063                             site,
  2064                             argtypes,
  2065                             typeargtypes);
  2066                 tree.constructor = constructor.baseSymbol();
  2068                 final TypeSymbol csym = clazztype.tsym;
  2069                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  2070                     @Override
  2071                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  2072                         enclosingContext.report(tree.clazz,
  2073                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  2075                 });
  2076                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  2077                 constructorType = checkId(tree, site,
  2078                         constructor,
  2079                         diamondEnv,
  2080                         diamondResult);
  2082                 tree.clazz.type = types.createErrorType(clazztype);
  2083                 if (!constructorType.isErroneous()) {
  2084                     tree.clazz.type = clazztype = constructorType.getReturnType();
  2085                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  2087                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  2090             // Resolve the called constructor under the assumption
  2091             // that we are referring to a superclass instance of the
  2092             // current instance (JLS ???).
  2093             else {
  2094                 //the following code alters some of the fields in the current
  2095                 //AttrContext - hence, the current context must be dup'ed in
  2096                 //order to avoid downstream failures
  2097                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  2098                 rsEnv.info.selectSuper = cdef != null;
  2099                 rsEnv.info.pendingResolutionPhase = null;
  2100                 tree.constructor = rs.resolveConstructor(
  2101                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  2102                 if (cdef == null) { //do not check twice!
  2103                     tree.constructorType = checkId(tree,
  2104                             clazztype,
  2105                             tree.constructor,
  2106                             rsEnv,
  2107                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2108                     if (rsEnv.info.lastResolveVarargs())
  2109                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  2111                 if (cdef == null &&
  2112                         !clazztype.isErroneous() &&
  2113                         clazztype.getTypeArguments().nonEmpty() &&
  2114                         findDiamonds) {
  2115                     findDiamond(localEnv, tree, clazztype);
  2119             if (cdef != null) {
  2120                 // We are seeing an anonymous class instance creation.
  2121                 // In this case, the class instance creation
  2122                 // expression
  2123                 //
  2124                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2125                 //
  2126                 // is represented internally as
  2127                 //
  2128                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  2129                 //
  2130                 // This expression is then *transformed* as follows:
  2131                 //
  2132                 // (1) add a STATIC flag to the class definition
  2133                 //     if the current environment is static
  2134                 // (2) add an extends or implements clause
  2135                 // (3) add a constructor.
  2136                 //
  2137                 // For instance, if C is a class, and ET is the type of E,
  2138                 // the expression
  2139                 //
  2140                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  2141                 //
  2142                 // is translated to (where X is a fresh name and typarams is the
  2143                 // parameter list of the super constructor):
  2144                 //
  2145                 //   new <typeargs1>X(<*nullchk*>E, args) where
  2146                 //     X extends C<typargs2> {
  2147                 //       <typarams> X(ET e, args) {
  2148                 //         e.<typeargs1>super(args)
  2149                 //       }
  2150                 //       ...
  2151                 //     }
  2152                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2154                 if (clazztype.tsym.isInterface()) {
  2155                     cdef.implementing = List.of(clazz);
  2156                 } else {
  2157                     cdef.extending = clazz;
  2160                 attribStat(cdef, localEnv);
  2162                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2164                 // If an outer instance is given,
  2165                 // prefix it to the constructor arguments
  2166                 // and delete it from the new expression
  2167                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2168                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2169                     argtypes = argtypes.prepend(tree.encl.type);
  2170                     tree.encl = null;
  2173                 // Reassign clazztype and recompute constructor.
  2174                 clazztype = cdef.sym.type;
  2175                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2176                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2177                 Assert.check(sym.kind < AMBIGUOUS);
  2178                 tree.constructor = sym;
  2179                 tree.constructorType = checkId(tree,
  2180                     clazztype,
  2181                     tree.constructor,
  2182                     localEnv,
  2183                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2184             } else {
  2185                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
  2186                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
  2187                             tree.clazz.type.tsym);
  2191             if (tree.constructor != null && tree.constructor.kind == MTH)
  2192                 owntype = clazztype;
  2194         result = check(tree, owntype, VAL, resultInfo);
  2195         chk.validate(tree.typeargs, localEnv);
  2197     //where
  2198         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2199             JCTypeApply ta = (JCTypeApply)tree.clazz;
  2200             List<JCExpression> prevTypeargs = ta.arguments;
  2201             try {
  2202                 //create a 'fake' diamond AST node by removing type-argument trees
  2203                 ta.arguments = List.nil();
  2204                 ResultInfo findDiamondResult = new ResultInfo(VAL,
  2205                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2206                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2207                 Type polyPt = allowPoly ?
  2208                         syms.objectType :
  2209                         clazztype;
  2210                 if (!inferred.isErroneous() &&
  2211                     (allowPoly && pt() == Infer.anyPoly ?
  2212                         types.isSameType(inferred, clazztype) :
  2213                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
  2214                     String key = types.isSameType(clazztype, inferred) ?
  2215                         "diamond.redundant.args" :
  2216                         "diamond.redundant.args.1";
  2217                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2219             } finally {
  2220                 ta.arguments = prevTypeargs;
  2224             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2225                 if (allowLambda &&
  2226                         identifyLambdaCandidate &&
  2227                         clazztype.hasTag(CLASS) &&
  2228                         !pt().hasTag(NONE) &&
  2229                         types.isFunctionalInterface(clazztype.tsym)) {
  2230                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2231                     int count = 0;
  2232                     boolean found = false;
  2233                     for (Symbol sym : csym.members().getElements()) {
  2234                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2235                                 sym.isConstructor()) continue;
  2236                         count++;
  2237                         if (sym.kind != MTH ||
  2238                                 !sym.name.equals(descriptor.name)) continue;
  2239                         Type mtype = types.memberType(clazztype, sym);
  2240                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2241                             found = true;
  2244                     if (found && count == 1) {
  2245                         log.note(tree.def, "potential.lambda.found");
  2250     private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
  2251             Symbol sym) {
  2252         // Ensure that no declaration annotations are present.
  2253         // Note that a tree type might be an AnnotatedType with
  2254         // empty annotations, if only declaration annotations were given.
  2255         // This method will raise an error for such a type.
  2256         for (JCAnnotation ai : annotations) {
  2257             if (typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
  2258                 log.error(ai.pos(), "annotation.type.not.applicable");
  2264     /** Make an attributed null check tree.
  2265      */
  2266     public JCExpression makeNullCheck(JCExpression arg) {
  2267         // optimization: X.this is never null; skip null check
  2268         Name name = TreeInfo.name(arg);
  2269         if (name == names._this || name == names._super) return arg;
  2271         JCTree.Tag optag = NULLCHK;
  2272         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2273         tree.operator = syms.nullcheck;
  2274         tree.type = arg.type;
  2275         return tree;
  2278     public void visitNewArray(JCNewArray tree) {
  2279         Type owntype = types.createErrorType(tree.type);
  2280         Env<AttrContext> localEnv = env.dup(tree);
  2281         Type elemtype;
  2282         if (tree.elemtype != null) {
  2283             elemtype = attribType(tree.elemtype, localEnv);
  2284             chk.validate(tree.elemtype, localEnv);
  2285             owntype = elemtype;
  2286             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2287                 attribExpr(l.head, localEnv, syms.intType);
  2288                 owntype = new ArrayType(owntype, syms.arrayClass);
  2290             if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
  2291                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
  2292                         tree.elemtype.type.tsym);
  2294         } else {
  2295             // we are seeing an untyped aggregate { ... }
  2296             // this is allowed only if the prototype is an array
  2297             if (pt().hasTag(ARRAY)) {
  2298                 elemtype = types.elemtype(pt());
  2299             } else {
  2300                 if (!pt().hasTag(ERROR)) {
  2301                     log.error(tree.pos(), "illegal.initializer.for.type",
  2302                               pt());
  2304                 elemtype = types.createErrorType(pt());
  2307         if (tree.elems != null) {
  2308             attribExprs(tree.elems, localEnv, elemtype);
  2309             owntype = new ArrayType(elemtype, syms.arrayClass);
  2311         if (!types.isReifiable(elemtype))
  2312             log.error(tree.pos(), "generic.array.creation");
  2313         result = check(tree, owntype, VAL, resultInfo);
  2316     /*
  2317      * A lambda expression can only be attributed when a target-type is available.
  2318      * In addition, if the target-type is that of a functional interface whose
  2319      * descriptor contains inference variables in argument position the lambda expression
  2320      * is 'stuck' (see DeferredAttr).
  2321      */
  2322     @Override
  2323     public void visitLambda(final JCLambda that) {
  2324         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2325             if (pt().hasTag(NONE)) {
  2326                 //lambda only allowed in assignment or method invocation/cast context
  2327                 log.error(that.pos(), "unexpected.lambda");
  2329             result = that.type = types.createErrorType(pt());
  2330             return;
  2332         //create an environment for attribution of the lambda expression
  2333         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2334         boolean needsRecovery =
  2335                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2336         try {
  2337             Type currentTarget = pt();
  2338             List<Type> explicitParamTypes = null;
  2339             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
  2340                 //attribute lambda parameters
  2341                 attribStats(that.params, localEnv);
  2342                 explicitParamTypes = TreeInfo.types(that.params);
  2345             Type lambdaType;
  2346             if (pt() != Type.recoveryType) {
  2347                 /* We need to adjust the target. If the target is an
  2348                  * intersection type, for example: SAM & I1 & I2 ...
  2349                  * the target will be updated to SAM
  2350                  */
  2351                 currentTarget = targetChecker.visit(currentTarget, that);
  2352                 if (explicitParamTypes != null) {
  2353                     currentTarget = infer.instantiateFunctionalInterface(that,
  2354                             currentTarget, explicitParamTypes, resultInfo.checkContext);
  2356                 lambdaType = types.findDescriptorType(currentTarget);
  2357             } else {
  2358                 currentTarget = Type.recoveryType;
  2359                 lambdaType = fallbackDescriptorType(that);
  2362             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
  2364             if (lambdaType.hasTag(FORALL)) {
  2365                 //lambda expression target desc cannot be a generic method
  2366                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
  2367                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
  2368                 result = that.type = types.createErrorType(pt());
  2369                 return;
  2372             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
  2373                 //add param type info in the AST
  2374                 List<Type> actuals = lambdaType.getParameterTypes();
  2375                 List<JCVariableDecl> params = that.params;
  2377                 boolean arityMismatch = false;
  2379                 while (params.nonEmpty()) {
  2380                     if (actuals.isEmpty()) {
  2381                         //not enough actuals to perform lambda parameter inference
  2382                         arityMismatch = true;
  2384                     //reset previously set info
  2385                     Type argType = arityMismatch ?
  2386                             syms.errType :
  2387                             actuals.head;
  2388                     params.head.vartype = make.at(params.head).Type(argType);
  2389                     params.head.sym = null;
  2390                     actuals = actuals.isEmpty() ?
  2391                             actuals :
  2392                             actuals.tail;
  2393                     params = params.tail;
  2396                 //attribute lambda parameters
  2397                 attribStats(that.params, localEnv);
  2399                 if (arityMismatch) {
  2400                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2401                         result = that.type = types.createErrorType(currentTarget);
  2402                         return;
  2406             //from this point on, no recovery is needed; if we are in assignment context
  2407             //we will be able to attribute the whole lambda body, regardless of errors;
  2408             //if we are in a 'check' method context, and the lambda is not compatible
  2409             //with the target-type, it will be recovered anyway in Attr.checkId
  2410             needsRecovery = false;
  2412             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
  2413                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
  2414                     new FunctionalReturnContext(resultInfo.checkContext);
  2416             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2417                 recoveryInfo :
  2418                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
  2419             localEnv.info.returnResult = bodyResultInfo;
  2421             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2422                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2423             } else {
  2424                 JCBlock body = (JCBlock)that.body;
  2425                 attribStats(body.stats, localEnv);
  2428             result = check(that, currentTarget, VAL, resultInfo);
  2430             boolean isSpeculativeRound =
  2431                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2433             preFlow(that);
  2434             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2436             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
  2438             if (!isSpeculativeRound) {
  2439                 //add thrown types as bounds to the thrown types free variables if needed:
  2440                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
  2441                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
  2442                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asFree(lambdaType.getThrownTypes());
  2444                     chk.unhandled(inferredThrownTypes, thrownTypes);
  2447                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
  2449             result = check(that, currentTarget, VAL, resultInfo);
  2450         } catch (Types.FunctionDescriptorLookupError ex) {
  2451             JCDiagnostic cause = ex.getDiagnostic();
  2452             resultInfo.checkContext.report(that, cause);
  2453             result = that.type = types.createErrorType(pt());
  2454             return;
  2455         } finally {
  2456             localEnv.info.scope.leave();
  2457             if (needsRecovery) {
  2458                 attribTree(that, env, recoveryInfo);
  2462     //where
  2463         void preFlow(JCLambda tree) {
  2464             new PostAttrAnalyzer() {
  2465                 @Override
  2466                 public void scan(JCTree tree) {
  2467                     if (tree == null ||
  2468                             (tree.type != null &&
  2469                             tree.type == Type.stuckType)) {
  2470                         //don't touch stuck expressions!
  2471                         return;
  2473                     super.scan(tree);
  2475             }.scan(tree);
  2478         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
  2480             @Override
  2481             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
  2482                 return t.isCompound() ?
  2483                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
  2486             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
  2487                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
  2488                 Type target = null;
  2489                 for (Type bound : ict.getExplicitComponents()) {
  2490                     TypeSymbol boundSym = bound.tsym;
  2491                     if (types.isFunctionalInterface(boundSym) &&
  2492                             types.findDescriptorSymbol(boundSym) == desc) {
  2493                         target = bound;
  2494                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
  2495                         //bound must be an interface
  2496                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
  2499                 return target != null ?
  2500                         target :
  2501                         ict.getExplicitComponents().head; //error recovery
  2504             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
  2505                 ListBuffer<Type> targs = new ListBuffer<>();
  2506                 ListBuffer<Type> supertypes = new ListBuffer<>();
  2507                 for (Type i : ict.interfaces_field) {
  2508                     if (i.isParameterized()) {
  2509                         targs.appendList(i.tsym.type.allparams());
  2511                     supertypes.append(i.tsym.type);
  2513                 IntersectionClassType notionalIntf =
  2514                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
  2515                 notionalIntf.allparams_field = targs.toList();
  2516                 notionalIntf.tsym.flags_field |= INTERFACE;
  2517                 return notionalIntf.tsym;
  2520             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
  2521                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
  2522                         diags.fragment(key, args)));
  2524         };
  2526         private Type fallbackDescriptorType(JCExpression tree) {
  2527             switch (tree.getTag()) {
  2528                 case LAMBDA:
  2529                     JCLambda lambda = (JCLambda)tree;
  2530                     List<Type> argtypes = List.nil();
  2531                     for (JCVariableDecl param : lambda.params) {
  2532                         argtypes = param.vartype != null ?
  2533                                 argtypes.append(param.vartype.type) :
  2534                                 argtypes.append(syms.errType);
  2536                     return new MethodType(argtypes, Type.recoveryType,
  2537                             List.of(syms.throwableType), syms.methodClass);
  2538                 case REFERENCE:
  2539                     return new MethodType(List.<Type>nil(), Type.recoveryType,
  2540                             List.of(syms.throwableType), syms.methodClass);
  2541                 default:
  2542                     Assert.error("Cannot get here!");
  2544             return null;
  2547         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2548                 final InferenceContext inferenceContext, final Type... ts) {
  2549             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
  2552         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
  2553                 final InferenceContext inferenceContext, final List<Type> ts) {
  2554             if (inferenceContext.free(ts)) {
  2555                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
  2556                     @Override
  2557                     public void typesInferred(InferenceContext inferenceContext) {
  2558                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
  2560                 });
  2561             } else {
  2562                 for (Type t : ts) {
  2563                     rs.checkAccessibleType(env, t);
  2568         /**
  2569          * Lambda/method reference have a special check context that ensures
  2570          * that i.e. a lambda return type is compatible with the expected
  2571          * type according to both the inherited context and the assignment
  2572          * context.
  2573          */
  2574         class FunctionalReturnContext extends Check.NestedCheckContext {
  2576             FunctionalReturnContext(CheckContext enclosingContext) {
  2577                 super(enclosingContext);
  2580             @Override
  2581             public boolean compatible(Type found, Type req, Warner warn) {
  2582                 //return type must be compatible in both current context and assignment context
  2583                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
  2586             @Override
  2587             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2588                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2592         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
  2594             JCExpression expr;
  2596             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
  2597                 super(enclosingContext);
  2598                 this.expr = expr;
  2601             @Override
  2602             public boolean compatible(Type found, Type req, Warner warn) {
  2603                 //a void return is compatible with an expression statement lambda
  2604                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
  2605                         super.compatible(found, req, warn);
  2609         /**
  2610         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2611         * are compatible with the expected functional interface descriptor. This means that:
  2612         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2613         * types must be compatible with the return type of the expected descriptor.
  2614         */
  2615         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
  2616             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2618             //return values have already been checked - but if lambda has no return
  2619             //values, we must ensure that void/value compatibility is correct;
  2620             //this amounts at checking that, if a lambda body can complete normally,
  2621             //the descriptor's return type must be void
  2622             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2623                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
  2624                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2625                         diags.fragment("missing.ret.val", returnType)));
  2628             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
  2629             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2630                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2634         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2635             Env<AttrContext> lambdaEnv;
  2636             Symbol owner = env.info.scope.owner;
  2637             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2638                 //field initializer
  2639                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2640                 lambdaEnv.info.scope.owner =
  2641                     new MethodSymbol((owner.flags() & STATIC) | BLOCK, names.empty, null,
  2642                                      env.info.scope.owner);
  2643             } else {
  2644                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2646             return lambdaEnv;
  2649     @Override
  2650     public void visitReference(final JCMemberReference that) {
  2651         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
  2652             if (pt().hasTag(NONE)) {
  2653                 //method reference only allowed in assignment or method invocation/cast context
  2654                 log.error(that.pos(), "unexpected.mref");
  2656             result = that.type = types.createErrorType(pt());
  2657             return;
  2659         final Env<AttrContext> localEnv = env.dup(that);
  2660         try {
  2661             //attribute member reference qualifier - if this is a constructor
  2662             //reference, the expected kind must be a type
  2663             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
  2665             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2666                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2667                 if (!exprType.isErroneous() &&
  2668                     exprType.isRaw() &&
  2669                     that.typeargs != null) {
  2670                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2671                         diags.fragment("mref.infer.and.explicit.params"));
  2672                     exprType = types.createErrorType(exprType);
  2676             if (exprType.isErroneous()) {
  2677                 //if the qualifier expression contains problems,
  2678                 //give up attribution of method reference
  2679                 result = that.type = exprType;
  2680                 return;
  2683             if (TreeInfo.isStaticSelector(that.expr, names)) {
  2684                 //if the qualifier is a type, validate it; raw warning check is
  2685                 //omitted as we don't know at this stage as to whether this is a
  2686                 //raw selector (because of inference)
  2687                 chk.validate(that.expr, env, false);
  2690             //attrib type-arguments
  2691             List<Type> typeargtypes = List.nil();
  2692             if (that.typeargs != null) {
  2693                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2696             Type target;
  2697             Type desc;
  2698             if (pt() != Type.recoveryType) {
  2699                 target = targetChecker.visit(pt(), that);
  2700                 desc = types.findDescriptorType(target);
  2701             } else {
  2702                 target = Type.recoveryType;
  2703                 desc = fallbackDescriptorType(that);
  2706             setFunctionalInfo(localEnv, that, pt(), desc, target, resultInfo.checkContext);
  2707             List<Type> argtypes = desc.getParameterTypes();
  2708             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
  2710             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
  2711                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
  2714             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
  2715             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
  2716             try {
  2717                 refResult = rs.resolveMemberReference(that.pos(), localEnv, that, that.expr.type,
  2718                         that.name, argtypes, typeargtypes, true, referenceCheck,
  2719                         resultInfo.checkContext.inferenceContext());
  2720             } finally {
  2721                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
  2724             Symbol refSym = refResult.fst;
  2725             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2727             if (refSym.kind != MTH) {
  2728                 boolean targetError;
  2729                 switch (refSym.kind) {
  2730                     case ABSENT_MTH:
  2731                         targetError = false;
  2732                         break;
  2733                     case WRONG_MTH:
  2734                     case WRONG_MTHS:
  2735                     case AMBIGUOUS:
  2736                     case HIDDEN:
  2737                     case STATICERR:
  2738                     case MISSING_ENCL:
  2739                         targetError = true;
  2740                         break;
  2741                     default:
  2742                         Assert.error("unexpected result kind " + refSym.kind);
  2743                         targetError = false;
  2746                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2747                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2749                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2750                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2752                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2753                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2755                 if (targetError && target == Type.recoveryType) {
  2756                     //a target error doesn't make sense during recovery stage
  2757                     //as we don't know what actual parameter types are
  2758                     result = that.type = target;
  2759                     return;
  2760                 } else {
  2761                     if (targetError) {
  2762                         resultInfo.checkContext.report(that, diag);
  2763                     } else {
  2764                         log.report(diag);
  2766                     result = that.type = types.createErrorType(target);
  2767                     return;
  2771             that.sym = refSym.baseSymbol();
  2772             that.kind = lookupHelper.referenceKind(that.sym);
  2773             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
  2775             if (desc.getReturnType() == Type.recoveryType) {
  2776                 // stop here
  2777                 result = that.type = target;
  2778                 return;
  2781             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
  2783                 if (that.getMode() == ReferenceMode.INVOKE &&
  2784                         TreeInfo.isStaticSelector(that.expr, names) &&
  2785                         that.kind.isUnbound() &&
  2786                         !desc.getParameterTypes().head.isParameterized()) {
  2787                     chk.checkRaw(that.expr, localEnv);
  2790                 if (!that.kind.isUnbound() &&
  2791                         that.getMode() == ReferenceMode.INVOKE &&
  2792                         TreeInfo.isStaticSelector(that.expr, names) &&
  2793                         !that.sym.isStatic()) {
  2794                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2795                             diags.fragment("non-static.cant.be.ref", Kinds.kindName(refSym), refSym));
  2796                     result = that.type = types.createErrorType(target);
  2797                     return;
  2800                 if (that.kind.isUnbound() &&
  2801                         that.getMode() == ReferenceMode.INVOKE &&
  2802                         TreeInfo.isStaticSelector(that.expr, names) &&
  2803                         that.sym.isStatic()) {
  2804                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2805                             diags.fragment("static.method.in.unbound.lookup", Kinds.kindName(refSym), refSym));
  2806                     result = that.type = types.createErrorType(target);
  2807                     return;
  2810                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
  2811                         exprType.getTypeArguments().nonEmpty()) {
  2812                     //static ref with class type-args
  2813                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2814                             diags.fragment("static.mref.with.targs"));
  2815                     result = that.type = types.createErrorType(target);
  2816                     return;
  2819                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
  2820                         !that.kind.isUnbound()) {
  2821                     //no static bound mrefs
  2822                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
  2823                             diags.fragment("static.bound.mref"));
  2824                     result = that.type = types.createErrorType(target);
  2825                     return;
  2828                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
  2829                     // Check that super-qualified symbols are not abstract (JLS)
  2830                     rs.checkNonAbstract(that.pos(), that.sym);
  2834             ResultInfo checkInfo =
  2835                     resultInfo.dup(newMethodTemplate(
  2836                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
  2837                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes));
  2839             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2841             if (that.kind.isUnbound() &&
  2842                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
  2843                 //re-generate inference constraints for unbound receiver
  2844                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asFree(argtypes.head), exprType)) {
  2845                     //cannot happen as this has already been checked - we just need
  2846                     //to regenerate the inference constraints, as that has been lost
  2847                     //as a result of the call to inferenceContext.save()
  2848                     Assert.error("Can't get here");
  2852             if (!refType.isErroneous()) {
  2853                 refType = types.createMethodTypeWithReturn(refType,
  2854                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2857             //go ahead with standard method reference compatibility check - note that param check
  2858             //is a no-op (as this has been taken care during method applicability)
  2859             boolean isSpeculativeRound =
  2860                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2861             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2862             if (!isSpeculativeRound) {
  2863                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
  2865             result = check(that, target, VAL, resultInfo);
  2866         } catch (Types.FunctionDescriptorLookupError ex) {
  2867             JCDiagnostic cause = ex.getDiagnostic();
  2868             resultInfo.checkContext.report(that, cause);
  2869             result = that.type = types.createErrorType(pt());
  2870             return;
  2873     //where
  2874         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
  2875             //if this is a constructor reference, the expected kind must be a type
  2876             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
  2880     @SuppressWarnings("fallthrough")
  2881     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2882         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
  2884         Type resType;
  2885         switch (tree.getMode()) {
  2886             case NEW:
  2887                 if (!tree.expr.type.isRaw()) {
  2888                     resType = tree.expr.type;
  2889                     break;
  2891             default:
  2892                 resType = refType.getReturnType();
  2895         Type incompatibleReturnType = resType;
  2897         if (returnType.hasTag(VOID)) {
  2898             incompatibleReturnType = null;
  2901         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
  2902             if (resType.isErroneous() ||
  2903                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
  2904                 incompatibleReturnType = null;
  2908         if (incompatibleReturnType != null) {
  2909             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2910                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2913         if (!speculativeAttr) {
  2914             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
  2915             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2916                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2921     /**
  2922      * Set functional type info on the underlying AST. Note: as the target descriptor
  2923      * might contain inference variables, we might need to register an hook in the
  2924      * current inference context.
  2925      */
  2926     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
  2927             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
  2928         if (checkContext.inferenceContext().free(descriptorType)) {
  2929             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
  2930                 public void typesInferred(InferenceContext inferenceContext) {
  2931                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
  2932                             inferenceContext.asInstType(primaryTarget), checkContext);
  2934             });
  2935         } else {
  2936             ListBuffer<Type> targets = new ListBuffer<>();
  2937             if (pt.hasTag(CLASS)) {
  2938                 if (pt.isCompound()) {
  2939                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
  2940                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
  2941                         if (t != primaryTarget) {
  2942                             targets.append(types.removeWildcards(t));
  2945                 } else {
  2946                     targets.append(types.removeWildcards(primaryTarget));
  2949             fExpr.targets = targets.toList();
  2950             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
  2951                     pt != Type.recoveryType) {
  2952                 //check that functional interface class is well-formed
  2953                 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
  2954                         names.empty, List.of(fExpr.targets.head), ABSTRACT);
  2955                 if (csym != null) {
  2956                     chk.checkImplementations(env.tree, csym, csym);
  2962     public void visitParens(JCParens tree) {
  2963         Type owntype = attribTree(tree.expr, env, resultInfo);
  2964         result = check(tree, owntype, pkind(), resultInfo);
  2965         Symbol sym = TreeInfo.symbol(tree);
  2966         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2967             log.error(tree.pos(), "illegal.start.of.type");
  2970     public void visitAssign(JCAssign tree) {
  2971         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2972         Type capturedType = capture(owntype);
  2973         attribExpr(tree.rhs, env, owntype);
  2974         result = check(tree, capturedType, VAL, resultInfo);
  2977     public void visitAssignop(JCAssignOp tree) {
  2978         // Attribute arguments.
  2979         Type owntype = attribTree(tree.lhs, env, varInfo);
  2980         Type operand = attribExpr(tree.rhs, env);
  2981         // Find operator.
  2982         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2983             tree.pos(), tree.getTag().noAssignOp(), env,
  2984             owntype, operand);
  2986         if (operator.kind == MTH &&
  2987                 !owntype.isErroneous() &&
  2988                 !operand.isErroneous()) {
  2989             chk.checkOperator(tree.pos(),
  2990                               (OperatorSymbol)operator,
  2991                               tree.getTag().noAssignOp(),
  2992                               owntype,
  2993                               operand);
  2994             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2995             chk.checkCastable(tree.rhs.pos(),
  2996                               operator.type.getReturnType(),
  2997                               owntype);
  2999         result = check(tree, owntype, VAL, resultInfo);
  3002     public void visitUnary(JCUnary tree) {
  3003         // Attribute arguments.
  3004         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  3005             ? attribTree(tree.arg, env, varInfo)
  3006             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  3008         // Find operator.
  3009         Symbol operator = tree.operator =
  3010             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  3012         Type owntype = types.createErrorType(tree.type);
  3013         if (operator.kind == MTH &&
  3014                 !argtype.isErroneous()) {
  3015             owntype = (tree.getTag().isIncOrDecUnaryOp())
  3016                 ? tree.arg.type
  3017                 : operator.type.getReturnType();
  3018             int opc = ((OperatorSymbol)operator).opcode;
  3020             // If the argument is constant, fold it.
  3021             if (argtype.constValue() != null) {
  3022                 Type ctype = cfolder.fold1(opc, argtype);
  3023                 if (ctype != null) {
  3024                     owntype = cfolder.coerce(ctype, owntype);
  3026                     // Remove constant types from arguments to
  3027                     // conserve space. The parser will fold concatenations
  3028                     // of string literals; the code here also
  3029                     // gets rid of intermediate results when some of the
  3030                     // operands are constant identifiers.
  3031                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  3032                         tree.arg.type = syms.stringType;
  3037         result = check(tree, owntype, VAL, resultInfo);
  3040     public void visitBinary(JCBinary tree) {
  3041         // Attribute arguments.
  3042         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  3043         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  3045         // Find operator.
  3046         Symbol operator = tree.operator =
  3047             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  3049         Type owntype = types.createErrorType(tree.type);
  3050         if (operator.kind == MTH &&
  3051                 !left.isErroneous() &&
  3052                 !right.isErroneous()) {
  3053             owntype = operator.type.getReturnType();
  3054             // This will figure out when unboxing can happen and
  3055             // choose the right comparison operator.
  3056             int opc = chk.checkOperator(tree.lhs.pos(),
  3057                                         (OperatorSymbol)operator,
  3058                                         tree.getTag(),
  3059                                         left,
  3060                                         right);
  3062             // If both arguments are constants, fold them.
  3063             if (left.constValue() != null && right.constValue() != null) {
  3064                 Type ctype = cfolder.fold2(opc, left, right);
  3065                 if (ctype != null) {
  3066                     owntype = cfolder.coerce(ctype, owntype);
  3068                     // Remove constant types from arguments to
  3069                     // conserve space. The parser will fold concatenations
  3070                     // of string literals; the code here also
  3071                     // gets rid of intermediate results when some of the
  3072                     // operands are constant identifiers.
  3073                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  3074                         tree.lhs.type = syms.stringType;
  3076                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  3077                         tree.rhs.type = syms.stringType;
  3082             // Check that argument types of a reference ==, != are
  3083             // castable to each other, (JLS 15.21).  Note: unboxing
  3084             // comparisons will not have an acmp* opc at this point.
  3085             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  3086                 if (!types.isEqualityComparable(left, right,
  3087                                                 new Warner(tree.pos()))) {
  3088                     log.error(tree.pos(), "incomparable.types", left, right);
  3092             chk.checkDivZero(tree.rhs.pos(), operator, right);
  3094         result = check(tree, owntype, VAL, resultInfo);
  3097     public void visitTypeCast(final JCTypeCast tree) {
  3098         Type clazztype = attribType(tree.clazz, env);
  3099         chk.validate(tree.clazz, env, false);
  3100         //a fresh environment is required for 292 inference to work properly ---
  3101         //see Infer.instantiatePolymorphicSignatureInstance()
  3102         Env<AttrContext> localEnv = env.dup(tree);
  3103         //should we propagate the target type?
  3104         final ResultInfo castInfo;
  3105         JCExpression expr = TreeInfo.skipParens(tree.expr);
  3106         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
  3107         if (isPoly) {
  3108             //expression is a poly - we need to propagate target type info
  3109             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  3110                 @Override
  3111                 public boolean compatible(Type found, Type req, Warner warn) {
  3112                     return types.isCastable(found, req, warn);
  3114             });
  3115         } else {
  3116             //standalone cast - target-type info is not propagated
  3117             castInfo = unknownExprInfo;
  3119         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  3120         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3121         if (exprtype.constValue() != null)
  3122             owntype = cfolder.coerce(exprtype, owntype);
  3123         result = check(tree, capture(owntype), VAL, resultInfo);
  3124         if (!isPoly)
  3125             chk.checkRedundantCast(localEnv, tree);
  3128     public void visitTypeTest(JCInstanceOf tree) {
  3129         Type exprtype = chk.checkNullOrRefType(
  3130             tree.expr.pos(), attribExpr(tree.expr, env));
  3131         Type clazztype = attribType(tree.clazz, env);
  3132         if (!clazztype.hasTag(TYPEVAR)) {
  3133             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
  3135         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
  3136             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
  3137             clazztype = types.createErrorType(clazztype);
  3139         chk.validate(tree.clazz, env, false);
  3140         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  3141         result = check(tree, syms.booleanType, VAL, resultInfo);
  3144     public void visitIndexed(JCArrayAccess tree) {
  3145         Type owntype = types.createErrorType(tree.type);
  3146         Type atype = attribExpr(tree.indexed, env);
  3147         attribExpr(tree.index, env, syms.intType);
  3148         if (types.isArray(atype))
  3149             owntype = types.elemtype(atype);
  3150         else if (!atype.hasTag(ERROR))
  3151             log.error(tree.pos(), "array.req.but.found", atype);
  3152         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  3153         result = check(tree, owntype, VAR, resultInfo);
  3156     public void visitIdent(JCIdent tree) {
  3157         Symbol sym;
  3159         // Find symbol
  3160         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
  3161             // If we are looking for a method, the prototype `pt' will be a
  3162             // method type with the type of the call's arguments as parameters.
  3163             env.info.pendingResolutionPhase = null;
  3164             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  3165         } else if (tree.sym != null && tree.sym.kind != VAR) {
  3166             sym = tree.sym;
  3167         } else {
  3168             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  3170         tree.sym = sym;
  3172         // (1) Also find the environment current for the class where
  3173         //     sym is defined (`symEnv').
  3174         // Only for pre-tiger versions (1.4 and earlier):
  3175         // (2) Also determine whether we access symbol out of an anonymous
  3176         //     class in a this or super call.  This is illegal for instance
  3177         //     members since such classes don't carry a this$n link.
  3178         //     (`noOuterThisPath').
  3179         Env<AttrContext> symEnv = env;
  3180         boolean noOuterThisPath = false;
  3181         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  3182             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  3183             sym.owner.kind == TYP &&
  3184             tree.name != names._this && tree.name != names._super) {
  3186             // Find environment in which identifier is defined.
  3187             while (symEnv.outer != null &&
  3188                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  3189                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  3190                     noOuterThisPath = !allowAnonOuterThis;
  3191                 symEnv = symEnv.outer;
  3195         // If symbol is a variable, ...
  3196         if (sym.kind == VAR) {
  3197             VarSymbol v = (VarSymbol)sym;
  3199             // ..., evaluate its initializer, if it has one, and check for
  3200             // illegal forward reference.
  3201             checkInit(tree, env, v, false);
  3203             // If we are expecting a variable (as opposed to a value), check
  3204             // that the variable is assignable in the current environment.
  3205             if (pkind() == VAR)
  3206                 checkAssignable(tree.pos(), v, null, env);
  3209         // In a constructor body,
  3210         // if symbol is a field or instance method, check that it is
  3211         // not accessed before the supertype constructor is called.
  3212         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  3213             (sym.kind & (VAR | MTH)) != 0 &&
  3214             sym.owner.kind == TYP &&
  3215             (sym.flags() & STATIC) == 0) {
  3216             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  3218         Env<AttrContext> env1 = env;
  3219         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  3220             // If the found symbol is inaccessible, then it is
  3221             // accessed through an enclosing instance.  Locate this
  3222             // enclosing instance:
  3223             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  3224                 env1 = env1.outer;
  3226         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  3229     public void visitSelect(JCFieldAccess tree) {
  3230         // Determine the expected kind of the qualifier expression.
  3231         int skind = 0;
  3232         if (tree.name == names._this || tree.name == names._super ||
  3233             tree.name == names._class)
  3235             skind = TYP;
  3236         } else {
  3237             if ((pkind() & PCK) != 0) skind = skind | PCK;
  3238             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  3239             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  3242         // Attribute the qualifier expression, and determine its symbol (if any).
  3243         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  3244         if ((pkind() & (PCK | TYP)) == 0)
  3245             site = capture(site); // Capture field access
  3247         // don't allow T.class T[].class, etc
  3248         if (skind == TYP) {
  3249             Type elt = site;
  3250             while (elt.hasTag(ARRAY))
  3251                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
  3252             if (elt.hasTag(TYPEVAR)) {
  3253                 log.error(tree.pos(), "type.var.cant.be.deref");
  3254                 result = types.createErrorType(tree.type);
  3255                 return;
  3259         // If qualifier symbol is a type or `super', assert `selectSuper'
  3260         // for the selection. This is relevant for determining whether
  3261         // protected symbols are accessible.
  3262         Symbol sitesym = TreeInfo.symbol(tree.selected);
  3263         boolean selectSuperPrev = env.info.selectSuper;
  3264         env.info.selectSuper =
  3265             sitesym != null &&
  3266             sitesym.name == names._super;
  3268         // Determine the symbol represented by the selection.
  3269         env.info.pendingResolutionPhase = null;
  3270         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  3271         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  3272             site = capture(site);
  3273             sym = selectSym(tree, sitesym, site, env, resultInfo);
  3275         boolean varArgs = env.info.lastResolveVarargs();
  3276         tree.sym = sym;
  3278         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
  3279             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
  3280             site = capture(site);
  3283         // If that symbol is a variable, ...
  3284         if (sym.kind == VAR) {
  3285             VarSymbol v = (VarSymbol)sym;
  3287             // ..., evaluate its initializer, if it has one, and check for
  3288             // illegal forward reference.
  3289             checkInit(tree, env, v, true);
  3291             // If we are expecting a variable (as opposed to a value), check
  3292             // that the variable is assignable in the current environment.
  3293             if (pkind() == VAR)
  3294                 checkAssignable(tree.pos(), v, tree.selected, env);
  3297         if (sitesym != null &&
  3298                 sitesym.kind == VAR &&
  3299                 ((VarSymbol)sitesym).isResourceVariable() &&
  3300                 sym.kind == MTH &&
  3301                 sym.name.equals(names.close) &&
  3302                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  3303                 env.info.lint.isEnabled(LintCategory.TRY)) {
  3304             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  3307         // Disallow selecting a type from an expression
  3308         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  3309             tree.type = check(tree.selected, pt(),
  3310                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  3313         if (isType(sitesym)) {
  3314             if (sym.name == names._this) {
  3315                 // If `C' is the currently compiled class, check that
  3316                 // C.this' does not appear in a call to a super(...)
  3317                 if (env.info.isSelfCall &&
  3318                     site.tsym == env.enclClass.sym) {
  3319                     chk.earlyRefError(tree.pos(), sym);
  3321             } else {
  3322                 // Check if type-qualified fields or methods are static (JLS)
  3323                 if ((sym.flags() & STATIC) == 0 &&
  3324                     !env.next.tree.hasTag(REFERENCE) &&
  3325                     sym.name != names._super &&
  3326                     (sym.kind == VAR || sym.kind == MTH)) {
  3327                     rs.accessBase(rs.new StaticError(sym),
  3328                               tree.pos(), site, sym.name, true);
  3331         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  3332             // If the qualified item is not a type and the selected item is static, report
  3333             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  3334             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  3337         // If we are selecting an instance member via a `super', ...
  3338         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  3340             // Check that super-qualified symbols are not abstract (JLS)
  3341             rs.checkNonAbstract(tree.pos(), sym);
  3343             if (site.isRaw()) {
  3344                 // Determine argument types for site.
  3345                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  3346                 if (site1 != null) site = site1;
  3350         env.info.selectSuper = selectSuperPrev;
  3351         result = checkId(tree, site, sym, env, resultInfo);
  3353     //where
  3354         /** Determine symbol referenced by a Select expression,
  3356          *  @param tree   The select tree.
  3357          *  @param site   The type of the selected expression,
  3358          *  @param env    The current environment.
  3359          *  @param resultInfo The current result.
  3360          */
  3361         private Symbol selectSym(JCFieldAccess tree,
  3362                                  Symbol location,
  3363                                  Type site,
  3364                                  Env<AttrContext> env,
  3365                                  ResultInfo resultInfo) {
  3366             DiagnosticPosition pos = tree.pos();
  3367             Name name = tree.name;
  3368             switch (site.getTag()) {
  3369             case PACKAGE:
  3370                 return rs.accessBase(
  3371                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  3372                     pos, location, site, name, true);
  3373             case ARRAY:
  3374             case CLASS:
  3375                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
  3376                     return rs.resolveQualifiedMethod(
  3377                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  3378                 } else if (name == names._this || name == names._super) {
  3379                     return rs.resolveSelf(pos, env, site.tsym, name);
  3380                 } else if (name == names._class) {
  3381                     // In this case, we have already made sure in
  3382                     // visitSelect that qualifier expression is a type.
  3383                     Type t = syms.classType;
  3384                     List<Type> typeargs = allowGenerics
  3385                         ? List.of(types.erasure(site))
  3386                         : List.<Type>nil();
  3387                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  3388                     return new VarSymbol(
  3389                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3390                 } else {
  3391                     // We are seeing a plain identifier as selector.
  3392                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  3393                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  3394                         sym = rs.accessBase(sym, pos, location, site, name, true);
  3395                     return sym;
  3397             case WILDCARD:
  3398                 throw new AssertionError(tree);
  3399             case TYPEVAR:
  3400                 // Normally, site.getUpperBound() shouldn't be null.
  3401                 // It should only happen during memberEnter/attribBase
  3402                 // when determining the super type which *must* beac
  3403                 // done before attributing the type variables.  In
  3404                 // other words, we are seeing this illegal program:
  3405                 // class B<T> extends A<T.foo> {}
  3406                 Symbol sym = (site.getUpperBound() != null)
  3407                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  3408                     : null;
  3409                 if (sym == null) {
  3410                     log.error(pos, "type.var.cant.be.deref");
  3411                     return syms.errSymbol;
  3412                 } else {
  3413                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  3414                         rs.new AccessError(env, site, sym) :
  3415                                 sym;
  3416                     rs.accessBase(sym2, pos, location, site, name, true);
  3417                     return sym;
  3419             case ERROR:
  3420                 // preserve identifier names through errors
  3421                 return types.createErrorType(name, site.tsym, site).tsym;
  3422             default:
  3423                 // The qualifier expression is of a primitive type -- only
  3424                 // .class is allowed for these.
  3425                 if (name == names._class) {
  3426                     // In this case, we have already made sure in Select that
  3427                     // qualifier expression is a type.
  3428                     Type t = syms.classType;
  3429                     Type arg = types.boxedClass(site).type;
  3430                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  3431                     return new VarSymbol(
  3432                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  3433                 } else {
  3434                     log.error(pos, "cant.deref", site);
  3435                     return syms.errSymbol;
  3440         /** Determine type of identifier or select expression and check that
  3441          *  (1) the referenced symbol is not deprecated
  3442          *  (2) the symbol's type is safe (@see checkSafe)
  3443          *  (3) if symbol is a variable, check that its type and kind are
  3444          *      compatible with the prototype and protokind.
  3445          *  (4) if symbol is an instance field of a raw type,
  3446          *      which is being assigned to, issue an unchecked warning if its
  3447          *      type changes under erasure.
  3448          *  (5) if symbol is an instance method of a raw type, issue an
  3449          *      unchecked warning if its argument types change under erasure.
  3450          *  If checks succeed:
  3451          *    If symbol is a constant, return its constant type
  3452          *    else if symbol is a method, return its result type
  3453          *    otherwise return its type.
  3454          *  Otherwise return errType.
  3456          *  @param tree       The syntax tree representing the identifier
  3457          *  @param site       If this is a select, the type of the selected
  3458          *                    expression, otherwise the type of the current class.
  3459          *  @param sym        The symbol representing the identifier.
  3460          *  @param env        The current environment.
  3461          *  @param resultInfo    The expected result
  3462          */
  3463         Type checkId(JCTree tree,
  3464                      Type site,
  3465                      Symbol sym,
  3466                      Env<AttrContext> env,
  3467                      ResultInfo resultInfo) {
  3468             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
  3469                     checkMethodId(tree, site, sym, env, resultInfo) :
  3470                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3473         Type checkMethodId(JCTree tree,
  3474                      Type site,
  3475                      Symbol sym,
  3476                      Env<AttrContext> env,
  3477                      ResultInfo resultInfo) {
  3478             boolean isPolymorhicSignature =
  3479                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
  3480             return isPolymorhicSignature ?
  3481                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
  3482                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
  3485         Type checkSigPolyMethodId(JCTree tree,
  3486                      Type site,
  3487                      Symbol sym,
  3488                      Env<AttrContext> env,
  3489                      ResultInfo resultInfo) {
  3490             //recover original symbol for signature polymorphic methods
  3491             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
  3492             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
  3493             return sym.type;
  3496         Type checkMethodIdInternal(JCTree tree,
  3497                      Type site,
  3498                      Symbol sym,
  3499                      Env<AttrContext> env,
  3500                      ResultInfo resultInfo) {
  3501             if ((resultInfo.pkind & POLY) != 0) {
  3502                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
  3503                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
  3504                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3505                 return owntype;
  3506             } else {
  3507                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
  3511         Type checkIdInternal(JCTree tree,
  3512                      Type site,
  3513                      Symbol sym,
  3514                      Type pt,
  3515                      Env<AttrContext> env,
  3516                      ResultInfo resultInfo) {
  3517             if (pt.isErroneous()) {
  3518                 return types.createErrorType(site);
  3520             Type owntype; // The computed type of this identifier occurrence.
  3521             switch (sym.kind) {
  3522             case TYP:
  3523                 // For types, the computed type equals the symbol's type,
  3524                 // except for two situations:
  3525                 owntype = sym.type;
  3526                 if (owntype.hasTag(CLASS)) {
  3527                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
  3528                     Type ownOuter = owntype.getEnclosingType();
  3530                     // (a) If the symbol's type is parameterized, erase it
  3531                     // because no type parameters were given.
  3532                     // We recover generic outer type later in visitTypeApply.
  3533                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3534                         owntype = types.erasure(owntype);
  3537                     // (b) If the symbol's type is an inner class, then
  3538                     // we have to interpret its outer type as a superclass
  3539                     // of the site type. Example:
  3540                     //
  3541                     // class Tree<A> { class Visitor { ... } }
  3542                     // class PointTree extends Tree<Point> { ... }
  3543                     // ...PointTree.Visitor...
  3544                     //
  3545                     // Then the type of the last expression above is
  3546                     // Tree<Point>.Visitor.
  3547                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
  3548                         Type normOuter = site;
  3549                         if (normOuter.hasTag(CLASS)) {
  3550                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3552                         if (normOuter == null) // perhaps from an import
  3553                             normOuter = types.erasure(ownOuter);
  3554                         if (normOuter != ownOuter)
  3555                             owntype = new ClassType(
  3556                                 normOuter, List.<Type>nil(), owntype.tsym);
  3559                 break;
  3560             case VAR:
  3561                 VarSymbol v = (VarSymbol)sym;
  3562                 // Test (4): if symbol is an instance field of a raw type,
  3563                 // which is being assigned to, issue an unchecked warning if
  3564                 // its type changes under erasure.
  3565                 if (allowGenerics &&
  3566                     resultInfo.pkind == VAR &&
  3567                     v.owner.kind == TYP &&
  3568                     (v.flags() & STATIC) == 0 &&
  3569                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3570                     Type s = types.asOuterSuper(site, v.owner);
  3571                     if (s != null &&
  3572                         s.isRaw() &&
  3573                         !types.isSameType(v.type, v.erasure(types))) {
  3574                         chk.warnUnchecked(tree.pos(),
  3575                                           "unchecked.assign.to.var",
  3576                                           v, s);
  3579                 // The computed type of a variable is the type of the
  3580                 // variable symbol, taken as a member of the site type.
  3581                 owntype = (sym.owner.kind == TYP &&
  3582                            sym.name != names._this && sym.name != names._super)
  3583                     ? types.memberType(site, sym)
  3584                     : sym.type;
  3586                 // If the variable is a constant, record constant value in
  3587                 // computed type.
  3588                 if (v.getConstValue() != null && isStaticReference(tree))
  3589                     owntype = owntype.constType(v.getConstValue());
  3591                 if (resultInfo.pkind == VAL) {
  3592                     owntype = capture(owntype); // capture "names as expressions"
  3594                 break;
  3595             case MTH: {
  3596                 owntype = checkMethod(site, sym,
  3597                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3598                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3599                         resultInfo.pt.getTypeArguments());
  3600                 break;
  3602             case PCK: case ERR:
  3603                 owntype = sym.type;
  3604                 break;
  3605             default:
  3606                 throw new AssertionError("unexpected kind: " + sym.kind +
  3607                                          " in tree " + tree);
  3610             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3611             // (for constructors, the error was given when the constructor was
  3612             // resolved)
  3614             if (sym.name != names.init) {
  3615                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3616                 chk.checkSunAPI(tree.pos(), sym);
  3617                 chk.checkProfile(tree.pos(), sym);
  3620             // Test (3): if symbol is a variable, check that its type and
  3621             // kind are compatible with the prototype and protokind.
  3622             return check(tree, owntype, sym.kind, resultInfo);
  3625         /** Check that variable is initialized and evaluate the variable's
  3626          *  initializer, if not yet done. Also check that variable is not
  3627          *  referenced before it is defined.
  3628          *  @param tree    The tree making up the variable reference.
  3629          *  @param env     The current environment.
  3630          *  @param v       The variable's symbol.
  3631          */
  3632         private void checkInit(JCTree tree,
  3633                                Env<AttrContext> env,
  3634                                VarSymbol v,
  3635                                boolean onlyWarning) {
  3636 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3637 //                             tree.pos + " " + v.pos + " " +
  3638 //                             Resolve.isStatic(env));//DEBUG
  3640             // A forward reference is diagnosed if the declaration position
  3641             // of the variable is greater than the current tree position
  3642             // and the tree and variable definition occur in the same class
  3643             // definition.  Note that writes don't count as references.
  3644             // This check applies only to class and instance
  3645             // variables.  Local variables follow different scope rules,
  3646             // and are subject to definite assignment checking.
  3647             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3648                 v.owner.kind == TYP &&
  3649                 canOwnInitializer(owner(env)) &&
  3650                 v.owner == env.info.scope.owner.enclClass() &&
  3651                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3652                 (!env.tree.hasTag(ASSIGN) ||
  3653                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3654                 String suffix = (env.info.enclVar == v) ?
  3655                                 "self.ref" : "forward.ref";
  3656                 if (!onlyWarning || isStaticEnumField(v)) {
  3657                     log.error(tree.pos(), "illegal." + suffix);
  3658                 } else if (useBeforeDeclarationWarning) {
  3659                     log.warning(tree.pos(), suffix, v);
  3663             v.getConstValue(); // ensure initializer is evaluated
  3665             checkEnumInitializer(tree, env, v);
  3668         /**
  3669          * Check for illegal references to static members of enum.  In
  3670          * an enum type, constructors and initializers may not
  3671          * reference its static members unless they are constant.
  3673          * @param tree    The tree making up the variable reference.
  3674          * @param env     The current environment.
  3675          * @param v       The variable's symbol.
  3676          * @jls  section 8.9 Enums
  3677          */
  3678         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3679             // JLS:
  3680             //
  3681             // "It is a compile-time error to reference a static field
  3682             // of an enum type that is not a compile-time constant
  3683             // (15.28) from constructors, instance initializer blocks,
  3684             // or instance variable initializer expressions of that
  3685             // type. It is a compile-time error for the constructors,
  3686             // instance initializer blocks, or instance variable
  3687             // initializer expressions of an enum constant e to refer
  3688             // to itself or to an enum constant of the same type that
  3689             // is declared to the right of e."
  3690             if (isStaticEnumField(v)) {
  3691                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3693                 if (enclClass == null || enclClass.owner == null)
  3694                     return;
  3696                 // See if the enclosing class is the enum (or a
  3697                 // subclass thereof) declaring v.  If not, this
  3698                 // reference is OK.
  3699                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3700                     return;
  3702                 // If the reference isn't from an initializer, then
  3703                 // the reference is OK.
  3704                 if (!Resolve.isInitializer(env))
  3705                     return;
  3707                 log.error(tree.pos(), "illegal.enum.static.ref");
  3711         /** Is the given symbol a static, non-constant field of an Enum?
  3712          *  Note: enum literals should not be regarded as such
  3713          */
  3714         private boolean isStaticEnumField(VarSymbol v) {
  3715             return Flags.isEnum(v.owner) &&
  3716                    Flags.isStatic(v) &&
  3717                    !Flags.isConstant(v) &&
  3718                    v.name != names._class;
  3721         /** Can the given symbol be the owner of code which forms part
  3722          *  if class initialization? This is the case if the symbol is
  3723          *  a type or field, or if the symbol is the synthetic method.
  3724          *  owning a block.
  3725          */
  3726         private boolean canOwnInitializer(Symbol sym) {
  3727             return
  3728                 (sym.kind & (VAR | TYP)) != 0 ||
  3729                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3732     Warner noteWarner = new Warner();
  3734     /**
  3735      * Check that method arguments conform to its instantiation.
  3736      **/
  3737     public Type checkMethod(Type site,
  3738                             final Symbol sym,
  3739                             ResultInfo resultInfo,
  3740                             Env<AttrContext> env,
  3741                             final List<JCExpression> argtrees,
  3742                             List<Type> argtypes,
  3743                             List<Type> typeargtypes) {
  3744         // Test (5): if symbol is an instance method of a raw type, issue
  3745         // an unchecked warning if its argument types change under erasure.
  3746         if (allowGenerics &&
  3747             (sym.flags() & STATIC) == 0 &&
  3748             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
  3749             Type s = types.asOuterSuper(site, sym.owner);
  3750             if (s != null && s.isRaw() &&
  3751                 !types.isSameTypes(sym.type.getParameterTypes(),
  3752                                    sym.erasure(types).getParameterTypes())) {
  3753                 chk.warnUnchecked(env.tree.pos(),
  3754                                   "unchecked.call.mbr.of.raw.type",
  3755                                   sym, s);
  3759         if (env.info.defaultSuperCallSite != null) {
  3760             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
  3761                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
  3762                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
  3763                 List<MethodSymbol> icand_sup =
  3764                         types.interfaceCandidates(sup, (MethodSymbol)sym);
  3765                 if (icand_sup.nonEmpty() &&
  3766                         icand_sup.head != sym &&
  3767                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
  3768                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
  3769                         diags.fragment("overridden.default", sym, sup));
  3770                     break;
  3773             env.info.defaultSuperCallSite = null;
  3776         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
  3777             JCMethodInvocation app = (JCMethodInvocation)env.tree;
  3778             if (app.meth.hasTag(SELECT) &&
  3779                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
  3780                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
  3784         // Compute the identifier's instantiated type.
  3785         // For methods, we need to compute the instance type by
  3786         // Resolve.instantiate from the symbol's type as well as
  3787         // any type arguments and value arguments.
  3788         noteWarner.clear();
  3789         try {
  3790             Type owntype = rs.checkMethod(
  3791                     env,
  3792                     site,
  3793                     sym,
  3794                     resultInfo,
  3795                     argtypes,
  3796                     typeargtypes,
  3797                     noteWarner);
  3799             DeferredAttr.DeferredTypeMap checkDeferredMap =
  3800                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3802             argtypes = Type.map(argtypes, checkDeferredMap);
  3804             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  3805                 chk.warnUnchecked(env.tree.pos(),
  3806                         "unchecked.meth.invocation.applied",
  3807                         kindName(sym),
  3808                         sym.name,
  3809                         rs.methodArguments(sym.type.getParameterTypes()),
  3810                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
  3811                         kindName(sym.location()),
  3812                         sym.location());
  3813                owntype = new MethodType(owntype.getParameterTypes(),
  3814                        types.erasure(owntype.getReturnType()),
  3815                        types.erasure(owntype.getThrownTypes()),
  3816                        syms.methodClass);
  3819             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3820                     resultInfo.checkContext.inferenceContext());
  3821         } catch (Infer.InferenceException ex) {
  3822             //invalid target type - propagate exception outwards or report error
  3823             //depending on the current check context
  3824             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3825             return types.createErrorType(site);
  3826         } catch (Resolve.InapplicableMethodException ex) {
  3827             final JCDiagnostic diag = ex.getDiagnostic();
  3828             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
  3829                 @Override
  3830                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
  3831                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
  3833             };
  3834             List<Type> argtypes2 = Type.map(argtypes,
  3835                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
  3836             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
  3837                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
  3838             log.report(errDiag);
  3839             return types.createErrorType(site);
  3843     public void visitLiteral(JCLiteral tree) {
  3844         result = check(
  3845             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3847     //where
  3848     /** Return the type of a literal with given type tag.
  3849      */
  3850     Type litType(TypeTag tag) {
  3851         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
  3854     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3855         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
  3858     public void visitTypeArray(JCArrayTypeTree tree) {
  3859         Type etype = attribType(tree.elemtype, env);
  3860         Type type = new ArrayType(etype, syms.arrayClass);
  3861         result = check(tree, type, TYP, resultInfo);
  3864     /** Visitor method for parameterized types.
  3865      *  Bound checking is left until later, since types are attributed
  3866      *  before supertype structure is completely known
  3867      */
  3868     public void visitTypeApply(JCTypeApply tree) {
  3869         Type owntype = types.createErrorType(tree.type);
  3871         // Attribute functor part of application and make sure it's a class.
  3872         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3874         // Attribute type parameters
  3875         List<Type> actuals = attribTypes(tree.arguments, env);
  3877         if (clazztype.hasTag(CLASS)) {
  3878             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3879             if (actuals.isEmpty()) //diamond
  3880                 actuals = formals;
  3882             if (actuals.length() == formals.length()) {
  3883                 List<Type> a = actuals;
  3884                 List<Type> f = formals;
  3885                 while (a.nonEmpty()) {
  3886                     a.head = a.head.withTypeVar(f.head);
  3887                     a = a.tail;
  3888                     f = f.tail;
  3890                 // Compute the proper generic outer
  3891                 Type clazzOuter = clazztype.getEnclosingType();
  3892                 if (clazzOuter.hasTag(CLASS)) {
  3893                     Type site;
  3894                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3895                     if (clazz.hasTag(IDENT)) {
  3896                         site = env.enclClass.sym.type;
  3897                     } else if (clazz.hasTag(SELECT)) {
  3898                         site = ((JCFieldAccess) clazz).selected.type;
  3899                     } else throw new AssertionError(""+tree);
  3900                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
  3901                         if (site.hasTag(CLASS))
  3902                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3903                         if (site == null)
  3904                             site = types.erasure(clazzOuter);
  3905                         clazzOuter = site;
  3908                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3909             } else {
  3910                 if (formals.length() != 0) {
  3911                     log.error(tree.pos(), "wrong.number.type.args",
  3912                               Integer.toString(formals.length()));
  3913                 } else {
  3914                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3916                 owntype = types.createErrorType(tree.type);
  3919         result = check(tree, owntype, TYP, resultInfo);
  3922     public void visitTypeUnion(JCTypeUnion tree) {
  3923         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
  3924         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3925         for (JCExpression typeTree : tree.alternatives) {
  3926             Type ctype = attribType(typeTree, env);
  3927             ctype = chk.checkType(typeTree.pos(),
  3928                           chk.checkClassType(typeTree.pos(), ctype),
  3929                           syms.throwableType);
  3930             if (!ctype.isErroneous()) {
  3931                 //check that alternatives of a union type are pairwise
  3932                 //unrelated w.r.t. subtyping
  3933                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3934                     for (Type t : multicatchTypes) {
  3935                         boolean sub = types.isSubtype(ctype, t);
  3936                         boolean sup = types.isSubtype(t, ctype);
  3937                         if (sub || sup) {
  3938                             //assume 'a' <: 'b'
  3939                             Type a = sub ? ctype : t;
  3940                             Type b = sub ? t : ctype;
  3941                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3945                 multicatchTypes.append(ctype);
  3946                 if (all_multicatchTypes != null)
  3947                     all_multicatchTypes.append(ctype);
  3948             } else {
  3949                 if (all_multicatchTypes == null) {
  3950                     all_multicatchTypes = new ListBuffer<>();
  3951                     all_multicatchTypes.appendList(multicatchTypes);
  3953                 all_multicatchTypes.append(ctype);
  3956         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3957         if (t.hasTag(CLASS)) {
  3958             List<Type> alternatives =
  3959                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3960             t = new UnionClassType((ClassType) t, alternatives);
  3962         tree.type = result = t;
  3965     public void visitTypeIntersection(JCTypeIntersection tree) {
  3966         attribTypes(tree.bounds, env);
  3967         tree.type = result = checkIntersection(tree, tree.bounds);
  3970     public void visitTypeParameter(JCTypeParameter tree) {
  3971         TypeVar typeVar = (TypeVar) tree.type;
  3973         if (tree.annotations != null && tree.annotations.nonEmpty()) {
  3974             annotateType(tree, tree.annotations);
  3977         if (!typeVar.bound.isErroneous()) {
  3978             //fixup type-parameter bound computed in 'attribTypeVariables'
  3979             typeVar.bound = checkIntersection(tree, tree.bounds);
  3983     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
  3984         Set<Type> boundSet = new HashSet<Type>();
  3985         if (bounds.nonEmpty()) {
  3986             // accept class or interface or typevar as first bound.
  3987             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false, false);
  3988             boundSet.add(types.erasure(bounds.head.type));
  3989             if (bounds.head.type.isErroneous()) {
  3990                 return bounds.head.type;
  3992             else if (bounds.head.type.hasTag(TYPEVAR)) {
  3993                 // if first bound was a typevar, do not accept further bounds.
  3994                 if (bounds.tail.nonEmpty()) {
  3995                     log.error(bounds.tail.head.pos(),
  3996                               "type.var.may.not.be.followed.by.other.bounds");
  3997                     return bounds.head.type;
  3999             } else {
  4000                 // if first bound was a class or interface, accept only interfaces
  4001                 // as further bounds.
  4002                 for (JCExpression bound : bounds.tail) {
  4003                     bound.type = checkBase(bound.type, bound, env, false, false, true, false);
  4004                     if (bound.type.isErroneous()) {
  4005                         bounds = List.of(bound);
  4007                     else if (bound.type.hasTag(CLASS)) {
  4008                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
  4014         if (bounds.length() == 0) {
  4015             return syms.objectType;
  4016         } else if (bounds.length() == 1) {
  4017             return bounds.head.type;
  4018         } else {
  4019             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
  4020             if (tree.hasTag(TYPEINTERSECTION)) {
  4021                 ((IntersectionClassType)owntype).intersectionKind =
  4022                         IntersectionClassType.IntersectionKind.EXPLICIT;
  4024             // ... the variable's bound is a class type flagged COMPOUND
  4025             // (see comment for TypeVar.bound).
  4026             // In this case, generate a class tree that represents the
  4027             // bound class, ...
  4028             JCExpression extending;
  4029             List<JCExpression> implementing;
  4030             if (!bounds.head.type.isInterface()) {
  4031                 extending = bounds.head;
  4032                 implementing = bounds.tail;
  4033             } else {
  4034                 extending = null;
  4035                 implementing = bounds;
  4037             JCClassDecl cd = make.at(tree).ClassDef(
  4038                 make.Modifiers(PUBLIC | ABSTRACT),
  4039                 names.empty, List.<JCTypeParameter>nil(),
  4040                 extending, implementing, List.<JCTree>nil());
  4042             ClassSymbol c = (ClassSymbol)owntype.tsym;
  4043             Assert.check((c.flags() & COMPOUND) != 0);
  4044             cd.sym = c;
  4045             c.sourcefile = env.toplevel.sourcefile;
  4047             // ... and attribute the bound class
  4048             c.flags_field |= UNATTRIBUTED;
  4049             Env<AttrContext> cenv = enter.classEnv(cd, env);
  4050             enter.typeEnvs.put(c, cenv);
  4051             attribClass(c);
  4052             return owntype;
  4056     public void visitWildcard(JCWildcard tree) {
  4057         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  4058         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  4059             ? syms.objectType
  4060             : attribType(tree.inner, env);
  4061         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  4062                                               tree.kind.kind,
  4063                                               syms.boundClass),
  4064                        TYP, resultInfo);
  4067     public void visitAnnotation(JCAnnotation tree) {
  4068         Assert.error("should be handled in Annotate");
  4071     public void visitAnnotatedType(JCAnnotatedType tree) {
  4072         Type underlyingType = attribType(tree.getUnderlyingType(), env);
  4073         this.attribAnnotationTypes(tree.annotations, env);
  4074         annotateType(tree, tree.annotations);
  4075         result = tree.type = underlyingType;
  4078     /**
  4079      * Apply the annotations to the particular type.
  4080      */
  4081     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
  4082         annotate.typeAnnotation(new Annotate.Worker() {
  4083             @Override
  4084             public String toString() {
  4085                 return "annotate " + annotations + " onto " + tree;
  4087             @Override
  4088             public void run() {
  4089                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
  4090                 if (annotations.size() == compounds.size()) {
  4091                     // All annotations were successfully converted into compounds
  4092                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
  4095         });
  4098     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
  4099         if (annotations.isEmpty()) {
  4100             return List.nil();
  4103         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
  4104         for (JCAnnotation anno : annotations) {
  4105             if (anno.attribute != null) {
  4106                 // TODO: this null-check is only needed for an obscure
  4107                 // ordering issue, where annotate.flush is called when
  4108                 // the attribute is not set yet. For an example failure
  4109                 // try the referenceinfos/NestedTypes.java test.
  4110                 // Any better solutions?
  4111                 buf.append((Attribute.TypeCompound) anno.attribute);
  4113             // Eventually we will want to throw an exception here, but
  4114             // we can't do that just yet, because it gets triggered
  4115             // when attempting to attach an annotation that isn't
  4116             // defined.
  4118         return buf.toList();
  4121     public void visitErroneous(JCErroneous tree) {
  4122         if (tree.errs != null)
  4123             for (JCTree err : tree.errs)
  4124                 attribTree(err, env, new ResultInfo(ERR, pt()));
  4125         result = tree.type = syms.errType;
  4128     /** Default visitor method for all other trees.
  4129      */
  4130     public void visitTree(JCTree tree) {
  4131         throw new AssertionError();
  4134     /**
  4135      * Attribute an env for either a top level tree or class declaration.
  4136      */
  4137     public void attrib(Env<AttrContext> env) {
  4138         if (env.tree.hasTag(TOPLEVEL))
  4139             attribTopLevel(env);
  4140         else
  4141             attribClass(env.tree.pos(), env.enclClass.sym);
  4144     /**
  4145      * Attribute a top level tree. These trees are encountered when the
  4146      * package declaration has annotations.
  4147      */
  4148     public void attribTopLevel(Env<AttrContext> env) {
  4149         JCCompilationUnit toplevel = env.toplevel;
  4150         try {
  4151             annotate.flush();
  4152         } catch (CompletionFailure ex) {
  4153             chk.completionError(toplevel.pos(), ex);
  4157     /** Main method: attribute class definition associated with given class symbol.
  4158      *  reporting completion failures at the given position.
  4159      *  @param pos The source position at which completion errors are to be
  4160      *             reported.
  4161      *  @param c   The class symbol whose definition will be attributed.
  4162      */
  4163     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  4164         try {
  4165             annotate.flush();
  4166             attribClass(c);
  4167         } catch (CompletionFailure ex) {
  4168             chk.completionError(pos, ex);
  4172     /** Attribute class definition associated with given class symbol.
  4173      *  @param c   The class symbol whose definition will be attributed.
  4174      */
  4175     void attribClass(ClassSymbol c) throws CompletionFailure {
  4176         if (c.type.hasTag(ERROR)) return;
  4178         // Check for cycles in the inheritance graph, which can arise from
  4179         // ill-formed class files.
  4180         chk.checkNonCyclic(null, c.type);
  4182         Type st = types.supertype(c.type);
  4183         if ((c.flags_field & Flags.COMPOUND) == 0) {
  4184             // First, attribute superclass.
  4185             if (st.hasTag(CLASS))
  4186                 attribClass((ClassSymbol)st.tsym);
  4188             // Next attribute owner, if it is a class.
  4189             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
  4190                 attribClass((ClassSymbol)c.owner);
  4193         // The previous operations might have attributed the current class
  4194         // if there was a cycle. So we test first whether the class is still
  4195         // UNATTRIBUTED.
  4196         if ((c.flags_field & UNATTRIBUTED) != 0) {
  4197             c.flags_field &= ~UNATTRIBUTED;
  4199             // Get environment current at the point of class definition.
  4200             Env<AttrContext> env = enter.typeEnvs.get(c);
  4202             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  4203             // because the annotations were not available at the time the env was created. Therefore,
  4204             // we look up the environment chain for the first enclosing environment for which the
  4205             // lint value is set. Typically, this is the parent env, but might be further if there
  4206             // are any envs created as a result of TypeParameter nodes.
  4207             Env<AttrContext> lintEnv = env;
  4208             while (lintEnv.info.lint == null)
  4209                 lintEnv = lintEnv.next;
  4211             // Having found the enclosing lint value, we can initialize the lint value for this class
  4212             env.info.lint = lintEnv.info.lint.augment(c);
  4214             Lint prevLint = chk.setLint(env.info.lint);
  4215             JavaFileObject prev = log.useSource(c.sourcefile);
  4216             ResultInfo prevReturnRes = env.info.returnResult;
  4218             try {
  4219                 deferredLintHandler.flush(env.tree);
  4220                 env.info.returnResult = null;
  4221                 // java.lang.Enum may not be subclassed by a non-enum
  4222                 if (st.tsym == syms.enumSym &&
  4223                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  4224                     log.error(env.tree.pos(), "enum.no.subclassing");
  4226                 // Enums may not be extended by source-level classes
  4227                 if (st.tsym != null &&
  4228                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  4229                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
  4230                     log.error(env.tree.pos(), "enum.types.not.extensible");
  4232                 attribClassBody(env, c);
  4234                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  4235                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
  4236                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
  4237             } finally {
  4238                 env.info.returnResult = prevReturnRes;
  4239                 log.useSource(prev);
  4240                 chk.setLint(prevLint);
  4246     public void visitImport(JCImport tree) {
  4247         // nothing to do
  4250     /** Finish the attribution of a class. */
  4251     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  4252         JCClassDecl tree = (JCClassDecl)env.tree;
  4253         Assert.check(c == tree.sym);
  4255         // Validate type parameters, supertype and interfaces.
  4256         attribStats(tree.typarams, env);
  4257         if (!c.isAnonymous()) {
  4258             //already checked if anonymous
  4259             chk.validate(tree.typarams, env);
  4260             chk.validate(tree.extending, env);
  4261             chk.validate(tree.implementing, env);
  4264         // If this is a non-abstract class, check that it has no abstract
  4265         // methods or unimplemented methods of an implemented interface.
  4266         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  4267             if (!relax)
  4268                 chk.checkAllDefined(tree.pos(), c);
  4271         if ((c.flags() & ANNOTATION) != 0) {
  4272             if (tree.implementing.nonEmpty())
  4273                 log.error(tree.implementing.head.pos(),
  4274                           "cant.extend.intf.annotation");
  4275             if (tree.typarams.nonEmpty())
  4276                 log.error(tree.typarams.head.pos(),
  4277                           "intf.annotation.cant.have.type.params");
  4279             // If this annotation has a @Repeatable, validate
  4280             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
  4281             if (repeatable != null) {
  4282                 // get diagnostic position for error reporting
  4283                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
  4284                 Assert.checkNonNull(cbPos);
  4286                 chk.validateRepeatable(c, repeatable, cbPos);
  4288         } else {
  4289             // Check that all extended classes and interfaces
  4290             // are compatible (i.e. no two define methods with same arguments
  4291             // yet different return types).  (JLS 8.4.6.3)
  4292             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  4293             if (allowDefaultMethods) {
  4294                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
  4298         // Check that class does not import the same parameterized interface
  4299         // with two different argument lists.
  4300         chk.checkClassBounds(tree.pos(), c.type);
  4302         tree.type = c.type;
  4304         for (List<JCTypeParameter> l = tree.typarams;
  4305              l.nonEmpty(); l = l.tail) {
  4306              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  4309         // Check that a generic class doesn't extend Throwable
  4310         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  4311             log.error(tree.extending.pos(), "generic.throwable");
  4313         // Check that all methods which implement some
  4314         // method conform to the method they implement.
  4315         chk.checkImplementations(tree);
  4317         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  4318         checkAutoCloseable(tree.pos(), env, c.type);
  4320         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  4321             // Attribute declaration
  4322             attribStat(l.head, env);
  4323             // Check that declarations in inner classes are not static (JLS 8.1.2)
  4324             // Make an exception for static constants.
  4325             if (c.owner.kind != PCK &&
  4326                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  4327                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  4328                 Symbol sym = null;
  4329                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  4330                 if (sym == null ||
  4331                     sym.kind != VAR ||
  4332                     ((VarSymbol) sym).getConstValue() == null)
  4333                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  4337         // Check for cycles among non-initial constructors.
  4338         chk.checkCyclicConstructors(tree);
  4340         // Check for cycles among annotation elements.
  4341         chk.checkNonCyclicElements(tree);
  4343         // Check for proper use of serialVersionUID
  4344         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  4345             isSerializable(c) &&
  4346             (c.flags() & Flags.ENUM) == 0 &&
  4347             checkForSerial(c)) {
  4348             checkSerialVersionUID(tree, c);
  4350         if (allowTypeAnnos) {
  4351             // Correctly organize the postions of the type annotations
  4352             typeAnnotations.organizeTypeAnnotationsBodies(tree);
  4354             // Check type annotations applicability rules
  4355             validateTypeAnnotations(tree, false);
  4358         // where
  4359         boolean checkForSerial(ClassSymbol c) {
  4360             if ((c.flags() & ABSTRACT) == 0) {
  4361                 return true;
  4362             } else {
  4363                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
  4367         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
  4368             @Override
  4369             public boolean accepts(Symbol s) {
  4370                 return s.kind == Kinds.MTH &&
  4371                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
  4373         };
  4375         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  4376         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  4377             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  4378                 if (types.isSameType(al.head.annotationType.type, t))
  4379                     return al.head.pos();
  4382             return null;
  4385         /** check if a class is a subtype of Serializable, if that is available. */
  4386         private boolean isSerializable(ClassSymbol c) {
  4387             try {
  4388                 syms.serializableType.complete();
  4390             catch (CompletionFailure e) {
  4391                 return false;
  4393             return types.isSubtype(c.type, syms.serializableType);
  4396         /** Check that an appropriate serialVersionUID member is defined. */
  4397         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  4399             // check for presence of serialVersionUID
  4400             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  4401             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  4402             if (e.scope == null) {
  4403                 log.warning(LintCategory.SERIAL,
  4404                         tree.pos(), "missing.SVUID", c);
  4405                 return;
  4408             // check that it is static final
  4409             VarSymbol svuid = (VarSymbol)e.sym;
  4410             if ((svuid.flags() & (STATIC | FINAL)) !=
  4411                 (STATIC | FINAL))
  4412                 log.warning(LintCategory.SERIAL,
  4413                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  4415             // check that it is long
  4416             else if (!svuid.type.hasTag(LONG))
  4417                 log.warning(LintCategory.SERIAL,
  4418                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  4420             // check constant
  4421             else if (svuid.getConstValue() == null)
  4422                 log.warning(LintCategory.SERIAL,
  4423                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  4426     private Type capture(Type type) {
  4427         return types.capture(type);
  4430     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
  4431         tree.accept(new TypeAnnotationsValidator(sigOnly));
  4433     //where
  4434     private final class TypeAnnotationsValidator extends TreeScanner {
  4436         private final boolean sigOnly;
  4437         public TypeAnnotationsValidator(boolean sigOnly) {
  4438             this.sigOnly = sigOnly;
  4441         public void visitAnnotation(JCAnnotation tree) {
  4442             chk.validateTypeAnnotation(tree, false);
  4443             super.visitAnnotation(tree);
  4445         public void visitAnnotatedType(JCAnnotatedType tree) {
  4446             if (!tree.underlyingType.type.isErroneous()) {
  4447                 super.visitAnnotatedType(tree);
  4450         public void visitTypeParameter(JCTypeParameter tree) {
  4451             chk.validateTypeAnnotations(tree.annotations, true);
  4452             scan(tree.bounds);
  4453             // Don't call super.
  4454             // This is needed because above we call validateTypeAnnotation with
  4455             // false, which would forbid annotations on type parameters.
  4456             // super.visitTypeParameter(tree);
  4458         public void visitMethodDef(JCMethodDecl tree) {
  4459             if (tree.recvparam != null &&
  4460                     tree.recvparam.vartype.type.getKind() != TypeKind.ERROR) {
  4461                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
  4462                         tree.recvparam.vartype.type.tsym);
  4464             if (tree.restype != null && tree.restype.type != null) {
  4465                 validateAnnotatedType(tree.restype, tree.restype.type);
  4467             if (sigOnly) {
  4468                 scan(tree.mods);
  4469                 scan(tree.restype);
  4470                 scan(tree.typarams);
  4471                 scan(tree.recvparam);
  4472                 scan(tree.params);
  4473                 scan(tree.thrown);
  4474             } else {
  4475                 scan(tree.defaultValue);
  4476                 scan(tree.body);
  4479         public void visitVarDef(final JCVariableDecl tree) {
  4480             if (tree.sym != null && tree.sym.type != null)
  4481                 validateAnnotatedType(tree.vartype, tree.sym.type);
  4482             scan(tree.mods);
  4483             scan(tree.vartype);
  4484             if (!sigOnly) {
  4485                 scan(tree.init);
  4488         public void visitTypeCast(JCTypeCast tree) {
  4489             if (tree.clazz != null && tree.clazz.type != null)
  4490                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4491             super.visitTypeCast(tree);
  4493         public void visitTypeTest(JCInstanceOf tree) {
  4494             if (tree.clazz != null && tree.clazz.type != null)
  4495                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4496             super.visitTypeTest(tree);
  4498         public void visitNewClass(JCNewClass tree) {
  4499             if (tree.clazz.type != null)
  4500                 validateAnnotatedType(tree.clazz, tree.clazz.type);
  4501             super.visitNewClass(tree);
  4503         public void visitNewArray(JCNewArray tree) {
  4504             if (tree.elemtype != null && tree.elemtype.type != null)
  4505                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
  4506             super.visitNewArray(tree);
  4509         @Override
  4510         public void visitClassDef(JCClassDecl tree) {
  4511             if (sigOnly) {
  4512                 scan(tree.mods);
  4513                 scan(tree.typarams);
  4514                 scan(tree.extending);
  4515                 scan(tree.implementing);
  4517             for (JCTree member : tree.defs) {
  4518                 if (member.hasTag(Tag.CLASSDEF)) {
  4519                     continue;
  4521                 scan(member);
  4525         @Override
  4526         public void visitBlock(JCBlock tree) {
  4527             if (!sigOnly) {
  4528                 scan(tree.stats);
  4532         /* I would want to model this after
  4533          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
  4534          * and override visitSelect and visitTypeApply.
  4535          * However, we only set the annotated type in the top-level type
  4536          * of the symbol.
  4537          * Therefore, we need to override each individual location where a type
  4538          * can occur.
  4539          */
  4540         private void validateAnnotatedType(final JCTree errtree, final Type type) {
  4541             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
  4543             if (type.isPrimitiveOrVoid()) {
  4544                 return;
  4547             JCTree enclTr = errtree;
  4548             Type enclTy = type;
  4550             boolean repeat = true;
  4551             while (repeat) {
  4552                 if (enclTr.hasTag(TYPEAPPLY)) {
  4553                     List<Type> tyargs = enclTy.getTypeArguments();
  4554                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
  4555                     if (trargs.length() > 0) {
  4556                         // Nothing to do for diamonds
  4557                         if (tyargs.length() == trargs.length()) {
  4558                             for (int i = 0; i < tyargs.length(); ++i) {
  4559                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
  4562                         // If the lengths don't match, it's either a diamond
  4563                         // or some nested type that redundantly provides
  4564                         // type arguments in the tree.
  4567                     // Look at the clazz part of a generic type
  4568                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
  4571                 if (enclTr.hasTag(SELECT)) {
  4572                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
  4573                     if (enclTy != null &&
  4574                             !enclTy.hasTag(NONE)) {
  4575                         enclTy = enclTy.getEnclosingType();
  4577                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
  4578                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
  4579                     if (enclTy == null ||
  4580                             enclTy.hasTag(NONE)) {
  4581                         if (at.getAnnotations().size() == 1) {
  4582                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
  4583                         } else {
  4584                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
  4585                             for (JCAnnotation an : at.getAnnotations()) {
  4586                                 comps.add(an.attribute);
  4588                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
  4590                         repeat = false;
  4592                     enclTr = at.underlyingType;
  4593                     // enclTy doesn't need to be changed
  4594                 } else if (enclTr.hasTag(IDENT)) {
  4595                     repeat = false;
  4596                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
  4597                     JCWildcard wc = (JCWildcard) enclTr;
  4598                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
  4599                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
  4600                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
  4601                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
  4602                     } else {
  4603                         // Nothing to do for UNBOUND
  4605                     repeat = false;
  4606                 } else if (enclTr.hasTag(TYPEARRAY)) {
  4607                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
  4608                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
  4609                     repeat = false;
  4610                 } else if (enclTr.hasTag(TYPEUNION)) {
  4611                     JCTypeUnion ut = (JCTypeUnion) enclTr;
  4612                     for (JCTree t : ut.getTypeAlternatives()) {
  4613                         validateAnnotatedType(t, t.type);
  4615                     repeat = false;
  4616                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
  4617                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
  4618                     for (JCTree t : it.getBounds()) {
  4619                         validateAnnotatedType(t, t.type);
  4621                     repeat = false;
  4622                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE) {
  4623                     // This happens in test TargetTypeTest52.java
  4624                     // Is there anything to do?
  4625                     repeat = false;
  4626                 } else {
  4627                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
  4628                             " within: "+ errtree + " with kind: " + errtree.getKind());
  4632     };
  4634     // <editor-fold desc="post-attribution visitor">
  4636     /**
  4637      * Handle missing types/symbols in an AST. This routine is useful when
  4638      * the compiler has encountered some errors (which might have ended up
  4639      * terminating attribution abruptly); if the compiler is used in fail-over
  4640      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  4641      * prevents NPE to be progagated during subsequent compilation steps.
  4642      */
  4643     public void postAttr(JCTree tree) {
  4644         new PostAttrAnalyzer().scan(tree);
  4647     class PostAttrAnalyzer extends TreeScanner {
  4649         private void initTypeIfNeeded(JCTree that) {
  4650             if (that.type == null) {
  4651                 that.type = syms.unknownType;
  4655         @Override
  4656         public void scan(JCTree tree) {
  4657             if (tree == null) return;
  4658             if (tree instanceof JCExpression) {
  4659                 initTypeIfNeeded(tree);
  4661             super.scan(tree);
  4664         @Override
  4665         public void visitIdent(JCIdent that) {
  4666             if (that.sym == null) {
  4667                 that.sym = syms.unknownSymbol;
  4671         @Override
  4672         public void visitSelect(JCFieldAccess that) {
  4673             if (that.sym == null) {
  4674                 that.sym = syms.unknownSymbol;
  4676             super.visitSelect(that);
  4679         @Override
  4680         public void visitClassDef(JCClassDecl that) {
  4681             initTypeIfNeeded(that);
  4682             if (that.sym == null) {
  4683                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  4685             super.visitClassDef(that);
  4688         @Override
  4689         public void visitMethodDef(JCMethodDecl that) {
  4690             initTypeIfNeeded(that);
  4691             if (that.sym == null) {
  4692                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  4694             super.visitMethodDef(that);
  4697         @Override
  4698         public void visitVarDef(JCVariableDecl that) {
  4699             initTypeIfNeeded(that);
  4700             if (that.sym == null) {
  4701                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  4702                 that.sym.adr = 0;
  4704             super.visitVarDef(that);
  4707         @Override
  4708         public void visitNewClass(JCNewClass that) {
  4709             if (that.constructor == null) {
  4710                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  4712             if (that.constructorType == null) {
  4713                 that.constructorType = syms.unknownType;
  4715             super.visitNewClass(that);
  4718         @Override
  4719         public void visitAssignop(JCAssignOp that) {
  4720             if (that.operator == null)
  4721                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4722             super.visitAssignop(that);
  4725         @Override
  4726         public void visitBinary(JCBinary that) {
  4727             if (that.operator == null)
  4728                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4729             super.visitBinary(that);
  4732         @Override
  4733         public void visitUnary(JCUnary that) {
  4734             if (that.operator == null)
  4735                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  4736             super.visitUnary(that);
  4739         @Override
  4740         public void visitLambda(JCLambda that) {
  4741             super.visitLambda(that);
  4742             if (that.targets == null) {
  4743                 that.targets = List.nil();
  4747         @Override
  4748         public void visitReference(JCMemberReference that) {
  4749             super.visitReference(that);
  4750             if (that.sym == null) {
  4751                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  4753             if (that.targets == null) {
  4754                 that.targets = List.nil();
  4758     // </editor-fold>

mercurial