src/share/classes/com/sun/tools/javac/comp/Check.java

Mon, 16 Oct 2017 16:07:48 +0800

author
aoqi
date
Mon, 16 Oct 2017 16:07:48 +0800
changeset 2893
ca5783d9a597
parent 2717
11743872bfc9
parent 2702
9ca8d8713094
child 3295
859dc787b52b
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import javax.tools.JavaFileManager;
    32 import com.sun.tools.javac.code.*;
    33 import com.sun.tools.javac.code.Attribute.Compound;
    34 import com.sun.tools.javac.jvm.*;
    35 import com.sun.tools.javac.tree.*;
    36 import com.sun.tools.javac.util.*;
    37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    38 import com.sun.tools.javac.util.List;
    40 import com.sun.tools.javac.code.Lint;
    41 import com.sun.tools.javac.code.Lint.LintCategory;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.code.Symbol.*;
    44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
    47 import com.sun.tools.javac.tree.JCTree.*;
    48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
    50 import static com.sun.tools.javac.code.Flags.*;
    51 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    52 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
    53 import static com.sun.tools.javac.code.Kinds.*;
    54 import static com.sun.tools.javac.code.TypeTag.*;
    55 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
    57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    59 /** Type checking helper class for the attribution phase.
    60  *
    61  *  <p><b>This is NOT part of any supported API.
    62  *  If you write code that depends on this, you do so at your own risk.
    63  *  This code and its internal interfaces are subject to change or
    64  *  deletion without notice.</b>
    65  */
    66 public class Check {
    67     protected static final Context.Key<Check> checkKey =
    68         new Context.Key<Check>();
    70     private final Names names;
    71     private final Log log;
    72     private final Resolve rs;
    73     private final Symtab syms;
    74     private final Enter enter;
    75     private final DeferredAttr deferredAttr;
    76     private final Infer infer;
    77     private final Types types;
    78     private final JCDiagnostic.Factory diags;
    79     private boolean warnOnSyntheticConflicts;
    80     private boolean suppressAbortOnBadClassFile;
    81     private boolean enableSunApiLintControl;
    82     private final TreeInfo treeinfo;
    83     private final JavaFileManager fileManager;
    84     private final Profile profile;
    85     private final boolean warnOnAccessToSensitiveMembers;
    87     // The set of lint options currently in effect. It is initialized
    88     // from the context, and then is set/reset as needed by Attr as it
    89     // visits all the various parts of the trees during attribution.
    90     private Lint lint;
    92     // The method being analyzed in Attr - it is set/reset as needed by
    93     // Attr as it visits new method declarations.
    94     private MethodSymbol method;
    96     public static Check instance(Context context) {
    97         Check instance = context.get(checkKey);
    98         if (instance == null)
    99             instance = new Check(context);
   100         return instance;
   101     }
   103     protected Check(Context context) {
   104         context.put(checkKey, this);
   106         names = Names.instance(context);
   107         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
   108             names.FIELD, names.METHOD, names.CONSTRUCTOR,
   109             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
   110         log = Log.instance(context);
   111         rs = Resolve.instance(context);
   112         syms = Symtab.instance(context);
   113         enter = Enter.instance(context);
   114         deferredAttr = DeferredAttr.instance(context);
   115         infer = Infer.instance(context);
   116         types = Types.instance(context);
   117         diags = JCDiagnostic.Factory.instance(context);
   118         Options options = Options.instance(context);
   119         lint = Lint.instance(context);
   120         treeinfo = TreeInfo.instance(context);
   121         fileManager = context.get(JavaFileManager.class);
   123         Source source = Source.instance(context);
   124         allowGenerics = source.allowGenerics();
   125         allowVarargs = source.allowVarargs();
   126         allowAnnotations = source.allowAnnotations();
   127         allowCovariantReturns = source.allowCovariantReturns();
   128         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
   129         allowDefaultMethods = source.allowDefaultMethods();
   130         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
   131         complexInference = options.isSet("complexinference");
   132         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
   133         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
   134         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
   135         warnOnAccessToSensitiveMembers = options.isSet("warnOnAccessToSensitiveMembers");
   137         Target target = Target.instance(context);
   138         syntheticNameChar = target.syntheticNameChar();
   140         profile = Profile.instance(context);
   142         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
   143         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
   144         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
   145         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
   147         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
   148                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
   149         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
   150                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
   151         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
   152                 enforceMandatoryWarnings, "sunapi", null);
   154         deferredLintHandler = DeferredLintHandler.instance(context);
   155     }
   157     /** Switch: generics enabled?
   158      */
   159     boolean allowGenerics;
   161     /** Switch: varargs enabled?
   162      */
   163     boolean allowVarargs;
   165     /** Switch: annotations enabled?
   166      */
   167     boolean allowAnnotations;
   169     /** Switch: covariant returns enabled?
   170      */
   171     boolean allowCovariantReturns;
   173     /** Switch: simplified varargs enabled?
   174      */
   175     boolean allowSimplifiedVarargs;
   177     /** Switch: default methods enabled?
   178      */
   179     boolean allowDefaultMethods;
   181     /** Switch: should unrelated return types trigger a method clash?
   182      */
   183     boolean allowStrictMethodClashCheck;
   185     /** Switch: -complexinference option set?
   186      */
   187     boolean complexInference;
   189     /** Character for synthetic names
   190      */
   191     char syntheticNameChar;
   193     /** A table mapping flat names of all compiled classes in this run to their
   194      *  symbols; maintained from outside.
   195      */
   196     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
   198     /** A handler for messages about deprecated usage.
   199      */
   200     private MandatoryWarningHandler deprecationHandler;
   202     /** A handler for messages about unchecked or unsafe usage.
   203      */
   204     private MandatoryWarningHandler uncheckedHandler;
   206     /** A handler for messages about using proprietary API.
   207      */
   208     private MandatoryWarningHandler sunApiHandler;
   210     /** A handler for deferred lint warnings.
   211      */
   212     private DeferredLintHandler deferredLintHandler;
   214 /* *************************************************************************
   215  * Errors and Warnings
   216  **************************************************************************/
   218     Lint setLint(Lint newLint) {
   219         Lint prev = lint;
   220         lint = newLint;
   221         return prev;
   222     }
   224     MethodSymbol setMethod(MethodSymbol newMethod) {
   225         MethodSymbol prev = method;
   226         method = newMethod;
   227         return prev;
   228     }
   230     /** Warn about deprecated symbol.
   231      *  @param pos        Position to be used for error reporting.
   232      *  @param sym        The deprecated symbol.
   233      */
   234     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
   235         if (!lint.isSuppressed(LintCategory.DEPRECATION))
   236             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
   237     }
   239     /** Warn about unchecked operation.
   240      *  @param pos        Position to be used for error reporting.
   241      *  @param msg        A string describing the problem.
   242      */
   243     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
   244         if (!lint.isSuppressed(LintCategory.UNCHECKED))
   245             uncheckedHandler.report(pos, msg, args);
   246     }
   248     /** Warn about unsafe vararg method decl.
   249      *  @param pos        Position to be used for error reporting.
   250      */
   251     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
   252         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
   253             log.warning(LintCategory.VARARGS, pos, key, args);
   254     }
   256     /** Warn about using proprietary API.
   257      *  @param pos        Position to be used for error reporting.
   258      *  @param msg        A string describing the problem.
   259      */
   260     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
   261         if (!lint.isSuppressed(LintCategory.SUNAPI))
   262             sunApiHandler.report(pos, msg, args);
   263     }
   265     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
   266         if (lint.isEnabled(LintCategory.STATIC))
   267             log.warning(LintCategory.STATIC, pos, msg, args);
   268     }
   270     /**
   271      * Report any deferred diagnostics.
   272      */
   273     public void reportDeferredDiagnostics() {
   274         deprecationHandler.reportDeferredDiagnostic();
   275         uncheckedHandler.reportDeferredDiagnostic();
   276         sunApiHandler.reportDeferredDiagnostic();
   277     }
   280     /** Report a failure to complete a class.
   281      *  @param pos        Position to be used for error reporting.
   282      *  @param ex         The failure to report.
   283      */
   284     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
   285         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
   286         if (ex instanceof ClassReader.BadClassFile
   287                 && !suppressAbortOnBadClassFile) throw new Abort();
   288         else return syms.errType;
   289     }
   291     /** Report an error that wrong type tag was found.
   292      *  @param pos        Position to be used for error reporting.
   293      *  @param required   An internationalized string describing the type tag
   294      *                    required.
   295      *  @param found      The type that was found.
   296      */
   297     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
   298         // this error used to be raised by the parser,
   299         // but has been delayed to this point:
   300         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
   301             log.error(pos, "illegal.start.of.type");
   302             return syms.errType;
   303         }
   304         log.error(pos, "type.found.req", found, required);
   305         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
   306     }
   308     /** Report an error that symbol cannot be referenced before super
   309      *  has been called.
   310      *  @param pos        Position to be used for error reporting.
   311      *  @param sym        The referenced symbol.
   312      */
   313     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
   314         log.error(pos, "cant.ref.before.ctor.called", sym);
   315     }
   317     /** Report duplicate declaration error.
   318      */
   319     void duplicateError(DiagnosticPosition pos, Symbol sym) {
   320         if (!sym.type.isErroneous()) {
   321             Symbol location = sym.location();
   322             if (location.kind == MTH &&
   323                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
   324                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
   325                         kindName(sym.location()), kindName(sym.location().enclClass()),
   326                         sym.location().enclClass());
   327             } else {
   328                 log.error(pos, "already.defined", kindName(sym), sym,
   329                         kindName(sym.location()), sym.location());
   330             }
   331         }
   332     }
   334     /** Report array/varargs duplicate declaration
   335      */
   336     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
   337         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
   338             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
   339         }
   340     }
   342 /* ************************************************************************
   343  * duplicate declaration checking
   344  *************************************************************************/
   346     /** Check that variable does not hide variable with same name in
   347      *  immediately enclosing local scope.
   348      *  @param pos           Position for error reporting.
   349      *  @param v             The symbol.
   350      *  @param s             The scope.
   351      */
   352     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
   353         if (s.next != null) {
   354             for (Scope.Entry e = s.next.lookup(v.name);
   355                  e.scope != null && e.sym.owner == v.owner;
   356                  e = e.next()) {
   357                 if (e.sym.kind == VAR &&
   358                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   359                     v.name != names.error) {
   360                     duplicateError(pos, e.sym);
   361                     return;
   362                 }
   363             }
   364         }
   365     }
   367     /** Check that a class or interface does not hide a class or
   368      *  interface with same name in immediately enclosing local scope.
   369      *  @param pos           Position for error reporting.
   370      *  @param c             The symbol.
   371      *  @param s             The scope.
   372      */
   373     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
   374         if (s.next != null) {
   375             for (Scope.Entry e = s.next.lookup(c.name);
   376                  e.scope != null && e.sym.owner == c.owner;
   377                  e = e.next()) {
   378                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
   379                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
   380                     c.name != names.error) {
   381                     duplicateError(pos, e.sym);
   382                     return;
   383                 }
   384             }
   385         }
   386     }
   388     /** Check that class does not have the same name as one of
   389      *  its enclosing classes, or as a class defined in its enclosing scope.
   390      *  return true if class is unique in its enclosing scope.
   391      *  @param pos           Position for error reporting.
   392      *  @param name          The class name.
   393      *  @param s             The enclosing scope.
   394      */
   395     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
   396         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
   397             if (e.sym.kind == TYP && e.sym.name != names.error) {
   398                 duplicateError(pos, e.sym);
   399                 return false;
   400             }
   401         }
   402         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
   403             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
   404                 duplicateError(pos, sym);
   405                 return true;
   406             }
   407         }
   408         return true;
   409     }
   411 /* *************************************************************************
   412  * Class name generation
   413  **************************************************************************/
   415     /** Return name of local class.
   416      *  This is of the form   {@code <enclClass> $ n <classname> }
   417      *  where
   418      *    enclClass is the flat name of the enclosing class,
   419      *    classname is the simple name of the local class
   420      */
   421     Name localClassName(ClassSymbol c) {
   422         for (int i=1; ; i++) {
   423             Name flatname = names.
   424                 fromString("" + c.owner.enclClass().flatname +
   425                            syntheticNameChar + i +
   426                            c.name);
   427             if (compiled.get(flatname) == null) return flatname;
   428         }
   429     }
   431 /* *************************************************************************
   432  * Type Checking
   433  **************************************************************************/
   435     /**
   436      * A check context is an object that can be used to perform compatibility
   437      * checks - depending on the check context, meaning of 'compatibility' might
   438      * vary significantly.
   439      */
   440     public interface CheckContext {
   441         /**
   442          * Is type 'found' compatible with type 'req' in given context
   443          */
   444         boolean compatible(Type found, Type req, Warner warn);
   445         /**
   446          * Report a check error
   447          */
   448         void report(DiagnosticPosition pos, JCDiagnostic details);
   449         /**
   450          * Obtain a warner for this check context
   451          */
   452         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
   454         public Infer.InferenceContext inferenceContext();
   456         public DeferredAttr.DeferredAttrContext deferredAttrContext();
   457     }
   459     /**
   460      * This class represent a check context that is nested within another check
   461      * context - useful to check sub-expressions. The default behavior simply
   462      * redirects all method calls to the enclosing check context leveraging
   463      * the forwarding pattern.
   464      */
   465     static class NestedCheckContext implements CheckContext {
   466         CheckContext enclosingContext;
   468         NestedCheckContext(CheckContext enclosingContext) {
   469             this.enclosingContext = enclosingContext;
   470         }
   472         public boolean compatible(Type found, Type req, Warner warn) {
   473             return enclosingContext.compatible(found, req, warn);
   474         }
   476         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   477             enclosingContext.report(pos, details);
   478         }
   480         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   481             return enclosingContext.checkWarner(pos, found, req);
   482         }
   484         public Infer.InferenceContext inferenceContext() {
   485             return enclosingContext.inferenceContext();
   486         }
   488         public DeferredAttrContext deferredAttrContext() {
   489             return enclosingContext.deferredAttrContext();
   490         }
   491     }
   493     /**
   494      * Check context to be used when evaluating assignment/return statements
   495      */
   496     CheckContext basicHandler = new CheckContext() {
   497         public void report(DiagnosticPosition pos, JCDiagnostic details) {
   498             log.error(pos, "prob.found.req", details);
   499         }
   500         public boolean compatible(Type found, Type req, Warner warn) {
   501             return types.isAssignable(found, req, warn);
   502         }
   504         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
   505             return convertWarner(pos, found, req);
   506         }
   508         public InferenceContext inferenceContext() {
   509             return infer.emptyContext;
   510         }
   512         public DeferredAttrContext deferredAttrContext() {
   513             return deferredAttr.emptyDeferredAttrContext;
   514         }
   516         @Override
   517         public String toString() {
   518             return "CheckContext: basicHandler";
   519         }
   520     };
   522     /** Check that a given type is assignable to a given proto-type.
   523      *  If it is, return the type, otherwise return errType.
   524      *  @param pos        Position to be used for error reporting.
   525      *  @param found      The type that was found.
   526      *  @param req        The type that was required.
   527      */
   528     Type checkType(DiagnosticPosition pos, Type found, Type req) {
   529         return checkType(pos, found, req, basicHandler);
   530     }
   532     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
   533         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
   534         if (inferenceContext.free(req) || inferenceContext.free(found)) {
   535             inferenceContext.addFreeTypeListener(List.of(req, found), new FreeTypeListener() {
   536                 @Override
   537                 public void typesInferred(InferenceContext inferenceContext) {
   538                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
   539                 }
   540             });
   541         }
   542         if (req.hasTag(ERROR))
   543             return req;
   544         if (req.hasTag(NONE))
   545             return found;
   546         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
   547             return found;
   548         } else {
   549             if (found.isNumeric() && req.isNumeric()) {
   550                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
   551                 return types.createErrorType(found);
   552             }
   553             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   554             return types.createErrorType(found);
   555         }
   556     }
   558     /** Check that a given type can be cast to a given target type.
   559      *  Return the result of the cast.
   560      *  @param pos        Position to be used for error reporting.
   561      *  @param found      The type that is being cast.
   562      *  @param req        The target type of the cast.
   563      */
   564     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
   565         return checkCastable(pos, found, req, basicHandler);
   566     }
   567     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
   568         if (types.isCastable(found, req, castWarner(pos, found, req))) {
   569             return req;
   570         } else {
   571             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
   572             return types.createErrorType(found);
   573         }
   574     }
   576     /** Check for redundant casts (i.e. where source type is a subtype of target type)
   577      * The problem should only be reported for non-292 cast
   578      */
   579     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
   580         if (!tree.type.isErroneous()
   581                 && types.isSameType(tree.expr.type, tree.clazz.type)
   582                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
   583                 && !is292targetTypeCast(tree)) {
   584             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
   585                 @Override
   586                 public void report() {
   587                     if (lint.isEnabled(Lint.LintCategory.CAST))
   588                         log.warning(Lint.LintCategory.CAST,
   589                                 tree.pos(), "redundant.cast", tree.expr.type);
   590                 }
   591             });
   592         }
   593     }
   594     //where
   595         private boolean is292targetTypeCast(JCTypeCast tree) {
   596             boolean is292targetTypeCast = false;
   597             JCExpression expr = TreeInfo.skipParens(tree.expr);
   598             if (expr.hasTag(APPLY)) {
   599                 JCMethodInvocation apply = (JCMethodInvocation)expr;
   600                 Symbol sym = TreeInfo.symbol(apply.meth);
   601                 is292targetTypeCast = sym != null &&
   602                     sym.kind == MTH &&
   603                     (sym.flags() & HYPOTHETICAL) != 0;
   604             }
   605             return is292targetTypeCast;
   606         }
   608         private static final boolean ignoreAnnotatedCasts = true;
   610     /** Check that a type is within some bounds.
   611      *
   612      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
   613      *  type argument.
   614      *  @param a             The type that should be bounded by bs.
   615      *  @param bound         The bound.
   616      */
   617     private boolean checkExtends(Type a, Type bound) {
   618          if (a.isUnbound()) {
   619              return true;
   620          } else if (!a.hasTag(WILDCARD)) {
   621              a = types.cvarUpperBound(a);
   622              return types.isSubtype(a, bound);
   623          } else if (a.isExtendsBound()) {
   624              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
   625          } else if (a.isSuperBound()) {
   626              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
   627          }
   628          return true;
   629      }
   631     /** Check that type is different from 'void'.
   632      *  @param pos           Position to be used for error reporting.
   633      *  @param t             The type to be checked.
   634      */
   635     Type checkNonVoid(DiagnosticPosition pos, Type t) {
   636         if (t.hasTag(VOID)) {
   637             log.error(pos, "void.not.allowed.here");
   638             return types.createErrorType(t);
   639         } else {
   640             return t;
   641         }
   642     }
   644     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
   645         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
   646             return typeTagError(pos,
   647                                 diags.fragment("type.req.class.array"),
   648                                 asTypeParam(t));
   649         } else {
   650             return t;
   651         }
   652     }
   654     /** Check that type is a class or interface type.
   655      *  @param pos           Position to be used for error reporting.
   656      *  @param t             The type to be checked.
   657      */
   658     Type checkClassType(DiagnosticPosition pos, Type t) {
   659         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
   660             return typeTagError(pos,
   661                                 diags.fragment("type.req.class"),
   662                                 asTypeParam(t));
   663         } else {
   664             return t;
   665         }
   666     }
   667     //where
   668         private Object asTypeParam(Type t) {
   669             return (t.hasTag(TYPEVAR))
   670                                     ? diags.fragment("type.parameter", t)
   671                                     : t;
   672         }
   674     /** Check that type is a valid qualifier for a constructor reference expression
   675      */
   676     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
   677         t = checkClassOrArrayType(pos, t);
   678         if (t.hasTag(CLASS)) {
   679             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
   680                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
   681                 t = types.createErrorType(t);
   682             } else if ((t.tsym.flags() & ENUM) != 0) {
   683                 log.error(pos, "enum.cant.be.instantiated");
   684                 t = types.createErrorType(t);
   685             } else {
   686                 t = checkClassType(pos, t, true);
   687             }
   688         } else if (t.hasTag(ARRAY)) {
   689             if (!types.isReifiable(((ArrayType)t).elemtype)) {
   690                 log.error(pos, "generic.array.creation");
   691                 t = types.createErrorType(t);
   692             }
   693         }
   694         return t;
   695     }
   697     /** Check that type is a class or interface type.
   698      *  @param pos           Position to be used for error reporting.
   699      *  @param t             The type to be checked.
   700      *  @param noBounds    True if type bounds are illegal here.
   701      */
   702     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
   703         t = checkClassType(pos, t);
   704         if (noBounds && t.isParameterized()) {
   705             List<Type> args = t.getTypeArguments();
   706             while (args.nonEmpty()) {
   707                 if (args.head.hasTag(WILDCARD))
   708                     return typeTagError(pos,
   709                                         diags.fragment("type.req.exact"),
   710                                         args.head);
   711                 args = args.tail;
   712             }
   713         }
   714         return t;
   715     }
   717     /** Check that type is a reference type, i.e. a class, interface or array type
   718      *  or a type variable.
   719      *  @param pos           Position to be used for error reporting.
   720      *  @param t             The type to be checked.
   721      */
   722     Type checkRefType(DiagnosticPosition pos, Type t) {
   723         if (t.isReference())
   724             return t;
   725         else
   726             return typeTagError(pos,
   727                                 diags.fragment("type.req.ref"),
   728                                 t);
   729     }
   731     /** Check that each type is a reference type, i.e. a class, interface or array type
   732      *  or a type variable.
   733      *  @param trees         Original trees, used for error reporting.
   734      *  @param types         The types to be checked.
   735      */
   736     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
   737         List<JCExpression> tl = trees;
   738         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
   739             l.head = checkRefType(tl.head.pos(), l.head);
   740             tl = tl.tail;
   741         }
   742         return types;
   743     }
   745     /** Check that type is a null or reference type.
   746      *  @param pos           Position to be used for error reporting.
   747      *  @param t             The type to be checked.
   748      */
   749     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
   750         if (t.isReference() || t.hasTag(BOT))
   751             return t;
   752         else
   753             return typeTagError(pos,
   754                                 diags.fragment("type.req.ref"),
   755                                 t);
   756     }
   758     /** Check that flag set does not contain elements of two conflicting sets. s
   759      *  Return true if it doesn't.
   760      *  @param pos           Position to be used for error reporting.
   761      *  @param flags         The set of flags to be checked.
   762      *  @param set1          Conflicting flags set #1.
   763      *  @param set2          Conflicting flags set #2.
   764      */
   765     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
   766         if ((flags & set1) != 0 && (flags & set2) != 0) {
   767             log.error(pos,
   768                       "illegal.combination.of.modifiers",
   769                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
   770                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
   771             return false;
   772         } else
   773             return true;
   774     }
   776     /** Check that usage of diamond operator is correct (i.e. diamond should not
   777      * be used with non-generic classes or in anonymous class creation expressions)
   778      */
   779     Type checkDiamond(JCNewClass tree, Type t) {
   780         if (!TreeInfo.isDiamond(tree) ||
   781                 t.isErroneous()) {
   782             return checkClassType(tree.clazz.pos(), t, true);
   783         } else if (tree.def != null) {
   784             log.error(tree.clazz.pos(),
   785                     "cant.apply.diamond.1",
   786                     t, diags.fragment("diamond.and.anon.class", t));
   787             return types.createErrorType(t);
   788         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
   789             log.error(tree.clazz.pos(),
   790                 "cant.apply.diamond.1",
   791                 t, diags.fragment("diamond.non.generic", t));
   792             return types.createErrorType(t);
   793         } else if (tree.typeargs != null &&
   794                 tree.typeargs.nonEmpty()) {
   795             log.error(tree.clazz.pos(),
   796                 "cant.apply.diamond.1",
   797                 t, diags.fragment("diamond.and.explicit.params", t));
   798             return types.createErrorType(t);
   799         } else {
   800             return t;
   801         }
   802     }
   804     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
   805         MethodSymbol m = tree.sym;
   806         if (!allowSimplifiedVarargs) return;
   807         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
   808         Type varargElemType = null;
   809         if (m.isVarArgs()) {
   810             varargElemType = types.elemtype(tree.params.last().type);
   811         }
   812         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
   813             if (varargElemType != null) {
   814                 log.error(tree,
   815                         "varargs.invalid.trustme.anno",
   816                         syms.trustMeType.tsym,
   817                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
   818             } else {
   819                 log.error(tree,
   820                             "varargs.invalid.trustme.anno",
   821                             syms.trustMeType.tsym,
   822                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
   823             }
   824         } else if (hasTrustMeAnno && varargElemType != null &&
   825                             types.isReifiable(varargElemType)) {
   826             warnUnsafeVararg(tree,
   827                             "varargs.redundant.trustme.anno",
   828                             syms.trustMeType.tsym,
   829                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
   830         }
   831         else if (!hasTrustMeAnno && varargElemType != null &&
   832                 !types.isReifiable(varargElemType)) {
   833             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
   834         }
   835     }
   836     //where
   837         private boolean isTrustMeAllowedOnMethod(Symbol s) {
   838             return (s.flags() & VARARGS) != 0 &&
   839                 (s.isConstructor() ||
   840                     (s.flags() & (STATIC | FINAL)) != 0);
   841         }
   843     Type checkMethod(final Type mtype,
   844             final Symbol sym,
   845             final Env<AttrContext> env,
   846             final List<JCExpression> argtrees,
   847             final List<Type> argtypes,
   848             final boolean useVarargs,
   849             InferenceContext inferenceContext) {
   850         // System.out.println("call   : " + env.tree);
   851         // System.out.println("method : " + owntype);
   852         // System.out.println("actuals: " + argtypes);
   853         if (inferenceContext.free(mtype)) {
   854             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
   855                 public void typesInferred(InferenceContext inferenceContext) {
   856                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
   857                 }
   858             });
   859             return mtype;
   860         }
   861         Type owntype = mtype;
   862         List<Type> formals = owntype.getParameterTypes();
   863         List<Type> nonInferred = sym.type.getParameterTypes();
   864         if (nonInferred.length() != formals.length()) nonInferred = formals;
   865         Type last = useVarargs ? formals.last() : null;
   866         if (sym.name == names.init && sym.owner == syms.enumSym) {
   867             formals = formals.tail.tail;
   868             nonInferred = nonInferred.tail.tail;
   869         }
   870         List<JCExpression> args = argtrees;
   871         if (args != null) {
   872             //this is null when type-checking a method reference
   873             while (formals.head != last) {
   874                 JCTree arg = args.head;
   875                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
   876                 assertConvertible(arg, arg.type, formals.head, warn);
   877                 args = args.tail;
   878                 formals = formals.tail;
   879                 nonInferred = nonInferred.tail;
   880             }
   881             if (useVarargs) {
   882                 Type varArg = types.elemtype(last);
   883                 while (args.tail != null) {
   884                     JCTree arg = args.head;
   885                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
   886                     assertConvertible(arg, arg.type, varArg, warn);
   887                     args = args.tail;
   888                 }
   889             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
   890                     allowVarargs) {
   891                 // non-varargs call to varargs method
   892                 Type varParam = owntype.getParameterTypes().last();
   893                 Type lastArg = argtypes.last();
   894                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
   895                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
   896                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
   897                                 types.elemtype(varParam), varParam);
   898             }
   899         }
   900         if (useVarargs) {
   901             Type argtype = owntype.getParameterTypes().last();
   902             if (!types.isReifiable(argtype) &&
   903                 (!allowSimplifiedVarargs ||
   904                  sym.attribute(syms.trustMeType.tsym) == null ||
   905                  !isTrustMeAllowedOnMethod(sym))) {
   906                 warnUnchecked(env.tree.pos(),
   907                                   "unchecked.generic.array.creation",
   908                                   argtype);
   909             }
   910             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
   911                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
   912             }
   913          }
   914          PolyKind pkind = (sym.type.hasTag(FORALL) &&
   915                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
   916                  PolyKind.POLY : PolyKind.STANDALONE;
   917          TreeInfo.setPolyKind(env.tree, pkind);
   918          return owntype;
   919     }
   920     //where
   921     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
   922         if (types.isConvertible(actual, formal, warn))
   923             return;
   925         if (formal.isCompound()
   926             && types.isSubtype(actual, types.supertype(formal))
   927             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
   928             return;
   929     }
   931     /**
   932      * Check that type 't' is a valid instantiation of a generic class
   933      * (see JLS 4.5)
   934      *
   935      * @param t class type to be checked
   936      * @return true if 't' is well-formed
   937      */
   938     public boolean checkValidGenericType(Type t) {
   939         return firstIncompatibleTypeArg(t) == null;
   940     }
   941     //WHERE
   942         private Type firstIncompatibleTypeArg(Type type) {
   943             List<Type> formals = type.tsym.type.allparams();
   944             List<Type> actuals = type.allparams();
   945             List<Type> args = type.getTypeArguments();
   946             List<Type> forms = type.tsym.type.getTypeArguments();
   947             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
   949             // For matching pairs of actual argument types `a' and
   950             // formal type parameters with declared bound `b' ...
   951             while (args.nonEmpty() && forms.nonEmpty()) {
   952                 // exact type arguments needs to know their
   953                 // bounds (for upper and lower bound
   954                 // calculations).  So we create new bounds where
   955                 // type-parameters are replaced with actuals argument types.
   956                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
   957                 args = args.tail;
   958                 forms = forms.tail;
   959             }
   961             args = type.getTypeArguments();
   962             List<Type> tvars_cap = types.substBounds(formals,
   963                                       formals,
   964                                       types.capture(type).allparams());
   965             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
   966                 // Let the actual arguments know their bound
   967                 args.head.withTypeVar((TypeVar)tvars_cap.head);
   968                 args = args.tail;
   969                 tvars_cap = tvars_cap.tail;
   970             }
   972             args = type.getTypeArguments();
   973             List<Type> bounds = bounds_buf.toList();
   975             while (args.nonEmpty() && bounds.nonEmpty()) {
   976                 Type actual = args.head;
   977                 if (!isTypeArgErroneous(actual) &&
   978                         !bounds.head.isErroneous() &&
   979                         !checkExtends(actual, bounds.head)) {
   980                     return args.head;
   981                 }
   982                 args = args.tail;
   983                 bounds = bounds.tail;
   984             }
   986             args = type.getTypeArguments();
   987             bounds = bounds_buf.toList();
   989             for (Type arg : types.capture(type).getTypeArguments()) {
   990                 if (arg.hasTag(TYPEVAR) &&
   991                         arg.getUpperBound().isErroneous() &&
   992                         !bounds.head.isErroneous() &&
   993                         !isTypeArgErroneous(args.head)) {
   994                     return args.head;
   995                 }
   996                 bounds = bounds.tail;
   997                 args = args.tail;
   998             }
  1000             return null;
  1002         //where
  1003         boolean isTypeArgErroneous(Type t) {
  1004             return isTypeArgErroneous.visit(t);
  1007         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
  1008             public Boolean visitType(Type t, Void s) {
  1009                 return t.isErroneous();
  1011             @Override
  1012             public Boolean visitTypeVar(TypeVar t, Void s) {
  1013                 return visit(t.getUpperBound());
  1015             @Override
  1016             public Boolean visitCapturedType(CapturedType t, Void s) {
  1017                 return visit(t.getUpperBound()) ||
  1018                         visit(t.getLowerBound());
  1020             @Override
  1021             public Boolean visitWildcardType(WildcardType t, Void s) {
  1022                 return visit(t.type);
  1024         };
  1026     /** Check that given modifiers are legal for given symbol and
  1027      *  return modifiers together with any implicit modifiers for that symbol.
  1028      *  Warning: we can't use flags() here since this method
  1029      *  is called during class enter, when flags() would cause a premature
  1030      *  completion.
  1031      *  @param pos           Position to be used for error reporting.
  1032      *  @param flags         The set of modifiers given in a definition.
  1033      *  @param sym           The defined symbol.
  1034      */
  1035     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
  1036         long mask;
  1037         long implicit = 0;
  1039         switch (sym.kind) {
  1040         case VAR:
  1041             if (TreeInfo.isReceiverParam(tree))
  1042                 mask = ReceiverParamFlags;
  1043             else if (sym.owner.kind != TYP)
  1044                 mask = LocalVarFlags;
  1045             else if ((sym.owner.flags_field & INTERFACE) != 0)
  1046                 mask = implicit = InterfaceVarFlags;
  1047             else
  1048                 mask = VarFlags;
  1049             break;
  1050         case MTH:
  1051             if (sym.name == names.init) {
  1052                 if ((sym.owner.flags_field & ENUM) != 0) {
  1053                     // enum constructors cannot be declared public or
  1054                     // protected and must be implicitly or explicitly
  1055                     // private
  1056                     implicit = PRIVATE;
  1057                     mask = PRIVATE;
  1058                 } else
  1059                     mask = ConstructorFlags;
  1060             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
  1061                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
  1062                     mask = AnnotationTypeElementMask;
  1063                     implicit = PUBLIC | ABSTRACT;
  1064                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
  1065                     mask = InterfaceMethodMask;
  1066                     implicit = PUBLIC;
  1067                     if ((flags & DEFAULT) != 0) {
  1068                         implicit |= ABSTRACT;
  1070                 } else {
  1071                     mask = implicit = InterfaceMethodFlags;
  1073             } else {
  1074                 mask = MethodFlags;
  1076             // Imply STRICTFP if owner has STRICTFP set.
  1077             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
  1078                 ((flags) & Flags.DEFAULT) != 0)
  1079                 implicit |= sym.owner.flags_field & STRICTFP;
  1080             break;
  1081         case TYP:
  1082             if (sym.isLocal()) {
  1083                 mask = LocalClassFlags;
  1084                 if (sym.name.isEmpty()) { // Anonymous class
  1085                     // Anonymous classes in static methods are themselves static;
  1086                     // that's why we admit STATIC here.
  1087                     mask |= STATIC;
  1088                     // JLS: Anonymous classes are final.
  1089                     implicit |= FINAL;
  1091                 if ((sym.owner.flags_field & STATIC) == 0 &&
  1092                     (flags & ENUM) != 0)
  1093                     log.error(pos, "enums.must.be.static");
  1094             } else if (sym.owner.kind == TYP) {
  1095                 mask = MemberClassFlags;
  1096                 if (sym.owner.owner.kind == PCK ||
  1097                     (sym.owner.flags_field & STATIC) != 0)
  1098                     mask |= STATIC;
  1099                 else if ((flags & ENUM) != 0)
  1100                     log.error(pos, "enums.must.be.static");
  1101                 // Nested interfaces and enums are always STATIC (Spec ???)
  1102                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
  1103             } else {
  1104                 mask = ClassFlags;
  1106             // Interfaces are always ABSTRACT
  1107             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
  1109             if ((flags & ENUM) != 0) {
  1110                 // enums can't be declared abstract or final
  1111                 mask &= ~(ABSTRACT | FINAL);
  1112                 implicit |= implicitEnumFinalFlag(tree);
  1114             // Imply STRICTFP if owner has STRICTFP set.
  1115             implicit |= sym.owner.flags_field & STRICTFP;
  1116             break;
  1117         default:
  1118             throw new AssertionError();
  1120         long illegal = flags & ExtendedStandardFlags & ~mask;
  1121         if (illegal != 0) {
  1122             if ((illegal & INTERFACE) != 0) {
  1123                 log.error(pos, "intf.not.allowed.here");
  1124                 mask |= INTERFACE;
  1126             else {
  1127                 log.error(pos,
  1128                           "mod.not.allowed.here", asFlagSet(illegal));
  1131         else if ((sym.kind == TYP ||
  1132                   // ISSUE: Disallowing abstract&private is no longer appropriate
  1133                   // in the presence of inner classes. Should it be deleted here?
  1134                   checkDisjoint(pos, flags,
  1135                                 ABSTRACT,
  1136                                 PRIVATE | STATIC | DEFAULT))
  1137                  &&
  1138                  checkDisjoint(pos, flags,
  1139                                 STATIC,
  1140                                 DEFAULT)
  1141                  &&
  1142                  checkDisjoint(pos, flags,
  1143                                ABSTRACT | INTERFACE,
  1144                                FINAL | NATIVE | SYNCHRONIZED)
  1145                  &&
  1146                  checkDisjoint(pos, flags,
  1147                                PUBLIC,
  1148                                PRIVATE | PROTECTED)
  1149                  &&
  1150                  checkDisjoint(pos, flags,
  1151                                PRIVATE,
  1152                                PUBLIC | PROTECTED)
  1153                  &&
  1154                  checkDisjoint(pos, flags,
  1155                                FINAL,
  1156                                VOLATILE)
  1157                  &&
  1158                  (sym.kind == TYP ||
  1159                   checkDisjoint(pos, flags,
  1160                                 ABSTRACT | NATIVE,
  1161                                 STRICTFP))) {
  1162             // skip
  1164         return flags & (mask | ~ExtendedStandardFlags) | implicit;
  1168     /** Determine if this enum should be implicitly final.
  1170      *  If the enum has no specialized enum contants, it is final.
  1172      *  If the enum does have specialized enum contants, it is
  1173      *  <i>not</i> final.
  1174      */
  1175     private long implicitEnumFinalFlag(JCTree tree) {
  1176         if (!tree.hasTag(CLASSDEF)) return 0;
  1177         class SpecialTreeVisitor extends JCTree.Visitor {
  1178             boolean specialized;
  1179             SpecialTreeVisitor() {
  1180                 this.specialized = false;
  1181             };
  1183             @Override
  1184             public void visitTree(JCTree tree) { /* no-op */ }
  1186             @Override
  1187             public void visitVarDef(JCVariableDecl tree) {
  1188                 if ((tree.mods.flags & ENUM) != 0) {
  1189                     if (tree.init instanceof JCNewClass &&
  1190                         ((JCNewClass) tree.init).def != null) {
  1191                         specialized = true;
  1197         SpecialTreeVisitor sts = new SpecialTreeVisitor();
  1198         JCClassDecl cdef = (JCClassDecl) tree;
  1199         for (JCTree defs: cdef.defs) {
  1200             defs.accept(sts);
  1201             if (sts.specialized) return 0;
  1203         return FINAL;
  1206 /* *************************************************************************
  1207  * Type Validation
  1208  **************************************************************************/
  1210     /** Validate a type expression. That is,
  1211      *  check that all type arguments of a parametric type are within
  1212      *  their bounds. This must be done in a second phase after type attribution
  1213      *  since a class might have a subclass as type parameter bound. E.g:
  1215      *  <pre>{@code
  1216      *  class B<A extends C> { ... }
  1217      *  class C extends B<C> { ... }
  1218      *  }</pre>
  1220      *  and we can't make sure that the bound is already attributed because
  1221      *  of possible cycles.
  1223      * Visitor method: Validate a type expression, if it is not null, catching
  1224      *  and reporting any completion failures.
  1225      */
  1226     void validate(JCTree tree, Env<AttrContext> env) {
  1227         validate(tree, env, true);
  1229     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
  1230         new Validator(env).validateTree(tree, checkRaw, true);
  1233     /** Visitor method: Validate a list of type expressions.
  1234      */
  1235     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
  1236         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1237             validate(l.head, env);
  1240     /** A visitor class for type validation.
  1241      */
  1242     class Validator extends JCTree.Visitor {
  1244         boolean checkRaw;
  1245         boolean isOuter;
  1246         Env<AttrContext> env;
  1248         Validator(Env<AttrContext> env) {
  1249             this.env = env;
  1252         @Override
  1253         public void visitTypeArray(JCArrayTypeTree tree) {
  1254             validateTree(tree.elemtype, checkRaw, isOuter);
  1257         @Override
  1258         public void visitTypeApply(JCTypeApply tree) {
  1259             if (tree.type.hasTag(CLASS)) {
  1260                 List<JCExpression> args = tree.arguments;
  1261                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
  1263                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
  1264                 if (incompatibleArg != null) {
  1265                     for (JCTree arg : tree.arguments) {
  1266                         if (arg.type == incompatibleArg) {
  1267                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
  1269                         forms = forms.tail;
  1273                 forms = tree.type.tsym.type.getTypeArguments();
  1275                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
  1277                 // For matching pairs of actual argument types `a' and
  1278                 // formal type parameters with declared bound `b' ...
  1279                 while (args.nonEmpty() && forms.nonEmpty()) {
  1280                     validateTree(args.head,
  1281                             !(isOuter && is_java_lang_Class),
  1282                             false);
  1283                     args = args.tail;
  1284                     forms = forms.tail;
  1287                 // Check that this type is either fully parameterized, or
  1288                 // not parameterized at all.
  1289                 if (tree.type.getEnclosingType().isRaw())
  1290                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
  1291                 if (tree.clazz.hasTag(SELECT))
  1292                     visitSelectInternal((JCFieldAccess)tree.clazz);
  1296         @Override
  1297         public void visitTypeParameter(JCTypeParameter tree) {
  1298             validateTrees(tree.bounds, true, isOuter);
  1299             checkClassBounds(tree.pos(), tree.type);
  1302         @Override
  1303         public void visitWildcard(JCWildcard tree) {
  1304             if (tree.inner != null)
  1305                 validateTree(tree.inner, true, isOuter);
  1308         @Override
  1309         public void visitSelect(JCFieldAccess tree) {
  1310             if (tree.type.hasTag(CLASS)) {
  1311                 visitSelectInternal(tree);
  1313                 // Check that this type is either fully parameterized, or
  1314                 // not parameterized at all.
  1315                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
  1316                     log.error(tree.pos(), "improperly.formed.type.param.missing");
  1320         public void visitSelectInternal(JCFieldAccess tree) {
  1321             if (tree.type.tsym.isStatic() &&
  1322                 tree.selected.type.isParameterized()) {
  1323                 // The enclosing type is not a class, so we are
  1324                 // looking at a static member type.  However, the
  1325                 // qualifying expression is parameterized.
  1326                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
  1327             } else {
  1328                 // otherwise validate the rest of the expression
  1329                 tree.selected.accept(this);
  1333         @Override
  1334         public void visitAnnotatedType(JCAnnotatedType tree) {
  1335             tree.underlyingType.accept(this);
  1338         @Override
  1339         public void visitTypeIdent(JCPrimitiveTypeTree that) {
  1340             if (that.type.hasTag(TypeTag.VOID)) {
  1341                 log.error(that.pos(), "void.not.allowed.here");
  1343             super.visitTypeIdent(that);
  1346         /** Default visitor method: do nothing.
  1347          */
  1348         @Override
  1349         public void visitTree(JCTree tree) {
  1352         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
  1353             if (tree != null) {
  1354                 boolean prevCheckRaw = this.checkRaw;
  1355                 this.checkRaw = checkRaw;
  1356                 this.isOuter = isOuter;
  1358                 try {
  1359                     tree.accept(this);
  1360                     if (checkRaw)
  1361                         checkRaw(tree, env);
  1362                 } catch (CompletionFailure ex) {
  1363                     completionError(tree.pos(), ex);
  1364                 } finally {
  1365                     this.checkRaw = prevCheckRaw;
  1370         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
  1371             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
  1372                 validateTree(l.head, checkRaw, isOuter);
  1376     void checkRaw(JCTree tree, Env<AttrContext> env) {
  1377         if (lint.isEnabled(LintCategory.RAW) &&
  1378             tree.type.hasTag(CLASS) &&
  1379             !TreeInfo.isDiamond(tree) &&
  1380             !withinAnonConstr(env) &&
  1381             tree.type.isRaw()) {
  1382             log.warning(LintCategory.RAW,
  1383                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
  1386     //where
  1387         private boolean withinAnonConstr(Env<AttrContext> env) {
  1388             return env.enclClass.name.isEmpty() &&
  1389                     env.enclMethod != null && env.enclMethod.name == names.init;
  1392 /* *************************************************************************
  1393  * Exception checking
  1394  **************************************************************************/
  1396     /* The following methods treat classes as sets that contain
  1397      * the class itself and all their subclasses
  1398      */
  1400     /** Is given type a subtype of some of the types in given list?
  1401      */
  1402     boolean subset(Type t, List<Type> ts) {
  1403         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1404             if (types.isSubtype(t, l.head)) return true;
  1405         return false;
  1408     /** Is given type a subtype or supertype of
  1409      *  some of the types in given list?
  1410      */
  1411     boolean intersects(Type t, List<Type> ts) {
  1412         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
  1413             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
  1414         return false;
  1417     /** Add type set to given type list, unless it is a subclass of some class
  1418      *  in the list.
  1419      */
  1420     List<Type> incl(Type t, List<Type> ts) {
  1421         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
  1424     /** Remove type set from type set list.
  1425      */
  1426     List<Type> excl(Type t, List<Type> ts) {
  1427         if (ts.isEmpty()) {
  1428             return ts;
  1429         } else {
  1430             List<Type> ts1 = excl(t, ts.tail);
  1431             if (types.isSubtype(ts.head, t)) return ts1;
  1432             else if (ts1 == ts.tail) return ts;
  1433             else return ts1.prepend(ts.head);
  1437     /** Form the union of two type set lists.
  1438      */
  1439     List<Type> union(List<Type> ts1, List<Type> ts2) {
  1440         List<Type> ts = ts1;
  1441         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1442             ts = incl(l.head, ts);
  1443         return ts;
  1446     /** Form the difference of two type lists.
  1447      */
  1448     List<Type> diff(List<Type> ts1, List<Type> ts2) {
  1449         List<Type> ts = ts1;
  1450         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1451             ts = excl(l.head, ts);
  1452         return ts;
  1455     /** Form the intersection of two type lists.
  1456      */
  1457     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
  1458         List<Type> ts = List.nil();
  1459         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
  1460             if (subset(l.head, ts2)) ts = incl(l.head, ts);
  1461         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
  1462             if (subset(l.head, ts1)) ts = incl(l.head, ts);
  1463         return ts;
  1466     /** Is exc an exception symbol that need not be declared?
  1467      */
  1468     boolean isUnchecked(ClassSymbol exc) {
  1469         return
  1470             exc.kind == ERR ||
  1471             exc.isSubClass(syms.errorType.tsym, types) ||
  1472             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
  1475     /** Is exc an exception type that need not be declared?
  1476      */
  1477     boolean isUnchecked(Type exc) {
  1478         return
  1479             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
  1480             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
  1481             exc.hasTag(BOT);
  1484     /** Same, but handling completion failures.
  1485      */
  1486     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
  1487         try {
  1488             return isUnchecked(exc);
  1489         } catch (CompletionFailure ex) {
  1490             completionError(pos, ex);
  1491             return true;
  1495     /** Is exc handled by given exception list?
  1496      */
  1497     boolean isHandled(Type exc, List<Type> handled) {
  1498         return isUnchecked(exc) || subset(exc, handled);
  1501     /** Return all exceptions in thrown list that are not in handled list.
  1502      *  @param thrown     The list of thrown exceptions.
  1503      *  @param handled    The list of handled exceptions.
  1504      */
  1505     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
  1506         List<Type> unhandled = List.nil();
  1507         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
  1508             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
  1509         return unhandled;
  1512 /* *************************************************************************
  1513  * Overriding/Implementation checking
  1514  **************************************************************************/
  1516     /** The level of access protection given by a flag set,
  1517      *  where PRIVATE is highest and PUBLIC is lowest.
  1518      */
  1519     static int protection(long flags) {
  1520         switch ((short)(flags & AccessFlags)) {
  1521         case PRIVATE: return 3;
  1522         case PROTECTED: return 1;
  1523         default:
  1524         case PUBLIC: return 0;
  1525         case 0: return 2;
  1529     /** A customized "cannot override" error message.
  1530      *  @param m      The overriding method.
  1531      *  @param other  The overridden method.
  1532      *  @return       An internationalized string.
  1533      */
  1534     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
  1535         String key;
  1536         if ((other.owner.flags() & INTERFACE) == 0)
  1537             key = "cant.override";
  1538         else if ((m.owner.flags() & INTERFACE) == 0)
  1539             key = "cant.implement";
  1540         else
  1541             key = "clashes.with";
  1542         return diags.fragment(key, m, m.location(), other, other.location());
  1545     /** A customized "override" warning message.
  1546      *  @param m      The overriding method.
  1547      *  @param other  The overridden method.
  1548      *  @return       An internationalized string.
  1549      */
  1550     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
  1551         String key;
  1552         if ((other.owner.flags() & INTERFACE) == 0)
  1553             key = "unchecked.override";
  1554         else if ((m.owner.flags() & INTERFACE) == 0)
  1555             key = "unchecked.implement";
  1556         else
  1557             key = "unchecked.clash.with";
  1558         return diags.fragment(key, m, m.location(), other, other.location());
  1561     /** A customized "override" warning message.
  1562      *  @param m      The overriding method.
  1563      *  @param other  The overridden method.
  1564      *  @return       An internationalized string.
  1565      */
  1566     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
  1567         String key;
  1568         if ((other.owner.flags() & INTERFACE) == 0)
  1569             key = "varargs.override";
  1570         else  if ((m.owner.flags() & INTERFACE) == 0)
  1571             key = "varargs.implement";
  1572         else
  1573             key = "varargs.clash.with";
  1574         return diags.fragment(key, m, m.location(), other, other.location());
  1577     /** Check that this method conforms with overridden method 'other'.
  1578      *  where `origin' is the class where checking started.
  1579      *  Complications:
  1580      *  (1) Do not check overriding of synthetic methods
  1581      *      (reason: they might be final).
  1582      *      todo: check whether this is still necessary.
  1583      *  (2) Admit the case where an interface proxy throws fewer exceptions
  1584      *      than the method it implements. Augment the proxy methods with the
  1585      *      undeclared exceptions in this case.
  1586      *  (3) When generics are enabled, admit the case where an interface proxy
  1587      *      has a result type
  1588      *      extended by the result type of the method it implements.
  1589      *      Change the proxies result type to the smaller type in this case.
  1591      *  @param tree         The tree from which positions
  1592      *                      are extracted for errors.
  1593      *  @param m            The overriding method.
  1594      *  @param other        The overridden method.
  1595      *  @param origin       The class of which the overriding method
  1596      *                      is a member.
  1597      */
  1598     void checkOverride(JCTree tree,
  1599                        MethodSymbol m,
  1600                        MethodSymbol other,
  1601                        ClassSymbol origin) {
  1602         // Don't check overriding of synthetic methods or by bridge methods.
  1603         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
  1604             return;
  1607         // Error if static method overrides instance method (JLS 8.4.6.2).
  1608         if ((m.flags() & STATIC) != 0 &&
  1609                    (other.flags() & STATIC) == 0) {
  1610             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
  1611                       cannotOverride(m, other));
  1612             m.flags_field |= BAD_OVERRIDE;
  1613             return;
  1616         // Error if instance method overrides static or final
  1617         // method (JLS 8.4.6.1).
  1618         if ((other.flags() & FINAL) != 0 ||
  1619                  (m.flags() & STATIC) == 0 &&
  1620                  (other.flags() & STATIC) != 0) {
  1621             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
  1622                       cannotOverride(m, other),
  1623                       asFlagSet(other.flags() & (FINAL | STATIC)));
  1624             m.flags_field |= BAD_OVERRIDE;
  1625             return;
  1628         if ((m.owner.flags() & ANNOTATION) != 0) {
  1629             // handled in validateAnnotationMethod
  1630             return;
  1633         // Error if overriding method has weaker access (JLS 8.4.6.3).
  1634         if ((origin.flags() & INTERFACE) == 0 &&
  1635                  protection(m.flags()) > protection(other.flags())) {
  1636             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
  1637                       cannotOverride(m, other),
  1638                       other.flags() == 0 ?
  1639                           "package" :
  1640                           asFlagSet(other.flags() & AccessFlags));
  1641             m.flags_field |= BAD_OVERRIDE;
  1642             return;
  1645         Type mt = types.memberType(origin.type, m);
  1646         Type ot = types.memberType(origin.type, other);
  1647         // Error if overriding result type is different
  1648         // (or, in the case of generics mode, not a subtype) of
  1649         // overridden result type. We have to rename any type parameters
  1650         // before comparing types.
  1651         List<Type> mtvars = mt.getTypeArguments();
  1652         List<Type> otvars = ot.getTypeArguments();
  1653         Type mtres = mt.getReturnType();
  1654         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
  1656         overrideWarner.clear();
  1657         boolean resultTypesOK =
  1658             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
  1659         if (!resultTypesOK) {
  1660             if (!allowCovariantReturns &&
  1661                 m.owner != origin &&
  1662                 m.owner.isSubClass(other.owner, types)) {
  1663                 // allow limited interoperability with covariant returns
  1664             } else {
  1665                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1666                           "override.incompatible.ret",
  1667                           cannotOverride(m, other),
  1668                           mtres, otres);
  1669                 m.flags_field |= BAD_OVERRIDE;
  1670                 return;
  1672         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
  1673             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1674                     "override.unchecked.ret",
  1675                     uncheckedOverrides(m, other),
  1676                     mtres, otres);
  1679         // Error if overriding method throws an exception not reported
  1680         // by overridden method.
  1681         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
  1682         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
  1683         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
  1684         if (unhandledErased.nonEmpty()) {
  1685             log.error(TreeInfo.diagnosticPositionFor(m, tree),
  1686                       "override.meth.doesnt.throw",
  1687                       cannotOverride(m, other),
  1688                       unhandledUnerased.head);
  1689             m.flags_field |= BAD_OVERRIDE;
  1690             return;
  1692         else if (unhandledUnerased.nonEmpty()) {
  1693             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
  1694                           "override.unchecked.thrown",
  1695                          cannotOverride(m, other),
  1696                          unhandledUnerased.head);
  1697             return;
  1700         // Optional warning if varargs don't agree
  1701         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
  1702             && lint.isEnabled(LintCategory.OVERRIDES)) {
  1703             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
  1704                         ((m.flags() & Flags.VARARGS) != 0)
  1705                         ? "override.varargs.missing"
  1706                         : "override.varargs.extra",
  1707                         varargsOverrides(m, other));
  1710         // Warn if instance method overrides bridge method (compiler spec ??)
  1711         if ((other.flags() & BRIDGE) != 0) {
  1712             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
  1713                         uncheckedOverrides(m, other));
  1716         // Warn if a deprecated method overridden by a non-deprecated one.
  1717         if (!isDeprecatedOverrideIgnorable(other, origin)) {
  1718             Lint prevLint = setLint(lint.augment(m));
  1719             try {
  1720                 checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
  1721             } finally {
  1722                 setLint(prevLint);
  1726     // where
  1727         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
  1728             // If the method, m, is defined in an interface, then ignore the issue if the method
  1729             // is only inherited via a supertype and also implemented in the supertype,
  1730             // because in that case, we will rediscover the issue when examining the method
  1731             // in the supertype.
  1732             // If the method, m, is not defined in an interface, then the only time we need to
  1733             // address the issue is when the method is the supertype implemementation: any other
  1734             // case, we will have dealt with when examining the supertype classes
  1735             ClassSymbol mc = m.enclClass();
  1736             Type st = types.supertype(origin.type);
  1737             if (!st.hasTag(CLASS))
  1738                 return true;
  1739             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
  1741             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
  1742                 List<Type> intfs = types.interfaces(origin.type);
  1743                 return (intfs.contains(mc.type) ? false : (stimpl != null));
  1745             else
  1746                 return (stimpl != m);
  1750     // used to check if there were any unchecked conversions
  1751     Warner overrideWarner = new Warner();
  1753     /** Check that a class does not inherit two concrete methods
  1754      *  with the same signature.
  1755      *  @param pos          Position to be used for error reporting.
  1756      *  @param site         The class type to be checked.
  1757      */
  1758     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
  1759         Type sup = types.supertype(site);
  1760         if (!sup.hasTag(CLASS)) return;
  1762         for (Type t1 = sup;
  1763              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
  1764              t1 = types.supertype(t1)) {
  1765             for (Scope.Entry e1 = t1.tsym.members().elems;
  1766                  e1 != null;
  1767                  e1 = e1.sibling) {
  1768                 Symbol s1 = e1.sym;
  1769                 if (s1.kind != MTH ||
  1770                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1771                     !s1.isInheritedIn(site.tsym, types) ||
  1772                     ((MethodSymbol)s1).implementation(site.tsym,
  1773                                                       types,
  1774                                                       true) != s1)
  1775                     continue;
  1776                 Type st1 = types.memberType(t1, s1);
  1777                 int s1ArgsLength = st1.getParameterTypes().length();
  1778                 if (st1 == s1.type) continue;
  1780                 for (Type t2 = sup;
  1781                      t2.hasTag(CLASS);
  1782                      t2 = types.supertype(t2)) {
  1783                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
  1784                          e2.scope != null;
  1785                          e2 = e2.next()) {
  1786                         Symbol s2 = e2.sym;
  1787                         if (s2 == s1 ||
  1788                             s2.kind != MTH ||
  1789                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
  1790                             s2.type.getParameterTypes().length() != s1ArgsLength ||
  1791                             !s2.isInheritedIn(site.tsym, types) ||
  1792                             ((MethodSymbol)s2).implementation(site.tsym,
  1793                                                               types,
  1794                                                               true) != s2)
  1795                             continue;
  1796                         Type st2 = types.memberType(t2, s2);
  1797                         if (types.overrideEquivalent(st1, st2))
  1798                             log.error(pos, "concrete.inheritance.conflict",
  1799                                       s1, t1, s2, t2, sup);
  1806     /** Check that classes (or interfaces) do not each define an abstract
  1807      *  method with same name and arguments but incompatible return types.
  1808      *  @param pos          Position to be used for error reporting.
  1809      *  @param t1           The first argument type.
  1810      *  @param t2           The second argument type.
  1811      */
  1812     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1813                                             Type t1,
  1814                                             Type t2) {
  1815         return checkCompatibleAbstracts(pos, t1, t2,
  1816                                         types.makeCompoundType(t1, t2));
  1819     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
  1820                                             Type t1,
  1821                                             Type t2,
  1822                                             Type site) {
  1823         if ((site.tsym.flags() & COMPOUND) != 0) {
  1824             // special case for intersections: need to eliminate wildcards in supertypes
  1825             t1 = types.capture(t1);
  1826             t2 = types.capture(t2);
  1828         return firstIncompatibility(pos, t1, t2, site) == null;
  1831     /** Return the first method which is defined with same args
  1832      *  but different return types in two given interfaces, or null if none
  1833      *  exists.
  1834      *  @param t1     The first type.
  1835      *  @param t2     The second type.
  1836      *  @param site   The most derived type.
  1837      *  @returns symbol from t2 that conflicts with one in t1.
  1838      */
  1839     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1840         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
  1841         closure(t1, interfaces1);
  1842         Map<TypeSymbol,Type> interfaces2;
  1843         if (t1 == t2)
  1844             interfaces2 = interfaces1;
  1845         else
  1846             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
  1848         for (Type t3 : interfaces1.values()) {
  1849             for (Type t4 : interfaces2.values()) {
  1850                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
  1851                 if (s != null) return s;
  1854         return null;
  1857     /** Compute all the supertypes of t, indexed by type symbol. */
  1858     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
  1859         if (!t.hasTag(CLASS)) return;
  1860         if (typeMap.put(t.tsym, t) == null) {
  1861             closure(types.supertype(t), typeMap);
  1862             for (Type i : types.interfaces(t))
  1863                 closure(i, typeMap);
  1867     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
  1868     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
  1869         if (!t.hasTag(CLASS)) return;
  1870         if (typesSkip.get(t.tsym) != null) return;
  1871         if (typeMap.put(t.tsym, t) == null) {
  1872             closure(types.supertype(t), typesSkip, typeMap);
  1873             for (Type i : types.interfaces(t))
  1874                 closure(i, typesSkip, typeMap);
  1878     /** Return the first method in t2 that conflicts with a method from t1. */
  1879     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
  1880         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
  1881             Symbol s1 = e1.sym;
  1882             Type st1 = null;
  1883             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
  1884                     (s1.flags() & SYNTHETIC) != 0) continue;
  1885             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
  1886             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
  1887             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
  1888                 Symbol s2 = e2.sym;
  1889                 if (s1 == s2) continue;
  1890                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
  1891                         (s2.flags() & SYNTHETIC) != 0) continue;
  1892                 if (st1 == null) st1 = types.memberType(t1, s1);
  1893                 Type st2 = types.memberType(t2, s2);
  1894                 if (types.overrideEquivalent(st1, st2)) {
  1895                     List<Type> tvars1 = st1.getTypeArguments();
  1896                     List<Type> tvars2 = st2.getTypeArguments();
  1897                     Type rt1 = st1.getReturnType();
  1898                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
  1899                     boolean compat =
  1900                         types.isSameType(rt1, rt2) ||
  1901                         !rt1.isPrimitiveOrVoid() &&
  1902                         !rt2.isPrimitiveOrVoid() &&
  1903                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
  1904                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
  1905                          checkCommonOverriderIn(s1,s2,site);
  1906                     if (!compat) {
  1907                         log.error(pos, "types.incompatible.diff.ret",
  1908                             t1, t2, s2.name +
  1909                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
  1910                         return s2;
  1912                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
  1913                         !checkCommonOverriderIn(s1, s2, site)) {
  1914                     log.error(pos,
  1915                             "name.clash.same.erasure.no.override",
  1916                             s1, s1.location(),
  1917                             s2, s2.location());
  1918                     return s2;
  1922         return null;
  1924     //WHERE
  1925     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
  1926         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
  1927         Type st1 = types.memberType(site, s1);
  1928         Type st2 = types.memberType(site, s2);
  1929         closure(site, supertypes);
  1930         for (Type t : supertypes.values()) {
  1931             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
  1932                 Symbol s3 = e.sym;
  1933                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
  1934                 Type st3 = types.memberType(site,s3);
  1935                 if (types.overrideEquivalent(st3, st1) &&
  1936                         types.overrideEquivalent(st3, st2) &&
  1937                         types.returnTypeSubstitutable(st3, st1) &&
  1938                         types.returnTypeSubstitutable(st3, st2)) {
  1939                     return true;
  1943         return false;
  1946     /** Check that a given method conforms with any method it overrides.
  1947      *  @param tree         The tree from which positions are extracted
  1948      *                      for errors.
  1949      *  @param m            The overriding method.
  1950      */
  1951     void checkOverride(JCMethodDecl tree, MethodSymbol m) {
  1952         ClassSymbol origin = (ClassSymbol)m.owner;
  1953         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
  1954             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
  1955                 log.error(tree.pos(), "enum.no.finalize");
  1956                 return;
  1958         for (Type t = origin.type; t.hasTag(CLASS);
  1959              t = types.supertype(t)) {
  1960             if (t != origin.type) {
  1961                 checkOverride(tree, t, origin, m);
  1963             for (Type t2 : types.interfaces(t)) {
  1964                 checkOverride(tree, t2, origin, m);
  1968         if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
  1969             DiagnosticPosition pos = tree.pos();
  1970             for (JCAnnotation a : tree.getModifiers().annotations) {
  1971                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
  1972                     pos = a.pos();
  1973                     break;
  1976             log.error(pos, "method.does.not.override.superclass");
  1980     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
  1981         TypeSymbol c = site.tsym;
  1982         Scope.Entry e = c.members().lookup(m.name);
  1983         while (e.scope != null) {
  1984             if (m.overrides(e.sym, origin, types, false)) {
  1985                 if ((e.sym.flags() & ABSTRACT) == 0) {
  1986                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
  1989             e = e.next();
  1993     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
  1994         public boolean accepts(Symbol s) {
  1995             return MethodSymbol.implementation_filter.accepts(s) &&
  1996                     (s.flags() & BAD_OVERRIDE) == 0;
  1999     };
  2001     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
  2002             ClassSymbol someClass) {
  2003         /* At present, annotations cannot possibly have a method that is override
  2004          * equivalent with Object.equals(Object) but in any case the condition is
  2005          * fine for completeness.
  2006          */
  2007         if (someClass == (ClassSymbol)syms.objectType.tsym ||
  2008             someClass.isInterface() || someClass.isEnum() ||
  2009             (someClass.flags() & ANNOTATION) != 0 ||
  2010             (someClass.flags() & ABSTRACT) != 0) return;
  2011         //anonymous inner classes implementing interfaces need especial treatment
  2012         if (someClass.isAnonymous()) {
  2013             List<Type> interfaces =  types.interfaces(someClass.type);
  2014             if (interfaces != null && !interfaces.isEmpty() &&
  2015                 interfaces.head.tsym == syms.comparatorType.tsym) return;
  2017         checkClassOverrideEqualsAndHash(pos, someClass);
  2020     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
  2021             ClassSymbol someClass) {
  2022         if (lint.isEnabled(LintCategory.OVERRIDES)) {
  2023             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
  2024                     .tsym.members().lookup(names.equals).sym;
  2025             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
  2026                     .tsym.members().lookup(names.hashCode).sym;
  2027             boolean overridesEquals = types.implementation(equalsAtObject,
  2028                 someClass, false, equalsHasCodeFilter).owner == someClass;
  2029             boolean overridesHashCode = types.implementation(hashCodeAtObject,
  2030                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
  2032             if (overridesEquals && !overridesHashCode) {
  2033                 log.warning(LintCategory.OVERRIDES, pos,
  2034                         "override.equals.but.not.hashcode", someClass);
  2039     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
  2040         ClashFilter cf = new ClashFilter(origin.type);
  2041         return (cf.accepts(s1) &&
  2042                 cf.accepts(s2) &&
  2043                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
  2047     /** Check that all abstract members of given class have definitions.
  2048      *  @param pos          Position to be used for error reporting.
  2049      *  @param c            The class.
  2050      */
  2051     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
  2052         MethodSymbol undef = types.firstUnimplementedAbstract(c);
  2053         if (undef != null) {
  2054             MethodSymbol undef1 =
  2055                 new MethodSymbol(undef.flags(), undef.name,
  2056                                  types.memberType(c.type, undef), undef.owner);
  2057             log.error(pos, "does.not.override.abstract",
  2058                       c, undef1, undef1.location());
  2062     void checkNonCyclicDecl(JCClassDecl tree) {
  2063         CycleChecker cc = new CycleChecker();
  2064         cc.scan(tree);
  2065         if (!cc.errorFound && !cc.partialCheck) {
  2066             tree.sym.flags_field |= ACYCLIC;
  2070     class CycleChecker extends TreeScanner {
  2072         List<Symbol> seenClasses = List.nil();
  2073         boolean errorFound = false;
  2074         boolean partialCheck = false;
  2076         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
  2077             if (sym != null && sym.kind == TYP) {
  2078                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
  2079                 if (classEnv != null) {
  2080                     DiagnosticSource prevSource = log.currentSource();
  2081                     try {
  2082                         log.useSource(classEnv.toplevel.sourcefile);
  2083                         scan(classEnv.tree);
  2085                     finally {
  2086                         log.useSource(prevSource.getFile());
  2088                 } else if (sym.kind == TYP) {
  2089                     checkClass(pos, sym, List.<JCTree>nil());
  2091             } else {
  2092                 //not completed yet
  2093                 partialCheck = true;
  2097         @Override
  2098         public void visitSelect(JCFieldAccess tree) {
  2099             super.visitSelect(tree);
  2100             checkSymbol(tree.pos(), tree.sym);
  2103         @Override
  2104         public void visitIdent(JCIdent tree) {
  2105             checkSymbol(tree.pos(), tree.sym);
  2108         @Override
  2109         public void visitTypeApply(JCTypeApply tree) {
  2110             scan(tree.clazz);
  2113         @Override
  2114         public void visitTypeArray(JCArrayTypeTree tree) {
  2115             scan(tree.elemtype);
  2118         @Override
  2119         public void visitClassDef(JCClassDecl tree) {
  2120             List<JCTree> supertypes = List.nil();
  2121             if (tree.getExtendsClause() != null) {
  2122                 supertypes = supertypes.prepend(tree.getExtendsClause());
  2124             if (tree.getImplementsClause() != null) {
  2125                 for (JCTree intf : tree.getImplementsClause()) {
  2126                     supertypes = supertypes.prepend(intf);
  2129             checkClass(tree.pos(), tree.sym, supertypes);
  2132         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
  2133             if ((c.flags_field & ACYCLIC) != 0)
  2134                 return;
  2135             if (seenClasses.contains(c)) {
  2136                 errorFound = true;
  2137                 noteCyclic(pos, (ClassSymbol)c);
  2138             } else if (!c.type.isErroneous()) {
  2139                 try {
  2140                     seenClasses = seenClasses.prepend(c);
  2141                     if (c.type.hasTag(CLASS)) {
  2142                         if (supertypes.nonEmpty()) {
  2143                             scan(supertypes);
  2145                         else {
  2146                             ClassType ct = (ClassType)c.type;
  2147                             if (ct.supertype_field == null ||
  2148                                     ct.interfaces_field == null) {
  2149                                 //not completed yet
  2150                                 partialCheck = true;
  2151                                 return;
  2153                             checkSymbol(pos, ct.supertype_field.tsym);
  2154                             for (Type intf : ct.interfaces_field) {
  2155                                 checkSymbol(pos, intf.tsym);
  2158                         if (c.owner.kind == TYP) {
  2159                             checkSymbol(pos, c.owner);
  2162                 } finally {
  2163                     seenClasses = seenClasses.tail;
  2169     /** Check for cyclic references. Issue an error if the
  2170      *  symbol of the type referred to has a LOCKED flag set.
  2172      *  @param pos      Position to be used for error reporting.
  2173      *  @param t        The type referred to.
  2174      */
  2175     void checkNonCyclic(DiagnosticPosition pos, Type t) {
  2176         checkNonCyclicInternal(pos, t);
  2180     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
  2181         checkNonCyclic1(pos, t, List.<TypeVar>nil());
  2184     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
  2185         final TypeVar tv;
  2186         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
  2187             return;
  2188         if (seen.contains(t)) {
  2189             tv = (TypeVar)t.unannotatedType();
  2190             tv.bound = types.createErrorType(t);
  2191             log.error(pos, "cyclic.inheritance", t);
  2192         } else if (t.hasTag(TYPEVAR)) {
  2193             tv = (TypeVar)t.unannotatedType();
  2194             seen = seen.prepend(tv);
  2195             for (Type b : types.getBounds(tv))
  2196                 checkNonCyclic1(pos, b, seen);
  2200     /** Check for cyclic references. Issue an error if the
  2201      *  symbol of the type referred to has a LOCKED flag set.
  2203      *  @param pos      Position to be used for error reporting.
  2204      *  @param t        The type referred to.
  2205      *  @returns        True if the check completed on all attributed classes
  2206      */
  2207     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
  2208         boolean complete = true; // was the check complete?
  2209         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
  2210         Symbol c = t.tsym;
  2211         if ((c.flags_field & ACYCLIC) != 0) return true;
  2213         if ((c.flags_field & LOCKED) != 0) {
  2214             noteCyclic(pos, (ClassSymbol)c);
  2215         } else if (!c.type.isErroneous()) {
  2216             try {
  2217                 c.flags_field |= LOCKED;
  2218                 if (c.type.hasTag(CLASS)) {
  2219                     ClassType clazz = (ClassType)c.type;
  2220                     if (clazz.interfaces_field != null)
  2221                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
  2222                             complete &= checkNonCyclicInternal(pos, l.head);
  2223                     if (clazz.supertype_field != null) {
  2224                         Type st = clazz.supertype_field;
  2225                         if (st != null && st.hasTag(CLASS))
  2226                             complete &= checkNonCyclicInternal(pos, st);
  2228                     if (c.owner.kind == TYP)
  2229                         complete &= checkNonCyclicInternal(pos, c.owner.type);
  2231             } finally {
  2232                 c.flags_field &= ~LOCKED;
  2235         if (complete)
  2236             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
  2237         if (complete) c.flags_field |= ACYCLIC;
  2238         return complete;
  2241     /** Note that we found an inheritance cycle. */
  2242     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
  2243         log.error(pos, "cyclic.inheritance", c);
  2244         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
  2245             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
  2246         Type st = types.supertype(c.type);
  2247         if (st.hasTag(CLASS))
  2248             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
  2249         c.type = types.createErrorType(c, c.type);
  2250         c.flags_field |= ACYCLIC;
  2253     /** Check that all methods which implement some
  2254      *  method conform to the method they implement.
  2255      *  @param tree         The class definition whose members are checked.
  2256      */
  2257     void checkImplementations(JCClassDecl tree) {
  2258         checkImplementations(tree, tree.sym, tree.sym);
  2260     //where
  2261         /** Check that all methods which implement some
  2262          *  method in `ic' conform to the method they implement.
  2263          */
  2264         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
  2265             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
  2266                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
  2267                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
  2268                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
  2269                         if (e.sym.kind == MTH &&
  2270                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
  2271                             MethodSymbol absmeth = (MethodSymbol)e.sym;
  2272                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
  2273                             if (implmeth != null && implmeth != absmeth &&
  2274                                 (implmeth.owner.flags() & INTERFACE) ==
  2275                                 (origin.flags() & INTERFACE)) {
  2276                                 // don't check if implmeth is in a class, yet
  2277                                 // origin is an interface. This case arises only
  2278                                 // if implmeth is declared in Object. The reason is
  2279                                 // that interfaces really don't inherit from
  2280                                 // Object it's just that the compiler represents
  2281                                 // things that way.
  2282                                 checkOverride(tree, implmeth, absmeth, origin);
  2290     /** Check that all abstract methods implemented by a class are
  2291      *  mutually compatible.
  2292      *  @param pos          Position to be used for error reporting.
  2293      *  @param c            The class whose interfaces are checked.
  2294      */
  2295     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
  2296         List<Type> supertypes = types.interfaces(c);
  2297         Type supertype = types.supertype(c);
  2298         if (supertype.hasTag(CLASS) &&
  2299             (supertype.tsym.flags() & ABSTRACT) != 0)
  2300             supertypes = supertypes.prepend(supertype);
  2301         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
  2302             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
  2303                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
  2304                 return;
  2305             for (List<Type> m = supertypes; m != l; m = m.tail)
  2306                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
  2307                     return;
  2309         checkCompatibleConcretes(pos, c);
  2312     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
  2313         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
  2314             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
  2315                 // VM allows methods and variables with differing types
  2316                 if (sym.kind == e.sym.kind &&
  2317                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
  2318                     sym != e.sym &&
  2319                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
  2320                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
  2321                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
  2322                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
  2323                     return;
  2329     /** Check that all non-override equivalent methods accessible from 'site'
  2330      *  are mutually compatible (JLS 8.4.8/9.4.1).
  2332      *  @param pos  Position to be used for error reporting.
  2333      *  @param site The class whose methods are checked.
  2334      *  @param sym  The method symbol to be checked.
  2335      */
  2336     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2337          ClashFilter cf = new ClashFilter(site);
  2338         //for each method m1 that is overridden (directly or indirectly)
  2339         //by method 'sym' in 'site'...
  2341         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
  2342         boolean overridesAny = false;
  2343         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2344             if (!sym.overrides(m1, site.tsym, types, false)) {
  2345                 if (m1 == sym) {
  2346                     continue;
  2349                 if (!overridesAny) {
  2350                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
  2352                 continue;
  2355             if (m1 != sym) {
  2356                 overridesAny = true;
  2357                 potentiallyAmbiguousList = List.nil();
  2360             //...check each method m2 that is a member of 'site'
  2361             for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
  2362                 if (m2 == m1) continue;
  2363                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2364                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
  2365                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
  2366                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
  2367                     sym.flags_field |= CLASH;
  2368                     String key = m1 == sym ?
  2369                             "name.clash.same.erasure.no.override" :
  2370                             "name.clash.same.erasure.no.override.1";
  2371                     log.error(pos,
  2372                             key,
  2373                             sym, sym.location(),
  2374                             m2, m2.location(),
  2375                             m1, m1.location());
  2376                     return;
  2381         if (!overridesAny) {
  2382             for (MethodSymbol m: potentiallyAmbiguousList) {
  2383                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
  2388     /** Check that all static methods accessible from 'site' are
  2389      *  mutually compatible (JLS 8.4.8).
  2391      *  @param pos  Position to be used for error reporting.
  2392      *  @param site The class whose methods are checked.
  2393      *  @param sym  The method symbol to be checked.
  2394      */
  2395     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
  2396         ClashFilter cf = new ClashFilter(site);
  2397         //for each method m1 that is a member of 'site'...
  2398         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
  2399             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
  2400             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
  2401             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
  2402                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
  2403                     log.error(pos,
  2404                             "name.clash.same.erasure.no.hide",
  2405                             sym, sym.location(),
  2406                             s, s.location());
  2407                     return;
  2408                 } else {
  2409                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
  2415      //where
  2416      private class ClashFilter implements Filter<Symbol> {
  2418          Type site;
  2420          ClashFilter(Type site) {
  2421              this.site = site;
  2424          boolean shouldSkip(Symbol s) {
  2425              return (s.flags() & CLASH) != 0 &&
  2426                 s.owner == site.tsym;
  2429          public boolean accepts(Symbol s) {
  2430              return s.kind == MTH &&
  2431                      (s.flags() & SYNTHETIC) == 0 &&
  2432                      !shouldSkip(s) &&
  2433                      s.isInheritedIn(site.tsym, types) &&
  2434                      !s.isConstructor();
  2438     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
  2439         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
  2440         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
  2441             Assert.check(m.kind == MTH);
  2442             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
  2443             if (prov.size() > 1) {
  2444                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
  2445                 ListBuffer<Symbol> defaults = new ListBuffer<>();
  2446                 for (MethodSymbol provSym : prov) {
  2447                     if ((provSym.flags() & DEFAULT) != 0) {
  2448                         defaults = defaults.append(provSym);
  2449                     } else if ((provSym.flags() & ABSTRACT) != 0) {
  2450                         abstracts = abstracts.append(provSym);
  2452                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
  2453                         //strong semantics - issue an error if two sibling interfaces
  2454                         //have two override-equivalent defaults - or if one is abstract
  2455                         //and the other is default
  2456                         String errKey;
  2457                         Symbol s1 = defaults.first();
  2458                         Symbol s2;
  2459                         if (defaults.size() > 1) {
  2460                             errKey = "types.incompatible.unrelated.defaults";
  2461                             s2 = defaults.toList().tail.head;
  2462                         } else {
  2463                             errKey = "types.incompatible.abstract.default";
  2464                             s2 = abstracts.first();
  2466                         log.error(pos, errKey,
  2467                                 Kinds.kindName(site.tsym), site,
  2468                                 m.name, types.memberType(site, m).getParameterTypes(),
  2469                                 s1.location(), s2.location());
  2470                         break;
  2477     //where
  2478      private class DefaultMethodClashFilter implements Filter<Symbol> {
  2480          Type site;
  2482          DefaultMethodClashFilter(Type site) {
  2483              this.site = site;
  2486          public boolean accepts(Symbol s) {
  2487              return s.kind == MTH &&
  2488                      (s.flags() & DEFAULT) != 0 &&
  2489                      s.isInheritedIn(site.tsym, types) &&
  2490                      !s.isConstructor();
  2494     /**
  2495       * Report warnings for potentially ambiguous method declarations. Two declarations
  2496       * are potentially ambiguous if they feature two unrelated functional interface
  2497       * in same argument position (in which case, a call site passing an implicit
  2498       * lambda would be ambiguous).
  2499       */
  2500     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
  2501             MethodSymbol msym1, MethodSymbol msym2) {
  2502         if (msym1 != msym2 &&
  2503                 allowDefaultMethods &&
  2504                 lint.isEnabled(LintCategory.OVERLOADS) &&
  2505                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
  2506                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
  2507             Type mt1 = types.memberType(site, msym1);
  2508             Type mt2 = types.memberType(site, msym2);
  2509             //if both generic methods, adjust type variables
  2510             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
  2511                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
  2512                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
  2514             //expand varargs methods if needed
  2515             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
  2516             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
  2517             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
  2518             //if arities don't match, exit
  2519             if (args1.length() != args2.length()) return;
  2520             boolean potentiallyAmbiguous = false;
  2521             while (args1.nonEmpty() && args2.nonEmpty()) {
  2522                 Type s = args1.head;
  2523                 Type t = args2.head;
  2524                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
  2525                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
  2526                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
  2527                             types.findDescriptorType(s).getParameterTypes().length() ==
  2528                             types.findDescriptorType(t).getParameterTypes().length()) {
  2529                         potentiallyAmbiguous = true;
  2530                     } else {
  2531                         break;
  2534                 args1 = args1.tail;
  2535                 args2 = args2.tail;
  2537             if (potentiallyAmbiguous) {
  2538                 //we found two incompatible functional interfaces with same arity
  2539                 //this means a call site passing an implicit lambda would be ambigiuous
  2540                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
  2541                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
  2542                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
  2543                             msym1, msym1.location(),
  2544                             msym2, msym2.location());
  2545                 return;
  2550     void checkElemAccessFromSerializableLambda(final JCTree tree) {
  2551         if (warnOnAccessToSensitiveMembers) {
  2552             Symbol sym = TreeInfo.symbol(tree);
  2553             if ((sym.kind & (VAR | MTH)) == 0) {
  2554                 return;
  2557             if (sym.kind == VAR) {
  2558                 if ((sym.flags() & PARAMETER) != 0 ||
  2559                     sym.isLocal() ||
  2560                     sym.name == names._this ||
  2561                     sym.name == names._super) {
  2562                     return;
  2566             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
  2567                     isEffectivelyNonPublic(sym)) {
  2568                 log.warning(tree.pos(),
  2569                         "access.to.sensitive.member.from.serializable.element", sym);
  2574     private boolean isEffectivelyNonPublic(Symbol sym) {
  2575         if (sym.packge() == syms.rootPackage) {
  2576             return false;
  2579         while (sym.kind != Kinds.PCK) {
  2580             if ((sym.flags() & PUBLIC) == 0) {
  2581                 return true;
  2583             sym = sym.owner;
  2585         return false;
  2588     /** Report a conflict between a user symbol and a synthetic symbol.
  2589      */
  2590     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
  2591         if (!sym.type.isErroneous()) {
  2592             if (warnOnSyntheticConflicts) {
  2593                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
  2595             else {
  2596                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
  2601     /** Check that class c does not implement directly or indirectly
  2602      *  the same parameterized interface with two different argument lists.
  2603      *  @param pos          Position to be used for error reporting.
  2604      *  @param type         The type whose interfaces are checked.
  2605      */
  2606     void checkClassBounds(DiagnosticPosition pos, Type type) {
  2607         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
  2609 //where
  2610         /** Enter all interfaces of type `type' into the hash table `seensofar'
  2611          *  with their class symbol as key and their type as value. Make
  2612          *  sure no class is entered with two different types.
  2613          */
  2614         void checkClassBounds(DiagnosticPosition pos,
  2615                               Map<TypeSymbol,Type> seensofar,
  2616                               Type type) {
  2617             if (type.isErroneous()) return;
  2618             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
  2619                 Type it = l.head;
  2620                 Type oldit = seensofar.put(it.tsym, it);
  2621                 if (oldit != null) {
  2622                     List<Type> oldparams = oldit.allparams();
  2623                     List<Type> newparams = it.allparams();
  2624                     if (!types.containsTypeEquivalent(oldparams, newparams))
  2625                         log.error(pos, "cant.inherit.diff.arg",
  2626                                   it.tsym, Type.toString(oldparams),
  2627                                   Type.toString(newparams));
  2629                 checkClassBounds(pos, seensofar, it);
  2631             Type st = types.supertype(type);
  2632             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
  2635     /** Enter interface into into set.
  2636      *  If it existed already, issue a "repeated interface" error.
  2637      */
  2638     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
  2639         if (its.contains(it))
  2640             log.error(pos, "repeated.interface");
  2641         else {
  2642             its.add(it);
  2646 /* *************************************************************************
  2647  * Check annotations
  2648  **************************************************************************/
  2650     /**
  2651      * Recursively validate annotations values
  2652      */
  2653     void validateAnnotationTree(JCTree tree) {
  2654         class AnnotationValidator extends TreeScanner {
  2655             @Override
  2656             public void visitAnnotation(JCAnnotation tree) {
  2657                 if (!tree.type.isErroneous()) {
  2658                     super.visitAnnotation(tree);
  2659                     validateAnnotation(tree);
  2663         tree.accept(new AnnotationValidator());
  2666     /**
  2667      *  {@literal
  2668      *  Annotation types are restricted to primitives, String, an
  2669      *  enum, an annotation, Class, Class<?>, Class<? extends
  2670      *  Anything>, arrays of the preceding.
  2671      *  }
  2672      */
  2673     void validateAnnotationType(JCTree restype) {
  2674         // restype may be null if an error occurred, so don't bother validating it
  2675         if (restype != null) {
  2676             validateAnnotationType(restype.pos(), restype.type);
  2680     void validateAnnotationType(DiagnosticPosition pos, Type type) {
  2681         if (type.isPrimitive()) return;
  2682         if (types.isSameType(type, syms.stringType)) return;
  2683         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
  2684         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
  2685         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
  2686         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
  2687             validateAnnotationType(pos, types.elemtype(type));
  2688             return;
  2690         log.error(pos, "invalid.annotation.member.type");
  2693     /**
  2694      * "It is also a compile-time error if any method declared in an
  2695      * annotation type has a signature that is override-equivalent to
  2696      * that of any public or protected method declared in class Object
  2697      * or in the interface annotation.Annotation."
  2699      * @jls 9.6 Annotation Types
  2700      */
  2701     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
  2702         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
  2703             Scope s = sup.tsym.members();
  2704             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
  2705                 if (e.sym.kind == MTH &&
  2706                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
  2707                     types.overrideEquivalent(m.type, e.sym.type))
  2708                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
  2713     /** Check the annotations of a symbol.
  2714      */
  2715     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
  2716         for (JCAnnotation a : annotations)
  2717             validateAnnotation(a, s);
  2720     /** Check the type annotations.
  2721      */
  2722     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
  2723         for (JCAnnotation a : annotations)
  2724             validateTypeAnnotation(a, isTypeParameter);
  2727     /** Check an annotation of a symbol.
  2728      */
  2729     private void validateAnnotation(JCAnnotation a, Symbol s) {
  2730         validateAnnotationTree(a);
  2732         if (!annotationApplicable(a, s))
  2733             log.error(a.pos(), "annotation.type.not.applicable");
  2735         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  2736             if (s.kind != TYP) {
  2737                 log.error(a.pos(), "bad.functional.intf.anno");
  2738             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
  2739                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
  2744     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2745         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
  2746         validateAnnotationTree(a);
  2748         if (a.hasTag(TYPE_ANNOTATION) &&
  2749                 !a.annotationType.type.isErroneous() &&
  2750                 !isTypeAnnotation(a, isTypeParameter)) {
  2751             log.error(a.pos(), "annotation.type.not.applicable");
  2755     /**
  2756      * Validate the proposed container 'repeatable' on the
  2757      * annotation type symbol 's'. Report errors at position
  2758      * 'pos'.
  2760      * @param s The (annotation)type declaration annotated with a @Repeatable
  2761      * @param repeatable the @Repeatable on 's'
  2762      * @param pos where to report errors
  2763      */
  2764     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
  2765         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
  2767         Type t = null;
  2768         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
  2769         if (!l.isEmpty()) {
  2770             Assert.check(l.head.fst.name == names.value);
  2771             t = ((Attribute.Class)l.head.snd).getValue();
  2774         if (t == null) {
  2775             // errors should already have been reported during Annotate
  2776             return;
  2779         validateValue(t.tsym, s, pos);
  2780         validateRetention(t.tsym, s, pos);
  2781         validateDocumented(t.tsym, s, pos);
  2782         validateInherited(t.tsym, s, pos);
  2783         validateTarget(t.tsym, s, pos);
  2784         validateDefault(t.tsym, pos);
  2787     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
  2788         Scope.Entry e = container.members().lookup(names.value);
  2789         if (e.scope != null && e.sym.kind == MTH) {
  2790             MethodSymbol m = (MethodSymbol) e.sym;
  2791             Type ret = m.getReturnType();
  2792             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
  2793                 log.error(pos, "invalid.repeatable.annotation.value.return",
  2794                         container, ret, types.makeArrayType(contained.type));
  2796         } else {
  2797             log.error(pos, "invalid.repeatable.annotation.no.value", container);
  2801     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2802         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
  2803         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
  2805         boolean error = false;
  2806         switch (containedRetention) {
  2807         case RUNTIME:
  2808             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
  2809                 error = true;
  2811             break;
  2812         case CLASS:
  2813             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
  2814                 error = true;
  2817         if (error ) {
  2818             log.error(pos, "invalid.repeatable.annotation.retention",
  2819                       container, containerRetention,
  2820                       contained, containedRetention);
  2824     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2825         if (contained.attribute(syms.documentedType.tsym) != null) {
  2826             if (container.attribute(syms.documentedType.tsym) == null) {
  2827                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
  2832     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2833         if (contained.attribute(syms.inheritedType.tsym) != null) {
  2834             if (container.attribute(syms.inheritedType.tsym) == null) {
  2835                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
  2840     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
  2841         // The set of targets the container is applicable to must be a subset
  2842         // (with respect to annotation target semantics) of the set of targets
  2843         // the contained is applicable to. The target sets may be implicit or
  2844         // explicit.
  2846         Set<Name> containerTargets;
  2847         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
  2848         if (containerTarget == null) {
  2849             containerTargets = getDefaultTargetSet();
  2850         } else {
  2851             containerTargets = new HashSet<Name>();
  2852         for (Attribute app : containerTarget.values) {
  2853             if (!(app instanceof Attribute.Enum)) {
  2854                 continue; // recovery
  2856             Attribute.Enum e = (Attribute.Enum)app;
  2857             containerTargets.add(e.value.name);
  2861         Set<Name> containedTargets;
  2862         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
  2863         if (containedTarget == null) {
  2864             containedTargets = getDefaultTargetSet();
  2865         } else {
  2866             containedTargets = new HashSet<Name>();
  2867         for (Attribute app : containedTarget.values) {
  2868             if (!(app instanceof Attribute.Enum)) {
  2869                 continue; // recovery
  2871             Attribute.Enum e = (Attribute.Enum)app;
  2872             containedTargets.add(e.value.name);
  2876         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
  2877             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
  2881     /* get a set of names for the default target */
  2882     private Set<Name> getDefaultTargetSet() {
  2883         if (defaultTargets == null) {
  2884             Set<Name> targets = new HashSet<Name>();
  2885             targets.add(names.ANNOTATION_TYPE);
  2886             targets.add(names.CONSTRUCTOR);
  2887             targets.add(names.FIELD);
  2888             targets.add(names.LOCAL_VARIABLE);
  2889             targets.add(names.METHOD);
  2890             targets.add(names.PACKAGE);
  2891             targets.add(names.PARAMETER);
  2892             targets.add(names.TYPE);
  2894             defaultTargets = java.util.Collections.unmodifiableSet(targets);
  2897         return defaultTargets;
  2899     private Set<Name> defaultTargets;
  2902     /** Checks that s is a subset of t, with respect to ElementType
  2903      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
  2904      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
  2905      * TYPE_PARAMETER}.
  2906      */
  2907     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
  2908         // Check that all elements in s are present in t
  2909         for (Name n2 : s) {
  2910             boolean currentElementOk = false;
  2911             for (Name n1 : t) {
  2912                 if (n1 == n2) {
  2913                     currentElementOk = true;
  2914                     break;
  2915                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
  2916                     currentElementOk = true;
  2917                     break;
  2918                 } else if (n1 == names.TYPE_USE &&
  2919                         (n2 == names.TYPE ||
  2920                          n2 == names.ANNOTATION_TYPE ||
  2921                          n2 == names.TYPE_PARAMETER)) {
  2922                     currentElementOk = true;
  2923                     break;
  2926             if (!currentElementOk)
  2927                 return false;
  2929         return true;
  2932     private void validateDefault(Symbol container, DiagnosticPosition pos) {
  2933         // validate that all other elements of containing type has defaults
  2934         Scope scope = container.members();
  2935         for(Symbol elm : scope.getElements()) {
  2936             if (elm.name != names.value &&
  2937                 elm.kind == Kinds.MTH &&
  2938                 ((MethodSymbol)elm).defaultValue == null) {
  2939                 log.error(pos,
  2940                           "invalid.repeatable.annotation.elem.nondefault",
  2941                           container,
  2942                           elm);
  2947     /** Is s a method symbol that overrides a method in a superclass? */
  2948     boolean isOverrider(Symbol s) {
  2949         if (s.kind != MTH || s.isStatic())
  2950             return false;
  2951         MethodSymbol m = (MethodSymbol)s;
  2952         TypeSymbol owner = (TypeSymbol)m.owner;
  2953         for (Type sup : types.closure(owner.type)) {
  2954             if (sup == owner.type)
  2955                 continue; // skip "this"
  2956             Scope scope = sup.tsym.members();
  2957             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
  2958                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
  2959                     return true;
  2962         return false;
  2965     /** Is the annotation applicable to types? */
  2966     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
  2967         Attribute.Compound atTarget =
  2968             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
  2969         if (atTarget == null) {
  2970             // An annotation without @Target is not a type annotation.
  2971             return false;
  2974         Attribute atValue = atTarget.member(names.value);
  2975         if (!(atValue instanceof Attribute.Array)) {
  2976             return false; // error recovery
  2979         Attribute.Array arr = (Attribute.Array) atValue;
  2980         for (Attribute app : arr.values) {
  2981             if (!(app instanceof Attribute.Enum)) {
  2982                 return false; // recovery
  2984             Attribute.Enum e = (Attribute.Enum) app;
  2986             if (e.value.name == names.TYPE_USE)
  2987                 return true;
  2988             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
  2989                 return true;
  2991         return false;
  2994     /** Is the annotation applicable to the symbol? */
  2995     boolean annotationApplicable(JCAnnotation a, Symbol s) {
  2996         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
  2997         Name[] targets;
  2999         if (arr == null) {
  3000             targets = defaultTargetMetaInfo(a, s);
  3001         } else {
  3002             // TODO: can we optimize this?
  3003             targets = new Name[arr.values.length];
  3004             for (int i=0; i<arr.values.length; ++i) {
  3005                 Attribute app = arr.values[i];
  3006                 if (!(app instanceof Attribute.Enum)) {
  3007                     return true; // recovery
  3009                 Attribute.Enum e = (Attribute.Enum) app;
  3010                 targets[i] = e.value.name;
  3013         for (Name target : targets) {
  3014             if (target == names.TYPE)
  3015                 { if (s.kind == TYP) return true; }
  3016             else if (target == names.FIELD)
  3017                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
  3018             else if (target == names.METHOD)
  3019                 { if (s.kind == MTH && !s.isConstructor()) return true; }
  3020             else if (target == names.PARAMETER)
  3021                 { if (s.kind == VAR &&
  3022                       s.owner.kind == MTH &&
  3023                       (s.flags() & PARAMETER) != 0)
  3024                     return true;
  3026             else if (target == names.CONSTRUCTOR)
  3027                 { if (s.kind == MTH && s.isConstructor()) return true; }
  3028             else if (target == names.LOCAL_VARIABLE)
  3029                 { if (s.kind == VAR && s.owner.kind == MTH &&
  3030                       (s.flags() & PARAMETER) == 0)
  3031                     return true;
  3033             else if (target == names.ANNOTATION_TYPE)
  3034                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
  3035                     return true;
  3037             else if (target == names.PACKAGE)
  3038                 { if (s.kind == PCK) return true; }
  3039             else if (target == names.TYPE_USE)
  3040                 { if (s.kind == TYP ||
  3041                       s.kind == VAR ||
  3042                       (s.kind == MTH && !s.isConstructor() &&
  3043                       !s.type.getReturnType().hasTag(VOID)) ||
  3044                       (s.kind == MTH && s.isConstructor()))
  3045                     return true;
  3047             else if (target == names.TYPE_PARAMETER)
  3048                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
  3049                     return true;
  3051             else
  3052                 return true; // recovery
  3054         return false;
  3058     Attribute.Array getAttributeTargetAttribute(Symbol s) {
  3059         Attribute.Compound atTarget =
  3060             s.attribute(syms.annotationTargetType.tsym);
  3061         if (atTarget == null) return null; // ok, is applicable
  3062         Attribute atValue = atTarget.member(names.value);
  3063         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
  3064         return (Attribute.Array) atValue;
  3067     private final Name[] dfltTargetMeta;
  3068     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
  3069         return dfltTargetMeta;
  3072     /** Check an annotation value.
  3074      * @param a The annotation tree to check
  3075      * @return true if this annotation tree is valid, otherwise false
  3076      */
  3077     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
  3078         boolean res = false;
  3079         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
  3080         try {
  3081             res = validateAnnotation(a);
  3082         } finally {
  3083             log.popDiagnosticHandler(diagHandler);
  3085         return res;
  3088     private boolean validateAnnotation(JCAnnotation a) {
  3089         boolean isValid = true;
  3090         // collect an inventory of the annotation elements
  3091         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
  3092         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
  3093                 e != null;
  3094                 e = e.sibling)
  3095             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
  3096                     (e.sym.flags() & SYNTHETIC) == 0)
  3097                 members.add((MethodSymbol) e.sym);
  3099         // remove the ones that are assigned values
  3100         for (JCTree arg : a.args) {
  3101             if (!arg.hasTag(ASSIGN)) continue; // recovery
  3102             JCAssign assign = (JCAssign) arg;
  3103             Symbol m = TreeInfo.symbol(assign.lhs);
  3104             if (m == null || m.type.isErroneous()) continue;
  3105             if (!members.remove(m)) {
  3106                 isValid = false;
  3107                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
  3108                           m.name, a.type);
  3112         // all the remaining ones better have default values
  3113         List<Name> missingDefaults = List.nil();
  3114         for (MethodSymbol m : members) {
  3115             if (m.defaultValue == null && !m.type.isErroneous()) {
  3116                 missingDefaults = missingDefaults.append(m.name);
  3119         missingDefaults = missingDefaults.reverse();
  3120         if (missingDefaults.nonEmpty()) {
  3121             isValid = false;
  3122             String key = (missingDefaults.size() > 1)
  3123                     ? "annotation.missing.default.value.1"
  3124                     : "annotation.missing.default.value";
  3125             log.error(a.pos(), key, a.type, missingDefaults);
  3128         // special case: java.lang.annotation.Target must not have
  3129         // repeated values in its value member
  3130         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
  3131             a.args.tail == null)
  3132             return isValid;
  3134         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
  3135         JCAssign assign = (JCAssign) a.args.head;
  3136         Symbol m = TreeInfo.symbol(assign.lhs);
  3137         if (m.name != names.value) return false;
  3138         JCTree rhs = assign.rhs;
  3139         if (!rhs.hasTag(NEWARRAY)) return false;
  3140         JCNewArray na = (JCNewArray) rhs;
  3141         Set<Symbol> targets = new HashSet<Symbol>();
  3142         for (JCTree elem : na.elems) {
  3143             if (!targets.add(TreeInfo.symbol(elem))) {
  3144                 isValid = false;
  3145                 log.error(elem.pos(), "repeated.annotation.target");
  3148         return isValid;
  3151     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
  3152         if (allowAnnotations &&
  3153             lint.isEnabled(LintCategory.DEP_ANN) &&
  3154             (s.flags() & DEPRECATED) != 0 &&
  3155             !syms.deprecatedType.isErroneous() &&
  3156             s.attribute(syms.deprecatedType.tsym) == null) {
  3157             log.warning(LintCategory.DEP_ANN,
  3158                     pos, "missing.deprecated.annotation");
  3162     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
  3163         if ((s.flags() & DEPRECATED) != 0 &&
  3164                 (other.flags() & DEPRECATED) == 0 &&
  3165                 s.outermostClass() != other.outermostClass()) {
  3166             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3167                 @Override
  3168                 public void report() {
  3169                     warnDeprecated(pos, s);
  3171             });
  3175     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
  3176         if ((s.flags() & PROPRIETARY) != 0) {
  3177             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
  3178                 public void report() {
  3179                     if (enableSunApiLintControl)
  3180                       warnSunApi(pos, "sun.proprietary", s);
  3181                     else
  3182                       log.mandatoryWarning(pos, "sun.proprietary", s);
  3184             });
  3188     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
  3189         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
  3190             log.error(pos, "not.in.profile", s, profile);
  3194 /* *************************************************************************
  3195  * Check for recursive annotation elements.
  3196  **************************************************************************/
  3198     /** Check for cycles in the graph of annotation elements.
  3199      */
  3200     void checkNonCyclicElements(JCClassDecl tree) {
  3201         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
  3202         Assert.check((tree.sym.flags_field & LOCKED) == 0);
  3203         try {
  3204             tree.sym.flags_field |= LOCKED;
  3205             for (JCTree def : tree.defs) {
  3206                 if (!def.hasTag(METHODDEF)) continue;
  3207                 JCMethodDecl meth = (JCMethodDecl)def;
  3208                 checkAnnotationResType(meth.pos(), meth.restype.type);
  3210         } finally {
  3211             tree.sym.flags_field &= ~LOCKED;
  3212             tree.sym.flags_field |= ACYCLIC_ANN;
  3216     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
  3217         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
  3218             return;
  3219         if ((tsym.flags_field & LOCKED) != 0) {
  3220             log.error(pos, "cyclic.annotation.element");
  3221             return;
  3223         try {
  3224             tsym.flags_field |= LOCKED;
  3225             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
  3226                 Symbol s = e.sym;
  3227                 if (s.kind != Kinds.MTH)
  3228                     continue;
  3229                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
  3231         } finally {
  3232             tsym.flags_field &= ~LOCKED;
  3233             tsym.flags_field |= ACYCLIC_ANN;
  3237     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
  3238         switch (type.getTag()) {
  3239         case CLASS:
  3240             if ((type.tsym.flags() & ANNOTATION) != 0)
  3241                 checkNonCyclicElementsInternal(pos, type.tsym);
  3242             break;
  3243         case ARRAY:
  3244             checkAnnotationResType(pos, types.elemtype(type));
  3245             break;
  3246         default:
  3247             break; // int etc
  3251 /* *************************************************************************
  3252  * Check for cycles in the constructor call graph.
  3253  **************************************************************************/
  3255     /** Check for cycles in the graph of constructors calling other
  3256      *  constructors.
  3257      */
  3258     void checkCyclicConstructors(JCClassDecl tree) {
  3259         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
  3261         // enter each constructor this-call into the map
  3262         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3263             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
  3264             if (app == null) continue;
  3265             JCMethodDecl meth = (JCMethodDecl) l.head;
  3266             if (TreeInfo.name(app.meth) == names._this) {
  3267                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
  3268             } else {
  3269                 meth.sym.flags_field |= ACYCLIC;
  3273         // Check for cycles in the map
  3274         Symbol[] ctors = new Symbol[0];
  3275         ctors = callMap.keySet().toArray(ctors);
  3276         for (Symbol caller : ctors) {
  3277             checkCyclicConstructor(tree, caller, callMap);
  3281     /** Look in the map to see if the given constructor is part of a
  3282      *  call cycle.
  3283      */
  3284     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
  3285                                         Map<Symbol,Symbol> callMap) {
  3286         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
  3287             if ((ctor.flags_field & LOCKED) != 0) {
  3288                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
  3289                           "recursive.ctor.invocation");
  3290             } else {
  3291                 ctor.flags_field |= LOCKED;
  3292                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
  3293                 ctor.flags_field &= ~LOCKED;
  3295             ctor.flags_field |= ACYCLIC;
  3299 /* *************************************************************************
  3300  * Miscellaneous
  3301  **************************************************************************/
  3303     /**
  3304      * Return the opcode of the operator but emit an error if it is an
  3305      * error.
  3306      * @param pos        position for error reporting.
  3307      * @param operator   an operator
  3308      * @param tag        a tree tag
  3309      * @param left       type of left hand side
  3310      * @param right      type of right hand side
  3311      */
  3312     int checkOperator(DiagnosticPosition pos,
  3313                        OperatorSymbol operator,
  3314                        JCTree.Tag tag,
  3315                        Type left,
  3316                        Type right) {
  3317         if (operator.opcode == ByteCodes.error) {
  3318             log.error(pos,
  3319                       "operator.cant.be.applied.1",
  3320                       treeinfo.operatorName(tag),
  3321                       left, right);
  3323         return operator.opcode;
  3327     /**
  3328      *  Check for division by integer constant zero
  3329      *  @param pos           Position for error reporting.
  3330      *  @param operator      The operator for the expression
  3331      *  @param operand       The right hand operand for the expression
  3332      */
  3333     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
  3334         if (operand.constValue() != null
  3335             && lint.isEnabled(LintCategory.DIVZERO)
  3336             && operand.getTag().isSubRangeOf(LONG)
  3337             && ((Number) (operand.constValue())).longValue() == 0) {
  3338             int opc = ((OperatorSymbol)operator).opcode;
  3339             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
  3340                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
  3341                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
  3346     /**
  3347      * Check for empty statements after if
  3348      */
  3349     void checkEmptyIf(JCIf tree) {
  3350         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
  3351                 lint.isEnabled(LintCategory.EMPTY))
  3352             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
  3355     /** Check that symbol is unique in given scope.
  3356      *  @param pos           Position for error reporting.
  3357      *  @param sym           The symbol.
  3358      *  @param s             The scope.
  3359      */
  3360     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
  3361         if (sym.type.isErroneous())
  3362             return true;
  3363         if (sym.owner.name == names.any) return false;
  3364         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
  3365             if (sym != e.sym &&
  3366                     (e.sym.flags() & CLASH) == 0 &&
  3367                     sym.kind == e.sym.kind &&
  3368                     sym.name != names.error &&
  3369                     (sym.kind != MTH ||
  3370                      types.hasSameArgs(sym.type, e.sym.type) ||
  3371                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
  3372                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
  3373                     varargsDuplicateError(pos, sym, e.sym);
  3374                     return true;
  3375                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
  3376                     duplicateErasureError(pos, sym, e.sym);
  3377                     sym.flags_field |= CLASH;
  3378                     return true;
  3379                 } else {
  3380                     duplicateError(pos, e.sym);
  3381                     return false;
  3385         return true;
  3388     /** Report duplicate declaration error.
  3389      */
  3390     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
  3391         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
  3392             log.error(pos, "name.clash.same.erasure", sym1, sym2);
  3396     /** Check that single-type import is not already imported or top-level defined,
  3397      *  but make an exception for two single-type imports which denote the same type.
  3398      *  @param pos           Position for error reporting.
  3399      *  @param sym           The symbol.
  3400      *  @param s             The scope
  3401      */
  3402     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3403         return checkUniqueImport(pos, sym, s, false);
  3406     /** Check that static single-type import is not already imported or top-level defined,
  3407      *  but make an exception for two single-type imports which denote the same type.
  3408      *  @param pos           Position for error reporting.
  3409      *  @param sym           The symbol.
  3410      *  @param s             The scope
  3411      */
  3412     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
  3413         return checkUniqueImport(pos, sym, s, true);
  3416     /** Check that single-type import is not already imported or top-level defined,
  3417      *  but make an exception for two single-type imports which denote the same type.
  3418      *  @param pos           Position for error reporting.
  3419      *  @param sym           The symbol.
  3420      *  @param s             The scope.
  3421      *  @param staticImport  Whether or not this was a static import
  3422      */
  3423     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
  3424         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
  3425             // is encountered class entered via a class declaration?
  3426             boolean isClassDecl = e.scope == s;
  3427             if ((isClassDecl || sym != e.sym) &&
  3428                 sym.kind == e.sym.kind &&
  3429                 sym.name != names.error &&
  3430                 (!staticImport || !e.isStaticallyImported())) {
  3431                 if (!e.sym.type.isErroneous()) {
  3432                     if (!isClassDecl) {
  3433                         if (staticImport)
  3434                             log.error(pos, "already.defined.static.single.import", e.sym);
  3435                         else
  3436                         log.error(pos, "already.defined.single.import", e.sym);
  3438                     else if (sym != e.sym)
  3439                         log.error(pos, "already.defined.this.unit", e.sym);
  3441                 return false;
  3444         return true;
  3447     /** Check that a qualified name is in canonical form (for import decls).
  3448      */
  3449     public void checkCanonical(JCTree tree) {
  3450         if (!isCanonical(tree))
  3451             log.error(tree.pos(), "import.requires.canonical",
  3452                       TreeInfo.symbol(tree));
  3454         // where
  3455         private boolean isCanonical(JCTree tree) {
  3456             while (tree.hasTag(SELECT)) {
  3457                 JCFieldAccess s = (JCFieldAccess) tree;
  3458                 if (s.sym.owner != TreeInfo.symbol(s.selected))
  3459                     return false;
  3460                 tree = s.selected;
  3462             return true;
  3465     /** Check that an auxiliary class is not accessed from any other file than its own.
  3466      */
  3467     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
  3468         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
  3469             (c.flags() & AUXILIARY) != 0 &&
  3470             rs.isAccessible(env, c) &&
  3471             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
  3473             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
  3474                         c, c.sourcefile);
  3478     private class ConversionWarner extends Warner {
  3479         final String uncheckedKey;
  3480         final Type found;
  3481         final Type expected;
  3482         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
  3483             super(pos);
  3484             this.uncheckedKey = uncheckedKey;
  3485             this.found = found;
  3486             this.expected = expected;
  3489         @Override
  3490         public void warn(LintCategory lint) {
  3491             boolean warned = this.warned;
  3492             super.warn(lint);
  3493             if (warned) return; // suppress redundant diagnostics
  3494             switch (lint) {
  3495                 case UNCHECKED:
  3496                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
  3497                     break;
  3498                 case VARARGS:
  3499                     if (method != null &&
  3500                             method.attribute(syms.trustMeType.tsym) != null &&
  3501                             isTrustMeAllowedOnMethod(method) &&
  3502                             !types.isReifiable(method.type.getParameterTypes().last())) {
  3503                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
  3505                     break;
  3506                 default:
  3507                     throw new AssertionError("Unexpected lint: " + lint);
  3512     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
  3513         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
  3516     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
  3517         return new ConversionWarner(pos, "unchecked.assign", found, expected);
  3520     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
  3521         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
  3523         if (functionalType != null) {
  3524             try {
  3525                 types.findDescriptorSymbol((TypeSymbol)cs);
  3526             } catch (Types.FunctionDescriptorLookupError ex) {
  3527                 DiagnosticPosition pos = tree.pos();
  3528                 for (JCAnnotation a : tree.getModifiers().annotations) {
  3529                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
  3530                         pos = a.pos();
  3531                         break;
  3534                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());

mercurial