src/share/classes/com/sun/tools/javac/code/Types.java

Mon, 16 Oct 2017 16:07:48 +0800

author
aoqi
date
Mon, 16 Oct 2017 16:07:48 +0800
changeset 2893
ca5783d9a597
parent 2813
d94fe2d29b1e
parent 2702
9ca8d8713094
child 3295
859dc787b52b
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.code;
    28 import java.lang.ref.SoftReference;
    29 import java.util.HashSet;
    30 import java.util.HashMap;
    31 import java.util.Locale;
    32 import java.util.Map;
    33 import java.util.Set;
    34 import java.util.WeakHashMap;
    36 import javax.tools.JavaFileObject;
    38 import com.sun.tools.javac.code.Attribute.RetentionPolicy;
    39 import com.sun.tools.javac.code.Lint.LintCategory;
    40 import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
    41 import com.sun.tools.javac.comp.AttrContext;
    42 import com.sun.tools.javac.comp.Check;
    43 import com.sun.tools.javac.comp.Enter;
    44 import com.sun.tools.javac.comp.Env;
    45 import com.sun.tools.javac.jvm.ClassReader;
    46 import com.sun.tools.javac.tree.JCTree;
    47 import com.sun.tools.javac.util.*;
    48 import static com.sun.tools.javac.code.BoundKind.*;
    49 import static com.sun.tools.javac.code.Flags.*;
    50 import static com.sun.tools.javac.code.Kinds.MTH;
    51 import static com.sun.tools.javac.code.Scope.*;
    52 import static com.sun.tools.javac.code.Symbol.*;
    53 import static com.sun.tools.javac.code.Type.*;
    54 import static com.sun.tools.javac.code.TypeTag.*;
    55 import static com.sun.tools.javac.jvm.ClassFile.externalize;
    57 /**
    58  * Utility class containing various operations on types.
    59  *
    60  * <p>Unless other names are more illustrative, the following naming
    61  * conventions should be observed in this file:
    62  *
    63  * <dl>
    64  * <dt>t</dt>
    65  * <dd>If the first argument to an operation is a type, it should be named t.</dd>
    66  * <dt>s</dt>
    67  * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
    68  * <dt>ts</dt>
    69  * <dd>If an operations takes a list of types, the first should be named ts.</dd>
    70  * <dt>ss</dt>
    71  * <dd>A second list of types should be named ss.</dd>
    72  * </dl>
    73  *
    74  * <p><b>This is NOT part of any supported API.
    75  * If you write code that depends on this, you do so at your own risk.
    76  * This code and its internal interfaces are subject to change or
    77  * deletion without notice.</b>
    78  */
    79 public class Types {
    80     protected static final Context.Key<Types> typesKey =
    81         new Context.Key<Types>();
    83     final Symtab syms;
    84     final JavacMessages messages;
    85     final Names names;
    86     final boolean allowBoxing;
    87     final boolean allowCovariantReturns;
    88     final boolean allowObjectToPrimitiveCast;
    89     final boolean allowDefaultMethods;
    90     final ClassReader reader;
    91     final Check chk;
    92     final Enter enter;
    93     JCDiagnostic.Factory diags;
    94     List<Warner> warnStack = List.nil();
    95     final Name capturedName;
    96     private final FunctionDescriptorLookupError functionDescriptorLookupError;
    98     public final Warner noWarnings;
   100     // <editor-fold defaultstate="collapsed" desc="Instantiating">
   101     public static Types instance(Context context) {
   102         Types instance = context.get(typesKey);
   103         if (instance == null)
   104             instance = new Types(context);
   105         return instance;
   106     }
   108     protected Types(Context context) {
   109         context.put(typesKey, this);
   110         syms = Symtab.instance(context);
   111         names = Names.instance(context);
   112         Source source = Source.instance(context);
   113         allowBoxing = source.allowBoxing();
   114         allowCovariantReturns = source.allowCovariantReturns();
   115         allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
   116         allowDefaultMethods = source.allowDefaultMethods();
   117         reader = ClassReader.instance(context);
   118         chk = Check.instance(context);
   119         enter = Enter.instance(context);
   120         capturedName = names.fromString("<captured wildcard>");
   121         messages = JavacMessages.instance(context);
   122         diags = JCDiagnostic.Factory.instance(context);
   123         functionDescriptorLookupError = new FunctionDescriptorLookupError();
   124         noWarnings = new Warner(null);
   125     }
   126     // </editor-fold>
   128      // <editor-fold defaultstate="collapsed" desc="bounds">
   129      /**
   130       * Get a wildcard's upper bound, returning non-wildcards unchanged.
   131       * @param t a type argument, either a wildcard or a type
   132       */
   133      public Type wildUpperBound(Type t) {
   134          if (t.hasTag(WILDCARD)) {
   135              WildcardType w = (WildcardType) t.unannotatedType();
   136              if (w.isSuperBound())
   137                  return w.bound == null ? syms.objectType : w.bound.bound;
   138              else
   139                  return wildUpperBound(w.type);
   140          }
   141          else return t.unannotatedType();
   142      }
   144      /**
   145       * Get a capture variable's upper bound, returning other types unchanged.
   146       * @param t a type
   147       */
   148      public Type cvarUpperBound(Type t) {
   149          if (t.hasTag(TYPEVAR)) {
   150              TypeVar v = (TypeVar) t.unannotatedType();
   151              return v.isCaptured() ? cvarUpperBound(v.bound) : v;
   152          }
   153          else return t.unannotatedType();
   154      }
   156     /**
   157      * Get a wildcard's lower bound, returning non-wildcards unchanged.
   158      * @param t a type argument, either a wildcard or a type
   159      */
   160     public Type wildLowerBound(Type t) {
   161         if (t.hasTag(WILDCARD)) {
   162             WildcardType w = (WildcardType) t.unannotatedType();
   163             return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
   164         }
   165         else return t.unannotatedType();
   166     }
   168     /**
   169      * Get a capture variable's lower bound, returning other types unchanged.
   170      * @param t a type
   171      */
   172     public Type cvarLowerBound(Type t) {
   173         if (t.hasTag(TYPEVAR)) {
   174             TypeVar v = (TypeVar) t.unannotatedType();
   175             return v.isCaptured() ? cvarLowerBound(v.getLowerBound()) : v;
   176         }
   177         else return t.unannotatedType();
   178     }
   179     // </editor-fold>
   181     // <editor-fold defaultstate="collapsed" desc="isUnbounded">
   182     /**
   183      * Checks that all the arguments to a class are unbounded
   184      * wildcards or something else that doesn't make any restrictions
   185      * on the arguments. If a class isUnbounded, a raw super- or
   186      * subclass can be cast to it without a warning.
   187      * @param t a type
   188      * @return true iff the given type is unbounded or raw
   189      */
   190     public boolean isUnbounded(Type t) {
   191         return isUnbounded.visit(t);
   192     }
   193     // where
   194         private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
   196             public Boolean visitType(Type t, Void ignored) {
   197                 return true;
   198             }
   200             @Override
   201             public Boolean visitClassType(ClassType t, Void ignored) {
   202                 List<Type> parms = t.tsym.type.allparams();
   203                 List<Type> args = t.allparams();
   204                 while (parms.nonEmpty()) {
   205                     WildcardType unb = new WildcardType(syms.objectType,
   206                                                         BoundKind.UNBOUND,
   207                                                         syms.boundClass,
   208                                                         (TypeVar)parms.head.unannotatedType());
   209                     if (!containsType(args.head, unb))
   210                         return false;
   211                     parms = parms.tail;
   212                     args = args.tail;
   213                 }
   214                 return true;
   215             }
   216         };
   217     // </editor-fold>
   219     // <editor-fold defaultstate="collapsed" desc="asSub">
   220     /**
   221      * Return the least specific subtype of t that starts with symbol
   222      * sym.  If none exists, return null.  The least specific subtype
   223      * is determined as follows:
   224      *
   225      * <p>If there is exactly one parameterized instance of sym that is a
   226      * subtype of t, that parameterized instance is returned.<br>
   227      * Otherwise, if the plain type or raw type `sym' is a subtype of
   228      * type t, the type `sym' itself is returned.  Otherwise, null is
   229      * returned.
   230      */
   231     public Type asSub(Type t, Symbol sym) {
   232         return asSub.visit(t, sym);
   233     }
   234     // where
   235         private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
   237             public Type visitType(Type t, Symbol sym) {
   238                 return null;
   239             }
   241             @Override
   242             public Type visitClassType(ClassType t, Symbol sym) {
   243                 if (t.tsym == sym)
   244                     return t;
   245                 Type base = asSuper(sym.type, t.tsym);
   246                 if (base == null)
   247                     return null;
   248                 ListBuffer<Type> from = new ListBuffer<Type>();
   249                 ListBuffer<Type> to = new ListBuffer<Type>();
   250                 try {
   251                     adapt(base, t, from, to);
   252                 } catch (AdaptFailure ex) {
   253                     return null;
   254                 }
   255                 Type res = subst(sym.type, from.toList(), to.toList());
   256                 if (!isSubtype(res, t))
   257                     return null;
   258                 ListBuffer<Type> openVars = new ListBuffer<Type>();
   259                 for (List<Type> l = sym.type.allparams();
   260                      l.nonEmpty(); l = l.tail)
   261                     if (res.contains(l.head) && !t.contains(l.head))
   262                         openVars.append(l.head);
   263                 if (openVars.nonEmpty()) {
   264                     if (t.isRaw()) {
   265                         // The subtype of a raw type is raw
   266                         res = erasure(res);
   267                     } else {
   268                         // Unbound type arguments default to ?
   269                         List<Type> opens = openVars.toList();
   270                         ListBuffer<Type> qs = new ListBuffer<Type>();
   271                         for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
   272                             qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND, syms.boundClass, (TypeVar) iter.head.unannotatedType()));
   273                         }
   274                         res = subst(res, opens, qs.toList());
   275                     }
   276                 }
   277                 return res;
   278             }
   280             @Override
   281             public Type visitErrorType(ErrorType t, Symbol sym) {
   282                 return t;
   283             }
   284         };
   285     // </editor-fold>
   287     // <editor-fold defaultstate="collapsed" desc="isConvertible">
   288     /**
   289      * Is t a subtype of or convertible via boxing/unboxing
   290      * conversion to s?
   291      */
   292     public boolean isConvertible(Type t, Type s, Warner warn) {
   293         if (t.hasTag(ERROR)) {
   294             return true;
   295         }
   296         boolean tPrimitive = t.isPrimitive();
   297         boolean sPrimitive = s.isPrimitive();
   298         if (tPrimitive == sPrimitive) {
   299             return isSubtypeUnchecked(t, s, warn);
   300         }
   301         if (!allowBoxing) return false;
   302         return tPrimitive
   303             ? isSubtype(boxedClass(t).type, s)
   304             : isSubtype(unboxedType(t), s);
   305     }
   307     /**
   308      * Is t a subtype of or convertible via boxing/unboxing
   309      * conversions to s?
   310      */
   311     public boolean isConvertible(Type t, Type s) {
   312         return isConvertible(t, s, noWarnings);
   313     }
   314     // </editor-fold>
   316     // <editor-fold defaultstate="collapsed" desc="findSam">
   318     /**
   319      * Exception used to report a function descriptor lookup failure. The exception
   320      * wraps a diagnostic that can be used to generate more details error
   321      * messages.
   322      */
   323     public static class FunctionDescriptorLookupError extends RuntimeException {
   324         private static final long serialVersionUID = 0;
   326         JCDiagnostic diagnostic;
   328         FunctionDescriptorLookupError() {
   329             this.diagnostic = null;
   330         }
   332         FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
   333             this.diagnostic = diag;
   334             return this;
   335         }
   337         public JCDiagnostic getDiagnostic() {
   338             return diagnostic;
   339         }
   340     }
   342     /**
   343      * A cache that keeps track of function descriptors associated with given
   344      * functional interfaces.
   345      */
   346     class DescriptorCache {
   348         private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<TypeSymbol, Entry>();
   350         class FunctionDescriptor {
   351             Symbol descSym;
   353             FunctionDescriptor(Symbol descSym) {
   354                 this.descSym = descSym;
   355             }
   357             public Symbol getSymbol() {
   358                 return descSym;
   359             }
   361             public Type getType(Type site) {
   362                 site = removeWildcards(site);
   363                 if (!chk.checkValidGenericType(site)) {
   364                     //if the inferred functional interface type is not well-formed,
   365                     //or if it's not a subtype of the original target, issue an error
   366                     throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
   367                 }
   368                 return memberType(site, descSym);
   369             }
   370         }
   372         class Entry {
   373             final FunctionDescriptor cachedDescRes;
   374             final int prevMark;
   376             public Entry(FunctionDescriptor cachedDescRes,
   377                     int prevMark) {
   378                 this.cachedDescRes = cachedDescRes;
   379                 this.prevMark = prevMark;
   380             }
   382             boolean matches(int mark) {
   383                 return  this.prevMark == mark;
   384             }
   385         }
   387         FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
   388             Entry e = _map.get(origin);
   389             CompoundScope members = membersClosure(origin.type, false);
   390             if (e == null ||
   391                     !e.matches(members.getMark())) {
   392                 FunctionDescriptor descRes = findDescriptorInternal(origin, members);
   393                 _map.put(origin, new Entry(descRes, members.getMark()));
   394                 return descRes;
   395             }
   396             else {
   397                 return e.cachedDescRes;
   398             }
   399         }
   401         /**
   402          * Compute the function descriptor associated with a given functional interface
   403          */
   404         public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
   405                 CompoundScope membersCache) throws FunctionDescriptorLookupError {
   406             if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
   407                 //t must be an interface
   408                 throw failure("not.a.functional.intf", origin);
   409             }
   411             final ListBuffer<Symbol> abstracts = new ListBuffer<>();
   412             for (Symbol sym : membersCache.getElements(new DescriptorFilter(origin))) {
   413                 Type mtype = memberType(origin.type, sym);
   414                 if (abstracts.isEmpty() ||
   415                         (sym.name == abstracts.first().name &&
   416                         overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
   417                     abstracts.append(sym);
   418                 } else {
   419                     //the target method(s) should be the only abstract members of t
   420                     throw failure("not.a.functional.intf.1",  origin,
   421                             diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
   422                 }
   423             }
   424             if (abstracts.isEmpty()) {
   425                 //t must define a suitable non-generic method
   426                 throw failure("not.a.functional.intf.1", origin,
   427                             diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
   428             } else if (abstracts.size() == 1) {
   429                 return new FunctionDescriptor(abstracts.first());
   430             } else { // size > 1
   431                 FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
   432                 if (descRes == null) {
   433                     //we can get here if the functional interface is ill-formed
   434                     ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
   435                     for (Symbol desc : abstracts) {
   436                         String key = desc.type.getThrownTypes().nonEmpty() ?
   437                                 "descriptor.throws" : "descriptor";
   438                         descriptors.append(diags.fragment(key, desc.name,
   439                                 desc.type.getParameterTypes(),
   440                                 desc.type.getReturnType(),
   441                                 desc.type.getThrownTypes()));
   442                     }
   443                     JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
   444                             new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
   445                             Kinds.kindName(origin), origin), descriptors.toList());
   446                     throw failure(incompatibleDescriptors);
   447                 }
   448                 return descRes;
   449             }
   450         }
   452         /**
   453          * Compute a synthetic type for the target descriptor given a list
   454          * of override-equivalent methods in the functional interface type.
   455          * The resulting method type is a method type that is override-equivalent
   456          * and return-type substitutable with each method in the original list.
   457          */
   458         private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
   459             //pick argument types - simply take the signature that is a
   460             //subsignature of all other signatures in the list (as per JLS 8.4.2)
   461             List<Symbol> mostSpecific = List.nil();
   462             outer: for (Symbol msym1 : methodSyms) {
   463                 Type mt1 = memberType(origin.type, msym1);
   464                 for (Symbol msym2 : methodSyms) {
   465                     Type mt2 = memberType(origin.type, msym2);
   466                     if (!isSubSignature(mt1, mt2)) {
   467                         continue outer;
   468                     }
   469                 }
   470                 mostSpecific = mostSpecific.prepend(msym1);
   471             }
   472             if (mostSpecific.isEmpty()) {
   473                 return null;
   474             }
   477             //pick return types - this is done in two phases: (i) first, the most
   478             //specific return type is chosen using strict subtyping; if this fails,
   479             //a second attempt is made using return type substitutability (see JLS 8.4.5)
   480             boolean phase2 = false;
   481             Symbol bestSoFar = null;
   482             while (bestSoFar == null) {
   483                 outer: for (Symbol msym1 : mostSpecific) {
   484                     Type mt1 = memberType(origin.type, msym1);
   485                     for (Symbol msym2 : methodSyms) {
   486                         Type mt2 = memberType(origin.type, msym2);
   487                         if (phase2 ?
   488                                 !returnTypeSubstitutable(mt1, mt2) :
   489                                 !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
   490                             continue outer;
   491                         }
   492                     }
   493                     bestSoFar = msym1;
   494                 }
   495                 if (phase2) {
   496                     break;
   497                 } else {
   498                     phase2 = true;
   499                 }
   500             }
   501             if (bestSoFar == null) return null;
   503             //merge thrown types - form the intersection of all the thrown types in
   504             //all the signatures in the list
   505             boolean toErase = !bestSoFar.type.hasTag(FORALL);
   506             List<Type> thrown = null;
   507             Type mt1 = memberType(origin.type, bestSoFar);
   508             for (Symbol msym2 : methodSyms) {
   509                 Type mt2 = memberType(origin.type, msym2);
   510                 List<Type> thrown_mt2 = mt2.getThrownTypes();
   511                 if (toErase) {
   512                     thrown_mt2 = erasure(thrown_mt2);
   513                 } else {
   514                     /* If bestSoFar is generic then all the methods are generic.
   515                      * The opposite is not true: a non generic method can override
   516                      * a generic method (raw override) so it's safe to cast mt1 and
   517                      * mt2 to ForAll.
   518                      */
   519                     ForAll fa1 = (ForAll)mt1;
   520                     ForAll fa2 = (ForAll)mt2;
   521                     thrown_mt2 = subst(thrown_mt2, fa2.tvars, fa1.tvars);
   522                 }
   523                 thrown = (thrown == null) ?
   524                     thrown_mt2 :
   525                     chk.intersect(thrown_mt2, thrown);
   526             }
   528             final List<Type> thrown1 = thrown;
   529             return new FunctionDescriptor(bestSoFar) {
   530                 @Override
   531                 public Type getType(Type origin) {
   532                     Type mt = memberType(origin, getSymbol());
   533                     return createMethodTypeWithThrown(mt, thrown1);
   534                 }
   535             };
   536         }
   538         boolean isSubtypeInternal(Type s, Type t) {
   539             return (s.isPrimitive() && t.isPrimitive()) ?
   540                     isSameType(t, s) :
   541                     isSubtype(s, t);
   542         }
   544         FunctionDescriptorLookupError failure(String msg, Object... args) {
   545             return failure(diags.fragment(msg, args));
   546         }
   548         FunctionDescriptorLookupError failure(JCDiagnostic diag) {
   549             return functionDescriptorLookupError.setMessage(diag);
   550         }
   551     }
   553     private DescriptorCache descCache = new DescriptorCache();
   555     /**
   556      * Find the method descriptor associated to this class symbol - if the
   557      * symbol 'origin' is not a functional interface, an exception is thrown.
   558      */
   559     public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
   560         return descCache.get(origin).getSymbol();
   561     }
   563     /**
   564      * Find the type of the method descriptor associated to this class symbol -
   565      * if the symbol 'origin' is not a functional interface, an exception is thrown.
   566      */
   567     public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
   568         return descCache.get(origin.tsym).getType(origin);
   569     }
   571     /**
   572      * Is given type a functional interface?
   573      */
   574     public boolean isFunctionalInterface(TypeSymbol tsym) {
   575         try {
   576             findDescriptorSymbol(tsym);
   577             return true;
   578         } catch (FunctionDescriptorLookupError ex) {
   579             return false;
   580         }
   581     }
   583     public boolean isFunctionalInterface(Type site) {
   584         try {
   585             findDescriptorType(site);
   586             return true;
   587         } catch (FunctionDescriptorLookupError ex) {
   588             return false;
   589         }
   590     }
   592     public Type removeWildcards(Type site) {
   593         Type capturedSite = capture(site);
   594         if (capturedSite != site) {
   595             Type formalInterface = site.tsym.type;
   596             ListBuffer<Type> typeargs = new ListBuffer<>();
   597             List<Type> actualTypeargs = site.getTypeArguments();
   598             List<Type> capturedTypeargs = capturedSite.getTypeArguments();
   599             //simply replace the wildcards with its bound
   600             for (Type t : formalInterface.getTypeArguments()) {
   601                 if (actualTypeargs.head.hasTag(WILDCARD)) {
   602                     WildcardType wt = (WildcardType)actualTypeargs.head.unannotatedType();
   603                     Type bound;
   604                     switch (wt.kind) {
   605                         case EXTENDS:
   606                         case UNBOUND:
   607                             CapturedType capVar = (CapturedType)capturedTypeargs.head.unannotatedType();
   608                             //use declared bound if it doesn't depend on formal type-args
   609                             bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
   610                                     wt.type : capVar.bound;
   611                             break;
   612                         default:
   613                             bound = wt.type;
   614                     }
   615                     typeargs.append(bound);
   616                 } else {
   617                     typeargs.append(actualTypeargs.head);
   618                 }
   619                 actualTypeargs = actualTypeargs.tail;
   620                 capturedTypeargs = capturedTypeargs.tail;
   621             }
   622             return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
   623         } else {
   624             return site;
   625         }
   626     }
   628     /**
   629      * Create a symbol for a class that implements a given functional interface
   630      * and overrides its functional descriptor. This routine is used for two
   631      * main purposes: (i) checking well-formedness of a functional interface;
   632      * (ii) perform functional interface bridge calculation.
   633      */
   634     public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
   635         if (targets.isEmpty()) {
   636             return null;
   637         }
   638         Symbol descSym = findDescriptorSymbol(targets.head.tsym);
   639         Type descType = findDescriptorType(targets.head);
   640         ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
   641         csym.completer = null;
   642         csym.members_field = new Scope(csym);
   643         MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
   644         csym.members_field.enter(instDescSym);
   645         Type.ClassType ctype = new Type.ClassType(Type.noType, List.<Type>nil(), csym);
   646         ctype.supertype_field = syms.objectType;
   647         ctype.interfaces_field = targets;
   648         csym.type = ctype;
   649         csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
   650         return csym;
   651     }
   653     /**
   654      * Find the minimal set of methods that are overridden by the functional
   655      * descriptor in 'origin'. All returned methods are assumed to have different
   656      * erased signatures.
   657      */
   658     public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
   659         Assert.check(isFunctionalInterface(origin));
   660         Symbol descSym = findDescriptorSymbol(origin);
   661         CompoundScope members = membersClosure(origin.type, false);
   662         ListBuffer<Symbol> overridden = new ListBuffer<>();
   663         outer: for (Symbol m2 : members.getElementsByName(descSym.name, bridgeFilter)) {
   664             if (m2 == descSym) continue;
   665             else if (descSym.overrides(m2, origin, Types.this, false)) {
   666                 for (Symbol m3 : overridden) {
   667                     if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
   668                             (m3.overrides(m2, origin, Types.this, false) &&
   669                             (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
   670                             (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
   671                         continue outer;
   672                     }
   673                 }
   674                 overridden.add(m2);
   675             }
   676         }
   677         return overridden.toList();
   678     }
   679     //where
   680         private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
   681             public boolean accepts(Symbol t) {
   682                 return t.kind == Kinds.MTH &&
   683                         t.name != names.init &&
   684                         t.name != names.clinit &&
   685                         (t.flags() & SYNTHETIC) == 0;
   686             }
   687         };
   688         private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
   689             //a symbol will be completed from a classfile if (a) symbol has
   690             //an associated file object with CLASS kind and (b) the symbol has
   691             //not been entered
   692             if (origin.classfile != null &&
   693                     origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
   694                     enter.getEnv(origin) == null) {
   695                 return false;
   696             }
   697             if (origin == s) {
   698                 return true;
   699             }
   700             for (Type t : interfaces(origin.type)) {
   701                 if (pendingBridges((ClassSymbol)t.tsym, s)) {
   702                     return true;
   703                 }
   704             }
   705             return false;
   706         }
   707     // </editor-fold>
   709    /**
   710     * Scope filter used to skip methods that should be ignored (such as methods
   711     * overridden by j.l.Object) during function interface conversion interface check
   712     */
   713     class DescriptorFilter implements Filter<Symbol> {
   715        TypeSymbol origin;
   717        DescriptorFilter(TypeSymbol origin) {
   718            this.origin = origin;
   719        }
   721        @Override
   722        public boolean accepts(Symbol sym) {
   723            return sym.kind == Kinds.MTH &&
   724                    (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
   725                    !overridesObjectMethod(origin, sym) &&
   726                    (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
   727        }
   728     };
   730     // <editor-fold defaultstate="collapsed" desc="isSubtype">
   731     /**
   732      * Is t an unchecked subtype of s?
   733      */
   734     public boolean isSubtypeUnchecked(Type t, Type s) {
   735         return isSubtypeUnchecked(t, s, noWarnings);
   736     }
   737     /**
   738      * Is t an unchecked subtype of s?
   739      */
   740     public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
   741         boolean result = isSubtypeUncheckedInternal(t, s, warn);
   742         if (result) {
   743             checkUnsafeVarargsConversion(t, s, warn);
   744         }
   745         return result;
   746     }
   747     //where
   748         private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
   749             if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
   750                 t = t.unannotatedType();
   751                 s = s.unannotatedType();
   752                 if (((ArrayType)t).elemtype.isPrimitive()) {
   753                     return isSameType(elemtype(t), elemtype(s));
   754                 } else {
   755                     return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
   756                 }
   757             } else if (isSubtype(t, s)) {
   758                 return true;
   759             } else if (t.hasTag(TYPEVAR)) {
   760                 return isSubtypeUnchecked(t.getUpperBound(), s, warn);
   761             } else if (!s.isRaw()) {
   762                 Type t2 = asSuper(t, s.tsym);
   763                 if (t2 != null && t2.isRaw()) {
   764                     if (isReifiable(s)) {
   765                         warn.silentWarn(LintCategory.UNCHECKED);
   766                     } else {
   767                         warn.warn(LintCategory.UNCHECKED);
   768                     }
   769                     return true;
   770                 }
   771             }
   772             return false;
   773         }
   775         private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
   776             if (!t.hasTag(ARRAY) || isReifiable(t)) {
   777                 return;
   778             }
   779             t = t.unannotatedType();
   780             s = s.unannotatedType();
   781             ArrayType from = (ArrayType)t;
   782             boolean shouldWarn = false;
   783             switch (s.getTag()) {
   784                 case ARRAY:
   785                     ArrayType to = (ArrayType)s;
   786                     shouldWarn = from.isVarargs() &&
   787                             !to.isVarargs() &&
   788                             !isReifiable(from);
   789                     break;
   790                 case CLASS:
   791                     shouldWarn = from.isVarargs();
   792                     break;
   793             }
   794             if (shouldWarn) {
   795                 warn.warn(LintCategory.VARARGS);
   796             }
   797         }
   799     /**
   800      * Is t a subtype of s?<br>
   801      * (not defined for Method and ForAll types)
   802      */
   803     final public boolean isSubtype(Type t, Type s) {
   804         return isSubtype(t, s, true);
   805     }
   806     final public boolean isSubtypeNoCapture(Type t, Type s) {
   807         return isSubtype(t, s, false);
   808     }
   809     public boolean isSubtype(Type t, Type s, boolean capture) {
   810         if (t == s)
   811             return true;
   813         t = t.unannotatedType();
   814         s = s.unannotatedType();
   816         if (t == s)
   817             return true;
   819         if (s.isPartial())
   820             return isSuperType(s, t);
   822         if (s.isCompound()) {
   823             for (Type s2 : interfaces(s).prepend(supertype(s))) {
   824                 if (!isSubtype(t, s2, capture))
   825                     return false;
   826             }
   827             return true;
   828         }
   830         // Generally, if 's' is a type variable, recur on lower bound; but
   831         // for inference variables and intersections, we need to keep 's'
   832         // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
   833         if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
   834             // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
   835             Type lower = cvarLowerBound(wildLowerBound(s));
   836             if (s != lower)
   837                 return isSubtype(capture ? capture(t) : t, lower, false);
   838         }
   840         return isSubtype.visit(capture ? capture(t) : t, s);
   841     }
   842     // where
   843         private TypeRelation isSubtype = new TypeRelation()
   844         {
   845             @Override
   846             public Boolean visitType(Type t, Type s) {
   847                 switch (t.getTag()) {
   848                  case BYTE:
   849                      return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
   850                  case CHAR:
   851                      return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
   852                  case SHORT: case INT: case LONG:
   853                  case FLOAT: case DOUBLE:
   854                      return t.getTag().isSubRangeOf(s.getTag());
   855                  case BOOLEAN: case VOID:
   856                      return t.hasTag(s.getTag());
   857                  case TYPEVAR:
   858                      return isSubtypeNoCapture(t.getUpperBound(), s);
   859                  case BOT:
   860                      return
   861                          s.hasTag(BOT) || s.hasTag(CLASS) ||
   862                          s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
   863                  case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
   864                  case NONE:
   865                      return false;
   866                  default:
   867                      throw new AssertionError("isSubtype " + t.getTag());
   868                  }
   869             }
   871             private Set<TypePair> cache = new HashSet<TypePair>();
   873             private boolean containsTypeRecursive(Type t, Type s) {
   874                 TypePair pair = new TypePair(t, s);
   875                 if (cache.add(pair)) {
   876                     try {
   877                         return containsType(t.getTypeArguments(),
   878                                             s.getTypeArguments());
   879                     } finally {
   880                         cache.remove(pair);
   881                     }
   882                 } else {
   883                     return containsType(t.getTypeArguments(),
   884                                         rewriteSupers(s).getTypeArguments());
   885                 }
   886             }
   888             private Type rewriteSupers(Type t) {
   889                 if (!t.isParameterized())
   890                     return t;
   891                 ListBuffer<Type> from = new ListBuffer<>();
   892                 ListBuffer<Type> to = new ListBuffer<>();
   893                 adaptSelf(t, from, to);
   894                 if (from.isEmpty())
   895                     return t;
   896                 ListBuffer<Type> rewrite = new ListBuffer<>();
   897                 boolean changed = false;
   898                 for (Type orig : to.toList()) {
   899                     Type s = rewriteSupers(orig);
   900                     if (s.isSuperBound() && !s.isExtendsBound()) {
   901                         s = new WildcardType(syms.objectType,
   902                                              BoundKind.UNBOUND,
   903                                              syms.boundClass);
   904                         changed = true;
   905                     } else if (s != orig) {
   906                         s = new WildcardType(wildUpperBound(s),
   907                                              BoundKind.EXTENDS,
   908                                              syms.boundClass);
   909                         changed = true;
   910                     }
   911                     rewrite.append(s);
   912                 }
   913                 if (changed)
   914                     return subst(t.tsym.type, from.toList(), rewrite.toList());
   915                 else
   916                     return t;
   917             }
   919             @Override
   920             public Boolean visitClassType(ClassType t, Type s) {
   921                 Type sup = asSuper(t, s.tsym);
   922                 if (sup == null) return false;
   923                 // If t is an intersection, sup might not be a class type
   924                 if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
   925                 return sup.tsym == s.tsym
   926                      // Check type variable containment
   927                     && (!s.isParameterized() || containsTypeRecursive(s, sup))
   928                     && isSubtypeNoCapture(sup.getEnclosingType(),
   929                                           s.getEnclosingType());
   930             }
   932             @Override
   933             public Boolean visitArrayType(ArrayType t, Type s) {
   934                 if (s.hasTag(ARRAY)) {
   935                     if (t.elemtype.isPrimitive())
   936                         return isSameType(t.elemtype, elemtype(s));
   937                     else
   938                         return isSubtypeNoCapture(t.elemtype, elemtype(s));
   939                 }
   941                 if (s.hasTag(CLASS)) {
   942                     Name sname = s.tsym.getQualifiedName();
   943                     return sname == names.java_lang_Object
   944                         || sname == names.java_lang_Cloneable
   945                         || sname == names.java_io_Serializable;
   946                 }
   948                 return false;
   949             }
   951             @Override
   952             public Boolean visitUndetVar(UndetVar t, Type s) {
   953                 //todo: test against origin needed? or replace with substitution?
   954                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
   955                     return true;
   956                 } else if (s.hasTag(BOT)) {
   957                     //if 's' is 'null' there's no instantiated type U for which
   958                     //U <: s (but 'null' itself, which is not a valid type)
   959                     return false;
   960                 }
   962                 t.addBound(InferenceBound.UPPER, s, Types.this);
   963                 return true;
   964             }
   966             @Override
   967             public Boolean visitErrorType(ErrorType t, Type s) {
   968                 return true;
   969             }
   970         };
   972     /**
   973      * Is t a subtype of every type in given list `ts'?<br>
   974      * (not defined for Method and ForAll types)<br>
   975      * Allows unchecked conversions.
   976      */
   977     public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
   978         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
   979             if (!isSubtypeUnchecked(t, l.head, warn))
   980                 return false;
   981         return true;
   982     }
   984     /**
   985      * Are corresponding elements of ts subtypes of ss?  If lists are
   986      * of different length, return false.
   987      */
   988     public boolean isSubtypes(List<Type> ts, List<Type> ss) {
   989         while (ts.tail != null && ss.tail != null
   990                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
   991                isSubtype(ts.head, ss.head)) {
   992             ts = ts.tail;
   993             ss = ss.tail;
   994         }
   995         return ts.tail == null && ss.tail == null;
   996         /*inlined: ts.isEmpty() && ss.isEmpty();*/
   997     }
   999     /**
  1000      * Are corresponding elements of ts subtypes of ss, allowing
  1001      * unchecked conversions?  If lists are of different length,
  1002      * return false.
  1003      **/
  1004     public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
  1005         while (ts.tail != null && ss.tail != null
  1006                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
  1007                isSubtypeUnchecked(ts.head, ss.head, warn)) {
  1008             ts = ts.tail;
  1009             ss = ss.tail;
  1011         return ts.tail == null && ss.tail == null;
  1012         /*inlined: ts.isEmpty() && ss.isEmpty();*/
  1014     // </editor-fold>
  1016     // <editor-fold defaultstate="collapsed" desc="isSuperType">
  1017     /**
  1018      * Is t a supertype of s?
  1019      */
  1020     public boolean isSuperType(Type t, Type s) {
  1021         switch (t.getTag()) {
  1022         case ERROR:
  1023             return true;
  1024         case UNDETVAR: {
  1025             UndetVar undet = (UndetVar)t;
  1026             if (t == s ||
  1027                 undet.qtype == s ||
  1028                 s.hasTag(ERROR) ||
  1029                 s.hasTag(BOT)) {
  1030                 return true;
  1032             undet.addBound(InferenceBound.LOWER, s, this);
  1033             return true;
  1035         default:
  1036             return isSubtype(s, t);
  1039     // </editor-fold>
  1041     // <editor-fold defaultstate="collapsed" desc="isSameType">
  1042     /**
  1043      * Are corresponding elements of the lists the same type?  If
  1044      * lists are of different length, return false.
  1045      */
  1046     public boolean isSameTypes(List<Type> ts, List<Type> ss) {
  1047         return isSameTypes(ts, ss, false);
  1049     public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
  1050         while (ts.tail != null && ss.tail != null
  1051                /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
  1052                isSameType(ts.head, ss.head, strict)) {
  1053             ts = ts.tail;
  1054             ss = ss.tail;
  1056         return ts.tail == null && ss.tail == null;
  1057         /*inlined: ts.isEmpty() && ss.isEmpty();*/
  1060     /**
  1061     * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
  1062     * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
  1063     * a single variable arity parameter (iii) whose declared type is Object[],
  1064     * (iv) has a return type of Object and (v) is native.
  1065     */
  1066    public boolean isSignaturePolymorphic(MethodSymbol msym) {
  1067        List<Type> argtypes = msym.type.getParameterTypes();
  1068        return (msym.flags_field & NATIVE) != 0 &&
  1069                msym.owner == syms.methodHandleType.tsym &&
  1070                argtypes.tail.tail == null &&
  1071                argtypes.head.hasTag(TypeTag.ARRAY) &&
  1072                msym.type.getReturnType().tsym == syms.objectType.tsym &&
  1073                ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
  1076     /**
  1077      * Is t the same type as s?
  1078      */
  1079     public boolean isSameType(Type t, Type s) {
  1080         return isSameType(t, s, false);
  1082     public boolean isSameType(Type t, Type s, boolean strict) {
  1083         return strict ?
  1084                 isSameTypeStrict.visit(t, s) :
  1085                 isSameTypeLoose.visit(t, s);
  1087     public boolean isSameAnnotatedType(Type t, Type s) {
  1088         return isSameAnnotatedType.visit(t, s);
  1090     // where
  1091         abstract class SameTypeVisitor extends TypeRelation {
  1093             public Boolean visitType(Type t, Type s) {
  1094                 if (t == s)
  1095                     return true;
  1097                 if (s.isPartial())
  1098                     return visit(s, t);
  1100                 switch (t.getTag()) {
  1101                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1102                 case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
  1103                     return t.hasTag(s.getTag());
  1104                 case TYPEVAR: {
  1105                     if (s.hasTag(TYPEVAR)) {
  1106                         //type-substitution does not preserve type-var types
  1107                         //check that type var symbols and bounds are indeed the same
  1108                         return sameTypeVars((TypeVar)t.unannotatedType(), (TypeVar)s.unannotatedType());
  1110                     else {
  1111                         //special case for s == ? super X, where upper(s) = u
  1112                         //check that u == t, where u has been set by Type.withTypeVar
  1113                         return s.isSuperBound() &&
  1114                                 !s.isExtendsBound() &&
  1115                                 visit(t, wildUpperBound(s));
  1118                 default:
  1119                     throw new AssertionError("isSameType " + t.getTag());
  1123             abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
  1125             @Override
  1126             public Boolean visitWildcardType(WildcardType t, Type s) {
  1127                 if (s.isPartial())
  1128                     return visit(s, t);
  1129                 else
  1130                     return false;
  1133             @Override
  1134             public Boolean visitClassType(ClassType t, Type s) {
  1135                 if (t == s)
  1136                     return true;
  1138                 if (s.isPartial())
  1139                     return visit(s, t);
  1141                 if (s.isSuperBound() && !s.isExtendsBound())
  1142                     return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
  1144                 if (t.isCompound() && s.isCompound()) {
  1145                     if (!visit(supertype(t), supertype(s)))
  1146                         return false;
  1148                     HashSet<UniqueType> set = new HashSet<UniqueType>();
  1149                     for (Type x : interfaces(t))
  1150                         set.add(new UniqueType(x.unannotatedType(), Types.this));
  1151                     for (Type x : interfaces(s)) {
  1152                         if (!set.remove(new UniqueType(x.unannotatedType(), Types.this)))
  1153                             return false;
  1155                     return (set.isEmpty());
  1157                 return t.tsym == s.tsym
  1158                     && visit(t.getEnclosingType(), s.getEnclosingType())
  1159                     && containsTypes(t.getTypeArguments(), s.getTypeArguments());
  1162             abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
  1164             @Override
  1165             public Boolean visitArrayType(ArrayType t, Type s) {
  1166                 if (t == s)
  1167                     return true;
  1169                 if (s.isPartial())
  1170                     return visit(s, t);
  1172                 return s.hasTag(ARRAY)
  1173                     && containsTypeEquivalent(t.elemtype, elemtype(s));
  1176             @Override
  1177             public Boolean visitMethodType(MethodType t, Type s) {
  1178                 // isSameType for methods does not take thrown
  1179                 // exceptions into account!
  1180                 return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
  1183             @Override
  1184             public Boolean visitPackageType(PackageType t, Type s) {
  1185                 return t == s;
  1188             @Override
  1189             public Boolean visitForAll(ForAll t, Type s) {
  1190                 if (!s.hasTag(FORALL)) {
  1191                     return false;
  1194                 ForAll forAll = (ForAll)s;
  1195                 return hasSameBounds(t, forAll)
  1196                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  1199             @Override
  1200             public Boolean visitUndetVar(UndetVar t, Type s) {
  1201                 if (s.hasTag(WILDCARD)) {
  1202                     // FIXME, this might be leftovers from before capture conversion
  1203                     return false;
  1206                 if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
  1207                     return true;
  1210                 t.addBound(InferenceBound.EQ, s, Types.this);
  1212                 return true;
  1215             @Override
  1216             public Boolean visitErrorType(ErrorType t, Type s) {
  1217                 return true;
  1221         /**
  1222          * Standard type-equality relation - type variables are considered
  1223          * equals if they share the same type symbol.
  1224          */
  1225         TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
  1227         private class LooseSameTypeVisitor extends SameTypeVisitor {
  1229             /** cache of the type-variable pairs being (recursively) tested. */
  1230             private Set<TypePair> cache = new HashSet<>();
  1232             @Override
  1233             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1234                 return tv1.tsym == tv2.tsym && checkSameBounds(tv1, tv2);
  1236             @Override
  1237             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1238                 return containsTypeEquivalent(ts1, ts2);
  1241             /**
  1242              * Since type-variable bounds can be recursive, we need to protect against
  1243              * infinite loops - where the same bounds are checked over and over recursively.
  1244              */
  1245             private boolean checkSameBounds(TypeVar tv1, TypeVar tv2) {
  1246                 TypePair p = new TypePair(tv1, tv2, true);
  1247                 if (cache.add(p)) {
  1248                     try {
  1249                         return visit(tv1.getUpperBound(), tv2.getUpperBound());
  1250                     } finally {
  1251                         cache.remove(p);
  1253                 } else {
  1254                     return false;
  1257         };
  1259         /**
  1260          * Strict type-equality relation - type variables are considered
  1261          * equals if they share the same object identity.
  1262          */
  1263         TypeRelation isSameTypeStrict = new SameTypeVisitor() {
  1264             @Override
  1265             boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
  1266                 return tv1 == tv2;
  1268             @Override
  1269             protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
  1270                 return isSameTypes(ts1, ts2, true);
  1273             @Override
  1274             public Boolean visitWildcardType(WildcardType t, Type s) {
  1275                 if (!s.hasTag(WILDCARD)) {
  1276                     return false;
  1277                 } else {
  1278                     WildcardType t2 = (WildcardType)s.unannotatedType();
  1279                     return t.kind == t2.kind &&
  1280                             isSameType(t.type, t2.type, true);
  1283         };
  1285         /**
  1286          * A version of LooseSameTypeVisitor that takes AnnotatedTypes
  1287          * into account.
  1288          */
  1289         TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
  1290             @Override
  1291             public Boolean visitAnnotatedType(AnnotatedType t, Type s) {
  1292                 if (!s.isAnnotated())
  1293                     return false;
  1294                 if (!t.getAnnotationMirrors().containsAll(s.getAnnotationMirrors()))
  1295                     return false;
  1296                 if (!s.getAnnotationMirrors().containsAll(t.getAnnotationMirrors()))
  1297                     return false;
  1298                 return visit(t.unannotatedType(), s);
  1300         };
  1301     // </editor-fold>
  1303     // <editor-fold defaultstate="collapsed" desc="Contains Type">
  1304     public boolean containedBy(Type t, Type s) {
  1305         switch (t.getTag()) {
  1306         case UNDETVAR:
  1307             if (s.hasTag(WILDCARD)) {
  1308                 UndetVar undetvar = (UndetVar)t;
  1309                 WildcardType wt = (WildcardType)s.unannotatedType();
  1310                 switch(wt.kind) {
  1311                     case UNBOUND:
  1312                         break;
  1313                     case EXTENDS: {
  1314                         Type bound = wildUpperBound(s);
  1315                         undetvar.addBound(InferenceBound.UPPER, bound, this);
  1316                         break;
  1318                     case SUPER: {
  1319                         Type bound = wildLowerBound(s);
  1320                         undetvar.addBound(InferenceBound.LOWER, bound, this);
  1321                         break;
  1324                 return true;
  1325             } else {
  1326                 return isSameType(t, s);
  1328         case ERROR:
  1329             return true;
  1330         default:
  1331             return containsType(s, t);
  1335     boolean containsType(List<Type> ts, List<Type> ss) {
  1336         while (ts.nonEmpty() && ss.nonEmpty()
  1337                && containsType(ts.head, ss.head)) {
  1338             ts = ts.tail;
  1339             ss = ss.tail;
  1341         return ts.isEmpty() && ss.isEmpty();
  1344     /**
  1345      * Check if t contains s.
  1347      * <p>T contains S if:
  1349      * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
  1351      * <p>This relation is only used by ClassType.isSubtype(), that
  1352      * is,
  1354      * <p>{@code C<S> <: C<T> if T contains S.}
  1356      * <p>Because of F-bounds, this relation can lead to infinite
  1357      * recursion.  Thus we must somehow break that recursion.  Notice
  1358      * that containsType() is only called from ClassType.isSubtype().
  1359      * Since the arguments have already been checked against their
  1360      * bounds, we know:
  1362      * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
  1364      * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
  1366      * @param t a type
  1367      * @param s a type
  1368      */
  1369     public boolean containsType(Type t, Type s) {
  1370         return containsType.visit(t, s);
  1372     // where
  1373         private TypeRelation containsType = new TypeRelation() {
  1375             public Boolean visitType(Type t, Type s) {
  1376                 if (s.isPartial())
  1377                     return containedBy(s, t);
  1378                 else
  1379                     return isSameType(t, s);
  1382 //            void debugContainsType(WildcardType t, Type s) {
  1383 //                System.err.println();
  1384 //                System.err.format(" does %s contain %s?%n", t, s);
  1385 //                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
  1386 //                                  wildUpperBound(s), s, t, wildUpperBound(t),
  1387 //                                  t.isSuperBound()
  1388 //                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
  1389 //                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
  1390 //                                  wildLowerBound(t), t, s, wildLowerBound(s),
  1391 //                                  t.isExtendsBound()
  1392 //                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
  1393 //                System.err.println();
  1394 //            }
  1396             @Override
  1397             public Boolean visitWildcardType(WildcardType t, Type s) {
  1398                 if (s.isPartial())
  1399                     return containedBy(s, t);
  1400                 else {
  1401 //                    debugContainsType(t, s);
  1402                     return isSameWildcard(t, s)
  1403                         || t.type == s
  1404                         || isCaptureOf(s, t)
  1405                         || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), cvarLowerBound(wildLowerBound(s)))) &&
  1406                             // TODO: JDK-8039214, cvarUpperBound call here is incorrect
  1407                             (t.isSuperBound() || isSubtypeNoCapture(cvarUpperBound(wildUpperBound(s)), wildUpperBound(t))));
  1411             @Override
  1412             public Boolean visitUndetVar(UndetVar t, Type s) {
  1413                 if (!s.hasTag(WILDCARD)) {
  1414                     return isSameType(t, s);
  1415                 } else {
  1416                     return false;
  1420             @Override
  1421             public Boolean visitErrorType(ErrorType t, Type s) {
  1422                 return true;
  1424         };
  1426     public boolean isCaptureOf(Type s, WildcardType t) {
  1427         if (!s.hasTag(TYPEVAR) || !((TypeVar)s.unannotatedType()).isCaptured())
  1428             return false;
  1429         return isSameWildcard(t, ((CapturedType)s.unannotatedType()).wildcard);
  1432     public boolean isSameWildcard(WildcardType t, Type s) {
  1433         if (!s.hasTag(WILDCARD))
  1434             return false;
  1435         WildcardType w = (WildcardType)s.unannotatedType();
  1436         return w.kind == t.kind && w.type == t.type;
  1439     public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
  1440         while (ts.nonEmpty() && ss.nonEmpty()
  1441                && containsTypeEquivalent(ts.head, ss.head)) {
  1442             ts = ts.tail;
  1443             ss = ss.tail;
  1445         return ts.isEmpty() && ss.isEmpty();
  1447     // </editor-fold>
  1449     /**
  1450      * Can t and s be compared for equality?  Any primitive ==
  1451      * primitive or primitive == object comparisons here are an error.
  1452      * Unboxing and correct primitive == primitive comparisons are
  1453      * already dealt with in Attr.visitBinary.
  1455      */
  1456     public boolean isEqualityComparable(Type s, Type t, Warner warn) {
  1457         if (t.isNumeric() && s.isNumeric())
  1458             return true;
  1460         boolean tPrimitive = t.isPrimitive();
  1461         boolean sPrimitive = s.isPrimitive();
  1462         if (!tPrimitive && !sPrimitive) {
  1463             return isCastable(s, t, warn) || isCastable(t, s, warn);
  1464         } else {
  1465             return false;
  1469     // <editor-fold defaultstate="collapsed" desc="isCastable">
  1470     public boolean isCastable(Type t, Type s) {
  1471         return isCastable(t, s, noWarnings);
  1474     /**
  1475      * Is t is castable to s?<br>
  1476      * s is assumed to be an erased type.<br>
  1477      * (not defined for Method and ForAll types).
  1478      */
  1479     public boolean isCastable(Type t, Type s, Warner warn) {
  1480         if (t == s)
  1481             return true;
  1483         if (t.isPrimitive() != s.isPrimitive())
  1484             return allowBoxing && (
  1485                     isConvertible(t, s, warn)
  1486                     || (allowObjectToPrimitiveCast &&
  1487                         s.isPrimitive() &&
  1488                         isSubtype(boxedClass(s).type, t)));
  1489         if (warn != warnStack.head) {
  1490             try {
  1491                 warnStack = warnStack.prepend(warn);
  1492                 checkUnsafeVarargsConversion(t, s, warn);
  1493                 return isCastable.visit(t,s);
  1494             } finally {
  1495                 warnStack = warnStack.tail;
  1497         } else {
  1498             return isCastable.visit(t,s);
  1501     // where
  1502         private TypeRelation isCastable = new TypeRelation() {
  1504             public Boolean visitType(Type t, Type s) {
  1505                 if (s.hasTag(ERROR))
  1506                     return true;
  1508                 switch (t.getTag()) {
  1509                 case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
  1510                 case DOUBLE:
  1511                     return s.isNumeric();
  1512                 case BOOLEAN:
  1513                     return s.hasTag(BOOLEAN);
  1514                 case VOID:
  1515                     return false;
  1516                 case BOT:
  1517                     return isSubtype(t, s);
  1518                 default:
  1519                     throw new AssertionError();
  1523             @Override
  1524             public Boolean visitWildcardType(WildcardType t, Type s) {
  1525                 return isCastable(wildUpperBound(t), s, warnStack.head);
  1528             @Override
  1529             public Boolean visitClassType(ClassType t, Type s) {
  1530                 if (s.hasTag(ERROR) || s.hasTag(BOT))
  1531                     return true;
  1533                 if (s.hasTag(TYPEVAR)) {
  1534                     if (isCastable(t, s.getUpperBound(), noWarnings)) {
  1535                         warnStack.head.warn(LintCategory.UNCHECKED);
  1536                         return true;
  1537                     } else {
  1538                         return false;
  1542                 if (t.isCompound() || s.isCompound()) {
  1543                     return !t.isCompound() ?
  1544                             visitIntersectionType((IntersectionClassType)s.unannotatedType(), t, true) :
  1545                             visitIntersectionType((IntersectionClassType)t.unannotatedType(), s, false);
  1548                 if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
  1549                     boolean upcast;
  1550                     if ((upcast = isSubtype(erasure(t), erasure(s)))
  1551                         || isSubtype(erasure(s), erasure(t))) {
  1552                         if (!upcast && s.hasTag(ARRAY)) {
  1553                             if (!isReifiable(s))
  1554                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1555                             return true;
  1556                         } else if (s.isRaw()) {
  1557                             return true;
  1558                         } else if (t.isRaw()) {
  1559                             if (!isUnbounded(s))
  1560                                 warnStack.head.warn(LintCategory.UNCHECKED);
  1561                             return true;
  1563                         // Assume |a| <: |b|
  1564                         final Type a = upcast ? t : s;
  1565                         final Type b = upcast ? s : t;
  1566                         final boolean HIGH = true;
  1567                         final boolean LOW = false;
  1568                         final boolean DONT_REWRITE_TYPEVARS = false;
  1569                         Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
  1570                         Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
  1571                         Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
  1572                         Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
  1573                         Type lowSub = asSub(bLow, aLow.tsym);
  1574                         Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1575                         if (highSub == null) {
  1576                             final boolean REWRITE_TYPEVARS = true;
  1577                             aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
  1578                             aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
  1579                             bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
  1580                             bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
  1581                             lowSub = asSub(bLow, aLow.tsym);
  1582                             highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
  1584                         if (highSub != null) {
  1585                             if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
  1586                                 Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
  1588                             if (!disjointTypes(aHigh.allparams(), highSub.allparams())
  1589                                 && !disjointTypes(aHigh.allparams(), lowSub.allparams())
  1590                                 && !disjointTypes(aLow.allparams(), highSub.allparams())
  1591                                 && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
  1592                                 if (upcast ? giveWarning(a, b) :
  1593                                     giveWarning(b, a))
  1594                                     warnStack.head.warn(LintCategory.UNCHECKED);
  1595                                 return true;
  1598                         if (isReifiable(s))
  1599                             return isSubtypeUnchecked(a, b);
  1600                         else
  1601                             return isSubtypeUnchecked(a, b, warnStack.head);
  1604                     // Sidecast
  1605                     if (s.hasTag(CLASS)) {
  1606                         if ((s.tsym.flags() & INTERFACE) != 0) {
  1607                             return ((t.tsym.flags() & FINAL) == 0)
  1608                                 ? sideCast(t, s, warnStack.head)
  1609                                 : sideCastFinal(t, s, warnStack.head);
  1610                         } else if ((t.tsym.flags() & INTERFACE) != 0) {
  1611                             return ((s.tsym.flags() & FINAL) == 0)
  1612                                 ? sideCast(t, s, warnStack.head)
  1613                                 : sideCastFinal(t, s, warnStack.head);
  1614                         } else {
  1615                             // unrelated class types
  1616                             return false;
  1620                 return false;
  1623             boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
  1624                 Warner warn = noWarnings;
  1625                 for (Type c : ict.getComponents()) {
  1626                     warn.clear();
  1627                     if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
  1628                         return false;
  1630                 if (warn.hasLint(LintCategory.UNCHECKED))
  1631                     warnStack.head.warn(LintCategory.UNCHECKED);
  1632                 return true;
  1635             @Override
  1636             public Boolean visitArrayType(ArrayType t, Type s) {
  1637                 switch (s.getTag()) {
  1638                 case ERROR:
  1639                 case BOT:
  1640                     return true;
  1641                 case TYPEVAR:
  1642                     if (isCastable(s, t, noWarnings)) {
  1643                         warnStack.head.warn(LintCategory.UNCHECKED);
  1644                         return true;
  1645                     } else {
  1646                         return false;
  1648                 case CLASS:
  1649                     return isSubtype(t, s);
  1650                 case ARRAY:
  1651                     if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
  1652                         return elemtype(t).hasTag(elemtype(s).getTag());
  1653                     } else {
  1654                         return visit(elemtype(t), elemtype(s));
  1656                 default:
  1657                     return false;
  1661             @Override
  1662             public Boolean visitTypeVar(TypeVar t, Type s) {
  1663                 switch (s.getTag()) {
  1664                 case ERROR:
  1665                 case BOT:
  1666                     return true;
  1667                 case TYPEVAR:
  1668                     if (isSubtype(t, s)) {
  1669                         return true;
  1670                     } else if (isCastable(t.bound, s, noWarnings)) {
  1671                         warnStack.head.warn(LintCategory.UNCHECKED);
  1672                         return true;
  1673                     } else {
  1674                         return false;
  1676                 default:
  1677                     return isCastable(t.bound, s, warnStack.head);
  1681             @Override
  1682             public Boolean visitErrorType(ErrorType t, Type s) {
  1683                 return true;
  1685         };
  1686     // </editor-fold>
  1688     // <editor-fold defaultstate="collapsed" desc="disjointTypes">
  1689     public boolean disjointTypes(List<Type> ts, List<Type> ss) {
  1690         while (ts.tail != null && ss.tail != null) {
  1691             if (disjointType(ts.head, ss.head)) return true;
  1692             ts = ts.tail;
  1693             ss = ss.tail;
  1695         return false;
  1698     /**
  1699      * Two types or wildcards are considered disjoint if it can be
  1700      * proven that no type can be contained in both. It is
  1701      * conservative in that it is allowed to say that two types are
  1702      * not disjoint, even though they actually are.
  1704      * The type {@code C<X>} is castable to {@code C<Y>} exactly if
  1705      * {@code X} and {@code Y} are not disjoint.
  1706      */
  1707     public boolean disjointType(Type t, Type s) {
  1708         return disjointType.visit(t, s);
  1710     // where
  1711         private TypeRelation disjointType = new TypeRelation() {
  1713             private Set<TypePair> cache = new HashSet<TypePair>();
  1715             @Override
  1716             public Boolean visitType(Type t, Type s) {
  1717                 if (s.hasTag(WILDCARD))
  1718                     return visit(s, t);
  1719                 else
  1720                     return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
  1723             private boolean isCastableRecursive(Type t, Type s) {
  1724                 TypePair pair = new TypePair(t, s);
  1725                 if (cache.add(pair)) {
  1726                     try {
  1727                         return Types.this.isCastable(t, s);
  1728                     } finally {
  1729                         cache.remove(pair);
  1731                 } else {
  1732                     return true;
  1736             private boolean notSoftSubtypeRecursive(Type t, Type s) {
  1737                 TypePair pair = new TypePair(t, s);
  1738                 if (cache.add(pair)) {
  1739                     try {
  1740                         return Types.this.notSoftSubtype(t, s);
  1741                     } finally {
  1742                         cache.remove(pair);
  1744                 } else {
  1745                     return false;
  1749             @Override
  1750             public Boolean visitWildcardType(WildcardType t, Type s) {
  1751                 if (t.isUnbound())
  1752                     return false;
  1754                 if (!s.hasTag(WILDCARD)) {
  1755                     if (t.isExtendsBound())
  1756                         return notSoftSubtypeRecursive(s, t.type);
  1757                     else
  1758                         return notSoftSubtypeRecursive(t.type, s);
  1761                 if (s.isUnbound())
  1762                     return false;
  1764                 if (t.isExtendsBound()) {
  1765                     if (s.isExtendsBound())
  1766                         return !isCastableRecursive(t.type, wildUpperBound(s));
  1767                     else if (s.isSuperBound())
  1768                         return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
  1769                 } else if (t.isSuperBound()) {
  1770                     if (s.isExtendsBound())
  1771                         return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
  1773                 return false;
  1775         };
  1776     // </editor-fold>
  1778     // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
  1779     public List<Type> cvarLowerBounds(List<Type> ts) {
  1780         return map(ts, cvarLowerBoundMapping);
  1782     private final Mapping cvarLowerBoundMapping = new Mapping("cvarLowerBound") {
  1783             public Type apply(Type t) {
  1784                 return cvarLowerBound(t);
  1786         };
  1787     // </editor-fold>
  1789     // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
  1790     /**
  1791      * This relation answers the question: is impossible that
  1792      * something of type `t' can be a subtype of `s'? This is
  1793      * different from the question "is `t' not a subtype of `s'?"
  1794      * when type variables are involved: Integer is not a subtype of T
  1795      * where {@code <T extends Number>} but it is not true that Integer cannot
  1796      * possibly be a subtype of T.
  1797      */
  1798     public boolean notSoftSubtype(Type t, Type s) {
  1799         if (t == s) return false;
  1800         if (t.hasTag(TYPEVAR)) {
  1801             TypeVar tv = (TypeVar) t;
  1802             return !isCastable(tv.bound,
  1803                                relaxBound(s),
  1804                                noWarnings);
  1806         if (!s.hasTag(WILDCARD))
  1807             s = cvarUpperBound(s);
  1809         return !isSubtype(t, relaxBound(s));
  1812     private Type relaxBound(Type t) {
  1813         if (t.hasTag(TYPEVAR)) {
  1814             while (t.hasTag(TYPEVAR))
  1815                 t = t.getUpperBound();
  1816             t = rewriteQuantifiers(t, true, true);
  1818         return t;
  1820     // </editor-fold>
  1822     // <editor-fold defaultstate="collapsed" desc="isReifiable">
  1823     public boolean isReifiable(Type t) {
  1824         return isReifiable.visit(t);
  1826     // where
  1827         private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
  1829             public Boolean visitType(Type t, Void ignored) {
  1830                 return true;
  1833             @Override
  1834             public Boolean visitClassType(ClassType t, Void ignored) {
  1835                 if (t.isCompound())
  1836                     return false;
  1837                 else {
  1838                     if (!t.isParameterized())
  1839                         return true;
  1841                     for (Type param : t.allparams()) {
  1842                         if (!param.isUnbound())
  1843                             return false;
  1845                     return true;
  1849             @Override
  1850             public Boolean visitArrayType(ArrayType t, Void ignored) {
  1851                 return visit(t.elemtype);
  1854             @Override
  1855             public Boolean visitTypeVar(TypeVar t, Void ignored) {
  1856                 return false;
  1858         };
  1859     // </editor-fold>
  1861     // <editor-fold defaultstate="collapsed" desc="Array Utils">
  1862     public boolean isArray(Type t) {
  1863         while (t.hasTag(WILDCARD))
  1864             t = wildUpperBound(t);
  1865         return t.hasTag(ARRAY);
  1868     /**
  1869      * The element type of an array.
  1870      */
  1871     public Type elemtype(Type t) {
  1872         switch (t.getTag()) {
  1873         case WILDCARD:
  1874             return elemtype(wildUpperBound(t));
  1875         case ARRAY:
  1876             t = t.unannotatedType();
  1877             return ((ArrayType)t).elemtype;
  1878         case FORALL:
  1879             return elemtype(((ForAll)t).qtype);
  1880         case ERROR:
  1881             return t;
  1882         default:
  1883             return null;
  1887     public Type elemtypeOrType(Type t) {
  1888         Type elemtype = elemtype(t);
  1889         return elemtype != null ?
  1890             elemtype :
  1891             t;
  1894     /**
  1895      * Mapping to take element type of an arraytype
  1896      */
  1897     private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
  1898         public Type apply(Type t) {
  1899             while (t.hasTag(TYPEVAR)) {
  1900                 t = t.getUpperBound();
  1902             return elemtype(t);
  1904     };
  1906     /**
  1907      * The number of dimensions of an array type.
  1908      */
  1909     public int dimensions(Type t) {
  1910         int result = 0;
  1911         while (t.hasTag(ARRAY)) {
  1912             result++;
  1913             t = elemtype(t);
  1915         return result;
  1918     /**
  1919      * Returns an ArrayType with the component type t
  1921      * @param t The component type of the ArrayType
  1922      * @return the ArrayType for the given component
  1923      */
  1924     public ArrayType makeArrayType(Type t) {
  1925         if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
  1926             Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
  1928         return new ArrayType(t, syms.arrayClass);
  1930     // </editor-fold>
  1932     // <editor-fold defaultstate="collapsed" desc="asSuper">
  1933     /**
  1934      * Return the (most specific) base type of t that starts with the
  1935      * given symbol.  If none exists, return null.
  1937      * @param t a type
  1938      * @param sym a symbol
  1939      */
  1940     public Type asSuper(Type t, Symbol sym) {
  1941         /* Some examples:
  1943          * (Enum<E>, Comparable) => Comparable<E>
  1944          * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
  1945          * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
  1946          * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
  1947          *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
  1948          */
  1949         if (sym.type == syms.objectType) { //optimization
  1950             return syms.objectType;
  1952         return asSuper.visit(t, sym);
  1954     // where
  1955         private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
  1957             public Type visitType(Type t, Symbol sym) {
  1958                 return null;
  1961             @Override
  1962             public Type visitClassType(ClassType t, Symbol sym) {
  1963                 if (t.tsym == sym)
  1964                     return t;
  1966                 Type st = supertype(t);
  1967                 if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
  1968                     Type x = asSuper(st, sym);
  1969                     if (x != null)
  1970                         return x;
  1972                 if ((sym.flags() & INTERFACE) != 0) {
  1973                     for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  1974                         if (!l.head.hasTag(ERROR)) {
  1975                             Type x = asSuper(l.head, sym);
  1976                             if (x != null)
  1977                                 return x;
  1981                 return null;
  1984             @Override
  1985             public Type visitArrayType(ArrayType t, Symbol sym) {
  1986                 return isSubtype(t, sym.type) ? sym.type : null;
  1989             @Override
  1990             public Type visitTypeVar(TypeVar t, Symbol sym) {
  1991                 if (t.tsym == sym)
  1992                     return t;
  1993                 else
  1994                     return asSuper(t.bound, sym);
  1997             @Override
  1998             public Type visitErrorType(ErrorType t, Symbol sym) {
  1999                 return t;
  2001         };
  2003     /**
  2004      * Return the base type of t or any of its outer types that starts
  2005      * with the given symbol.  If none exists, return null.
  2007      * @param t a type
  2008      * @param sym a symbol
  2009      */
  2010     public Type asOuterSuper(Type t, Symbol sym) {
  2011         switch (t.getTag()) {
  2012         case CLASS:
  2013             do {
  2014                 Type s = asSuper(t, sym);
  2015                 if (s != null) return s;
  2016                 t = t.getEnclosingType();
  2017             } while (t.hasTag(CLASS));
  2018             return null;
  2019         case ARRAY:
  2020             return isSubtype(t, sym.type) ? sym.type : null;
  2021         case TYPEVAR:
  2022             return asSuper(t, sym);
  2023         case ERROR:
  2024             return t;
  2025         default:
  2026             return null;
  2030     /**
  2031      * Return the base type of t or any of its enclosing types that
  2032      * starts with the given symbol.  If none exists, return null.
  2034      * @param t a type
  2035      * @param sym a symbol
  2036      */
  2037     public Type asEnclosingSuper(Type t, Symbol sym) {
  2038         switch (t.getTag()) {
  2039         case CLASS:
  2040             do {
  2041                 Type s = asSuper(t, sym);
  2042                 if (s != null) return s;
  2043                 Type outer = t.getEnclosingType();
  2044                 t = (outer.hasTag(CLASS)) ? outer :
  2045                     (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
  2046                     Type.noType;
  2047             } while (t.hasTag(CLASS));
  2048             return null;
  2049         case ARRAY:
  2050             return isSubtype(t, sym.type) ? sym.type : null;
  2051         case TYPEVAR:
  2052             return asSuper(t, sym);
  2053         case ERROR:
  2054             return t;
  2055         default:
  2056             return null;
  2059     // </editor-fold>
  2061     // <editor-fold defaultstate="collapsed" desc="memberType">
  2062     /**
  2063      * The type of given symbol, seen as a member of t.
  2065      * @param t a type
  2066      * @param sym a symbol
  2067      */
  2068     public Type memberType(Type t, Symbol sym) {
  2069         return (sym.flags() & STATIC) != 0
  2070             ? sym.type
  2071             : memberType.visit(t, sym);
  2073     // where
  2074         private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
  2076             public Type visitType(Type t, Symbol sym) {
  2077                 return sym.type;
  2080             @Override
  2081             public Type visitWildcardType(WildcardType t, Symbol sym) {
  2082                 return memberType(wildUpperBound(t), sym);
  2085             @Override
  2086             public Type visitClassType(ClassType t, Symbol sym) {
  2087                 Symbol owner = sym.owner;
  2088                 long flags = sym.flags();
  2089                 if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
  2090                     Type base = asOuterSuper(t, owner);
  2091                     //if t is an intersection type T = CT & I1 & I2 ... & In
  2092                     //its supertypes CT, I1, ... In might contain wildcards
  2093                     //so we need to go through capture conversion
  2094                     base = t.isCompound() ? capture(base) : base;
  2095                     if (base != null) {
  2096                         List<Type> ownerParams = owner.type.allparams();
  2097                         List<Type> baseParams = base.allparams();
  2098                         if (ownerParams.nonEmpty()) {
  2099                             if (baseParams.isEmpty()) {
  2100                                 // then base is a raw type
  2101                                 return erasure(sym.type);
  2102                             } else {
  2103                                 return subst(sym.type, ownerParams, baseParams);
  2108                 return sym.type;
  2111             @Override
  2112             public Type visitTypeVar(TypeVar t, Symbol sym) {
  2113                 return memberType(t.bound, sym);
  2116             @Override
  2117             public Type visitErrorType(ErrorType t, Symbol sym) {
  2118                 return t;
  2120         };
  2121     // </editor-fold>
  2123     // <editor-fold defaultstate="collapsed" desc="isAssignable">
  2124     public boolean isAssignable(Type t, Type s) {
  2125         return isAssignable(t, s, noWarnings);
  2128     /**
  2129      * Is t assignable to s?<br>
  2130      * Equivalent to subtype except for constant values and raw
  2131      * types.<br>
  2132      * (not defined for Method and ForAll types)
  2133      */
  2134     public boolean isAssignable(Type t, Type s, Warner warn) {
  2135         if (t.hasTag(ERROR))
  2136             return true;
  2137         if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
  2138             int value = ((Number)t.constValue()).intValue();
  2139             switch (s.getTag()) {
  2140             case BYTE:
  2141                 if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
  2142                     return true;
  2143                 break;
  2144             case CHAR:
  2145                 if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
  2146                     return true;
  2147                 break;
  2148             case SHORT:
  2149                 if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
  2150                     return true;
  2151                 break;
  2152             case INT:
  2153                 return true;
  2154             case CLASS:
  2155                 switch (unboxedType(s).getTag()) {
  2156                 case BYTE:
  2157                 case CHAR:
  2158                 case SHORT:
  2159                     return isAssignable(t, unboxedType(s), warn);
  2161                 break;
  2164         return isConvertible(t, s, warn);
  2166     // </editor-fold>
  2168     // <editor-fold defaultstate="collapsed" desc="erasure">
  2169     /**
  2170      * The erasure of t {@code |t|} -- the type that results when all
  2171      * type parameters in t are deleted.
  2172      */
  2173     public Type erasure(Type t) {
  2174         return eraseNotNeeded(t)? t : erasure(t, false);
  2176     //where
  2177     private boolean eraseNotNeeded(Type t) {
  2178         // We don't want to erase primitive types and String type as that
  2179         // operation is idempotent. Also, erasing these could result in loss
  2180         // of information such as constant values attached to such types.
  2181         return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
  2184     private Type erasure(Type t, boolean recurse) {
  2185         if (t.isPrimitive())
  2186             return t; /* fast special case */
  2187         else
  2188             return erasure.visit(t, recurse);
  2190     // where
  2191         private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
  2192             public Type visitType(Type t, Boolean recurse) {
  2193                 if (t.isPrimitive())
  2194                     return t; /*fast special case*/
  2195                 else
  2196                     return t.map(recurse ? erasureRecFun : erasureFun);
  2199             @Override
  2200             public Type visitWildcardType(WildcardType t, Boolean recurse) {
  2201                 return erasure(wildUpperBound(t), recurse);
  2204             @Override
  2205             public Type visitClassType(ClassType t, Boolean recurse) {
  2206                 Type erased = t.tsym.erasure(Types.this);
  2207                 if (recurse) {
  2208                     erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym);
  2210                 return erased;
  2213             @Override
  2214             public Type visitTypeVar(TypeVar t, Boolean recurse) {
  2215                 return erasure(t.bound, recurse);
  2218             @Override
  2219             public Type visitErrorType(ErrorType t, Boolean recurse) {
  2220                 return t;
  2223             @Override
  2224             public Type visitAnnotatedType(AnnotatedType t, Boolean recurse) {
  2225                 Type erased = erasure(t.unannotatedType(), recurse);
  2226                 if (erased.isAnnotated()) {
  2227                     // This can only happen when the underlying type is a
  2228                     // type variable and the upper bound of it is annotated.
  2229                     // The annotation on the type variable overrides the one
  2230                     // on the bound.
  2231                     erased = ((AnnotatedType)erased).unannotatedType();
  2233                 return erased.annotatedType(t.getAnnotationMirrors());
  2235         };
  2237     private Mapping erasureFun = new Mapping ("erasure") {
  2238             public Type apply(Type t) { return erasure(t); }
  2239         };
  2241     private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
  2242         public Type apply(Type t) { return erasureRecursive(t); }
  2243     };
  2245     public List<Type> erasure(List<Type> ts) {
  2246         return Type.map(ts, erasureFun);
  2249     public Type erasureRecursive(Type t) {
  2250         return erasure(t, true);
  2253     public List<Type> erasureRecursive(List<Type> ts) {
  2254         return Type.map(ts, erasureRecFun);
  2256     // </editor-fold>
  2258     // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
  2259     /**
  2260      * Make a compound type from non-empty list of types.  The list should be
  2261      * ordered according to {@link Symbol#precedes(TypeSymbol,Types)}.
  2263      * @param bounds            the types from which the compound type is formed
  2264      * @param supertype         is objectType if all bounds are interfaces,
  2265      *                          null otherwise.
  2266      */
  2267     public Type makeCompoundType(List<Type> bounds) {
  2268         return makeCompoundType(bounds, bounds.head.tsym.isInterface());
  2270     public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
  2271         Assert.check(bounds.nonEmpty());
  2272         Type firstExplicitBound = bounds.head;
  2273         if (allInterfaces) {
  2274             bounds = bounds.prepend(syms.objectType);
  2276         ClassSymbol bc =
  2277             new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
  2278                             Type.moreInfo
  2279                                 ? names.fromString(bounds.toString())
  2280                                 : names.empty,
  2281                             null,
  2282                             syms.noSymbol);
  2283         bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
  2284         bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
  2285                 syms.objectType : // error condition, recover
  2286                 erasure(firstExplicitBound);
  2287         bc.members_field = new Scope(bc);
  2288         return bc.type;
  2291     /**
  2292      * A convenience wrapper for {@link #makeCompoundType(List)}; the
  2293      * arguments are converted to a list and passed to the other
  2294      * method.  Note that this might cause a symbol completion.
  2295      * Hence, this version of makeCompoundType may not be called
  2296      * during a classfile read.
  2297      */
  2298     public Type makeCompoundType(Type bound1, Type bound2) {
  2299         return makeCompoundType(List.of(bound1, bound2));
  2301     // </editor-fold>
  2303     // <editor-fold defaultstate="collapsed" desc="supertype">
  2304     public Type supertype(Type t) {
  2305         return supertype.visit(t);
  2307     // where
  2308         private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
  2310             public Type visitType(Type t, Void ignored) {
  2311                 // A note on wildcards: there is no good way to
  2312                 // determine a supertype for a super bounded wildcard.
  2313                 return Type.noType;
  2316             @Override
  2317             public Type visitClassType(ClassType t, Void ignored) {
  2318                 if (t.supertype_field == null) {
  2319                     Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
  2320                     // An interface has no superclass; its supertype is Object.
  2321                     if (t.isInterface())
  2322                         supertype = ((ClassType)t.tsym.type).supertype_field;
  2323                     if (t.supertype_field == null) {
  2324                         List<Type> actuals = classBound(t).allparams();
  2325                         List<Type> formals = t.tsym.type.allparams();
  2326                         if (t.hasErasedSupertypes()) {
  2327                             t.supertype_field = erasureRecursive(supertype);
  2328                         } else if (formals.nonEmpty()) {
  2329                             t.supertype_field = subst(supertype, formals, actuals);
  2331                         else {
  2332                             t.supertype_field = supertype;
  2336                 return t.supertype_field;
  2339             /**
  2340              * The supertype is always a class type. If the type
  2341              * variable's bounds start with a class type, this is also
  2342              * the supertype.  Otherwise, the supertype is
  2343              * java.lang.Object.
  2344              */
  2345             @Override
  2346             public Type visitTypeVar(TypeVar t, Void ignored) {
  2347                 if (t.bound.hasTag(TYPEVAR) ||
  2348                     (!t.bound.isCompound() && !t.bound.isInterface())) {
  2349                     return t.bound;
  2350                 } else {
  2351                     return supertype(t.bound);
  2355             @Override
  2356             public Type visitArrayType(ArrayType t, Void ignored) {
  2357                 if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
  2358                     return arraySuperType();
  2359                 else
  2360                     return new ArrayType(supertype(t.elemtype), t.tsym);
  2363             @Override
  2364             public Type visitErrorType(ErrorType t, Void ignored) {
  2365                 return Type.noType;
  2367         };
  2368     // </editor-fold>
  2370     // <editor-fold defaultstate="collapsed" desc="interfaces">
  2371     /**
  2372      * Return the interfaces implemented by this class.
  2373      */
  2374     public List<Type> interfaces(Type t) {
  2375         return interfaces.visit(t);
  2377     // where
  2378         private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
  2380             public List<Type> visitType(Type t, Void ignored) {
  2381                 return List.nil();
  2384             @Override
  2385             public List<Type> visitClassType(ClassType t, Void ignored) {
  2386                 if (t.interfaces_field == null) {
  2387                     List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
  2388                     if (t.interfaces_field == null) {
  2389                         // If t.interfaces_field is null, then t must
  2390                         // be a parameterized type (not to be confused
  2391                         // with a generic type declaration).
  2392                         // Terminology:
  2393                         //    Parameterized type: List<String>
  2394                         //    Generic type declaration: class List<E> { ... }
  2395                         // So t corresponds to List<String> and
  2396                         // t.tsym.type corresponds to List<E>.
  2397                         // The reason t must be parameterized type is
  2398                         // that completion will happen as a side
  2399                         // effect of calling
  2400                         // ClassSymbol.getInterfaces.  Since
  2401                         // t.interfaces_field is null after
  2402                         // completion, we can assume that t is not the
  2403                         // type of a class/interface declaration.
  2404                         Assert.check(t != t.tsym.type, t);
  2405                         List<Type> actuals = t.allparams();
  2406                         List<Type> formals = t.tsym.type.allparams();
  2407                         if (t.hasErasedSupertypes()) {
  2408                             t.interfaces_field = erasureRecursive(interfaces);
  2409                         } else if (formals.nonEmpty()) {
  2410                             t.interfaces_field = subst(interfaces, formals, actuals);
  2412                         else {
  2413                             t.interfaces_field = interfaces;
  2417                 return t.interfaces_field;
  2420             @Override
  2421             public List<Type> visitTypeVar(TypeVar t, Void ignored) {
  2422                 if (t.bound.isCompound())
  2423                     return interfaces(t.bound);
  2425                 if (t.bound.isInterface())
  2426                     return List.of(t.bound);
  2428                 return List.nil();
  2430         };
  2432     public List<Type> directSupertypes(Type t) {
  2433         return directSupertypes.visit(t);
  2435     // where
  2436         private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
  2438             public List<Type> visitType(final Type type, final Void ignored) {
  2439                 if (!type.isCompound()) {
  2440                     final Type sup = supertype(type);
  2441                     return (sup == Type.noType || sup == type || sup == null)
  2442                         ? interfaces(type)
  2443                         : interfaces(type).prepend(sup);
  2444                 } else {
  2445                     return visitIntersectionType((IntersectionClassType) type);
  2449             private List<Type> visitIntersectionType(final IntersectionClassType it) {
  2450                 return it.getExplicitComponents();
  2453         };
  2455     public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
  2456         for (Type i2 : interfaces(origin.type)) {
  2457             if (isym == i2.tsym) return true;
  2459         return false;
  2461     // </editor-fold>
  2463     // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
  2464     Map<Type,Boolean> isDerivedRawCache = new HashMap<Type,Boolean>();
  2466     public boolean isDerivedRaw(Type t) {
  2467         Boolean result = isDerivedRawCache.get(t);
  2468         if (result == null) {
  2469             result = isDerivedRawInternal(t);
  2470             isDerivedRawCache.put(t, result);
  2472         return result;
  2475     public boolean isDerivedRawInternal(Type t) {
  2476         if (t.isErroneous())
  2477             return false;
  2478         return
  2479             t.isRaw() ||
  2480             supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
  2481             isDerivedRaw(interfaces(t));
  2484     public boolean isDerivedRaw(List<Type> ts) {
  2485         List<Type> l = ts;
  2486         while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
  2487         return l.nonEmpty();
  2489     // </editor-fold>
  2491     // <editor-fold defaultstate="collapsed" desc="setBounds">
  2492     /**
  2493      * Set the bounds field of the given type variable to reflect a
  2494      * (possibly multiple) list of bounds.
  2495      * @param t                 a type variable
  2496      * @param bounds            the bounds, must be nonempty
  2497      * @param supertype         is objectType if all bounds are interfaces,
  2498      *                          null otherwise.
  2499      */
  2500     public void setBounds(TypeVar t, List<Type> bounds) {
  2501         setBounds(t, bounds, bounds.head.tsym.isInterface());
  2504     /**
  2505      * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
  2506      * third parameter is computed directly, as follows: if all
  2507      * all bounds are interface types, the computed supertype is Object,
  2508      * otherwise the supertype is simply left null (in this case, the supertype
  2509      * is assumed to be the head of the bound list passed as second argument).
  2510      * Note that this check might cause a symbol completion. Hence, this version of
  2511      * setBounds may not be called during a classfile read.
  2512      */
  2513     public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
  2514         t.bound = bounds.tail.isEmpty() ?
  2515                 bounds.head :
  2516                 makeCompoundType(bounds, allInterfaces);
  2517         t.rank_field = -1;
  2519     // </editor-fold>
  2521     // <editor-fold defaultstate="collapsed" desc="getBounds">
  2522     /**
  2523      * Return list of bounds of the given type variable.
  2524      */
  2525     public List<Type> getBounds(TypeVar t) {
  2526         if (t.bound.hasTag(NONE))
  2527             return List.nil();
  2528         else if (t.bound.isErroneous() || !t.bound.isCompound())
  2529             return List.of(t.bound);
  2530         else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
  2531             return interfaces(t).prepend(supertype(t));
  2532         else
  2533             // No superclass was given in bounds.
  2534             // In this case, supertype is Object, erasure is first interface.
  2535             return interfaces(t);
  2537     // </editor-fold>
  2539     // <editor-fold defaultstate="collapsed" desc="classBound">
  2540     /**
  2541      * If the given type is a (possibly selected) type variable,
  2542      * return the bounding class of this type, otherwise return the
  2543      * type itself.
  2544      */
  2545     public Type classBound(Type t) {
  2546         return classBound.visit(t);
  2548     // where
  2549         private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
  2551             public Type visitType(Type t, Void ignored) {
  2552                 return t;
  2555             @Override
  2556             public Type visitClassType(ClassType t, Void ignored) {
  2557                 Type outer1 = classBound(t.getEnclosingType());
  2558                 if (outer1 != t.getEnclosingType())
  2559                     return new ClassType(outer1, t.getTypeArguments(), t.tsym);
  2560                 else
  2561                     return t;
  2564             @Override
  2565             public Type visitTypeVar(TypeVar t, Void ignored) {
  2566                 return classBound(supertype(t));
  2569             @Override
  2570             public Type visitErrorType(ErrorType t, Void ignored) {
  2571                 return t;
  2573         };
  2574     // </editor-fold>
  2576     // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
  2577     /**
  2578      * Returns true iff the first signature is a <em>sub
  2579      * signature</em> of the other.  This is <b>not</b> an equivalence
  2580      * relation.
  2582      * @jls section 8.4.2.
  2583      * @see #overrideEquivalent(Type t, Type s)
  2584      * @param t first signature (possibly raw).
  2585      * @param s second signature (could be subjected to erasure).
  2586      * @return true if t is a sub signature of s.
  2587      */
  2588     public boolean isSubSignature(Type t, Type s) {
  2589         return isSubSignature(t, s, true);
  2592     public boolean isSubSignature(Type t, Type s, boolean strict) {
  2593         return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
  2596     /**
  2597      * Returns true iff these signatures are related by <em>override
  2598      * equivalence</em>.  This is the natural extension of
  2599      * isSubSignature to an equivalence relation.
  2601      * @jls section 8.4.2.
  2602      * @see #isSubSignature(Type t, Type s)
  2603      * @param t a signature (possible raw, could be subjected to
  2604      * erasure).
  2605      * @param s a signature (possible raw, could be subjected to
  2606      * erasure).
  2607      * @return true if either argument is a sub signature of the other.
  2608      */
  2609     public boolean overrideEquivalent(Type t, Type s) {
  2610         return hasSameArgs(t, s) ||
  2611             hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
  2614     public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
  2615         for (Scope.Entry e = syms.objectType.tsym.members().lookup(msym.name) ; e.scope != null ; e = e.next()) {
  2616             if (msym.overrides(e.sym, origin, Types.this, true)) {
  2617                 return true;
  2620         return false;
  2623     // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
  2624     class ImplementationCache {
  2626         private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map =
  2627                 new WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>>();
  2629         class Entry {
  2630             final MethodSymbol cachedImpl;
  2631             final Filter<Symbol> implFilter;
  2632             final boolean checkResult;
  2633             final int prevMark;
  2635             public Entry(MethodSymbol cachedImpl,
  2636                     Filter<Symbol> scopeFilter,
  2637                     boolean checkResult,
  2638                     int prevMark) {
  2639                 this.cachedImpl = cachedImpl;
  2640                 this.implFilter = scopeFilter;
  2641                 this.checkResult = checkResult;
  2642                 this.prevMark = prevMark;
  2645             boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
  2646                 return this.implFilter == scopeFilter &&
  2647                         this.checkResult == checkResult &&
  2648                         this.prevMark == mark;
  2652         MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2653             SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
  2654             Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
  2655             if (cache == null) {
  2656                 cache = new HashMap<TypeSymbol, Entry>();
  2657                 _map.put(ms, new SoftReference<Map<TypeSymbol, Entry>>(cache));
  2659             Entry e = cache.get(origin);
  2660             CompoundScope members = membersClosure(origin.type, true);
  2661             if (e == null ||
  2662                     !e.matches(implFilter, checkResult, members.getMark())) {
  2663                 MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
  2664                 cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
  2665                 return impl;
  2667             else {
  2668                 return e.cachedImpl;
  2672         private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2673             for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
  2674                 while (t.hasTag(TYPEVAR))
  2675                     t = t.getUpperBound();
  2676                 TypeSymbol c = t.tsym;
  2677                 for (Scope.Entry e = c.members().lookup(ms.name, implFilter);
  2678                      e.scope != null;
  2679                      e = e.next(implFilter)) {
  2680                     if (e.sym != null &&
  2681                              e.sym.overrides(ms, origin, Types.this, checkResult))
  2682                         return (MethodSymbol)e.sym;
  2685             return null;
  2689     private ImplementationCache implCache = new ImplementationCache();
  2691     public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
  2692         return implCache.get(ms, origin, checkResult, implFilter);
  2694     // </editor-fold>
  2696     // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
  2697     class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
  2699         private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
  2701         Set<TypeSymbol> seenTypes = new HashSet<>();
  2703         class MembersScope extends CompoundScope {
  2705             CompoundScope scope;
  2707             public MembersScope(CompoundScope scope) {
  2708                 super(scope.owner);
  2709                 this.scope = scope;
  2712             Filter<Symbol> combine(final Filter<Symbol> sf) {
  2713                 return new Filter<Symbol>() {
  2714                     @Override
  2715                     public boolean accepts(Symbol s) {
  2716                         return !s.owner.isInterface() && (sf == null || sf.accepts(s));
  2718                 };
  2721             @Override
  2722             public Iterable<Symbol> getElements(Filter<Symbol> sf) {
  2723                 return scope.getElements(combine(sf));
  2726             @Override
  2727             public Iterable<Symbol> getElementsByName(Name name, Filter<Symbol> sf) {
  2728                 return scope.getElementsByName(name, combine(sf));
  2731             @Override
  2732             public int getMark() {
  2733                 return scope.getMark();
  2737         CompoundScope nilScope;
  2739         /** members closure visitor methods **/
  2741         public CompoundScope visitType(Type t, Void _unused) {
  2742             if (nilScope == null) {
  2743                 nilScope = new CompoundScope(syms.noSymbol);
  2745             return nilScope;
  2748         @Override
  2749         public CompoundScope visitClassType(ClassType t, Void _unused) {
  2750             if (!seenTypes.add(t.tsym)) {
  2751                 //this is possible when an interface is implemented in multiple
  2752                 //superclasses, or when a class hierarchy is circular - in such
  2753                 //cases we don't need to recurse (empty scope is returned)
  2754                 return new CompoundScope(t.tsym);
  2756             try {
  2757                 seenTypes.add(t.tsym);
  2758                 ClassSymbol csym = (ClassSymbol)t.tsym;
  2759                 CompoundScope membersClosure = _map.get(csym);
  2760                 if (membersClosure == null) {
  2761                     membersClosure = new CompoundScope(csym);
  2762                     for (Type i : interfaces(t)) {
  2763                         membersClosure.addSubScope(visit(i, null));
  2765                     membersClosure.addSubScope(visit(supertype(t), null));
  2766                     membersClosure.addSubScope(csym.members());
  2767                     _map.put(csym, membersClosure);
  2769                 return membersClosure;
  2771             finally {
  2772                 seenTypes.remove(t.tsym);
  2776         @Override
  2777         public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
  2778             return visit(t.getUpperBound(), null);
  2782     private MembersClosureCache membersCache = new MembersClosureCache();
  2784     public CompoundScope membersClosure(Type site, boolean skipInterface) {
  2785         CompoundScope cs = membersCache.visit(site, null);
  2786         if (cs == null)
  2787             Assert.error("type " + site);
  2788         return skipInterface ? membersCache.new MembersScope(cs) : cs;
  2790     // </editor-fold>
  2793     /** Return first abstract member of class `sym'.
  2794      */
  2795     public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
  2796         try {
  2797             return firstUnimplementedAbstractImpl(sym, sym);
  2798         } catch (CompletionFailure ex) {
  2799             chk.completionError(enter.getEnv(sym).tree.pos(), ex);
  2800             return null;
  2803         //where:
  2804         private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
  2805             MethodSymbol undef = null;
  2806             // Do not bother to search in classes that are not abstract,
  2807             // since they cannot have abstract members.
  2808             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
  2809                 Scope s = c.members();
  2810                 for (Scope.Entry e = s.elems;
  2811                      undef == null && e != null;
  2812                      e = e.sibling) {
  2813                     if (e.sym.kind == MTH &&
  2814                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
  2815                         MethodSymbol absmeth = (MethodSymbol)e.sym;
  2816                         MethodSymbol implmeth = absmeth.implementation(impl, this, true);
  2817                         if (implmeth == null || implmeth == absmeth) {
  2818                             //look for default implementations
  2819                             if (allowDefaultMethods) {
  2820                                 MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
  2821                                 if (prov != null && prov.overrides(absmeth, impl, this, true)) {
  2822                                     implmeth = prov;
  2826                         if (implmeth == null || implmeth == absmeth) {
  2827                             undef = absmeth;
  2831                 if (undef == null) {
  2832                     Type st = supertype(c.type);
  2833                     if (st.hasTag(CLASS))
  2834                         undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
  2836                 for (List<Type> l = interfaces(c.type);
  2837                      undef == null && l.nonEmpty();
  2838                      l = l.tail) {
  2839                     undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
  2842             return undef;
  2846     //where
  2847     public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
  2848         Filter<Symbol> filter = new MethodFilter(ms, site);
  2849         List<MethodSymbol> candidates = List.nil();
  2850             for (Symbol s : membersClosure(site, false).getElements(filter)) {
  2851                 if (!site.tsym.isInterface() && !s.owner.isInterface()) {
  2852                     return List.of((MethodSymbol)s);
  2853                 } else if (!candidates.contains(s)) {
  2854                     candidates = candidates.prepend((MethodSymbol)s);
  2857             return prune(candidates);
  2860     public List<MethodSymbol> prune(List<MethodSymbol> methods) {
  2861         ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
  2862         for (MethodSymbol m1 : methods) {
  2863             boolean isMin_m1 = true;
  2864             for (MethodSymbol m2 : methods) {
  2865                 if (m1 == m2) continue;
  2866                 if (m2.owner != m1.owner &&
  2867                         asSuper(m2.owner.type, m1.owner) != null) {
  2868                     isMin_m1 = false;
  2869                     break;
  2872             if (isMin_m1)
  2873                 methodsMin.append(m1);
  2875         return methodsMin.toList();
  2877     // where
  2878             private class MethodFilter implements Filter<Symbol> {
  2880                 Symbol msym;
  2881                 Type site;
  2883                 MethodFilter(Symbol msym, Type site) {
  2884                     this.msym = msym;
  2885                     this.site = site;
  2888                 public boolean accepts(Symbol s) {
  2889                     return s.kind == Kinds.MTH &&
  2890                             s.name == msym.name &&
  2891                             (s.flags() & SYNTHETIC) == 0 &&
  2892                             s.isInheritedIn(site.tsym, Types.this) &&
  2893                             overrideEquivalent(memberType(site, s), memberType(site, msym));
  2895             };
  2896     // </editor-fold>
  2898     /**
  2899      * Does t have the same arguments as s?  It is assumed that both
  2900      * types are (possibly polymorphic) method types.  Monomorphic
  2901      * method types "have the same arguments", if their argument lists
  2902      * are equal.  Polymorphic method types "have the same arguments",
  2903      * if they have the same arguments after renaming all type
  2904      * variables of one to corresponding type variables in the other,
  2905      * where correspondence is by position in the type parameter list.
  2906      */
  2907     public boolean hasSameArgs(Type t, Type s) {
  2908         return hasSameArgs(t, s, true);
  2911     public boolean hasSameArgs(Type t, Type s, boolean strict) {
  2912         return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
  2915     private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
  2916         return hasSameArgs.visit(t, s);
  2918     // where
  2919         private class HasSameArgs extends TypeRelation {
  2921             boolean strict;
  2923             public HasSameArgs(boolean strict) {
  2924                 this.strict = strict;
  2927             public Boolean visitType(Type t, Type s) {
  2928                 throw new AssertionError();
  2931             @Override
  2932             public Boolean visitMethodType(MethodType t, Type s) {
  2933                 return s.hasTag(METHOD)
  2934                     && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
  2937             @Override
  2938             public Boolean visitForAll(ForAll t, Type s) {
  2939                 if (!s.hasTag(FORALL))
  2940                     return strict ? false : visitMethodType(t.asMethodType(), s);
  2942                 ForAll forAll = (ForAll)s;
  2943                 return hasSameBounds(t, forAll)
  2944                     && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
  2947             @Override
  2948             public Boolean visitErrorType(ErrorType t, Type s) {
  2949                 return false;
  2951         };
  2953         TypeRelation hasSameArgs_strict = new HasSameArgs(true);
  2954         TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
  2956     // </editor-fold>
  2958     // <editor-fold defaultstate="collapsed" desc="subst">
  2959     public List<Type> subst(List<Type> ts,
  2960                             List<Type> from,
  2961                             List<Type> to) {
  2962         return new Subst(from, to).subst(ts);
  2965     /**
  2966      * Substitute all occurrences of a type in `from' with the
  2967      * corresponding type in `to' in 't'. Match lists `from' and `to'
  2968      * from the right: If lists have different length, discard leading
  2969      * elements of the longer list.
  2970      */
  2971     public Type subst(Type t, List<Type> from, List<Type> to) {
  2972         return new Subst(from, to).subst(t);
  2975     private class Subst extends UnaryVisitor<Type> {
  2976         List<Type> from;
  2977         List<Type> to;
  2979         public Subst(List<Type> from, List<Type> to) {
  2980             int fromLength = from.length();
  2981             int toLength = to.length();
  2982             while (fromLength > toLength) {
  2983                 fromLength--;
  2984                 from = from.tail;
  2986             while (fromLength < toLength) {
  2987                 toLength--;
  2988                 to = to.tail;
  2990             this.from = from;
  2991             this.to = to;
  2994         Type subst(Type t) {
  2995             if (from.tail == null)
  2996                 return t;
  2997             else
  2998                 return visit(t);
  3001         List<Type> subst(List<Type> ts) {
  3002             if (from.tail == null)
  3003                 return ts;
  3004             boolean wild = false;
  3005             if (ts.nonEmpty() && from.nonEmpty()) {
  3006                 Type head1 = subst(ts.head);
  3007                 List<Type> tail1 = subst(ts.tail);
  3008                 if (head1 != ts.head || tail1 != ts.tail)
  3009                     return tail1.prepend(head1);
  3011             return ts;
  3014         public Type visitType(Type t, Void ignored) {
  3015             return t;
  3018         @Override
  3019         public Type visitMethodType(MethodType t, Void ignored) {
  3020             List<Type> argtypes = subst(t.argtypes);
  3021             Type restype = subst(t.restype);
  3022             List<Type> thrown = subst(t.thrown);
  3023             if (argtypes == t.argtypes &&
  3024                 restype == t.restype &&
  3025                 thrown == t.thrown)
  3026                 return t;
  3027             else
  3028                 return new MethodType(argtypes, restype, thrown, t.tsym);
  3031         @Override
  3032         public Type visitTypeVar(TypeVar t, Void ignored) {
  3033             for (List<Type> from = this.from, to = this.to;
  3034                  from.nonEmpty();
  3035                  from = from.tail, to = to.tail) {
  3036                 if (t == from.head) {
  3037                     return to.head.withTypeVar(t);
  3040             return t;
  3043         @Override
  3044         public Type visitUndetVar(UndetVar t, Void ignored) {
  3045             //do nothing - we should not replace inside undet variables
  3046             return t;
  3049         @Override
  3050         public Type visitClassType(ClassType t, Void ignored) {
  3051             if (!t.isCompound()) {
  3052                 List<Type> typarams = t.getTypeArguments();
  3053                 List<Type> typarams1 = subst(typarams);
  3054                 Type outer = t.getEnclosingType();
  3055                 Type outer1 = subst(outer);
  3056                 if (typarams1 == typarams && outer1 == outer)
  3057                     return t;
  3058                 else
  3059                     return new ClassType(outer1, typarams1, t.tsym);
  3060             } else {
  3061                 Type st = subst(supertype(t));
  3062                 List<Type> is = subst(interfaces(t));
  3063                 if (st == supertype(t) && is == interfaces(t))
  3064                     return t;
  3065                 else
  3066                     return makeCompoundType(is.prepend(st));
  3070         @Override
  3071         public Type visitWildcardType(WildcardType t, Void ignored) {
  3072             Type bound = t.type;
  3073             if (t.kind != BoundKind.UNBOUND)
  3074                 bound = subst(bound);
  3075             if (bound == t.type) {
  3076                 return t;
  3077             } else {
  3078                 if (t.isExtendsBound() && bound.isExtendsBound())
  3079                     bound = wildUpperBound(bound);
  3080                 return new WildcardType(bound, t.kind, syms.boundClass, t.bound);
  3084         @Override
  3085         public Type visitArrayType(ArrayType t, Void ignored) {
  3086             Type elemtype = subst(t.elemtype);
  3087             if (elemtype == t.elemtype)
  3088                 return t;
  3089             else
  3090                 return new ArrayType(elemtype, t.tsym);
  3093         @Override
  3094         public Type visitForAll(ForAll t, Void ignored) {
  3095             if (Type.containsAny(to, t.tvars)) {
  3096                 //perform alpha-renaming of free-variables in 't'
  3097                 //if 'to' types contain variables that are free in 't'
  3098                 List<Type> freevars = newInstances(t.tvars);
  3099                 t = new ForAll(freevars,
  3100                         Types.this.subst(t.qtype, t.tvars, freevars));
  3102             List<Type> tvars1 = substBounds(t.tvars, from, to);
  3103             Type qtype1 = subst(t.qtype);
  3104             if (tvars1 == t.tvars && qtype1 == t.qtype) {
  3105                 return t;
  3106             } else if (tvars1 == t.tvars) {
  3107                 return new ForAll(tvars1, qtype1);
  3108             } else {
  3109                 return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1));
  3113         @Override
  3114         public Type visitErrorType(ErrorType t, Void ignored) {
  3115             return t;
  3119     public List<Type> substBounds(List<Type> tvars,
  3120                                   List<Type> from,
  3121                                   List<Type> to) {
  3122         if (tvars.isEmpty())
  3123             return tvars;
  3124         ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
  3125         boolean changed = false;
  3126         // calculate new bounds
  3127         for (Type t : tvars) {
  3128             TypeVar tv = (TypeVar) t;
  3129             Type bound = subst(tv.bound, from, to);
  3130             if (bound != tv.bound)
  3131                 changed = true;
  3132             newBoundsBuf.append(bound);
  3134         if (!changed)
  3135             return tvars;
  3136         ListBuffer<Type> newTvars = new ListBuffer<>();
  3137         // create new type variables without bounds
  3138         for (Type t : tvars) {
  3139             newTvars.append(new TypeVar(t.tsym, null, syms.botType));
  3141         // the new bounds should use the new type variables in place
  3142         // of the old
  3143         List<Type> newBounds = newBoundsBuf.toList();
  3144         from = tvars;
  3145         to = newTvars.toList();
  3146         for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
  3147             newBounds.head = subst(newBounds.head, from, to);
  3149         newBounds = newBoundsBuf.toList();
  3150         // set the bounds of new type variables to the new bounds
  3151         for (Type t : newTvars.toList()) {
  3152             TypeVar tv = (TypeVar) t;
  3153             tv.bound = newBounds.head;
  3154             newBounds = newBounds.tail;
  3156         return newTvars.toList();
  3159     public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
  3160         Type bound1 = subst(t.bound, from, to);
  3161         if (bound1 == t.bound)
  3162             return t;
  3163         else {
  3164             // create new type variable without bounds
  3165             TypeVar tv = new TypeVar(t.tsym, null, syms.botType);
  3166             // the new bound should use the new type variable in place
  3167             // of the old
  3168             tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
  3169             return tv;
  3172     // </editor-fold>
  3174     // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
  3175     /**
  3176      * Does t have the same bounds for quantified variables as s?
  3177      */
  3178     public boolean hasSameBounds(ForAll t, ForAll s) {
  3179         List<Type> l1 = t.tvars;
  3180         List<Type> l2 = s.tvars;
  3181         while (l1.nonEmpty() && l2.nonEmpty() &&
  3182                isSameType(l1.head.getUpperBound(),
  3183                           subst(l2.head.getUpperBound(),
  3184                                 s.tvars,
  3185                                 t.tvars))) {
  3186             l1 = l1.tail;
  3187             l2 = l2.tail;
  3189         return l1.isEmpty() && l2.isEmpty();
  3191     // </editor-fold>
  3193     // <editor-fold defaultstate="collapsed" desc="newInstances">
  3194     /** Create new vector of type variables from list of variables
  3195      *  changing all recursive bounds from old to new list.
  3196      */
  3197     public List<Type> newInstances(List<Type> tvars) {
  3198         List<Type> tvars1 = Type.map(tvars, newInstanceFun);
  3199         for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
  3200             TypeVar tv = (TypeVar) l.head;
  3201             tv.bound = subst(tv.bound, tvars, tvars1);
  3203         return tvars1;
  3205     private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
  3206             public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound()); }
  3207         };
  3208     // </editor-fold>
  3210     public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
  3211         return original.accept(methodWithParameters, newParams);
  3213     // where
  3214         private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
  3215             public Type visitType(Type t, List<Type> newParams) {
  3216                 throw new IllegalArgumentException("Not a method type: " + t);
  3218             public Type visitMethodType(MethodType t, List<Type> newParams) {
  3219                 return new MethodType(newParams, t.restype, t.thrown, t.tsym);
  3221             public Type visitForAll(ForAll t, List<Type> newParams) {
  3222                 return new ForAll(t.tvars, t.qtype.accept(this, newParams));
  3224         };
  3226     public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
  3227         return original.accept(methodWithThrown, newThrown);
  3229     // where
  3230         private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
  3231             public Type visitType(Type t, List<Type> newThrown) {
  3232                 throw new IllegalArgumentException("Not a method type: " + t);
  3234             public Type visitMethodType(MethodType t, List<Type> newThrown) {
  3235                 return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
  3237             public Type visitForAll(ForAll t, List<Type> newThrown) {
  3238                 return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
  3240         };
  3242     public Type createMethodTypeWithReturn(Type original, Type newReturn) {
  3243         return original.accept(methodWithReturn, newReturn);
  3245     // where
  3246         private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
  3247             public Type visitType(Type t, Type newReturn) {
  3248                 throw new IllegalArgumentException("Not a method type: " + t);
  3250             public Type visitMethodType(MethodType t, Type newReturn) {
  3251                 return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
  3253             public Type visitForAll(ForAll t, Type newReturn) {
  3254                 return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
  3256         };
  3258     // <editor-fold defaultstate="collapsed" desc="createErrorType">
  3259     public Type createErrorType(Type originalType) {
  3260         return new ErrorType(originalType, syms.errSymbol);
  3263     public Type createErrorType(ClassSymbol c, Type originalType) {
  3264         return new ErrorType(c, originalType);
  3267     public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
  3268         return new ErrorType(name, container, originalType);
  3270     // </editor-fold>
  3272     // <editor-fold defaultstate="collapsed" desc="rank">
  3273     /**
  3274      * The rank of a class is the length of the longest path between
  3275      * the class and java.lang.Object in the class inheritance
  3276      * graph. Undefined for all but reference types.
  3277      */
  3278     public int rank(Type t) {
  3279         t = t.unannotatedType();
  3280         switch(t.getTag()) {
  3281         case CLASS: {
  3282             ClassType cls = (ClassType)t;
  3283             if (cls.rank_field < 0) {
  3284                 Name fullname = cls.tsym.getQualifiedName();
  3285                 if (fullname == names.java_lang_Object)
  3286                     cls.rank_field = 0;
  3287                 else {
  3288                     int r = rank(supertype(cls));
  3289                     for (List<Type> l = interfaces(cls);
  3290                          l.nonEmpty();
  3291                          l = l.tail) {
  3292                         if (rank(l.head) > r)
  3293                             r = rank(l.head);
  3295                     cls.rank_field = r + 1;
  3298             return cls.rank_field;
  3300         case TYPEVAR: {
  3301             TypeVar tvar = (TypeVar)t;
  3302             if (tvar.rank_field < 0) {
  3303                 int r = rank(supertype(tvar));
  3304                 for (List<Type> l = interfaces(tvar);
  3305                      l.nonEmpty();
  3306                      l = l.tail) {
  3307                     if (rank(l.head) > r) r = rank(l.head);
  3309                 tvar.rank_field = r + 1;
  3311             return tvar.rank_field;
  3313         case ERROR:
  3314         case NONE:
  3315             return 0;
  3316         default:
  3317             throw new AssertionError();
  3320     // </editor-fold>
  3322     /**
  3323      * Helper method for generating a string representation of a given type
  3324      * accordingly to a given locale
  3325      */
  3326     public String toString(Type t, Locale locale) {
  3327         return Printer.createStandardPrinter(messages).visit(t, locale);
  3330     /**
  3331      * Helper method for generating a string representation of a given type
  3332      * accordingly to a given locale
  3333      */
  3334     public String toString(Symbol t, Locale locale) {
  3335         return Printer.createStandardPrinter(messages).visit(t, locale);
  3338     // <editor-fold defaultstate="collapsed" desc="toString">
  3339     /**
  3340      * This toString is slightly more descriptive than the one on Type.
  3342      * @deprecated Types.toString(Type t, Locale l) provides better support
  3343      * for localization
  3344      */
  3345     @Deprecated
  3346     public String toString(Type t) {
  3347         if (t.hasTag(FORALL)) {
  3348             ForAll forAll = (ForAll)t;
  3349             return typaramsString(forAll.tvars) + forAll.qtype;
  3351         return "" + t;
  3353     // where
  3354         private String typaramsString(List<Type> tvars) {
  3355             StringBuilder s = new StringBuilder();
  3356             s.append('<');
  3357             boolean first = true;
  3358             for (Type t : tvars) {
  3359                 if (!first) s.append(", ");
  3360                 first = false;
  3361                 appendTyparamString(((TypeVar)t.unannotatedType()), s);
  3363             s.append('>');
  3364             return s.toString();
  3366         private void appendTyparamString(TypeVar t, StringBuilder buf) {
  3367             buf.append(t);
  3368             if (t.bound == null ||
  3369                 t.bound.tsym.getQualifiedName() == names.java_lang_Object)
  3370                 return;
  3371             buf.append(" extends "); // Java syntax; no need for i18n
  3372             Type bound = t.bound;
  3373             if (!bound.isCompound()) {
  3374                 buf.append(bound);
  3375             } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
  3376                 buf.append(supertype(t));
  3377                 for (Type intf : interfaces(t)) {
  3378                     buf.append('&');
  3379                     buf.append(intf);
  3381             } else {
  3382                 // No superclass was given in bounds.
  3383                 // In this case, supertype is Object, erasure is first interface.
  3384                 boolean first = true;
  3385                 for (Type intf : interfaces(t)) {
  3386                     if (!first) buf.append('&');
  3387                     first = false;
  3388                     buf.append(intf);
  3392     // </editor-fold>
  3394     // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
  3395     /**
  3396      * A cache for closures.
  3398      * <p>A closure is a list of all the supertypes and interfaces of
  3399      * a class or interface type, ordered by ClassSymbol.precedes
  3400      * (that is, subclasses come first, arbitrary but fixed
  3401      * otherwise).
  3402      */
  3403     private Map<Type,List<Type>> closureCache = new HashMap<Type,List<Type>>();
  3405     /**
  3406      * Returns the closure of a class or interface type.
  3407      */
  3408     public List<Type> closure(Type t) {
  3409         List<Type> cl = closureCache.get(t);
  3410         if (cl == null) {
  3411             Type st = supertype(t);
  3412             if (!t.isCompound()) {
  3413                 if (st.hasTag(CLASS)) {
  3414                     cl = insert(closure(st), t);
  3415                 } else if (st.hasTag(TYPEVAR)) {
  3416                     cl = closure(st).prepend(t);
  3417                 } else {
  3418                     cl = List.of(t);
  3420             } else {
  3421                 cl = closure(supertype(t));
  3423             for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
  3424                 cl = union(cl, closure(l.head));
  3425             closureCache.put(t, cl);
  3427         return cl;
  3430     /**
  3431      * Insert a type in a closure
  3432      */
  3433     public List<Type> insert(List<Type> cl, Type t) {
  3434         if (cl.isEmpty()) {
  3435             return cl.prepend(t);
  3436         } else if (t.tsym == cl.head.tsym) {
  3437             return cl;
  3438         } else if (t.tsym.precedes(cl.head.tsym, this)) {
  3439             return cl.prepend(t);
  3440         } else {
  3441             // t comes after head, or the two are unrelated
  3442             return insert(cl.tail, t).prepend(cl.head);
  3446     /**
  3447      * Form the union of two closures
  3448      */
  3449     public List<Type> union(List<Type> cl1, List<Type> cl2) {
  3450         if (cl1.isEmpty()) {
  3451             return cl2;
  3452         } else if (cl2.isEmpty()) {
  3453             return cl1;
  3454         } else if (cl1.head.tsym == cl2.head.tsym) {
  3455             return union(cl1.tail, cl2.tail).prepend(cl1.head);
  3456         } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
  3457             return union(cl1.tail, cl2).prepend(cl1.head);
  3458         } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
  3459             return union(cl1, cl2.tail).prepend(cl2.head);
  3460         } else {
  3461             // unrelated types
  3462             return union(cl1.tail, cl2).prepend(cl1.head);
  3466     /**
  3467      * Intersect two closures
  3468      */
  3469     public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
  3470         if (cl1 == cl2)
  3471             return cl1;
  3472         if (cl1.isEmpty() || cl2.isEmpty())
  3473             return List.nil();
  3474         if (cl1.head.tsym.precedes(cl2.head.tsym, this))
  3475             return intersect(cl1.tail, cl2);
  3476         if (cl2.head.tsym.precedes(cl1.head.tsym, this))
  3477             return intersect(cl1, cl2.tail);
  3478         if (isSameType(cl1.head, cl2.head))
  3479             return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
  3480         if (cl1.head.tsym == cl2.head.tsym &&
  3481             cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
  3482             if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
  3483                 Type merge = merge(cl1.head,cl2.head);
  3484                 return intersect(cl1.tail, cl2.tail).prepend(merge);
  3486             if (cl1.head.isRaw() || cl2.head.isRaw())
  3487                 return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
  3489         return intersect(cl1.tail, cl2.tail);
  3491     // where
  3492         class TypePair {
  3493             final Type t1;
  3494             final Type t2;
  3495             boolean strict;
  3497             TypePair(Type t1, Type t2) {
  3498                 this(t1, t2, false);
  3501             TypePair(Type t1, Type t2, boolean strict) {
  3502                 this.t1 = t1;
  3503                 this.t2 = t2;
  3504                 this.strict = strict;
  3506             @Override
  3507             public int hashCode() {
  3508                 return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
  3510             @Override
  3511             public boolean equals(Object obj) {
  3512                 if (!(obj instanceof TypePair))
  3513                     return false;
  3514                 TypePair typePair = (TypePair)obj;
  3515                 return isSameType(t1, typePair.t1, strict)
  3516                     && isSameType(t2, typePair.t2, strict);
  3519         Set<TypePair> mergeCache = new HashSet<TypePair>();
  3520         private Type merge(Type c1, Type c2) {
  3521             ClassType class1 = (ClassType) c1;
  3522             List<Type> act1 = class1.getTypeArguments();
  3523             ClassType class2 = (ClassType) c2;
  3524             List<Type> act2 = class2.getTypeArguments();
  3525             ListBuffer<Type> merged = new ListBuffer<Type>();
  3526             List<Type> typarams = class1.tsym.type.getTypeArguments();
  3528             while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
  3529                 if (containsType(act1.head, act2.head)) {
  3530                     merged.append(act1.head);
  3531                 } else if (containsType(act2.head, act1.head)) {
  3532                     merged.append(act2.head);
  3533                 } else {
  3534                     TypePair pair = new TypePair(c1, c2);
  3535                     Type m;
  3536                     if (mergeCache.add(pair)) {
  3537                         m = new WildcardType(lub(wildUpperBound(act1.head),
  3538                                                  wildUpperBound(act2.head)),
  3539                                              BoundKind.EXTENDS,
  3540                                              syms.boundClass);
  3541                         mergeCache.remove(pair);
  3542                     } else {
  3543                         m = new WildcardType(syms.objectType,
  3544                                              BoundKind.UNBOUND,
  3545                                              syms.boundClass);
  3547                     merged.append(m.withTypeVar(typarams.head));
  3549                 act1 = act1.tail;
  3550                 act2 = act2.tail;
  3551                 typarams = typarams.tail;
  3553             Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
  3554             return new ClassType(class1.getEnclosingType(), merged.toList(), class1.tsym);
  3557     /**
  3558      * Return the minimum type of a closure, a compound type if no
  3559      * unique minimum exists.
  3560      */
  3561     private Type compoundMin(List<Type> cl) {
  3562         if (cl.isEmpty()) return syms.objectType;
  3563         List<Type> compound = closureMin(cl);
  3564         if (compound.isEmpty())
  3565             return null;
  3566         else if (compound.tail.isEmpty())
  3567             return compound.head;
  3568         else
  3569             return makeCompoundType(compound);
  3572     /**
  3573      * Return the minimum types of a closure, suitable for computing
  3574      * compoundMin or glb.
  3575      */
  3576     private List<Type> closureMin(List<Type> cl) {
  3577         ListBuffer<Type> classes = new ListBuffer<>();
  3578         ListBuffer<Type> interfaces = new ListBuffer<>();
  3579         Set<Type> toSkip = new HashSet<>();
  3580         while (!cl.isEmpty()) {
  3581             Type current = cl.head;
  3582             boolean keep = !toSkip.contains(current);
  3583             if (keep && current.hasTag(TYPEVAR)) {
  3584                 // skip lower-bounded variables with a subtype in cl.tail
  3585                 for (Type t : cl.tail) {
  3586                     if (isSubtypeNoCapture(t, current)) {
  3587                         keep = false;
  3588                         break;
  3592             if (keep) {
  3593                 if (current.isInterface())
  3594                     interfaces.append(current);
  3595                 else
  3596                     classes.append(current);
  3597                 for (Type t : cl.tail) {
  3598                     // skip supertypes of 'current' in cl.tail
  3599                     if (isSubtypeNoCapture(current, t))
  3600                         toSkip.add(t);
  3603             cl = cl.tail;
  3605         return classes.appendList(interfaces).toList();
  3608     /**
  3609      * Return the least upper bound of list of types.  if the lub does
  3610      * not exist return null.
  3611      */
  3612     public Type lub(List<Type> ts) {
  3613         return lub(ts.toArray(new Type[ts.length()]));
  3616     /**
  3617      * Return the least upper bound (lub) of set of types.  If the lub
  3618      * does not exist return the type of null (bottom).
  3619      */
  3620     public Type lub(Type... ts) {
  3621         final int UNKNOWN_BOUND = 0;
  3622         final int ARRAY_BOUND = 1;
  3623         final int CLASS_BOUND = 2;
  3625         int[] kinds = new int[ts.length];
  3627         int boundkind = UNKNOWN_BOUND;
  3628         for (int i = 0 ; i < ts.length ; i++) {
  3629             Type t = ts[i];
  3630             switch (t.getTag()) {
  3631             case CLASS:
  3632                 boundkind |= kinds[i] = CLASS_BOUND;
  3633                 break;
  3634             case ARRAY:
  3635                 boundkind |= kinds[i] = ARRAY_BOUND;
  3636                 break;
  3637             case  TYPEVAR:
  3638                 do {
  3639                     t = t.getUpperBound();
  3640                 } while (t.hasTag(TYPEVAR));
  3641                 if (t.hasTag(ARRAY)) {
  3642                     boundkind |= kinds[i] = ARRAY_BOUND;
  3643                 } else {
  3644                     boundkind |= kinds[i] = CLASS_BOUND;
  3646                 break;
  3647             default:
  3648                 kinds[i] = UNKNOWN_BOUND;
  3649                 if (t.isPrimitive())
  3650                     return syms.errType;
  3653         switch (boundkind) {
  3654         case 0:
  3655             return syms.botType;
  3657         case ARRAY_BOUND:
  3658             // calculate lub(A[], B[])
  3659             Type[] elements = new Type[ts.length];
  3660             for (int i = 0 ; i < ts.length ; i++) {
  3661                 Type elem = elements[i] = elemTypeFun.apply(ts[i]);
  3662                 if (elem.isPrimitive()) {
  3663                     // if a primitive type is found, then return
  3664                     // arraySuperType unless all the types are the
  3665                     // same
  3666                     Type first = ts[0];
  3667                     for (int j = 1 ; j < ts.length ; j++) {
  3668                         if (!isSameType(first, ts[j])) {
  3669                              // lub(int[], B[]) is Cloneable & Serializable
  3670                             return arraySuperType();
  3673                     // all the array types are the same, return one
  3674                     // lub(int[], int[]) is int[]
  3675                     return first;
  3678             // lub(A[], B[]) is lub(A, B)[]
  3679             return new ArrayType(lub(elements), syms.arrayClass);
  3681         case CLASS_BOUND:
  3682             // calculate lub(A, B)
  3683             int startIdx = 0;
  3684             for (int i = 0; i < ts.length ; i++) {
  3685                 Type t = ts[i];
  3686                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
  3687                     break;
  3688                 } else {
  3689                     startIdx++;
  3692             Assert.check(startIdx < ts.length);
  3693             //step 1 - compute erased candidate set (EC)
  3694             List<Type> cl = erasedSupertypes(ts[startIdx]);
  3695             for (int i = startIdx + 1 ; i < ts.length ; i++) {
  3696                 Type t = ts[i];
  3697                 if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
  3698                     cl = intersect(cl, erasedSupertypes(t));
  3700             //step 2 - compute minimal erased candidate set (MEC)
  3701             List<Type> mec = closureMin(cl);
  3702             //step 3 - for each element G in MEC, compute lci(Inv(G))
  3703             List<Type> candidates = List.nil();
  3704             for (Type erasedSupertype : mec) {
  3705                 List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
  3706                 for (int i = startIdx + 1 ; i < ts.length ; i++) {
  3707                     Type superType = asSuper(ts[i], erasedSupertype.tsym);
  3708                     lci = intersect(lci, superType != null ? List.of(superType) : List.<Type>nil());
  3710                 candidates = candidates.appendList(lci);
  3712             //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
  3713             //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
  3714             return compoundMin(candidates);
  3716         default:
  3717             // calculate lub(A, B[])
  3718             List<Type> classes = List.of(arraySuperType());
  3719             for (int i = 0 ; i < ts.length ; i++) {
  3720                 if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
  3721                     classes = classes.prepend(ts[i]);
  3723             // lub(A, B[]) is lub(A, arraySuperType)
  3724             return lub(classes);
  3727     // where
  3728         List<Type> erasedSupertypes(Type t) {
  3729             ListBuffer<Type> buf = new ListBuffer<>();
  3730             for (Type sup : closure(t)) {
  3731                 if (sup.hasTag(TYPEVAR)) {
  3732                     buf.append(sup);
  3733                 } else {
  3734                     buf.append(erasure(sup));
  3737             return buf.toList();
  3740         private Type arraySuperType = null;
  3741         private Type arraySuperType() {
  3742             // initialized lazily to avoid problems during compiler startup
  3743             if (arraySuperType == null) {
  3744                 synchronized (this) {
  3745                     if (arraySuperType == null) {
  3746                         // JLS 10.8: all arrays implement Cloneable and Serializable.
  3747                         arraySuperType = makeCompoundType(List.of(syms.serializableType,
  3748                                                                   syms.cloneableType), true);
  3752             return arraySuperType;
  3754     // </editor-fold>
  3756     // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
  3757     public Type glb(List<Type> ts) {
  3758         Type t1 = ts.head;
  3759         for (Type t2 : ts.tail) {
  3760             if (t1.isErroneous())
  3761                 return t1;
  3762             t1 = glb(t1, t2);
  3764         return t1;
  3766     //where
  3767     public Type glb(Type t, Type s) {
  3768         if (s == null)
  3769             return t;
  3770         else if (t.isPrimitive() || s.isPrimitive())
  3771             return syms.errType;
  3772         else if (isSubtypeNoCapture(t, s))
  3773             return t;
  3774         else if (isSubtypeNoCapture(s, t))
  3775             return s;
  3777         List<Type> closure = union(closure(t), closure(s));
  3778         return glbFlattened(closure, t);
  3780     //where
  3781     /**
  3782      * Perform glb for a list of non-primitive, non-error, non-compound types;
  3783      * redundant elements are removed.  Bounds should be ordered according to
  3784      * {@link Symbol#precedes(TypeSymbol,Types)}.
  3786      * @param flatBounds List of type to glb
  3787      * @param errT Original type to use if the result is an error type
  3788      */
  3789     private Type glbFlattened(List<Type> flatBounds, Type errT) {
  3790         List<Type> bounds = closureMin(flatBounds);
  3792         if (bounds.isEmpty()) {             // length == 0
  3793             return syms.objectType;
  3794         } else if (bounds.tail.isEmpty()) { // length == 1
  3795             return bounds.head;
  3796         } else {                            // length > 1
  3797             int classCount = 0;
  3798             List<Type> lowers = List.nil();
  3799             for (Type bound : bounds) {
  3800                 if (!bound.isInterface()) {
  3801                     classCount++;
  3802                     Type lower = cvarLowerBound(bound);
  3803                     if (bound != lower && !lower.hasTag(BOT))
  3804                         lowers = insert(lowers, lower);
  3807             if (classCount > 1) {
  3808                 if (lowers.isEmpty())
  3809                     return createErrorType(errT);
  3810                 else
  3811                     return glbFlattened(union(bounds, lowers), errT);
  3814         return makeCompoundType(bounds);
  3816     // </editor-fold>
  3818     // <editor-fold defaultstate="collapsed" desc="hashCode">
  3819     /**
  3820      * Compute a hash code on a type.
  3821      */
  3822     public int hashCode(Type t) {
  3823         return hashCode.visit(t);
  3825     // where
  3826         private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
  3828             public Integer visitType(Type t, Void ignored) {
  3829                 return t.getTag().ordinal();
  3832             @Override
  3833             public Integer visitClassType(ClassType t, Void ignored) {
  3834                 int result = visit(t.getEnclosingType());
  3835                 result *= 127;
  3836                 result += t.tsym.flatName().hashCode();
  3837                 for (Type s : t.getTypeArguments()) {
  3838                     result *= 127;
  3839                     result += visit(s);
  3841                 return result;
  3844             @Override
  3845             public Integer visitMethodType(MethodType t, Void ignored) {
  3846                 int h = METHOD.ordinal();
  3847                 for (List<Type> thisargs = t.argtypes;
  3848                      thisargs.tail != null;
  3849                      thisargs = thisargs.tail)
  3850                     h = (h << 5) + visit(thisargs.head);
  3851                 return (h << 5) + visit(t.restype);
  3854             @Override
  3855             public Integer visitWildcardType(WildcardType t, Void ignored) {
  3856                 int result = t.kind.hashCode();
  3857                 if (t.type != null) {
  3858                     result *= 127;
  3859                     result += visit(t.type);
  3861                 return result;
  3864             @Override
  3865             public Integer visitArrayType(ArrayType t, Void ignored) {
  3866                 return visit(t.elemtype) + 12;
  3869             @Override
  3870             public Integer visitTypeVar(TypeVar t, Void ignored) {
  3871                 return System.identityHashCode(t.tsym);
  3874             @Override
  3875             public Integer visitUndetVar(UndetVar t, Void ignored) {
  3876                 return System.identityHashCode(t);
  3879             @Override
  3880             public Integer visitErrorType(ErrorType t, Void ignored) {
  3881                 return 0;
  3883         };
  3884     // </editor-fold>
  3886     // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
  3887     /**
  3888      * Does t have a result that is a subtype of the result type of s,
  3889      * suitable for covariant returns?  It is assumed that both types
  3890      * are (possibly polymorphic) method types.  Monomorphic method
  3891      * types are handled in the obvious way.  Polymorphic method types
  3892      * require renaming all type variables of one to corresponding
  3893      * type variables in the other, where correspondence is by
  3894      * position in the type parameter list. */
  3895     public boolean resultSubtype(Type t, Type s, Warner warner) {
  3896         List<Type> tvars = t.getTypeArguments();
  3897         List<Type> svars = s.getTypeArguments();
  3898         Type tres = t.getReturnType();
  3899         Type sres = subst(s.getReturnType(), svars, tvars);
  3900         return covariantReturnType(tres, sres, warner);
  3903     /**
  3904      * Return-Type-Substitutable.
  3905      * @jls section 8.4.5
  3906      */
  3907     public boolean returnTypeSubstitutable(Type r1, Type r2) {
  3908         if (hasSameArgs(r1, r2))
  3909             return resultSubtype(r1, r2, noWarnings);
  3910         else
  3911             return covariantReturnType(r1.getReturnType(),
  3912                                        erasure(r2.getReturnType()),
  3913                                        noWarnings);
  3916     public boolean returnTypeSubstitutable(Type r1,
  3917                                            Type r2, Type r2res,
  3918                                            Warner warner) {
  3919         if (isSameType(r1.getReturnType(), r2res))
  3920             return true;
  3921         if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
  3922             return false;
  3924         if (hasSameArgs(r1, r2))
  3925             return covariantReturnType(r1.getReturnType(), r2res, warner);
  3926         if (!allowCovariantReturns)
  3927             return false;
  3928         if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
  3929             return true;
  3930         if (!isSubtype(r1.getReturnType(), erasure(r2res)))
  3931             return false;
  3932         warner.warn(LintCategory.UNCHECKED);
  3933         return true;
  3936     /**
  3937      * Is t an appropriate return type in an overrider for a
  3938      * method that returns s?
  3939      */
  3940     public boolean covariantReturnType(Type t, Type s, Warner warner) {
  3941         return
  3942             isSameType(t, s) ||
  3943             allowCovariantReturns &&
  3944             !t.isPrimitive() &&
  3945             !s.isPrimitive() &&
  3946             isAssignable(t, s, warner);
  3948     // </editor-fold>
  3950     // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
  3951     /**
  3952      * Return the class that boxes the given primitive.
  3953      */
  3954     public ClassSymbol boxedClass(Type t) {
  3955         return reader.enterClass(syms.boxedName[t.getTag().ordinal()]);
  3958     /**
  3959      * Return the boxed type if 't' is primitive, otherwise return 't' itself.
  3960      */
  3961     public Type boxedTypeOrType(Type t) {
  3962         return t.isPrimitive() ?
  3963             boxedClass(t).type :
  3964             t;
  3967     /**
  3968      * Return the primitive type corresponding to a boxed type.
  3969      */
  3970     public Type unboxedType(Type t) {
  3971         if (allowBoxing) {
  3972             for (int i=0; i<syms.boxedName.length; i++) {
  3973                 Name box = syms.boxedName[i];
  3974                 if (box != null &&
  3975                     asSuper(t, reader.enterClass(box)) != null)
  3976                     return syms.typeOfTag[i];
  3979         return Type.noType;
  3982     /**
  3983      * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
  3984      */
  3985     public Type unboxedTypeOrType(Type t) {
  3986         Type unboxedType = unboxedType(t);
  3987         return unboxedType.hasTag(NONE) ? t : unboxedType;
  3989     // </editor-fold>
  3991     // <editor-fold defaultstate="collapsed" desc="Capture conversion">
  3992     /*
  3993      * JLS 5.1.10 Capture Conversion:
  3995      * Let G name a generic type declaration with n formal type
  3996      * parameters A1 ... An with corresponding bounds U1 ... Un. There
  3997      * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
  3998      * where, for 1 <= i <= n:
  4000      * + If Ti is a wildcard type argument (4.5.1) of the form ? then
  4001      *   Si is a fresh type variable whose upper bound is
  4002      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
  4003      *   type.
  4005      * + If Ti is a wildcard type argument of the form ? extends Bi,
  4006      *   then Si is a fresh type variable whose upper bound is
  4007      *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
  4008      *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
  4009      *   a compile-time error if for any two classes (not interfaces)
  4010      *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
  4012      * + If Ti is a wildcard type argument of the form ? super Bi,
  4013      *   then Si is a fresh type variable whose upper bound is
  4014      *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
  4016      * + Otherwise, Si = Ti.
  4018      * Capture conversion on any type other than a parameterized type
  4019      * (4.5) acts as an identity conversion (5.1.1). Capture
  4020      * conversions never require a special action at run time and
  4021      * therefore never throw an exception at run time.
  4023      * Capture conversion is not applied recursively.
  4024      */
  4025     /**
  4026      * Capture conversion as specified by the JLS.
  4027      */
  4029     public List<Type> capture(List<Type> ts) {
  4030         List<Type> buf = List.nil();
  4031         for (Type t : ts) {
  4032             buf = buf.prepend(capture(t));
  4034         return buf.reverse();
  4037     public Type capture(Type t) {
  4038         if (!t.hasTag(CLASS)) {
  4039             return t;
  4041         if (t.getEnclosingType() != Type.noType) {
  4042             Type capturedEncl = capture(t.getEnclosingType());
  4043             if (capturedEncl != t.getEnclosingType()) {
  4044                 Type type1 = memberType(capturedEncl, t.tsym);
  4045                 t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
  4048         t = t.unannotatedType();
  4049         ClassType cls = (ClassType)t;
  4050         if (cls.isRaw() || !cls.isParameterized())
  4051             return cls;
  4053         ClassType G = (ClassType)cls.asElement().asType();
  4054         List<Type> A = G.getTypeArguments();
  4055         List<Type> T = cls.getTypeArguments();
  4056         List<Type> S = freshTypeVariables(T);
  4058         List<Type> currentA = A;
  4059         List<Type> currentT = T;
  4060         List<Type> currentS = S;
  4061         boolean captured = false;
  4062         while (!currentA.isEmpty() &&
  4063                !currentT.isEmpty() &&
  4064                !currentS.isEmpty()) {
  4065             if (currentS.head != currentT.head) {
  4066                 captured = true;
  4067                 WildcardType Ti = (WildcardType)currentT.head.unannotatedType();
  4068                 Type Ui = currentA.head.getUpperBound();
  4069                 CapturedType Si = (CapturedType)currentS.head.unannotatedType();
  4070                 if (Ui == null)
  4071                     Ui = syms.objectType;
  4072                 switch (Ti.kind) {
  4073                 case UNBOUND:
  4074                     Si.bound = subst(Ui, A, S);
  4075                     Si.lower = syms.botType;
  4076                     break;
  4077                 case EXTENDS:
  4078                     Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
  4079                     Si.lower = syms.botType;
  4080                     break;
  4081                 case SUPER:
  4082                     Si.bound = subst(Ui, A, S);
  4083                     Si.lower = Ti.getSuperBound();
  4084                     break;
  4086                 Type tmpBound = Si.bound.hasTag(UNDETVAR) ? ((UndetVar)Si.bound).qtype : Si.bound;
  4087                 Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
  4088                 if (!Si.bound.hasTag(ERROR) &&
  4089                     !Si.lower.hasTag(ERROR) &&
  4090                     isSameType(tmpBound, tmpLower, false)) {
  4091                     currentS.head = Si.bound;
  4094             currentA = currentA.tail;
  4095             currentT = currentT.tail;
  4096             currentS = currentS.tail;
  4098         if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
  4099             return erasure(t); // some "rare" type involved
  4101         if (captured)
  4102             return new ClassType(cls.getEnclosingType(), S, cls.tsym);
  4103         else
  4104             return t;
  4106     // where
  4107         public List<Type> freshTypeVariables(List<Type> types) {
  4108             ListBuffer<Type> result = new ListBuffer<>();
  4109             for (Type t : types) {
  4110                 if (t.hasTag(WILDCARD)) {
  4111                     t = t.unannotatedType();
  4112                     Type bound = ((WildcardType)t).getExtendsBound();
  4113                     if (bound == null)
  4114                         bound = syms.objectType;
  4115                     result.append(new CapturedType(capturedName,
  4116                                                    syms.noSymbol,
  4117                                                    bound,
  4118                                                    syms.botType,
  4119                                                    (WildcardType)t));
  4120                 } else {
  4121                     result.append(t);
  4124             return result.toList();
  4126     // </editor-fold>
  4128     // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
  4129     private boolean sideCast(Type from, Type to, Warner warn) {
  4130         // We are casting from type $from$ to type $to$, which are
  4131         // non-final unrelated types.  This method
  4132         // tries to reject a cast by transferring type parameters
  4133         // from $to$ to $from$ by common superinterfaces.
  4134         boolean reverse = false;
  4135         Type target = to;
  4136         if ((to.tsym.flags() & INTERFACE) == 0) {
  4137             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  4138             reverse = true;
  4139             to = from;
  4140             from = target;
  4142         List<Type> commonSupers = superClosure(to, erasure(from));
  4143         boolean giveWarning = commonSupers.isEmpty();
  4144         // The arguments to the supers could be unified here to
  4145         // get a more accurate analysis
  4146         while (commonSupers.nonEmpty()) {
  4147             Type t1 = asSuper(from, commonSupers.head.tsym);
  4148             Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
  4149             if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  4150                 return false;
  4151             giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
  4152             commonSupers = commonSupers.tail;
  4154         if (giveWarning && !isReifiable(reverse ? from : to))
  4155             warn.warn(LintCategory.UNCHECKED);
  4156         if (!allowCovariantReturns)
  4157             // reject if there is a common method signature with
  4158             // incompatible return types.
  4159             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  4160         return true;
  4163     private boolean sideCastFinal(Type from, Type to, Warner warn) {
  4164         // We are casting from type $from$ to type $to$, which are
  4165         // unrelated types one of which is final and the other of
  4166         // which is an interface.  This method
  4167         // tries to reject a cast by transferring type parameters
  4168         // from the final class to the interface.
  4169         boolean reverse = false;
  4170         Type target = to;
  4171         if ((to.tsym.flags() & INTERFACE) == 0) {
  4172             Assert.check((from.tsym.flags() & INTERFACE) != 0);
  4173             reverse = true;
  4174             to = from;
  4175             from = target;
  4177         Assert.check((from.tsym.flags() & FINAL) != 0);
  4178         Type t1 = asSuper(from, to.tsym);
  4179         if (t1 == null) return false;
  4180         Type t2 = to;
  4181         if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
  4182             return false;
  4183         if (!allowCovariantReturns)
  4184             // reject if there is a common method signature with
  4185             // incompatible return types.
  4186             chk.checkCompatibleAbstracts(warn.pos(), from, to);
  4187         if (!isReifiable(target) &&
  4188             (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
  4189             warn.warn(LintCategory.UNCHECKED);
  4190         return true;
  4193     private boolean giveWarning(Type from, Type to) {
  4194         List<Type> bounds = to.isCompound() ?
  4195                 ((IntersectionClassType)to.unannotatedType()).getComponents() : List.of(to);
  4196         for (Type b : bounds) {
  4197             Type subFrom = asSub(from, b.tsym);
  4198             if (b.isParameterized() &&
  4199                     (!(isUnbounded(b) ||
  4200                     isSubtype(from, b) ||
  4201                     ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
  4202                 return true;
  4205         return false;
  4208     private List<Type> superClosure(Type t, Type s) {
  4209         List<Type> cl = List.nil();
  4210         for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
  4211             if (isSubtype(s, erasure(l.head))) {
  4212                 cl = insert(cl, l.head);
  4213             } else {
  4214                 cl = union(cl, superClosure(l.head, s));
  4217         return cl;
  4220     private boolean containsTypeEquivalent(Type t, Type s) {
  4221         return
  4222             isSameType(t, s) || // shortcut
  4223             containsType(t, s) && containsType(s, t);
  4226     // <editor-fold defaultstate="collapsed" desc="adapt">
  4227     /**
  4228      * Adapt a type by computing a substitution which maps a source
  4229      * type to a target type.
  4231      * @param source    the source type
  4232      * @param target    the target type
  4233      * @param from      the type variables of the computed substitution
  4234      * @param to        the types of the computed substitution.
  4235      */
  4236     public void adapt(Type source,
  4237                        Type target,
  4238                        ListBuffer<Type> from,
  4239                        ListBuffer<Type> to) throws AdaptFailure {
  4240         new Adapter(from, to).adapt(source, target);
  4243     class Adapter extends SimpleVisitor<Void, Type> {
  4245         ListBuffer<Type> from;
  4246         ListBuffer<Type> to;
  4247         Map<Symbol,Type> mapping;
  4249         Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
  4250             this.from = from;
  4251             this.to = to;
  4252             mapping = new HashMap<Symbol,Type>();
  4255         public void adapt(Type source, Type target) throws AdaptFailure {
  4256             visit(source, target);
  4257             List<Type> fromList = from.toList();
  4258             List<Type> toList = to.toList();
  4259             while (!fromList.isEmpty()) {
  4260                 Type val = mapping.get(fromList.head.tsym);
  4261                 if (toList.head != val)
  4262                     toList.head = val;
  4263                 fromList = fromList.tail;
  4264                 toList = toList.tail;
  4268         @Override
  4269         public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
  4270             if (target.hasTag(CLASS))
  4271                 adaptRecursive(source.allparams(), target.allparams());
  4272             return null;
  4275         @Override
  4276         public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
  4277             if (target.hasTag(ARRAY))
  4278                 adaptRecursive(elemtype(source), elemtype(target));
  4279             return null;
  4282         @Override
  4283         public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
  4284             if (source.isExtendsBound())
  4285                 adaptRecursive(wildUpperBound(source), wildUpperBound(target));
  4286             else if (source.isSuperBound())
  4287                 adaptRecursive(wildLowerBound(source), wildLowerBound(target));
  4288             return null;
  4291         @Override
  4292         public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
  4293             // Check to see if there is
  4294             // already a mapping for $source$, in which case
  4295             // the old mapping will be merged with the new
  4296             Type val = mapping.get(source.tsym);
  4297             if (val != null) {
  4298                 if (val.isSuperBound() && target.isSuperBound()) {
  4299                     val = isSubtype(wildLowerBound(val), wildLowerBound(target))
  4300                         ? target : val;
  4301                 } else if (val.isExtendsBound() && target.isExtendsBound()) {
  4302                     val = isSubtype(wildUpperBound(val), wildUpperBound(target))
  4303                         ? val : target;
  4304                 } else if (!isSameType(val, target)) {
  4305                     throw new AdaptFailure();
  4307             } else {
  4308                 val = target;
  4309                 from.append(source);
  4310                 to.append(target);
  4312             mapping.put(source.tsym, val);
  4313             return null;
  4316         @Override
  4317         public Void visitType(Type source, Type target) {
  4318             return null;
  4321         private Set<TypePair> cache = new HashSet<TypePair>();
  4323         private void adaptRecursive(Type source, Type target) {
  4324             TypePair pair = new TypePair(source, target);
  4325             if (cache.add(pair)) {
  4326                 try {
  4327                     visit(source, target);
  4328                 } finally {
  4329                     cache.remove(pair);
  4334         private void adaptRecursive(List<Type> source, List<Type> target) {
  4335             if (source.length() == target.length()) {
  4336                 while (source.nonEmpty()) {
  4337                     adaptRecursive(source.head, target.head);
  4338                     source = source.tail;
  4339                     target = target.tail;
  4345     public static class AdaptFailure extends RuntimeException {
  4346         static final long serialVersionUID = -7490231548272701566L;
  4349     private void adaptSelf(Type t,
  4350                            ListBuffer<Type> from,
  4351                            ListBuffer<Type> to) {
  4352         try {
  4353             //if (t.tsym.type != t)
  4354                 adapt(t.tsym.type, t, from, to);
  4355         } catch (AdaptFailure ex) {
  4356             // Adapt should never fail calculating a mapping from
  4357             // t.tsym.type to t as there can be no merge problem.
  4358             throw new AssertionError(ex);
  4361     // </editor-fold>
  4363     /**
  4364      * Rewrite all type variables (universal quantifiers) in the given
  4365      * type to wildcards (existential quantifiers).  This is used to
  4366      * determine if a cast is allowed.  For example, if high is true
  4367      * and {@code T <: Number}, then {@code List<T>} is rewritten to
  4368      * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
  4369      * List<? extends Number>} a {@code List<T>} can be cast to {@code
  4370      * List<Integer>} with a warning.
  4371      * @param t a type
  4372      * @param high if true return an upper bound; otherwise a lower
  4373      * bound
  4374      * @param rewriteTypeVars only rewrite captured wildcards if false;
  4375      * otherwise rewrite all type variables
  4376      * @return the type rewritten with wildcards (existential
  4377      * quantifiers) only
  4378      */
  4379     private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
  4380         return new Rewriter(high, rewriteTypeVars).visit(t);
  4383     class Rewriter extends UnaryVisitor<Type> {
  4385         boolean high;
  4386         boolean rewriteTypeVars;
  4388         Rewriter(boolean high, boolean rewriteTypeVars) {
  4389             this.high = high;
  4390             this.rewriteTypeVars = rewriteTypeVars;
  4393         @Override
  4394         public Type visitClassType(ClassType t, Void s) {
  4395             ListBuffer<Type> rewritten = new ListBuffer<Type>();
  4396             boolean changed = false;
  4397             for (Type arg : t.allparams()) {
  4398                 Type bound = visit(arg);
  4399                 if (arg != bound) {
  4400                     changed = true;
  4402                 rewritten.append(bound);
  4404             if (changed)
  4405                 return subst(t.tsym.type,
  4406                         t.tsym.type.allparams(),
  4407                         rewritten.toList());
  4408             else
  4409                 return t;
  4412         public Type visitType(Type t, Void s) {
  4413             return t;
  4416         @Override
  4417         public Type visitCapturedType(CapturedType t, Void s) {
  4418             Type w_bound = t.wildcard.type;
  4419             Type bound = w_bound.contains(t) ?
  4420                         erasure(w_bound) :
  4421                         visit(w_bound);
  4422             return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
  4425         @Override
  4426         public Type visitTypeVar(TypeVar t, Void s) {
  4427             if (rewriteTypeVars) {
  4428                 Type bound = t.bound.contains(t) ?
  4429                         erasure(t.bound) :
  4430                         visit(t.bound);
  4431                 return rewriteAsWildcardType(bound, t, EXTENDS);
  4432             } else {
  4433                 return t;
  4437         @Override
  4438         public Type visitWildcardType(WildcardType t, Void s) {
  4439             Type bound2 = visit(t.type);
  4440             return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
  4443         private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
  4444             switch (bk) {
  4445                case EXTENDS: return high ?
  4446                        makeExtendsWildcard(B(bound), formal) :
  4447                        makeExtendsWildcard(syms.objectType, formal);
  4448                case SUPER: return high ?
  4449                        makeSuperWildcard(syms.botType, formal) :
  4450                        makeSuperWildcard(B(bound), formal);
  4451                case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
  4452                default:
  4453                    Assert.error("Invalid bound kind " + bk);
  4454                    return null;
  4458         Type B(Type t) {
  4459             while (t.hasTag(WILDCARD)) {
  4460                 WildcardType w = (WildcardType)t.unannotatedType();
  4461                 t = high ?
  4462                     w.getExtendsBound() :
  4463                     w.getSuperBound();
  4464                 if (t == null) {
  4465                     t = high ? syms.objectType : syms.botType;
  4468             return t;
  4473     /**
  4474      * Create a wildcard with the given upper (extends) bound; create
  4475      * an unbounded wildcard if bound is Object.
  4477      * @param bound the upper bound
  4478      * @param formal the formal type parameter that will be
  4479      * substituted by the wildcard
  4480      */
  4481     private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
  4482         if (bound == syms.objectType) {
  4483             return new WildcardType(syms.objectType,
  4484                                     BoundKind.UNBOUND,
  4485                                     syms.boundClass,
  4486                                     formal);
  4487         } else {
  4488             return new WildcardType(bound,
  4489                                     BoundKind.EXTENDS,
  4490                                     syms.boundClass,
  4491                                     formal);
  4495     /**
  4496      * Create a wildcard with the given lower (super) bound; create an
  4497      * unbounded wildcard if bound is bottom (type of {@code null}).
  4499      * @param bound the lower bound
  4500      * @param formal the formal type parameter that will be
  4501      * substituted by the wildcard
  4502      */
  4503     private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
  4504         if (bound.hasTag(BOT)) {
  4505             return new WildcardType(syms.objectType,
  4506                                     BoundKind.UNBOUND,
  4507                                     syms.boundClass,
  4508                                     formal);
  4509         } else {
  4510             return new WildcardType(bound,
  4511                                     BoundKind.SUPER,
  4512                                     syms.boundClass,
  4513                                     formal);
  4517     /**
  4518      * A wrapper for a type that allows use in sets.
  4519      */
  4520     public static class UniqueType {
  4521         public final Type type;
  4522         final Types types;
  4524         public UniqueType(Type type, Types types) {
  4525             this.type = type;
  4526             this.types = types;
  4529         public int hashCode() {
  4530             return types.hashCode(type);
  4533         public boolean equals(Object obj) {
  4534             return (obj instanceof UniqueType) &&
  4535                 types.isSameAnnotatedType(type, ((UniqueType)obj).type);
  4538         public String toString() {
  4539             return type.toString();
  4543     // </editor-fold>
  4545     // <editor-fold defaultstate="collapsed" desc="Visitors">
  4546     /**
  4547      * A default visitor for types.  All visitor methods except
  4548      * visitType are implemented by delegating to visitType.  Concrete
  4549      * subclasses must provide an implementation of visitType and can
  4550      * override other methods as needed.
  4552      * @param <R> the return type of the operation implemented by this
  4553      * visitor; use Void if no return type is needed.
  4554      * @param <S> the type of the second argument (the first being the
  4555      * type itself) of the operation implemented by this visitor; use
  4556      * Void if a second argument is not needed.
  4557      */
  4558     public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
  4559         final public R visit(Type t, S s)               { return t.accept(this, s); }
  4560         public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
  4561         public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
  4562         public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
  4563         public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
  4564         public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
  4565         public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
  4566         public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
  4567         public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
  4568         public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
  4569         public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
  4570         // Pretend annotations don't exist
  4571         public R visitAnnotatedType(AnnotatedType t, S s) { return visit(t.unannotatedType(), s); }
  4574     /**
  4575      * A default visitor for symbols.  All visitor methods except
  4576      * visitSymbol are implemented by delegating to visitSymbol.  Concrete
  4577      * subclasses must provide an implementation of visitSymbol and can
  4578      * override other methods as needed.
  4580      * @param <R> the return type of the operation implemented by this
  4581      * visitor; use Void if no return type is needed.
  4582      * @param <S> the type of the second argument (the first being the
  4583      * symbol itself) of the operation implemented by this visitor; use
  4584      * Void if a second argument is not needed.
  4585      */
  4586     public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
  4587         final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
  4588         public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
  4589         public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
  4590         public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
  4591         public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
  4592         public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
  4593         public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
  4596     /**
  4597      * A <em>simple</em> visitor for types.  This visitor is simple as
  4598      * captured wildcards, for-all types (generic methods), and
  4599      * undetermined type variables (part of inference) are hidden.
  4600      * Captured wildcards are hidden by treating them as type
  4601      * variables and the rest are hidden by visiting their qtypes.
  4603      * @param <R> the return type of the operation implemented by this
  4604      * visitor; use Void if no return type is needed.
  4605      * @param <S> the type of the second argument (the first being the
  4606      * type itself) of the operation implemented by this visitor; use
  4607      * Void if a second argument is not needed.
  4608      */
  4609     public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
  4610         @Override
  4611         public R visitCapturedType(CapturedType t, S s) {
  4612             return visitTypeVar(t, s);
  4614         @Override
  4615         public R visitForAll(ForAll t, S s) {
  4616             return visit(t.qtype, s);
  4618         @Override
  4619         public R visitUndetVar(UndetVar t, S s) {
  4620             return visit(t.qtype, s);
  4624     /**
  4625      * A plain relation on types.  That is a 2-ary function on the
  4626      * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
  4627      * <!-- In plain text: Type x Type -> Boolean -->
  4628      */
  4629     public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
  4631     /**
  4632      * A convenience visitor for implementing operations that only
  4633      * require one argument (the type itself), that is, unary
  4634      * operations.
  4636      * @param <R> the return type of the operation implemented by this
  4637      * visitor; use Void if no return type is needed.
  4638      */
  4639     public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
  4640         final public R visit(Type t) { return t.accept(this, null); }
  4643     /**
  4644      * A visitor for implementing a mapping from types to types.  The
  4645      * default behavior of this class is to implement the identity
  4646      * mapping (mapping a type to itself).  This can be overridden in
  4647      * subclasses.
  4649      * @param <S> the type of the second argument (the first being the
  4650      * type itself) of this mapping; use Void if a second argument is
  4651      * not needed.
  4652      */
  4653     public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
  4654         final public Type visit(Type t) { return t.accept(this, null); }
  4655         public Type visitType(Type t, S s) { return t; }
  4657     // </editor-fold>
  4660     // <editor-fold defaultstate="collapsed" desc="Annotation support">
  4662     public RetentionPolicy getRetention(Attribute.Compound a) {
  4663         return getRetention(a.type.tsym);
  4666     public RetentionPolicy getRetention(Symbol sym) {
  4667         RetentionPolicy vis = RetentionPolicy.CLASS; // the default
  4668         Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
  4669         if (c != null) {
  4670             Attribute value = c.member(names.value);
  4671             if (value != null && value instanceof Attribute.Enum) {
  4672                 Name levelName = ((Attribute.Enum)value).value.name;
  4673                 if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
  4674                 else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
  4675                 else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
  4676                 else ;// /* fail soft */ throw new AssertionError(levelName);
  4679         return vis;
  4681     // </editor-fold>
  4683     // <editor-fold defaultstate="collapsed" desc="Signature Generation">
  4685     public static abstract class SignatureGenerator {
  4687         private final Types types;
  4689         protected abstract void append(char ch);
  4690         protected abstract void append(byte[] ba);
  4691         protected abstract void append(Name name);
  4692         protected void classReference(ClassSymbol c) { /* by default: no-op */ }
  4694         protected SignatureGenerator(Types types) {
  4695             this.types = types;
  4698         /**
  4699          * Assemble signature of given type in string buffer.
  4700          */
  4701         public void assembleSig(Type type) {
  4702             type = type.unannotatedType();
  4703             switch (type.getTag()) {
  4704                 case BYTE:
  4705                     append('B');
  4706                     break;
  4707                 case SHORT:
  4708                     append('S');
  4709                     break;
  4710                 case CHAR:
  4711                     append('C');
  4712                     break;
  4713                 case INT:
  4714                     append('I');
  4715                     break;
  4716                 case LONG:
  4717                     append('J');
  4718                     break;
  4719                 case FLOAT:
  4720                     append('F');
  4721                     break;
  4722                 case DOUBLE:
  4723                     append('D');
  4724                     break;
  4725                 case BOOLEAN:
  4726                     append('Z');
  4727                     break;
  4728                 case VOID:
  4729                     append('V');
  4730                     break;
  4731                 case CLASS:
  4732                     append('L');
  4733                     assembleClassSig(type);
  4734                     append(';');
  4735                     break;
  4736                 case ARRAY:
  4737                     ArrayType at = (ArrayType) type;
  4738                     append('[');
  4739                     assembleSig(at.elemtype);
  4740                     break;
  4741                 case METHOD:
  4742                     MethodType mt = (MethodType) type;
  4743                     append('(');
  4744                     assembleSig(mt.argtypes);
  4745                     append(')');
  4746                     assembleSig(mt.restype);
  4747                     if (hasTypeVar(mt.thrown)) {
  4748                         for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
  4749                             append('^');
  4750                             assembleSig(l.head);
  4753                     break;
  4754                 case WILDCARD: {
  4755                     Type.WildcardType ta = (Type.WildcardType) type;
  4756                     switch (ta.kind) {
  4757                         case SUPER:
  4758                             append('-');
  4759                             assembleSig(ta.type);
  4760                             break;
  4761                         case EXTENDS:
  4762                             append('+');
  4763                             assembleSig(ta.type);
  4764                             break;
  4765                         case UNBOUND:
  4766                             append('*');
  4767                             break;
  4768                         default:
  4769                             throw new AssertionError(ta.kind);
  4771                     break;
  4773                 case TYPEVAR:
  4774                     append('T');
  4775                     append(type.tsym.name);
  4776                     append(';');
  4777                     break;
  4778                 case FORALL:
  4779                     Type.ForAll ft = (Type.ForAll) type;
  4780                     assembleParamsSig(ft.tvars);
  4781                     assembleSig(ft.qtype);
  4782                     break;
  4783                 default:
  4784                     throw new AssertionError("typeSig " + type.getTag());
  4788         public boolean hasTypeVar(List<Type> l) {
  4789             while (l.nonEmpty()) {
  4790                 if (l.head.hasTag(TypeTag.TYPEVAR)) {
  4791                     return true;
  4793                 l = l.tail;
  4795             return false;
  4798         public void assembleClassSig(Type type) {
  4799             type = type.unannotatedType();
  4800             ClassType ct = (ClassType) type;
  4801             ClassSymbol c = (ClassSymbol) ct.tsym;
  4802             classReference(c);
  4803             Type outer = ct.getEnclosingType();
  4804             if (outer.allparams().nonEmpty()) {
  4805                 boolean rawOuter =
  4806                         c.owner.kind == Kinds.MTH || // either a local class
  4807                         c.name == types.names.empty; // or anonymous
  4808                 assembleClassSig(rawOuter
  4809                         ? types.erasure(outer)
  4810                         : outer);
  4811                 append(rawOuter ? '$' : '.');
  4812                 Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
  4813                 append(rawOuter
  4814                         ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
  4815                         : c.name);
  4816             } else {
  4817                 append(externalize(c.flatname));
  4819             if (ct.getTypeArguments().nonEmpty()) {
  4820                 append('<');
  4821                 assembleSig(ct.getTypeArguments());
  4822                 append('>');
  4826         public void assembleParamsSig(List<Type> typarams) {
  4827             append('<');
  4828             for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
  4829                 Type.TypeVar tvar = (Type.TypeVar) ts.head;
  4830                 append(tvar.tsym.name);
  4831                 List<Type> bounds = types.getBounds(tvar);
  4832                 if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
  4833                     append(':');
  4835                 for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
  4836                     append(':');
  4837                     assembleSig(l.head);
  4840             append('>');
  4843         private void assembleSig(List<Type> types) {
  4844             for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
  4845                 assembleSig(ts.head);
  4849     // </editor-fold>

mercurial