src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 09 Oct 2012 19:10:00 -0700

author
jjg
date
Tue, 09 Oct 2012 19:10:00 -0700
changeset 1357
c75be5bc5283
parent 1352
d4b3cb1ece84
child 1358
fc123bdeddb8
permissions
-rw-r--r--

8000663: clean up langtools imports
Reviewed-by: darcy

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    29 import java.util.Set;
    31 import javax.lang.model.element.ElementKind;
    32 import javax.tools.JavaFileObject;
    34 import com.sun.source.tree.IdentifierTree;
    35 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
    36 import com.sun.source.tree.MemberSelectTree;
    37 import com.sun.source.tree.TreeVisitor;
    38 import com.sun.source.util.SimpleTreeVisitor;
    39 import com.sun.tools.javac.code.*;
    40 import com.sun.tools.javac.code.Lint.LintCategory;
    41 import com.sun.tools.javac.code.Symbol.*;
    42 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.comp.Check.CheckContext;
    44 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
    45 import com.sun.tools.javac.comp.Infer.InferenceContext;
    46 import com.sun.tools.javac.comp.Infer.InferenceContext.FreeTypeListener;
    47 import com.sun.tools.javac.jvm.*;
    48 import com.sun.tools.javac.jvm.Target;
    49 import com.sun.tools.javac.tree.*;
    50 import com.sun.tools.javac.tree.JCTree.*;
    51 import com.sun.tools.javac.util.*;
    52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    53 import com.sun.tools.javac.util.List;
    54 import static com.sun.tools.javac.code.Flags.*;
    55 import static com.sun.tools.javac.code.Flags.ANNOTATION;
    56 import static com.sun.tools.javac.code.Flags.BLOCK;
    57 import static com.sun.tools.javac.code.Kinds.*;
    58 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
    59 import static com.sun.tools.javac.code.TypeTags.*;
    60 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
    61 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    63 /** This is the main context-dependent analysis phase in GJC. It
    64  *  encompasses name resolution, type checking and constant folding as
    65  *  subtasks. Some subtasks involve auxiliary classes.
    66  *  @see Check
    67  *  @see Resolve
    68  *  @see ConstFold
    69  *  @see Infer
    70  *
    71  *  <p><b>This is NOT part of any supported API.
    72  *  If you write code that depends on this, you do so at your own risk.
    73  *  This code and its internal interfaces are subject to change or
    74  *  deletion without notice.</b>
    75  */
    76 public class Attr extends JCTree.Visitor {
    77     protected static final Context.Key<Attr> attrKey =
    78         new Context.Key<Attr>();
    80     final Names names;
    81     final Log log;
    82     final Symtab syms;
    83     final Resolve rs;
    84     final Infer infer;
    85     final DeferredAttr deferredAttr;
    86     final Check chk;
    87     final Flow flow;
    88     final MemberEnter memberEnter;
    89     final TreeMaker make;
    90     final ConstFold cfolder;
    91     final Enter enter;
    92     final Target target;
    93     final Types types;
    94     final JCDiagnostic.Factory diags;
    95     final Annotate annotate;
    96     final DeferredLintHandler deferredLintHandler;
    98     public static Attr instance(Context context) {
    99         Attr instance = context.get(attrKey);
   100         if (instance == null)
   101             instance = new Attr(context);
   102         return instance;
   103     }
   105     protected Attr(Context context) {
   106         context.put(attrKey, this);
   108         names = Names.instance(context);
   109         log = Log.instance(context);
   110         syms = Symtab.instance(context);
   111         rs = Resolve.instance(context);
   112         chk = Check.instance(context);
   113         flow = Flow.instance(context);
   114         memberEnter = MemberEnter.instance(context);
   115         make = TreeMaker.instance(context);
   116         enter = Enter.instance(context);
   117         infer = Infer.instance(context);
   118         deferredAttr = DeferredAttr.instance(context);
   119         cfolder = ConstFold.instance(context);
   120         target = Target.instance(context);
   121         types = Types.instance(context);
   122         diags = JCDiagnostic.Factory.instance(context);
   123         annotate = Annotate.instance(context);
   124         deferredLintHandler = DeferredLintHandler.instance(context);
   126         Options options = Options.instance(context);
   128         Source source = Source.instance(context);
   129         allowGenerics = source.allowGenerics();
   130         allowVarargs = source.allowVarargs();
   131         allowEnums = source.allowEnums();
   132         allowBoxing = source.allowBoxing();
   133         allowCovariantReturns = source.allowCovariantReturns();
   134         allowAnonOuterThis = source.allowAnonOuterThis();
   135         allowStringsInSwitch = source.allowStringsInSwitch();
   136         allowPoly = source.allowPoly() && options.isSet("allowPoly");
   137         allowLambda = source.allowLambda();
   138         sourceName = source.name;
   139         relax = (options.isSet("-retrofit") ||
   140                  options.isSet("-relax"));
   141         findDiamonds = options.get("findDiamond") != null &&
   142                  source.allowDiamond();
   143         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
   144         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
   146         statInfo = new ResultInfo(NIL, Type.noType);
   147         varInfo = new ResultInfo(VAR, Type.noType);
   148         unknownExprInfo = new ResultInfo(VAL, Type.noType);
   149         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
   150         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
   151     }
   153     /** Switch: relax some constraints for retrofit mode.
   154      */
   155     boolean relax;
   157     /** Switch: support target-typing inference
   158      */
   159     boolean allowPoly;
   161     /** Switch: support generics?
   162      */
   163     boolean allowGenerics;
   165     /** Switch: allow variable-arity methods.
   166      */
   167     boolean allowVarargs;
   169     /** Switch: support enums?
   170      */
   171     boolean allowEnums;
   173     /** Switch: support boxing and unboxing?
   174      */
   175     boolean allowBoxing;
   177     /** Switch: support covariant result types?
   178      */
   179     boolean allowCovariantReturns;
   181     /** Switch: support lambda expressions ?
   182      */
   183     boolean allowLambda;
   185     /** Switch: allow references to surrounding object from anonymous
   186      * objects during constructor call?
   187      */
   188     boolean allowAnonOuterThis;
   190     /** Switch: generates a warning if diamond can be safely applied
   191      *  to a given new expression
   192      */
   193     boolean findDiamonds;
   195     /**
   196      * Internally enables/disables diamond finder feature
   197      */
   198     static final boolean allowDiamondFinder = true;
   200     /**
   201      * Switch: warn about use of variable before declaration?
   202      * RFE: 6425594
   203      */
   204     boolean useBeforeDeclarationWarning;
   206     /**
   207      * Switch: generate warnings whenever an anonymous inner class that is convertible
   208      * to a lambda expression is found
   209      */
   210     boolean identifyLambdaCandidate;
   212     /**
   213      * Switch: allow strings in switch?
   214      */
   215     boolean allowStringsInSwitch;
   217     /**
   218      * Switch: name of source level; used for error reporting.
   219      */
   220     String sourceName;
   222     /** Check kind and type of given tree against protokind and prototype.
   223      *  If check succeeds, store type in tree and return it.
   224      *  If check fails, store errType in tree and return it.
   225      *  No checks are performed if the prototype is a method type.
   226      *  It is not necessary in this case since we know that kind and type
   227      *  are correct.
   228      *
   229      *  @param tree     The tree whose kind and type is checked
   230      *  @param owntype  The computed type of the tree
   231      *  @param ownkind  The computed kind of the tree
   232      *  @param resultInfo  The expected result of the tree
   233      */
   234     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
   235         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
   236         Type owntype = found;
   237         if (owntype.tag != ERROR && resultInfo.pt.tag != METHOD && resultInfo.pt.tag != FORALL) {
   238             if (inferenceContext.free(found)) {
   239                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
   240                     @Override
   241                     public void typesInferred(InferenceContext inferenceContext) {
   242                         ResultInfo pendingResult =
   243                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt, types));
   244                         check(tree, inferenceContext.asInstType(found, types), ownkind, pendingResult);
   245                     }
   246                 });
   247                 return tree.type = resultInfo.pt;
   248             } else {
   249                 if ((ownkind & ~resultInfo.pkind) == 0) {
   250                     owntype = resultInfo.check(tree, owntype);
   251                 } else {
   252                     log.error(tree.pos(), "unexpected.type",
   253                             kindNames(resultInfo.pkind),
   254                             kindName(ownkind));
   255                     owntype = types.createErrorType(owntype);
   256                 }
   257             }
   258         }
   259         tree.type = owntype;
   260         return owntype;
   261     }
   263     /** Is given blank final variable assignable, i.e. in a scope where it
   264      *  may be assigned to even though it is final?
   265      *  @param v      The blank final variable.
   266      *  @param env    The current environment.
   267      */
   268     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
   269         Symbol owner = owner(env);
   270            // owner refers to the innermost variable, method or
   271            // initializer block declaration at this point.
   272         return
   273             v.owner == owner
   274             ||
   275             ((owner.name == names.init ||    // i.e. we are in a constructor
   276               owner.kind == VAR ||           // i.e. we are in a variable initializer
   277               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
   278              &&
   279              v.owner == owner.owner
   280              &&
   281              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
   282     }
   284     /**
   285      * Return the innermost enclosing owner symbol in a given attribution context
   286      */
   287     Symbol owner(Env<AttrContext> env) {
   288         while (true) {
   289             switch (env.tree.getTag()) {
   290                 case VARDEF:
   291                     //a field can be owner
   292                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
   293                     if (vsym.owner.kind == TYP) {
   294                         return vsym;
   295                     }
   296                     break;
   297                 case METHODDEF:
   298                     //method def is always an owner
   299                     return ((JCMethodDecl)env.tree).sym;
   300                 case CLASSDEF:
   301                     //class def is always an owner
   302                     return ((JCClassDecl)env.tree).sym;
   303                 case LAMBDA:
   304                     //a lambda is an owner - return a fresh synthetic method symbol
   305                     return new MethodSymbol(0, names.empty, null, syms.methodClass);
   306                 case BLOCK:
   307                     //static/instance init blocks are owner
   308                     Symbol blockSym = env.info.scope.owner;
   309                     if ((blockSym.flags() & BLOCK) != 0) {
   310                         return blockSym;
   311                     }
   312                     break;
   313                 case TOPLEVEL:
   314                     //toplevel is always an owner (for pkge decls)
   315                     return env.info.scope.owner;
   316             }
   317             Assert.checkNonNull(env.next);
   318             env = env.next;
   319         }
   320     }
   322     /** Check that variable can be assigned to.
   323      *  @param pos    The current source code position.
   324      *  @param v      The assigned varaible
   325      *  @param base   If the variable is referred to in a Select, the part
   326      *                to the left of the `.', null otherwise.
   327      *  @param env    The current environment.
   328      */
   329     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
   330         if ((v.flags() & FINAL) != 0 &&
   331             ((v.flags() & HASINIT) != 0
   332              ||
   333              !((base == null ||
   334                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
   335                isAssignableAsBlankFinal(v, env)))) {
   336             if (v.isResourceVariable()) { //TWR resource
   337                 log.error(pos, "try.resource.may.not.be.assigned", v);
   338             } else {
   339                 log.error(pos, "cant.assign.val.to.final.var", v);
   340             }
   341         }
   342     }
   344     /** Does tree represent a static reference to an identifier?
   345      *  It is assumed that tree is either a SELECT or an IDENT.
   346      *  We have to weed out selects from non-type names here.
   347      *  @param tree    The candidate tree.
   348      */
   349     boolean isStaticReference(JCTree tree) {
   350         if (tree.hasTag(SELECT)) {
   351             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
   352             if (lsym == null || lsym.kind != TYP) {
   353                 return false;
   354             }
   355         }
   356         return true;
   357     }
   359     /** Is this symbol a type?
   360      */
   361     static boolean isType(Symbol sym) {
   362         return sym != null && sym.kind == TYP;
   363     }
   365     /** The current `this' symbol.
   366      *  @param env    The current environment.
   367      */
   368     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
   369         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
   370     }
   372     /** Attribute a parsed identifier.
   373      * @param tree Parsed identifier name
   374      * @param topLevel The toplevel to use
   375      */
   376     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
   377         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
   378         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
   379                                            syms.errSymbol.name,
   380                                            null, null, null, null);
   381         localEnv.enclClass.sym = syms.errSymbol;
   382         return tree.accept(identAttributer, localEnv);
   383     }
   384     // where
   385         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
   386         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
   387             @Override
   388             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
   389                 Symbol site = visit(node.getExpression(), env);
   390                 if (site.kind == ERR)
   391                     return site;
   392                 Name name = (Name)node.getIdentifier();
   393                 if (site.kind == PCK) {
   394                     env.toplevel.packge = (PackageSymbol)site;
   395                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
   396                 } else {
   397                     env.enclClass.sym = (ClassSymbol)site;
   398                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
   399                 }
   400             }
   402             @Override
   403             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
   404                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
   405             }
   406         }
   408     public Type coerce(Type etype, Type ttype) {
   409         return cfolder.coerce(etype, ttype);
   410     }
   412     public Type attribType(JCTree node, TypeSymbol sym) {
   413         Env<AttrContext> env = enter.typeEnvs.get(sym);
   414         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
   415         return attribTree(node, localEnv, unknownTypeInfo);
   416     }
   418     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
   419         // Attribute qualifying package or class.
   420         JCFieldAccess s = (JCFieldAccess)tree.qualid;
   421         return attribTree(s.selected,
   422                        env,
   423                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
   424                        Type.noType));
   425     }
   427     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
   428         breakTree = tree;
   429         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   430         try {
   431             attribExpr(expr, env);
   432         } catch (BreakAttr b) {
   433             return b.env;
   434         } catch (AssertionError ae) {
   435             if (ae.getCause() instanceof BreakAttr) {
   436                 return ((BreakAttr)(ae.getCause())).env;
   437             } else {
   438                 throw ae;
   439             }
   440         } finally {
   441             breakTree = null;
   442             log.useSource(prev);
   443         }
   444         return env;
   445     }
   447     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
   448         breakTree = tree;
   449         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
   450         try {
   451             attribStat(stmt, env);
   452         } catch (BreakAttr b) {
   453             return b.env;
   454         } catch (AssertionError ae) {
   455             if (ae.getCause() instanceof BreakAttr) {
   456                 return ((BreakAttr)(ae.getCause())).env;
   457             } else {
   458                 throw ae;
   459             }
   460         } finally {
   461             breakTree = null;
   462             log.useSource(prev);
   463         }
   464         return env;
   465     }
   467     private JCTree breakTree = null;
   469     private static class BreakAttr extends RuntimeException {
   470         static final long serialVersionUID = -6924771130405446405L;
   471         private Env<AttrContext> env;
   472         private BreakAttr(Env<AttrContext> env) {
   473             this.env = copyEnv(env);
   474         }
   476         private Env<AttrContext> copyEnv(Env<AttrContext> env) {
   477             Env<AttrContext> newEnv =
   478                     env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
   479             if (newEnv.outer != null) {
   480                 newEnv.outer = copyEnv(newEnv.outer);
   481             }
   482             return newEnv;
   483         }
   485         private Scope copyScope(Scope sc) {
   486             Scope newScope = new Scope(sc.owner);
   487             List<Symbol> elemsList = List.nil();
   488             while (sc != null) {
   489                 for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
   490                     elemsList = elemsList.prepend(e.sym);
   491                 }
   492                 sc = sc.next;
   493             }
   494             for (Symbol s : elemsList) {
   495                 newScope.enter(s);
   496             }
   497             return newScope;
   498         }
   499     }
   501     class ResultInfo {
   502         final int pkind;
   503         final Type pt;
   504         final CheckContext checkContext;
   506         ResultInfo(int pkind, Type pt) {
   507             this(pkind, pt, chk.basicHandler);
   508         }
   510         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
   511             this.pkind = pkind;
   512             this.pt = pt;
   513             this.checkContext = checkContext;
   514         }
   516         protected Type check(final DiagnosticPosition pos, final Type found) {
   517             return chk.checkType(pos, found, pt, checkContext);
   518         }
   520         protected ResultInfo dup(Type newPt) {
   521             return new ResultInfo(pkind, newPt, checkContext);
   522         }
   523     }
   525     class RecoveryInfo extends ResultInfo {
   527         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
   528             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
   529                 @Override
   530                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
   531                     return deferredAttrContext;
   532                 }
   533                 @Override
   534                 public boolean compatible(Type found, Type req, Warner warn) {
   535                     return true;
   536                 }
   537                 @Override
   538                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
   539                     //do nothing
   540                 }
   541             });
   542         }
   544         @Override
   545         protected Type check(DiagnosticPosition pos, Type found) {
   546             return chk.checkNonVoid(pos, super.check(pos, found));
   547         }
   548     }
   550     final ResultInfo statInfo;
   551     final ResultInfo varInfo;
   552     final ResultInfo unknownExprInfo;
   553     final ResultInfo unknownTypeInfo;
   554     final ResultInfo recoveryInfo;
   556     Type pt() {
   557         return resultInfo.pt;
   558     }
   560     int pkind() {
   561         return resultInfo.pkind;
   562     }
   564 /* ************************************************************************
   565  * Visitor methods
   566  *************************************************************************/
   568     /** Visitor argument: the current environment.
   569      */
   570     Env<AttrContext> env;
   572     /** Visitor argument: the currently expected attribution result.
   573      */
   574     ResultInfo resultInfo;
   576     /** Visitor result: the computed type.
   577      */
   578     Type result;
   580     /** Visitor method: attribute a tree, catching any completion failure
   581      *  exceptions. Return the tree's type.
   582      *
   583      *  @param tree    The tree to be visited.
   584      *  @param env     The environment visitor argument.
   585      *  @param resultInfo   The result info visitor argument.
   586      */
   587     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
   588         Env<AttrContext> prevEnv = this.env;
   589         ResultInfo prevResult = this.resultInfo;
   590         try {
   591             this.env = env;
   592             this.resultInfo = resultInfo;
   593             tree.accept(this);
   594             if (tree == breakTree)
   595                 throw new BreakAttr(env);
   596             return result;
   597         } catch (CompletionFailure ex) {
   598             tree.type = syms.errType;
   599             return chk.completionError(tree.pos(), ex);
   600         } finally {
   601             this.env = prevEnv;
   602             this.resultInfo = prevResult;
   603         }
   604     }
   606     /** Derived visitor method: attribute an expression tree.
   607      */
   608     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
   609         return attribTree(tree, env, new ResultInfo(VAL, pt.tag != ERROR ? pt : Type.noType));
   610     }
   612     /** Derived visitor method: attribute an expression tree with
   613      *  no constraints on the computed type.
   614      */
   615     Type attribExpr(JCTree tree, Env<AttrContext> env) {
   616         return attribTree(tree, env, unknownExprInfo);
   617     }
   619     /** Derived visitor method: attribute a type tree.
   620      */
   621     Type attribType(JCTree tree, Env<AttrContext> env) {
   622         Type result = attribType(tree, env, Type.noType);
   623         return result;
   624     }
   626     /** Derived visitor method: attribute a type tree.
   627      */
   628     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
   629         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
   630         return result;
   631     }
   633     /** Derived visitor method: attribute a statement or definition tree.
   634      */
   635     public Type attribStat(JCTree tree, Env<AttrContext> env) {
   636         return attribTree(tree, env, statInfo);
   637     }
   639     /** Attribute a list of expressions, returning a list of types.
   640      */
   641     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
   642         ListBuffer<Type> ts = new ListBuffer<Type>();
   643         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   644             ts.append(attribExpr(l.head, env, pt));
   645         return ts.toList();
   646     }
   648     /** Attribute a list of statements, returning nothing.
   649      */
   650     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
   651         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
   652             attribStat(l.head, env);
   653     }
   655     /** Attribute the arguments in a method call, returning a list of types.
   656      */
   657     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
   658         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   659         for (JCExpression arg : trees) {
   660             Type argtype = allowPoly && TreeInfo.isPoly(arg, env.tree) ?
   661                     deferredAttr.new DeferredType(arg, env) :
   662                     chk.checkNonVoid(arg, attribExpr(arg, env, Infer.anyPoly));
   663             argtypes.append(argtype);
   664         }
   665         return argtypes.toList();
   666     }
   668     /** Attribute a type argument list, returning a list of types.
   669      *  Caller is responsible for calling checkRefTypes.
   670      */
   671     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
   672         ListBuffer<Type> argtypes = new ListBuffer<Type>();
   673         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
   674             argtypes.append(attribType(l.head, env));
   675         return argtypes.toList();
   676     }
   678     /** Attribute a type argument list, returning a list of types.
   679      *  Check that all the types are references.
   680      */
   681     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
   682         List<Type> types = attribAnyTypes(trees, env);
   683         return chk.checkRefTypes(trees, types);
   684     }
   686     /**
   687      * Attribute type variables (of generic classes or methods).
   688      * Compound types are attributed later in attribBounds.
   689      * @param typarams the type variables to enter
   690      * @param env      the current environment
   691      */
   692     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
   693         for (JCTypeParameter tvar : typarams) {
   694             TypeVar a = (TypeVar)tvar.type;
   695             a.tsym.flags_field |= UNATTRIBUTED;
   696             a.bound = Type.noType;
   697             if (!tvar.bounds.isEmpty()) {
   698                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
   699                 for (JCExpression bound : tvar.bounds.tail)
   700                     bounds = bounds.prepend(attribType(bound, env));
   701                 types.setBounds(a, bounds.reverse());
   702             } else {
   703                 // if no bounds are given, assume a single bound of
   704                 // java.lang.Object.
   705                 types.setBounds(a, List.of(syms.objectType));
   706             }
   707             a.tsym.flags_field &= ~UNATTRIBUTED;
   708         }
   709         for (JCTypeParameter tvar : typarams)
   710             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
   711         attribStats(typarams, env);
   712     }
   714     void attribBounds(List<JCTypeParameter> typarams) {
   715         for (JCTypeParameter typaram : typarams) {
   716             Type bound = typaram.type.getUpperBound();
   717             if (bound != null && bound.tsym instanceof ClassSymbol) {
   718                 ClassSymbol c = (ClassSymbol)bound.tsym;
   719                 if ((c.flags_field & COMPOUND) != 0) {
   720                     Assert.check((c.flags_field & UNATTRIBUTED) != 0, c);
   721                     attribClass(typaram.pos(), c);
   722                 }
   723             }
   724         }
   725     }
   727     /**
   728      * Attribute the type references in a list of annotations.
   729      */
   730     void attribAnnotationTypes(List<JCAnnotation> annotations,
   731                                Env<AttrContext> env) {
   732         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
   733             JCAnnotation a = al.head;
   734             attribType(a.annotationType, env);
   735         }
   736     }
   738     /**
   739      * Attribute a "lazy constant value".
   740      *  @param env         The env for the const value
   741      *  @param initializer The initializer for the const value
   742      *  @param type        The expected type, or null
   743      *  @see VarSymbol#setlazyConstValue
   744      */
   745     public Object attribLazyConstantValue(Env<AttrContext> env,
   746                                       JCTree.JCExpression initializer,
   747                                       Type type) {
   749         // in case no lint value has been set up for this env, scan up
   750         // env stack looking for smallest enclosing env for which it is set.
   751         Env<AttrContext> lintEnv = env;
   752         while (lintEnv.info.lint == null)
   753             lintEnv = lintEnv.next;
   755         // Having found the enclosing lint value, we can initialize the lint value for this class
   756         // ... but ...
   757         // There's a problem with evaluating annotations in the right order, such that
   758         // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
   759         // null. In that case, calling augment will throw an NPE. To avoid this, for now we
   760         // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
   761         if (env.info.enclVar.annotations.pendingCompletion()) {
   762             env.info.lint = lintEnv.info.lint;
   763         } else {
   764             env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.annotations,
   765                                                       env.info.enclVar.flags());
   766         }
   768         Lint prevLint = chk.setLint(env.info.lint);
   769         JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
   771         try {
   772             Type itype = attribExpr(initializer, env, type);
   773             if (itype.constValue() != null)
   774                 return coerce(itype, type).constValue();
   775             else
   776                 return null;
   777         } finally {
   778             env.info.lint = prevLint;
   779             log.useSource(prevSource);
   780         }
   781     }
   783     /** Attribute type reference in an `extends' or `implements' clause.
   784      *  Supertypes of anonymous inner classes are usually already attributed.
   785      *
   786      *  @param tree              The tree making up the type reference.
   787      *  @param env               The environment current at the reference.
   788      *  @param classExpected     true if only a class is expected here.
   789      *  @param interfaceExpected true if only an interface is expected here.
   790      */
   791     Type attribBase(JCTree tree,
   792                     Env<AttrContext> env,
   793                     boolean classExpected,
   794                     boolean interfaceExpected,
   795                     boolean checkExtensible) {
   796         Type t = tree.type != null ?
   797             tree.type :
   798             attribType(tree, env);
   799         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
   800     }
   801     Type checkBase(Type t,
   802                    JCTree tree,
   803                    Env<AttrContext> env,
   804                    boolean classExpected,
   805                    boolean interfaceExpected,
   806                    boolean checkExtensible) {
   807         if (t.isErroneous())
   808             return t;
   809         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
   810             // check that type variable is already visible
   811             if (t.getUpperBound() == null) {
   812                 log.error(tree.pos(), "illegal.forward.ref");
   813                 return types.createErrorType(t);
   814             }
   815         } else {
   816             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
   817         }
   818         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
   819             log.error(tree.pos(), "intf.expected.here");
   820             // return errType is necessary since otherwise there might
   821             // be undetected cycles which cause attribution to loop
   822             return types.createErrorType(t);
   823         } else if (checkExtensible &&
   824                    classExpected &&
   825                    (t.tsym.flags() & INTERFACE) != 0) {
   826                 log.error(tree.pos(), "no.intf.expected.here");
   827             return types.createErrorType(t);
   828         }
   829         if (checkExtensible &&
   830             ((t.tsym.flags() & FINAL) != 0)) {
   831             log.error(tree.pos(),
   832                       "cant.inherit.from.final", t.tsym);
   833         }
   834         chk.checkNonCyclic(tree.pos(), t);
   835         return t;
   836     }
   838     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
   839         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
   840         id.type = env.info.scope.owner.type;
   841         id.sym = env.info.scope.owner;
   842         return id.type;
   843     }
   845     public void visitClassDef(JCClassDecl tree) {
   846         // Local classes have not been entered yet, so we need to do it now:
   847         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
   848             enter.classEnter(tree, env);
   850         ClassSymbol c = tree.sym;
   851         if (c == null) {
   852             // exit in case something drastic went wrong during enter.
   853             result = null;
   854         } else {
   855             // make sure class has been completed:
   856             c.complete();
   858             // If this class appears as an anonymous class
   859             // in a superclass constructor call where
   860             // no explicit outer instance is given,
   861             // disable implicit outer instance from being passed.
   862             // (This would be an illegal access to "this before super").
   863             if (env.info.isSelfCall &&
   864                 env.tree.hasTag(NEWCLASS) &&
   865                 ((JCNewClass) env.tree).encl == null)
   866             {
   867                 c.flags_field |= NOOUTERTHIS;
   868             }
   869             attribClass(tree.pos(), c);
   870             result = tree.type = c.type;
   871         }
   872     }
   874     public void visitMethodDef(JCMethodDecl tree) {
   875         MethodSymbol m = tree.sym;
   877         Lint lint = env.info.lint.augment(m.annotations, m.flags());
   878         Lint prevLint = chk.setLint(lint);
   879         MethodSymbol prevMethod = chk.setMethod(m);
   880         try {
   881             deferredLintHandler.flush(tree.pos());
   882             chk.checkDeprecatedAnnotation(tree.pos(), m);
   884             attribBounds(tree.typarams);
   886             // If we override any other methods, check that we do so properly.
   887             // JLS ???
   888             if (m.isStatic()) {
   889                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
   890             } else {
   891                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
   892             }
   893             chk.checkOverride(tree, m);
   895             // Create a new environment with local scope
   896             // for attributing the method.
   897             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
   899             localEnv.info.lint = lint;
   901             // Enter all type parameters into the local method scope.
   902             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
   903                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
   905             ClassSymbol owner = env.enclClass.sym;
   906             if ((owner.flags() & ANNOTATION) != 0 &&
   907                 tree.params.nonEmpty())
   908                 log.error(tree.params.head.pos(),
   909                           "intf.annotation.members.cant.have.params");
   911             // Attribute all value parameters.
   912             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
   913                 attribStat(l.head, localEnv);
   914             }
   916             chk.checkVarargsMethodDecl(localEnv, tree);
   918             // Check that type parameters are well-formed.
   919             chk.validate(tree.typarams, localEnv);
   921             // Check that result type is well-formed.
   922             chk.validate(tree.restype, localEnv);
   924             // annotation method checks
   925             if ((owner.flags() & ANNOTATION) != 0) {
   926                 // annotation method cannot have throws clause
   927                 if (tree.thrown.nonEmpty()) {
   928                     log.error(tree.thrown.head.pos(),
   929                             "throws.not.allowed.in.intf.annotation");
   930                 }
   931                 // annotation method cannot declare type-parameters
   932                 if (tree.typarams.nonEmpty()) {
   933                     log.error(tree.typarams.head.pos(),
   934                             "intf.annotation.members.cant.have.type.params");
   935                 }
   936                 // validate annotation method's return type (could be an annotation type)
   937                 chk.validateAnnotationType(tree.restype);
   938                 // ensure that annotation method does not clash with members of Object/Annotation
   939                 chk.validateAnnotationMethod(tree.pos(), m);
   941                 if (tree.defaultValue != null) {
   942                     // if default value is an annotation, check it is a well-formed
   943                     // annotation value (e.g. no duplicate values, no missing values, etc.)
   944                     chk.validateAnnotationTree(tree.defaultValue);
   945                 }
   946             }
   948             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
   949                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
   951             if (tree.body == null) {
   952                 // Empty bodies are only allowed for
   953                 // abstract, native, or interface methods, or for methods
   954                 // in a retrofit signature class.
   955                 if ((owner.flags() & INTERFACE) == 0 &&
   956                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
   957                     !relax)
   958                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
   959                 if (tree.defaultValue != null) {
   960                     if ((owner.flags() & ANNOTATION) == 0)
   961                         log.error(tree.pos(),
   962                                   "default.allowed.in.intf.annotation.member");
   963                 }
   964             } else if ((owner.flags() & INTERFACE) != 0) {
   965                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
   966             } else if ((tree.mods.flags & ABSTRACT) != 0) {
   967                 log.error(tree.pos(), "abstract.meth.cant.have.body");
   968             } else if ((tree.mods.flags & NATIVE) != 0) {
   969                 log.error(tree.pos(), "native.meth.cant.have.body");
   970             } else {
   971                 // Add an implicit super() call unless an explicit call to
   972                 // super(...) or this(...) is given
   973                 // or we are compiling class java.lang.Object.
   974                 if (tree.name == names.init && owner.type != syms.objectType) {
   975                     JCBlock body = tree.body;
   976                     if (body.stats.isEmpty() ||
   977                         !TreeInfo.isSelfCall(body.stats.head)) {
   978                         body.stats = body.stats.
   979                             prepend(memberEnter.SuperCall(make.at(body.pos),
   980                                                           List.<Type>nil(),
   981                                                           List.<JCVariableDecl>nil(),
   982                                                           false));
   983                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
   984                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
   985                                TreeInfo.isSuperCall(body.stats.head)) {
   986                         // enum constructors are not allowed to call super
   987                         // directly, so make sure there aren't any super calls
   988                         // in enum constructors, except in the compiler
   989                         // generated one.
   990                         log.error(tree.body.stats.head.pos(),
   991                                   "call.to.super.not.allowed.in.enum.ctor",
   992                                   env.enclClass.sym);
   993                     }
   994                 }
   996                 // Attribute method body.
   997                 attribStat(tree.body, localEnv);
   998             }
   999             localEnv.info.scope.leave();
  1000             result = tree.type = m.type;
  1001             chk.validateAnnotations(tree.mods.annotations, m);
  1003         finally {
  1004             chk.setLint(prevLint);
  1005             chk.setMethod(prevMethod);
  1009     public void visitVarDef(JCVariableDecl tree) {
  1010         // Local variables have not been entered yet, so we need to do it now:
  1011         if (env.info.scope.owner.kind == MTH) {
  1012             if (tree.sym != null) {
  1013                 // parameters have already been entered
  1014                 env.info.scope.enter(tree.sym);
  1015             } else {
  1016                 memberEnter.memberEnter(tree, env);
  1017                 annotate.flush();
  1021         VarSymbol v = tree.sym;
  1022         Lint lint = env.info.lint.augment(v.annotations, v.flags());
  1023         Lint prevLint = chk.setLint(lint);
  1025         // Check that the variable's declared type is well-formed.
  1026         chk.validate(tree.vartype, env);
  1027         deferredLintHandler.flush(tree.pos());
  1029         try {
  1030             chk.checkDeprecatedAnnotation(tree.pos(), v);
  1032             if (tree.init != null) {
  1033                 if ((v.flags_field & FINAL) != 0 &&
  1034                         !tree.init.hasTag(NEWCLASS) &&
  1035                         !tree.init.hasTag(LAMBDA) &&
  1036                         !tree.init.hasTag(REFERENCE)) {
  1037                     // In this case, `v' is final.  Ensure that it's initializer is
  1038                     // evaluated.
  1039                     v.getConstValue(); // ensure initializer is evaluated
  1040                 } else {
  1041                     // Attribute initializer in a new environment
  1042                     // with the declared variable as owner.
  1043                     // Check that initializer conforms to variable's declared type.
  1044                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
  1045                     initEnv.info.lint = lint;
  1046                     // In order to catch self-references, we set the variable's
  1047                     // declaration position to maximal possible value, effectively
  1048                     // marking the variable as undefined.
  1049                     initEnv.info.enclVar = v;
  1050                     attribExpr(tree.init, initEnv, v.type);
  1053             result = tree.type = v.type;
  1054             chk.validateAnnotations(tree.mods.annotations, v);
  1056         finally {
  1057             chk.setLint(prevLint);
  1061     public void visitSkip(JCSkip tree) {
  1062         result = null;
  1065     public void visitBlock(JCBlock tree) {
  1066         if (env.info.scope.owner.kind == TYP) {
  1067             // Block is a static or instance initializer;
  1068             // let the owner of the environment be a freshly
  1069             // created BLOCK-method.
  1070             Env<AttrContext> localEnv =
  1071                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
  1072             localEnv.info.scope.owner =
  1073                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
  1074                                  env.info.scope.owner);
  1075             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
  1076             attribStats(tree.stats, localEnv);
  1077         } else {
  1078             // Create a new local environment with a local scope.
  1079             Env<AttrContext> localEnv =
  1080                 env.dup(tree, env.info.dup(env.info.scope.dup()));
  1081             try {
  1082                 attribStats(tree.stats, localEnv);
  1083             } finally {
  1084                 localEnv.info.scope.leave();
  1087         result = null;
  1090     public void visitDoLoop(JCDoWhileLoop tree) {
  1091         attribStat(tree.body, env.dup(tree));
  1092         attribExpr(tree.cond, env, syms.booleanType);
  1093         result = null;
  1096     public void visitWhileLoop(JCWhileLoop tree) {
  1097         attribExpr(tree.cond, env, syms.booleanType);
  1098         attribStat(tree.body, env.dup(tree));
  1099         result = null;
  1102     public void visitForLoop(JCForLoop tree) {
  1103         Env<AttrContext> loopEnv =
  1104             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1105         try {
  1106             attribStats(tree.init, loopEnv);
  1107             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
  1108             loopEnv.tree = tree; // before, we were not in loop!
  1109             attribStats(tree.step, loopEnv);
  1110             attribStat(tree.body, loopEnv);
  1111             result = null;
  1113         finally {
  1114             loopEnv.info.scope.leave();
  1118     public void visitForeachLoop(JCEnhancedForLoop tree) {
  1119         Env<AttrContext> loopEnv =
  1120             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
  1121         try {
  1122             attribStat(tree.var, loopEnv);
  1123             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
  1124             chk.checkNonVoid(tree.pos(), exprType);
  1125             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
  1126             if (elemtype == null) {
  1127                 // or perhaps expr implements Iterable<T>?
  1128                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
  1129                 if (base == null) {
  1130                     log.error(tree.expr.pos(),
  1131                             "foreach.not.applicable.to.type",
  1132                             exprType,
  1133                             diags.fragment("type.req.array.or.iterable"));
  1134                     elemtype = types.createErrorType(exprType);
  1135                 } else {
  1136                     List<Type> iterableParams = base.allparams();
  1137                     elemtype = iterableParams.isEmpty()
  1138                         ? syms.objectType
  1139                         : types.upperBound(iterableParams.head);
  1142             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
  1143             loopEnv.tree = tree; // before, we were not in loop!
  1144             attribStat(tree.body, loopEnv);
  1145             result = null;
  1147         finally {
  1148             loopEnv.info.scope.leave();
  1152     public void visitLabelled(JCLabeledStatement tree) {
  1153         // Check that label is not used in an enclosing statement
  1154         Env<AttrContext> env1 = env;
  1155         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
  1156             if (env1.tree.hasTag(LABELLED) &&
  1157                 ((JCLabeledStatement) env1.tree).label == tree.label) {
  1158                 log.error(tree.pos(), "label.already.in.use",
  1159                           tree.label);
  1160                 break;
  1162             env1 = env1.next;
  1165         attribStat(tree.body, env.dup(tree));
  1166         result = null;
  1169     public void visitSwitch(JCSwitch tree) {
  1170         Type seltype = attribExpr(tree.selector, env);
  1172         Env<AttrContext> switchEnv =
  1173             env.dup(tree, env.info.dup(env.info.scope.dup()));
  1175         try {
  1177             boolean enumSwitch =
  1178                 allowEnums &&
  1179                 (seltype.tsym.flags() & Flags.ENUM) != 0;
  1180             boolean stringSwitch = false;
  1181             if (types.isSameType(seltype, syms.stringType)) {
  1182                 if (allowStringsInSwitch) {
  1183                     stringSwitch = true;
  1184                 } else {
  1185                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
  1188             if (!enumSwitch && !stringSwitch)
  1189                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
  1191             // Attribute all cases and
  1192             // check that there are no duplicate case labels or default clauses.
  1193             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
  1194             boolean hasDefault = false;      // Is there a default label?
  1195             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
  1196                 JCCase c = l.head;
  1197                 Env<AttrContext> caseEnv =
  1198                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
  1199                 try {
  1200                     if (c.pat != null) {
  1201                         if (enumSwitch) {
  1202                             Symbol sym = enumConstant(c.pat, seltype);
  1203                             if (sym == null) {
  1204                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
  1205                             } else if (!labels.add(sym)) {
  1206                                 log.error(c.pos(), "duplicate.case.label");
  1208                         } else {
  1209                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
  1210                             if (pattype.tag != ERROR) {
  1211                                 if (pattype.constValue() == null) {
  1212                                     log.error(c.pat.pos(),
  1213                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
  1214                                 } else if (labels.contains(pattype.constValue())) {
  1215                                     log.error(c.pos(), "duplicate.case.label");
  1216                                 } else {
  1217                                     labels.add(pattype.constValue());
  1221                     } else if (hasDefault) {
  1222                         log.error(c.pos(), "duplicate.default.label");
  1223                     } else {
  1224                         hasDefault = true;
  1226                     attribStats(c.stats, caseEnv);
  1227                 } finally {
  1228                     caseEnv.info.scope.leave();
  1229                     addVars(c.stats, switchEnv.info.scope);
  1233             result = null;
  1235         finally {
  1236             switchEnv.info.scope.leave();
  1239     // where
  1240         /** Add any variables defined in stats to the switch scope. */
  1241         private static void addVars(List<JCStatement> stats, Scope switchScope) {
  1242             for (;stats.nonEmpty(); stats = stats.tail) {
  1243                 JCTree stat = stats.head;
  1244                 if (stat.hasTag(VARDEF))
  1245                     switchScope.enter(((JCVariableDecl) stat).sym);
  1248     // where
  1249     /** Return the selected enumeration constant symbol, or null. */
  1250     private Symbol enumConstant(JCTree tree, Type enumType) {
  1251         if (!tree.hasTag(IDENT)) {
  1252             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
  1253             return syms.errSymbol;
  1255         JCIdent ident = (JCIdent)tree;
  1256         Name name = ident.name;
  1257         for (Scope.Entry e = enumType.tsym.members().lookup(name);
  1258              e.scope != null; e = e.next()) {
  1259             if (e.sym.kind == VAR) {
  1260                 Symbol s = ident.sym = e.sym;
  1261                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
  1262                 ident.type = s.type;
  1263                 return ((s.flags_field & Flags.ENUM) == 0)
  1264                     ? null : s;
  1267         return null;
  1270     public void visitSynchronized(JCSynchronized tree) {
  1271         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
  1272         attribStat(tree.body, env);
  1273         result = null;
  1276     public void visitTry(JCTry tree) {
  1277         // Create a new local environment with a local
  1278         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
  1279         try {
  1280             boolean isTryWithResource = tree.resources.nonEmpty();
  1281             // Create a nested environment for attributing the try block if needed
  1282             Env<AttrContext> tryEnv = isTryWithResource ?
  1283                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
  1284                 localEnv;
  1285             try {
  1286                 // Attribute resource declarations
  1287                 for (JCTree resource : tree.resources) {
  1288                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
  1289                         @Override
  1290                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1291                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
  1293                     };
  1294                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
  1295                     if (resource.hasTag(VARDEF)) {
  1296                         attribStat(resource, tryEnv);
  1297                         twrResult.check(resource, resource.type);
  1299                         //check that resource type cannot throw InterruptedException
  1300                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
  1302                         VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
  1303                         var.setData(ElementKind.RESOURCE_VARIABLE);
  1304                     } else {
  1305                         attribTree(resource, tryEnv, twrResult);
  1308                 // Attribute body
  1309                 attribStat(tree.body, tryEnv);
  1310             } finally {
  1311                 if (isTryWithResource)
  1312                     tryEnv.info.scope.leave();
  1315             // Attribute catch clauses
  1316             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
  1317                 JCCatch c = l.head;
  1318                 Env<AttrContext> catchEnv =
  1319                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
  1320                 try {
  1321                     Type ctype = attribStat(c.param, catchEnv);
  1322                     if (TreeInfo.isMultiCatch(c)) {
  1323                         //multi-catch parameter is implicitly marked as final
  1324                         c.param.sym.flags_field |= FINAL | UNION;
  1326                     if (c.param.sym.kind == Kinds.VAR) {
  1327                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
  1329                     chk.checkType(c.param.vartype.pos(),
  1330                                   chk.checkClassType(c.param.vartype.pos(), ctype),
  1331                                   syms.throwableType);
  1332                     attribStat(c.body, catchEnv);
  1333                 } finally {
  1334                     catchEnv.info.scope.leave();
  1338             // Attribute finalizer
  1339             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
  1340             result = null;
  1342         finally {
  1343             localEnv.info.scope.leave();
  1347     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
  1348         if (!resource.isErroneous() &&
  1349             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
  1350             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
  1351             Symbol close = syms.noSymbol;
  1352             Filter<JCDiagnostic> prevDeferDiagsFilter = log.deferredDiagFilter;
  1353             Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
  1354             try {
  1355                 log.deferAll();
  1356                 log.deferredDiagnostics = ListBuffer.lb();
  1357                 close = rs.resolveQualifiedMethod(pos,
  1358                         env,
  1359                         resource,
  1360                         names.close,
  1361                         List.<Type>nil(),
  1362                         List.<Type>nil());
  1364             finally {
  1365                 log.deferredDiagFilter = prevDeferDiagsFilter;
  1366                 log.deferredDiagnostics = prevDeferredDiags;
  1368             if (close.kind == MTH &&
  1369                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
  1370                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
  1371                     env.info.lint.isEnabled(LintCategory.TRY)) {
  1372                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
  1377     public void visitConditional(JCConditional tree) {
  1378         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
  1380         boolean standaloneConditional = !allowPoly ||
  1381                 pt().tag == NONE && pt() != Type.recoveryType ||
  1382                 isBooleanOrNumeric(env, tree);
  1384         if (!standaloneConditional && resultInfo.pt.tag == VOID) {
  1385             //cannot get here (i.e. it means we are returning from void method - which is already an error)
  1386             result = tree.type = types.createErrorType(resultInfo.pt);
  1387             return;
  1390         ResultInfo condInfo = standaloneConditional ?
  1391                 unknownExprInfo :
  1392                 new ResultInfo(VAL, pt(), new Check.NestedCheckContext(resultInfo.checkContext) {
  1393                     //this will use enclosing check context to check compatibility of
  1394                     //subexpression against target type; if we are in a method check context,
  1395                     //depending on whether boxing is allowed, we could have incompatibilities
  1396                     @Override
  1397                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
  1398                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
  1400                 });
  1402         Type truetype = attribTree(tree.truepart, env, condInfo);
  1403         Type falsetype = attribTree(tree.falsepart, env, condInfo);
  1405         Type owntype = standaloneConditional ? condType(tree, truetype, falsetype) : pt();
  1406         if (condtype.constValue() != null &&
  1407                 truetype.constValue() != null &&
  1408                 falsetype.constValue() != null) {
  1409             //constant folding
  1410             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
  1412         result = check(tree, owntype, VAL, resultInfo);
  1414     //where
  1415         @SuppressWarnings("fallthrough")
  1416         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
  1417             switch (tree.getTag()) {
  1418                 case LITERAL: return ((JCLiteral)tree).typetag < CLASS;
  1419                 case LAMBDA: case REFERENCE: return false;
  1420                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
  1421                 case CONDEXPR:
  1422                     JCConditional condTree = (JCConditional)tree;
  1423                     return isBooleanOrNumeric(env, condTree.truepart) &&
  1424                             isBooleanOrNumeric(env, condTree.falsepart);
  1425                 default:
  1426                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
  1427                     speculativeType = types.unboxedTypeOrType(speculativeType);
  1428                     return speculativeType.tag <= BOOLEAN;
  1432         /** Compute the type of a conditional expression, after
  1433          *  checking that it exists.  See JLS 15.25. Does not take into
  1434          *  account the special case where condition and both arms
  1435          *  are constants.
  1437          *  @param pos      The source position to be used for error
  1438          *                  diagnostics.
  1439          *  @param thentype The type of the expression's then-part.
  1440          *  @param elsetype The type of the expression's else-part.
  1441          */
  1442         private Type condType(DiagnosticPosition pos,
  1443                                Type thentype, Type elsetype) {
  1444             // If same type, that is the result
  1445             if (types.isSameType(thentype, elsetype))
  1446                 return thentype.baseType();
  1448             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
  1449                 ? thentype : types.unboxedType(thentype);
  1450             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
  1451                 ? elsetype : types.unboxedType(elsetype);
  1453             // Otherwise, if both arms can be converted to a numeric
  1454             // type, return the least numeric type that fits both arms
  1455             // (i.e. return larger of the two, or return int if one
  1456             // arm is short, the other is char).
  1457             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
  1458                 // If one arm has an integer subrange type (i.e., byte,
  1459                 // short, or char), and the other is an integer constant
  1460                 // that fits into the subrange, return the subrange type.
  1461                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
  1462                     types.isAssignable(elseUnboxed, thenUnboxed))
  1463                     return thenUnboxed.baseType();
  1464                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
  1465                     types.isAssignable(thenUnboxed, elseUnboxed))
  1466                     return elseUnboxed.baseType();
  1468                 for (int i = BYTE; i < VOID; i++) {
  1469                     Type candidate = syms.typeOfTag[i];
  1470                     if (types.isSubtype(thenUnboxed, candidate) &&
  1471                         types.isSubtype(elseUnboxed, candidate))
  1472                         return candidate;
  1476             // Those were all the cases that could result in a primitive
  1477             if (allowBoxing) {
  1478                 if (thentype.isPrimitive())
  1479                     thentype = types.boxedClass(thentype).type;
  1480                 if (elsetype.isPrimitive())
  1481                     elsetype = types.boxedClass(elsetype).type;
  1484             if (types.isSubtype(thentype, elsetype))
  1485                 return elsetype.baseType();
  1486             if (types.isSubtype(elsetype, thentype))
  1487                 return thentype.baseType();
  1489             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
  1490                 log.error(pos, "neither.conditional.subtype",
  1491                           thentype, elsetype);
  1492                 return thentype.baseType();
  1495             // both are known to be reference types.  The result is
  1496             // lub(thentype,elsetype). This cannot fail, as it will
  1497             // always be possible to infer "Object" if nothing better.
  1498             return types.lub(thentype.baseType(), elsetype.baseType());
  1501     public void visitIf(JCIf tree) {
  1502         attribExpr(tree.cond, env, syms.booleanType);
  1503         attribStat(tree.thenpart, env);
  1504         if (tree.elsepart != null)
  1505             attribStat(tree.elsepart, env);
  1506         chk.checkEmptyIf(tree);
  1507         result = null;
  1510     public void visitExec(JCExpressionStatement tree) {
  1511         //a fresh environment is required for 292 inference to work properly ---
  1512         //see Infer.instantiatePolymorphicSignatureInstance()
  1513         Env<AttrContext> localEnv = env.dup(tree);
  1514         attribExpr(tree.expr, localEnv);
  1515         result = null;
  1518     public void visitBreak(JCBreak tree) {
  1519         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1520         result = null;
  1523     public void visitContinue(JCContinue tree) {
  1524         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
  1525         result = null;
  1527     //where
  1528         /** Return the target of a break or continue statement, if it exists,
  1529          *  report an error if not.
  1530          *  Note: The target of a labelled break or continue is the
  1531          *  (non-labelled) statement tree referred to by the label,
  1532          *  not the tree representing the labelled statement itself.
  1534          *  @param pos     The position to be used for error diagnostics
  1535          *  @param tag     The tag of the jump statement. This is either
  1536          *                 Tree.BREAK or Tree.CONTINUE.
  1537          *  @param label   The label of the jump statement, or null if no
  1538          *                 label is given.
  1539          *  @param env     The environment current at the jump statement.
  1540          */
  1541         private JCTree findJumpTarget(DiagnosticPosition pos,
  1542                                     JCTree.Tag tag,
  1543                                     Name label,
  1544                                     Env<AttrContext> env) {
  1545             // Search environments outwards from the point of jump.
  1546             Env<AttrContext> env1 = env;
  1547             LOOP:
  1548             while (env1 != null) {
  1549                 switch (env1.tree.getTag()) {
  1550                     case LABELLED:
  1551                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
  1552                         if (label == labelled.label) {
  1553                             // If jump is a continue, check that target is a loop.
  1554                             if (tag == CONTINUE) {
  1555                                 if (!labelled.body.hasTag(DOLOOP) &&
  1556                                         !labelled.body.hasTag(WHILELOOP) &&
  1557                                         !labelled.body.hasTag(FORLOOP) &&
  1558                                         !labelled.body.hasTag(FOREACHLOOP))
  1559                                     log.error(pos, "not.loop.label", label);
  1560                                 // Found labelled statement target, now go inwards
  1561                                 // to next non-labelled tree.
  1562                                 return TreeInfo.referencedStatement(labelled);
  1563                             } else {
  1564                                 return labelled;
  1567                         break;
  1568                     case DOLOOP:
  1569                     case WHILELOOP:
  1570                     case FORLOOP:
  1571                     case FOREACHLOOP:
  1572                         if (label == null) return env1.tree;
  1573                         break;
  1574                     case SWITCH:
  1575                         if (label == null && tag == BREAK) return env1.tree;
  1576                         break;
  1577                     case LAMBDA:
  1578                     case METHODDEF:
  1579                     case CLASSDEF:
  1580                         break LOOP;
  1581                     default:
  1583                 env1 = env1.next;
  1585             if (label != null)
  1586                 log.error(pos, "undef.label", label);
  1587             else if (tag == CONTINUE)
  1588                 log.error(pos, "cont.outside.loop");
  1589             else
  1590                 log.error(pos, "break.outside.switch.loop");
  1591             return null;
  1594     public void visitReturn(JCReturn tree) {
  1595         // Check that there is an enclosing method which is
  1596         // nested within than the enclosing class.
  1597         if (env.info.returnResult == null) {
  1598             log.error(tree.pos(), "ret.outside.meth");
  1599         } else {
  1600             // Attribute return expression, if it exists, and check that
  1601             // it conforms to result type of enclosing method.
  1602             if (tree.expr != null) {
  1603                 if (env.info.returnResult.pt.tag == VOID) {
  1604                     log.error(tree.expr.pos(),
  1605                               "cant.ret.val.from.meth.decl.void");
  1607                 attribTree(tree.expr, env, env.info.returnResult);
  1608             } else if (env.info.returnResult.pt.tag != VOID) {
  1609                 log.error(tree.pos(), "missing.ret.val");
  1612         result = null;
  1615     public void visitThrow(JCThrow tree) {
  1616         attribExpr(tree.expr, env, syms.throwableType);
  1617         result = null;
  1620     public void visitAssert(JCAssert tree) {
  1621         attribExpr(tree.cond, env, syms.booleanType);
  1622         if (tree.detail != null) {
  1623             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
  1625         result = null;
  1628      /** Visitor method for method invocations.
  1629      *  NOTE: The method part of an application will have in its type field
  1630      *        the return type of the method, not the method's type itself!
  1631      */
  1632     public void visitApply(JCMethodInvocation tree) {
  1633         // The local environment of a method application is
  1634         // a new environment nested in the current one.
  1635         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1637         // The types of the actual method arguments.
  1638         List<Type> argtypes;
  1640         // The types of the actual method type arguments.
  1641         List<Type> typeargtypes = null;
  1643         Name methName = TreeInfo.name(tree.meth);
  1645         boolean isConstructorCall =
  1646             methName == names._this || methName == names._super;
  1648         if (isConstructorCall) {
  1649             // We are seeing a ...this(...) or ...super(...) call.
  1650             // Check that this is the first statement in a constructor.
  1651             if (checkFirstConstructorStat(tree, env)) {
  1653                 // Record the fact
  1654                 // that this is a constructor call (using isSelfCall).
  1655                 localEnv.info.isSelfCall = true;
  1657                 // Attribute arguments, yielding list of argument types.
  1658                 argtypes = attribArgs(tree.args, localEnv);
  1659                 typeargtypes = attribTypes(tree.typeargs, localEnv);
  1661                 // Variable `site' points to the class in which the called
  1662                 // constructor is defined.
  1663                 Type site = env.enclClass.sym.type;
  1664                 if (methName == names._super) {
  1665                     if (site == syms.objectType) {
  1666                         log.error(tree.meth.pos(), "no.superclass", site);
  1667                         site = types.createErrorType(syms.objectType);
  1668                     } else {
  1669                         site = types.supertype(site);
  1673                 if (site.tag == CLASS) {
  1674                     Type encl = site.getEnclosingType();
  1675                     while (encl != null && encl.tag == TYPEVAR)
  1676                         encl = encl.getUpperBound();
  1677                     if (encl.tag == CLASS) {
  1678                         // we are calling a nested class
  1680                         if (tree.meth.hasTag(SELECT)) {
  1681                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
  1683                             // We are seeing a prefixed call, of the form
  1684                             //     <expr>.super(...).
  1685                             // Check that the prefix expression conforms
  1686                             // to the outer instance type of the class.
  1687                             chk.checkRefType(qualifier.pos(),
  1688                                              attribExpr(qualifier, localEnv,
  1689                                                         encl));
  1690                         } else if (methName == names._super) {
  1691                             // qualifier omitted; check for existence
  1692                             // of an appropriate implicit qualifier.
  1693                             rs.resolveImplicitThis(tree.meth.pos(),
  1694                                                    localEnv, site, true);
  1696                     } else if (tree.meth.hasTag(SELECT)) {
  1697                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
  1698                                   site.tsym);
  1701                     // if we're calling a java.lang.Enum constructor,
  1702                     // prefix the implicit String and int parameters
  1703                     if (site.tsym == syms.enumSym && allowEnums)
  1704                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
  1706                     // Resolve the called constructor under the assumption
  1707                     // that we are referring to a superclass instance of the
  1708                     // current instance (JLS ???).
  1709                     boolean selectSuperPrev = localEnv.info.selectSuper;
  1710                     localEnv.info.selectSuper = true;
  1711                     localEnv.info.pendingResolutionPhase = null;
  1712                     Symbol sym = rs.resolveConstructor(
  1713                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
  1714                     localEnv.info.selectSuper = selectSuperPrev;
  1716                     // Set method symbol to resolved constructor...
  1717                     TreeInfo.setSymbol(tree.meth, sym);
  1719                     // ...and check that it is legal in the current context.
  1720                     // (this will also set the tree's type)
  1721                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1722                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
  1724                 // Otherwise, `site' is an error type and we do nothing
  1726             result = tree.type = syms.voidType;
  1727         } else {
  1728             // Otherwise, we are seeing a regular method call.
  1729             // Attribute the arguments, yielding list of argument types, ...
  1730             argtypes = attribArgs(tree.args, localEnv);
  1731             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
  1733             // ... and attribute the method using as a prototype a methodtype
  1734             // whose formal argument types is exactly the list of actual
  1735             // arguments (this will also set the method symbol).
  1736             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
  1737             localEnv.info.pendingResolutionPhase = null;
  1738             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(VAL, mpt, resultInfo.checkContext));
  1740             // Compute the result type.
  1741             Type restype = mtype.getReturnType();
  1742             if (restype.tag == WILDCARD)
  1743                 throw new AssertionError(mtype);
  1745             Type qualifier = (tree.meth.hasTag(SELECT))
  1746                     ? ((JCFieldAccess) tree.meth).selected.type
  1747                     : env.enclClass.sym.type;
  1748             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
  1750             chk.checkRefTypes(tree.typeargs, typeargtypes);
  1752             // Check that value of resulting type is admissible in the
  1753             // current context.  Also, capture the return type
  1754             result = check(tree, capture(restype), VAL, resultInfo);
  1756             if (localEnv.info.lastResolveVarargs())
  1757                 Assert.check(result.isErroneous() || tree.varargsElement != null);
  1759         chk.validate(tree.typeargs, localEnv);
  1761     //where
  1762         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
  1763             if (allowCovariantReturns &&
  1764                     methodName == names.clone &&
  1765                 types.isArray(qualifierType)) {
  1766                 // as a special case, array.clone() has a result that is
  1767                 // the same as static type of the array being cloned
  1768                 return qualifierType;
  1769             } else if (allowGenerics &&
  1770                     methodName == names.getClass &&
  1771                     argtypes.isEmpty()) {
  1772                 // as a special case, x.getClass() has type Class<? extends |X|>
  1773                 return new ClassType(restype.getEnclosingType(),
  1774                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
  1775                                                                BoundKind.EXTENDS,
  1776                                                                syms.boundClass)),
  1777                               restype.tsym);
  1778             } else {
  1779                 return restype;
  1783         /** Check that given application node appears as first statement
  1784          *  in a constructor call.
  1785          *  @param tree   The application node
  1786          *  @param env    The environment current at the application.
  1787          */
  1788         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
  1789             JCMethodDecl enclMethod = env.enclMethod;
  1790             if (enclMethod != null && enclMethod.name == names.init) {
  1791                 JCBlock body = enclMethod.body;
  1792                 if (body.stats.head.hasTag(EXEC) &&
  1793                     ((JCExpressionStatement) body.stats.head).expr == tree)
  1794                     return true;
  1796             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
  1797                       TreeInfo.name(tree.meth));
  1798             return false;
  1801         /** Obtain a method type with given argument types.
  1802          */
  1803         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
  1804             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
  1805             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
  1808     public void visitNewClass(final JCNewClass tree) {
  1809         Type owntype = types.createErrorType(tree.type);
  1811         // The local environment of a class creation is
  1812         // a new environment nested in the current one.
  1813         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
  1815         // The anonymous inner class definition of the new expression,
  1816         // if one is defined by it.
  1817         JCClassDecl cdef = tree.def;
  1819         // If enclosing class is given, attribute it, and
  1820         // complete class name to be fully qualified
  1821         JCExpression clazz = tree.clazz; // Class field following new
  1822         JCExpression clazzid =          // Identifier in class field
  1823             (clazz.hasTag(TYPEAPPLY))
  1824             ? ((JCTypeApply) clazz).clazz
  1825             : clazz;
  1827         JCExpression clazzid1 = clazzid; // The same in fully qualified form
  1829         if (tree.encl != null) {
  1830             // We are seeing a qualified new, of the form
  1831             //    <expr>.new C <...> (...) ...
  1832             // In this case, we let clazz stand for the name of the
  1833             // allocated class C prefixed with the type of the qualifier
  1834             // expression, so that we can
  1835             // resolve it with standard techniques later. I.e., if
  1836             // <expr> has type T, then <expr>.new C <...> (...)
  1837             // yields a clazz T.C.
  1838             Type encltype = chk.checkRefType(tree.encl.pos(),
  1839                                              attribExpr(tree.encl, env));
  1840             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
  1841                                                  ((JCIdent) clazzid).name);
  1842             if (clazz.hasTag(TYPEAPPLY))
  1843                 clazz = make.at(tree.pos).
  1844                     TypeApply(clazzid1,
  1845                               ((JCTypeApply) clazz).arguments);
  1846             else
  1847                 clazz = clazzid1;
  1850         // Attribute clazz expression and store
  1851         // symbol + type back into the attributed tree.
  1852         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
  1853             attribIdentAsEnumType(env, (JCIdent)clazz) :
  1854             attribType(clazz, env);
  1856         clazztype = chk.checkDiamond(tree, clazztype);
  1857         chk.validate(clazz, localEnv);
  1858         if (tree.encl != null) {
  1859             // We have to work in this case to store
  1860             // symbol + type back into the attributed tree.
  1861             tree.clazz.type = clazztype;
  1862             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
  1863             clazzid.type = ((JCIdent) clazzid).sym.type;
  1864             if (!clazztype.isErroneous()) {
  1865                 if (cdef != null && clazztype.tsym.isInterface()) {
  1866                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
  1867                 } else if (clazztype.tsym.isStatic()) {
  1868                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
  1871         } else if (!clazztype.tsym.isInterface() &&
  1872                    clazztype.getEnclosingType().tag == CLASS) {
  1873             // Check for the existence of an apropos outer instance
  1874             rs.resolveImplicitThis(tree.pos(), env, clazztype);
  1877         // Attribute constructor arguments.
  1878         List<Type> argtypes = attribArgs(tree.args, localEnv);
  1879         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
  1881         // If we have made no mistakes in the class type...
  1882         if (clazztype.tag == CLASS) {
  1883             // Enums may not be instantiated except implicitly
  1884             if (allowEnums &&
  1885                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
  1886                 (!env.tree.hasTag(VARDEF) ||
  1887                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
  1888                  ((JCVariableDecl) env.tree).init != tree))
  1889                 log.error(tree.pos(), "enum.cant.be.instantiated");
  1890             // Check that class is not abstract
  1891             if (cdef == null &&
  1892                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
  1893                 log.error(tree.pos(), "abstract.cant.be.instantiated",
  1894                           clazztype.tsym);
  1895             } else if (cdef != null && clazztype.tsym.isInterface()) {
  1896                 // Check that no constructor arguments are given to
  1897                 // anonymous classes implementing an interface
  1898                 if (!argtypes.isEmpty())
  1899                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
  1901                 if (!typeargtypes.isEmpty())
  1902                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
  1904                 // Error recovery: pretend no arguments were supplied.
  1905                 argtypes = List.nil();
  1906                 typeargtypes = List.nil();
  1907             } else if (TreeInfo.isDiamond(tree)) {
  1908                 ClassType site = new ClassType(clazztype.getEnclosingType(),
  1909                             clazztype.tsym.type.getTypeArguments(),
  1910                             clazztype.tsym);
  1912                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
  1913                 diamondEnv.info.selectSuper = cdef != null;
  1914                 diamondEnv.info.pendingResolutionPhase = null;
  1916                 //if the type of the instance creation expression is a class type
  1917                 //apply method resolution inference (JLS 15.12.2.7). The return type
  1918                 //of the resolved constructor will be a partially instantiated type
  1919                 Symbol constructor = rs.resolveDiamond(tree.pos(),
  1920                             diamondEnv,
  1921                             site,
  1922                             argtypes,
  1923                             typeargtypes);
  1924                 tree.constructor = constructor.baseSymbol();
  1926                 final TypeSymbol csym = clazztype.tsym;
  1927                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
  1928                     @Override
  1929                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
  1930                         enclosingContext.report(tree.clazz,
  1931                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
  1933                 });
  1934                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
  1935                 constructorType = checkId(tree, site,
  1936                         constructor,
  1937                         diamondEnv,
  1938                         diamondResult);
  1940                 tree.clazz.type = types.createErrorType(clazztype);
  1941                 if (!constructorType.isErroneous()) {
  1942                     tree.clazz.type = clazztype = constructorType.getReturnType();
  1943                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
  1945                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
  1948             // Resolve the called constructor under the assumption
  1949             // that we are referring to a superclass instance of the
  1950             // current instance (JLS ???).
  1951             else {
  1952                 //the following code alters some of the fields in the current
  1953                 //AttrContext - hence, the current context must be dup'ed in
  1954                 //order to avoid downstream failures
  1955                 Env<AttrContext> rsEnv = localEnv.dup(tree);
  1956                 rsEnv.info.selectSuper = cdef != null;
  1957                 rsEnv.info.pendingResolutionPhase = null;
  1958                 tree.constructor = rs.resolveConstructor(
  1959                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
  1960                 if (cdef == null) { //do not check twice!
  1961                     tree.constructorType = checkId(tree,
  1962                             clazztype,
  1963                             tree.constructor,
  1964                             rsEnv,
  1965                             new ResultInfo(MTH, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  1966                     if (rsEnv.info.lastResolveVarargs())
  1967                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
  1969                 findDiamondIfNeeded(localEnv, tree, clazztype);
  1972             if (cdef != null) {
  1973                 // We are seeing an anonymous class instance creation.
  1974                 // In this case, the class instance creation
  1975                 // expression
  1976                 //
  1977                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1978                 //
  1979                 // is represented internally as
  1980                 //
  1981                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
  1982                 //
  1983                 // This expression is then *transformed* as follows:
  1984                 //
  1985                 // (1) add a STATIC flag to the class definition
  1986                 //     if the current environment is static
  1987                 // (2) add an extends or implements clause
  1988                 // (3) add a constructor.
  1989                 //
  1990                 // For instance, if C is a class, and ET is the type of E,
  1991                 // the expression
  1992                 //
  1993                 //    E.new <typeargs1>C<typargs2>(args) { ... }
  1994                 //
  1995                 // is translated to (where X is a fresh name and typarams is the
  1996                 // parameter list of the super constructor):
  1997                 //
  1998                 //   new <typeargs1>X(<*nullchk*>E, args) where
  1999                 //     X extends C<typargs2> {
  2000                 //       <typarams> X(ET e, args) {
  2001                 //         e.<typeargs1>super(args)
  2002                 //       }
  2003                 //       ...
  2004                 //     }
  2005                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
  2007                 if (clazztype.tsym.isInterface()) {
  2008                     cdef.implementing = List.of(clazz);
  2009                 } else {
  2010                     cdef.extending = clazz;
  2013                 attribStat(cdef, localEnv);
  2015                 checkLambdaCandidate(tree, cdef.sym, clazztype);
  2017                 // If an outer instance is given,
  2018                 // prefix it to the constructor arguments
  2019                 // and delete it from the new expression
  2020                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
  2021                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
  2022                     argtypes = argtypes.prepend(tree.encl.type);
  2023                     tree.encl = null;
  2026                 // Reassign clazztype and recompute constructor.
  2027                 clazztype = cdef.sym.type;
  2028                 Symbol sym = tree.constructor = rs.resolveConstructor(
  2029                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
  2030                 Assert.check(sym.kind < AMBIGUOUS);
  2031                 tree.constructor = sym;
  2032                 tree.constructorType = checkId(tree,
  2033                     clazztype,
  2034                     tree.constructor,
  2035                     localEnv,
  2036                     new ResultInfo(VAL, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
  2039             if (tree.constructor != null && tree.constructor.kind == MTH)
  2040                 owntype = clazztype;
  2042         result = check(tree, owntype, VAL, resultInfo);
  2043         chk.validate(tree.typeargs, localEnv);
  2045     //where
  2046         void findDiamondIfNeeded(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
  2047             if (tree.def == null &&
  2048                     !clazztype.isErroneous() &&
  2049                     clazztype.getTypeArguments().nonEmpty() &&
  2050                     findDiamonds) {
  2051                 JCTypeApply ta = (JCTypeApply)tree.clazz;
  2052                 List<JCExpression> prevTypeargs = ta.arguments;
  2053                 try {
  2054                     //create a 'fake' diamond AST node by removing type-argument trees
  2055                     ta.arguments = List.nil();
  2056                     ResultInfo findDiamondResult = new ResultInfo(VAL,
  2057                             resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
  2058                     Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
  2059                     if (!inferred.isErroneous() &&
  2060                         types.isAssignable(inferred, pt().tag == NONE ? syms.objectType : pt(), Warner.noWarnings)) {
  2061                         String key = types.isSameType(clazztype, inferred) ?
  2062                             "diamond.redundant.args" :
  2063                             "diamond.redundant.args.1";
  2064                         log.warning(tree.clazz.pos(), key, clazztype, inferred);
  2066                 } finally {
  2067                     ta.arguments = prevTypeargs;
  2072             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
  2073                 if (allowLambda &&
  2074                         identifyLambdaCandidate &&
  2075                         clazztype.tag == CLASS &&
  2076                         pt().tag != NONE &&
  2077                         types.isFunctionalInterface(clazztype.tsym)) {
  2078                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
  2079                     int count = 0;
  2080                     boolean found = false;
  2081                     for (Symbol sym : csym.members().getElements()) {
  2082                         if ((sym.flags() & SYNTHETIC) != 0 ||
  2083                                 sym.isConstructor()) continue;
  2084                         count++;
  2085                         if (sym.kind != MTH ||
  2086                                 !sym.name.equals(descriptor.name)) continue;
  2087                         Type mtype = types.memberType(clazztype, sym);
  2088                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
  2089                             found = true;
  2092                     if (found && count == 1) {
  2093                         log.note(tree.def, "potential.lambda.found");
  2098     /** Make an attributed null check tree.
  2099      */
  2100     public JCExpression makeNullCheck(JCExpression arg) {
  2101         // optimization: X.this is never null; skip null check
  2102         Name name = TreeInfo.name(arg);
  2103         if (name == names._this || name == names._super) return arg;
  2105         JCTree.Tag optag = NULLCHK;
  2106         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
  2107         tree.operator = syms.nullcheck;
  2108         tree.type = arg.type;
  2109         return tree;
  2112     public void visitNewArray(JCNewArray tree) {
  2113         Type owntype = types.createErrorType(tree.type);
  2114         Env<AttrContext> localEnv = env.dup(tree);
  2115         Type elemtype;
  2116         if (tree.elemtype != null) {
  2117             elemtype = attribType(tree.elemtype, localEnv);
  2118             chk.validate(tree.elemtype, localEnv);
  2119             owntype = elemtype;
  2120             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
  2121                 attribExpr(l.head, localEnv, syms.intType);
  2122                 owntype = new ArrayType(owntype, syms.arrayClass);
  2124         } else {
  2125             // we are seeing an untyped aggregate { ... }
  2126             // this is allowed only if the prototype is an array
  2127             if (pt().tag == ARRAY) {
  2128                 elemtype = types.elemtype(pt());
  2129             } else {
  2130                 if (pt().tag != ERROR) {
  2131                     log.error(tree.pos(), "illegal.initializer.for.type",
  2132                               pt());
  2134                 elemtype = types.createErrorType(pt());
  2137         if (tree.elems != null) {
  2138             attribExprs(tree.elems, localEnv, elemtype);
  2139             owntype = new ArrayType(elemtype, syms.arrayClass);
  2141         if (!types.isReifiable(elemtype))
  2142             log.error(tree.pos(), "generic.array.creation");
  2143         result = check(tree, owntype, VAL, resultInfo);
  2146     /*
  2147      * A lambda expression can only be attributed when a target-type is available.
  2148      * In addition, if the target-type is that of a functional interface whose
  2149      * descriptor contains inference variables in argument position the lambda expression
  2150      * is 'stuck' (see DeferredAttr).
  2151      */
  2152     @Override
  2153     public void visitLambda(final JCLambda that) {
  2154         if (pt().isErroneous() || (pt().tag == NONE && pt() != Type.recoveryType)) {
  2155             if (pt().tag == NONE) {
  2156                 //lambda only allowed in assignment or method invocation/cast context
  2157                 log.error(that.pos(), "unexpected.lambda");
  2159             result = that.type = types.createErrorType(pt());
  2160             return;
  2162         //create an environment for attribution of the lambda expression
  2163         final Env<AttrContext> localEnv = lambdaEnv(that, env);
  2164         boolean needsRecovery = resultInfo.checkContext.deferredAttrContext() == deferredAttr.emptyDeferredAttrContext ||
  2165                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
  2166         try {
  2167             List<Type> explicitParamTypes = null;
  2168             if (TreeInfo.isExplicitLambda(that)) {
  2169                 //attribute lambda parameters
  2170                 attribStats(that.params, localEnv);
  2171                 explicitParamTypes = TreeInfo.types(that.params);
  2174             Type target = infer.instantiateFunctionalInterface(that, pt(), explicitParamTypes, resultInfo.checkContext);
  2175             Type lambdaType = (target == Type.recoveryType) ?
  2176                     fallbackDescriptorType(that) :
  2177                     types.findDescriptorType(target);
  2179             if (!TreeInfo.isExplicitLambda(that)) {
  2180                 //add param type info in the AST
  2181                 List<Type> actuals = lambdaType.getParameterTypes();
  2182                 List<JCVariableDecl> params = that.params;
  2184                 boolean arityMismatch = false;
  2186                 while (params.nonEmpty()) {
  2187                     if (actuals.isEmpty()) {
  2188                         //not enough actuals to perform lambda parameter inference
  2189                         arityMismatch = true;
  2191                     //reset previously set info
  2192                     Type argType = arityMismatch ?
  2193                             syms.errType :
  2194                             actuals.head;
  2195                     params.head.vartype = make.Type(argType);
  2196                     params.head.sym = null;
  2197                     actuals = actuals.isEmpty() ?
  2198                             actuals :
  2199                             actuals.tail;
  2200                     params = params.tail;
  2203                 //attribute lambda parameters
  2204                 attribStats(that.params, localEnv);
  2206                 if (arityMismatch) {
  2207                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
  2208                         result = that.type = types.createErrorType(target);
  2209                         return;
  2213             //from this point on, no recovery is needed; if we are in assignment context
  2214             //we will be able to attribute the whole lambda body, regardless of errors;
  2215             //if we are in a 'check' method context, and the lambda is not compatible
  2216             //with the target-type, it will be recovered anyway in Attr.checkId
  2217             needsRecovery = false;
  2219             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
  2220                 recoveryInfo :
  2221                 new ResultInfo(VAL, lambdaType.getReturnType(), new LambdaReturnContext(resultInfo.checkContext));
  2222             localEnv.info.returnResult = bodyResultInfo;
  2224             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
  2225                 attribTree(that.getBody(), localEnv, bodyResultInfo);
  2226             } else {
  2227                 JCBlock body = (JCBlock)that.body;
  2228                 attribStats(body.stats, localEnv);
  2231             result = check(that, target, VAL, resultInfo);
  2233             boolean isSpeculativeRound =
  2234                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2236             postAttr(that);
  2237             flow.analyzeLambda(env, that, make, isSpeculativeRound);
  2239             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext, isSpeculativeRound);
  2241             if (!isSpeculativeRound) {
  2242                 checkAccessibleFunctionalDescriptor(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType);
  2244             result = check(that, target, VAL, resultInfo);
  2245         } catch (Types.FunctionDescriptorLookupError ex) {
  2246             JCDiagnostic cause = ex.getDiagnostic();
  2247             resultInfo.checkContext.report(that, cause);
  2248             result = that.type = types.createErrorType(pt());
  2249             return;
  2250         } finally {
  2251             localEnv.info.scope.leave();
  2252             if (needsRecovery) {
  2253                 attribTree(that, env, recoveryInfo);
  2257     //where
  2258         private Type fallbackDescriptorType(JCExpression tree) {
  2259             switch (tree.getTag()) {
  2260                 case LAMBDA:
  2261                     JCLambda lambda = (JCLambda)tree;
  2262                     List<Type> argtypes = List.nil();
  2263                     for (JCVariableDecl param : lambda.params) {
  2264                         argtypes = param.vartype != null ?
  2265                                 argtypes.append(param.vartype.type) :
  2266                                 argtypes.append(syms.errType);
  2268                     return new MethodType(argtypes, Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2269                 case REFERENCE:
  2270                     return new MethodType(List.<Type>nil(), Type.recoveryType, List.<Type>nil(), syms.methodClass);
  2271                 default:
  2272                     Assert.error("Cannot get here!");
  2274             return null;
  2277         private void checkAccessibleFunctionalDescriptor(final DiagnosticPosition pos,
  2278                 final Env<AttrContext> env, final InferenceContext inferenceContext, final Type desc) {
  2279             if (inferenceContext.free(desc)) {
  2280                 inferenceContext.addFreeTypeListener(List.of(desc), new FreeTypeListener() {
  2281                     @Override
  2282                     public void typesInferred(InferenceContext inferenceContext) {
  2283                         checkAccessibleFunctionalDescriptor(pos, env, inferenceContext, inferenceContext.asInstType(desc, types));
  2285                 });
  2286             } else {
  2287                 chk.checkAccessibleFunctionalDescriptor(pos, env, desc);
  2291         /**
  2292          * Lambda/method reference have a special check context that ensures
  2293          * that i.e. a lambda return type is compatible with the expected
  2294          * type according to both the inherited context and the assignment
  2295          * context.
  2296          */
  2297         class LambdaReturnContext extends Check.NestedCheckContext {
  2298             public LambdaReturnContext(CheckContext enclosingContext) {
  2299                 super(enclosingContext);
  2302             @Override
  2303             public boolean compatible(Type found, Type req, Warner warn) {
  2304                 //return type must be compatible in both current context and assignment context
  2305                 return types.isAssignable(found, inferenceContext().asFree(req, types), warn) &&
  2306                         super.compatible(found, req, warn);
  2308             @Override
  2309             public void report(DiagnosticPosition pos, JCDiagnostic details) {
  2310                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
  2314         /**
  2315         * Lambda compatibility. Check that given return types, thrown types, parameter types
  2316         * are compatible with the expected functional interface descriptor. This means that:
  2317         * (i) parameter types must be identical to those of the target descriptor; (ii) return
  2318         * types must be compatible with the return type of the expected descriptor;
  2319         * (iii) thrown types must be 'included' in the thrown types list of the expected
  2320         * descriptor.
  2321         */
  2322         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext, boolean speculativeAttr) {
  2323             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2325             //return values have already been checked - but if lambda has no return
  2326             //values, we must ensure that void/value compatibility is correct;
  2327             //this amounts at checking that, if a lambda body can complete normally,
  2328             //the descriptor's return type must be void
  2329             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
  2330                     returnType.tag != VOID && returnType != Type.recoveryType) {
  2331                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
  2332                         diags.fragment("missing.ret.val", returnType)));
  2335             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes(), types);
  2336             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
  2337                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
  2340             if (!speculativeAttr) {
  2341                 List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2342                 if (chk.unhandled(tree.inferredThrownTypes == null ? List.<Type>nil() : tree.inferredThrownTypes, thrownTypes).nonEmpty()) {
  2343                     log.error(tree, "incompatible.thrown.types.in.lambda", tree.inferredThrownTypes);
  2348         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
  2349             Env<AttrContext> lambdaEnv;
  2350             Symbol owner = env.info.scope.owner;
  2351             if (owner.kind == VAR && owner.owner.kind == TYP) {
  2352                 //field initializer
  2353                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
  2354                 lambdaEnv.info.scope.owner =
  2355                     new MethodSymbol(0, names.empty, null,
  2356                                      env.info.scope.owner);
  2357             } else {
  2358                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
  2360             return lambdaEnv;
  2363     @Override
  2364     public void visitReference(final JCMemberReference that) {
  2365         if (pt().isErroneous() || (pt().tag == NONE && pt() != Type.recoveryType)) {
  2366             if (pt().tag == NONE) {
  2367                 //method reference only allowed in assignment or method invocation/cast context
  2368                 log.error(that.pos(), "unexpected.mref");
  2370             result = that.type = types.createErrorType(pt());
  2371             return;
  2373         final Env<AttrContext> localEnv = env.dup(that);
  2374         try {
  2375             //attribute member reference qualifier - if this is a constructor
  2376             //reference, the expected kind must be a type
  2377             Type exprType = attribTree(that.expr,
  2378                     env, new ResultInfo(that.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType));
  2380             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
  2381                 exprType = chk.checkConstructorRefType(that.expr, exprType);
  2384             if (exprType.isErroneous()) {
  2385                 //if the qualifier expression contains problems,
  2386                 //give up atttribution of method reference
  2387                 result = that.type = exprType;
  2388                 return;
  2391             if (TreeInfo.isStaticSelector(that.expr, names) &&
  2392                     (that.getMode() != ReferenceMode.NEW || !that.expr.type.isRaw())) {
  2393                 //if the qualifier is a type, validate it
  2394                 chk.validate(that.expr, env);
  2397             //attrib type-arguments
  2398             List<Type> typeargtypes = null;
  2399             if (that.typeargs != null) {
  2400                 typeargtypes = attribTypes(that.typeargs, localEnv);
  2403             Type target = infer.instantiateFunctionalInterface(that, pt(), null, resultInfo.checkContext);
  2404             Type desc = (target == Type.recoveryType) ?
  2405                     fallbackDescriptorType(that) :
  2406                     types.findDescriptorType(target);
  2408             List<Type> argtypes = desc.getParameterTypes();
  2410             boolean allowBoxing =
  2411                     resultInfo.checkContext.deferredAttrContext() == deferredAttr.emptyDeferredAttrContext ||
  2412                     resultInfo.checkContext.deferredAttrContext().phase.isBoxingRequired();
  2413             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = rs.resolveMemberReference(that.pos(), localEnv, that,
  2414                     that.expr.type, that.name, argtypes, typeargtypes, allowBoxing);
  2416             Symbol refSym = refResult.fst;
  2417             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
  2419             if (refSym.kind != MTH) {
  2420                 boolean targetError;
  2421                 switch (refSym.kind) {
  2422                     case ABSENT_MTH:
  2423                         targetError = false;
  2424                         break;
  2425                     case WRONG_MTH:
  2426                     case WRONG_MTHS:
  2427                     case AMBIGUOUS:
  2428                     case HIDDEN:
  2429                     case STATICERR:
  2430                     case MISSING_ENCL:
  2431                         targetError = true;
  2432                         break;
  2433                     default:
  2434                         Assert.error("unexpected result kind " + refSym.kind);
  2435                         targetError = false;
  2438                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
  2439                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
  2441                 JCDiagnostic.DiagnosticType diagKind = targetError ?
  2442                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
  2444                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
  2445                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
  2447                 if (targetError) {
  2448                     resultInfo.checkContext.report(that, diag);
  2449                 } else {
  2450                     log.report(diag);
  2452                 result = that.type = types.createErrorType(target);
  2453                 return;
  2456             if (desc.getReturnType() == Type.recoveryType) {
  2457                 // stop here
  2458                 result = that.type = types.createErrorType(target);
  2459                 return;
  2462             that.sym = refSym.baseSymbol();
  2463             that.kind = lookupHelper.referenceKind(that.sym);
  2465             ResultInfo checkInfo =
  2466                     resultInfo.dup(newMethodTemplate(
  2467                         desc.getReturnType().tag == VOID ? Type.noType : desc.getReturnType(),
  2468                         lookupHelper.argtypes,
  2469                         typeargtypes));
  2471             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
  2473             if (!refType.isErroneous()) {
  2474                 refType = types.createMethodTypeWithReturn(refType,
  2475                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
  2478             //go ahead with standard method reference compatibility check - note that param check
  2479             //is a no-op (as this has been taken care during method applicability)
  2480             boolean isSpeculativeRound =
  2481                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
  2482             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
  2483             if (!isSpeculativeRound) {
  2484                 checkAccessibleFunctionalDescriptor(that, localEnv, resultInfo.checkContext.inferenceContext(), desc);
  2486             result = check(that, target, VAL, resultInfo);
  2487         } catch (Types.FunctionDescriptorLookupError ex) {
  2488             JCDiagnostic cause = ex.getDiagnostic();
  2489             resultInfo.checkContext.report(that, cause);
  2490             result = that.type = types.createErrorType(pt());
  2491             return;
  2495     @SuppressWarnings("fallthrough")
  2496     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
  2497         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType(), types);
  2499         Type resType;
  2500         switch (tree.getMode()) {
  2501             case NEW:
  2502                 if (!tree.expr.type.isRaw()) {
  2503                     resType = tree.expr.type;
  2504                     break;
  2506             default:
  2507                 resType = refType.getReturnType();
  2510         Type incompatibleReturnType = resType;
  2512         if (returnType.tag == VOID) {
  2513             incompatibleReturnType = null;
  2516         if (returnType.tag != VOID && resType.tag != VOID) {
  2517             if (resType.isErroneous() ||
  2518                     new LambdaReturnContext(checkContext).compatible(resType, returnType, Warner.noWarnings)) {
  2519                 incompatibleReturnType = null;
  2523         if (incompatibleReturnType != null) {
  2524             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
  2525                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
  2528         if (!speculativeAttr) {
  2529             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes(), types);
  2530             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
  2531                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
  2536     public void visitParens(JCParens tree) {
  2537         Type owntype = attribTree(tree.expr, env, resultInfo);
  2538         result = check(tree, owntype, pkind(), resultInfo);
  2539         Symbol sym = TreeInfo.symbol(tree);
  2540         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
  2541             log.error(tree.pos(), "illegal.start.of.type");
  2544     public void visitAssign(JCAssign tree) {
  2545         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
  2546         Type capturedType = capture(owntype);
  2547         attribExpr(tree.rhs, env, owntype);
  2548         result = check(tree, capturedType, VAL, resultInfo);
  2551     public void visitAssignop(JCAssignOp tree) {
  2552         // Attribute arguments.
  2553         Type owntype = attribTree(tree.lhs, env, varInfo);
  2554         Type operand = attribExpr(tree.rhs, env);
  2555         // Find operator.
  2556         Symbol operator = tree.operator = rs.resolveBinaryOperator(
  2557             tree.pos(), tree.getTag().noAssignOp(), env,
  2558             owntype, operand);
  2560         if (operator.kind == MTH &&
  2561                 !owntype.isErroneous() &&
  2562                 !operand.isErroneous()) {
  2563             chk.checkOperator(tree.pos(),
  2564                               (OperatorSymbol)operator,
  2565                               tree.getTag().noAssignOp(),
  2566                               owntype,
  2567                               operand);
  2568             chk.checkDivZero(tree.rhs.pos(), operator, operand);
  2569             chk.checkCastable(tree.rhs.pos(),
  2570                               operator.type.getReturnType(),
  2571                               owntype);
  2573         result = check(tree, owntype, VAL, resultInfo);
  2576     public void visitUnary(JCUnary tree) {
  2577         // Attribute arguments.
  2578         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
  2579             ? attribTree(tree.arg, env, varInfo)
  2580             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
  2582         // Find operator.
  2583         Symbol operator = tree.operator =
  2584             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
  2586         Type owntype = types.createErrorType(tree.type);
  2587         if (operator.kind == MTH &&
  2588                 !argtype.isErroneous()) {
  2589             owntype = (tree.getTag().isIncOrDecUnaryOp())
  2590                 ? tree.arg.type
  2591                 : operator.type.getReturnType();
  2592             int opc = ((OperatorSymbol)operator).opcode;
  2594             // If the argument is constant, fold it.
  2595             if (argtype.constValue() != null) {
  2596                 Type ctype = cfolder.fold1(opc, argtype);
  2597                 if (ctype != null) {
  2598                     owntype = cfolder.coerce(ctype, owntype);
  2600                     // Remove constant types from arguments to
  2601                     // conserve space. The parser will fold concatenations
  2602                     // of string literals; the code here also
  2603                     // gets rid of intermediate results when some of the
  2604                     // operands are constant identifiers.
  2605                     if (tree.arg.type.tsym == syms.stringType.tsym) {
  2606                         tree.arg.type = syms.stringType;
  2611         result = check(tree, owntype, VAL, resultInfo);
  2614     public void visitBinary(JCBinary tree) {
  2615         // Attribute arguments.
  2616         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
  2617         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
  2619         // Find operator.
  2620         Symbol operator = tree.operator =
  2621             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
  2623         Type owntype = types.createErrorType(tree.type);
  2624         if (operator.kind == MTH &&
  2625                 !left.isErroneous() &&
  2626                 !right.isErroneous()) {
  2627             owntype = operator.type.getReturnType();
  2628             int opc = chk.checkOperator(tree.lhs.pos(),
  2629                                         (OperatorSymbol)operator,
  2630                                         tree.getTag(),
  2631                                         left,
  2632                                         right);
  2634             // If both arguments are constants, fold them.
  2635             if (left.constValue() != null && right.constValue() != null) {
  2636                 Type ctype = cfolder.fold2(opc, left, right);
  2637                 if (ctype != null) {
  2638                     owntype = cfolder.coerce(ctype, owntype);
  2640                     // Remove constant types from arguments to
  2641                     // conserve space. The parser will fold concatenations
  2642                     // of string literals; the code here also
  2643                     // gets rid of intermediate results when some of the
  2644                     // operands are constant identifiers.
  2645                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
  2646                         tree.lhs.type = syms.stringType;
  2648                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
  2649                         tree.rhs.type = syms.stringType;
  2654             // Check that argument types of a reference ==, != are
  2655             // castable to each other, (JLS???).
  2656             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
  2657                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
  2658                     log.error(tree.pos(), "incomparable.types", left, right);
  2662             chk.checkDivZero(tree.rhs.pos(), operator, right);
  2664         result = check(tree, owntype, VAL, resultInfo);
  2667     public void visitTypeCast(final JCTypeCast tree) {
  2668         Type clazztype = attribType(tree.clazz, env);
  2669         chk.validate(tree.clazz, env, false);
  2670         //a fresh environment is required for 292 inference to work properly ---
  2671         //see Infer.instantiatePolymorphicSignatureInstance()
  2672         Env<AttrContext> localEnv = env.dup(tree);
  2673         //should we propagate the target type?
  2674         final ResultInfo castInfo;
  2675         final boolean isPoly = TreeInfo.isPoly(tree.expr, tree);
  2676         if (isPoly) {
  2677             //expression is a poly - we need to propagate target type info
  2678             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
  2679                 @Override
  2680                 public boolean compatible(Type found, Type req, Warner warn) {
  2681                     return types.isCastable(found, req, warn);
  2683             });
  2684         } else {
  2685             //standalone cast - target-type info is not propagated
  2686             castInfo = unknownExprInfo;
  2688         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
  2689         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2690         if (exprtype.constValue() != null)
  2691             owntype = cfolder.coerce(exprtype, owntype);
  2692         result = check(tree, capture(owntype), VAL, resultInfo);
  2693         if (!isPoly)
  2694             chk.checkRedundantCast(localEnv, tree);
  2697     public void visitTypeTest(JCInstanceOf tree) {
  2698         Type exprtype = chk.checkNullOrRefType(
  2699             tree.expr.pos(), attribExpr(tree.expr, env));
  2700         Type clazztype = chk.checkReifiableReferenceType(
  2701             tree.clazz.pos(), attribType(tree.clazz, env));
  2702         chk.validate(tree.clazz, env, false);
  2703         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
  2704         result = check(tree, syms.booleanType, VAL, resultInfo);
  2707     public void visitIndexed(JCArrayAccess tree) {
  2708         Type owntype = types.createErrorType(tree.type);
  2709         Type atype = attribExpr(tree.indexed, env);
  2710         attribExpr(tree.index, env, syms.intType);
  2711         if (types.isArray(atype))
  2712             owntype = types.elemtype(atype);
  2713         else if (atype.tag != ERROR)
  2714             log.error(tree.pos(), "array.req.but.found", atype);
  2715         if ((pkind() & VAR) == 0) owntype = capture(owntype);
  2716         result = check(tree, owntype, VAR, resultInfo);
  2719     public void visitIdent(JCIdent tree) {
  2720         Symbol sym;
  2722         // Find symbol
  2723         if (pt().tag == METHOD || pt().tag == FORALL) {
  2724             // If we are looking for a method, the prototype `pt' will be a
  2725             // method type with the type of the call's arguments as parameters.
  2726             env.info.pendingResolutionPhase = null;
  2727             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
  2728         } else if (tree.sym != null && tree.sym.kind != VAR) {
  2729             sym = tree.sym;
  2730         } else {
  2731             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
  2733         tree.sym = sym;
  2735         // (1) Also find the environment current for the class where
  2736         //     sym is defined (`symEnv').
  2737         // Only for pre-tiger versions (1.4 and earlier):
  2738         // (2) Also determine whether we access symbol out of an anonymous
  2739         //     class in a this or super call.  This is illegal for instance
  2740         //     members since such classes don't carry a this$n link.
  2741         //     (`noOuterThisPath').
  2742         Env<AttrContext> symEnv = env;
  2743         boolean noOuterThisPath = false;
  2744         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
  2745             (sym.kind & (VAR | MTH | TYP)) != 0 &&
  2746             sym.owner.kind == TYP &&
  2747             tree.name != names._this && tree.name != names._super) {
  2749             // Find environment in which identifier is defined.
  2750             while (symEnv.outer != null &&
  2751                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
  2752                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
  2753                     noOuterThisPath = !allowAnonOuterThis;
  2754                 symEnv = symEnv.outer;
  2758         // If symbol is a variable, ...
  2759         if (sym.kind == VAR) {
  2760             VarSymbol v = (VarSymbol)sym;
  2762             // ..., evaluate its initializer, if it has one, and check for
  2763             // illegal forward reference.
  2764             checkInit(tree, env, v, false);
  2766             // If we are expecting a variable (as opposed to a value), check
  2767             // that the variable is assignable in the current environment.
  2768             if (pkind() == VAR)
  2769                 checkAssignable(tree.pos(), v, null, env);
  2772         // In a constructor body,
  2773         // if symbol is a field or instance method, check that it is
  2774         // not accessed before the supertype constructor is called.
  2775         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
  2776             (sym.kind & (VAR | MTH)) != 0 &&
  2777             sym.owner.kind == TYP &&
  2778             (sym.flags() & STATIC) == 0) {
  2779             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
  2781         Env<AttrContext> env1 = env;
  2782         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
  2783             // If the found symbol is inaccessible, then it is
  2784             // accessed through an enclosing instance.  Locate this
  2785             // enclosing instance:
  2786             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
  2787                 env1 = env1.outer;
  2789         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
  2792     public void visitSelect(JCFieldAccess tree) {
  2793         // Determine the expected kind of the qualifier expression.
  2794         int skind = 0;
  2795         if (tree.name == names._this || tree.name == names._super ||
  2796             tree.name == names._class)
  2798             skind = TYP;
  2799         } else {
  2800             if ((pkind() & PCK) != 0) skind = skind | PCK;
  2801             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
  2802             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
  2805         // Attribute the qualifier expression, and determine its symbol (if any).
  2806         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
  2807         if ((pkind() & (PCK | TYP)) == 0)
  2808             site = capture(site); // Capture field access
  2810         // don't allow T.class T[].class, etc
  2811         if (skind == TYP) {
  2812             Type elt = site;
  2813             while (elt.tag == ARRAY)
  2814                 elt = ((ArrayType)elt).elemtype;
  2815             if (elt.tag == TYPEVAR) {
  2816                 log.error(tree.pos(), "type.var.cant.be.deref");
  2817                 result = types.createErrorType(tree.type);
  2818                 return;
  2822         // If qualifier symbol is a type or `super', assert `selectSuper'
  2823         // for the selection. This is relevant for determining whether
  2824         // protected symbols are accessible.
  2825         Symbol sitesym = TreeInfo.symbol(tree.selected);
  2826         boolean selectSuperPrev = env.info.selectSuper;
  2827         env.info.selectSuper =
  2828             sitesym != null &&
  2829             sitesym.name == names._super;
  2831         // Determine the symbol represented by the selection.
  2832         env.info.pendingResolutionPhase = null;
  2833         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
  2834         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
  2835             site = capture(site);
  2836             sym = selectSym(tree, sitesym, site, env, resultInfo);
  2838         boolean varArgs = env.info.lastResolveVarargs();
  2839         tree.sym = sym;
  2841         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
  2842             while (site.tag == TYPEVAR) site = site.getUpperBound();
  2843             site = capture(site);
  2846         // If that symbol is a variable, ...
  2847         if (sym.kind == VAR) {
  2848             VarSymbol v = (VarSymbol)sym;
  2850             // ..., evaluate its initializer, if it has one, and check for
  2851             // illegal forward reference.
  2852             checkInit(tree, env, v, true);
  2854             // If we are expecting a variable (as opposed to a value), check
  2855             // that the variable is assignable in the current environment.
  2856             if (pkind() == VAR)
  2857                 checkAssignable(tree.pos(), v, tree.selected, env);
  2860         if (sitesym != null &&
  2861                 sitesym.kind == VAR &&
  2862                 ((VarSymbol)sitesym).isResourceVariable() &&
  2863                 sym.kind == MTH &&
  2864                 sym.name.equals(names.close) &&
  2865                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
  2866                 env.info.lint.isEnabled(LintCategory.TRY)) {
  2867             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
  2870         // Disallow selecting a type from an expression
  2871         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
  2872             tree.type = check(tree.selected, pt(),
  2873                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
  2876         if (isType(sitesym)) {
  2877             if (sym.name == names._this) {
  2878                 // If `C' is the currently compiled class, check that
  2879                 // C.this' does not appear in a call to a super(...)
  2880                 if (env.info.isSelfCall &&
  2881                     site.tsym == env.enclClass.sym) {
  2882                     chk.earlyRefError(tree.pos(), sym);
  2884             } else {
  2885                 // Check if type-qualified fields or methods are static (JLS)
  2886                 if ((sym.flags() & STATIC) == 0 &&
  2887                     !env.next.tree.hasTag(REFERENCE) &&
  2888                     sym.name != names._super &&
  2889                     (sym.kind == VAR || sym.kind == MTH)) {
  2890                     rs.accessBase(rs.new StaticError(sym),
  2891                               tree.pos(), site, sym.name, true);
  2894         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
  2895             // If the qualified item is not a type and the selected item is static, report
  2896             // a warning. Make allowance for the class of an array type e.g. Object[].class)
  2897             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
  2900         // If we are selecting an instance member via a `super', ...
  2901         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
  2903             // Check that super-qualified symbols are not abstract (JLS)
  2904             rs.checkNonAbstract(tree.pos(), sym);
  2906             if (site.isRaw()) {
  2907                 // Determine argument types for site.
  2908                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
  2909                 if (site1 != null) site = site1;
  2913         env.info.selectSuper = selectSuperPrev;
  2914         result = checkId(tree, site, sym, env, resultInfo);
  2916     //where
  2917         /** Determine symbol referenced by a Select expression,
  2919          *  @param tree   The select tree.
  2920          *  @param site   The type of the selected expression,
  2921          *  @param env    The current environment.
  2922          *  @param resultInfo The current result.
  2923          */
  2924         private Symbol selectSym(JCFieldAccess tree,
  2925                                  Symbol location,
  2926                                  Type site,
  2927                                  Env<AttrContext> env,
  2928                                  ResultInfo resultInfo) {
  2929             DiagnosticPosition pos = tree.pos();
  2930             Name name = tree.name;
  2931             switch (site.tag) {
  2932             case PACKAGE:
  2933                 return rs.accessBase(
  2934                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
  2935                     pos, location, site, name, true);
  2936             case ARRAY:
  2937             case CLASS:
  2938                 if (resultInfo.pt.tag == METHOD || resultInfo.pt.tag == FORALL) {
  2939                     return rs.resolveQualifiedMethod(
  2940                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
  2941                 } else if (name == names._this || name == names._super) {
  2942                     return rs.resolveSelf(pos, env, site.tsym, name);
  2943                 } else if (name == names._class) {
  2944                     // In this case, we have already made sure in
  2945                     // visitSelect that qualifier expression is a type.
  2946                     Type t = syms.classType;
  2947                     List<Type> typeargs = allowGenerics
  2948                         ? List.of(types.erasure(site))
  2949                         : List.<Type>nil();
  2950                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
  2951                     return new VarSymbol(
  2952                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2953                 } else {
  2954                     // We are seeing a plain identifier as selector.
  2955                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
  2956                     if ((resultInfo.pkind & ERRONEOUS) == 0)
  2957                         sym = rs.accessBase(sym, pos, location, site, name, true);
  2958                     return sym;
  2960             case WILDCARD:
  2961                 throw new AssertionError(tree);
  2962             case TYPEVAR:
  2963                 // Normally, site.getUpperBound() shouldn't be null.
  2964                 // It should only happen during memberEnter/attribBase
  2965                 // when determining the super type which *must* beac
  2966                 // done before attributing the type variables.  In
  2967                 // other words, we are seeing this illegal program:
  2968                 // class B<T> extends A<T.foo> {}
  2969                 Symbol sym = (site.getUpperBound() != null)
  2970                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
  2971                     : null;
  2972                 if (sym == null) {
  2973                     log.error(pos, "type.var.cant.be.deref");
  2974                     return syms.errSymbol;
  2975                 } else {
  2976                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
  2977                         rs.new AccessError(env, site, sym) :
  2978                                 sym;
  2979                     rs.accessBase(sym2, pos, location, site, name, true);
  2980                     return sym;
  2982             case ERROR:
  2983                 // preserve identifier names through errors
  2984                 return types.createErrorType(name, site.tsym, site).tsym;
  2985             default:
  2986                 // The qualifier expression is of a primitive type -- only
  2987                 // .class is allowed for these.
  2988                 if (name == names._class) {
  2989                     // In this case, we have already made sure in Select that
  2990                     // qualifier expression is a type.
  2991                     Type t = syms.classType;
  2992                     Type arg = types.boxedClass(site).type;
  2993                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
  2994                     return new VarSymbol(
  2995                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
  2996                 } else {
  2997                     log.error(pos, "cant.deref", site);
  2998                     return syms.errSymbol;
  3003         /** Determine type of identifier or select expression and check that
  3004          *  (1) the referenced symbol is not deprecated
  3005          *  (2) the symbol's type is safe (@see checkSafe)
  3006          *  (3) if symbol is a variable, check that its type and kind are
  3007          *      compatible with the prototype and protokind.
  3008          *  (4) if symbol is an instance field of a raw type,
  3009          *      which is being assigned to, issue an unchecked warning if its
  3010          *      type changes under erasure.
  3011          *  (5) if symbol is an instance method of a raw type, issue an
  3012          *      unchecked warning if its argument types change under erasure.
  3013          *  If checks succeed:
  3014          *    If symbol is a constant, return its constant type
  3015          *    else if symbol is a method, return its result type
  3016          *    otherwise return its type.
  3017          *  Otherwise return errType.
  3019          *  @param tree       The syntax tree representing the identifier
  3020          *  @param site       If this is a select, the type of the selected
  3021          *                    expression, otherwise the type of the current class.
  3022          *  @param sym        The symbol representing the identifier.
  3023          *  @param env        The current environment.
  3024          *  @param resultInfo    The expected result
  3025          */
  3026         Type checkId(JCTree tree,
  3027                      Type site,
  3028                      Symbol sym,
  3029                      Env<AttrContext> env,
  3030                      ResultInfo resultInfo) {
  3031             Type pt = resultInfo.pt.tag == FORALL || resultInfo.pt.tag == METHOD ?
  3032                     resultInfo.pt.map(deferredAttr.new DeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase)) :
  3033                     resultInfo.pt;
  3035             DeferredAttr.DeferredTypeMap recoveryMap =
  3036                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
  3038             if (pt.isErroneous()) {
  3039                 Type.map(resultInfo.pt.getParameterTypes(), recoveryMap);
  3040                 return types.createErrorType(site);
  3042             Type owntype; // The computed type of this identifier occurrence.
  3043             switch (sym.kind) {
  3044             case TYP:
  3045                 // For types, the computed type equals the symbol's type,
  3046                 // except for two situations:
  3047                 owntype = sym.type;
  3048                 if (owntype.tag == CLASS) {
  3049                     Type ownOuter = owntype.getEnclosingType();
  3051                     // (a) If the symbol's type is parameterized, erase it
  3052                     // because no type parameters were given.
  3053                     // We recover generic outer type later in visitTypeApply.
  3054                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
  3055                         owntype = types.erasure(owntype);
  3058                     // (b) If the symbol's type is an inner class, then
  3059                     // we have to interpret its outer type as a superclass
  3060                     // of the site type. Example:
  3061                     //
  3062                     // class Tree<A> { class Visitor { ... } }
  3063                     // class PointTree extends Tree<Point> { ... }
  3064                     // ...PointTree.Visitor...
  3065                     //
  3066                     // Then the type of the last expression above is
  3067                     // Tree<Point>.Visitor.
  3068                     else if (ownOuter.tag == CLASS && site != ownOuter) {
  3069                         Type normOuter = site;
  3070                         if (normOuter.tag == CLASS)
  3071                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
  3072                         if (normOuter == null) // perhaps from an import
  3073                             normOuter = types.erasure(ownOuter);
  3074                         if (normOuter != ownOuter)
  3075                             owntype = new ClassType(
  3076                                 normOuter, List.<Type>nil(), owntype.tsym);
  3079                 break;
  3080             case VAR:
  3081                 VarSymbol v = (VarSymbol)sym;
  3082                 // Test (4): if symbol is an instance field of a raw type,
  3083                 // which is being assigned to, issue an unchecked warning if
  3084                 // its type changes under erasure.
  3085                 if (allowGenerics &&
  3086                     resultInfo.pkind == VAR &&
  3087                     v.owner.kind == TYP &&
  3088                     (v.flags() & STATIC) == 0 &&
  3089                     (site.tag == CLASS || site.tag == TYPEVAR)) {
  3090                     Type s = types.asOuterSuper(site, v.owner);
  3091                     if (s != null &&
  3092                         s.isRaw() &&
  3093                         !types.isSameType(v.type, v.erasure(types))) {
  3094                         chk.warnUnchecked(tree.pos(),
  3095                                           "unchecked.assign.to.var",
  3096                                           v, s);
  3099                 // The computed type of a variable is the type of the
  3100                 // variable symbol, taken as a member of the site type.
  3101                 owntype = (sym.owner.kind == TYP &&
  3102                            sym.name != names._this && sym.name != names._super)
  3103                     ? types.memberType(site, sym)
  3104                     : sym.type;
  3106                 // If the variable is a constant, record constant value in
  3107                 // computed type.
  3108                 if (v.getConstValue() != null && isStaticReference(tree))
  3109                     owntype = owntype.constType(v.getConstValue());
  3111                 if (resultInfo.pkind == VAL) {
  3112                     owntype = capture(owntype); // capture "names as expressions"
  3114                 break;
  3115             case MTH: {
  3116                 owntype = checkMethod(site, sym,
  3117                         new ResultInfo(VAL, resultInfo.pt.getReturnType(), resultInfo.checkContext),
  3118                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
  3119                         resultInfo.pt.getTypeArguments());
  3120                 break;
  3122             case PCK: case ERR:
  3123                 Type.map(resultInfo.pt.getParameterTypes(), recoveryMap);
  3124                 owntype = sym.type;
  3125                 break;
  3126             default:
  3127                 throw new AssertionError("unexpected kind: " + sym.kind +
  3128                                          " in tree " + tree);
  3131             // Test (1): emit a `deprecation' warning if symbol is deprecated.
  3132             // (for constructors, the error was given when the constructor was
  3133             // resolved)
  3135             if (sym.name != names.init) {
  3136                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
  3137                 chk.checkSunAPI(tree.pos(), sym);
  3140             // Test (3): if symbol is a variable, check that its type and
  3141             // kind are compatible with the prototype and protokind.
  3142             return check(tree, owntype, sym.kind, resultInfo);
  3145         /** Check that variable is initialized and evaluate the variable's
  3146          *  initializer, if not yet done. Also check that variable is not
  3147          *  referenced before it is defined.
  3148          *  @param tree    The tree making up the variable reference.
  3149          *  @param env     The current environment.
  3150          *  @param v       The variable's symbol.
  3151          */
  3152         private void checkInit(JCTree tree,
  3153                                Env<AttrContext> env,
  3154                                VarSymbol v,
  3155                                boolean onlyWarning) {
  3156 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
  3157 //                             tree.pos + " " + v.pos + " " +
  3158 //                             Resolve.isStatic(env));//DEBUG
  3160             // A forward reference is diagnosed if the declaration position
  3161             // of the variable is greater than the current tree position
  3162             // and the tree and variable definition occur in the same class
  3163             // definition.  Note that writes don't count as references.
  3164             // This check applies only to class and instance
  3165             // variables.  Local variables follow different scope rules,
  3166             // and are subject to definite assignment checking.
  3167             if ((env.info.enclVar == v || v.pos > tree.pos) &&
  3168                 v.owner.kind == TYP &&
  3169                 canOwnInitializer(owner(env)) &&
  3170                 v.owner == env.info.scope.owner.enclClass() &&
  3171                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
  3172                 (!env.tree.hasTag(ASSIGN) ||
  3173                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
  3174                 String suffix = (env.info.enclVar == v) ?
  3175                                 "self.ref" : "forward.ref";
  3176                 if (!onlyWarning || isStaticEnumField(v)) {
  3177                     log.error(tree.pos(), "illegal." + suffix);
  3178                 } else if (useBeforeDeclarationWarning) {
  3179                     log.warning(tree.pos(), suffix, v);
  3183             v.getConstValue(); // ensure initializer is evaluated
  3185             checkEnumInitializer(tree, env, v);
  3188         /**
  3189          * Check for illegal references to static members of enum.  In
  3190          * an enum type, constructors and initializers may not
  3191          * reference its static members unless they are constant.
  3193          * @param tree    The tree making up the variable reference.
  3194          * @param env     The current environment.
  3195          * @param v       The variable's symbol.
  3196          * @jls  section 8.9 Enums
  3197          */
  3198         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
  3199             // JLS:
  3200             //
  3201             // "It is a compile-time error to reference a static field
  3202             // of an enum type that is not a compile-time constant
  3203             // (15.28) from constructors, instance initializer blocks,
  3204             // or instance variable initializer expressions of that
  3205             // type. It is a compile-time error for the constructors,
  3206             // instance initializer blocks, or instance variable
  3207             // initializer expressions of an enum constant e to refer
  3208             // to itself or to an enum constant of the same type that
  3209             // is declared to the right of e."
  3210             if (isStaticEnumField(v)) {
  3211                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
  3213                 if (enclClass == null || enclClass.owner == null)
  3214                     return;
  3216                 // See if the enclosing class is the enum (or a
  3217                 // subclass thereof) declaring v.  If not, this
  3218                 // reference is OK.
  3219                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
  3220                     return;
  3222                 // If the reference isn't from an initializer, then
  3223                 // the reference is OK.
  3224                 if (!Resolve.isInitializer(env))
  3225                     return;
  3227                 log.error(tree.pos(), "illegal.enum.static.ref");
  3231         /** Is the given symbol a static, non-constant field of an Enum?
  3232          *  Note: enum literals should not be regarded as such
  3233          */
  3234         private boolean isStaticEnumField(VarSymbol v) {
  3235             return Flags.isEnum(v.owner) &&
  3236                    Flags.isStatic(v) &&
  3237                    !Flags.isConstant(v) &&
  3238                    v.name != names._class;
  3241         /** Can the given symbol be the owner of code which forms part
  3242          *  if class initialization? This is the case if the symbol is
  3243          *  a type or field, or if the symbol is the synthetic method.
  3244          *  owning a block.
  3245          */
  3246         private boolean canOwnInitializer(Symbol sym) {
  3247             return
  3248                 (sym.kind & (VAR | TYP)) != 0 ||
  3249                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
  3252     Warner noteWarner = new Warner();
  3254     /**
  3255      * Check that method arguments conform to its instantiation.
  3256      **/
  3257     public Type checkMethod(Type site,
  3258                             Symbol sym,
  3259                             ResultInfo resultInfo,
  3260                             Env<AttrContext> env,
  3261                             final List<JCExpression> argtrees,
  3262                             List<Type> argtypes,
  3263                             List<Type> typeargtypes) {
  3264         // Test (5): if symbol is an instance method of a raw type, issue
  3265         // an unchecked warning if its argument types change under erasure.
  3266         if (allowGenerics &&
  3267             (sym.flags() & STATIC) == 0 &&
  3268             (site.tag == CLASS || site.tag == TYPEVAR)) {
  3269             Type s = types.asOuterSuper(site, sym.owner);
  3270             if (s != null && s.isRaw() &&
  3271                 !types.isSameTypes(sym.type.getParameterTypes(),
  3272                                    sym.erasure(types).getParameterTypes())) {
  3273                 chk.warnUnchecked(env.tree.pos(),
  3274                                   "unchecked.call.mbr.of.raw.type",
  3275                                   sym, s);
  3279         // Compute the identifier's instantiated type.
  3280         // For methods, we need to compute the instance type by
  3281         // Resolve.instantiate from the symbol's type as well as
  3282         // any type arguments and value arguments.
  3283         noteWarner.clear();
  3284         try {
  3285             Type owntype = rs.checkMethod(
  3286                     env,
  3287                     site,
  3288                     sym,
  3289                     resultInfo,
  3290                     argtypes,
  3291                     typeargtypes,
  3292                     noteWarner);
  3294             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
  3295                     noteWarner.hasNonSilentLint(LintCategory.UNCHECKED));
  3296         } catch (Infer.InferenceException ex) {
  3297             //invalid target type - propagate exception outwards or report error
  3298             //depending on the current check context
  3299             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
  3300             return types.createErrorType(site);
  3301         } catch (Resolve.InapplicableMethodException ex) {
  3302             Assert.error(ex.getDiagnostic().getMessage(Locale.getDefault()));
  3303             return null;
  3307     public void visitLiteral(JCLiteral tree) {
  3308         result = check(
  3309             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
  3311     //where
  3312     /** Return the type of a literal with given type tag.
  3313      */
  3314     Type litType(int tag) {
  3315         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
  3318     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
  3319         result = check(tree, syms.typeOfTag[tree.typetag], TYP, resultInfo);
  3322     public void visitTypeArray(JCArrayTypeTree tree) {
  3323         Type etype = attribType(tree.elemtype, env);
  3324         Type type = new ArrayType(etype, syms.arrayClass);
  3325         result = check(tree, type, TYP, resultInfo);
  3328     /** Visitor method for parameterized types.
  3329      *  Bound checking is left until later, since types are attributed
  3330      *  before supertype structure is completely known
  3331      */
  3332     public void visitTypeApply(JCTypeApply tree) {
  3333         Type owntype = types.createErrorType(tree.type);
  3335         // Attribute functor part of application and make sure it's a class.
  3336         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
  3338         // Attribute type parameters
  3339         List<Type> actuals = attribTypes(tree.arguments, env);
  3341         if (clazztype.tag == CLASS) {
  3342             List<Type> formals = clazztype.tsym.type.getTypeArguments();
  3343             if (actuals.isEmpty()) //diamond
  3344                 actuals = formals;
  3346             if (actuals.length() == formals.length()) {
  3347                 List<Type> a = actuals;
  3348                 List<Type> f = formals;
  3349                 while (a.nonEmpty()) {
  3350                     a.head = a.head.withTypeVar(f.head);
  3351                     a = a.tail;
  3352                     f = f.tail;
  3354                 // Compute the proper generic outer
  3355                 Type clazzOuter = clazztype.getEnclosingType();
  3356                 if (clazzOuter.tag == CLASS) {
  3357                     Type site;
  3358                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
  3359                     if (clazz.hasTag(IDENT)) {
  3360                         site = env.enclClass.sym.type;
  3361                     } else if (clazz.hasTag(SELECT)) {
  3362                         site = ((JCFieldAccess) clazz).selected.type;
  3363                     } else throw new AssertionError(""+tree);
  3364                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
  3365                         if (site.tag == CLASS)
  3366                             site = types.asOuterSuper(site, clazzOuter.tsym);
  3367                         if (site == null)
  3368                             site = types.erasure(clazzOuter);
  3369                         clazzOuter = site;
  3372                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
  3373             } else {
  3374                 if (formals.length() != 0) {
  3375                     log.error(tree.pos(), "wrong.number.type.args",
  3376                               Integer.toString(formals.length()));
  3377                 } else {
  3378                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
  3380                 owntype = types.createErrorType(tree.type);
  3383         result = check(tree, owntype, TYP, resultInfo);
  3386     public void visitTypeUnion(JCTypeUnion tree) {
  3387         ListBuffer<Type> multicatchTypes = ListBuffer.lb();
  3388         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
  3389         for (JCExpression typeTree : tree.alternatives) {
  3390             Type ctype = attribType(typeTree, env);
  3391             ctype = chk.checkType(typeTree.pos(),
  3392                           chk.checkClassType(typeTree.pos(), ctype),
  3393                           syms.throwableType);
  3394             if (!ctype.isErroneous()) {
  3395                 //check that alternatives of a union type are pairwise
  3396                 //unrelated w.r.t. subtyping
  3397                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
  3398                     for (Type t : multicatchTypes) {
  3399                         boolean sub = types.isSubtype(ctype, t);
  3400                         boolean sup = types.isSubtype(t, ctype);
  3401                         if (sub || sup) {
  3402                             //assume 'a' <: 'b'
  3403                             Type a = sub ? ctype : t;
  3404                             Type b = sub ? t : ctype;
  3405                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
  3409                 multicatchTypes.append(ctype);
  3410                 if (all_multicatchTypes != null)
  3411                     all_multicatchTypes.append(ctype);
  3412             } else {
  3413                 if (all_multicatchTypes == null) {
  3414                     all_multicatchTypes = ListBuffer.lb();
  3415                     all_multicatchTypes.appendList(multicatchTypes);
  3417                 all_multicatchTypes.append(ctype);
  3420         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
  3421         if (t.tag == CLASS) {
  3422             List<Type> alternatives =
  3423                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
  3424             t = new UnionClassType((ClassType) t, alternatives);
  3426         tree.type = result = t;
  3429     public void visitTypeParameter(JCTypeParameter tree) {
  3430         TypeVar a = (TypeVar)tree.type;
  3431         Set<Type> boundSet = new HashSet<Type>();
  3432         if (a.bound.isErroneous())
  3433             return;
  3434         List<Type> bs = types.getBounds(a);
  3435         if (tree.bounds.nonEmpty()) {
  3436             // accept class or interface or typevar as first bound.
  3437             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
  3438             boundSet.add(types.erasure(b));
  3439             if (b.isErroneous()) {
  3440                 a.bound = b;
  3442             else if (b.tag == TYPEVAR) {
  3443                 // if first bound was a typevar, do not accept further bounds.
  3444                 if (tree.bounds.tail.nonEmpty()) {
  3445                     log.error(tree.bounds.tail.head.pos(),
  3446                               "type.var.may.not.be.followed.by.other.bounds");
  3447                     tree.bounds = List.of(tree.bounds.head);
  3448                     a.bound = bs.head;
  3450             } else {
  3451                 // if first bound was a class or interface, accept only interfaces
  3452                 // as further bounds.
  3453                 for (JCExpression bound : tree.bounds.tail) {
  3454                     bs = bs.tail;
  3455                     Type i = checkBase(bs.head, bound, env, false, true, false);
  3456                     if (i.isErroneous())
  3457                         a.bound = i;
  3458                     else if (i.tag == CLASS)
  3459                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
  3463         bs = types.getBounds(a);
  3465         // in case of multiple bounds ...
  3466         if (bs.length() > 1) {
  3467             // ... the variable's bound is a class type flagged COMPOUND
  3468             // (see comment for TypeVar.bound).
  3469             // In this case, generate a class tree that represents the
  3470             // bound class, ...
  3471             JCExpression extending;
  3472             List<JCExpression> implementing;
  3473             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
  3474                 extending = tree.bounds.head;
  3475                 implementing = tree.bounds.tail;
  3476             } else {
  3477                 extending = null;
  3478                 implementing = tree.bounds;
  3480             JCClassDecl cd = make.at(tree.pos).ClassDef(
  3481                 make.Modifiers(PUBLIC | ABSTRACT),
  3482                 tree.name, List.<JCTypeParameter>nil(),
  3483                 extending, implementing, List.<JCTree>nil());
  3485             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
  3486             Assert.check((c.flags() & COMPOUND) != 0);
  3487             cd.sym = c;
  3488             c.sourcefile = env.toplevel.sourcefile;
  3490             // ... and attribute the bound class
  3491             c.flags_field |= UNATTRIBUTED;
  3492             Env<AttrContext> cenv = enter.classEnv(cd, env);
  3493             enter.typeEnvs.put(c, cenv);
  3498     public void visitWildcard(JCWildcard tree) {
  3499         //- System.err.println("visitWildcard("+tree+");");//DEBUG
  3500         Type type = (tree.kind.kind == BoundKind.UNBOUND)
  3501             ? syms.objectType
  3502             : attribType(tree.inner, env);
  3503         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
  3504                                               tree.kind.kind,
  3505                                               syms.boundClass),
  3506                        TYP, resultInfo);
  3509     public void visitAnnotation(JCAnnotation tree) {
  3510         log.error(tree.pos(), "annotation.not.valid.for.type", pt());
  3511         result = tree.type = syms.errType;
  3514     public void visitErroneous(JCErroneous tree) {
  3515         if (tree.errs != null)
  3516             for (JCTree err : tree.errs)
  3517                 attribTree(err, env, new ResultInfo(ERR, pt()));
  3518         result = tree.type = syms.errType;
  3521     /** Default visitor method for all other trees.
  3522      */
  3523     public void visitTree(JCTree tree) {
  3524         throw new AssertionError();
  3527     /**
  3528      * Attribute an env for either a top level tree or class declaration.
  3529      */
  3530     public void attrib(Env<AttrContext> env) {
  3531         if (env.tree.hasTag(TOPLEVEL))
  3532             attribTopLevel(env);
  3533         else
  3534             attribClass(env.tree.pos(), env.enclClass.sym);
  3537     /**
  3538      * Attribute a top level tree. These trees are encountered when the
  3539      * package declaration has annotations.
  3540      */
  3541     public void attribTopLevel(Env<AttrContext> env) {
  3542         JCCompilationUnit toplevel = env.toplevel;
  3543         try {
  3544             annotate.flush();
  3545             chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
  3546         } catch (CompletionFailure ex) {
  3547             chk.completionError(toplevel.pos(), ex);
  3551     /** Main method: attribute class definition associated with given class symbol.
  3552      *  reporting completion failures at the given position.
  3553      *  @param pos The source position at which completion errors are to be
  3554      *             reported.
  3555      *  @param c   The class symbol whose definition will be attributed.
  3556      */
  3557     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
  3558         try {
  3559             annotate.flush();
  3560             attribClass(c);
  3561         } catch (CompletionFailure ex) {
  3562             chk.completionError(pos, ex);
  3566     /** Attribute class definition associated with given class symbol.
  3567      *  @param c   The class symbol whose definition will be attributed.
  3568      */
  3569     void attribClass(ClassSymbol c) throws CompletionFailure {
  3570         if (c.type.tag == ERROR) return;
  3572         // Check for cycles in the inheritance graph, which can arise from
  3573         // ill-formed class files.
  3574         chk.checkNonCyclic(null, c.type);
  3576         Type st = types.supertype(c.type);
  3577         if ((c.flags_field & Flags.COMPOUND) == 0) {
  3578             // First, attribute superclass.
  3579             if (st.tag == CLASS)
  3580                 attribClass((ClassSymbol)st.tsym);
  3582             // Next attribute owner, if it is a class.
  3583             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
  3584                 attribClass((ClassSymbol)c.owner);
  3587         // The previous operations might have attributed the current class
  3588         // if there was a cycle. So we test first whether the class is still
  3589         // UNATTRIBUTED.
  3590         if ((c.flags_field & UNATTRIBUTED) != 0) {
  3591             c.flags_field &= ~UNATTRIBUTED;
  3593             // Get environment current at the point of class definition.
  3594             Env<AttrContext> env = enter.typeEnvs.get(c);
  3596             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
  3597             // because the annotations were not available at the time the env was created. Therefore,
  3598             // we look up the environment chain for the first enclosing environment for which the
  3599             // lint value is set. Typically, this is the parent env, but might be further if there
  3600             // are any envs created as a result of TypeParameter nodes.
  3601             Env<AttrContext> lintEnv = env;
  3602             while (lintEnv.info.lint == null)
  3603                 lintEnv = lintEnv.next;
  3605             // Having found the enclosing lint value, we can initialize the lint value for this class
  3606             env.info.lint = lintEnv.info.lint.augment(c.annotations, c.flags());
  3608             Lint prevLint = chk.setLint(env.info.lint);
  3609             JavaFileObject prev = log.useSource(c.sourcefile);
  3610             ResultInfo prevReturnRes = env.info.returnResult;
  3612             try {
  3613                 env.info.returnResult = null;
  3614                 // java.lang.Enum may not be subclassed by a non-enum
  3615                 if (st.tsym == syms.enumSym &&
  3616                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
  3617                     log.error(env.tree.pos(), "enum.no.subclassing");
  3619                 // Enums may not be extended by source-level classes
  3620                 if (st.tsym != null &&
  3621                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
  3622                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
  3623                     !target.compilerBootstrap(c)) {
  3624                     log.error(env.tree.pos(), "enum.types.not.extensible");
  3626                 attribClassBody(env, c);
  3628                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
  3629             } finally {
  3630                 env.info.returnResult = prevReturnRes;
  3631                 log.useSource(prev);
  3632                 chk.setLint(prevLint);
  3638     public void visitImport(JCImport tree) {
  3639         // nothing to do
  3642     /** Finish the attribution of a class. */
  3643     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
  3644         JCClassDecl tree = (JCClassDecl)env.tree;
  3645         Assert.check(c == tree.sym);
  3647         // Validate annotations
  3648         chk.validateAnnotations(tree.mods.annotations, c);
  3650         // Validate type parameters, supertype and interfaces.
  3651         attribBounds(tree.typarams);
  3652         if (!c.isAnonymous()) {
  3653             //already checked if anonymous
  3654             chk.validate(tree.typarams, env);
  3655             chk.validate(tree.extending, env);
  3656             chk.validate(tree.implementing, env);
  3659         // If this is a non-abstract class, check that it has no abstract
  3660         // methods or unimplemented methods of an implemented interface.
  3661         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
  3662             if (!relax)
  3663                 chk.checkAllDefined(tree.pos(), c);
  3666         if ((c.flags() & ANNOTATION) != 0) {
  3667             if (tree.implementing.nonEmpty())
  3668                 log.error(tree.implementing.head.pos(),
  3669                           "cant.extend.intf.annotation");
  3670             if (tree.typarams.nonEmpty())
  3671                 log.error(tree.typarams.head.pos(),
  3672                           "intf.annotation.cant.have.type.params");
  3674             // If this annotation has a @ContainedBy, validate
  3675             Attribute.Compound containedBy = c.attribute(syms.containedByType.tsym);
  3676             if (containedBy != null) {
  3677                 // get diagnositc position for error reporting
  3678                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, containedBy.type);
  3679                 Assert.checkNonNull(cbPos);
  3681                 chk.validateContainedBy(c, containedBy, cbPos);
  3684             // If this annotation has a @ContainerFor, validate
  3685             Attribute.Compound containerFor = c.attribute(syms.containerForType.tsym);
  3686             if (containerFor != null) {
  3687                 // get diagnositc position for error reporting
  3688                 DiagnosticPosition cfPos = getDiagnosticPosition(tree, containerFor.type);
  3689                 Assert.checkNonNull(cfPos);
  3691                 chk.validateContainerFor(c, containerFor, cfPos);
  3693         } else {
  3694             // Check that all extended classes and interfaces
  3695             // are compatible (i.e. no two define methods with same arguments
  3696             // yet different return types).  (JLS 8.4.6.3)
  3697             chk.checkCompatibleSupertypes(tree.pos(), c.type);
  3700         // Check that class does not import the same parameterized interface
  3701         // with two different argument lists.
  3702         chk.checkClassBounds(tree.pos(), c.type);
  3704         tree.type = c.type;
  3706         for (List<JCTypeParameter> l = tree.typarams;
  3707              l.nonEmpty(); l = l.tail) {
  3708              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
  3711         // Check that a generic class doesn't extend Throwable
  3712         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
  3713             log.error(tree.extending.pos(), "generic.throwable");
  3715         // Check that all methods which implement some
  3716         // method conform to the method they implement.
  3717         chk.checkImplementations(tree);
  3719         //check that a resource implementing AutoCloseable cannot throw InterruptedException
  3720         checkAutoCloseable(tree.pos(), env, c.type);
  3722         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
  3723             // Attribute declaration
  3724             attribStat(l.head, env);
  3725             // Check that declarations in inner classes are not static (JLS 8.1.2)
  3726             // Make an exception for static constants.
  3727             if (c.owner.kind != PCK &&
  3728                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
  3729                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
  3730                 Symbol sym = null;
  3731                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
  3732                 if (sym == null ||
  3733                     sym.kind != VAR ||
  3734                     ((VarSymbol) sym).getConstValue() == null)
  3735                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
  3739         // Check for cycles among non-initial constructors.
  3740         chk.checkCyclicConstructors(tree);
  3742         // Check for cycles among annotation elements.
  3743         chk.checkNonCyclicElements(tree);
  3745         // Check for proper use of serialVersionUID
  3746         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
  3747             isSerializable(c) &&
  3748             (c.flags() & Flags.ENUM) == 0 &&
  3749             (c.flags() & ABSTRACT) == 0) {
  3750             checkSerialVersionUID(tree, c);
  3753         // where
  3754         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
  3755         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
  3756             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
  3757                 if (types.isSameType(al.head.annotationType.type, t))
  3758                     return al.head.pos();
  3761             return null;
  3764         /** check if a class is a subtype of Serializable, if that is available. */
  3765         private boolean isSerializable(ClassSymbol c) {
  3766             try {
  3767                 syms.serializableType.complete();
  3769             catch (CompletionFailure e) {
  3770                 return false;
  3772             return types.isSubtype(c.type, syms.serializableType);
  3775         /** Check that an appropriate serialVersionUID member is defined. */
  3776         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
  3778             // check for presence of serialVersionUID
  3779             Scope.Entry e = c.members().lookup(names.serialVersionUID);
  3780             while (e.scope != null && e.sym.kind != VAR) e = e.next();
  3781             if (e.scope == null) {
  3782                 log.warning(LintCategory.SERIAL,
  3783                         tree.pos(), "missing.SVUID", c);
  3784                 return;
  3787             // check that it is static final
  3788             VarSymbol svuid = (VarSymbol)e.sym;
  3789             if ((svuid.flags() & (STATIC | FINAL)) !=
  3790                 (STATIC | FINAL))
  3791                 log.warning(LintCategory.SERIAL,
  3792                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
  3794             // check that it is long
  3795             else if (svuid.type.tag != TypeTags.LONG)
  3796                 log.warning(LintCategory.SERIAL,
  3797                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
  3799             // check constant
  3800             else if (svuid.getConstValue() == null)
  3801                 log.warning(LintCategory.SERIAL,
  3802                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
  3805     private Type capture(Type type) {
  3806         return types.capture(type);
  3809     // <editor-fold desc="post-attribution visitor">
  3811     /**
  3812      * Handle missing types/symbols in an AST. This routine is useful when
  3813      * the compiler has encountered some errors (which might have ended up
  3814      * terminating attribution abruptly); if the compiler is used in fail-over
  3815      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
  3816      * prevents NPE to be progagated during subsequent compilation steps.
  3817      */
  3818     public void postAttr(JCTree tree) {
  3819         new PostAttrAnalyzer().scan(tree);
  3822     class PostAttrAnalyzer extends TreeScanner {
  3824         private void initTypeIfNeeded(JCTree that) {
  3825             if (that.type == null) {
  3826                 that.type = syms.unknownType;
  3830         @Override
  3831         public void scan(JCTree tree) {
  3832             if (tree == null) return;
  3833             if (tree instanceof JCExpression) {
  3834                 initTypeIfNeeded(tree);
  3836             super.scan(tree);
  3839         @Override
  3840         public void visitIdent(JCIdent that) {
  3841             if (that.sym == null) {
  3842                 that.sym = syms.unknownSymbol;
  3846         @Override
  3847         public void visitSelect(JCFieldAccess that) {
  3848             if (that.sym == null) {
  3849                 that.sym = syms.unknownSymbol;
  3851             super.visitSelect(that);
  3854         @Override
  3855         public void visitClassDef(JCClassDecl that) {
  3856             initTypeIfNeeded(that);
  3857             if (that.sym == null) {
  3858                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
  3860             super.visitClassDef(that);
  3863         @Override
  3864         public void visitMethodDef(JCMethodDecl that) {
  3865             initTypeIfNeeded(that);
  3866             if (that.sym == null) {
  3867                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
  3869             super.visitMethodDef(that);
  3872         @Override
  3873         public void visitVarDef(JCVariableDecl that) {
  3874             initTypeIfNeeded(that);
  3875             if (that.sym == null) {
  3876                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
  3877                 that.sym.adr = 0;
  3879             super.visitVarDef(that);
  3882         @Override
  3883         public void visitNewClass(JCNewClass that) {
  3884             if (that.constructor == null) {
  3885                 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
  3887             if (that.constructorType == null) {
  3888                 that.constructorType = syms.unknownType;
  3890             super.visitNewClass(that);
  3893         @Override
  3894         public void visitAssignop(JCAssignOp that) {
  3895             if (that.operator == null)
  3896                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3897             super.visitAssignop(that);
  3900         @Override
  3901         public void visitBinary(JCBinary that) {
  3902             if (that.operator == null)
  3903                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3904             super.visitBinary(that);
  3907         @Override
  3908         public void visitUnary(JCUnary that) {
  3909             if (that.operator == null)
  3910                 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
  3911             super.visitUnary(that);
  3914         @Override
  3915         public void visitReference(JCMemberReference that) {
  3916             super.visitReference(that);
  3917             if (that.sym == null) {
  3918                 that.sym = new MethodSymbol(0, names.empty, syms.unknownType, syms.noSymbol);
  3922     // </editor-fold>

mercurial